xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 150d2c5288c645a1c1a7d2bee61199a3729406c7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <sys/sdt.h>
106 #include <rpc/pmap_prot.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
130  * squeue_fill). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * IPsec notes :
221  *
222  * Since a packet is always executed on the correct TCP perimeter
223  * all IPsec processing is defered to IP including checking new
224  * connections and setting IPSEC policies for new connection. The
225  * only exception is tcp_xmit_listeners_reset() which is called
226  * directly from IP and needs to policy check to see if TH_RST
227  * can be sent out.
228  *
229  * PFHooks notes :
230  *
231  * For mdt case, one meta buffer contains multiple packets. Mblks for every
232  * packet are assembled and passed to the hooks. When packets are blocked,
233  * or boundary of any packet is changed, the mdt processing is stopped, and
234  * packets of the meta buffer are send to the IP path one by one.
235  */
236 
237 extern major_t TCP6_MAJ;
238 
239 /*
240  * Values for squeue switch:
241  * 1: squeue_enter_nodrain
242  * 2: squeue_enter
243  * 3: squeue_fill
244  */
245 int tcp_squeue_close = 2;	/* Setable in /etc/system */
246 int tcp_squeue_wput = 2;
247 
248 squeue_func_t tcp_squeue_close_proc;
249 squeue_func_t tcp_squeue_wput_proc;
250 
251 /*
252  * This controls how tiny a write must be before we try to copy it
253  * into the the mblk on the tail of the transmit queue.  Not much
254  * speedup is observed for values larger than sixteen.  Zero will
255  * disable the optimisation.
256  */
257 int tcp_tx_pull_len = 16;
258 
259 /*
260  * TCP Statistics.
261  *
262  * How TCP statistics work.
263  *
264  * There are two types of statistics invoked by two macros.
265  *
266  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
267  * supposed to be used in non MT-hot paths of the code.
268  *
269  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
270  * supposed to be used for DEBUG purposes and may be used on a hot path.
271  *
272  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
273  * (use "kstat tcp" to get them).
274  *
275  * There is also additional debugging facility that marks tcp_clean_death()
276  * instances and saves them in tcp_t structure. It is triggered by
277  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
278  * tcp_clean_death() calls that counts the number of times each tag was hit. It
279  * is triggered by TCP_CLD_COUNTERS define.
280  *
281  * How to add new counters.
282  *
283  * 1) Add a field in the tcp_stat structure describing your counter.
284  * 2) Add a line in the template in tcp_kstat2_init() with the name
285  *    of the counter.
286  *
287  *    IMPORTANT!! - make sure that both are in sync !!
288  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
289  *
290  * Please avoid using private counters which are not kstat-exported.
291  *
292  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
293  * in tcp_t structure.
294  *
295  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
296  */
297 
298 #ifndef TCP_DEBUG_COUNTER
299 #ifdef DEBUG
300 #define	TCP_DEBUG_COUNTER 1
301 #else
302 #define	TCP_DEBUG_COUNTER 0
303 #endif
304 #endif
305 
306 #define	TCP_CLD_COUNTERS 0
307 
308 #define	TCP_TAG_CLEAN_DEATH 1
309 #define	TCP_MAX_CLEAN_DEATH_TAG 32
310 
311 #ifdef lint
312 static int _lint_dummy_;
313 #endif
314 
315 #if TCP_CLD_COUNTERS
316 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
317 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
318 #elif defined(lint)
319 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
320 #else
321 #define	TCP_CLD_STAT(x)
322 #endif
323 
324 #if TCP_DEBUG_COUNTER
325 #define	TCP_DBGSTAT(tcps, x)	\
326 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
327 #define	TCP_G_DBGSTAT(x)	\
328 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
329 #elif defined(lint)
330 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
331 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
332 #else
333 #define	TCP_DBGSTAT(tcps, x)
334 #define	TCP_G_DBGSTAT(x)
335 #endif
336 
337 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
338 
339 tcp_g_stat_t	tcp_g_statistics;
340 kstat_t		*tcp_g_kstat;
341 
342 /*
343  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
344  * tcp write side.
345  */
346 #define	CALL_IP_WPUT(connp, q, mp) {					\
347 	tcp_stack_t	*tcps;						\
348 									\
349 	tcps = connp->conn_netstack->netstack_tcp;			\
350 	ASSERT(((q)->q_flag & QREADR) == 0);				\
351 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
352 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
353 }
354 
355 /* Macros for timestamp comparisons */
356 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
357 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
358 
359 /*
360  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
361  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
362  * by adding three components: a time component which grows by 1 every 4096
363  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
364  * a per-connection component which grows by 125000 for every new connection;
365  * and an "extra" component that grows by a random amount centered
366  * approximately on 64000.  This causes the the ISS generator to cycle every
367  * 4.89 hours if no TCP connections are made, and faster if connections are
368  * made.
369  *
370  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
371  * components: a time component which grows by 250000 every second; and
372  * a per-connection component which grows by 125000 for every new connections.
373  *
374  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
375  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
376  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
377  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
378  * password.
379  */
380 #define	ISS_INCR	250000
381 #define	ISS_NSEC_SHT	12
382 
383 static sin_t	sin_null;	/* Zero address for quick clears */
384 static sin6_t	sin6_null;	/* Zero address for quick clears */
385 
386 /*
387  * This implementation follows the 4.3BSD interpretation of the urgent
388  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
389  * incompatible changes in protocols like telnet and rlogin.
390  */
391 #define	TCP_OLD_URP_INTERPRETATION	1
392 
393 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
394 	(TCP_IS_DETACHED(tcp) && \
395 	    (!(tcp)->tcp_hard_binding))
396 
397 /*
398  * TCP reassembly macros.  We hide starting and ending sequence numbers in
399  * b_next and b_prev of messages on the reassembly queue.  The messages are
400  * chained using b_cont.  These macros are used in tcp_reass() so we don't
401  * have to see the ugly casts and assignments.
402  */
403 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
404 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
405 					(mblk_t *)(uintptr_t)(u))
406 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
407 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
408 					(mblk_t *)(uintptr_t)(u))
409 
410 /*
411  * Implementation of TCP Timers.
412  * =============================
413  *
414  * INTERFACE:
415  *
416  * There are two basic functions dealing with tcp timers:
417  *
418  *	timeout_id_t	tcp_timeout(connp, func, time)
419  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
420  *	TCP_TIMER_RESTART(tcp, intvl)
421  *
422  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
423  * after 'time' ticks passed. The function called by timeout() must adhere to
424  * the same restrictions as a driver soft interrupt handler - it must not sleep
425  * or call other functions that might sleep. The value returned is the opaque
426  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
427  * cancel the request. The call to tcp_timeout() may fail in which case it
428  * returns zero. This is different from the timeout(9F) function which never
429  * fails.
430  *
431  * The call-back function 'func' always receives 'connp' as its single
432  * argument. It is always executed in the squeue corresponding to the tcp
433  * structure. The tcp structure is guaranteed to be present at the time the
434  * call-back is called.
435  *
436  * NOTE: The call-back function 'func' is never called if tcp is in
437  * 	the TCPS_CLOSED state.
438  *
439  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
440  * request. locks acquired by the call-back routine should not be held across
441  * the call to tcp_timeout_cancel() or a deadlock may result.
442  *
443  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
444  * Otherwise, it returns an integer value greater than or equal to 0. In
445  * particular, if the call-back function is already placed on the squeue, it can
446  * not be canceled.
447  *
448  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
449  * 	within squeue context corresponding to the tcp instance. Since the
450  *	call-back is also called via the same squeue, there are no race
451  *	conditions described in untimeout(9F) manual page since all calls are
452  *	strictly serialized.
453  *
454  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
455  *	stored in tcp_timer_tid and starts a new one using
456  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
457  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
458  *	field.
459  *
460  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
461  *	call-back may still be called, so it is possible tcp_timer() will be
462  *	called several times. This should not be a problem since tcp_timer()
463  *	should always check the tcp instance state.
464  *
465  *
466  * IMPLEMENTATION:
467  *
468  * TCP timers are implemented using three-stage process. The call to
469  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
470  * when the timer expires. The tcp_timer_callback() arranges the call of the
471  * tcp_timer_handler() function via squeue corresponding to the tcp
472  * instance. The tcp_timer_handler() calls actual requested timeout call-back
473  * and passes tcp instance as an argument to it. Information is passed between
474  * stages using the tcp_timer_t structure which contains the connp pointer, the
475  * tcp call-back to call and the timeout id returned by the timeout(9F).
476  *
477  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
478  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
479  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
480  * returns the pointer to this mblk.
481  *
482  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
483  * looks like a normal mblk without actual dblk attached to it.
484  *
485  * To optimize performance each tcp instance holds a small cache of timer
486  * mblocks. In the current implementation it caches up to two timer mblocks per
487  * tcp instance. The cache is preserved over tcp frees and is only freed when
488  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
489  * timer processing happens on a corresponding squeue, the cache manipulation
490  * does not require any locks. Experiments show that majority of timer mblocks
491  * allocations are satisfied from the tcp cache and do not involve kmem calls.
492  *
493  * The tcp_timeout() places a refhold on the connp instance which guarantees
494  * that it will be present at the time the call-back function fires. The
495  * tcp_timer_handler() drops the reference after calling the call-back, so the
496  * call-back function does not need to manipulate the references explicitly.
497  */
498 
499 typedef struct tcp_timer_s {
500 	conn_t	*connp;
501 	void 	(*tcpt_proc)(void *);
502 	timeout_id_t   tcpt_tid;
503 } tcp_timer_t;
504 
505 static kmem_cache_t *tcp_timercache;
506 kmem_cache_t	*tcp_sack_info_cache;
507 kmem_cache_t	*tcp_iphc_cache;
508 
509 /*
510  * For scalability, we must not run a timer for every TCP connection
511  * in TIME_WAIT state.  To see why, consider (for time wait interval of
512  * 4 minutes):
513  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
514  *
515  * This list is ordered by time, so you need only delete from the head
516  * until you get to entries which aren't old enough to delete yet.
517  * The list consists of only the detached TIME_WAIT connections.
518  *
519  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
520  * becomes detached TIME_WAIT (either by changing the state and already
521  * being detached or the other way around). This means that the TIME_WAIT
522  * state can be extended (up to doubled) if the connection doesn't become
523  * detached for a long time.
524  *
525  * The list manipulations (including tcp_time_wait_next/prev)
526  * are protected by the tcp_time_wait_lock. The content of the
527  * detached TIME_WAIT connections is protected by the normal perimeters.
528  *
529  * This list is per squeue and squeues are shared across the tcp_stack_t's.
530  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
531  * and conn_netstack.
532  * The tcp_t's that are added to tcp_free_list are disassociated and
533  * have NULL tcp_tcps and conn_netstack pointers.
534  */
535 typedef struct tcp_squeue_priv_s {
536 	kmutex_t	tcp_time_wait_lock;
537 	timeout_id_t	tcp_time_wait_tid;
538 	tcp_t		*tcp_time_wait_head;
539 	tcp_t		*tcp_time_wait_tail;
540 	tcp_t		*tcp_free_list;
541 	uint_t		tcp_free_list_cnt;
542 } tcp_squeue_priv_t;
543 
544 /*
545  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
546  * Running it every 5 seconds seems to give the best results.
547  */
548 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
549 
550 /*
551  * To prevent memory hog, limit the number of entries in tcp_free_list
552  * to 1% of available memory / number of cpus
553  */
554 uint_t tcp_free_list_max_cnt = 0;
555 
556 #define	TCP_XMIT_LOWATER	4096
557 #define	TCP_XMIT_HIWATER	49152
558 #define	TCP_RECV_LOWATER	2048
559 #define	TCP_RECV_HIWATER	49152
560 
561 /*
562  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
563  */
564 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
565 
566 #define	TIDUSZ	4096	/* transport interface data unit size */
567 
568 /*
569  * Bind hash list size and has function.  It has to be a power of 2 for
570  * hashing.
571  */
572 #define	TCP_BIND_FANOUT_SIZE	512
573 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
574 /*
575  * Size of listen and acceptor hash list.  It has to be a power of 2 for
576  * hashing.
577  */
578 #define	TCP_FANOUT_SIZE		256
579 
580 #ifdef	_ILP32
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
583 #else
584 #define	TCP_ACCEPTOR_HASH(accid)					\
585 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
586 #endif	/* _ILP32 */
587 
588 #define	IP_ADDR_CACHE_SIZE	2048
589 #define	IP_ADDR_CACHE_HASH(faddr)					\
590 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
591 
592 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
593 #define	TCP_HSP_HASH_SIZE 256
594 
595 #define	TCP_HSP_HASH(addr)					\
596 	(((addr>>24) ^ (addr >>16) ^			\
597 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
598 
599 /*
600  * TCP options struct returned from tcp_parse_options.
601  */
602 typedef struct tcp_opt_s {
603 	uint32_t	tcp_opt_mss;
604 	uint32_t	tcp_opt_wscale;
605 	uint32_t	tcp_opt_ts_val;
606 	uint32_t	tcp_opt_ts_ecr;
607 	tcp_t		*tcp;
608 } tcp_opt_t;
609 
610 /*
611  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
612  */
613 
614 #ifdef _BIG_ENDIAN
615 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
616 	(TCPOPT_TSTAMP << 8) | 10)
617 #else
618 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
619 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
620 #endif
621 
622 /*
623  * Flags returned from tcp_parse_options.
624  */
625 #define	TCP_OPT_MSS_PRESENT	1
626 #define	TCP_OPT_WSCALE_PRESENT	2
627 #define	TCP_OPT_TSTAMP_PRESENT	4
628 #define	TCP_OPT_SACK_OK_PRESENT	8
629 #define	TCP_OPT_SACK_PRESENT	16
630 
631 /* TCP option length */
632 #define	TCPOPT_NOP_LEN		1
633 #define	TCPOPT_MAXSEG_LEN	4
634 #define	TCPOPT_WS_LEN		3
635 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
636 #define	TCPOPT_TSTAMP_LEN	10
637 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
638 #define	TCPOPT_SACK_OK_LEN	2
639 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
640 #define	TCPOPT_REAL_SACK_LEN	4
641 #define	TCPOPT_MAX_SACK_LEN	36
642 #define	TCPOPT_HEADER_LEN	2
643 
644 /* TCP cwnd burst factor. */
645 #define	TCP_CWND_INFINITE	65535
646 #define	TCP_CWND_SS		3
647 #define	TCP_CWND_NORMAL		5
648 
649 /* Maximum TCP initial cwin (start/restart). */
650 #define	TCP_MAX_INIT_CWND	8
651 
652 /*
653  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
654  * either tcp_slow_start_initial or tcp_slow_start_after idle
655  * depending on the caller.  If the upper layer has not used the
656  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
657  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
658  * If the upper layer has changed set the tcp_init_cwnd, just use
659  * it to calculate the tcp_cwnd.
660  */
661 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
662 {									\
663 	if ((tcp)->tcp_init_cwnd == 0) {				\
664 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
665 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
666 	} else {							\
667 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
668 	}								\
669 	tcp->tcp_cwnd_cnt = 0;						\
670 }
671 
672 /* TCP Timer control structure */
673 typedef struct tcpt_s {
674 	pfv_t	tcpt_pfv;	/* The routine we are to call */
675 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
676 } tcpt_t;
677 
678 /* Host Specific Parameter structure */
679 typedef struct tcp_hsp {
680 	struct tcp_hsp	*tcp_hsp_next;
681 	in6_addr_t	tcp_hsp_addr_v6;
682 	in6_addr_t	tcp_hsp_subnet_v6;
683 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
684 	int32_t		tcp_hsp_sendspace;
685 	int32_t		tcp_hsp_recvspace;
686 	int32_t		tcp_hsp_tstamp;
687 } tcp_hsp_t;
688 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
689 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
690 
691 /*
692  * Functions called directly via squeue having a prototype of edesc_t.
693  */
694 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
696 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
697 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
699 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
700 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
702 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
703 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
704 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
705 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
706 
707 
708 /* Prototype for TCP functions */
709 static void	tcp_random_init(void);
710 int		tcp_random(void);
711 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
712 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
713 		    tcp_t *eager);
714 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
715 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
716     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
717     boolean_t user_specified);
718 static void	tcp_closei_local(tcp_t *tcp);
719 static void	tcp_close_detached(tcp_t *tcp);
720 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
721 			mblk_t *idmp, mblk_t **defermp);
722 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
723 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
724 		    in_port_t dstport, uint_t srcid);
725 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
726 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
727 		    uint32_t scope_id);
728 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
729 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
730 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
731 static char	*tcp_display(tcp_t *tcp, char *, char);
732 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
733 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
734 static void	tcp_eager_unlink(tcp_t *tcp);
735 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
736 		    int unixerr);
737 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
738 		    int tlierr, int unixerr);
739 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
740 		    cred_t *cr);
741 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
742 		    char *value, caddr_t cp, cred_t *cr);
743 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
744 		    char *value, caddr_t cp, cred_t *cr);
745 static int	tcp_tpistate(tcp_t *tcp);
746 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
747     int caller_holds_lock);
748 static void	tcp_bind_hash_remove(tcp_t *tcp);
749 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
750 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
751 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
752 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
753 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
755 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
756 void		tcp_g_q_setup(tcp_stack_t *);
757 void		tcp_g_q_create(tcp_stack_t *);
758 void		tcp_g_q_destroy(tcp_stack_t *);
759 static int	tcp_header_init_ipv4(tcp_t *tcp);
760 static int	tcp_header_init_ipv6(tcp_t *tcp);
761 int		tcp_init(tcp_t *tcp, queue_t *q);
762 static int	tcp_init_values(tcp_t *tcp);
763 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
764 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
765 		    t_scalar_t addr_length);
766 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
767 static void	tcp_ip_notify(tcp_t *tcp);
768 static mblk_t	*tcp_ire_mp(mblk_t *mp);
769 static void	tcp_iss_init(tcp_t *tcp);
770 static void	tcp_keepalive_killer(void *arg);
771 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
772 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
773 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
774 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
775 static boolean_t tcp_allow_connopt_set(int level, int name);
776 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
777 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
778 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
779 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
780 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
781 		    mblk_t *mblk);
782 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
783 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
784 		    uchar_t *ptr, uint_t len);
785 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
786 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
787     tcp_stack_t *);
788 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
789 		    caddr_t cp, cred_t *cr);
790 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
793 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
794 		    caddr_t cp, cred_t *cr);
795 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
796 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
797 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_reinit(tcp_t *tcp);
799 static void	tcp_reinit_values(tcp_t *tcp);
800 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
801 		    tcp_t *thisstream, cred_t *cr);
802 
803 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
804 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
805 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
806 static void	tcp_ss_rexmit(tcp_t *tcp);
807 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
808 static void	tcp_process_options(tcp_t *, tcph_t *);
809 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
810 static void	tcp_rsrv(queue_t *q);
811 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
812 static int	tcp_snmp_state(tcp_t *tcp);
813 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
814 		    cred_t *cr);
815 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
816 		    cred_t *cr);
817 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
818 		    cred_t *cr);
819 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
820 		    cred_t *cr);
821 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
822 		    cred_t *cr);
823 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
824 		    caddr_t cp, cred_t *cr);
825 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
826 		    caddr_t cp, cred_t *cr);
827 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
828 		    cred_t *cr);
829 static void	tcp_timer(void *arg);
830 static void	tcp_timer_callback(void *);
831 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
832     boolean_t random);
833 static in_port_t tcp_get_next_priv_port(const tcp_t *);
834 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
835 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
836 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
837 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
838 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
839 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
840 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
841 		    const int num_sack_blk, int *usable, uint_t *snxt,
842 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
843 		    const int mdt_thres);
844 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
845 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
846 		    const int num_sack_blk, int *usable, uint_t *snxt,
847 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
848 		    const int mdt_thres);
849 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
850 		    int num_sack_blk);
851 static void	tcp_wsrv(queue_t *q);
852 static int	tcp_xmit_end(tcp_t *tcp);
853 static void	tcp_ack_timer(void *arg);
854 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
855 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
856 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
857 		    zoneid_t zoneid, tcp_stack_t *);
858 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
859 		    uint32_t ack, int ctl);
860 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
861 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
862 static int	setmaxps(queue_t *q, int maxpsz);
863 static void	tcp_set_rto(tcp_t *, time_t);
864 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
865 		    boolean_t, boolean_t);
866 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
867 		    boolean_t ipsec_mctl);
868 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
869 		    char *opt, int optlen);
870 static int	tcp_build_hdrs(queue_t *, tcp_t *);
871 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
872 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
873 		    tcph_t *tcph);
874 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
875 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
876 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
877 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
878 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
879 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
880 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
881 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
882 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
883 		    const boolean_t, const uint32_t, const uint32_t,
884 		    const uint32_t, const uint32_t, tcp_stack_t *);
885 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
886 		    const uint_t, const uint_t, boolean_t *);
887 static mblk_t	*tcp_lso_info_mp(mblk_t *);
888 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
889 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
890 extern mblk_t	*tcp_timermp_alloc(int);
891 extern void	tcp_timermp_free(tcp_t *);
892 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
893 static void	tcp_stop_lingering(tcp_t *tcp);
894 static void	tcp_close_linger_timeout(void *arg);
895 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
896 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
897 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
898 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
899 static void	tcp_g_kstat_fini(kstat_t *);
900 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
901 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
902 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
903 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
904 static int	tcp_kstat_update(kstat_t *kp, int rw);
905 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
906 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
907 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
908 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
909 			tcph_t *tcph, mblk_t *idmp);
910 static squeue_func_t tcp_squeue_switch(int);
911 
912 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
913 static int	tcp_close(queue_t *, int);
914 static int	tcpclose_accept(queue_t *);
915 static int	tcp_modclose(queue_t *);
916 static void	tcp_wput_mod(queue_t *, mblk_t *);
917 
918 static void	tcp_squeue_add(squeue_t *);
919 static boolean_t tcp_zcopy_check(tcp_t *);
920 static void	tcp_zcopy_notify(tcp_t *);
921 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
922 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
923 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
924 
925 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
926 
927 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
928 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
929 
930 /*
931  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
932  *
933  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
934  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
935  * (defined in tcp.h) needs to be filled in and passed into the kernel
936  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
937  * structure contains the four-tuple of a TCP connection and a range of TCP
938  * states (specified by ac_start and ac_end). The use of wildcard addresses
939  * and ports is allowed. Connections with a matching four tuple and a state
940  * within the specified range will be aborted. The valid states for the
941  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
942  * inclusive.
943  *
944  * An application which has its connection aborted by this ioctl will receive
945  * an error that is dependent on the connection state at the time of the abort.
946  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
947  * though a RST packet has been received.  If the connection state is equal to
948  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
949  * and all resources associated with the connection will be freed.
950  */
951 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
952 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
953 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
954 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
955 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
956 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
957     boolean_t, tcp_stack_t *);
958 
959 static struct module_info tcp_rinfo =  {
960 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
961 };
962 
963 static struct module_info tcp_winfo =  {
964 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
965 };
966 
967 /*
968  * Entry points for TCP as a module. It only allows SNMP requests
969  * to pass through.
970  */
971 struct qinit tcp_mod_rinit = {
972 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
973 };
974 
975 struct qinit tcp_mod_winit = {
976 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
977 	&tcp_rinfo
978 };
979 
980 /*
981  * Entry points for TCP as a device. The normal case which supports
982  * the TCP functionality.
983  */
984 struct qinit tcp_rinit = {
985 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
986 };
987 
988 struct qinit tcp_winit = {
989 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
990 };
991 
992 /* Initial entry point for TCP in socket mode. */
993 struct qinit tcp_sock_winit = {
994 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
995 };
996 
997 /*
998  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
999  * an accept. Avoid allocating data structures since eager has already
1000  * been created.
1001  */
1002 struct qinit tcp_acceptor_rinit = {
1003 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1004 };
1005 
1006 struct qinit tcp_acceptor_winit = {
1007 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1008 };
1009 
1010 /*
1011  * Entry points for TCP loopback (read side only)
1012  */
1013 struct qinit tcp_loopback_rinit = {
1014 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1015 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1016 };
1017 
1018 struct streamtab tcpinfo = {
1019 	&tcp_rinit, &tcp_winit
1020 };
1021 
1022 /*
1023  * Have to ensure that tcp_g_q_close is not done by an
1024  * interrupt thread.
1025  */
1026 static taskq_t *tcp_taskq;
1027 
1028 /*
1029  * TCP has a private interface for other kernel modules to reserve a
1030  * port range for them to use.  Once reserved, TCP will not use any ports
1031  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1032  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1033  * has to be verified.
1034  *
1035  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1036  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1037  * range is [port a, port b] inclusive.  And each port range is between
1038  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1039  *
1040  * Note that the default anonymous port range starts from 32768.  There is
1041  * no port "collision" between that and the reserved port range.  If there
1042  * is port collision (because the default smallest anonymous port is lowered
1043  * or some apps specifically bind to ports in the reserved port range), the
1044  * system may not be able to reserve a port range even there are enough
1045  * unbound ports as a reserved port range contains consecutive ports .
1046  */
1047 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1048 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1049 #define	TCP_SMALLEST_RESERVED_PORT		10240
1050 #define	TCP_LARGEST_RESERVED_PORT		20480
1051 
1052 /* Structure to represent those reserved port ranges. */
1053 typedef struct tcp_rport_s {
1054 	in_port_t	lo_port;
1055 	in_port_t	hi_port;
1056 	tcp_t		**temp_tcp_array;
1057 } tcp_rport_t;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1167  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1168 /*
1169  * Question:  What default value should I set for tcp_strong_iss?
1170  */
1171  { 0,		2,		1,		"tcp_strong_iss"},
1172  { 0,		65536,		20,		"tcp_rtt_updates"},
1173  { 0,		1,		1,		"tcp_wscale_always"},
1174  { 0,		1,		0,		"tcp_tstamp_always"},
1175  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1176  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1177  { 0,		16,		2,		"tcp_deferred_acks_max"},
1178  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1179  { 1,		4,		4,		"tcp_slow_start_initial"},
1180  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1181  { 0,		2,		2,		"tcp_sack_permitted"},
1182  { 0,		1,		0,		"tcp_trace"},
1183  { 0,		1,		1,		"tcp_compression_enabled"},
1184  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1185  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1186  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1187  { 0,		1,		0,		"tcp_rev_src_routes"},
1188  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1189  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1190  { 0,		16,		8,		"tcp_local_dacks_max"},
1191  { 0,		2,		1,		"tcp_ecn_permitted"},
1192  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1193  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1194  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1195  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1196  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1197 };
1198 /* END CSTYLED */
1199 
1200 /*
1201  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1202  * each header fragment in the header buffer.  Each parameter value has
1203  * to be a multiple of 4 (32-bit aligned).
1204  */
1205 static tcpparam_t lcl_tcp_mdt_head_param =
1206 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1207 static tcpparam_t lcl_tcp_mdt_tail_param =
1208 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1209 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1210 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1211 
1212 /*
1213  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1214  * the maximum number of payload buffers associated per Multidata.
1215  */
1216 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1217 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1218 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1219 
1220 /* Round up the value to the nearest mss. */
1221 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1222 
1223 /*
1224  * Set ECN capable transport (ECT) code point in IP header.
1225  *
1226  * Note that there are 2 ECT code points '01' and '10', which are called
1227  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1228  * point ECT(0) for TCP as described in RFC 2481.
1229  */
1230 #define	SET_ECT(tcp, iph) \
1231 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1232 		/* We need to clear the code point first. */ \
1233 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1234 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1235 	} else { \
1236 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1237 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1238 	}
1239 
1240 /*
1241  * The format argument to pass to tcp_display().
1242  * DISP_PORT_ONLY means that the returned string has only port info.
1243  * DISP_ADDR_AND_PORT means that the returned string also contains the
1244  * remote and local IP address.
1245  */
1246 #define	DISP_PORT_ONLY		1
1247 #define	DISP_ADDR_AND_PORT	2
1248 
1249 #define	NDD_TOO_QUICK_MSG \
1250 	"ndd get info rate too high for non-privileged users, try again " \
1251 	"later.\n"
1252 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1253 
1254 #define	IS_VMLOANED_MBLK(mp) \
1255 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1256 
1257 
1258 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1259 boolean_t tcp_mdt_chain = B_TRUE;
1260 
1261 /*
1262  * MDT threshold in the form of effective send MSS multiplier; we take
1263  * the MDT path if the amount of unsent data exceeds the threshold value
1264  * (default threshold is 1*SMSS).
1265  */
1266 uint_t tcp_mdt_smss_threshold = 1;
1267 
1268 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1269 
1270 /*
1271  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1272  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1273  * determined dynamically during tcp_adapt_ire(), which is the default.
1274  */
1275 boolean_t tcp_static_maxpsz = B_FALSE;
1276 
1277 /* Setable in /etc/system */
1278 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1279 uint32_t tcp_random_anon_port = 1;
1280 
1281 /*
1282  * To reach to an eager in Q0 which can be dropped due to an incoming
1283  * new SYN request when Q0 is full, a new doubly linked list is
1284  * introduced. This list allows to select an eager from Q0 in O(1) time.
1285  * This is needed to avoid spending too much time walking through the
1286  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1287  * this new list has to be a member of Q0.
1288  * This list is headed by listener's tcp_t. When the list is empty,
1289  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1290  * of listener's tcp_t point to listener's tcp_t itself.
1291  *
1292  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1293  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1294  * These macros do not affect the eager's membership to Q0.
1295  */
1296 
1297 
1298 #define	MAKE_DROPPABLE(listener, eager)					\
1299 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1300 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1301 		    = (eager);						\
1302 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1303 		(eager)->tcp_eager_next_drop_q0 =			\
1304 		    (listener)->tcp_eager_next_drop_q0;			\
1305 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1306 	}
1307 
1308 #define	MAKE_UNDROPPABLE(eager)						\
1309 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1310 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1311 		    = (eager)->tcp_eager_prev_drop_q0;			\
1312 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1313 		    = (eager)->tcp_eager_next_drop_q0;			\
1314 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1315 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1316 	}
1317 
1318 /*
1319  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1320  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1321  * data, TCP will not respond with an ACK.  RFC 793 requires that
1322  * TCP responds with an ACK for such a bogus ACK.  By not following
1323  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1324  * an attacker successfully spoofs an acceptable segment to our
1325  * peer; or when our peer is "confused."
1326  */
1327 uint32_t tcp_drop_ack_unsent_cnt = 10;
1328 
1329 /*
1330  * Hook functions to enable cluster networking
1331  * On non-clustered systems these vectors must always be NULL.
1332  */
1333 
1334 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1335 			    uint8_t *laddrp, in_port_t lport) = NULL;
1336 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1337 			    uint8_t *laddrp, in_port_t lport) = NULL;
1338 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1342 			    uint8_t *laddrp, in_port_t lport,
1343 			    uint8_t *faddrp, in_port_t fport) = NULL;
1344 
1345 /*
1346  * The following are defined in ip.c
1347  */
1348 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1349 				uint8_t *laddrp);
1350 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1351 				uint8_t *laddrp, uint8_t *faddrp);
1352 
1353 #define	CL_INET_CONNECT(tcp)		{			\
1354 	if (cl_inet_connect != NULL) {				\
1355 		/*						\
1356 		 * Running in cluster mode - register active connection	\
1357 		 * information						\
1358 		 */							\
1359 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1360 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1361 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1362 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1363 				    (in_port_t)(tcp)->tcp_lport,	\
1364 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1365 				    (in_port_t)(tcp)->tcp_fport);	\
1366 			}						\
1367 		} else {						\
1368 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1369 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1370 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1371 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1372 				    (in_port_t)(tcp)->tcp_lport,	\
1373 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1374 				    (in_port_t)(tcp)->tcp_fport);	\
1375 			}						\
1376 		}							\
1377 	}								\
1378 }
1379 
1380 #define	CL_INET_DISCONNECT(tcp)	{				\
1381 	if (cl_inet_disconnect != NULL) {				\
1382 		/*							\
1383 		 * Running in cluster mode - deregister active		\
1384 		 * connection information				\
1385 		 */							\
1386 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1387 			if ((tcp)->tcp_ip_src != 0) {			\
1388 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1389 				    AF_INET,				\
1390 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1391 				    (in_port_t)(tcp)->tcp_lport,	\
1392 				    (uint8_t *)				\
1393 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1394 				    (in_port_t)(tcp)->tcp_fport);	\
1395 			}						\
1396 		} else {						\
1397 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1398 			    &(tcp)->tcp_ip_src_v6)) {			\
1399 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1400 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1401 				    (in_port_t)(tcp)->tcp_lport,	\
1402 				    (uint8_t *)				\
1403 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1404 				    (in_port_t)(tcp)->tcp_fport);	\
1405 			}						\
1406 		}							\
1407 	}								\
1408 }
1409 
1410 /*
1411  * Cluster networking hook for traversing current connection list.
1412  * This routine is used to extract the current list of live connections
1413  * which must continue to to be dispatched to this node.
1414  */
1415 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1416 
1417 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1418     void *arg, tcp_stack_t *tcps);
1419 
1420 /*
1421  * Figure out the value of window scale opton.  Note that the rwnd is
1422  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1423  * We cannot find the scale value and then do a round up of tcp_rwnd
1424  * because the scale value may not be correct after that.
1425  *
1426  * Set the compiler flag to make this function inline.
1427  */
1428 static void
1429 tcp_set_ws_value(tcp_t *tcp)
1430 {
1431 	int i;
1432 	uint32_t rwnd = tcp->tcp_rwnd;
1433 
1434 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1435 	    i++, rwnd >>= 1)
1436 		;
1437 	tcp->tcp_rcv_ws = i;
1438 }
1439 
1440 /*
1441  * Remove a connection from the list of detached TIME_WAIT connections.
1442  * It returns B_FALSE if it can't remove the connection from the list
1443  * as the connection has already been removed from the list due to an
1444  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1445  */
1446 static boolean_t
1447 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1448 {
1449 	boolean_t	locked = B_FALSE;
1450 
1451 	if (tcp_time_wait == NULL) {
1452 		tcp_time_wait = *((tcp_squeue_priv_t **)
1453 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1454 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1455 		locked = B_TRUE;
1456 	} else {
1457 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1458 	}
1459 
1460 	if (tcp->tcp_time_wait_expire == 0) {
1461 		ASSERT(tcp->tcp_time_wait_next == NULL);
1462 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1463 		if (locked)
1464 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1465 		return (B_FALSE);
1466 	}
1467 	ASSERT(TCP_IS_DETACHED(tcp));
1468 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1469 
1470 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1471 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1472 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1473 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1474 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1475 			    NULL;
1476 		} else {
1477 			tcp_time_wait->tcp_time_wait_tail = NULL;
1478 		}
1479 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1480 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1481 		ASSERT(tcp->tcp_time_wait_next == NULL);
1482 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1483 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1484 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1485 	} else {
1486 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1487 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1488 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1489 		    tcp->tcp_time_wait_next;
1490 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1491 		    tcp->tcp_time_wait_prev;
1492 	}
1493 	tcp->tcp_time_wait_next = NULL;
1494 	tcp->tcp_time_wait_prev = NULL;
1495 	tcp->tcp_time_wait_expire = 0;
1496 
1497 	if (locked)
1498 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1499 	return (B_TRUE);
1500 }
1501 
1502 /*
1503  * Add a connection to the list of detached TIME_WAIT connections
1504  * and set its time to expire.
1505  */
1506 static void
1507 tcp_time_wait_append(tcp_t *tcp)
1508 {
1509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1510 	tcp_squeue_priv_t *tcp_time_wait =
1511 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1512 		SQPRIVATE_TCP));
1513 
1514 	tcp_timers_stop(tcp);
1515 
1516 	/* Freed above */
1517 	ASSERT(tcp->tcp_timer_tid == 0);
1518 	ASSERT(tcp->tcp_ack_tid == 0);
1519 
1520 	/* must have happened at the time of detaching the tcp */
1521 	ASSERT(tcp->tcp_ptpahn == NULL);
1522 	ASSERT(tcp->tcp_flow_stopped == 0);
1523 	ASSERT(tcp->tcp_time_wait_next == NULL);
1524 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1525 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1526 	ASSERT(tcp->tcp_listener == NULL);
1527 
1528 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1529 	/*
1530 	 * The value computed below in tcp->tcp_time_wait_expire may
1531 	 * appear negative or wrap around. That is ok since our
1532 	 * interest is only in the difference between the current lbolt
1533 	 * value and tcp->tcp_time_wait_expire. But the value should not
1534 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1535 	 * The corresponding comparison in tcp_time_wait_collector() uses
1536 	 * modular arithmetic.
1537 	 */
1538 	tcp->tcp_time_wait_expire +=
1539 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1540 	if (tcp->tcp_time_wait_expire == 0)
1541 		tcp->tcp_time_wait_expire = 1;
1542 
1543 	ASSERT(TCP_IS_DETACHED(tcp));
1544 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1545 	ASSERT(tcp->tcp_time_wait_next == NULL);
1546 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1547 	TCP_DBGSTAT(tcps, tcp_time_wait);
1548 
1549 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1550 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1552 		tcp_time_wait->tcp_time_wait_head = tcp;
1553 	} else {
1554 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1555 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1556 		    TCPS_TIME_WAIT);
1557 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1558 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1559 	}
1560 	tcp_time_wait->tcp_time_wait_tail = tcp;
1561 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1562 }
1563 
1564 /* ARGSUSED */
1565 void
1566 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1567 {
1568 	conn_t	*connp = (conn_t *)arg;
1569 	tcp_t	*tcp = connp->conn_tcp;
1570 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1571 
1572 	ASSERT(tcp != NULL);
1573 	if (tcp->tcp_state == TCPS_CLOSED) {
1574 		return;
1575 	}
1576 
1577 	ASSERT((tcp->tcp_family == AF_INET &&
1578 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1579 	    (tcp->tcp_family == AF_INET6 &&
1580 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1581 	    tcp->tcp_ipversion == IPV6_VERSION)));
1582 	ASSERT(!tcp->tcp_listener);
1583 
1584 	TCP_STAT(tcps, tcp_time_wait_reap);
1585 	ASSERT(TCP_IS_DETACHED(tcp));
1586 
1587 	/*
1588 	 * Because they have no upstream client to rebind or tcp_close()
1589 	 * them later, we axe the connection here and now.
1590 	 */
1591 	tcp_close_detached(tcp);
1592 }
1593 
1594 /*
1595  * Remove cached/latched IPsec references.
1596  */
1597 void
1598 tcp_ipsec_cleanup(tcp_t *tcp)
1599 {
1600 	conn_t		*connp = tcp->tcp_connp;
1601 
1602 	if (connp->conn_flags & IPCL_TCPCONN) {
1603 		if (connp->conn_latch != NULL) {
1604 			IPLATCH_REFRELE(connp->conn_latch,
1605 			    connp->conn_netstack);
1606 			connp->conn_latch = NULL;
1607 		}
1608 		if (connp->conn_policy != NULL) {
1609 			IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1610 			connp->conn_policy = NULL;
1611 		}
1612 	}
1613 }
1614 
1615 /*
1616  * Cleaup before placing on free list.
1617  * Disassociate from the netstack/tcp_stack_t since the freelist
1618  * is per squeue and not per netstack.
1619  */
1620 void
1621 tcp_cleanup(tcp_t *tcp)
1622 {
1623 	mblk_t		*mp;
1624 	char		*tcp_iphc;
1625 	int		tcp_iphc_len;
1626 	int		tcp_hdr_grown;
1627 	tcp_sack_info_t	*tcp_sack_info;
1628 	conn_t		*connp = tcp->tcp_connp;
1629 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1630 	netstack_t	*ns = tcps->tcps_netstack;
1631 
1632 	tcp_bind_hash_remove(tcp);
1633 
1634 	/* Cleanup that which needs the netstack first */
1635 	tcp_ipsec_cleanup(tcp);
1636 
1637 	tcp_free(tcp);
1638 
1639 	/* Release any SSL context */
1640 	if (tcp->tcp_kssl_ent != NULL) {
1641 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1642 		tcp->tcp_kssl_ent = NULL;
1643 	}
1644 
1645 	if (tcp->tcp_kssl_ctx != NULL) {
1646 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1647 		tcp->tcp_kssl_ctx = NULL;
1648 	}
1649 	tcp->tcp_kssl_pending = B_FALSE;
1650 
1651 	conn_delete_ire(connp, NULL);
1652 
1653 	/*
1654 	 * Since we will bzero the entire structure, we need to
1655 	 * remove it and reinsert it in global hash list. We
1656 	 * know the walkers can't get to this conn because we
1657 	 * had set CONDEMNED flag earlier and checked reference
1658 	 * under conn_lock so walker won't pick it and when we
1659 	 * go the ipcl_globalhash_remove() below, no walker
1660 	 * can get to it.
1661 	 */
1662 	ipcl_globalhash_remove(connp);
1663 
1664 	/*
1665 	 * Now it is safe to decrement the reference counts.
1666 	 * This might be the last reference on the netstack and TCPS
1667 	 * in which case it will cause the tcp_g_q_close and
1668 	 * the freeing of the IP Instance.
1669 	 */
1670 	connp->conn_netstack = NULL;
1671 	netstack_rele(ns);
1672 	ASSERT(tcps != NULL);
1673 	tcp->tcp_tcps = NULL;
1674 	TCPS_REFRELE(tcps);
1675 
1676 	/* Save some state */
1677 	mp = tcp->tcp_timercache;
1678 
1679 	tcp_sack_info = tcp->tcp_sack_info;
1680 	tcp_iphc = tcp->tcp_iphc;
1681 	tcp_iphc_len = tcp->tcp_iphc_len;
1682 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1683 
1684 	if (connp->conn_cred != NULL)
1685 		crfree(connp->conn_cred);
1686 	if (connp->conn_peercred != NULL)
1687 		crfree(connp->conn_peercred);
1688 	bzero(connp, sizeof (conn_t));
1689 	bzero(tcp, sizeof (tcp_t));
1690 
1691 	/* restore the state */
1692 	tcp->tcp_timercache = mp;
1693 
1694 	tcp->tcp_sack_info = tcp_sack_info;
1695 	tcp->tcp_iphc = tcp_iphc;
1696 	tcp->tcp_iphc_len = tcp_iphc_len;
1697 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1698 
1699 
1700 	tcp->tcp_connp = connp;
1701 
1702 	connp->conn_tcp = tcp;
1703 	connp->conn_flags = IPCL_TCPCONN;
1704 	connp->conn_state_flags = CONN_INCIPIENT;
1705 	connp->conn_ulp = IPPROTO_TCP;
1706 	connp->conn_ref = 1;
1707 }
1708 
1709 /*
1710  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1711  * is done forwards from the head.
1712  * This walks all stack instances since
1713  * tcp_time_wait remains global across all stacks.
1714  */
1715 /* ARGSUSED */
1716 void
1717 tcp_time_wait_collector(void *arg)
1718 {
1719 	tcp_t *tcp;
1720 	clock_t now;
1721 	mblk_t *mp;
1722 	conn_t *connp;
1723 	kmutex_t *lock;
1724 	boolean_t removed;
1725 
1726 	squeue_t *sqp = (squeue_t *)arg;
1727 	tcp_squeue_priv_t *tcp_time_wait =
1728 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1729 
1730 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1731 	tcp_time_wait->tcp_time_wait_tid = 0;
1732 
1733 	if (tcp_time_wait->tcp_free_list != NULL &&
1734 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1735 		TCP_G_STAT(tcp_freelist_cleanup);
1736 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1737 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1738 			tcp->tcp_time_wait_next = NULL;
1739 			tcp_time_wait->tcp_free_list_cnt--;
1740 			ASSERT(tcp->tcp_tcps == NULL);
1741 			CONN_DEC_REF(tcp->tcp_connp);
1742 		}
1743 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1744 	}
1745 
1746 	/*
1747 	 * In order to reap time waits reliably, we should use a
1748 	 * source of time that is not adjustable by the user -- hence
1749 	 * the call to ddi_get_lbolt().
1750 	 */
1751 	now = ddi_get_lbolt();
1752 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1753 		/*
1754 		 * Compare times using modular arithmetic, since
1755 		 * lbolt can wrapover.
1756 		 */
1757 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1758 			break;
1759 		}
1760 
1761 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1762 		ASSERT(removed);
1763 
1764 		connp = tcp->tcp_connp;
1765 		ASSERT(connp->conn_fanout != NULL);
1766 		lock = &connp->conn_fanout->connf_lock;
1767 		/*
1768 		 * This is essentially a TW reclaim fast path optimization for
1769 		 * performance where the timewait collector checks under the
1770 		 * fanout lock (so that no one else can get access to the
1771 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1772 		 * the classifier hash list. If ref count is indeed 2, we can
1773 		 * just remove the conn under the fanout lock and avoid
1774 		 * cleaning up the conn under the squeue, provided that
1775 		 * clustering callbacks are not enabled. If clustering is
1776 		 * enabled, we need to make the clustering callback before
1777 		 * setting the CONDEMNED flag and after dropping all locks and
1778 		 * so we forego this optimization and fall back to the slow
1779 		 * path. Also please see the comments in tcp_closei_local
1780 		 * regarding the refcnt logic.
1781 		 *
1782 		 * Since we are holding the tcp_time_wait_lock, its better
1783 		 * not to block on the fanout_lock because other connections
1784 		 * can't add themselves to time_wait list. So we do a
1785 		 * tryenter instead of mutex_enter.
1786 		 */
1787 		if (mutex_tryenter(lock)) {
1788 			mutex_enter(&connp->conn_lock);
1789 			if ((connp->conn_ref == 2) &&
1790 			    (cl_inet_disconnect == NULL)) {
1791 				ipcl_hash_remove_locked(connp,
1792 				    connp->conn_fanout);
1793 				/*
1794 				 * Set the CONDEMNED flag now itself so that
1795 				 * the refcnt cannot increase due to any
1796 				 * walker. But we have still not cleaned up
1797 				 * conn_ire_cache. This is still ok since
1798 				 * we are going to clean it up in tcp_cleanup
1799 				 * immediately and any interface unplumb
1800 				 * thread will wait till the ire is blown away
1801 				 */
1802 				connp->conn_state_flags |= CONN_CONDEMNED;
1803 				mutex_exit(lock);
1804 				mutex_exit(&connp->conn_lock);
1805 				if (tcp_time_wait->tcp_free_list_cnt <
1806 				    tcp_free_list_max_cnt) {
1807 					/* Add to head of tcp_free_list */
1808 					mutex_exit(
1809 					    &tcp_time_wait->tcp_time_wait_lock);
1810 					tcp_cleanup(tcp);
1811 					ASSERT(connp->conn_latch == NULL);
1812 					ASSERT(connp->conn_policy == NULL);
1813 					ASSERT(tcp->tcp_tcps == NULL);
1814 					ASSERT(connp->conn_netstack == NULL);
1815 
1816 					mutex_enter(
1817 					    &tcp_time_wait->tcp_time_wait_lock);
1818 					tcp->tcp_time_wait_next =
1819 					    tcp_time_wait->tcp_free_list;
1820 					tcp_time_wait->tcp_free_list = tcp;
1821 					tcp_time_wait->tcp_free_list_cnt++;
1822 					continue;
1823 				} else {
1824 					/* Do not add to tcp_free_list */
1825 					mutex_exit(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp_bind_hash_remove(tcp);
1828 					conn_delete_ire(tcp->tcp_connp, NULL);
1829 					tcp_ipsec_cleanup(tcp);
1830 					CONN_DEC_REF(tcp->tcp_connp);
1831 				}
1832 			} else {
1833 				CONN_INC_REF_LOCKED(connp);
1834 				mutex_exit(lock);
1835 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1836 				mutex_exit(&connp->conn_lock);
1837 				/*
1838 				 * We can reuse the closemp here since conn has
1839 				 * detached (otherwise we wouldn't even be in
1840 				 * time_wait list). tcp_closemp_used can safely
1841 				 * be changed without taking a lock as no other
1842 				 * thread can concurrently access it at this
1843 				 * point in the connection lifecycle. We
1844 				 * increment tcp_closemp_used to record any
1845 				 * attempt to reuse tcp_closemp while it is
1846 				 * still in use.
1847 				 */
1848 
1849 				if (tcp->tcp_closemp.b_prev == NULL)
1850 					tcp->tcp_closemp_used = 1;
1851 				else
1852 					tcp->tcp_closemp_used++;
1853 
1854 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1855 				mp = &tcp->tcp_closemp;
1856 				squeue_fill(connp->conn_sqp, mp,
1857 				    tcp_timewait_output, connp,
1858 				    SQTAG_TCP_TIMEWAIT);
1859 			}
1860 		} else {
1861 			mutex_enter(&connp->conn_lock);
1862 			CONN_INC_REF_LOCKED(connp);
1863 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1864 			mutex_exit(&connp->conn_lock);
1865 			/*
1866 			 * We can reuse the closemp here since conn has
1867 			 * detached (otherwise we wouldn't even be in
1868 			 * time_wait list). tcp_closemp_used can safely
1869 			 * be changed without taking a lock as no other
1870 			 * thread can concurrently access it at this
1871 			 * point in the connection lifecycle. We
1872 			 * increment tcp_closemp_used to record any
1873 			 * attempt to reuse tcp_closemp while it is
1874 			 * still in use.
1875 			 */
1876 
1877 			if (tcp->tcp_closemp.b_prev == NULL)
1878 				tcp->tcp_closemp_used = 1;
1879 			else
1880 				tcp->tcp_closemp_used++;
1881 
1882 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1883 			mp = &tcp->tcp_closemp;
1884 			squeue_fill(connp->conn_sqp, mp,
1885 			    tcp_timewait_output, connp, 0);
1886 		}
1887 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1888 	}
1889 
1890 	if (tcp_time_wait->tcp_free_list != NULL)
1891 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1892 
1893 	tcp_time_wait->tcp_time_wait_tid =
1894 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1895 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1896 }
1897 /*
1898  * Reply to a clients T_CONN_RES TPI message. This function
1899  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1900  * on the acceptor STREAM and processed in tcp_wput_accept().
1901  * Read the block comment on top of tcp_conn_request().
1902  */
1903 static void
1904 tcp_accept(tcp_t *listener, mblk_t *mp)
1905 {
1906 	tcp_t	*acceptor;
1907 	tcp_t	*eager;
1908 	tcp_t   *tcp;
1909 	struct T_conn_res	*tcr;
1910 	t_uscalar_t	acceptor_id;
1911 	t_scalar_t	seqnum;
1912 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1913 	mblk_t	*ok_mp;
1914 	mblk_t	*mp1;
1915 	tcp_stack_t	*tcps = listener->tcp_tcps;
1916 
1917 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1918 		tcp_err_ack(listener, mp, TPROTO, 0);
1919 		return;
1920 	}
1921 	tcr = (struct T_conn_res *)mp->b_rptr;
1922 
1923 	/*
1924 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1925 	 * read side queue of the streams device underneath us i.e. the
1926 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1927 	 * look it up in the queue_hash.  Under LP64 it sends down the
1928 	 * minor_t of the accepting endpoint.
1929 	 *
1930 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1931 	 * fanout hash lock is held.
1932 	 * This prevents any thread from entering the acceptor queue from
1933 	 * below (since it has not been hard bound yet i.e. any inbound
1934 	 * packets will arrive on the listener or default tcp queue and
1935 	 * go through tcp_lookup).
1936 	 * The CONN_INC_REF will prevent the acceptor from closing.
1937 	 *
1938 	 * XXX It is still possible for a tli application to send down data
1939 	 * on the accepting stream while another thread calls t_accept.
1940 	 * This should not be a problem for well-behaved applications since
1941 	 * the T_OK_ACK is sent after the queue swapping is completed.
1942 	 *
1943 	 * If the accepting fd is the same as the listening fd, avoid
1944 	 * queue hash lookup since that will return an eager listener in a
1945 	 * already established state.
1946 	 */
1947 	acceptor_id = tcr->ACCEPTOR_id;
1948 	mutex_enter(&listener->tcp_eager_lock);
1949 	if (listener->tcp_acceptor_id == acceptor_id) {
1950 		eager = listener->tcp_eager_next_q;
1951 		/* only count how many T_CONN_INDs so don't count q0 */
1952 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1953 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1954 			mutex_exit(&listener->tcp_eager_lock);
1955 			tcp_err_ack(listener, mp, TBADF, 0);
1956 			return;
1957 		}
1958 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1959 			/* Throw away all the eagers on q0. */
1960 			tcp_eager_cleanup(listener, 1);
1961 		}
1962 		if (listener->tcp_syn_defense) {
1963 			listener->tcp_syn_defense = B_FALSE;
1964 			if (listener->tcp_ip_addr_cache != NULL) {
1965 				kmem_free(listener->tcp_ip_addr_cache,
1966 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1967 				listener->tcp_ip_addr_cache = NULL;
1968 			}
1969 		}
1970 		/*
1971 		 * Transfer tcp_conn_req_max to the eager so that when
1972 		 * a disconnect occurs we can revert the endpoint to the
1973 		 * listen state.
1974 		 */
1975 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1976 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1977 		/*
1978 		 * Get a reference on the acceptor just like the
1979 		 * tcp_acceptor_hash_lookup below.
1980 		 */
1981 		acceptor = listener;
1982 		CONN_INC_REF(acceptor->tcp_connp);
1983 	} else {
1984 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1985 		if (acceptor == NULL) {
1986 			if (listener->tcp_debug) {
1987 				(void) strlog(TCP_MOD_ID, 0, 1,
1988 				    SL_ERROR|SL_TRACE,
1989 				    "tcp_accept: did not find acceptor 0x%x\n",
1990 				    acceptor_id);
1991 			}
1992 			mutex_exit(&listener->tcp_eager_lock);
1993 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1994 			return;
1995 		}
1996 		/*
1997 		 * Verify acceptor state. The acceptable states for an acceptor
1998 		 * include TCPS_IDLE and TCPS_BOUND.
1999 		 */
2000 		switch (acceptor->tcp_state) {
2001 		case TCPS_IDLE:
2002 			/* FALLTHRU */
2003 		case TCPS_BOUND:
2004 			break;
2005 		default:
2006 			CONN_DEC_REF(acceptor->tcp_connp);
2007 			mutex_exit(&listener->tcp_eager_lock);
2008 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2009 			return;
2010 		}
2011 	}
2012 
2013 	/* The listener must be in TCPS_LISTEN */
2014 	if (listener->tcp_state != TCPS_LISTEN) {
2015 		CONN_DEC_REF(acceptor->tcp_connp);
2016 		mutex_exit(&listener->tcp_eager_lock);
2017 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2018 		return;
2019 	}
2020 
2021 	/*
2022 	 * Rendezvous with an eager connection request packet hanging off
2023 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2024 	 * tcp structure when the connection packet arrived in
2025 	 * tcp_conn_request().
2026 	 */
2027 	seqnum = tcr->SEQ_number;
2028 	eager = listener;
2029 	do {
2030 		eager = eager->tcp_eager_next_q;
2031 		if (eager == NULL) {
2032 			CONN_DEC_REF(acceptor->tcp_connp);
2033 			mutex_exit(&listener->tcp_eager_lock);
2034 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2035 			return;
2036 		}
2037 	} while (eager->tcp_conn_req_seqnum != seqnum);
2038 	mutex_exit(&listener->tcp_eager_lock);
2039 
2040 	/*
2041 	 * At this point, both acceptor and listener have 2 ref
2042 	 * that they begin with. Acceptor has one additional ref
2043 	 * we placed in lookup while listener has 3 additional
2044 	 * ref for being behind the squeue (tcp_accept() is
2045 	 * done on listener's squeue); being in classifier hash;
2046 	 * and eager's ref on listener.
2047 	 */
2048 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2049 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2050 
2051 	/*
2052 	 * The eager at this point is set in its own squeue and
2053 	 * could easily have been killed (tcp_accept_finish will
2054 	 * deal with that) because of a TH_RST so we can only
2055 	 * ASSERT for a single ref.
2056 	 */
2057 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2058 
2059 	/* Pre allocate the stroptions mblk also */
2060 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2061 	if (opt_mp == NULL) {
2062 		CONN_DEC_REF(acceptor->tcp_connp);
2063 		CONN_DEC_REF(eager->tcp_connp);
2064 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2065 		return;
2066 	}
2067 	DB_TYPE(opt_mp) = M_SETOPTS;
2068 	opt_mp->b_wptr += sizeof (struct stroptions);
2069 
2070 	/*
2071 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2072 	 * from listener to acceptor. The message is chained on opt_mp
2073 	 * which will be sent onto eager's squeue.
2074 	 */
2075 	if (listener->tcp_bound_if != 0) {
2076 		/* allocate optmgmt req */
2077 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2078 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2079 		    sizeof (int));
2080 		if (mp1 != NULL)
2081 			linkb(opt_mp, mp1);
2082 	}
2083 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2084 		uint_t on = 1;
2085 
2086 		/* allocate optmgmt req */
2087 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2088 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2089 		if (mp1 != NULL)
2090 			linkb(opt_mp, mp1);
2091 	}
2092 
2093 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2094 	if ((mp1 = copymsg(mp)) == NULL) {
2095 		CONN_DEC_REF(acceptor->tcp_connp);
2096 		CONN_DEC_REF(eager->tcp_connp);
2097 		freemsg(opt_mp);
2098 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2099 		return;
2100 	}
2101 
2102 	tcr = (struct T_conn_res *)mp1->b_rptr;
2103 
2104 	/*
2105 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2106 	 * which allocates a larger mblk and appends the new
2107 	 * local address to the ok_ack.  The address is copied by
2108 	 * soaccept() for getsockname().
2109 	 */
2110 	{
2111 		int extra;
2112 
2113 		extra = (eager->tcp_family == AF_INET) ?
2114 		    sizeof (sin_t) : sizeof (sin6_t);
2115 
2116 		/*
2117 		 * Try to re-use mp, if possible.  Otherwise, allocate
2118 		 * an mblk and return it as ok_mp.  In any case, mp
2119 		 * is no longer usable upon return.
2120 		 */
2121 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2122 			CONN_DEC_REF(acceptor->tcp_connp);
2123 			CONN_DEC_REF(eager->tcp_connp);
2124 			freemsg(opt_mp);
2125 			/* Original mp has been freed by now, so use mp1 */
2126 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2127 			return;
2128 		}
2129 
2130 		mp = NULL;	/* We should never use mp after this point */
2131 
2132 		switch (extra) {
2133 		case sizeof (sin_t): {
2134 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2135 
2136 				ok_mp->b_wptr += extra;
2137 				sin->sin_family = AF_INET;
2138 				sin->sin_port = eager->tcp_lport;
2139 				sin->sin_addr.s_addr =
2140 				    eager->tcp_ipha->ipha_src;
2141 				break;
2142 			}
2143 		case sizeof (sin6_t): {
2144 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2145 
2146 				ok_mp->b_wptr += extra;
2147 				sin6->sin6_family = AF_INET6;
2148 				sin6->sin6_port = eager->tcp_lport;
2149 				if (eager->tcp_ipversion == IPV4_VERSION) {
2150 					sin6->sin6_flowinfo = 0;
2151 					IN6_IPADDR_TO_V4MAPPED(
2152 					    eager->tcp_ipha->ipha_src,
2153 					    &sin6->sin6_addr);
2154 				} else {
2155 					ASSERT(eager->tcp_ip6h != NULL);
2156 					sin6->sin6_flowinfo =
2157 					    eager->tcp_ip6h->ip6_vcf &
2158 					    ~IPV6_VERS_AND_FLOW_MASK;
2159 					sin6->sin6_addr =
2160 					    eager->tcp_ip6h->ip6_src;
2161 				}
2162 				break;
2163 			}
2164 		default:
2165 			break;
2166 		}
2167 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2168 	}
2169 
2170 	/*
2171 	 * If there are no options we know that the T_CONN_RES will
2172 	 * succeed. However, we can't send the T_OK_ACK upstream until
2173 	 * the tcp_accept_swap is done since it would be dangerous to
2174 	 * let the application start using the new fd prior to the swap.
2175 	 */
2176 	tcp_accept_swap(listener, acceptor, eager);
2177 
2178 	/*
2179 	 * tcp_accept_swap unlinks eager from listener but does not drop
2180 	 * the eager's reference on the listener.
2181 	 */
2182 	ASSERT(eager->tcp_listener == NULL);
2183 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2184 
2185 	/*
2186 	 * The eager is now associated with its own queue. Insert in
2187 	 * the hash so that the connection can be reused for a future
2188 	 * T_CONN_RES.
2189 	 */
2190 	tcp_acceptor_hash_insert(acceptor_id, eager);
2191 
2192 	/*
2193 	 * We now do the processing of options with T_CONN_RES.
2194 	 * We delay till now since we wanted to have queue to pass to
2195 	 * option processing routines that points back to the right
2196 	 * instance structure which does not happen until after
2197 	 * tcp_accept_swap().
2198 	 *
2199 	 * Note:
2200 	 * The sanity of the logic here assumes that whatever options
2201 	 * are appropriate to inherit from listner=>eager are done
2202 	 * before this point, and whatever were to be overridden (or not)
2203 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2204 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2205 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2206 	 * This may not be true at this point in time but can be fixed
2207 	 * independently. This option processing code starts with
2208 	 * the instantiated acceptor instance and the final queue at
2209 	 * this point.
2210 	 */
2211 
2212 	if (tcr->OPT_length != 0) {
2213 		/* Options to process */
2214 		int t_error = 0;
2215 		int sys_error = 0;
2216 		int do_disconnect = 0;
2217 
2218 		if (tcp_conprim_opt_process(eager, mp1,
2219 		    &do_disconnect, &t_error, &sys_error) < 0) {
2220 			eager->tcp_accept_error = 1;
2221 			if (do_disconnect) {
2222 				/*
2223 				 * An option failed which does not allow
2224 				 * connection to be accepted.
2225 				 *
2226 				 * We allow T_CONN_RES to succeed and
2227 				 * put a T_DISCON_IND on the eager queue.
2228 				 */
2229 				ASSERT(t_error == 0 && sys_error == 0);
2230 				eager->tcp_send_discon_ind = 1;
2231 			} else {
2232 				ASSERT(t_error != 0);
2233 				freemsg(ok_mp);
2234 				/*
2235 				 * Original mp was either freed or set
2236 				 * to ok_mp above, so use mp1 instead.
2237 				 */
2238 				tcp_err_ack(listener, mp1, t_error, sys_error);
2239 				goto finish;
2240 			}
2241 		}
2242 		/*
2243 		 * Most likely success in setting options (except if
2244 		 * eager->tcp_send_discon_ind set).
2245 		 * mp1 option buffer represented by OPT_length/offset
2246 		 * potentially modified and contains results of setting
2247 		 * options at this point
2248 		 */
2249 	}
2250 
2251 	/* We no longer need mp1, since all options processing has passed */
2252 	freemsg(mp1);
2253 
2254 	putnext(listener->tcp_rq, ok_mp);
2255 
2256 	mutex_enter(&listener->tcp_eager_lock);
2257 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2258 		tcp_t	*tail;
2259 		mblk_t	*conn_ind;
2260 
2261 		/*
2262 		 * This path should not be executed if listener and
2263 		 * acceptor streams are the same.
2264 		 */
2265 		ASSERT(listener != acceptor);
2266 
2267 		tcp = listener->tcp_eager_prev_q0;
2268 		/*
2269 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2270 		 * deferred T_conn_ind queue. We need to get to the head of
2271 		 * the queue in order to send up T_conn_ind the same order as
2272 		 * how the 3WHS is completed.
2273 		 */
2274 		while (tcp != listener) {
2275 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2276 				break;
2277 			else
2278 				tcp = tcp->tcp_eager_prev_q0;
2279 		}
2280 		ASSERT(tcp != listener);
2281 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2282 		ASSERT(conn_ind != NULL);
2283 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2284 
2285 		/* Move from q0 to q */
2286 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2287 		listener->tcp_conn_req_cnt_q0--;
2288 		listener->tcp_conn_req_cnt_q++;
2289 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2290 		    tcp->tcp_eager_prev_q0;
2291 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2292 		    tcp->tcp_eager_next_q0;
2293 		tcp->tcp_eager_prev_q0 = NULL;
2294 		tcp->tcp_eager_next_q0 = NULL;
2295 		tcp->tcp_conn_def_q0 = B_FALSE;
2296 
2297 		/* Make sure the tcp isn't in the list of droppables */
2298 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2299 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2300 
2301 		/*
2302 		 * Insert at end of the queue because sockfs sends
2303 		 * down T_CONN_RES in chronological order. Leaving
2304 		 * the older conn indications at front of the queue
2305 		 * helps reducing search time.
2306 		 */
2307 		tail = listener->tcp_eager_last_q;
2308 		if (tail != NULL)
2309 			tail->tcp_eager_next_q = tcp;
2310 		else
2311 			listener->tcp_eager_next_q = tcp;
2312 		listener->tcp_eager_last_q = tcp;
2313 		tcp->tcp_eager_next_q = NULL;
2314 		mutex_exit(&listener->tcp_eager_lock);
2315 		putnext(tcp->tcp_rq, conn_ind);
2316 	} else {
2317 		mutex_exit(&listener->tcp_eager_lock);
2318 	}
2319 
2320 	/*
2321 	 * Done with the acceptor - free it
2322 	 *
2323 	 * Note: from this point on, no access to listener should be made
2324 	 * as listener can be equal to acceptor.
2325 	 */
2326 finish:
2327 	ASSERT(acceptor->tcp_detached);
2328 	ASSERT(tcps->tcps_g_q != NULL);
2329 	acceptor->tcp_rq = tcps->tcps_g_q;
2330 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2331 	(void) tcp_clean_death(acceptor, 0, 2);
2332 	CONN_DEC_REF(acceptor->tcp_connp);
2333 
2334 	/*
2335 	 * In case we already received a FIN we have to make tcp_rput send
2336 	 * the ordrel_ind. This will also send up a window update if the window
2337 	 * has opened up.
2338 	 *
2339 	 * In the normal case of a successful connection acceptance
2340 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2341 	 * indication that this was just accepted. This tells tcp_rput to
2342 	 * pass up any data queued in tcp_rcv_list.
2343 	 *
2344 	 * In the fringe case where options sent with T_CONN_RES failed and
2345 	 * we required, we would be indicating a T_DISCON_IND to blow
2346 	 * away this connection.
2347 	 */
2348 
2349 	/*
2350 	 * XXX: we currently have a problem if XTI application closes the
2351 	 * acceptor stream in between. This problem exists in on10-gate also
2352 	 * and is well know but nothing can be done short of major rewrite
2353 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2354 	 * eager same squeue as listener (we can distinguish non socket
2355 	 * listeners at the time of handling a SYN in tcp_conn_request)
2356 	 * and do most of the work that tcp_accept_finish does here itself
2357 	 * and then get behind the acceptor squeue to access the acceptor
2358 	 * queue.
2359 	 */
2360 	/*
2361 	 * We already have a ref on tcp so no need to do one before squeue_fill
2362 	 */
2363 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2364 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2365 }
2366 
2367 /*
2368  * Swap information between the eager and acceptor for a TLI/XTI client.
2369  * The sockfs accept is done on the acceptor stream and control goes
2370  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2371  * called. In either case, both the eager and listener are in their own
2372  * perimeter (squeue) and the code has to deal with potential race.
2373  *
2374  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2375  */
2376 static void
2377 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2378 {
2379 	conn_t	*econnp, *aconnp;
2380 
2381 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2382 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2383 	ASSERT(!eager->tcp_hard_bound);
2384 	ASSERT(!TCP_IS_SOCKET(acceptor));
2385 	ASSERT(!TCP_IS_SOCKET(eager));
2386 	ASSERT(!TCP_IS_SOCKET(listener));
2387 
2388 	acceptor->tcp_detached = B_TRUE;
2389 	/*
2390 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2391 	 * the acceptor id.
2392 	 */
2393 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2394 
2395 	/* remove eager from listen list... */
2396 	mutex_enter(&listener->tcp_eager_lock);
2397 	tcp_eager_unlink(eager);
2398 	ASSERT(eager->tcp_eager_next_q == NULL &&
2399 	    eager->tcp_eager_last_q == NULL);
2400 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2401 	    eager->tcp_eager_prev_q0 == NULL);
2402 	mutex_exit(&listener->tcp_eager_lock);
2403 	eager->tcp_rq = acceptor->tcp_rq;
2404 	eager->tcp_wq = acceptor->tcp_wq;
2405 
2406 	econnp = eager->tcp_connp;
2407 	aconnp = acceptor->tcp_connp;
2408 
2409 	eager->tcp_rq->q_ptr = econnp;
2410 	eager->tcp_wq->q_ptr = econnp;
2411 
2412 	/*
2413 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2414 	 * which might be a different squeue from our peer TCP instance.
2415 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2416 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2417 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2418 	 * above reach global visibility prior to the clearing of tcp_detached.
2419 	 */
2420 	membar_producer();
2421 	eager->tcp_detached = B_FALSE;
2422 
2423 	ASSERT(eager->tcp_ack_tid == 0);
2424 
2425 	econnp->conn_dev = aconnp->conn_dev;
2426 	if (eager->tcp_cred != NULL)
2427 		crfree(eager->tcp_cred);
2428 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2429 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2430 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2431 
2432 	aconnp->conn_cred = NULL;
2433 
2434 	econnp->conn_zoneid = aconnp->conn_zoneid;
2435 	econnp->conn_allzones = aconnp->conn_allzones;
2436 
2437 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2438 	aconnp->conn_mac_exempt = B_FALSE;
2439 
2440 	ASSERT(aconnp->conn_peercred == NULL);
2441 
2442 	/* Do the IPC initialization */
2443 	CONN_INC_REF(econnp);
2444 
2445 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2446 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2447 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2448 	econnp->conn_ulp = aconnp->conn_ulp;
2449 
2450 	/* Done with old IPC. Drop its ref on its connp */
2451 	CONN_DEC_REF(aconnp);
2452 }
2453 
2454 
2455 /*
2456  * Adapt to the information, such as rtt and rtt_sd, provided from the
2457  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2458  *
2459  * Checks for multicast and broadcast destination address.
2460  * Returns zero on failure; non-zero if ok.
2461  *
2462  * Note that the MSS calculation here is based on the info given in
2463  * the IRE.  We do not do any calculation based on TCP options.  They
2464  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2465  * knows which options to use.
2466  *
2467  * Note on how TCP gets its parameters for a connection.
2468  *
2469  * When a tcp_t structure is allocated, it gets all the default parameters.
2470  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2471  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2472  * default.  But if there is an associated tcp_host_param, it will override
2473  * the metrics.
2474  *
2475  * An incoming SYN with a multicast or broadcast destination address, is dropped
2476  * in 1 of 2 places.
2477  *
2478  * 1. If the packet was received over the wire it is dropped in
2479  * ip_rput_process_broadcast()
2480  *
2481  * 2. If the packet was received through internal IP loopback, i.e. the packet
2482  * was generated and received on the same machine, it is dropped in
2483  * ip_wput_local()
2484  *
2485  * An incoming SYN with a multicast or broadcast source address is always
2486  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2487  * reject an attempt to connect to a broadcast or multicast (destination)
2488  * address.
2489  */
2490 static int
2491 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2492 {
2493 	tcp_hsp_t	*hsp;
2494 	ire_t		*ire;
2495 	ire_t		*sire = NULL;
2496 	iulp_t		*ire_uinfo = NULL;
2497 	uint32_t	mss_max;
2498 	uint32_t	mss;
2499 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2500 	conn_t		*connp = tcp->tcp_connp;
2501 	boolean_t	ire_cacheable = B_FALSE;
2502 	zoneid_t	zoneid = connp->conn_zoneid;
2503 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2504 			    MATCH_IRE_SECATTR;
2505 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2506 	ill_t		*ill = NULL;
2507 	boolean_t	incoming = (ire_mp == NULL);
2508 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2509 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2510 
2511 	ASSERT(connp->conn_ire_cache == NULL);
2512 
2513 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2514 
2515 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2516 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2517 			return (0);
2518 		}
2519 		/*
2520 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2521 		 * for the destination with the nexthop as gateway.
2522 		 * ire_ctable_lookup() is used because this particular
2523 		 * ire, if it exists, will be marked private.
2524 		 * If that is not available, use the interface ire
2525 		 * for the nexthop.
2526 		 *
2527 		 * TSol: tcp_update_label will detect label mismatches based
2528 		 * only on the destination's label, but that would not
2529 		 * detect label mismatches based on the security attributes
2530 		 * of routes or next hop gateway. Hence we need to pass the
2531 		 * label to ire_ftable_lookup below in order to locate the
2532 		 * right prefix (and/or) ire cache. Similarly we also need
2533 		 * pass the label to the ire_cache_lookup below to locate
2534 		 * the right ire that also matches on the label.
2535 		 */
2536 		if (tcp->tcp_connp->conn_nexthop_set) {
2537 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2538 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2539 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2540 			    ipst);
2541 			if (ire == NULL) {
2542 				ire = ire_ftable_lookup(
2543 				    tcp->tcp_connp->conn_nexthop_v4,
2544 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2545 				    tsl, match_flags, ipst);
2546 				if (ire == NULL)
2547 					return (0);
2548 			} else {
2549 				ire_uinfo = &ire->ire_uinfo;
2550 			}
2551 		} else {
2552 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2553 			    zoneid, tsl, ipst);
2554 			if (ire != NULL) {
2555 				ire_cacheable = B_TRUE;
2556 				ire_uinfo = (ire_mp != NULL) ?
2557 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2558 				    &ire->ire_uinfo;
2559 
2560 			} else {
2561 				if (ire_mp == NULL) {
2562 					ire = ire_ftable_lookup(
2563 					    tcp->tcp_connp->conn_rem,
2564 					    0, 0, 0, NULL, &sire, zoneid, 0,
2565 					    tsl, (MATCH_IRE_RECURSIVE |
2566 					    MATCH_IRE_DEFAULT), ipst);
2567 					if (ire == NULL)
2568 						return (0);
2569 					ire_uinfo = (sire != NULL) ?
2570 					    &sire->ire_uinfo :
2571 					    &ire->ire_uinfo;
2572 				} else {
2573 					ire = (ire_t *)ire_mp->b_rptr;
2574 					ire_uinfo =
2575 					    &((ire_t *)
2576 					    ire_mp->b_rptr)->ire_uinfo;
2577 				}
2578 			}
2579 		}
2580 		ASSERT(ire != NULL);
2581 
2582 		if ((ire->ire_src_addr == INADDR_ANY) ||
2583 		    (ire->ire_type & IRE_BROADCAST)) {
2584 			/*
2585 			 * ire->ire_mp is non null when ire_mp passed in is used
2586 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2587 			 */
2588 			if (ire->ire_mp == NULL)
2589 				ire_refrele(ire);
2590 			if (sire != NULL)
2591 				ire_refrele(sire);
2592 			return (0);
2593 		}
2594 
2595 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2596 			ipaddr_t src_addr;
2597 
2598 			/*
2599 			 * ip_bind_connected() has stored the correct source
2600 			 * address in conn_src.
2601 			 */
2602 			src_addr = tcp->tcp_connp->conn_src;
2603 			tcp->tcp_ipha->ipha_src = src_addr;
2604 			/*
2605 			 * Copy of the src addr. in tcp_t is needed
2606 			 * for the lookup funcs.
2607 			 */
2608 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2609 		}
2610 		/*
2611 		 * Set the fragment bit so that IP will tell us if the MTU
2612 		 * should change. IP tells us the latest setting of
2613 		 * ip_path_mtu_discovery through ire_frag_flag.
2614 		 */
2615 		if (ipst->ips_ip_path_mtu_discovery) {
2616 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2617 			    htons(IPH_DF);
2618 		}
2619 		/*
2620 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2621 		 * for IP_NEXTHOP. No cache ire has been found for the
2622 		 * destination and we are working with the nexthop's
2623 		 * interface ire. Since we need to forward all packets
2624 		 * to the nexthop first, we "blindly" set tcp_localnet
2625 		 * to false, eventhough the destination may also be
2626 		 * onlink.
2627 		 */
2628 		if (ire_uinfo == NULL)
2629 			tcp->tcp_localnet = 0;
2630 		else
2631 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2632 	} else {
2633 		/*
2634 		 * For incoming connection ire_mp = NULL
2635 		 * For outgoing connection ire_mp != NULL
2636 		 * Technically we should check conn_incoming_ill
2637 		 * when ire_mp is NULL and conn_outgoing_ill when
2638 		 * ire_mp is non-NULL. But this is performance
2639 		 * critical path and for IPV*_BOUND_IF, outgoing
2640 		 * and incoming ill are always set to the same value.
2641 		 */
2642 		ill_t	*dst_ill = NULL;
2643 		ipif_t  *dst_ipif = NULL;
2644 
2645 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2646 
2647 		if (connp->conn_outgoing_ill != NULL) {
2648 			/* Outgoing or incoming path */
2649 			int   err;
2650 
2651 			dst_ill = conn_get_held_ill(connp,
2652 			    &connp->conn_outgoing_ill, &err);
2653 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2654 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2655 				return (0);
2656 			}
2657 			match_flags |= MATCH_IRE_ILL;
2658 			dst_ipif = dst_ill->ill_ipif;
2659 		}
2660 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2661 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2662 
2663 		if (ire != NULL) {
2664 			ire_cacheable = B_TRUE;
2665 			ire_uinfo = (ire_mp != NULL) ?
2666 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2667 			    &ire->ire_uinfo;
2668 		} else {
2669 			if (ire_mp == NULL) {
2670 				ire = ire_ftable_lookup_v6(
2671 				    &tcp->tcp_connp->conn_remv6,
2672 				    0, 0, 0, dst_ipif, &sire, zoneid,
2673 				    0, tsl, match_flags, ipst);
2674 				if (ire == NULL) {
2675 					if (dst_ill != NULL)
2676 						ill_refrele(dst_ill);
2677 					return (0);
2678 				}
2679 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2680 				    &ire->ire_uinfo;
2681 			} else {
2682 				ire = (ire_t *)ire_mp->b_rptr;
2683 				ire_uinfo =
2684 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2685 			}
2686 		}
2687 		if (dst_ill != NULL)
2688 			ill_refrele(dst_ill);
2689 
2690 		ASSERT(ire != NULL);
2691 		ASSERT(ire_uinfo != NULL);
2692 
2693 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2694 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2695 			/*
2696 			 * ire->ire_mp is non null when ire_mp passed in is used
2697 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2698 			 */
2699 			if (ire->ire_mp == NULL)
2700 				ire_refrele(ire);
2701 			if (sire != NULL)
2702 				ire_refrele(sire);
2703 			return (0);
2704 		}
2705 
2706 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2707 			in6_addr_t	src_addr;
2708 
2709 			/*
2710 			 * ip_bind_connected_v6() has stored the correct source
2711 			 * address per IPv6 addr. selection policy in
2712 			 * conn_src_v6.
2713 			 */
2714 			src_addr = tcp->tcp_connp->conn_srcv6;
2715 
2716 			tcp->tcp_ip6h->ip6_src = src_addr;
2717 			/*
2718 			 * Copy of the src addr. in tcp_t is needed
2719 			 * for the lookup funcs.
2720 			 */
2721 			tcp->tcp_ip_src_v6 = src_addr;
2722 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2723 			    &connp->conn_srcv6));
2724 		}
2725 		tcp->tcp_localnet =
2726 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2727 	}
2728 
2729 	/*
2730 	 * This allows applications to fail quickly when connections are made
2731 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2732 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2733 	 */
2734 	if ((ire->ire_flags & RTF_REJECT) &&
2735 	    (ire->ire_flags & RTF_PRIVATE))
2736 		goto error;
2737 
2738 	/*
2739 	 * Make use of the cached rtt and rtt_sd values to calculate the
2740 	 * initial RTO.  Note that they are already initialized in
2741 	 * tcp_init_values().
2742 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2743 	 * IP_NEXTHOP, but instead are using the interface ire for the
2744 	 * nexthop, then we do not use the ire_uinfo from that ire to
2745 	 * do any initializations.
2746 	 */
2747 	if (ire_uinfo != NULL) {
2748 		if (ire_uinfo->iulp_rtt != 0) {
2749 			clock_t	rto;
2750 
2751 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2752 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2753 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2754 			    tcps->tcps_rexmit_interval_extra +
2755 			    (tcp->tcp_rtt_sa >> 5);
2756 
2757 			if (rto > tcps->tcps_rexmit_interval_max) {
2758 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2759 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2760 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2761 			} else {
2762 				tcp->tcp_rto = rto;
2763 			}
2764 		}
2765 		if (ire_uinfo->iulp_ssthresh != 0)
2766 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2767 		else
2768 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2769 		if (ire_uinfo->iulp_spipe > 0) {
2770 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2771 			    tcps->tcps_max_buf);
2772 			if (tcps->tcps_snd_lowat_fraction != 0)
2773 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2774 				    tcps->tcps_snd_lowat_fraction;
2775 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2776 		}
2777 		/*
2778 		 * Note that up till now, acceptor always inherits receive
2779 		 * window from the listener.  But if there is a metrics
2780 		 * associated with a host, we should use that instead of
2781 		 * inheriting it from listener. Thus we need to pass this
2782 		 * info back to the caller.
2783 		 */
2784 		if (ire_uinfo->iulp_rpipe > 0) {
2785 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2786 					    tcps->tcps_max_buf);
2787 		}
2788 
2789 		if (ire_uinfo->iulp_rtomax > 0) {
2790 			tcp->tcp_second_timer_threshold =
2791 			    ire_uinfo->iulp_rtomax;
2792 		}
2793 
2794 		/*
2795 		 * Use the metric option settings, iulp_tstamp_ok and
2796 		 * iulp_wscale_ok, only for active open. What this means
2797 		 * is that if the other side uses timestamp or window
2798 		 * scale option, TCP will also use those options. That
2799 		 * is for passive open.  If the application sets a
2800 		 * large window, window scale is enabled regardless of
2801 		 * the value in iulp_wscale_ok.  This is the behavior
2802 		 * since 2.6.  So we keep it.
2803 		 * The only case left in passive open processing is the
2804 		 * check for SACK.
2805 		 * For ECN, it should probably be like SACK.  But the
2806 		 * current value is binary, so we treat it like the other
2807 		 * cases.  The metric only controls active open.For passive
2808 		 * open, the ndd param, tcp_ecn_permitted, controls the
2809 		 * behavior.
2810 		 */
2811 		if (!tcp_detached) {
2812 			/*
2813 			 * The if check means that the following can only
2814 			 * be turned on by the metrics only IRE, but not off.
2815 			 */
2816 			if (ire_uinfo->iulp_tstamp_ok)
2817 				tcp->tcp_snd_ts_ok = B_TRUE;
2818 			if (ire_uinfo->iulp_wscale_ok)
2819 				tcp->tcp_snd_ws_ok = B_TRUE;
2820 			if (ire_uinfo->iulp_sack == 2)
2821 				tcp->tcp_snd_sack_ok = B_TRUE;
2822 			if (ire_uinfo->iulp_ecn_ok)
2823 				tcp->tcp_ecn_ok = B_TRUE;
2824 		} else {
2825 			/*
2826 			 * Passive open.
2827 			 *
2828 			 * As above, the if check means that SACK can only be
2829 			 * turned on by the metric only IRE.
2830 			 */
2831 			if (ire_uinfo->iulp_sack > 0) {
2832 				tcp->tcp_snd_sack_ok = B_TRUE;
2833 			}
2834 		}
2835 	}
2836 
2837 
2838 	/*
2839 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2840 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2841 	 * length of all those options exceeds 28 bytes.  But because
2842 	 * of the tcp_mss_min check below, we may not have a problem if
2843 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2844 	 * the negative problem still exists.  And the check defeats PMTUd.
2845 	 * In fact, if PMTUd finds that the MSS should be smaller than
2846 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2847 	 * value.
2848 	 *
2849 	 * We do not deal with that now.  All those problems related to
2850 	 * PMTUd will be fixed later.
2851 	 */
2852 	ASSERT(ire->ire_max_frag != 0);
2853 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2854 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2855 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2856 			mss = MIN(mss, IPV6_MIN_MTU);
2857 		}
2858 	}
2859 
2860 	/* Sanity check for MSS value. */
2861 	if (tcp->tcp_ipversion == IPV4_VERSION)
2862 		mss_max = tcps->tcps_mss_max_ipv4;
2863 	else
2864 		mss_max = tcps->tcps_mss_max_ipv6;
2865 
2866 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2867 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2868 		/*
2869 		 * After receiving an ICMPv6 "packet too big" message with a
2870 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2871 		 * will insert a 8-byte fragment header in every packet; we
2872 		 * reduce the MSS by that amount here.
2873 		 */
2874 		mss -= sizeof (ip6_frag_t);
2875 	}
2876 
2877 	if (tcp->tcp_ipsec_overhead == 0)
2878 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2879 
2880 	mss -= tcp->tcp_ipsec_overhead;
2881 
2882 	if (mss < tcps->tcps_mss_min)
2883 		mss = tcps->tcps_mss_min;
2884 	if (mss > mss_max)
2885 		mss = mss_max;
2886 
2887 	/* Note that this is the maximum MSS, excluding all options. */
2888 	tcp->tcp_mss = mss;
2889 
2890 	/*
2891 	 * Initialize the ISS here now that we have the full connection ID.
2892 	 * The RFC 1948 method of initial sequence number generation requires
2893 	 * knowledge of the full connection ID before setting the ISS.
2894 	 */
2895 
2896 	tcp_iss_init(tcp);
2897 
2898 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2899 		tcp->tcp_loopback = B_TRUE;
2900 
2901 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2902 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2903 	} else {
2904 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2905 	}
2906 
2907 	if (hsp != NULL) {
2908 		/* Only modify if we're going to make them bigger */
2909 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2910 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2911 			if (tcps->tcps_snd_lowat_fraction != 0)
2912 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2913 					tcps->tcps_snd_lowat_fraction;
2914 		}
2915 
2916 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2917 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2918 		}
2919 
2920 		/* Copy timestamp flag only for active open */
2921 		if (!tcp_detached)
2922 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2923 	}
2924 
2925 	if (sire != NULL)
2926 		IRE_REFRELE(sire);
2927 
2928 	/*
2929 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2930 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2931 	 */
2932 	if (tcp->tcp_loopback ||
2933 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2934 		/*
2935 		 * For incoming, see if this tcp may be MDT-capable.  For
2936 		 * outgoing, this process has been taken care of through
2937 		 * tcp_rput_other.
2938 		 */
2939 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2940 		tcp->tcp_ire_ill_check_done = B_TRUE;
2941 	}
2942 
2943 	mutex_enter(&connp->conn_lock);
2944 	/*
2945 	 * Make sure that conn is not marked incipient
2946 	 * for incoming connections. A blind
2947 	 * removal of incipient flag is cheaper than
2948 	 * check and removal.
2949 	 */
2950 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2951 
2952 	/* Must not cache forwarding table routes. */
2953 	if (ire_cacheable) {
2954 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2955 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2956 			connp->conn_ire_cache = ire;
2957 			IRE_UNTRACE_REF(ire);
2958 			rw_exit(&ire->ire_bucket->irb_lock);
2959 			mutex_exit(&connp->conn_lock);
2960 			return (1);
2961 		}
2962 		rw_exit(&ire->ire_bucket->irb_lock);
2963 	}
2964 	mutex_exit(&connp->conn_lock);
2965 
2966 	if (ire->ire_mp == NULL)
2967 		ire_refrele(ire);
2968 	return (1);
2969 
2970 error:
2971 	if (ire->ire_mp == NULL)
2972 		ire_refrele(ire);
2973 	if (sire != NULL)
2974 		ire_refrele(sire);
2975 	return (0);
2976 }
2977 
2978 /*
2979  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2980  * O_T_BIND_REQ/T_BIND_REQ message.
2981  */
2982 static void
2983 tcp_bind(tcp_t *tcp, mblk_t *mp)
2984 {
2985 	sin_t	*sin;
2986 	sin6_t	*sin6;
2987 	mblk_t	*mp1;
2988 	in_port_t requested_port;
2989 	in_port_t allocated_port;
2990 	struct T_bind_req *tbr;
2991 	boolean_t	bind_to_req_port_only;
2992 	boolean_t	backlog_update = B_FALSE;
2993 	boolean_t	user_specified;
2994 	in6_addr_t	v6addr;
2995 	ipaddr_t	v4addr;
2996 	uint_t	origipversion;
2997 	int	err;
2998 	queue_t *q = tcp->tcp_wq;
2999 	conn_t	*connp;
3000 	mlp_type_t addrtype, mlptype;
3001 	zone_t	*zone;
3002 	cred_t	*cr;
3003 	in_port_t mlp_port;
3004 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3005 
3006 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3007 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3008 		if (tcp->tcp_debug) {
3009 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3010 			    "tcp_bind: bad req, len %u",
3011 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3012 		}
3013 		tcp_err_ack(tcp, mp, TPROTO, 0);
3014 		return;
3015 	}
3016 	/* Make sure the largest address fits */
3017 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3018 	if (mp1 == NULL) {
3019 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3020 		return;
3021 	}
3022 	mp = mp1;
3023 	tbr = (struct T_bind_req *)mp->b_rptr;
3024 	if (tcp->tcp_state >= TCPS_BOUND) {
3025 		if ((tcp->tcp_state == TCPS_BOUND ||
3026 		    tcp->tcp_state == TCPS_LISTEN) &&
3027 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3028 		    tbr->CONIND_number > 0) {
3029 			/*
3030 			 * Handle listen() increasing CONIND_number.
3031 			 * This is more "liberal" then what the TPI spec
3032 			 * requires but is needed to avoid a t_unbind
3033 			 * when handling listen() since the port number
3034 			 * might be "stolen" between the unbind and bind.
3035 			 */
3036 			backlog_update = B_TRUE;
3037 			goto do_bind;
3038 		}
3039 		if (tcp->tcp_debug) {
3040 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3041 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3042 		}
3043 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3044 		return;
3045 	}
3046 	origipversion = tcp->tcp_ipversion;
3047 
3048 	switch (tbr->ADDR_length) {
3049 	case 0:			/* request for a generic port */
3050 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3051 		if (tcp->tcp_family == AF_INET) {
3052 			tbr->ADDR_length = sizeof (sin_t);
3053 			sin = (sin_t *)&tbr[1];
3054 			*sin = sin_null;
3055 			sin->sin_family = AF_INET;
3056 			mp->b_wptr = (uchar_t *)&sin[1];
3057 			tcp->tcp_ipversion = IPV4_VERSION;
3058 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3059 		} else {
3060 			ASSERT(tcp->tcp_family == AF_INET6);
3061 			tbr->ADDR_length = sizeof (sin6_t);
3062 			sin6 = (sin6_t *)&tbr[1];
3063 			*sin6 = sin6_null;
3064 			sin6->sin6_family = AF_INET6;
3065 			mp->b_wptr = (uchar_t *)&sin6[1];
3066 			tcp->tcp_ipversion = IPV6_VERSION;
3067 			V6_SET_ZERO(v6addr);
3068 		}
3069 		requested_port = 0;
3070 		break;
3071 
3072 	case sizeof (sin_t):	/* Complete IPv4 address */
3073 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3074 		    sizeof (sin_t));
3075 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3076 			if (tcp->tcp_debug) {
3077 				(void) strlog(TCP_MOD_ID, 0, 1,
3078 				    SL_ERROR|SL_TRACE,
3079 				    "tcp_bind: bad address parameter, "
3080 				    "offset %d, len %d",
3081 				    tbr->ADDR_offset, tbr->ADDR_length);
3082 			}
3083 			tcp_err_ack(tcp, mp, TPROTO, 0);
3084 			return;
3085 		}
3086 		/*
3087 		 * With sockets sockfs will accept bogus sin_family in
3088 		 * bind() and replace it with the family used in the socket
3089 		 * call.
3090 		 */
3091 		if (sin->sin_family != AF_INET ||
3092 		    tcp->tcp_family != AF_INET) {
3093 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3094 			return;
3095 		}
3096 		requested_port = ntohs(sin->sin_port);
3097 		tcp->tcp_ipversion = IPV4_VERSION;
3098 		v4addr = sin->sin_addr.s_addr;
3099 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3100 		break;
3101 
3102 	case sizeof (sin6_t): /* Complete IPv6 address */
3103 		sin6 = (sin6_t *)mi_offset_param(mp,
3104 		    tbr->ADDR_offset, sizeof (sin6_t));
3105 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3106 			if (tcp->tcp_debug) {
3107 				(void) strlog(TCP_MOD_ID, 0, 1,
3108 				    SL_ERROR|SL_TRACE,
3109 				    "tcp_bind: bad IPv6 address parameter, "
3110 				    "offset %d, len %d", tbr->ADDR_offset,
3111 				    tbr->ADDR_length);
3112 			}
3113 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3114 			return;
3115 		}
3116 		if (sin6->sin6_family != AF_INET6 ||
3117 		    tcp->tcp_family != AF_INET6) {
3118 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3119 			return;
3120 		}
3121 		requested_port = ntohs(sin6->sin6_port);
3122 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3123 		    IPV4_VERSION : IPV6_VERSION;
3124 		v6addr = sin6->sin6_addr;
3125 		break;
3126 
3127 	default:
3128 		if (tcp->tcp_debug) {
3129 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3130 			    "tcp_bind: bad address length, %d",
3131 			    tbr->ADDR_length);
3132 		}
3133 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3134 		return;
3135 	}
3136 	tcp->tcp_bound_source_v6 = v6addr;
3137 
3138 	/* Check for change in ipversion */
3139 	if (origipversion != tcp->tcp_ipversion) {
3140 		ASSERT(tcp->tcp_family == AF_INET6);
3141 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3142 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3143 		if (err) {
3144 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3145 			return;
3146 		}
3147 	}
3148 
3149 	/*
3150 	 * Initialize family specific fields. Copy of the src addr.
3151 	 * in tcp_t is needed for the lookup funcs.
3152 	 */
3153 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3154 		tcp->tcp_ip6h->ip6_src = v6addr;
3155 	} else {
3156 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3157 	}
3158 	tcp->tcp_ip_src_v6 = v6addr;
3159 
3160 	/*
3161 	 * For O_T_BIND_REQ:
3162 	 * Verify that the target port/addr is available, or choose
3163 	 * another.
3164 	 * For  T_BIND_REQ:
3165 	 * Verify that the target port/addr is available or fail.
3166 	 * In both cases when it succeeds the tcp is inserted in the
3167 	 * bind hash table. This ensures that the operation is atomic
3168 	 * under the lock on the hash bucket.
3169 	 */
3170 	bind_to_req_port_only = requested_port != 0 &&
3171 	    tbr->PRIM_type != O_T_BIND_REQ;
3172 	/*
3173 	 * Get a valid port (within the anonymous range and should not
3174 	 * be a privileged one) to use if the user has not given a port.
3175 	 * If multiple threads are here, they may all start with
3176 	 * with the same initial port. But, it should be fine as long as
3177 	 * tcp_bindi will ensure that no two threads will be assigned
3178 	 * the same port.
3179 	 *
3180 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3181 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3182 	 * unless TCP_ANONPRIVBIND option is set.
3183 	 */
3184 	mlptype = mlptSingle;
3185 	mlp_port = requested_port;
3186 	if (requested_port == 0) {
3187 		requested_port = tcp->tcp_anon_priv_bind ?
3188 		    tcp_get_next_priv_port(tcp) :
3189 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3190 			tcp, B_TRUE);
3191 		if (requested_port == 0) {
3192 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3193 			return;
3194 		}
3195 		user_specified = B_FALSE;
3196 
3197 		/*
3198 		 * If the user went through one of the RPC interfaces to create
3199 		 * this socket and RPC is MLP in this zone, then give him an
3200 		 * anonymous MLP.
3201 		 */
3202 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3203 		connp = tcp->tcp_connp;
3204 		if (connp->conn_anon_mlp && is_system_labeled()) {
3205 			zone = crgetzone(cr);
3206 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3207 			    IPV6_VERSION, &v6addr,
3208 			    tcps->tcps_netstack->netstack_ip);
3209 			if (addrtype == mlptSingle) {
3210 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3211 				return;
3212 			}
3213 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3214 			    PMAPPORT, addrtype);
3215 			mlp_port = PMAPPORT;
3216 		}
3217 	} else {
3218 		int i;
3219 		boolean_t priv = B_FALSE;
3220 
3221 		/*
3222 		 * If the requested_port is in the well-known privileged range,
3223 		 * verify that the stream was opened by a privileged user.
3224 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3225 		 * but instead the code relies on:
3226 		 * - the fact that the address of the array and its size never
3227 		 *   changes
3228 		 * - the atomic assignment of the elements of the array
3229 		 */
3230 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3231 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3232 			priv = B_TRUE;
3233 		} else {
3234 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3235 				if (requested_port ==
3236 				    tcps->tcps_g_epriv_ports[i]) {
3237 					priv = B_TRUE;
3238 					break;
3239 				}
3240 			}
3241 		}
3242 		if (priv) {
3243 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3244 				if (tcp->tcp_debug) {
3245 					(void) strlog(TCP_MOD_ID, 0, 1,
3246 					    SL_ERROR|SL_TRACE,
3247 					    "tcp_bind: no priv for port %d",
3248 					    requested_port);
3249 				}
3250 				tcp_err_ack(tcp, mp, TACCES, 0);
3251 				return;
3252 			}
3253 		}
3254 		user_specified = B_TRUE;
3255 
3256 		connp = tcp->tcp_connp;
3257 		if (is_system_labeled()) {
3258 			zone = crgetzone(cr);
3259 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3260 			    IPV6_VERSION, &v6addr,
3261 			    tcps->tcps_netstack->netstack_ip);
3262 			if (addrtype == mlptSingle) {
3263 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3264 				return;
3265 			}
3266 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3267 			    requested_port, addrtype);
3268 		}
3269 	}
3270 
3271 	if (mlptype != mlptSingle) {
3272 		if (secpolicy_net_bindmlp(cr) != 0) {
3273 			if (tcp->tcp_debug) {
3274 				(void) strlog(TCP_MOD_ID, 0, 1,
3275 				    SL_ERROR|SL_TRACE,
3276 				    "tcp_bind: no priv for multilevel port %d",
3277 				    requested_port);
3278 			}
3279 			tcp_err_ack(tcp, mp, TACCES, 0);
3280 			return;
3281 		}
3282 
3283 		/*
3284 		 * If we're specifically binding a shared IP address and the
3285 		 * port is MLP on shared addresses, then check to see if this
3286 		 * zone actually owns the MLP.  Reject if not.
3287 		 */
3288 		if (mlptype == mlptShared && addrtype == mlptShared) {
3289 			/*
3290 			 * No need to handle exclusive-stack zones since
3291 			 * ALL_ZONES only applies to the shared stack.
3292 			 */
3293 			zoneid_t mlpzone;
3294 
3295 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3296 			    htons(mlp_port));
3297 			if (connp->conn_zoneid != mlpzone) {
3298 				if (tcp->tcp_debug) {
3299 					(void) strlog(TCP_MOD_ID, 0, 1,
3300 					    SL_ERROR|SL_TRACE,
3301 					    "tcp_bind: attempt to bind port "
3302 					    "%d on shared addr in zone %d "
3303 					    "(should be %d)",
3304 					    mlp_port, connp->conn_zoneid,
3305 					    mlpzone);
3306 				}
3307 				tcp_err_ack(tcp, mp, TACCES, 0);
3308 				return;
3309 			}
3310 		}
3311 
3312 		if (!user_specified) {
3313 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3314 			    requested_port, B_TRUE);
3315 			if (err != 0) {
3316 				if (tcp->tcp_debug) {
3317 					(void) strlog(TCP_MOD_ID, 0, 1,
3318 					    SL_ERROR|SL_TRACE,
3319 					    "tcp_bind: cannot establish anon "
3320 					    "MLP for port %d",
3321 					    requested_port);
3322 				}
3323 				tcp_err_ack(tcp, mp, TSYSERR, err);
3324 				return;
3325 			}
3326 			connp->conn_anon_port = B_TRUE;
3327 		}
3328 		connp->conn_mlp_type = mlptype;
3329 	}
3330 
3331 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3332 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3333 
3334 	if (allocated_port == 0) {
3335 		connp->conn_mlp_type = mlptSingle;
3336 		if (connp->conn_anon_port) {
3337 			connp->conn_anon_port = B_FALSE;
3338 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3339 			    requested_port, B_FALSE);
3340 		}
3341 		if (bind_to_req_port_only) {
3342 			if (tcp->tcp_debug) {
3343 				(void) strlog(TCP_MOD_ID, 0, 1,
3344 				    SL_ERROR|SL_TRACE,
3345 				    "tcp_bind: requested addr busy");
3346 			}
3347 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3348 		} else {
3349 			/* If we are out of ports, fail the bind. */
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: out of ports?");
3354 			}
3355 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3356 		}
3357 		return;
3358 	}
3359 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3360 do_bind:
3361 	if (!backlog_update) {
3362 		if (tcp->tcp_family == AF_INET)
3363 			sin->sin_port = htons(allocated_port);
3364 		else
3365 			sin6->sin6_port = htons(allocated_port);
3366 	}
3367 	if (tcp->tcp_family == AF_INET) {
3368 		if (tbr->CONIND_number != 0) {
3369 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3370 			    sizeof (sin_t));
3371 		} else {
3372 			/* Just verify the local IP address */
3373 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3374 		}
3375 	} else {
3376 		if (tbr->CONIND_number != 0) {
3377 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3378 			    sizeof (sin6_t));
3379 		} else {
3380 			/* Just verify the local IP address */
3381 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3382 			    IPV6_ADDR_LEN);
3383 		}
3384 	}
3385 	if (mp1 == NULL) {
3386 		if (connp->conn_anon_port) {
3387 			connp->conn_anon_port = B_FALSE;
3388 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3389 			    requested_port, B_FALSE);
3390 		}
3391 		connp->conn_mlp_type = mlptSingle;
3392 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3393 		return;
3394 	}
3395 
3396 	tbr->PRIM_type = T_BIND_ACK;
3397 	mp->b_datap->db_type = M_PCPROTO;
3398 
3399 	/* Chain in the reply mp for tcp_rput() */
3400 	mp1->b_cont = mp;
3401 	mp = mp1;
3402 
3403 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3404 	if (tcp->tcp_conn_req_max) {
3405 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3406 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3407 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3408 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3409 		/*
3410 		 * If this is a listener, do not reset the eager list
3411 		 * and other stuffs.  Note that we don't check if the
3412 		 * existing eager list meets the new tcp_conn_req_max
3413 		 * requirement.
3414 		 */
3415 		if (tcp->tcp_state != TCPS_LISTEN) {
3416 			tcp->tcp_state = TCPS_LISTEN;
3417 			/* Initialize the chain. Don't need the eager_lock */
3418 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3419 			tcp->tcp_eager_next_drop_q0 = tcp;
3420 			tcp->tcp_eager_prev_drop_q0 = tcp;
3421 			tcp->tcp_second_ctimer_threshold =
3422 			    tcps->tcps_ip_abort_linterval;
3423 		}
3424 	}
3425 
3426 	/*
3427 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3428 	 * processing continues in tcp_rput_other().
3429 	 */
3430 	if (tcp->tcp_family == AF_INET6) {
3431 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3432 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3433 	} else {
3434 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3435 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3436 	}
3437 	/*
3438 	 * If the bind cannot complete immediately
3439 	 * IP will arrange to call tcp_rput_other
3440 	 * when the bind completes.
3441 	 */
3442 	if (mp != NULL) {
3443 		tcp_rput_other(tcp, mp);
3444 	} else {
3445 		/*
3446 		 * Bind will be resumed later. Need to ensure
3447 		 * that conn doesn't disappear when that happens.
3448 		 * This will be decremented in ip_resume_tcp_bind().
3449 		 */
3450 		CONN_INC_REF(tcp->tcp_connp);
3451 	}
3452 }
3453 
3454 
3455 /*
3456  * If the "bind_to_req_port_only" parameter is set, if the requested port
3457  * number is available, return it, If not return 0
3458  *
3459  * If "bind_to_req_port_only" parameter is not set and
3460  * If the requested port number is available, return it.  If not, return
3461  * the first anonymous port we happen across.  If no anonymous ports are
3462  * available, return 0. addr is the requested local address, if any.
3463  *
3464  * In either case, when succeeding update the tcp_t to record the port number
3465  * and insert it in the bind hash table.
3466  *
3467  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3468  * without setting SO_REUSEADDR. This is needed so that they
3469  * can be viewed as two independent transport protocols.
3470  */
3471 static in_port_t
3472 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3473     int reuseaddr, boolean_t quick_connect,
3474     boolean_t bind_to_req_port_only, boolean_t user_specified)
3475 {
3476 	/* number of times we have run around the loop */
3477 	int count = 0;
3478 	/* maximum number of times to run around the loop */
3479 	int loopmax;
3480 	conn_t *connp = tcp->tcp_connp;
3481 	zoneid_t zoneid = connp->conn_zoneid;
3482 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3483 
3484 	/*
3485 	 * Lookup for free addresses is done in a loop and "loopmax"
3486 	 * influences how long we spin in the loop
3487 	 */
3488 	if (bind_to_req_port_only) {
3489 		/*
3490 		 * If the requested port is busy, don't bother to look
3491 		 * for a new one. Setting loop maximum count to 1 has
3492 		 * that effect.
3493 		 */
3494 		loopmax = 1;
3495 	} else {
3496 		/*
3497 		 * If the requested port is busy, look for a free one
3498 		 * in the anonymous port range.
3499 		 * Set loopmax appropriately so that one does not look
3500 		 * forever in the case all of the anonymous ports are in use.
3501 		 */
3502 		if (tcp->tcp_anon_priv_bind) {
3503 			/*
3504 			 * loopmax =
3505 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3506 			 */
3507 			loopmax = IPPORT_RESERVED -
3508 			    tcps->tcps_min_anonpriv_port;
3509 		} else {
3510 			loopmax = (tcps->tcps_largest_anon_port -
3511 			    tcps->tcps_smallest_anon_port + 1);
3512 		}
3513 	}
3514 	do {
3515 		uint16_t	lport;
3516 		tf_t		*tbf;
3517 		tcp_t		*ltcp;
3518 		conn_t		*lconnp;
3519 
3520 		lport = htons(port);
3521 
3522 		/*
3523 		 * Ensure that the tcp_t is not currently in the bind hash.
3524 		 * Hold the lock on the hash bucket to ensure that
3525 		 * the duplicate check plus the insertion is an atomic
3526 		 * operation.
3527 		 *
3528 		 * This function does an inline lookup on the bind hash list
3529 		 * Make sure that we access only members of tcp_t
3530 		 * and that we don't look at tcp_tcp, since we are not
3531 		 * doing a CONN_INC_REF.
3532 		 */
3533 		tcp_bind_hash_remove(tcp);
3534 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3535 		mutex_enter(&tbf->tf_lock);
3536 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3537 		    ltcp = ltcp->tcp_bind_hash) {
3538 			boolean_t not_socket;
3539 			boolean_t exclbind;
3540 
3541 			if (lport != ltcp->tcp_lport)
3542 				continue;
3543 
3544 			lconnp = ltcp->tcp_connp;
3545 
3546 			/*
3547 			 * On a labeled system, we must treat bindings to ports
3548 			 * on shared IP addresses by sockets with MAC exemption
3549 			 * privilege as being in all zones, as there's
3550 			 * otherwise no way to identify the right receiver.
3551 			 */
3552 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3553 			    !lconnp->conn_mac_exempt &&
3554 			    !connp->conn_mac_exempt)
3555 				continue;
3556 
3557 			/*
3558 			 * If TCP_EXCLBIND is set for either the bound or
3559 			 * binding endpoint, the semantics of bind
3560 			 * is changed according to the following.
3561 			 *
3562 			 * spec = specified address (v4 or v6)
3563 			 * unspec = unspecified address (v4 or v6)
3564 			 * A = specified addresses are different for endpoints
3565 			 *
3566 			 * bound	bind to		allowed
3567 			 * -------------------------------------
3568 			 * unspec	unspec		no
3569 			 * unspec	spec		no
3570 			 * spec		unspec		no
3571 			 * spec		spec		yes if A
3572 			 *
3573 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3574 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3575 			 *
3576 			 * Note:
3577 			 *
3578 			 * 1. Because of TLI semantics, an endpoint can go
3579 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3580 			 * TCPS_BOUND, depending on whether it is originally
3581 			 * a listener or not.  That is why we need to check
3582 			 * for states greater than or equal to TCPS_BOUND
3583 			 * here.
3584 			 *
3585 			 * 2. Ideally, we should only check for state equals
3586 			 * to TCPS_LISTEN. And the following check should be
3587 			 * added.
3588 			 *
3589 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3590 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3591 			 *		...
3592 			 * }
3593 			 *
3594 			 * The semantics will be changed to this.  If the
3595 			 * endpoint on the list is in state not equal to
3596 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3597 			 * set, let the bind succeed.
3598 			 *
3599 			 * Because of (1), we cannot do that for TLI
3600 			 * endpoints.  But we can do that for socket endpoints.
3601 			 * If in future, we can change this going back
3602 			 * semantics, we can use the above check for TLI also.
3603 			 */
3604 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3605 			    TCP_IS_SOCKET(tcp));
3606 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3607 
3608 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3609 			    (exclbind && (not_socket ||
3610 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3611 				if (V6_OR_V4_INADDR_ANY(
3612 				    ltcp->tcp_bound_source_v6) ||
3613 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3614 				    IN6_ARE_ADDR_EQUAL(laddr,
3615 				    &ltcp->tcp_bound_source_v6)) {
3616 					break;
3617 				}
3618 				continue;
3619 			}
3620 
3621 			/*
3622 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3623 			 * have disjoint port number spaces, if *_EXCLBIND
3624 			 * is not set and only if the application binds to a
3625 			 * specific port. We use the same autoassigned port
3626 			 * number space for IPv4 and IPv6 sockets.
3627 			 */
3628 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3629 			    bind_to_req_port_only)
3630 				continue;
3631 
3632 			/*
3633 			 * Ideally, we should make sure that the source
3634 			 * address, remote address, and remote port in the
3635 			 * four tuple for this tcp-connection is unique.
3636 			 * However, trying to find out the local source
3637 			 * address would require too much code duplication
3638 			 * with IP, since IP needs needs to have that code
3639 			 * to support userland TCP implementations.
3640 			 */
3641 			if (quick_connect &&
3642 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3643 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3644 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3645 				    &ltcp->tcp_remote_v6)))
3646 				continue;
3647 
3648 			if (!reuseaddr) {
3649 				/*
3650 				 * No socket option SO_REUSEADDR.
3651 				 * If existing port is bound to
3652 				 * a non-wildcard IP address
3653 				 * and the requesting stream is
3654 				 * bound to a distinct
3655 				 * different IP addresses
3656 				 * (non-wildcard, also), keep
3657 				 * going.
3658 				 */
3659 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3660 				    !V6_OR_V4_INADDR_ANY(
3661 				    ltcp->tcp_bound_source_v6) &&
3662 				    !IN6_ARE_ADDR_EQUAL(laddr,
3663 					&ltcp->tcp_bound_source_v6))
3664 					continue;
3665 				if (ltcp->tcp_state >= TCPS_BOUND) {
3666 					/*
3667 					 * This port is being used and
3668 					 * its state is >= TCPS_BOUND,
3669 					 * so we can't bind to it.
3670 					 */
3671 					break;
3672 				}
3673 			} else {
3674 				/*
3675 				 * socket option SO_REUSEADDR is set on the
3676 				 * binding tcp_t.
3677 				 *
3678 				 * If two streams are bound to
3679 				 * same IP address or both addr
3680 				 * and bound source are wildcards
3681 				 * (INADDR_ANY), we want to stop
3682 				 * searching.
3683 				 * We have found a match of IP source
3684 				 * address and source port, which is
3685 				 * refused regardless of the
3686 				 * SO_REUSEADDR setting, so we break.
3687 				 */
3688 				if (IN6_ARE_ADDR_EQUAL(laddr,
3689 				    &ltcp->tcp_bound_source_v6) &&
3690 				    (ltcp->tcp_state == TCPS_LISTEN ||
3691 					ltcp->tcp_state == TCPS_BOUND))
3692 					break;
3693 			}
3694 		}
3695 		if (ltcp != NULL) {
3696 			/* The port number is busy */
3697 			mutex_exit(&tbf->tf_lock);
3698 		} else {
3699 			/*
3700 			 * This port is ours. Insert in fanout and mark as
3701 			 * bound to prevent others from getting the port
3702 			 * number.
3703 			 */
3704 			tcp->tcp_state = TCPS_BOUND;
3705 			tcp->tcp_lport = htons(port);
3706 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3707 
3708 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3709 			    tcp->tcp_lport)] == tbf);
3710 			tcp_bind_hash_insert(tbf, tcp, 1);
3711 
3712 			mutex_exit(&tbf->tf_lock);
3713 
3714 			/*
3715 			 * We don't want tcp_next_port_to_try to "inherit"
3716 			 * a port number supplied by the user in a bind.
3717 			 */
3718 			if (user_specified)
3719 				return (port);
3720 
3721 			/*
3722 			 * This is the only place where tcp_next_port_to_try
3723 			 * is updated. After the update, it may or may not
3724 			 * be in the valid range.
3725 			 */
3726 			if (!tcp->tcp_anon_priv_bind)
3727 				tcps->tcps_next_port_to_try = port + 1;
3728 			return (port);
3729 		}
3730 
3731 		if (tcp->tcp_anon_priv_bind) {
3732 			port = tcp_get_next_priv_port(tcp);
3733 		} else {
3734 			if (count == 0 && user_specified) {
3735 				/*
3736 				 * We may have to return an anonymous port. So
3737 				 * get one to start with.
3738 				 */
3739 				port =
3740 				    tcp_update_next_port(
3741 					tcps->tcps_next_port_to_try,
3742 					tcp, B_TRUE);
3743 				user_specified = B_FALSE;
3744 			} else {
3745 				port = tcp_update_next_port(port + 1, tcp,
3746 				    B_FALSE);
3747 			}
3748 		}
3749 		if (port == 0)
3750 			break;
3751 
3752 		/*
3753 		 * Don't let this loop run forever in the case where
3754 		 * all of the anonymous ports are in use.
3755 		 */
3756 	} while (++count < loopmax);
3757 	return (0);
3758 }
3759 
3760 /*
3761  * tcp_clean_death / tcp_close_detached must not be called more than once
3762  * on a tcp. Thus every function that potentially calls tcp_clean_death
3763  * must check for the tcp state before calling tcp_clean_death.
3764  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3765  * tcp_timer_handler, all check for the tcp state.
3766  */
3767 /* ARGSUSED */
3768 void
3769 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3770 {
3771 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3772 
3773 	freemsg(mp);
3774 	if (tcp->tcp_state > TCPS_BOUND)
3775 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3776 }
3777 
3778 /*
3779  * We are dying for some reason.  Try to do it gracefully.  (May be called
3780  * as writer.)
3781  *
3782  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3783  * done by a service procedure).
3784  * TBD - Should the return value distinguish between the tcp_t being
3785  * freed and it being reinitialized?
3786  */
3787 static int
3788 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3789 {
3790 	mblk_t	*mp;
3791 	queue_t	*q;
3792 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3793 
3794 	TCP_CLD_STAT(tag);
3795 
3796 #if TCP_TAG_CLEAN_DEATH
3797 	tcp->tcp_cleandeathtag = tag;
3798 #endif
3799 
3800 	if (tcp->tcp_fused)
3801 		tcp_unfuse(tcp);
3802 
3803 	if (tcp->tcp_linger_tid != 0 &&
3804 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3805 		tcp_stop_lingering(tcp);
3806 	}
3807 
3808 	ASSERT(tcp != NULL);
3809 	ASSERT((tcp->tcp_family == AF_INET &&
3810 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3811 	    (tcp->tcp_family == AF_INET6 &&
3812 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3813 	    tcp->tcp_ipversion == IPV6_VERSION)));
3814 
3815 	if (TCP_IS_DETACHED(tcp)) {
3816 		if (tcp->tcp_hard_binding) {
3817 			/*
3818 			 * Its an eager that we are dealing with. We close the
3819 			 * eager but in case a conn_ind has already gone to the
3820 			 * listener, let tcp_accept_finish() send a discon_ind
3821 			 * to the listener and drop the last reference. If the
3822 			 * listener doesn't even know about the eager i.e. the
3823 			 * conn_ind hasn't gone up, blow away the eager and drop
3824 			 * the last reference as well. If the conn_ind has gone
3825 			 * up, state should be BOUND. tcp_accept_finish
3826 			 * will figure out that the connection has received a
3827 			 * RST and will send a DISCON_IND to the application.
3828 			 */
3829 			tcp_closei_local(tcp);
3830 			if (!tcp->tcp_tconnind_started) {
3831 				CONN_DEC_REF(tcp->tcp_connp);
3832 			} else {
3833 				tcp->tcp_state = TCPS_BOUND;
3834 			}
3835 		} else {
3836 			tcp_close_detached(tcp);
3837 		}
3838 		return (0);
3839 	}
3840 
3841 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3842 
3843 	/*
3844 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3845 	 * is run) postpone cleaning up the endpoint until service routine
3846 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3847 	 * client_errno since tcp_close uses the client_errno field.
3848 	 */
3849 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3850 		if (err != 0)
3851 			tcp->tcp_client_errno = err;
3852 
3853 		tcp->tcp_deferred_clean_death = B_TRUE;
3854 		return (-1);
3855 	}
3856 
3857 	q = tcp->tcp_rq;
3858 
3859 	/* Trash all inbound data */
3860 	flushq(q, FLUSHALL);
3861 
3862 	/*
3863 	 * If we are at least part way open and there is error
3864 	 * (err==0 implies no error)
3865 	 * notify our client by a T_DISCON_IND.
3866 	 */
3867 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3868 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3869 		    !TCP_IS_SOCKET(tcp)) {
3870 			/*
3871 			 * Send M_FLUSH according to TPI. Because sockets will
3872 			 * (and must) ignore FLUSHR we do that only for TPI
3873 			 * endpoints and sockets in STREAMS mode.
3874 			 */
3875 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3876 		}
3877 		if (tcp->tcp_debug) {
3878 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3879 			    "tcp_clean_death: discon err %d", err);
3880 		}
3881 		mp = mi_tpi_discon_ind(NULL, err, 0);
3882 		if (mp != NULL) {
3883 			putnext(q, mp);
3884 		} else {
3885 			if (tcp->tcp_debug) {
3886 				(void) strlog(TCP_MOD_ID, 0, 1,
3887 				    SL_ERROR|SL_TRACE,
3888 				    "tcp_clean_death, sending M_ERROR");
3889 			}
3890 			(void) putnextctl1(q, M_ERROR, EPROTO);
3891 		}
3892 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3893 			/* SYN_SENT or SYN_RCVD */
3894 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3895 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3896 			/* ESTABLISHED or CLOSE_WAIT */
3897 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3898 		}
3899 	}
3900 
3901 	tcp_reinit(tcp);
3902 	return (-1);
3903 }
3904 
3905 /*
3906  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3907  * to expire, stop the wait and finish the close.
3908  */
3909 static void
3910 tcp_stop_lingering(tcp_t *tcp)
3911 {
3912 	clock_t	delta = 0;
3913 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3914 
3915 	tcp->tcp_linger_tid = 0;
3916 	if (tcp->tcp_state > TCPS_LISTEN) {
3917 		tcp_acceptor_hash_remove(tcp);
3918 		mutex_enter(&tcp->tcp_non_sq_lock);
3919 		if (tcp->tcp_flow_stopped) {
3920 			tcp_clrqfull(tcp);
3921 		}
3922 		mutex_exit(&tcp->tcp_non_sq_lock);
3923 
3924 		if (tcp->tcp_timer_tid != 0) {
3925 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3926 			tcp->tcp_timer_tid = 0;
3927 		}
3928 		/*
3929 		 * Need to cancel those timers which will not be used when
3930 		 * TCP is detached.  This has to be done before the tcp_wq
3931 		 * is set to the global queue.
3932 		 */
3933 		tcp_timers_stop(tcp);
3934 
3935 
3936 		tcp->tcp_detached = B_TRUE;
3937 		ASSERT(tcps->tcps_g_q != NULL);
3938 		tcp->tcp_rq = tcps->tcps_g_q;
3939 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3940 
3941 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3942 			tcp_time_wait_append(tcp);
3943 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3944 			goto finish;
3945 		}
3946 
3947 		/*
3948 		 * If delta is zero the timer event wasn't executed and was
3949 		 * successfully canceled. In this case we need to restart it
3950 		 * with the minimal delta possible.
3951 		 */
3952 		if (delta >= 0) {
3953 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3954 			    delta ? delta : 1);
3955 		}
3956 	} else {
3957 		tcp_closei_local(tcp);
3958 		CONN_DEC_REF(tcp->tcp_connp);
3959 	}
3960 finish:
3961 	/* Signal closing thread that it can complete close */
3962 	mutex_enter(&tcp->tcp_closelock);
3963 	tcp->tcp_detached = B_TRUE;
3964 	ASSERT(tcps->tcps_g_q != NULL);
3965 	tcp->tcp_rq = tcps->tcps_g_q;
3966 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3967 	tcp->tcp_closed = 1;
3968 	cv_signal(&tcp->tcp_closecv);
3969 	mutex_exit(&tcp->tcp_closelock);
3970 }
3971 
3972 /*
3973  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3974  * expires.
3975  */
3976 static void
3977 tcp_close_linger_timeout(void *arg)
3978 {
3979 	conn_t	*connp = (conn_t *)arg;
3980 	tcp_t 	*tcp = connp->conn_tcp;
3981 
3982 	tcp->tcp_client_errno = ETIMEDOUT;
3983 	tcp_stop_lingering(tcp);
3984 }
3985 
3986 static int
3987 tcp_close(queue_t *q, int flags)
3988 {
3989 	conn_t		*connp = Q_TO_CONN(q);
3990 	tcp_t		*tcp = connp->conn_tcp;
3991 	mblk_t 		*mp = &tcp->tcp_closemp;
3992 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3993 	boolean_t	linger_interrupted = B_FALSE;
3994 	mblk_t		*bp;
3995 
3996 	ASSERT(WR(q)->q_next == NULL);
3997 	ASSERT(connp->conn_ref >= 2);
3998 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3999 
4000 	/*
4001 	 * We are being closed as /dev/tcp or /dev/tcp6.
4002 	 *
4003 	 * Mark the conn as closing. ill_pending_mp_add will not
4004 	 * add any mp to the pending mp list, after this conn has
4005 	 * started closing. Same for sq_pending_mp_add
4006 	 */
4007 	mutex_enter(&connp->conn_lock);
4008 	connp->conn_state_flags |= CONN_CLOSING;
4009 	if (connp->conn_oper_pending_ill != NULL)
4010 		conn_ioctl_cleanup_reqd = B_TRUE;
4011 	CONN_INC_REF_LOCKED(connp);
4012 	mutex_exit(&connp->conn_lock);
4013 	tcp->tcp_closeflags = (uint8_t)flags;
4014 	ASSERT(connp->conn_ref >= 3);
4015 
4016 	/*
4017 	 * tcp_closemp_used is used below without any protection of a lock
4018 	 * as we don't expect any one else to use it concurrently at this
4019 	 * point otherwise it would be a major defect, though we do
4020 	 * increment tcp_closemp_used to record any attempt to reuse
4021 	 * tcp_closemp while it is still in use. This would help debugging.
4022 	 */
4023 
4024 	if (mp->b_prev == NULL) {
4025 		tcp->tcp_closemp_used = 1;
4026 	} else {
4027 		tcp->tcp_closemp_used++;
4028 		ASSERT(mp->b_prev == NULL);
4029 	}
4030 
4031 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4032 
4033 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4034 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4035 
4036 	mutex_enter(&tcp->tcp_closelock);
4037 	while (!tcp->tcp_closed) {
4038 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4039 			/*
4040 			 * We got interrupted. Check if we are lingering,
4041 			 * if yes, post a message to stop and wait until
4042 			 * tcp_closed is set. If we aren't lingering,
4043 			 * just go back around.
4044 			 */
4045 			if (tcp->tcp_linger &&
4046 			    tcp->tcp_lingertime > 0 &&
4047 			    !linger_interrupted) {
4048 				mutex_exit(&tcp->tcp_closelock);
4049 				/* Entering squeue, bump ref count. */
4050 				CONN_INC_REF(connp);
4051 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4052 				squeue_enter(connp->conn_sqp, bp,
4053 				    tcp_linger_interrupted, connp,
4054 				    SQTAG_IP_TCP_CLOSE);
4055 				linger_interrupted = B_TRUE;
4056 				mutex_enter(&tcp->tcp_closelock);
4057 			}
4058 		}
4059 	}
4060 	mutex_exit(&tcp->tcp_closelock);
4061 
4062 	/*
4063 	 * In the case of listener streams that have eagers in the q or q0
4064 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4065 	 * tcp_wq of the eagers point to our queues. By waiting for the
4066 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4067 	 * up their queue pointers and also dropped their references to us.
4068 	 */
4069 	if (tcp->tcp_wait_for_eagers) {
4070 		mutex_enter(&connp->conn_lock);
4071 		while (connp->conn_ref != 1) {
4072 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4073 		}
4074 		mutex_exit(&connp->conn_lock);
4075 	}
4076 	/*
4077 	 * ioctl cleanup. The mp is queued in the
4078 	 * ill_pending_mp or in the sq_pending_mp.
4079 	 */
4080 	if (conn_ioctl_cleanup_reqd)
4081 		conn_ioctl_cleanup(connp);
4082 
4083 	qprocsoff(q);
4084 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4085 
4086 	tcp->tcp_cpid = -1;
4087 
4088 	/*
4089 	 * Drop IP's reference on the conn. This is the last reference
4090 	 * on the connp if the state was less than established. If the
4091 	 * connection has gone into timewait state, then we will have
4092 	 * one ref for the TCP and one more ref (total of two) for the
4093 	 * classifier connected hash list (a timewait connections stays
4094 	 * in connected hash till closed).
4095 	 *
4096 	 * We can't assert the references because there might be other
4097 	 * transient reference places because of some walkers or queued
4098 	 * packets in squeue for the timewait state.
4099 	 */
4100 	CONN_DEC_REF(connp);
4101 	q->q_ptr = WR(q)->q_ptr = NULL;
4102 	return (0);
4103 }
4104 
4105 static int
4106 tcpclose_accept(queue_t *q)
4107 {
4108 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4109 
4110 	/*
4111 	 * We had opened an acceptor STREAM for sockfs which is
4112 	 * now being closed due to some error.
4113 	 */
4114 	qprocsoff(q);
4115 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4116 	q->q_ptr = WR(q)->q_ptr = NULL;
4117 	return (0);
4118 }
4119 
4120 /*
4121  * Called by tcp_close() routine via squeue when lingering is
4122  * interrupted by a signal.
4123  */
4124 
4125 /* ARGSUSED */
4126 static void
4127 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4128 {
4129 	conn_t	*connp = (conn_t *)arg;
4130 	tcp_t	*tcp = connp->conn_tcp;
4131 
4132 	freeb(mp);
4133 	if (tcp->tcp_linger_tid != 0 &&
4134 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4135 		tcp_stop_lingering(tcp);
4136 		tcp->tcp_client_errno = EINTR;
4137 	}
4138 }
4139 
4140 /*
4141  * Called by streams close routine via squeues when our client blows off her
4142  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4143  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4144  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4145  * acked.
4146  *
4147  * NOTE: tcp_close potentially returns error when lingering.
4148  * However, the stream head currently does not pass these errors
4149  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4150  * errors to the application (from tsleep()) and not errors
4151  * like ECONNRESET caused by receiving a reset packet.
4152  */
4153 
4154 /* ARGSUSED */
4155 static void
4156 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4157 {
4158 	char	*msg;
4159 	conn_t	*connp = (conn_t *)arg;
4160 	tcp_t	*tcp = connp->conn_tcp;
4161 	clock_t	delta = 0;
4162 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4163 
4164 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4165 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4166 
4167 	/* Cancel any pending timeout */
4168 	if (tcp->tcp_ordrelid != 0) {
4169 		if (tcp->tcp_timeout) {
4170 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4171 		}
4172 		tcp->tcp_ordrelid = 0;
4173 		tcp->tcp_timeout = B_FALSE;
4174 	}
4175 
4176 	mutex_enter(&tcp->tcp_eager_lock);
4177 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4178 		/* Cleanup for listener */
4179 		tcp_eager_cleanup(tcp, 0);
4180 		tcp->tcp_wait_for_eagers = 1;
4181 	}
4182 	mutex_exit(&tcp->tcp_eager_lock);
4183 
4184 	connp->conn_mdt_ok = B_FALSE;
4185 	tcp->tcp_mdt = B_FALSE;
4186 
4187 	connp->conn_lso_ok = B_FALSE;
4188 	tcp->tcp_lso = B_FALSE;
4189 
4190 	msg = NULL;
4191 	switch (tcp->tcp_state) {
4192 	case TCPS_CLOSED:
4193 	case TCPS_IDLE:
4194 	case TCPS_BOUND:
4195 	case TCPS_LISTEN:
4196 		break;
4197 	case TCPS_SYN_SENT:
4198 		msg = "tcp_close, during connect";
4199 		break;
4200 	case TCPS_SYN_RCVD:
4201 		/*
4202 		 * Close during the connect 3-way handshake
4203 		 * but here there may or may not be pending data
4204 		 * already on queue. Process almost same as in
4205 		 * the ESTABLISHED state.
4206 		 */
4207 		/* FALLTHRU */
4208 	default:
4209 		if (tcp->tcp_fused)
4210 			tcp_unfuse(tcp);
4211 
4212 		/*
4213 		 * If SO_LINGER has set a zero linger time, abort the
4214 		 * connection with a reset.
4215 		 */
4216 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4217 			msg = "tcp_close, zero lingertime";
4218 			break;
4219 		}
4220 
4221 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4222 		/*
4223 		 * Abort connection if there is unread data queued.
4224 		 */
4225 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4226 			msg = "tcp_close, unread data";
4227 			break;
4228 		}
4229 		/*
4230 		 * tcp_hard_bound is now cleared thus all packets go through
4231 		 * tcp_lookup. This fact is used by tcp_detach below.
4232 		 *
4233 		 * We have done a qwait() above which could have possibly
4234 		 * drained more messages in turn causing transition to a
4235 		 * different state. Check whether we have to do the rest
4236 		 * of the processing or not.
4237 		 */
4238 		if (tcp->tcp_state <= TCPS_LISTEN)
4239 			break;
4240 
4241 		/*
4242 		 * Transmit the FIN before detaching the tcp_t.
4243 		 * After tcp_detach returns this queue/perimeter
4244 		 * no longer owns the tcp_t thus others can modify it.
4245 		 */
4246 		(void) tcp_xmit_end(tcp);
4247 
4248 		/*
4249 		 * If lingering on close then wait until the fin is acked,
4250 		 * the SO_LINGER time passes, or a reset is sent/received.
4251 		 */
4252 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4253 		    !(tcp->tcp_fin_acked) &&
4254 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4255 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4256 				tcp->tcp_client_errno = EWOULDBLOCK;
4257 			} else if (tcp->tcp_client_errno == 0) {
4258 
4259 				ASSERT(tcp->tcp_linger_tid == 0);
4260 
4261 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4262 				    tcp_close_linger_timeout,
4263 				    tcp->tcp_lingertime * hz);
4264 
4265 				/* tcp_close_linger_timeout will finish close */
4266 				if (tcp->tcp_linger_tid == 0)
4267 					tcp->tcp_client_errno = ENOSR;
4268 				else
4269 					return;
4270 			}
4271 
4272 			/*
4273 			 * Check if we need to detach or just close
4274 			 * the instance.
4275 			 */
4276 			if (tcp->tcp_state <= TCPS_LISTEN)
4277 				break;
4278 		}
4279 
4280 		/*
4281 		 * Make sure that no other thread will access the tcp_rq of
4282 		 * this instance (through lookups etc.) as tcp_rq will go
4283 		 * away shortly.
4284 		 */
4285 		tcp_acceptor_hash_remove(tcp);
4286 
4287 		mutex_enter(&tcp->tcp_non_sq_lock);
4288 		if (tcp->tcp_flow_stopped) {
4289 			tcp_clrqfull(tcp);
4290 		}
4291 		mutex_exit(&tcp->tcp_non_sq_lock);
4292 
4293 		if (tcp->tcp_timer_tid != 0) {
4294 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4295 			tcp->tcp_timer_tid = 0;
4296 		}
4297 		/*
4298 		 * Need to cancel those timers which will not be used when
4299 		 * TCP is detached.  This has to be done before the tcp_wq
4300 		 * is set to the global queue.
4301 		 */
4302 		tcp_timers_stop(tcp);
4303 
4304 		tcp->tcp_detached = B_TRUE;
4305 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4306 			tcp_time_wait_append(tcp);
4307 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4308 			ASSERT(connp->conn_ref >= 3);
4309 			goto finish;
4310 		}
4311 
4312 		/*
4313 		 * If delta is zero the timer event wasn't executed and was
4314 		 * successfully canceled. In this case we need to restart it
4315 		 * with the minimal delta possible.
4316 		 */
4317 		if (delta >= 0)
4318 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4319 			    delta ? delta : 1);
4320 
4321 		ASSERT(connp->conn_ref >= 3);
4322 		goto finish;
4323 	}
4324 
4325 	/* Detach did not complete. Still need to remove q from stream. */
4326 	if (msg) {
4327 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4328 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4329 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4330 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4331 		    tcp->tcp_state == TCPS_SYN_RCVD)
4332 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4333 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4334 	}
4335 
4336 	tcp_closei_local(tcp);
4337 	CONN_DEC_REF(connp);
4338 	ASSERT(connp->conn_ref >= 2);
4339 
4340 finish:
4341 	/*
4342 	 * Although packets are always processed on the correct
4343 	 * tcp's perimeter and access is serialized via squeue's,
4344 	 * IP still needs a queue when sending packets in time_wait
4345 	 * state so use WR(tcps_g_q) till ip_output() can be
4346 	 * changed to deal with just connp. For read side, we
4347 	 * could have set tcp_rq to NULL but there are some cases
4348 	 * in tcp_rput_data() from early days of this code which
4349 	 * do a putnext without checking if tcp is closed. Those
4350 	 * need to be identified before both tcp_rq and tcp_wq
4351 	 * can be set to NULL and tcps_g_q can disappear forever.
4352 	 */
4353 	mutex_enter(&tcp->tcp_closelock);
4354 	/*
4355 	 * Don't change the queues in the case of a listener that has
4356 	 * eagers in its q or q0. It could surprise the eagers.
4357 	 * Instead wait for the eagers outside the squeue.
4358 	 */
4359 	if (!tcp->tcp_wait_for_eagers) {
4360 		tcp->tcp_detached = B_TRUE;
4361 		/*
4362 		 * When default queue is closing we set tcps_g_q to NULL
4363 		 * after the close is done.
4364 		 */
4365 		ASSERT(tcps->tcps_g_q != NULL);
4366 		tcp->tcp_rq = tcps->tcps_g_q;
4367 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4368 	}
4369 
4370 	/* Signal tcp_close() to finish closing. */
4371 	tcp->tcp_closed = 1;
4372 	cv_signal(&tcp->tcp_closecv);
4373 	mutex_exit(&tcp->tcp_closelock);
4374 }
4375 
4376 
4377 /*
4378  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4379  * Some stream heads get upset if they see these later on as anything but NULL.
4380  */
4381 static void
4382 tcp_close_mpp(mblk_t **mpp)
4383 {
4384 	mblk_t	*mp;
4385 
4386 	if ((mp = *mpp) != NULL) {
4387 		do {
4388 			mp->b_next = NULL;
4389 			mp->b_prev = NULL;
4390 		} while ((mp = mp->b_cont) != NULL);
4391 
4392 		mp = *mpp;
4393 		*mpp = NULL;
4394 		freemsg(mp);
4395 	}
4396 }
4397 
4398 /* Do detached close. */
4399 static void
4400 tcp_close_detached(tcp_t *tcp)
4401 {
4402 	if (tcp->tcp_fused)
4403 		tcp_unfuse(tcp);
4404 
4405 	/*
4406 	 * Clustering code serializes TCP disconnect callbacks and
4407 	 * cluster tcp list walks by blocking a TCP disconnect callback
4408 	 * if a cluster tcp list walk is in progress. This ensures
4409 	 * accurate accounting of TCPs in the cluster code even though
4410 	 * the TCP list walk itself is not atomic.
4411 	 */
4412 	tcp_closei_local(tcp);
4413 	CONN_DEC_REF(tcp->tcp_connp);
4414 }
4415 
4416 /*
4417  * Stop all TCP timers, and free the timer mblks if requested.
4418  */
4419 void
4420 tcp_timers_stop(tcp_t *tcp)
4421 {
4422 	if (tcp->tcp_timer_tid != 0) {
4423 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4424 		tcp->tcp_timer_tid = 0;
4425 	}
4426 	if (tcp->tcp_ka_tid != 0) {
4427 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4428 		tcp->tcp_ka_tid = 0;
4429 	}
4430 	if (tcp->tcp_ack_tid != 0) {
4431 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4432 		tcp->tcp_ack_tid = 0;
4433 	}
4434 	if (tcp->tcp_push_tid != 0) {
4435 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4436 		tcp->tcp_push_tid = 0;
4437 	}
4438 }
4439 
4440 /*
4441  * The tcp_t is going away. Remove it from all lists and set it
4442  * to TCPS_CLOSED. The freeing up of memory is deferred until
4443  * tcp_inactive. This is needed since a thread in tcp_rput might have
4444  * done a CONN_INC_REF on this structure before it was removed from the
4445  * hashes.
4446  */
4447 static void
4448 tcp_closei_local(tcp_t *tcp)
4449 {
4450 	ire_t 	*ire;
4451 	conn_t	*connp = tcp->tcp_connp;
4452 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4453 
4454 	if (!TCP_IS_SOCKET(tcp))
4455 		tcp_acceptor_hash_remove(tcp);
4456 
4457 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4458 	tcp->tcp_ibsegs = 0;
4459 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4460 	tcp->tcp_obsegs = 0;
4461 
4462 	/*
4463 	 * If we are an eager connection hanging off a listener that
4464 	 * hasn't formally accepted the connection yet, get off his
4465 	 * list and blow off any data that we have accumulated.
4466 	 */
4467 	if (tcp->tcp_listener != NULL) {
4468 		tcp_t	*listener = tcp->tcp_listener;
4469 		mutex_enter(&listener->tcp_eager_lock);
4470 		/*
4471 		 * tcp_tconnind_started == B_TRUE means that the
4472 		 * conn_ind has already gone to listener. At
4473 		 * this point, eager will be closed but we
4474 		 * leave it in listeners eager list so that
4475 		 * if listener decides to close without doing
4476 		 * accept, we can clean this up. In tcp_wput_accept
4477 		 * we take care of the case of accept on closed
4478 		 * eager.
4479 		 */
4480 		if (!tcp->tcp_tconnind_started) {
4481 			tcp_eager_unlink(tcp);
4482 			mutex_exit(&listener->tcp_eager_lock);
4483 			/*
4484 			 * We don't want to have any pointers to the
4485 			 * listener queue, after we have released our
4486 			 * reference on the listener
4487 			 */
4488 			ASSERT(tcps->tcps_g_q != NULL);
4489 			tcp->tcp_rq = tcps->tcps_g_q;
4490 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4491 			CONN_DEC_REF(listener->tcp_connp);
4492 		} else {
4493 			mutex_exit(&listener->tcp_eager_lock);
4494 		}
4495 	}
4496 
4497 	/* Stop all the timers */
4498 	tcp_timers_stop(tcp);
4499 
4500 	if (tcp->tcp_state == TCPS_LISTEN) {
4501 		if (tcp->tcp_ip_addr_cache) {
4502 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4503 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4504 			tcp->tcp_ip_addr_cache = NULL;
4505 		}
4506 	}
4507 	mutex_enter(&tcp->tcp_non_sq_lock);
4508 	if (tcp->tcp_flow_stopped)
4509 		tcp_clrqfull(tcp);
4510 	mutex_exit(&tcp->tcp_non_sq_lock);
4511 
4512 	tcp_bind_hash_remove(tcp);
4513 	/*
4514 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4515 	 * is trying to remove this tcp from the time wait list, we will
4516 	 * block in tcp_time_wait_remove while trying to acquire the
4517 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4518 	 * requires the ipcl_hash_remove to be ordered after the
4519 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4520 	 */
4521 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4522 		(void) tcp_time_wait_remove(tcp, NULL);
4523 	CL_INET_DISCONNECT(tcp);
4524 	ipcl_hash_remove(connp);
4525 
4526 	/*
4527 	 * Delete the cached ire in conn_ire_cache and also mark
4528 	 * the conn as CONDEMNED
4529 	 */
4530 	mutex_enter(&connp->conn_lock);
4531 	connp->conn_state_flags |= CONN_CONDEMNED;
4532 	ire = connp->conn_ire_cache;
4533 	connp->conn_ire_cache = NULL;
4534 	mutex_exit(&connp->conn_lock);
4535 	if (ire != NULL)
4536 		IRE_REFRELE_NOTR(ire);
4537 
4538 	/* Need to cleanup any pending ioctls */
4539 	ASSERT(tcp->tcp_time_wait_next == NULL);
4540 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4541 	ASSERT(tcp->tcp_time_wait_expire == 0);
4542 	tcp->tcp_state = TCPS_CLOSED;
4543 
4544 	/* Release any SSL context */
4545 	if (tcp->tcp_kssl_ent != NULL) {
4546 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4547 		tcp->tcp_kssl_ent = NULL;
4548 	}
4549 	if (tcp->tcp_kssl_ctx != NULL) {
4550 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4551 		tcp->tcp_kssl_ctx = NULL;
4552 	}
4553 	tcp->tcp_kssl_pending = B_FALSE;
4554 
4555 	tcp_ipsec_cleanup(tcp);
4556 }
4557 
4558 /*
4559  * tcp is dying (called from ipcl_conn_destroy and error cases).
4560  * Free the tcp_t in either case.
4561  */
4562 void
4563 tcp_free(tcp_t *tcp)
4564 {
4565 	mblk_t	*mp;
4566 	ip6_pkt_t	*ipp;
4567 
4568 	ASSERT(tcp != NULL);
4569 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4570 
4571 	tcp->tcp_rq = NULL;
4572 	tcp->tcp_wq = NULL;
4573 
4574 	tcp_close_mpp(&tcp->tcp_xmit_head);
4575 	tcp_close_mpp(&tcp->tcp_reass_head);
4576 	if (tcp->tcp_rcv_list != NULL) {
4577 		/* Free b_next chain */
4578 		tcp_close_mpp(&tcp->tcp_rcv_list);
4579 	}
4580 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4581 		freemsg(mp);
4582 	}
4583 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4584 		freemsg(mp);
4585 	}
4586 
4587 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4588 		freeb(tcp->tcp_fused_sigurg_mp);
4589 		tcp->tcp_fused_sigurg_mp = NULL;
4590 	}
4591 
4592 	if (tcp->tcp_sack_info != NULL) {
4593 		if (tcp->tcp_notsack_list != NULL) {
4594 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4595 		}
4596 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4597 	}
4598 
4599 	if (tcp->tcp_hopopts != NULL) {
4600 		mi_free(tcp->tcp_hopopts);
4601 		tcp->tcp_hopopts = NULL;
4602 		tcp->tcp_hopoptslen = 0;
4603 	}
4604 	ASSERT(tcp->tcp_hopoptslen == 0);
4605 	if (tcp->tcp_dstopts != NULL) {
4606 		mi_free(tcp->tcp_dstopts);
4607 		tcp->tcp_dstopts = NULL;
4608 		tcp->tcp_dstoptslen = 0;
4609 	}
4610 	ASSERT(tcp->tcp_dstoptslen == 0);
4611 	if (tcp->tcp_rtdstopts != NULL) {
4612 		mi_free(tcp->tcp_rtdstopts);
4613 		tcp->tcp_rtdstopts = NULL;
4614 		tcp->tcp_rtdstoptslen = 0;
4615 	}
4616 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4617 	if (tcp->tcp_rthdr != NULL) {
4618 		mi_free(tcp->tcp_rthdr);
4619 		tcp->tcp_rthdr = NULL;
4620 		tcp->tcp_rthdrlen = 0;
4621 	}
4622 	ASSERT(tcp->tcp_rthdrlen == 0);
4623 
4624 	ipp = &tcp->tcp_sticky_ipp;
4625 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4626 	    IPPF_RTHDR))
4627 		ip6_pkt_free(ipp);
4628 
4629 	/*
4630 	 * Free memory associated with the tcp/ip header template.
4631 	 */
4632 
4633 	if (tcp->tcp_iphc != NULL)
4634 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4635 
4636 	/*
4637 	 * Following is really a blowing away a union.
4638 	 * It happens to have exactly two members of identical size
4639 	 * the following code is enough.
4640 	 */
4641 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4642 
4643 	if (tcp->tcp_tracebuf != NULL) {
4644 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4645 		tcp->tcp_tracebuf = NULL;
4646 	}
4647 }
4648 
4649 
4650 /*
4651  * Put a connection confirmation message upstream built from the
4652  * address information within 'iph' and 'tcph'.  Report our success or failure.
4653  */
4654 static boolean_t
4655 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4656     mblk_t **defermp)
4657 {
4658 	sin_t	sin;
4659 	sin6_t	sin6;
4660 	mblk_t	*mp;
4661 	char	*optp = NULL;
4662 	int	optlen = 0;
4663 	cred_t	*cr;
4664 
4665 	if (defermp != NULL)
4666 		*defermp = NULL;
4667 
4668 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4669 		/*
4670 		 * Return in T_CONN_CON results of option negotiation through
4671 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4672 		 * negotiation, then what is received from remote end needs
4673 		 * to be taken into account but there is no such thing (yet?)
4674 		 * in our TCP/IP.
4675 		 * Note: We do not use mi_offset_param() here as
4676 		 * tcp_opts_conn_req contents do not directly come from
4677 		 * an application and are either generated in kernel or
4678 		 * from user input that was already verified.
4679 		 */
4680 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4681 		optp = (char *)(mp->b_rptr +
4682 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4683 		optlen = (int)
4684 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4685 	}
4686 
4687 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4688 		ipha_t *ipha = (ipha_t *)iphdr;
4689 
4690 		/* packet is IPv4 */
4691 		if (tcp->tcp_family == AF_INET) {
4692 			sin = sin_null;
4693 			sin.sin_addr.s_addr = ipha->ipha_src;
4694 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4695 			sin.sin_family = AF_INET;
4696 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4697 			    (int)sizeof (sin_t), optp, optlen);
4698 		} else {
4699 			sin6 = sin6_null;
4700 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4701 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4702 			sin6.sin6_family = AF_INET6;
4703 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4704 			    (int)sizeof (sin6_t), optp, optlen);
4705 
4706 		}
4707 	} else {
4708 		ip6_t	*ip6h = (ip6_t *)iphdr;
4709 
4710 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4711 		ASSERT(tcp->tcp_family == AF_INET6);
4712 		sin6 = sin6_null;
4713 		sin6.sin6_addr = ip6h->ip6_src;
4714 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4715 		sin6.sin6_family = AF_INET6;
4716 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4717 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4718 		    (int)sizeof (sin6_t), optp, optlen);
4719 	}
4720 
4721 	if (!mp)
4722 		return (B_FALSE);
4723 
4724 	if ((cr = DB_CRED(idmp)) != NULL) {
4725 		mblk_setcred(mp, cr);
4726 		DB_CPID(mp) = DB_CPID(idmp);
4727 	}
4728 
4729 	if (defermp == NULL)
4730 		putnext(tcp->tcp_rq, mp);
4731 	else
4732 		*defermp = mp;
4733 
4734 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4735 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4736 	return (B_TRUE);
4737 }
4738 
4739 /*
4740  * Defense for the SYN attack -
4741  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4742  *    one from the list of droppable eagers. This list is a subset of q0.
4743  *    see comments before the definition of MAKE_DROPPABLE().
4744  * 2. Don't drop a SYN request before its first timeout. This gives every
4745  *    request at least til the first timeout to complete its 3-way handshake.
4746  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4747  *    requests currently on the queue that has timed out. This will be used
4748  *    as an indicator of whether an attack is under way, so that appropriate
4749  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4750  *    either when eager goes into ESTABLISHED, or gets freed up.)
4751  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4752  *    # of timeout drops back to <= q0len/32 => SYN alert off
4753  */
4754 static boolean_t
4755 tcp_drop_q0(tcp_t *tcp)
4756 {
4757 	tcp_t	*eager;
4758 	mblk_t	*mp;
4759 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4760 
4761 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4762 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4763 
4764 	/* Pick oldest eager from the list of droppable eagers */
4765 	eager = tcp->tcp_eager_prev_drop_q0;
4766 
4767 	/* If list is empty. return B_FALSE */
4768 	if (eager == tcp) {
4769 		return (B_FALSE);
4770 	}
4771 
4772 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4773 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4774 		return (B_FALSE);
4775 
4776 	/*
4777 	 * Take this eager out from the list of droppable eagers since we are
4778 	 * going to drop it.
4779 	 */
4780 	MAKE_UNDROPPABLE(eager);
4781 
4782 	if (tcp->tcp_debug) {
4783 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4784 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4785 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4786 		    tcp->tcp_conn_req_cnt_q0,
4787 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4788 	}
4789 
4790 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4791 
4792 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4793 	CONN_INC_REF(eager->tcp_connp);
4794 
4795 	/* Mark the IRE created for this SYN request temporary */
4796 	tcp_ip_ire_mark_advice(eager);
4797 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4798 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4799 
4800 	return (B_TRUE);
4801 }
4802 
4803 int
4804 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4805     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4806 {
4807 	tcp_t 		*ltcp = lconnp->conn_tcp;
4808 	tcp_t		*tcp = connp->conn_tcp;
4809 	mblk_t		*tpi_mp;
4810 	ipha_t		*ipha;
4811 	ip6_t		*ip6h;
4812 	sin6_t 		sin6;
4813 	in6_addr_t 	v6dst;
4814 	int		err;
4815 	int		ifindex = 0;
4816 	cred_t		*cr;
4817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4818 
4819 	if (ipvers == IPV4_VERSION) {
4820 		ipha = (ipha_t *)mp->b_rptr;
4821 
4822 		connp->conn_send = ip_output;
4823 		connp->conn_recv = tcp_input;
4824 
4825 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4826 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4827 
4828 		sin6 = sin6_null;
4829 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4830 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4831 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4832 		sin6.sin6_family = AF_INET6;
4833 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4834 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4835 		if (tcp->tcp_recvdstaddr) {
4836 			sin6_t	sin6d;
4837 
4838 			sin6d = sin6_null;
4839 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4840 			    &sin6d.sin6_addr);
4841 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4842 			sin6d.sin6_family = AF_INET;
4843 			tpi_mp = mi_tpi_extconn_ind(NULL,
4844 			    (char *)&sin6d, sizeof (sin6_t),
4845 			    (char *)&tcp,
4846 			    (t_scalar_t)sizeof (intptr_t),
4847 			    (char *)&sin6d, sizeof (sin6_t),
4848 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4849 		} else {
4850 			tpi_mp = mi_tpi_conn_ind(NULL,
4851 			    (char *)&sin6, sizeof (sin6_t),
4852 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4853 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4854 		}
4855 	} else {
4856 		ip6h = (ip6_t *)mp->b_rptr;
4857 
4858 		connp->conn_send = ip_output_v6;
4859 		connp->conn_recv = tcp_input;
4860 
4861 		connp->conn_srcv6 = ip6h->ip6_dst;
4862 		connp->conn_remv6 = ip6h->ip6_src;
4863 
4864 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4865 		ifindex = (int)DB_CKSUMSTUFF(mp);
4866 		DB_CKSUMSTUFF(mp) = 0;
4867 
4868 		sin6 = sin6_null;
4869 		sin6.sin6_addr = ip6h->ip6_src;
4870 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4871 		sin6.sin6_family = AF_INET6;
4872 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4873 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4874 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4875 
4876 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4877 			/* Pass up the scope_id of remote addr */
4878 			sin6.sin6_scope_id = ifindex;
4879 		} else {
4880 			sin6.sin6_scope_id = 0;
4881 		}
4882 		if (tcp->tcp_recvdstaddr) {
4883 			sin6_t	sin6d;
4884 
4885 			sin6d = sin6_null;
4886 			sin6.sin6_addr = ip6h->ip6_dst;
4887 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4888 			sin6d.sin6_family = AF_INET;
4889 			tpi_mp = mi_tpi_extconn_ind(NULL,
4890 			    (char *)&sin6d, sizeof (sin6_t),
4891 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4892 			    (char *)&sin6d, sizeof (sin6_t),
4893 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4894 		} else {
4895 			tpi_mp = mi_tpi_conn_ind(NULL,
4896 			    (char *)&sin6, sizeof (sin6_t),
4897 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4898 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4899 		}
4900 	}
4901 
4902 	if (tpi_mp == NULL)
4903 		return (ENOMEM);
4904 
4905 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4906 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4907 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4908 	connp->conn_fully_bound = B_FALSE;
4909 
4910 	if (tcps->tcps_trace)
4911 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4912 
4913 	/* Inherit information from the "parent" */
4914 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4915 	tcp->tcp_family = ltcp->tcp_family;
4916 	tcp->tcp_wq = ltcp->tcp_wq;
4917 	tcp->tcp_rq = ltcp->tcp_rq;
4918 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4919 	tcp->tcp_detached = B_TRUE;
4920 	if ((err = tcp_init_values(tcp)) != 0) {
4921 		freemsg(tpi_mp);
4922 		return (err);
4923 	}
4924 
4925 	if (ipvers == IPV4_VERSION) {
4926 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4927 			freemsg(tpi_mp);
4928 			return (err);
4929 		}
4930 		ASSERT(tcp->tcp_ipha != NULL);
4931 	} else {
4932 		/* ifindex must be already set */
4933 		ASSERT(ifindex != 0);
4934 
4935 		if (ltcp->tcp_bound_if != 0) {
4936 			/*
4937 			 * Set newtcp's bound_if equal to
4938 			 * listener's value. If ifindex is
4939 			 * not the same as ltcp->tcp_bound_if,
4940 			 * it must be a packet for the ipmp group
4941 			 * of interfaces
4942 			 */
4943 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4944 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4945 			tcp->tcp_bound_if = ifindex;
4946 		}
4947 
4948 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4949 		tcp->tcp_recvifindex = 0;
4950 		tcp->tcp_recvhops = 0xffffffffU;
4951 		ASSERT(tcp->tcp_ip6h != NULL);
4952 	}
4953 
4954 	tcp->tcp_lport = ltcp->tcp_lport;
4955 
4956 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4957 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4958 			/*
4959 			 * Listener had options of some sort; eager inherits.
4960 			 * Free up the eager template and allocate one
4961 			 * of the right size.
4962 			 */
4963 			if (tcp->tcp_hdr_grown) {
4964 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4965 			} else {
4966 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4967 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4968 			}
4969 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4970 			    KM_NOSLEEP);
4971 			if (tcp->tcp_iphc == NULL) {
4972 				tcp->tcp_iphc_len = 0;
4973 				freemsg(tpi_mp);
4974 				return (ENOMEM);
4975 			}
4976 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4977 			tcp->tcp_hdr_grown = B_TRUE;
4978 		}
4979 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4980 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4981 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4982 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4983 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4984 
4985 		/*
4986 		 * Copy the IP+TCP header template from listener to eager
4987 		 */
4988 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4989 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4990 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4991 			    IPPROTO_RAW) {
4992 				tcp->tcp_ip6h =
4993 				    (ip6_t *)(tcp->tcp_iphc +
4994 					sizeof (ip6i_t));
4995 			} else {
4996 				tcp->tcp_ip6h =
4997 				    (ip6_t *)(tcp->tcp_iphc);
4998 			}
4999 			tcp->tcp_ipha = NULL;
5000 		} else {
5001 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5002 			tcp->tcp_ip6h = NULL;
5003 		}
5004 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5005 		    tcp->tcp_ip_hdr_len);
5006 	} else {
5007 		/*
5008 		 * only valid case when ipversion of listener and
5009 		 * eager differ is when listener is IPv6 and
5010 		 * eager is IPv4.
5011 		 * Eager header template has been initialized to the
5012 		 * maximum v4 header sizes, which includes space for
5013 		 * TCP and IP options.
5014 		 */
5015 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5016 		    (tcp->tcp_ipversion == IPV4_VERSION));
5017 		ASSERT(tcp->tcp_iphc_len >=
5018 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5019 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5020 		/* copy IP header fields individually */
5021 		tcp->tcp_ipha->ipha_ttl =
5022 		    ltcp->tcp_ip6h->ip6_hops;
5023 		bcopy(ltcp->tcp_tcph->th_lport,
5024 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5025 	}
5026 
5027 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5028 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5029 	    sizeof (in_port_t));
5030 
5031 	if (ltcp->tcp_lport == 0) {
5032 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5033 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5034 		    sizeof (in_port_t));
5035 	}
5036 
5037 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5038 		ASSERT(ipha != NULL);
5039 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5040 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5041 
5042 		/* Source routing option copyover (reverse it) */
5043 		if (tcps->tcps_rev_src_routes)
5044 			tcp_opt_reverse(tcp, ipha);
5045 	} else {
5046 		ASSERT(ip6h != NULL);
5047 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5048 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5049 	}
5050 
5051 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5052 	ASSERT(!tcp->tcp_tconnind_started);
5053 	/*
5054 	 * If the SYN contains a credential, it's a loopback packet; attach
5055 	 * the credential to the TPI message.
5056 	 */
5057 	if ((cr = DB_CRED(idmp)) != NULL) {
5058 		mblk_setcred(tpi_mp, cr);
5059 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5060 	}
5061 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5062 
5063 	/* Inherit the listener's SSL protection state */
5064 
5065 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5066 		kssl_hold_ent(tcp->tcp_kssl_ent);
5067 		tcp->tcp_kssl_pending = B_TRUE;
5068 	}
5069 
5070 	return (0);
5071 }
5072 
5073 
5074 int
5075 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5076     tcph_t *tcph, mblk_t *idmp)
5077 {
5078 	tcp_t 		*ltcp = lconnp->conn_tcp;
5079 	tcp_t		*tcp = connp->conn_tcp;
5080 	sin_t		sin;
5081 	mblk_t		*tpi_mp = NULL;
5082 	int		err;
5083 	cred_t		*cr;
5084 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5085 
5086 	sin = sin_null;
5087 	sin.sin_addr.s_addr = ipha->ipha_src;
5088 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5089 	sin.sin_family = AF_INET;
5090 	if (ltcp->tcp_recvdstaddr) {
5091 		sin_t	sind;
5092 
5093 		sind = sin_null;
5094 		sind.sin_addr.s_addr = ipha->ipha_dst;
5095 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5096 		sind.sin_family = AF_INET;
5097 		tpi_mp = mi_tpi_extconn_ind(NULL,
5098 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5099 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5100 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5101 	} else {
5102 		tpi_mp = mi_tpi_conn_ind(NULL,
5103 		    (char *)&sin, sizeof (sin_t),
5104 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5105 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5106 	}
5107 
5108 	if (tpi_mp == NULL) {
5109 		return (ENOMEM);
5110 	}
5111 
5112 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5113 	connp->conn_send = ip_output;
5114 	connp->conn_recv = tcp_input;
5115 	connp->conn_fully_bound = B_FALSE;
5116 
5117 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5118 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5119 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5120 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5121 
5122 	if (tcps->tcps_trace) {
5123 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5124 	}
5125 
5126 	/* Inherit information from the "parent" */
5127 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5128 	tcp->tcp_family = ltcp->tcp_family;
5129 	tcp->tcp_wq = ltcp->tcp_wq;
5130 	tcp->tcp_rq = ltcp->tcp_rq;
5131 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5132 	tcp->tcp_detached = B_TRUE;
5133 	if ((err = tcp_init_values(tcp)) != 0) {
5134 		freemsg(tpi_mp);
5135 		return (err);
5136 	}
5137 
5138 	/*
5139 	 * Let's make sure that eager tcp template has enough space to
5140 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5141 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5142 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5143 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5144 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5145 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5146 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5147 	 */
5148 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5149 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5150 
5151 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5152 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5153 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5154 	tcp->tcp_ttl = ltcp->tcp_ttl;
5155 	tcp->tcp_tos = ltcp->tcp_tos;
5156 
5157 	/* Copy the IP+TCP header template from listener to eager */
5158 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5159 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5160 	tcp->tcp_ip6h = NULL;
5161 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5162 	    tcp->tcp_ip_hdr_len);
5163 
5164 	/* Initialize the IP addresses and Ports */
5165 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5166 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5167 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5168 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5169 
5170 	/* Source routing option copyover (reverse it) */
5171 	if (tcps->tcps_rev_src_routes)
5172 		tcp_opt_reverse(tcp, ipha);
5173 
5174 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5175 	ASSERT(!tcp->tcp_tconnind_started);
5176 
5177 	/*
5178 	 * If the SYN contains a credential, it's a loopback packet; attach
5179 	 * the credential to the TPI message.
5180 	 */
5181 	if ((cr = DB_CRED(idmp)) != NULL) {
5182 		mblk_setcred(tpi_mp, cr);
5183 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5184 	}
5185 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5186 
5187 	/* Inherit the listener's SSL protection state */
5188 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5189 		kssl_hold_ent(tcp->tcp_kssl_ent);
5190 		tcp->tcp_kssl_pending = B_TRUE;
5191 	}
5192 
5193 	return (0);
5194 }
5195 
5196 /*
5197  * sets up conn for ipsec.
5198  * if the first mblk is M_CTL it is consumed and mpp is updated.
5199  * in case of error mpp is freed.
5200  */
5201 conn_t *
5202 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5203 {
5204 	conn_t 		*connp = tcp->tcp_connp;
5205 	conn_t 		*econnp;
5206 	squeue_t 	*new_sqp;
5207 	mblk_t 		*first_mp = *mpp;
5208 	mblk_t		*mp = *mpp;
5209 	boolean_t	mctl_present = B_FALSE;
5210 	uint_t		ipvers;
5211 
5212 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5213 	if (econnp == NULL) {
5214 		freemsg(first_mp);
5215 		return (NULL);
5216 	}
5217 	if (DB_TYPE(mp) == M_CTL) {
5218 		if (mp->b_cont == NULL ||
5219 		    mp->b_cont->b_datap->db_type != M_DATA) {
5220 			freemsg(first_mp);
5221 			return (NULL);
5222 		}
5223 		mp = mp->b_cont;
5224 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5225 			freemsg(first_mp);
5226 			return (NULL);
5227 		}
5228 
5229 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5230 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5231 		mctl_present = B_TRUE;
5232 	} else {
5233 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5234 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5235 	}
5236 
5237 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5238 	DB_CKSUMSTART(mp) = 0;
5239 
5240 	ASSERT(OK_32PTR(mp->b_rptr));
5241 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5242 	if (ipvers == IPV4_VERSION) {
5243 		uint16_t  	*up;
5244 		uint32_t	ports;
5245 		ipha_t		*ipha;
5246 
5247 		ipha = (ipha_t *)mp->b_rptr;
5248 		up = (uint16_t *)((uchar_t *)ipha +
5249 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5250 		ports = *(uint32_t *)up;
5251 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5252 		    ipha->ipha_dst, ipha->ipha_src, ports);
5253 	} else {
5254 		uint16_t  	*up;
5255 		uint32_t	ports;
5256 		uint16_t	ip_hdr_len;
5257 		uint8_t		*nexthdrp;
5258 		ip6_t 		*ip6h;
5259 		tcph_t		*tcph;
5260 
5261 		ip6h = (ip6_t *)mp->b_rptr;
5262 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5263 			ip_hdr_len = IPV6_HDR_LEN;
5264 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5265 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5266 			CONN_DEC_REF(econnp);
5267 			freemsg(first_mp);
5268 			return (NULL);
5269 		}
5270 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5271 		up = (uint16_t *)tcph->th_lport;
5272 		ports = *(uint32_t *)up;
5273 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5274 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5275 	}
5276 
5277 	/*
5278 	 * The caller already ensured that there is a sqp present.
5279 	 */
5280 	econnp->conn_sqp = new_sqp;
5281 
5282 	if (connp->conn_policy != NULL) {
5283 		ipsec_in_t *ii;
5284 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5285 		ASSERT(ii->ipsec_in_policy == NULL);
5286 		IPPH_REFHOLD(connp->conn_policy);
5287 		ii->ipsec_in_policy = connp->conn_policy;
5288 
5289 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5290 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5291 			CONN_DEC_REF(econnp);
5292 			freemsg(first_mp);
5293 			return (NULL);
5294 		}
5295 	}
5296 
5297 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5298 		CONN_DEC_REF(econnp);
5299 		freemsg(first_mp);
5300 		return (NULL);
5301 	}
5302 
5303 	/*
5304 	 * If we know we have some policy, pass the "IPSEC"
5305 	 * options size TCP uses this adjust the MSS.
5306 	 */
5307 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5308 	if (mctl_present) {
5309 		freeb(first_mp);
5310 		*mpp = mp;
5311 	}
5312 
5313 	return (econnp);
5314 }
5315 
5316 /*
5317  * tcp_get_conn/tcp_free_conn
5318  *
5319  * tcp_get_conn is used to get a clean tcp connection structure.
5320  * It tries to reuse the connections put on the freelist by the
5321  * time_wait_collector failing which it goes to kmem_cache. This
5322  * way has two benefits compared to just allocating from and
5323  * freeing to kmem_cache.
5324  * 1) The time_wait_collector can free (which includes the cleanup)
5325  * outside the squeue. So when the interrupt comes, we have a clean
5326  * connection sitting in the freelist. Obviously, this buys us
5327  * performance.
5328  *
5329  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5330  * has multiple disadvantages - tying up the squeue during alloc, and the
5331  * fact that IPSec policy initialization has to happen here which
5332  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5333  * But allocating the conn/tcp in IP land is also not the best since
5334  * we can't check the 'q' and 'q0' which are protected by squeue and
5335  * blindly allocate memory which might have to be freed here if we are
5336  * not allowed to accept the connection. By using the freelist and
5337  * putting the conn/tcp back in freelist, we don't pay a penalty for
5338  * allocating memory without checking 'q/q0' and freeing it if we can't
5339  * accept the connection.
5340  *
5341  * Care should be taken to put the conn back in the same squeue's freelist
5342  * from which it was allocated. Best results are obtained if conn is
5343  * allocated from listener's squeue and freed to the same. Time wait
5344  * collector will free up the freelist is the connection ends up sitting
5345  * there for too long.
5346  */
5347 void *
5348 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5349 {
5350 	tcp_t			*tcp = NULL;
5351 	conn_t			*connp = NULL;
5352 	squeue_t		*sqp = (squeue_t *)arg;
5353 	tcp_squeue_priv_t 	*tcp_time_wait;
5354 	netstack_t		*ns;
5355 
5356 	tcp_time_wait =
5357 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5358 
5359 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5360 	tcp = tcp_time_wait->tcp_free_list;
5361 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5362 	if (tcp != NULL) {
5363 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5364 		tcp_time_wait->tcp_free_list_cnt--;
5365 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5366 		tcp->tcp_time_wait_next = NULL;
5367 		connp = tcp->tcp_connp;
5368 		connp->conn_flags |= IPCL_REUSED;
5369 
5370 		ASSERT(tcp->tcp_tcps == NULL);
5371 		ASSERT(connp->conn_netstack == NULL);
5372 		ns = tcps->tcps_netstack;
5373 		netstack_hold(ns);
5374 		connp->conn_netstack = ns;
5375 		tcp->tcp_tcps = tcps;
5376 		TCPS_REFHOLD(tcps);
5377 		ipcl_globalhash_insert(connp);
5378 		return ((void *)connp);
5379 	}
5380 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5381 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5382 		    tcps->tcps_netstack)) == NULL)
5383 		return (NULL);
5384 	tcp = connp->conn_tcp;
5385 	tcp->tcp_tcps = tcps;
5386 	TCPS_REFHOLD(tcps);
5387 	return ((void *)connp);
5388 }
5389 
5390 /*
5391  * Update the cached label for the given tcp_t.  This should be called once per
5392  * connection, and before any packets are sent or tcp_process_options is
5393  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5394  */
5395 static boolean_t
5396 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5397 {
5398 	conn_t *connp = tcp->tcp_connp;
5399 
5400 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5401 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5402 		int added;
5403 
5404 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5405 		    connp->conn_mac_exempt,
5406 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5407 			return (B_FALSE);
5408 
5409 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5410 		if (added == -1)
5411 			return (B_FALSE);
5412 		tcp->tcp_hdr_len += added;
5413 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5414 		tcp->tcp_ip_hdr_len += added;
5415 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5416 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5417 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5418 			    tcp->tcp_hdr_len);
5419 			if (added == -1)
5420 				return (B_FALSE);
5421 			tcp->tcp_hdr_len += added;
5422 			tcp->tcp_tcph = (tcph_t *)
5423 			    ((uchar_t *)tcp->tcp_tcph + added);
5424 			tcp->tcp_ip_hdr_len += added;
5425 		}
5426 	} else {
5427 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5428 
5429 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5430 		    connp->conn_mac_exempt,
5431 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5432 			return (B_FALSE);
5433 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5434 		    &tcp->tcp_label_len, optbuf) != 0)
5435 			return (B_FALSE);
5436 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5437 			return (B_FALSE);
5438 	}
5439 
5440 	connp->conn_ulp_labeled = 1;
5441 
5442 	return (B_TRUE);
5443 }
5444 
5445 /* BEGIN CSTYLED */
5446 /*
5447  *
5448  * The sockfs ACCEPT path:
5449  * =======================
5450  *
5451  * The eager is now established in its own perimeter as soon as SYN is
5452  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5453  * completes the accept processing on the acceptor STREAM. The sending
5454  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5455  * listener but a TLI/XTI listener completes the accept processing
5456  * on the listener perimeter.
5457  *
5458  * Common control flow for 3 way handshake:
5459  * ----------------------------------------
5460  *
5461  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5462  *					-> tcp_conn_request()
5463  *
5464  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5465  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5466  *
5467  * Sockfs ACCEPT Path:
5468  * -------------------
5469  *
5470  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5471  * as STREAM entry point)
5472  *
5473  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5474  *
5475  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5476  * association (we are not behind eager's squeue but sockfs is protecting us
5477  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5478  * is changed to point at tcp_wput().
5479  *
5480  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5481  * listener (done on listener's perimeter).
5482  *
5483  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5484  * accept.
5485  *
5486  * TLI/XTI client ACCEPT path:
5487  * ---------------------------
5488  *
5489  * soaccept() sends T_CONN_RES on the listener STREAM.
5490  *
5491  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5492  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5493  *
5494  * Locks:
5495  * ======
5496  *
5497  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5498  * and listeners->tcp_eager_next_q.
5499  *
5500  * Referencing:
5501  * ============
5502  *
5503  * 1) We start out in tcp_conn_request by eager placing a ref on
5504  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5505  *
5506  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5507  * doing so we place a ref on the eager. This ref is finally dropped at the
5508  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5509  * reference is dropped by the squeue framework.
5510  *
5511  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5512  *
5513  * The reference must be released by the same entity that added the reference
5514  * In the above scheme, the eager is the entity that adds and releases the
5515  * references. Note that tcp_accept_finish executes in the squeue of the eager
5516  * (albeit after it is attached to the acceptor stream). Though 1. executes
5517  * in the listener's squeue, the eager is nascent at this point and the
5518  * reference can be considered to have been added on behalf of the eager.
5519  *
5520  * Eager getting a Reset or listener closing:
5521  * ==========================================
5522  *
5523  * Once the listener and eager are linked, the listener never does the unlink.
5524  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5525  * a message on all eager perimeter. The eager then does the unlink, clears
5526  * any pointers to the listener's queue and drops the reference to the
5527  * listener. The listener waits in tcp_close outside the squeue until its
5528  * refcount has dropped to 1. This ensures that the listener has waited for
5529  * all eagers to clear their association with the listener.
5530  *
5531  * Similarly, if eager decides to go away, it can unlink itself and close.
5532  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5533  * the reference to eager is still valid because of the extra ref we put
5534  * in tcp_send_conn_ind.
5535  *
5536  * Listener can always locate the eager under the protection
5537  * of the listener->tcp_eager_lock, and then do a refhold
5538  * on the eager during the accept processing.
5539  *
5540  * The acceptor stream accesses the eager in the accept processing
5541  * based on the ref placed on eager before sending T_conn_ind.
5542  * The only entity that can negate this refhold is a listener close
5543  * which is mutually exclusive with an active acceptor stream.
5544  *
5545  * Eager's reference on the listener
5546  * ===================================
5547  *
5548  * If the accept happens (even on a closed eager) the eager drops its
5549  * reference on the listener at the start of tcp_accept_finish. If the
5550  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5551  * the reference is dropped in tcp_closei_local. If the listener closes,
5552  * the reference is dropped in tcp_eager_kill. In all cases the reference
5553  * is dropped while executing in the eager's context (squeue).
5554  */
5555 /* END CSTYLED */
5556 
5557 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5558 
5559 /*
5560  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5561  * tcp_rput_data will not see any SYN packets.
5562  */
5563 /* ARGSUSED */
5564 void
5565 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5566 {
5567 	tcph_t		*tcph;
5568 	uint32_t	seg_seq;
5569 	tcp_t		*eager;
5570 	uint_t		ipvers;
5571 	ipha_t		*ipha;
5572 	ip6_t		*ip6h;
5573 	int		err;
5574 	conn_t		*econnp = NULL;
5575 	squeue_t	*new_sqp;
5576 	mblk_t		*mp1;
5577 	uint_t 		ip_hdr_len;
5578 	conn_t		*connp = (conn_t *)arg;
5579 	tcp_t		*tcp = connp->conn_tcp;
5580 	ire_t		*ire;
5581 	cred_t		*credp;
5582 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5583 	ip_stack_t	*ipst;
5584 
5585 	if (tcp->tcp_state != TCPS_LISTEN)
5586 		goto error2;
5587 
5588 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5589 
5590 	mutex_enter(&tcp->tcp_eager_lock);
5591 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5592 		mutex_exit(&tcp->tcp_eager_lock);
5593 		TCP_STAT(tcps, tcp_listendrop);
5594 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5595 		if (tcp->tcp_debug) {
5596 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5597 			    "tcp_conn_request: listen backlog (max=%d) "
5598 			    "overflow (%d pending) on %s",
5599 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5600 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5601 		}
5602 		goto error2;
5603 	}
5604 
5605 	if (tcp->tcp_conn_req_cnt_q0 >=
5606 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5607 		/*
5608 		 * Q0 is full. Drop a pending half-open req from the queue
5609 		 * to make room for the new SYN req. Also mark the time we
5610 		 * drop a SYN.
5611 		 *
5612 		 * A more aggressive defense against SYN attack will
5613 		 * be to set the "tcp_syn_defense" flag now.
5614 		 */
5615 		TCP_STAT(tcps, tcp_listendropq0);
5616 		tcp->tcp_last_rcv_lbolt = lbolt64;
5617 		if (!tcp_drop_q0(tcp)) {
5618 			mutex_exit(&tcp->tcp_eager_lock);
5619 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5620 			if (tcp->tcp_debug) {
5621 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5622 				    "tcp_conn_request: listen half-open queue "
5623 				    "(max=%d) full (%d pending) on %s",
5624 				    tcps->tcps_conn_req_max_q0,
5625 				    tcp->tcp_conn_req_cnt_q0,
5626 				    tcp_display(tcp, NULL,
5627 				    DISP_PORT_ONLY));
5628 			}
5629 			goto error2;
5630 		}
5631 	}
5632 	mutex_exit(&tcp->tcp_eager_lock);
5633 
5634 	/*
5635 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5636 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5637 	 * link local address.  If IPSec is enabled, db_struioflag has
5638 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5639 	 * otherwise an error case if neither of them is set.
5640 	 */
5641 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5642 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5643 		DB_CKSUMSTART(mp) = 0;
5644 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5645 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5646 		if (econnp == NULL)
5647 			goto error2;
5648 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5649 		econnp->conn_sqp = new_sqp;
5650 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5651 		/*
5652 		 * mp is updated in tcp_get_ipsec_conn().
5653 		 */
5654 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5655 		if (econnp == NULL) {
5656 			/*
5657 			 * mp freed by tcp_get_ipsec_conn.
5658 			 */
5659 			return;
5660 		}
5661 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5662 	} else {
5663 		goto error2;
5664 	}
5665 
5666 	ASSERT(DB_TYPE(mp) == M_DATA);
5667 
5668 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5669 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5670 	ASSERT(OK_32PTR(mp->b_rptr));
5671 	if (ipvers == IPV4_VERSION) {
5672 		ipha = (ipha_t *)mp->b_rptr;
5673 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5674 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5675 	} else {
5676 		ip6h = (ip6_t *)mp->b_rptr;
5677 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5678 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5679 	}
5680 
5681 	if (tcp->tcp_family == AF_INET) {
5682 		ASSERT(ipvers == IPV4_VERSION);
5683 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5684 	} else {
5685 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5686 	}
5687 
5688 	if (err)
5689 		goto error3;
5690 
5691 	eager = econnp->conn_tcp;
5692 
5693 	/* Inherit various TCP parameters from the listener */
5694 	eager->tcp_naglim = tcp->tcp_naglim;
5695 	eager->tcp_first_timer_threshold =
5696 	    tcp->tcp_first_timer_threshold;
5697 	eager->tcp_second_timer_threshold =
5698 	    tcp->tcp_second_timer_threshold;
5699 
5700 	eager->tcp_first_ctimer_threshold =
5701 	    tcp->tcp_first_ctimer_threshold;
5702 	eager->tcp_second_ctimer_threshold =
5703 	    tcp->tcp_second_ctimer_threshold;
5704 
5705 	/*
5706 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5707 	 * If it does not, the eager's receive window will be set to the
5708 	 * listener's receive window later in this function.
5709 	 */
5710 	eager->tcp_rwnd = 0;
5711 
5712 	/*
5713 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5714 	 * calling tcp_process_options() where tcp_mss_set() is called
5715 	 * to set the initial cwnd.
5716 	 */
5717 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5718 
5719 	/*
5720 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5721 	 * zone id before the accept is completed in tcp_wput_accept().
5722 	 */
5723 	econnp->conn_zoneid = connp->conn_zoneid;
5724 	econnp->conn_allzones = connp->conn_allzones;
5725 
5726 	/* Copy nexthop information from listener to eager */
5727 	if (connp->conn_nexthop_set) {
5728 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5729 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5730 	}
5731 
5732 	/*
5733 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5734 	 * eager is accepted
5735 	 */
5736 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5737 	crhold(credp);
5738 
5739 	/*
5740 	 * If the caller has the process-wide flag set, then default to MAC
5741 	 * exempt mode.  This allows read-down to unlabeled hosts.
5742 	 */
5743 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5744 		econnp->conn_mac_exempt = B_TRUE;
5745 
5746 	if (is_system_labeled()) {
5747 		cred_t *cr;
5748 
5749 		if (connp->conn_mlp_type != mlptSingle) {
5750 			cr = econnp->conn_peercred = DB_CRED(mp);
5751 			if (cr != NULL)
5752 				crhold(cr);
5753 			else
5754 				cr = econnp->conn_cred;
5755 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5756 			    econnp, cred_t *, cr)
5757 		} else {
5758 			cr = econnp->conn_cred;
5759 			DTRACE_PROBE2(syn_accept, conn_t *,
5760 			    econnp, cred_t *, cr)
5761 		}
5762 
5763 		if (!tcp_update_label(eager, cr)) {
5764 			DTRACE_PROBE3(
5765 			    tx__ip__log__error__connrequest__tcp,
5766 			    char *, "eager connp(1) label on SYN mp(2) failed",
5767 			    conn_t *, econnp, mblk_t *, mp);
5768 			goto error3;
5769 		}
5770 	}
5771 
5772 	eager->tcp_hard_binding = B_TRUE;
5773 
5774 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5775 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5776 
5777 	CL_INET_CONNECT(eager);
5778 
5779 	/*
5780 	 * No need to check for multicast destination since ip will only pass
5781 	 * up multicasts to those that have expressed interest
5782 	 * TODO: what about rejecting broadcasts?
5783 	 * Also check that source is not a multicast or broadcast address.
5784 	 */
5785 	eager->tcp_state = TCPS_SYN_RCVD;
5786 
5787 
5788 	/*
5789 	 * There should be no ire in the mp as we are being called after
5790 	 * receiving the SYN.
5791 	 */
5792 	ASSERT(tcp_ire_mp(mp) == NULL);
5793 
5794 	/*
5795 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5796 	 */
5797 
5798 	if (tcp_adapt_ire(eager, NULL) == 0) {
5799 		/* Undo the bind_hash_insert */
5800 		tcp_bind_hash_remove(eager);
5801 		goto error3;
5802 	}
5803 
5804 	/* Process all TCP options. */
5805 	tcp_process_options(eager, tcph);
5806 
5807 	/* Is the other end ECN capable? */
5808 	if (tcps->tcps_ecn_permitted >= 1 &&
5809 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5810 		eager->tcp_ecn_ok = B_TRUE;
5811 	}
5812 
5813 	/*
5814 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5815 	 * window size changed via SO_RCVBUF option.  First round up the
5816 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5817 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5818 	 * setting.
5819 	 *
5820 	 * Note if there is a rpipe metric associated with the remote host,
5821 	 * we should not inherit receive window size from listener.
5822 	 */
5823 	eager->tcp_rwnd = MSS_ROUNDUP(
5824 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5825 	    eager->tcp_rwnd), eager->tcp_mss);
5826 	if (eager->tcp_snd_ws_ok)
5827 		tcp_set_ws_value(eager);
5828 	/*
5829 	 * Note that this is the only place tcp_rwnd_set() is called for
5830 	 * accepting a connection.  We need to call it here instead of
5831 	 * after the 3-way handshake because we need to tell the other
5832 	 * side our rwnd in the SYN-ACK segment.
5833 	 */
5834 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5835 
5836 	/*
5837 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5838 	 * via soaccept()->soinheritoptions() which essentially applies
5839 	 * all the listener options to the new STREAM. The options that we
5840 	 * need to take care of are:
5841 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5842 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5843 	 * SO_SNDBUF, SO_RCVBUF.
5844 	 *
5845 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5846 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5847 	 *		tcp_maxpsz_set() gets called later from
5848 	 *		tcp_accept_finish(), the option takes effect.
5849 	 *
5850 	 */
5851 	/* Set the TCP options */
5852 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5853 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5854 	eager->tcp_oobinline = tcp->tcp_oobinline;
5855 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5856 	eager->tcp_broadcast = tcp->tcp_broadcast;
5857 	eager->tcp_useloopback = tcp->tcp_useloopback;
5858 	eager->tcp_dontroute = tcp->tcp_dontroute;
5859 	eager->tcp_linger = tcp->tcp_linger;
5860 	eager->tcp_lingertime = tcp->tcp_lingertime;
5861 	if (tcp->tcp_ka_enabled)
5862 		eager->tcp_ka_enabled = 1;
5863 
5864 	/* Set the IP options */
5865 	econnp->conn_broadcast = connp->conn_broadcast;
5866 	econnp->conn_loopback = connp->conn_loopback;
5867 	econnp->conn_dontroute = connp->conn_dontroute;
5868 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5869 
5870 	/* Put a ref on the listener for the eager. */
5871 	CONN_INC_REF(connp);
5872 	mutex_enter(&tcp->tcp_eager_lock);
5873 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5874 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5875 	tcp->tcp_eager_next_q0 = eager;
5876 	eager->tcp_eager_prev_q0 = tcp;
5877 
5878 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5879 	eager->tcp_listener = tcp;
5880 	eager->tcp_saved_listener = tcp;
5881 
5882 	/*
5883 	 * Tag this detached tcp vector for later retrieval
5884 	 * by our listener client in tcp_accept().
5885 	 */
5886 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5887 	tcp->tcp_conn_req_cnt_q0++;
5888 	if (++tcp->tcp_conn_req_seqnum == -1) {
5889 		/*
5890 		 * -1 is "special" and defined in TPI as something
5891 		 * that should never be used in T_CONN_IND
5892 		 */
5893 		++tcp->tcp_conn_req_seqnum;
5894 	}
5895 	mutex_exit(&tcp->tcp_eager_lock);
5896 
5897 	if (tcp->tcp_syn_defense) {
5898 		/* Don't drop the SYN that comes from a good IP source */
5899 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5900 		if (addr_cache != NULL && eager->tcp_remote ==
5901 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5902 			eager->tcp_dontdrop = B_TRUE;
5903 		}
5904 	}
5905 
5906 	/*
5907 	 * We need to insert the eager in its own perimeter but as soon
5908 	 * as we do that, we expose the eager to the classifier and
5909 	 * should not touch any field outside the eager's perimeter.
5910 	 * So do all the work necessary before inserting the eager
5911 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5912 	 * will succeed but undo everything if it fails.
5913 	 */
5914 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5915 	eager->tcp_irs = seg_seq;
5916 	eager->tcp_rack = seg_seq;
5917 	eager->tcp_rnxt = seg_seq + 1;
5918 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5919 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5920 	eager->tcp_state = TCPS_SYN_RCVD;
5921 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5922 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5923 	if (mp1 == NULL)
5924 		goto error1;
5925 	DB_CPID(mp1) = tcp->tcp_cpid;
5926 	eager->tcp_cpid = tcp->tcp_cpid;
5927 	eager->tcp_open_time = lbolt64;
5928 
5929 	/*
5930 	 * We need to start the rto timer. In normal case, we start
5931 	 * the timer after sending the packet on the wire (or at
5932 	 * least believing that packet was sent by waiting for
5933 	 * CALL_IP_WPUT() to return). Since this is the first packet
5934 	 * being sent on the wire for the eager, our initial tcp_rto
5935 	 * is at least tcp_rexmit_interval_min which is a fairly
5936 	 * large value to allow the algorithm to adjust slowly to large
5937 	 * fluctuations of RTT during first few transmissions.
5938 	 *
5939 	 * Starting the timer first and then sending the packet in this
5940 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5941 	 * is of the order of several 100ms and starting the timer
5942 	 * first and then sending the packet will result in difference
5943 	 * of few micro seconds.
5944 	 *
5945 	 * Without this optimization, we are forced to hold the fanout
5946 	 * lock across the ipcl_bind_insert() and sending the packet
5947 	 * so that we don't race against an incoming packet (maybe RST)
5948 	 * for this eager.
5949 	 */
5950 
5951 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5952 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5953 
5954 
5955 	/*
5956 	 * Insert the eager in its own perimeter now. We are ready to deal
5957 	 * with any packets on eager.
5958 	 */
5959 	if (eager->tcp_ipversion == IPV4_VERSION) {
5960 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5961 			goto error;
5962 		}
5963 	} else {
5964 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5965 			goto error;
5966 		}
5967 	}
5968 
5969 	/* mark conn as fully-bound */
5970 	econnp->conn_fully_bound = B_TRUE;
5971 
5972 	/* Send the SYN-ACK */
5973 	tcp_send_data(eager, eager->tcp_wq, mp1);
5974 	freemsg(mp);
5975 
5976 	return;
5977 error:
5978 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5979 	freemsg(mp1);
5980 error1:
5981 	/* Undo what we did above */
5982 	mutex_enter(&tcp->tcp_eager_lock);
5983 	tcp_eager_unlink(eager);
5984 	mutex_exit(&tcp->tcp_eager_lock);
5985 	/* Drop eager's reference on the listener */
5986 	CONN_DEC_REF(connp);
5987 
5988 	/*
5989 	 * Delete the cached ire in conn_ire_cache and also mark
5990 	 * the conn as CONDEMNED
5991 	 */
5992 	mutex_enter(&econnp->conn_lock);
5993 	econnp->conn_state_flags |= CONN_CONDEMNED;
5994 	ire = econnp->conn_ire_cache;
5995 	econnp->conn_ire_cache = NULL;
5996 	mutex_exit(&econnp->conn_lock);
5997 	if (ire != NULL)
5998 		IRE_REFRELE_NOTR(ire);
5999 
6000 	/*
6001 	 * tcp_accept_comm inserts the eager to the bind_hash
6002 	 * we need to remove it from the hash if ipcl_conn_insert
6003 	 * fails.
6004 	 */
6005 	tcp_bind_hash_remove(eager);
6006 	/* Drop the eager ref placed in tcp_open_detached */
6007 	CONN_DEC_REF(econnp);
6008 
6009 	/*
6010 	 * If a connection already exists, send the mp to that connections so
6011 	 * that it can be appropriately dealt with.
6012 	 */
6013 	ipst = tcps->tcps_netstack->netstack_ip;
6014 
6015 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6016 		if (!IPCL_IS_CONNECTED(econnp)) {
6017 			/*
6018 			 * Something bad happened. ipcl_conn_insert()
6019 			 * failed because a connection already existed
6020 			 * in connected hash but we can't find it
6021 			 * anymore (someone blew it away). Just
6022 			 * free this message and hopefully remote
6023 			 * will retransmit at which time the SYN can be
6024 			 * treated as a new connection or dealth with
6025 			 * a TH_RST if a connection already exists.
6026 			 */
6027 			CONN_DEC_REF(econnp);
6028 			freemsg(mp);
6029 		} else {
6030 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6031 			    econnp, SQTAG_TCP_CONN_REQ);
6032 		}
6033 	} else {
6034 		/* Nobody wants this packet */
6035 		freemsg(mp);
6036 	}
6037 	return;
6038 error2:
6039 	freemsg(mp);
6040 	return;
6041 error3:
6042 	CONN_DEC_REF(econnp);
6043 	freemsg(mp);
6044 }
6045 
6046 /*
6047  * In an ideal case of vertical partition in NUMA architecture, its
6048  * beneficial to have the listener and all the incoming connections
6049  * tied to the same squeue. The other constraint is that incoming
6050  * connections should be tied to the squeue attached to interrupted
6051  * CPU for obvious locality reason so this leaves the listener to
6052  * be tied to the same squeue. Our only problem is that when listener
6053  * is binding, the CPU that will get interrupted by the NIC whose
6054  * IP address the listener is binding to is not even known. So
6055  * the code below allows us to change that binding at the time the
6056  * CPU is interrupted by virtue of incoming connection's squeue.
6057  *
6058  * This is usefull only in case of a listener bound to a specific IP
6059  * address. For other kind of listeners, they get bound the
6060  * very first time and there is no attempt to rebind them.
6061  */
6062 void
6063 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6064 {
6065 	conn_t		*connp = (conn_t *)arg;
6066 	squeue_t	*sqp = (squeue_t *)arg2;
6067 	squeue_t	*new_sqp;
6068 	uint32_t	conn_flags;
6069 
6070 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6071 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6072 	} else {
6073 		goto done;
6074 	}
6075 
6076 	if (connp->conn_fanout == NULL)
6077 		goto done;
6078 
6079 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6080 		mutex_enter(&connp->conn_fanout->connf_lock);
6081 		mutex_enter(&connp->conn_lock);
6082 		/*
6083 		 * No one from read or write side can access us now
6084 		 * except for already queued packets on this squeue.
6085 		 * But since we haven't changed the squeue yet, they
6086 		 * can't execute. If they are processed after we have
6087 		 * changed the squeue, they are sent back to the
6088 		 * correct squeue down below.
6089 		 * But a listner close can race with processing of
6090 		 * incoming SYN. If incoming SYN processing changes
6091 		 * the squeue then the listener close which is waiting
6092 		 * to enter the squeue would operate on the wrong
6093 		 * squeue. Hence we don't change the squeue here unless
6094 		 * the refcount is exactly the minimum refcount. The
6095 		 * minimum refcount of 4 is counted as - 1 each for
6096 		 * TCP and IP, 1 for being in the classifier hash, and
6097 		 * 1 for the mblk being processed.
6098 		 */
6099 
6100 		if (connp->conn_ref != 4 ||
6101 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6102 			mutex_exit(&connp->conn_lock);
6103 			mutex_exit(&connp->conn_fanout->connf_lock);
6104 			goto done;
6105 		}
6106 		if (connp->conn_sqp != new_sqp) {
6107 			while (connp->conn_sqp != new_sqp)
6108 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6109 		}
6110 
6111 		do {
6112 			conn_flags = connp->conn_flags;
6113 			conn_flags |= IPCL_FULLY_BOUND;
6114 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6115 			    conn_flags);
6116 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6117 
6118 		mutex_exit(&connp->conn_fanout->connf_lock);
6119 		mutex_exit(&connp->conn_lock);
6120 	}
6121 
6122 done:
6123 	if (connp->conn_sqp != sqp) {
6124 		CONN_INC_REF(connp);
6125 		squeue_fill(connp->conn_sqp, mp,
6126 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6127 	} else {
6128 		tcp_conn_request(connp, mp, sqp);
6129 	}
6130 }
6131 
6132 /*
6133  * Successful connect request processing begins when our client passes
6134  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6135  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6136  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6137  *   upstream <- tcp_rput()                <- IP
6138  * After various error checks are completed, tcp_connect() lays
6139  * the target address and port into the composite header template,
6140  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6141  * request followed by an IRE request, and passes the three mblk message
6142  * down to IP looking like this:
6143  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6144  * Processing continues in tcp_rput() when we receive the following message:
6145  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6146  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6147  * to fire off the connection request, and then passes the T_OK_ACK mblk
6148  * upstream that we filled in below.  There are, of course, numerous
6149  * error conditions along the way which truncate the processing described
6150  * above.
6151  */
6152 static void
6153 tcp_connect(tcp_t *tcp, mblk_t *mp)
6154 {
6155 	sin_t		*sin;
6156 	sin6_t		*sin6;
6157 	queue_t		*q = tcp->tcp_wq;
6158 	struct T_conn_req	*tcr;
6159 	ipaddr_t	*dstaddrp;
6160 	in_port_t	dstport;
6161 	uint_t		srcid;
6162 
6163 	tcr = (struct T_conn_req *)mp->b_rptr;
6164 
6165 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6166 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6167 		tcp_err_ack(tcp, mp, TPROTO, 0);
6168 		return;
6169 	}
6170 
6171 	/*
6172 	 * Determine packet type based on type of address passed in
6173 	 * the request should contain an IPv4 or IPv6 address.
6174 	 * Make sure that address family matches the type of
6175 	 * family of the the address passed down
6176 	 */
6177 	switch (tcr->DEST_length) {
6178 	default:
6179 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6180 		return;
6181 
6182 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6183 		/*
6184 		 * XXX: The check for valid DEST_length was not there
6185 		 * in earlier releases and some buggy
6186 		 * TLI apps (e.g Sybase) got away with not feeding
6187 		 * in sin_zero part of address.
6188 		 * We allow that bug to keep those buggy apps humming.
6189 		 * Test suites require the check on DEST_length.
6190 		 * We construct a new mblk with valid DEST_length
6191 		 * free the original so the rest of the code does
6192 		 * not have to keep track of this special shorter
6193 		 * length address case.
6194 		 */
6195 		mblk_t *nmp;
6196 		struct T_conn_req *ntcr;
6197 		sin_t *nsin;
6198 
6199 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6200 		    tcr->OPT_length, BPRI_HI);
6201 		if (nmp == NULL) {
6202 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6203 			return;
6204 		}
6205 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6206 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6207 		ntcr->PRIM_type = T_CONN_REQ;
6208 		ntcr->DEST_length = sizeof (sin_t);
6209 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6210 
6211 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6212 		*nsin = sin_null;
6213 		/* Get pointer to shorter address to copy from original mp */
6214 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6215 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6216 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6217 			freemsg(nmp);
6218 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6219 			return;
6220 		}
6221 		nsin->sin_family = sin->sin_family;
6222 		nsin->sin_port = sin->sin_port;
6223 		nsin->sin_addr = sin->sin_addr;
6224 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6225 		nmp->b_wptr = (uchar_t *)&nsin[1];
6226 		if (tcr->OPT_length != 0) {
6227 			ntcr->OPT_length = tcr->OPT_length;
6228 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6229 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6230 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6231 			    tcr->OPT_length);
6232 			nmp->b_wptr += tcr->OPT_length;
6233 		}
6234 		freemsg(mp);	/* original mp freed */
6235 		mp = nmp;	/* re-initialize original variables */
6236 		tcr = ntcr;
6237 	}
6238 	/* FALLTHRU */
6239 
6240 	case sizeof (sin_t):
6241 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6242 		    sizeof (sin_t));
6243 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6244 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6245 			return;
6246 		}
6247 		if (tcp->tcp_family != AF_INET ||
6248 		    sin->sin_family != AF_INET) {
6249 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6250 			return;
6251 		}
6252 		if (sin->sin_port == 0) {
6253 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6254 			return;
6255 		}
6256 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6257 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6258 			return;
6259 		}
6260 
6261 		break;
6262 
6263 	case sizeof (sin6_t):
6264 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6265 		    sizeof (sin6_t));
6266 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6267 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6268 			return;
6269 		}
6270 		if (tcp->tcp_family != AF_INET6 ||
6271 		    sin6->sin6_family != AF_INET6) {
6272 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6273 			return;
6274 		}
6275 		if (sin6->sin6_port == 0) {
6276 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6277 			return;
6278 		}
6279 		break;
6280 	}
6281 	/*
6282 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6283 	 * should key on their sequence number and cut them loose.
6284 	 */
6285 
6286 	/*
6287 	 * If options passed in, feed it for verification and handling
6288 	 */
6289 	if (tcr->OPT_length != 0) {
6290 		mblk_t	*ok_mp;
6291 		mblk_t	*discon_mp;
6292 		mblk_t  *conn_opts_mp;
6293 		int t_error, sys_error, do_disconnect;
6294 
6295 		conn_opts_mp = NULL;
6296 
6297 		if (tcp_conprim_opt_process(tcp, mp,
6298 			&do_disconnect, &t_error, &sys_error) < 0) {
6299 			if (do_disconnect) {
6300 				ASSERT(t_error == 0 && sys_error == 0);
6301 				discon_mp = mi_tpi_discon_ind(NULL,
6302 				    ECONNREFUSED, 0);
6303 				if (!discon_mp) {
6304 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6305 					    TSYSERR, ENOMEM);
6306 					return;
6307 				}
6308 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6309 				if (!ok_mp) {
6310 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6311 					    TSYSERR, ENOMEM);
6312 					return;
6313 				}
6314 				qreply(q, ok_mp);
6315 				qreply(q, discon_mp); /* no flush! */
6316 			} else {
6317 				ASSERT(t_error != 0);
6318 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6319 				    sys_error);
6320 			}
6321 			return;
6322 		}
6323 		/*
6324 		 * Success in setting options, the mp option buffer represented
6325 		 * by OPT_length/offset has been potentially modified and
6326 		 * contains results of option processing. We copy it in
6327 		 * another mp to save it for potentially influencing returning
6328 		 * it in T_CONN_CONN.
6329 		 */
6330 		if (tcr->OPT_length != 0) { /* there are resulting options */
6331 			conn_opts_mp = copyb(mp);
6332 			if (!conn_opts_mp) {
6333 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6334 				    TSYSERR, ENOMEM);
6335 				return;
6336 			}
6337 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6338 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6339 			/*
6340 			 * Note:
6341 			 * These resulting option negotiation can include any
6342 			 * end-to-end negotiation options but there no such
6343 			 * thing (yet?) in our TCP/IP.
6344 			 */
6345 		}
6346 	}
6347 
6348 	/*
6349 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6350 	 * make sure that the template IP header in the tcp structure is an
6351 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6352 	 * need to this before we call tcp_bindi() so that the port lookup
6353 	 * code will look for ports in the correct port space (IPv4 and
6354 	 * IPv6 have separate port spaces).
6355 	 */
6356 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6357 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6358 		int err = 0;
6359 
6360 		err = tcp_header_init_ipv4(tcp);
6361 		if (err != 0) {
6362 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6363 			goto connect_failed;
6364 		}
6365 		if (tcp->tcp_lport != 0)
6366 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6367 	}
6368 
6369 	switch (tcp->tcp_state) {
6370 	case TCPS_IDLE:
6371 		/*
6372 		 * We support quick connect, refer to comments in
6373 		 * tcp_connect_*()
6374 		 */
6375 		/* FALLTHRU */
6376 	case TCPS_BOUND:
6377 	case TCPS_LISTEN:
6378 		if (tcp->tcp_family == AF_INET6) {
6379 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6380 				tcp_connect_ipv6(tcp, mp,
6381 				    &sin6->sin6_addr,
6382 				    sin6->sin6_port, sin6->sin6_flowinfo,
6383 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6384 				return;
6385 			}
6386 			/*
6387 			 * Destination adress is mapped IPv6 address.
6388 			 * Source bound address should be unspecified or
6389 			 * IPv6 mapped address as well.
6390 			 */
6391 			if (!IN6_IS_ADDR_UNSPECIFIED(
6392 			    &tcp->tcp_bound_source_v6) &&
6393 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6394 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6395 				    EADDRNOTAVAIL);
6396 				break;
6397 			}
6398 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6399 			dstport = sin6->sin6_port;
6400 			srcid = sin6->__sin6_src_id;
6401 		} else {
6402 			dstaddrp = &sin->sin_addr.s_addr;
6403 			dstport = sin->sin_port;
6404 			srcid = 0;
6405 		}
6406 
6407 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6408 		return;
6409 	default:
6410 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6411 		break;
6412 	}
6413 	/*
6414 	 * Note: Code below is the "failure" case
6415 	 */
6416 	/* return error ack and blow away saved option results if any */
6417 connect_failed:
6418 	if (mp != NULL)
6419 		putnext(tcp->tcp_rq, mp);
6420 	else {
6421 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6422 		    TSYSERR, ENOMEM);
6423 	}
6424 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6425 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6426 }
6427 
6428 /*
6429  * Handle connect to IPv4 destinations, including connections for AF_INET6
6430  * sockets connecting to IPv4 mapped IPv6 destinations.
6431  */
6432 static void
6433 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6434     uint_t srcid)
6435 {
6436 	tcph_t	*tcph;
6437 	mblk_t	*mp1;
6438 	ipaddr_t dstaddr = *dstaddrp;
6439 	int32_t	oldstate;
6440 	uint16_t lport;
6441 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6442 
6443 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6444 
6445 	/* Check for attempt to connect to INADDR_ANY */
6446 	if (dstaddr == INADDR_ANY)  {
6447 		/*
6448 		 * SunOS 4.x and 4.3 BSD allow an application
6449 		 * to connect a TCP socket to INADDR_ANY.
6450 		 * When they do this, the kernel picks the
6451 		 * address of one interface and uses it
6452 		 * instead.  The kernel usually ends up
6453 		 * picking the address of the loopback
6454 		 * interface.  This is an undocumented feature.
6455 		 * However, we provide the same thing here
6456 		 * in order to have source and binary
6457 		 * compatibility with SunOS 4.x.
6458 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6459 		 * generate the T_CONN_CON.
6460 		 */
6461 		dstaddr = htonl(INADDR_LOOPBACK);
6462 		*dstaddrp = dstaddr;
6463 	}
6464 
6465 	/* Handle __sin6_src_id if socket not bound to an IP address */
6466 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6467 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6468 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6469 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6470 		    tcp->tcp_ipha->ipha_src);
6471 	}
6472 
6473 	/*
6474 	 * Don't let an endpoint connect to itself.  Note that
6475 	 * the test here does not catch the case where the
6476 	 * source IP addr was left unspecified by the user. In
6477 	 * this case, the source addr is set in tcp_adapt_ire()
6478 	 * using the reply to the T_BIND message that we send
6479 	 * down to IP here and the check is repeated in tcp_rput_other.
6480 	 */
6481 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6482 	    dstport == tcp->tcp_lport) {
6483 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6484 		goto failed;
6485 	}
6486 
6487 	tcp->tcp_ipha->ipha_dst = dstaddr;
6488 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6489 
6490 	/*
6491 	 * Massage a source route if any putting the first hop
6492 	 * in iph_dst. Compute a starting value for the checksum which
6493 	 * takes into account that the original iph_dst should be
6494 	 * included in the checksum but that ip will include the
6495 	 * first hop in the source route in the tcp checksum.
6496 	 */
6497 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6498 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6499 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6500 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6501 	if ((int)tcp->tcp_sum < 0)
6502 		tcp->tcp_sum--;
6503 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6504 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6505 	    (tcp->tcp_sum >> 16));
6506 	tcph = tcp->tcp_tcph;
6507 	*(uint16_t *)tcph->th_fport = dstport;
6508 	tcp->tcp_fport = dstport;
6509 
6510 	oldstate = tcp->tcp_state;
6511 	/*
6512 	 * At this point the remote destination address and remote port fields
6513 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6514 	 * have to see which state tcp was in so we can take apropriate action.
6515 	 */
6516 	if (oldstate == TCPS_IDLE) {
6517 		/*
6518 		 * We support a quick connect capability here, allowing
6519 		 * clients to transition directly from IDLE to SYN_SENT
6520 		 * tcp_bindi will pick an unused port, insert the connection
6521 		 * in the bind hash and transition to BOUND state.
6522 		 */
6523 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6524 		    tcp, B_TRUE);
6525 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6526 		    B_FALSE, B_FALSE);
6527 		if (lport == 0) {
6528 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6529 			goto failed;
6530 		}
6531 	}
6532 	tcp->tcp_state = TCPS_SYN_SENT;
6533 
6534 	/*
6535 	 * TODO: allow data with connect requests
6536 	 * by unlinking M_DATA trailers here and
6537 	 * linking them in behind the T_OK_ACK mblk.
6538 	 * The tcp_rput() bind ack handler would then
6539 	 * feed them to tcp_wput_data() rather than call
6540 	 * tcp_timer().
6541 	 */
6542 	mp = mi_tpi_ok_ack_alloc(mp);
6543 	if (!mp) {
6544 		tcp->tcp_state = oldstate;
6545 		goto failed;
6546 	}
6547 	if (tcp->tcp_family == AF_INET) {
6548 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6549 		    sizeof (ipa_conn_t));
6550 	} else {
6551 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6552 		    sizeof (ipa6_conn_t));
6553 	}
6554 	if (mp1) {
6555 		/* Hang onto the T_OK_ACK for later. */
6556 		linkb(mp1, mp);
6557 		mblk_setcred(mp1, tcp->tcp_cred);
6558 		if (tcp->tcp_family == AF_INET)
6559 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6560 		else {
6561 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6562 			    &tcp->tcp_sticky_ipp);
6563 		}
6564 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6565 		tcp->tcp_active_open = 1;
6566 		/*
6567 		 * If the bind cannot complete immediately
6568 		 * IP will arrange to call tcp_rput_other
6569 		 * when the bind completes.
6570 		 */
6571 		if (mp1 != NULL)
6572 			tcp_rput_other(tcp, mp1);
6573 		return;
6574 	}
6575 	/* Error case */
6576 	tcp->tcp_state = oldstate;
6577 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6578 
6579 failed:
6580 	/* return error ack and blow away saved option results if any */
6581 	if (mp != NULL)
6582 		putnext(tcp->tcp_rq, mp);
6583 	else {
6584 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6585 		    TSYSERR, ENOMEM);
6586 	}
6587 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6588 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6589 
6590 }
6591 
6592 /*
6593  * Handle connect to IPv6 destinations.
6594  */
6595 static void
6596 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6597     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6598 {
6599 	tcph_t	*tcph;
6600 	mblk_t	*mp1;
6601 	ip6_rthdr_t *rth;
6602 	int32_t  oldstate;
6603 	uint16_t lport;
6604 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6605 
6606 	ASSERT(tcp->tcp_family == AF_INET6);
6607 
6608 	/*
6609 	 * If we're here, it means that the destination address is a native
6610 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6611 	 * reason why it might not be IPv6 is if the socket was bound to an
6612 	 * IPv4-mapped IPv6 address.
6613 	 */
6614 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6615 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6616 		goto failed;
6617 	}
6618 
6619 	/*
6620 	 * Interpret a zero destination to mean loopback.
6621 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6622 	 * generate the T_CONN_CON.
6623 	 */
6624 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6625 		*dstaddrp = ipv6_loopback;
6626 	}
6627 
6628 	/* Handle __sin6_src_id if socket not bound to an IP address */
6629 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6630 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6631 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6632 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6633 	}
6634 
6635 	/*
6636 	 * Take care of the scope_id now and add ip6i_t
6637 	 * if ip6i_t is not already allocated through TCP
6638 	 * sticky options. At this point tcp_ip6h does not
6639 	 * have dst info, thus use dstaddrp.
6640 	 */
6641 	if (scope_id != 0 &&
6642 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6643 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6644 		ip6i_t  *ip6i;
6645 
6646 		ipp->ipp_ifindex = scope_id;
6647 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6648 
6649 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6650 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6651 			/* Already allocated */
6652 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6653 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6654 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6655 		} else {
6656 			int reterr;
6657 
6658 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6659 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6660 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6661 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6662 			if (reterr != 0)
6663 				goto failed;
6664 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6665 		}
6666 	}
6667 
6668 	/*
6669 	 * Don't let an endpoint connect to itself.  Note that
6670 	 * the test here does not catch the case where the
6671 	 * source IP addr was left unspecified by the user. In
6672 	 * this case, the source addr is set in tcp_adapt_ire()
6673 	 * using the reply to the T_BIND message that we send
6674 	 * down to IP here and the check is repeated in tcp_rput_other.
6675 	 */
6676 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6677 	    (dstport == tcp->tcp_lport)) {
6678 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6679 		goto failed;
6680 	}
6681 
6682 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6683 	tcp->tcp_remote_v6 = *dstaddrp;
6684 	tcp->tcp_ip6h->ip6_vcf =
6685 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6686 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6687 
6688 
6689 	/*
6690 	 * Massage a routing header (if present) putting the first hop
6691 	 * in ip6_dst. Compute a starting value for the checksum which
6692 	 * takes into account that the original ip6_dst should be
6693 	 * included in the checksum but that ip will include the
6694 	 * first hop in the source route in the tcp checksum.
6695 	 */
6696 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6697 	if (rth != NULL) {
6698 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6699 		    tcps->tcps_netstack);
6700 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6701 		    (tcp->tcp_sum >> 16));
6702 	} else {
6703 		tcp->tcp_sum = 0;
6704 	}
6705 
6706 	tcph = tcp->tcp_tcph;
6707 	*(uint16_t *)tcph->th_fport = dstport;
6708 	tcp->tcp_fport = dstport;
6709 
6710 	oldstate = tcp->tcp_state;
6711 	/*
6712 	 * At this point the remote destination address and remote port fields
6713 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6714 	 * have to see which state tcp was in so we can take apropriate action.
6715 	 */
6716 	if (oldstate == TCPS_IDLE) {
6717 		/*
6718 		 * We support a quick connect capability here, allowing
6719 		 * clients to transition directly from IDLE to SYN_SENT
6720 		 * tcp_bindi will pick an unused port, insert the connection
6721 		 * in the bind hash and transition to BOUND state.
6722 		 */
6723 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6724 		    tcp, B_TRUE);
6725 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6726 		    B_FALSE, B_FALSE);
6727 		if (lport == 0) {
6728 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6729 			goto failed;
6730 		}
6731 	}
6732 	tcp->tcp_state = TCPS_SYN_SENT;
6733 	/*
6734 	 * TODO: allow data with connect requests
6735 	 * by unlinking M_DATA trailers here and
6736 	 * linking them in behind the T_OK_ACK mblk.
6737 	 * The tcp_rput() bind ack handler would then
6738 	 * feed them to tcp_wput_data() rather than call
6739 	 * tcp_timer().
6740 	 */
6741 	mp = mi_tpi_ok_ack_alloc(mp);
6742 	if (!mp) {
6743 		tcp->tcp_state = oldstate;
6744 		goto failed;
6745 	}
6746 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6747 	if (mp1) {
6748 		/* Hang onto the T_OK_ACK for later. */
6749 		linkb(mp1, mp);
6750 		mblk_setcred(mp1, tcp->tcp_cred);
6751 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6752 		    &tcp->tcp_sticky_ipp);
6753 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6754 		tcp->tcp_active_open = 1;
6755 		/* ip_bind_v6() may return ACK or ERROR */
6756 		if (mp1 != NULL)
6757 			tcp_rput_other(tcp, mp1);
6758 		return;
6759 	}
6760 	/* Error case */
6761 	tcp->tcp_state = oldstate;
6762 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6763 
6764 failed:
6765 	/* return error ack and blow away saved option results if any */
6766 	if (mp != NULL)
6767 		putnext(tcp->tcp_rq, mp);
6768 	else {
6769 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6770 		    TSYSERR, ENOMEM);
6771 	}
6772 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6773 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6774 }
6775 
6776 /*
6777  * We need a stream q for detached closing tcp connections
6778  * to use.  Our client hereby indicates that this q is the
6779  * one to use.
6780  */
6781 static void
6782 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6783 {
6784 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6785 	queue_t	*q = tcp->tcp_wq;
6786 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6787 
6788 #ifdef NS_DEBUG
6789 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6790 	    tcps->tcps_netstack->netstack_stackid);
6791 #endif
6792 	mp->b_datap->db_type = M_IOCACK;
6793 	iocp->ioc_count = 0;
6794 	mutex_enter(&tcps->tcps_g_q_lock);
6795 	if (tcps->tcps_g_q != NULL) {
6796 		mutex_exit(&tcps->tcps_g_q_lock);
6797 		iocp->ioc_error = EALREADY;
6798 	} else {
6799 		mblk_t *mp1;
6800 
6801 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6802 		if (mp1 == NULL) {
6803 			mutex_exit(&tcps->tcps_g_q_lock);
6804 			iocp->ioc_error = ENOMEM;
6805 		} else {
6806 			tcps->tcps_g_q = tcp->tcp_rq;
6807 			mutex_exit(&tcps->tcps_g_q_lock);
6808 			iocp->ioc_error = 0;
6809 			iocp->ioc_rval = 0;
6810 			/*
6811 			 * We are passing tcp_sticky_ipp as NULL
6812 			 * as it is not useful for tcp_default queue
6813 			 */
6814 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6815 			if (mp1 != NULL)
6816 				tcp_rput_other(tcp, mp1);
6817 		}
6818 	}
6819 	qreply(q, mp);
6820 }
6821 
6822 /*
6823  * Our client hereby directs us to reject the connection request
6824  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6825  * of sending the appropriate RST, not an ICMP error.
6826  */
6827 static void
6828 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6829 {
6830 	tcp_t	*ltcp = NULL;
6831 	t_scalar_t seqnum;
6832 	conn_t	*connp;
6833 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6834 
6835 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6836 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6837 		tcp_err_ack(tcp, mp, TPROTO, 0);
6838 		return;
6839 	}
6840 
6841 	/*
6842 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6843 	 * when the stream is in BOUND state. Do not send a reset,
6844 	 * since the destination IP address is not valid, and it can
6845 	 * be the initialized value of all zeros (broadcast address).
6846 	 *
6847 	 * If TCP has sent down a bind request to IP and has not
6848 	 * received the reply, reject the request.  Otherwise, TCP
6849 	 * will be confused.
6850 	 */
6851 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6852 		if (tcp->tcp_debug) {
6853 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6854 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6855 		}
6856 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6857 		return;
6858 	}
6859 
6860 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6861 
6862 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6863 
6864 		/*
6865 		 * According to TPI, for non-listeners, ignore seqnum
6866 		 * and disconnect.
6867 		 * Following interpretation of -1 seqnum is historical
6868 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6869 		 * a valid seqnum should not be -1).
6870 		 *
6871 		 *	-1 means disconnect everything
6872 		 *	regardless even on a listener.
6873 		 */
6874 
6875 		int old_state = tcp->tcp_state;
6876 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6877 
6878 		/*
6879 		 * The connection can't be on the tcp_time_wait_head list
6880 		 * since it is not detached.
6881 		 */
6882 		ASSERT(tcp->tcp_time_wait_next == NULL);
6883 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6884 		ASSERT(tcp->tcp_time_wait_expire == 0);
6885 		ltcp = NULL;
6886 		/*
6887 		 * If it used to be a listener, check to make sure no one else
6888 		 * has taken the port before switching back to LISTEN state.
6889 		 */
6890 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6891 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6892 			    tcp->tcp_ipha->ipha_src,
6893 			    tcp->tcp_connp->conn_zoneid, ipst);
6894 			if (connp != NULL)
6895 				ltcp = connp->conn_tcp;
6896 		} else {
6897 			/* Allow tcp_bound_if listeners? */
6898 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6899 			    &tcp->tcp_ip6h->ip6_src, 0,
6900 			    tcp->tcp_connp->conn_zoneid, ipst);
6901 			if (connp != NULL)
6902 				ltcp = connp->conn_tcp;
6903 		}
6904 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6905 			tcp->tcp_state = TCPS_LISTEN;
6906 		} else if (old_state > TCPS_BOUND) {
6907 			tcp->tcp_conn_req_max = 0;
6908 			tcp->tcp_state = TCPS_BOUND;
6909 		}
6910 		if (ltcp != NULL)
6911 			CONN_DEC_REF(ltcp->tcp_connp);
6912 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6913 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6914 		} else if (old_state == TCPS_ESTABLISHED ||
6915 		    old_state == TCPS_CLOSE_WAIT) {
6916 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6917 		}
6918 
6919 		if (tcp->tcp_fused)
6920 			tcp_unfuse(tcp);
6921 
6922 		mutex_enter(&tcp->tcp_eager_lock);
6923 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6924 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6925 			tcp_eager_cleanup(tcp, 0);
6926 		}
6927 		mutex_exit(&tcp->tcp_eager_lock);
6928 
6929 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6930 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6931 
6932 		tcp_reinit(tcp);
6933 
6934 		if (old_state >= TCPS_ESTABLISHED) {
6935 			/* Send M_FLUSH according to TPI */
6936 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6937 		}
6938 		mp = mi_tpi_ok_ack_alloc(mp);
6939 		if (mp)
6940 			putnext(tcp->tcp_rq, mp);
6941 		return;
6942 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6943 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6944 		return;
6945 	}
6946 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6947 		/* Send M_FLUSH according to TPI */
6948 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6949 	}
6950 	mp = mi_tpi_ok_ack_alloc(mp);
6951 	if (mp)
6952 		putnext(tcp->tcp_rq, mp);
6953 }
6954 
6955 /*
6956  * Diagnostic routine used to return a string associated with the tcp state.
6957  * Note that if the caller does not supply a buffer, it will use an internal
6958  * static string.  This means that if multiple threads call this function at
6959  * the same time, output can be corrupted...  Note also that this function
6960  * does not check the size of the supplied buffer.  The caller has to make
6961  * sure that it is big enough.
6962  */
6963 static char *
6964 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6965 {
6966 	char		buf1[30];
6967 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6968 	char		*buf;
6969 	char		*cp;
6970 	in6_addr_t	local, remote;
6971 	char		local_addrbuf[INET6_ADDRSTRLEN];
6972 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6973 
6974 	if (sup_buf != NULL)
6975 		buf = sup_buf;
6976 	else
6977 		buf = priv_buf;
6978 
6979 	if (tcp == NULL)
6980 		return ("NULL_TCP");
6981 	switch (tcp->tcp_state) {
6982 	case TCPS_CLOSED:
6983 		cp = "TCP_CLOSED";
6984 		break;
6985 	case TCPS_IDLE:
6986 		cp = "TCP_IDLE";
6987 		break;
6988 	case TCPS_BOUND:
6989 		cp = "TCP_BOUND";
6990 		break;
6991 	case TCPS_LISTEN:
6992 		cp = "TCP_LISTEN";
6993 		break;
6994 	case TCPS_SYN_SENT:
6995 		cp = "TCP_SYN_SENT";
6996 		break;
6997 	case TCPS_SYN_RCVD:
6998 		cp = "TCP_SYN_RCVD";
6999 		break;
7000 	case TCPS_ESTABLISHED:
7001 		cp = "TCP_ESTABLISHED";
7002 		break;
7003 	case TCPS_CLOSE_WAIT:
7004 		cp = "TCP_CLOSE_WAIT";
7005 		break;
7006 	case TCPS_FIN_WAIT_1:
7007 		cp = "TCP_FIN_WAIT_1";
7008 		break;
7009 	case TCPS_CLOSING:
7010 		cp = "TCP_CLOSING";
7011 		break;
7012 	case TCPS_LAST_ACK:
7013 		cp = "TCP_LAST_ACK";
7014 		break;
7015 	case TCPS_FIN_WAIT_2:
7016 		cp = "TCP_FIN_WAIT_2";
7017 		break;
7018 	case TCPS_TIME_WAIT:
7019 		cp = "TCP_TIME_WAIT";
7020 		break;
7021 	default:
7022 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7023 		cp = buf1;
7024 		break;
7025 	}
7026 	switch (format) {
7027 	case DISP_ADDR_AND_PORT:
7028 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7029 			/*
7030 			 * Note that we use the remote address in the tcp_b
7031 			 * structure.  This means that it will print out
7032 			 * the real destination address, not the next hop's
7033 			 * address if source routing is used.
7034 			 */
7035 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7036 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7037 
7038 		} else {
7039 			local = tcp->tcp_ip_src_v6;
7040 			remote = tcp->tcp_remote_v6;
7041 		}
7042 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7043 		    sizeof (local_addrbuf));
7044 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7045 		    sizeof (remote_addrbuf));
7046 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7047 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7048 		    ntohs(tcp->tcp_fport), cp);
7049 		break;
7050 	case DISP_PORT_ONLY:
7051 	default:
7052 		(void) mi_sprintf(buf, "[%u, %u] %s",
7053 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7054 		break;
7055 	}
7056 
7057 	return (buf);
7058 }
7059 
7060 /*
7061  * Called via squeue to get on to eager's perimeter to send a
7062  * TH_RST. The listener wants the eager to disappear either
7063  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7064  * being called.
7065  */
7066 /* ARGSUSED */
7067 void
7068 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7069 {
7070 	conn_t	*econnp = (conn_t *)arg;
7071 	tcp_t	*eager = econnp->conn_tcp;
7072 	tcp_t	*listener = eager->tcp_listener;
7073 	tcp_stack_t	*tcps = eager->tcp_tcps;
7074 
7075 	/*
7076 	 * We could be called because listener is closing. Since
7077 	 * the eager is using listener's queue's, its not safe.
7078 	 * Better use the default queue just to send the TH_RST
7079 	 * out.
7080 	 */
7081 	ASSERT(tcps->tcps_g_q != NULL);
7082 	eager->tcp_rq = tcps->tcps_g_q;
7083 	eager->tcp_wq = WR(tcps->tcps_g_q);
7084 
7085 	if (eager->tcp_state > TCPS_LISTEN) {
7086 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7087 		    eager, eager->tcp_snxt, 0, TH_RST);
7088 	}
7089 
7090 	/* We are here because listener wants this eager gone */
7091 	if (listener != NULL) {
7092 		mutex_enter(&listener->tcp_eager_lock);
7093 		tcp_eager_unlink(eager);
7094 		if (eager->tcp_tconnind_started) {
7095 			/*
7096 			 * The eager has sent a conn_ind up to the
7097 			 * listener but listener decides to close
7098 			 * instead. We need to drop the extra ref
7099 			 * placed on eager in tcp_rput_data() before
7100 			 * sending the conn_ind to listener.
7101 			 */
7102 			CONN_DEC_REF(econnp);
7103 		}
7104 		mutex_exit(&listener->tcp_eager_lock);
7105 		CONN_DEC_REF(listener->tcp_connp);
7106 	}
7107 
7108 	if (eager->tcp_state > TCPS_BOUND)
7109 		tcp_close_detached(eager);
7110 }
7111 
7112 /*
7113  * Reset any eager connection hanging off this listener marked
7114  * with 'seqnum' and then reclaim it's resources.
7115  */
7116 static boolean_t
7117 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7118 {
7119 	tcp_t	*eager;
7120 	mblk_t 	*mp;
7121 	tcp_stack_t	*tcps = listener->tcp_tcps;
7122 
7123 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7124 	eager = listener;
7125 	mutex_enter(&listener->tcp_eager_lock);
7126 	do {
7127 		eager = eager->tcp_eager_next_q;
7128 		if (eager == NULL) {
7129 			mutex_exit(&listener->tcp_eager_lock);
7130 			return (B_FALSE);
7131 		}
7132 	} while (eager->tcp_conn_req_seqnum != seqnum);
7133 
7134 	if (eager->tcp_closemp_used > 0) {
7135 		mutex_exit(&listener->tcp_eager_lock);
7136 		return (B_TRUE);
7137 	}
7138 	eager->tcp_closemp_used = 1;
7139 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7140 	CONN_INC_REF(eager->tcp_connp);
7141 	mutex_exit(&listener->tcp_eager_lock);
7142 	mp = &eager->tcp_closemp;
7143 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7144 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7145 	return (B_TRUE);
7146 }
7147 
7148 /*
7149  * Reset any eager connection hanging off this listener
7150  * and then reclaim it's resources.
7151  */
7152 static void
7153 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7154 {
7155 	tcp_t	*eager;
7156 	mblk_t	*mp;
7157 	tcp_stack_t	*tcps = listener->tcp_tcps;
7158 
7159 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7160 
7161 	if (!q0_only) {
7162 		/* First cleanup q */
7163 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7164 		eager = listener->tcp_eager_next_q;
7165 		while (eager != NULL) {
7166 			if (eager->tcp_closemp_used == 0) {
7167 				eager->tcp_closemp_used = 1;
7168 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7169 				CONN_INC_REF(eager->tcp_connp);
7170 				mp = &eager->tcp_closemp;
7171 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7172 				    tcp_eager_kill, eager->tcp_connp,
7173 				    SQTAG_TCP_EAGER_CLEANUP);
7174 			}
7175 			eager = eager->tcp_eager_next_q;
7176 		}
7177 	}
7178 	/* Then cleanup q0 */
7179 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7180 	eager = listener->tcp_eager_next_q0;
7181 	while (eager != listener) {
7182 		if (eager->tcp_closemp_used == 0) {
7183 			eager->tcp_closemp_used = 1;
7184 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7185 			CONN_INC_REF(eager->tcp_connp);
7186 			mp = &eager->tcp_closemp;
7187 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7188 			    tcp_eager_kill, eager->tcp_connp,
7189 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7190 		}
7191 		eager = eager->tcp_eager_next_q0;
7192 	}
7193 }
7194 
7195 /*
7196  * If we are an eager connection hanging off a listener that hasn't
7197  * formally accepted the connection yet, get off his list and blow off
7198  * any data that we have accumulated.
7199  */
7200 static void
7201 tcp_eager_unlink(tcp_t *tcp)
7202 {
7203 	tcp_t	*listener = tcp->tcp_listener;
7204 
7205 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7206 	ASSERT(listener != NULL);
7207 	if (tcp->tcp_eager_next_q0 != NULL) {
7208 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7209 
7210 		/* Remove the eager tcp from q0 */
7211 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7212 		    tcp->tcp_eager_prev_q0;
7213 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7214 		    tcp->tcp_eager_next_q0;
7215 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7216 		listener->tcp_conn_req_cnt_q0--;
7217 
7218 		tcp->tcp_eager_next_q0 = NULL;
7219 		tcp->tcp_eager_prev_q0 = NULL;
7220 
7221 		/*
7222 		 * Take the eager out, if it is in the list of droppable
7223 		 * eagers.
7224 		 */
7225 		MAKE_UNDROPPABLE(tcp);
7226 
7227 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7228 			/* we have timed out before */
7229 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7230 			listener->tcp_syn_rcvd_timeout--;
7231 		}
7232 	} else {
7233 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7234 		tcp_t	*prev = NULL;
7235 
7236 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7237 			if (tcpp[0] == tcp) {
7238 				if (listener->tcp_eager_last_q == tcp) {
7239 					/*
7240 					 * If we are unlinking the last
7241 					 * element on the list, adjust
7242 					 * tail pointer. Set tail pointer
7243 					 * to nil when list is empty.
7244 					 */
7245 					ASSERT(tcp->tcp_eager_next_q == NULL);
7246 					if (listener->tcp_eager_last_q ==
7247 					    listener->tcp_eager_next_q) {
7248 						listener->tcp_eager_last_q =
7249 						NULL;
7250 					} else {
7251 						/*
7252 						 * We won't get here if there
7253 						 * is only one eager in the
7254 						 * list.
7255 						 */
7256 						ASSERT(prev != NULL);
7257 						listener->tcp_eager_last_q =
7258 						    prev;
7259 					}
7260 				}
7261 				tcpp[0] = tcp->tcp_eager_next_q;
7262 				tcp->tcp_eager_next_q = NULL;
7263 				tcp->tcp_eager_last_q = NULL;
7264 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7265 				listener->tcp_conn_req_cnt_q--;
7266 				break;
7267 			}
7268 			prev = tcpp[0];
7269 		}
7270 	}
7271 	tcp->tcp_listener = NULL;
7272 }
7273 
7274 /* Shorthand to generate and send TPI error acks to our client */
7275 static void
7276 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7277 {
7278 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7279 		putnext(tcp->tcp_rq, mp);
7280 }
7281 
7282 /* Shorthand to generate and send TPI error acks to our client */
7283 static void
7284 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7285     int t_error, int sys_error)
7286 {
7287 	struct T_error_ack	*teackp;
7288 
7289 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7290 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7291 		teackp = (struct T_error_ack *)mp->b_rptr;
7292 		teackp->ERROR_prim = primitive;
7293 		teackp->TLI_error = t_error;
7294 		teackp->UNIX_error = sys_error;
7295 		putnext(tcp->tcp_rq, mp);
7296 	}
7297 }
7298 
7299 /*
7300  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7301  * but instead the code relies on:
7302  * - the fact that the address of the array and its size never changes
7303  * - the atomic assignment of the elements of the array
7304  */
7305 /* ARGSUSED */
7306 static int
7307 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7308 {
7309 	int i;
7310 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7311 
7312 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7313 		if (tcps->tcps_g_epriv_ports[i] != 0)
7314 			(void) mi_mpprintf(mp, "%d ",
7315 			    tcps->tcps_g_epriv_ports[i]);
7316 	}
7317 	return (0);
7318 }
7319 
7320 /*
7321  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7322  * threads from changing it at the same time.
7323  */
7324 /* ARGSUSED */
7325 static int
7326 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7327     cred_t *cr)
7328 {
7329 	long	new_value;
7330 	int	i;
7331 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7332 
7333 	/*
7334 	 * Fail the request if the new value does not lie within the
7335 	 * port number limits.
7336 	 */
7337 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7338 	    new_value <= 0 || new_value >= 65536) {
7339 		return (EINVAL);
7340 	}
7341 
7342 	mutex_enter(&tcps->tcps_epriv_port_lock);
7343 	/* Check if the value is already in the list */
7344 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7345 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7346 			mutex_exit(&tcps->tcps_epriv_port_lock);
7347 			return (EEXIST);
7348 		}
7349 	}
7350 	/* Find an empty slot */
7351 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7352 		if (tcps->tcps_g_epriv_ports[i] == 0)
7353 			break;
7354 	}
7355 	if (i == tcps->tcps_g_num_epriv_ports) {
7356 		mutex_exit(&tcps->tcps_epriv_port_lock);
7357 		return (EOVERFLOW);
7358 	}
7359 	/* Set the new value */
7360 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7361 	mutex_exit(&tcps->tcps_epriv_port_lock);
7362 	return (0);
7363 }
7364 
7365 /*
7366  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7367  * threads from changing it at the same time.
7368  */
7369 /* ARGSUSED */
7370 static int
7371 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7372     cred_t *cr)
7373 {
7374 	long	new_value;
7375 	int	i;
7376 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7377 
7378 	/*
7379 	 * Fail the request if the new value does not lie within the
7380 	 * port number limits.
7381 	 */
7382 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7383 	    new_value >= 65536) {
7384 		return (EINVAL);
7385 	}
7386 
7387 	mutex_enter(&tcps->tcps_epriv_port_lock);
7388 	/* Check that the value is already in the list */
7389 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7390 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7391 			break;
7392 	}
7393 	if (i == tcps->tcps_g_num_epriv_ports) {
7394 		mutex_exit(&tcps->tcps_epriv_port_lock);
7395 		return (ESRCH);
7396 	}
7397 	/* Clear the value */
7398 	tcps->tcps_g_epriv_ports[i] = 0;
7399 	mutex_exit(&tcps->tcps_epriv_port_lock);
7400 	return (0);
7401 }
7402 
7403 /* Return the TPI/TLI equivalent of our current tcp_state */
7404 static int
7405 tcp_tpistate(tcp_t *tcp)
7406 {
7407 	switch (tcp->tcp_state) {
7408 	case TCPS_IDLE:
7409 		return (TS_UNBND);
7410 	case TCPS_LISTEN:
7411 		/*
7412 		 * Return whether there are outstanding T_CONN_IND waiting
7413 		 * for the matching T_CONN_RES. Therefore don't count q0.
7414 		 */
7415 		if (tcp->tcp_conn_req_cnt_q > 0)
7416 			return (TS_WRES_CIND);
7417 		else
7418 			return (TS_IDLE);
7419 	case TCPS_BOUND:
7420 		return (TS_IDLE);
7421 	case TCPS_SYN_SENT:
7422 		return (TS_WCON_CREQ);
7423 	case TCPS_SYN_RCVD:
7424 		/*
7425 		 * Note: assumption: this has to the active open SYN_RCVD.
7426 		 * The passive instance is detached in SYN_RCVD stage of
7427 		 * incoming connection processing so we cannot get request
7428 		 * for T_info_ack on it.
7429 		 */
7430 		return (TS_WACK_CRES);
7431 	case TCPS_ESTABLISHED:
7432 		return (TS_DATA_XFER);
7433 	case TCPS_CLOSE_WAIT:
7434 		return (TS_WREQ_ORDREL);
7435 	case TCPS_FIN_WAIT_1:
7436 		return (TS_WIND_ORDREL);
7437 	case TCPS_FIN_WAIT_2:
7438 		return (TS_WIND_ORDREL);
7439 
7440 	case TCPS_CLOSING:
7441 	case TCPS_LAST_ACK:
7442 	case TCPS_TIME_WAIT:
7443 	case TCPS_CLOSED:
7444 		/*
7445 		 * Following TS_WACK_DREQ7 is a rendition of "not
7446 		 * yet TS_IDLE" TPI state. There is no best match to any
7447 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7448 		 * choose a value chosen that will map to TLI/XTI level
7449 		 * state of TSTATECHNG (state is process of changing) which
7450 		 * captures what this dummy state represents.
7451 		 */
7452 		return (TS_WACK_DREQ7);
7453 	default:
7454 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7455 		    tcp->tcp_state, tcp_display(tcp, NULL,
7456 		    DISP_PORT_ONLY));
7457 		return (TS_UNBND);
7458 	}
7459 }
7460 
7461 static void
7462 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7463 {
7464 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7465 
7466 	if (tcp->tcp_family == AF_INET6)
7467 		*tia = tcp_g_t_info_ack_v6;
7468 	else
7469 		*tia = tcp_g_t_info_ack;
7470 	tia->CURRENT_state = tcp_tpistate(tcp);
7471 	tia->OPT_size = tcp_max_optsize;
7472 	if (tcp->tcp_mss == 0) {
7473 		/* Not yet set - tcp_open does not set mss */
7474 		if (tcp->tcp_ipversion == IPV4_VERSION)
7475 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7476 		else
7477 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7478 	} else {
7479 		tia->TIDU_size = tcp->tcp_mss;
7480 	}
7481 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7482 }
7483 
7484 /*
7485  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7486  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7487  * tcp_g_t_info_ack.  The current state of the stream is copied from
7488  * tcp_state.
7489  */
7490 static void
7491 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7492 {
7493 	t_uscalar_t		cap_bits1;
7494 	struct T_capability_ack	*tcap;
7495 
7496 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7497 		freemsg(mp);
7498 		return;
7499 	}
7500 
7501 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7502 
7503 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7504 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7505 	if (mp == NULL)
7506 		return;
7507 
7508 	tcap = (struct T_capability_ack *)mp->b_rptr;
7509 	tcap->CAP_bits1 = 0;
7510 
7511 	if (cap_bits1 & TC1_INFO) {
7512 		tcp_copy_info(&tcap->INFO_ack, tcp);
7513 		tcap->CAP_bits1 |= TC1_INFO;
7514 	}
7515 
7516 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7517 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7518 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7519 	}
7520 
7521 	putnext(tcp->tcp_rq, mp);
7522 }
7523 
7524 /*
7525  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7526  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7527  * The current state of the stream is copied from tcp_state.
7528  */
7529 static void
7530 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7531 {
7532 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7533 	    T_INFO_ACK);
7534 	if (!mp) {
7535 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7536 		return;
7537 	}
7538 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7539 	putnext(tcp->tcp_rq, mp);
7540 }
7541 
7542 /* Respond to the TPI addr request */
7543 static void
7544 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7545 {
7546 	sin_t	*sin;
7547 	mblk_t	*ackmp;
7548 	struct T_addr_ack *taa;
7549 
7550 	/* Make it large enough for worst case */
7551 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7552 	    2 * sizeof (sin6_t), 1);
7553 	if (ackmp == NULL) {
7554 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7555 		return;
7556 	}
7557 
7558 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7559 		tcp_addr_req_ipv6(tcp, ackmp);
7560 		return;
7561 	}
7562 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7563 
7564 	bzero(taa, sizeof (struct T_addr_ack));
7565 	ackmp->b_wptr = (uchar_t *)&taa[1];
7566 
7567 	taa->PRIM_type = T_ADDR_ACK;
7568 	ackmp->b_datap->db_type = M_PCPROTO;
7569 
7570 	/*
7571 	 * Note: Following code assumes 32 bit alignment of basic
7572 	 * data structures like sin_t and struct T_addr_ack.
7573 	 */
7574 	if (tcp->tcp_state >= TCPS_BOUND) {
7575 		/*
7576 		 * Fill in local address
7577 		 */
7578 		taa->LOCADDR_length = sizeof (sin_t);
7579 		taa->LOCADDR_offset = sizeof (*taa);
7580 
7581 		sin = (sin_t *)&taa[1];
7582 
7583 		/* Fill zeroes and then intialize non-zero fields */
7584 		*sin = sin_null;
7585 
7586 		sin->sin_family = AF_INET;
7587 
7588 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7589 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7590 
7591 		ackmp->b_wptr = (uchar_t *)&sin[1];
7592 
7593 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7594 			/*
7595 			 * Fill in Remote address
7596 			 */
7597 			taa->REMADDR_length = sizeof (sin_t);
7598 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7599 						taa->LOCADDR_length);
7600 
7601 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7602 			*sin = sin_null;
7603 			sin->sin_family = AF_INET;
7604 			sin->sin_addr.s_addr = tcp->tcp_remote;
7605 			sin->sin_port = tcp->tcp_fport;
7606 
7607 			ackmp->b_wptr = (uchar_t *)&sin[1];
7608 		}
7609 	}
7610 	putnext(tcp->tcp_rq, ackmp);
7611 }
7612 
7613 /* Assumes that tcp_addr_req gets enough space and alignment */
7614 static void
7615 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7616 {
7617 	sin6_t	*sin6;
7618 	struct T_addr_ack *taa;
7619 
7620 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7621 	ASSERT(OK_32PTR(ackmp->b_rptr));
7622 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7623 	    2 * sizeof (sin6_t));
7624 
7625 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7626 
7627 	bzero(taa, sizeof (struct T_addr_ack));
7628 	ackmp->b_wptr = (uchar_t *)&taa[1];
7629 
7630 	taa->PRIM_type = T_ADDR_ACK;
7631 	ackmp->b_datap->db_type = M_PCPROTO;
7632 
7633 	/*
7634 	 * Note: Following code assumes 32 bit alignment of basic
7635 	 * data structures like sin6_t and struct T_addr_ack.
7636 	 */
7637 	if (tcp->tcp_state >= TCPS_BOUND) {
7638 		/*
7639 		 * Fill in local address
7640 		 */
7641 		taa->LOCADDR_length = sizeof (sin6_t);
7642 		taa->LOCADDR_offset = sizeof (*taa);
7643 
7644 		sin6 = (sin6_t *)&taa[1];
7645 		*sin6 = sin6_null;
7646 
7647 		sin6->sin6_family = AF_INET6;
7648 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7649 		sin6->sin6_port = tcp->tcp_lport;
7650 
7651 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7652 
7653 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7654 			/*
7655 			 * Fill in Remote address
7656 			 */
7657 			taa->REMADDR_length = sizeof (sin6_t);
7658 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7659 						taa->LOCADDR_length);
7660 
7661 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7662 			*sin6 = sin6_null;
7663 			sin6->sin6_family = AF_INET6;
7664 			sin6->sin6_flowinfo =
7665 			    tcp->tcp_ip6h->ip6_vcf &
7666 			    ~IPV6_VERS_AND_FLOW_MASK;
7667 			sin6->sin6_addr = tcp->tcp_remote_v6;
7668 			sin6->sin6_port = tcp->tcp_fport;
7669 
7670 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7671 		}
7672 	}
7673 	putnext(tcp->tcp_rq, ackmp);
7674 }
7675 
7676 /*
7677  * Handle reinitialization of a tcp structure.
7678  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7679  */
7680 static void
7681 tcp_reinit(tcp_t *tcp)
7682 {
7683 	mblk_t	*mp;
7684 	int 	err;
7685 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7686 
7687 	TCP_STAT(tcps, tcp_reinit_calls);
7688 
7689 	/* tcp_reinit should never be called for detached tcp_t's */
7690 	ASSERT(tcp->tcp_listener == NULL);
7691 	ASSERT((tcp->tcp_family == AF_INET &&
7692 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7693 	    (tcp->tcp_family == AF_INET6 &&
7694 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7695 	    tcp->tcp_ipversion == IPV6_VERSION)));
7696 
7697 	/* Cancel outstanding timers */
7698 	tcp_timers_stop(tcp);
7699 
7700 	/*
7701 	 * Reset everything in the state vector, after updating global
7702 	 * MIB data from instance counters.
7703 	 */
7704 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7705 	tcp->tcp_ibsegs = 0;
7706 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7707 	tcp->tcp_obsegs = 0;
7708 
7709 	tcp_close_mpp(&tcp->tcp_xmit_head);
7710 	if (tcp->tcp_snd_zcopy_aware)
7711 		tcp_zcopy_notify(tcp);
7712 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7713 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7714 	mutex_enter(&tcp->tcp_non_sq_lock);
7715 	if (tcp->tcp_flow_stopped &&
7716 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7717 		tcp_clrqfull(tcp);
7718 	}
7719 	mutex_exit(&tcp->tcp_non_sq_lock);
7720 	tcp_close_mpp(&tcp->tcp_reass_head);
7721 	tcp->tcp_reass_tail = NULL;
7722 	if (tcp->tcp_rcv_list != NULL) {
7723 		/* Free b_next chain */
7724 		tcp_close_mpp(&tcp->tcp_rcv_list);
7725 		tcp->tcp_rcv_last_head = NULL;
7726 		tcp->tcp_rcv_last_tail = NULL;
7727 		tcp->tcp_rcv_cnt = 0;
7728 	}
7729 	tcp->tcp_rcv_last_tail = NULL;
7730 
7731 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7732 		freemsg(mp);
7733 		tcp->tcp_urp_mp = NULL;
7734 	}
7735 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7736 		freemsg(mp);
7737 		tcp->tcp_urp_mark_mp = NULL;
7738 	}
7739 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7740 		freeb(tcp->tcp_fused_sigurg_mp);
7741 		tcp->tcp_fused_sigurg_mp = NULL;
7742 	}
7743 
7744 	/*
7745 	 * Following is a union with two members which are
7746 	 * identical types and size so the following cleanup
7747 	 * is enough.
7748 	 */
7749 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7750 
7751 	CL_INET_DISCONNECT(tcp);
7752 
7753 	/*
7754 	 * The connection can't be on the tcp_time_wait_head list
7755 	 * since it is not detached.
7756 	 */
7757 	ASSERT(tcp->tcp_time_wait_next == NULL);
7758 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7759 	ASSERT(tcp->tcp_time_wait_expire == 0);
7760 
7761 	if (tcp->tcp_kssl_pending) {
7762 		tcp->tcp_kssl_pending = B_FALSE;
7763 
7764 		/* Don't reset if the initialized by bind. */
7765 		if (tcp->tcp_kssl_ent != NULL) {
7766 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7767 			    KSSL_NO_PROXY);
7768 		}
7769 	}
7770 	if (tcp->tcp_kssl_ctx != NULL) {
7771 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7772 		tcp->tcp_kssl_ctx = NULL;
7773 	}
7774 
7775 	/*
7776 	 * Reset/preserve other values
7777 	 */
7778 	tcp_reinit_values(tcp);
7779 	ipcl_hash_remove(tcp->tcp_connp);
7780 	conn_delete_ire(tcp->tcp_connp, NULL);
7781 	tcp_ipsec_cleanup(tcp);
7782 
7783 	if (tcp->tcp_conn_req_max != 0) {
7784 		/*
7785 		 * This is the case when a TLI program uses the same
7786 		 * transport end point to accept a connection.  This
7787 		 * makes the TCP both a listener and acceptor.  When
7788 		 * this connection is closed, we need to set the state
7789 		 * back to TCPS_LISTEN.  Make sure that the eager list
7790 		 * is reinitialized.
7791 		 *
7792 		 * Note that this stream is still bound to the four
7793 		 * tuples of the previous connection in IP.  If a new
7794 		 * SYN with different foreign address comes in, IP will
7795 		 * not find it and will send it to the global queue.  In
7796 		 * the global queue, TCP will do a tcp_lookup_listener()
7797 		 * to find this stream.  This works because this stream
7798 		 * is only removed from connected hash.
7799 		 *
7800 		 */
7801 		tcp->tcp_state = TCPS_LISTEN;
7802 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7803 		tcp->tcp_eager_next_drop_q0 = tcp;
7804 		tcp->tcp_eager_prev_drop_q0 = tcp;
7805 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7806 		if (tcp->tcp_family == AF_INET6) {
7807 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7808 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7809 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7810 		} else {
7811 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7812 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7813 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7814 		}
7815 	} else {
7816 		tcp->tcp_state = TCPS_BOUND;
7817 	}
7818 
7819 	/*
7820 	 * Initialize to default values
7821 	 * Can't fail since enough header template space already allocated
7822 	 * at open().
7823 	 */
7824 	err = tcp_init_values(tcp);
7825 	ASSERT(err == 0);
7826 	/* Restore state in tcp_tcph */
7827 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7828 	if (tcp->tcp_ipversion == IPV4_VERSION)
7829 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7830 	else
7831 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7832 	/*
7833 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7834 	 * since the lookup funcs can only lookup on tcp_t
7835 	 */
7836 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7837 
7838 	ASSERT(tcp->tcp_ptpbhn != NULL);
7839 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7840 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7841 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7842 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7843 }
7844 
7845 /*
7846  * Force values to zero that need be zero.
7847  * Do not touch values asociated with the BOUND or LISTEN state
7848  * since the connection will end up in that state after the reinit.
7849  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7850  * structure!
7851  */
7852 static void
7853 tcp_reinit_values(tcp)
7854 	tcp_t *tcp;
7855 {
7856 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7857 
7858 #ifndef	lint
7859 #define	DONTCARE(x)
7860 #define	PRESERVE(x)
7861 #else
7862 #define	DONTCARE(x)	((x) = (x))
7863 #define	PRESERVE(x)	((x) = (x))
7864 #endif	/* lint */
7865 
7866 	PRESERVE(tcp->tcp_bind_hash);
7867 	PRESERVE(tcp->tcp_ptpbhn);
7868 	PRESERVE(tcp->tcp_acceptor_hash);
7869 	PRESERVE(tcp->tcp_ptpahn);
7870 
7871 	/* Should be ASSERT NULL on these with new code! */
7872 	ASSERT(tcp->tcp_time_wait_next == NULL);
7873 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7874 	ASSERT(tcp->tcp_time_wait_expire == 0);
7875 	PRESERVE(tcp->tcp_state);
7876 	PRESERVE(tcp->tcp_rq);
7877 	PRESERVE(tcp->tcp_wq);
7878 
7879 	ASSERT(tcp->tcp_xmit_head == NULL);
7880 	ASSERT(tcp->tcp_xmit_last == NULL);
7881 	ASSERT(tcp->tcp_unsent == 0);
7882 	ASSERT(tcp->tcp_xmit_tail == NULL);
7883 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7884 
7885 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7886 	tcp->tcp_suna = 0;			/* Displayed in mib */
7887 	tcp->tcp_swnd = 0;
7888 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7889 
7890 	ASSERT(tcp->tcp_ibsegs == 0);
7891 	ASSERT(tcp->tcp_obsegs == 0);
7892 
7893 	if (tcp->tcp_iphc != NULL) {
7894 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7895 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7896 	}
7897 
7898 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7899 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7900 	DONTCARE(tcp->tcp_ipha);
7901 	DONTCARE(tcp->tcp_ip6h);
7902 	DONTCARE(tcp->tcp_ip_hdr_len);
7903 	DONTCARE(tcp->tcp_tcph);
7904 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7905 	tcp->tcp_valid_bits = 0;
7906 
7907 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7908 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7909 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7910 	tcp->tcp_last_rcv_lbolt = 0;
7911 
7912 	tcp->tcp_init_cwnd = 0;
7913 
7914 	tcp->tcp_urp_last_valid = 0;
7915 	tcp->tcp_hard_binding = 0;
7916 	tcp->tcp_hard_bound = 0;
7917 	PRESERVE(tcp->tcp_cred);
7918 	PRESERVE(tcp->tcp_cpid);
7919 	PRESERVE(tcp->tcp_open_time);
7920 	PRESERVE(tcp->tcp_exclbind);
7921 
7922 	tcp->tcp_fin_acked = 0;
7923 	tcp->tcp_fin_rcvd = 0;
7924 	tcp->tcp_fin_sent = 0;
7925 	tcp->tcp_ordrel_done = 0;
7926 
7927 	tcp->tcp_debug = 0;
7928 	tcp->tcp_dontroute = 0;
7929 	tcp->tcp_broadcast = 0;
7930 
7931 	tcp->tcp_useloopback = 0;
7932 	tcp->tcp_reuseaddr = 0;
7933 	tcp->tcp_oobinline = 0;
7934 	tcp->tcp_dgram_errind = 0;
7935 
7936 	tcp->tcp_detached = 0;
7937 	tcp->tcp_bind_pending = 0;
7938 	tcp->tcp_unbind_pending = 0;
7939 	tcp->tcp_deferred_clean_death = 0;
7940 
7941 	tcp->tcp_snd_ws_ok = B_FALSE;
7942 	tcp->tcp_snd_ts_ok = B_FALSE;
7943 	tcp->tcp_linger = 0;
7944 	tcp->tcp_ka_enabled = 0;
7945 	tcp->tcp_zero_win_probe = 0;
7946 
7947 	tcp->tcp_loopback = 0;
7948 	tcp->tcp_localnet = 0;
7949 	tcp->tcp_syn_defense = 0;
7950 	tcp->tcp_set_timer = 0;
7951 
7952 	tcp->tcp_active_open = 0;
7953 	ASSERT(tcp->tcp_timeout == B_FALSE);
7954 	tcp->tcp_rexmit = B_FALSE;
7955 	tcp->tcp_xmit_zc_clean = B_FALSE;
7956 
7957 	tcp->tcp_snd_sack_ok = B_FALSE;
7958 	PRESERVE(tcp->tcp_recvdstaddr);
7959 	tcp->tcp_hwcksum = B_FALSE;
7960 
7961 	tcp->tcp_ire_ill_check_done = B_FALSE;
7962 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7963 
7964 	tcp->tcp_mdt = B_FALSE;
7965 	tcp->tcp_mdt_hdr_head = 0;
7966 	tcp->tcp_mdt_hdr_tail = 0;
7967 
7968 	tcp->tcp_conn_def_q0 = 0;
7969 	tcp->tcp_ip_forward_progress = B_FALSE;
7970 	tcp->tcp_anon_priv_bind = 0;
7971 	tcp->tcp_ecn_ok = B_FALSE;
7972 
7973 	tcp->tcp_cwr = B_FALSE;
7974 	tcp->tcp_ecn_echo_on = B_FALSE;
7975 
7976 	if (tcp->tcp_sack_info != NULL) {
7977 		if (tcp->tcp_notsack_list != NULL) {
7978 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7979 		}
7980 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7981 		tcp->tcp_sack_info = NULL;
7982 	}
7983 
7984 	tcp->tcp_rcv_ws = 0;
7985 	tcp->tcp_snd_ws = 0;
7986 	tcp->tcp_ts_recent = 0;
7987 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7988 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7989 	tcp->tcp_if_mtu = 0;
7990 
7991 	ASSERT(tcp->tcp_reass_head == NULL);
7992 	ASSERT(tcp->tcp_reass_tail == NULL);
7993 
7994 	tcp->tcp_cwnd_cnt = 0;
7995 
7996 	ASSERT(tcp->tcp_rcv_list == NULL);
7997 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7998 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7999 	ASSERT(tcp->tcp_rcv_cnt == 0);
8000 
8001 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8002 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8003 	tcp->tcp_csuna = 0;
8004 
8005 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8006 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8007 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8008 	tcp->tcp_rtt_update = 0;
8009 
8010 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8011 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8012 
8013 	tcp->tcp_rack = 0;			/* Displayed in mib */
8014 	tcp->tcp_rack_cnt = 0;
8015 	tcp->tcp_rack_cur_max = 0;
8016 	tcp->tcp_rack_abs_max = 0;
8017 
8018 	tcp->tcp_max_swnd = 0;
8019 
8020 	ASSERT(tcp->tcp_listener == NULL);
8021 
8022 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8023 
8024 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8025 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8026 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8027 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8028 
8029 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8030 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8031 	PRESERVE(tcp->tcp_conn_req_max);
8032 	PRESERVE(tcp->tcp_conn_req_seqnum);
8033 
8034 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8035 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8036 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8037 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8038 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8039 
8040 	tcp->tcp_lingertime = 0;
8041 
8042 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8043 	ASSERT(tcp->tcp_urp_mp == NULL);
8044 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8045 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8046 
8047 	ASSERT(tcp->tcp_eager_next_q == NULL);
8048 	ASSERT(tcp->tcp_eager_last_q == NULL);
8049 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8050 	    tcp->tcp_eager_prev_q0 == NULL) ||
8051 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8052 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8053 
8054 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8055 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8056 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8057 
8058 	tcp->tcp_client_errno = 0;
8059 
8060 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8061 
8062 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8063 
8064 	PRESERVE(tcp->tcp_bound_source_v6);
8065 	tcp->tcp_last_sent_len = 0;
8066 	tcp->tcp_dupack_cnt = 0;
8067 
8068 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8069 	PRESERVE(tcp->tcp_lport);
8070 
8071 	PRESERVE(tcp->tcp_acceptor_lockp);
8072 
8073 	ASSERT(tcp->tcp_ordrelid == 0);
8074 	PRESERVE(tcp->tcp_acceptor_id);
8075 	DONTCARE(tcp->tcp_ipsec_overhead);
8076 
8077 	/*
8078 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8079 	 * in tcp structure and now tracing), Re-initialize all
8080 	 * members of tcp_traceinfo.
8081 	 */
8082 	if (tcp->tcp_tracebuf != NULL) {
8083 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8084 	}
8085 
8086 	PRESERVE(tcp->tcp_family);
8087 	if (tcp->tcp_family == AF_INET6) {
8088 		tcp->tcp_ipversion = IPV6_VERSION;
8089 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8090 	} else {
8091 		tcp->tcp_ipversion = IPV4_VERSION;
8092 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8093 	}
8094 
8095 	tcp->tcp_bound_if = 0;
8096 	tcp->tcp_ipv6_recvancillary = 0;
8097 	tcp->tcp_recvifindex = 0;
8098 	tcp->tcp_recvhops = 0;
8099 	tcp->tcp_closed = 0;
8100 	tcp->tcp_cleandeathtag = 0;
8101 	if (tcp->tcp_hopopts != NULL) {
8102 		mi_free(tcp->tcp_hopopts);
8103 		tcp->tcp_hopopts = NULL;
8104 		tcp->tcp_hopoptslen = 0;
8105 	}
8106 	ASSERT(tcp->tcp_hopoptslen == 0);
8107 	if (tcp->tcp_dstopts != NULL) {
8108 		mi_free(tcp->tcp_dstopts);
8109 		tcp->tcp_dstopts = NULL;
8110 		tcp->tcp_dstoptslen = 0;
8111 	}
8112 	ASSERT(tcp->tcp_dstoptslen == 0);
8113 	if (tcp->tcp_rtdstopts != NULL) {
8114 		mi_free(tcp->tcp_rtdstopts);
8115 		tcp->tcp_rtdstopts = NULL;
8116 		tcp->tcp_rtdstoptslen = 0;
8117 	}
8118 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8119 	if (tcp->tcp_rthdr != NULL) {
8120 		mi_free(tcp->tcp_rthdr);
8121 		tcp->tcp_rthdr = NULL;
8122 		tcp->tcp_rthdrlen = 0;
8123 	}
8124 	ASSERT(tcp->tcp_rthdrlen == 0);
8125 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8126 
8127 	/* Reset fusion-related fields */
8128 	tcp->tcp_fused = B_FALSE;
8129 	tcp->tcp_unfusable = B_FALSE;
8130 	tcp->tcp_fused_sigurg = B_FALSE;
8131 	tcp->tcp_direct_sockfs = B_FALSE;
8132 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8133 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8134 	tcp->tcp_loopback_peer = NULL;
8135 	tcp->tcp_fuse_rcv_hiwater = 0;
8136 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8137 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8138 
8139 	tcp->tcp_lso = B_FALSE;
8140 
8141 	tcp->tcp_in_ack_unsent = 0;
8142 	tcp->tcp_cork = B_FALSE;
8143 	tcp->tcp_tconnind_started = B_FALSE;
8144 
8145 	PRESERVE(tcp->tcp_squeue_bytes);
8146 
8147 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8148 	ASSERT(!tcp->tcp_kssl_pending);
8149 	PRESERVE(tcp->tcp_kssl_ent);
8150 
8151 	tcp->tcp_closemp_used = 0;
8152 
8153 #ifdef DEBUG
8154 	DONTCARE(tcp->tcmp_stk[0]);
8155 #endif
8156 
8157 
8158 #undef	DONTCARE
8159 #undef	PRESERVE
8160 }
8161 
8162 /*
8163  * Allocate necessary resources and initialize state vector.
8164  * Guaranteed not to fail so that when an error is returned,
8165  * the caller doesn't need to do any additional cleanup.
8166  */
8167 int
8168 tcp_init(tcp_t *tcp, queue_t *q)
8169 {
8170 	int	err;
8171 
8172 	tcp->tcp_rq = q;
8173 	tcp->tcp_wq = WR(q);
8174 	tcp->tcp_state = TCPS_IDLE;
8175 	if ((err = tcp_init_values(tcp)) != 0)
8176 		tcp_timers_stop(tcp);
8177 	return (err);
8178 }
8179 
8180 static int
8181 tcp_init_values(tcp_t *tcp)
8182 {
8183 	int	err;
8184 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8185 
8186 	ASSERT((tcp->tcp_family == AF_INET &&
8187 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8188 	    (tcp->tcp_family == AF_INET6 &&
8189 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8190 	    tcp->tcp_ipversion == IPV6_VERSION)));
8191 
8192 	/*
8193 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8194 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8195 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8196 	 * during first few transmissions of a connection as seen in slow
8197 	 * links.
8198 	 */
8199 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8200 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8201 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8202 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8203 	    tcps->tcps_conn_grace_period;
8204 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8205 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8206 	tcp->tcp_timer_backoff = 0;
8207 	tcp->tcp_ms_we_have_waited = 0;
8208 	tcp->tcp_last_recv_time = lbolt;
8209 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8210 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8211 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8212 
8213 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8214 
8215 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8216 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8217 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8218 	/*
8219 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8220 	 * passive open.
8221 	 */
8222 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8223 
8224 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8225 
8226 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8227 
8228 	tcp->tcp_mdt_hdr_head = 0;
8229 	tcp->tcp_mdt_hdr_tail = 0;
8230 
8231 	/* Reset fusion-related fields */
8232 	tcp->tcp_fused = B_FALSE;
8233 	tcp->tcp_unfusable = B_FALSE;
8234 	tcp->tcp_fused_sigurg = B_FALSE;
8235 	tcp->tcp_direct_sockfs = B_FALSE;
8236 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8237 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8238 	tcp->tcp_loopback_peer = NULL;
8239 	tcp->tcp_fuse_rcv_hiwater = 0;
8240 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8241 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8242 
8243 	/* Initialize the header template */
8244 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8245 		err = tcp_header_init_ipv4(tcp);
8246 	} else {
8247 		err = tcp_header_init_ipv6(tcp);
8248 	}
8249 	if (err)
8250 		return (err);
8251 
8252 	/*
8253 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8254 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8255 	 */
8256 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8257 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8258 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8259 
8260 	tcp->tcp_cork = B_FALSE;
8261 	/*
8262 	 * Init the tcp_debug option.  This value determines whether TCP
8263 	 * calls strlog() to print out debug messages.  Doing this
8264 	 * initialization here means that this value is not inherited thru
8265 	 * tcp_reinit().
8266 	 */
8267 	tcp->tcp_debug = tcps->tcps_dbg;
8268 
8269 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8270 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8271 
8272 	return (0);
8273 }
8274 
8275 /*
8276  * Initialize the IPv4 header. Loses any record of any IP options.
8277  */
8278 static int
8279 tcp_header_init_ipv4(tcp_t *tcp)
8280 {
8281 	tcph_t		*tcph;
8282 	uint32_t	sum;
8283 	conn_t		*connp;
8284 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8285 
8286 	/*
8287 	 * This is a simple initialization. If there's
8288 	 * already a template, it should never be too small,
8289 	 * so reuse it.  Otherwise, allocate space for the new one.
8290 	 */
8291 	if (tcp->tcp_iphc == NULL) {
8292 		ASSERT(tcp->tcp_iphc_len == 0);
8293 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8294 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8295 		if (tcp->tcp_iphc == NULL) {
8296 			tcp->tcp_iphc_len = 0;
8297 			return (ENOMEM);
8298 		}
8299 	}
8300 
8301 	/* options are gone; may need a new label */
8302 	connp = tcp->tcp_connp;
8303 	connp->conn_mlp_type = mlptSingle;
8304 	connp->conn_ulp_labeled = !is_system_labeled();
8305 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8306 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8307 	tcp->tcp_ip6h = NULL;
8308 	tcp->tcp_ipversion = IPV4_VERSION;
8309 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8310 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8311 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8312 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8313 	tcp->tcp_ipha->ipha_version_and_hdr_length
8314 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8315 	tcp->tcp_ipha->ipha_ident = 0;
8316 
8317 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8318 	tcp->tcp_tos = 0;
8319 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8320 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8321 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8322 
8323 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8324 	tcp->tcp_tcph = tcph;
8325 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8326 	/*
8327 	 * IP wants our header length in the checksum field to
8328 	 * allow it to perform a single pseudo-header+checksum
8329 	 * calculation on behalf of TCP.
8330 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8331 	 */
8332 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8333 	sum = (sum >> 16) + (sum & 0xFFFF);
8334 	U16_TO_ABE16(sum, tcph->th_sum);
8335 	return (0);
8336 }
8337 
8338 /*
8339  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8340  */
8341 static int
8342 tcp_header_init_ipv6(tcp_t *tcp)
8343 {
8344 	tcph_t	*tcph;
8345 	uint32_t	sum;
8346 	conn_t	*connp;
8347 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8348 
8349 	/*
8350 	 * This is a simple initialization. If there's
8351 	 * already a template, it should never be too small,
8352 	 * so reuse it. Otherwise, allocate space for the new one.
8353 	 * Ensure that there is enough space to "downgrade" the tcp_t
8354 	 * to an IPv4 tcp_t. This requires having space for a full load
8355 	 * of IPv4 options, as well as a full load of TCP options
8356 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8357 	 * than a v6 header and a TCP header with a full load of TCP options
8358 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8359 	 * We want to avoid reallocation in the "downgraded" case when
8360 	 * processing outbound IPv4 options.
8361 	 */
8362 	if (tcp->tcp_iphc == NULL) {
8363 		ASSERT(tcp->tcp_iphc_len == 0);
8364 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8365 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8366 		if (tcp->tcp_iphc == NULL) {
8367 			tcp->tcp_iphc_len = 0;
8368 			return (ENOMEM);
8369 		}
8370 	}
8371 
8372 	/* options are gone; may need a new label */
8373 	connp = tcp->tcp_connp;
8374 	connp->conn_mlp_type = mlptSingle;
8375 	connp->conn_ulp_labeled = !is_system_labeled();
8376 
8377 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8378 	tcp->tcp_ipversion = IPV6_VERSION;
8379 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8380 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8381 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8382 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8383 	tcp->tcp_ipha = NULL;
8384 
8385 	/* Initialize the header template */
8386 
8387 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8388 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8389 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8390 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8391 
8392 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8393 	tcp->tcp_tcph = tcph;
8394 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8395 	/*
8396 	 * IP wants our header length in the checksum field to
8397 	 * allow it to perform a single psuedo-header+checksum
8398 	 * calculation on behalf of TCP.
8399 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8400 	 */
8401 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8402 	sum = (sum >> 16) + (sum & 0xFFFF);
8403 	U16_TO_ABE16(sum, tcph->th_sum);
8404 	return (0);
8405 }
8406 
8407 /* At minimum we need 8 bytes in the TCP header for the lookup */
8408 #define	ICMP_MIN_TCP_HDR	8
8409 
8410 /*
8411  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8412  * passed up by IP. The message is always received on the correct tcp_t.
8413  * Assumes that IP has pulled up everything up to and including the ICMP header.
8414  */
8415 void
8416 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8417 {
8418 	icmph_t *icmph;
8419 	ipha_t	*ipha;
8420 	int	iph_hdr_length;
8421 	tcph_t	*tcph;
8422 	boolean_t ipsec_mctl = B_FALSE;
8423 	boolean_t secure;
8424 	mblk_t *first_mp = mp;
8425 	uint32_t new_mss;
8426 	uint32_t ratio;
8427 	size_t mp_size = MBLKL(mp);
8428 	uint32_t seg_seq;
8429 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8430 
8431 	/* Assume IP provides aligned packets - otherwise toss */
8432 	if (!OK_32PTR(mp->b_rptr)) {
8433 		freemsg(mp);
8434 		return;
8435 	}
8436 
8437 	/*
8438 	 * Since ICMP errors are normal data marked with M_CTL when sent
8439 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8440 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8441 	 */
8442 	if ((mp_size == sizeof (ipsec_info_t)) &&
8443 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8444 		ASSERT(mp->b_cont != NULL);
8445 		mp = mp->b_cont;
8446 		/* IP should have done this */
8447 		ASSERT(OK_32PTR(mp->b_rptr));
8448 		mp_size = MBLKL(mp);
8449 		ipsec_mctl = B_TRUE;
8450 	}
8451 
8452 	/*
8453 	 * Verify that we have a complete outer IP header. If not, drop it.
8454 	 */
8455 	if (mp_size < sizeof (ipha_t)) {
8456 noticmpv4:
8457 		freemsg(first_mp);
8458 		return;
8459 	}
8460 
8461 	ipha = (ipha_t *)mp->b_rptr;
8462 	/*
8463 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8464 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8465 	 */
8466 	switch (IPH_HDR_VERSION(ipha)) {
8467 	case IPV6_VERSION:
8468 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8469 		return;
8470 	case IPV4_VERSION:
8471 		break;
8472 	default:
8473 		goto noticmpv4;
8474 	}
8475 
8476 	/* Skip past the outer IP and ICMP headers */
8477 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8478 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8479 	/*
8480 	 * If we don't have the correct outer IP header length or if the ULP
8481 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8482 	 * send it upstream.
8483 	 */
8484 	if (iph_hdr_length < sizeof (ipha_t) ||
8485 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8486 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8487 		goto noticmpv4;
8488 	}
8489 	ipha = (ipha_t *)&icmph[1];
8490 
8491 	/* Skip past the inner IP and find the ULP header */
8492 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8493 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8494 	/*
8495 	 * If we don't have the correct inner IP header length or if the ULP
8496 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8497 	 * bytes of TCP header, drop it.
8498 	 */
8499 	if (iph_hdr_length < sizeof (ipha_t) ||
8500 	    ipha->ipha_protocol != IPPROTO_TCP ||
8501 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8502 		goto noticmpv4;
8503 	}
8504 
8505 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8506 		if (ipsec_mctl) {
8507 			secure = ipsec_in_is_secure(first_mp);
8508 		} else {
8509 			secure = B_FALSE;
8510 		}
8511 		if (secure) {
8512 			/*
8513 			 * If we are willing to accept this in clear
8514 			 * we don't have to verify policy.
8515 			 */
8516 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8517 				if (!tcp_check_policy(tcp, first_mp,
8518 				    ipha, NULL, secure, ipsec_mctl)) {
8519 					/*
8520 					 * tcp_check_policy called
8521 					 * ip_drop_packet() on failure.
8522 					 */
8523 					return;
8524 				}
8525 			}
8526 		}
8527 	} else if (ipsec_mctl) {
8528 		/*
8529 		 * This is a hard_bound connection. IP has already
8530 		 * verified policy. We don't have to do it again.
8531 		 */
8532 		freeb(first_mp);
8533 		first_mp = mp;
8534 		ipsec_mctl = B_FALSE;
8535 	}
8536 
8537 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8538 	/*
8539 	 * TCP SHOULD check that the TCP sequence number contained in
8540 	 * payload of the ICMP error message is within the range
8541 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8542 	 */
8543 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8544 		/*
8545 		 * If the ICMP message is bogus, should we kill the
8546 		 * connection, or should we just drop the bogus ICMP
8547 		 * message? It would probably make more sense to just
8548 		 * drop the message so that if this one managed to get
8549 		 * in, the real connection should not suffer.
8550 		 */
8551 		goto noticmpv4;
8552 	}
8553 
8554 	switch (icmph->icmph_type) {
8555 	case ICMP_DEST_UNREACHABLE:
8556 		switch (icmph->icmph_code) {
8557 		case ICMP_FRAGMENTATION_NEEDED:
8558 			/*
8559 			 * Reduce the MSS based on the new MTU.  This will
8560 			 * eliminate any fragmentation locally.
8561 			 * N.B.  There may well be some funny side-effects on
8562 			 * the local send policy and the remote receive policy.
8563 			 * Pending further research, we provide
8564 			 * tcp_ignore_path_mtu just in case this proves
8565 			 * disastrous somewhere.
8566 			 *
8567 			 * After updating the MSS, retransmit part of the
8568 			 * dropped segment using the new mss by calling
8569 			 * tcp_wput_data().  Need to adjust all those
8570 			 * params to make sure tcp_wput_data() work properly.
8571 			 */
8572 			if (tcps->tcps_ignore_path_mtu)
8573 				break;
8574 
8575 			/*
8576 			 * Decrease the MSS by time stamp options
8577 			 * IP options and IPSEC options. tcp_hdr_len
8578 			 * includes time stamp option and IP option
8579 			 * length.
8580 			 */
8581 
8582 			new_mss = ntohs(icmph->icmph_du_mtu) -
8583 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8584 
8585 			/*
8586 			 * Only update the MSS if the new one is
8587 			 * smaller than the previous one.  This is
8588 			 * to avoid problems when getting multiple
8589 			 * ICMP errors for the same MTU.
8590 			 */
8591 			if (new_mss >= tcp->tcp_mss)
8592 				break;
8593 
8594 			/*
8595 			 * Stop doing PMTU if new_mss is less than 68
8596 			 * or less than tcp_mss_min.
8597 			 * The value 68 comes from rfc 1191.
8598 			 */
8599 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8600 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8601 				    0;
8602 
8603 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8604 			ASSERT(ratio >= 1);
8605 			tcp_mss_set(tcp, new_mss);
8606 
8607 			/*
8608 			 * Make sure we have something to
8609 			 * send.
8610 			 */
8611 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8612 			    (tcp->tcp_xmit_head != NULL)) {
8613 				/*
8614 				 * Shrink tcp_cwnd in
8615 				 * proportion to the old MSS/new MSS.
8616 				 */
8617 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8618 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8619 				    (tcp->tcp_unsent == 0)) {
8620 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8621 				} else {
8622 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8623 				}
8624 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8625 				tcp->tcp_rexmit = B_TRUE;
8626 				tcp->tcp_dupack_cnt = 0;
8627 				tcp->tcp_snd_burst = TCP_CWND_SS;
8628 				tcp_ss_rexmit(tcp);
8629 			}
8630 			break;
8631 		case ICMP_PORT_UNREACHABLE:
8632 		case ICMP_PROTOCOL_UNREACHABLE:
8633 			switch (tcp->tcp_state) {
8634 			case TCPS_SYN_SENT:
8635 			case TCPS_SYN_RCVD:
8636 				/*
8637 				 * ICMP can snipe away incipient
8638 				 * TCP connections as long as
8639 				 * seq number is same as initial
8640 				 * send seq number.
8641 				 */
8642 				if (seg_seq == tcp->tcp_iss) {
8643 					(void) tcp_clean_death(tcp,
8644 					    ECONNREFUSED, 6);
8645 				}
8646 				break;
8647 			}
8648 			break;
8649 		case ICMP_HOST_UNREACHABLE:
8650 		case ICMP_NET_UNREACHABLE:
8651 			/* Record the error in case we finally time out. */
8652 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8653 				tcp->tcp_client_errno = EHOSTUNREACH;
8654 			else
8655 				tcp->tcp_client_errno = ENETUNREACH;
8656 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8657 				if (tcp->tcp_listener != NULL &&
8658 				    tcp->tcp_listener->tcp_syn_defense) {
8659 					/*
8660 					 * Ditch the half-open connection if we
8661 					 * suspect a SYN attack is under way.
8662 					 */
8663 					tcp_ip_ire_mark_advice(tcp);
8664 					(void) tcp_clean_death(tcp,
8665 					    tcp->tcp_client_errno, 7);
8666 				}
8667 			}
8668 			break;
8669 		default:
8670 			break;
8671 		}
8672 		break;
8673 	case ICMP_SOURCE_QUENCH: {
8674 		/*
8675 		 * use a global boolean to control
8676 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8677 		 * The default is false.
8678 		 */
8679 		if (tcp_icmp_source_quench) {
8680 			/*
8681 			 * Reduce the sending rate as if we got a
8682 			 * retransmit timeout
8683 			 */
8684 			uint32_t npkt;
8685 
8686 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8687 			    tcp->tcp_mss;
8688 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8689 			tcp->tcp_cwnd = tcp->tcp_mss;
8690 			tcp->tcp_cwnd_cnt = 0;
8691 		}
8692 		break;
8693 	}
8694 	}
8695 	freemsg(first_mp);
8696 }
8697 
8698 /*
8699  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8700  * error messages passed up by IP.
8701  * Assumes that IP has pulled up all the extension headers as well
8702  * as the ICMPv6 header.
8703  */
8704 static void
8705 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8706 {
8707 	icmp6_t *icmp6;
8708 	ip6_t	*ip6h;
8709 	uint16_t	iph_hdr_length;
8710 	tcpha_t	*tcpha;
8711 	uint8_t	*nexthdrp;
8712 	uint32_t new_mss;
8713 	uint32_t ratio;
8714 	boolean_t secure;
8715 	mblk_t *first_mp = mp;
8716 	size_t mp_size;
8717 	uint32_t seg_seq;
8718 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8719 
8720 	/*
8721 	 * The caller has determined if this is an IPSEC_IN packet and
8722 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8723 	 */
8724 	if (ipsec_mctl)
8725 		mp = mp->b_cont;
8726 
8727 	mp_size = MBLKL(mp);
8728 
8729 	/*
8730 	 * Verify that we have a complete IP header. If not, send it upstream.
8731 	 */
8732 	if (mp_size < sizeof (ip6_t)) {
8733 noticmpv6:
8734 		freemsg(first_mp);
8735 		return;
8736 	}
8737 
8738 	/*
8739 	 * Verify this is an ICMPV6 packet, else send it upstream.
8740 	 */
8741 	ip6h = (ip6_t *)mp->b_rptr;
8742 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8743 		iph_hdr_length = IPV6_HDR_LEN;
8744 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8745 	    &nexthdrp) ||
8746 	    *nexthdrp != IPPROTO_ICMPV6) {
8747 		goto noticmpv6;
8748 	}
8749 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8750 	ip6h = (ip6_t *)&icmp6[1];
8751 	/*
8752 	 * Verify if we have a complete ICMP and inner IP header.
8753 	 */
8754 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8755 		goto noticmpv6;
8756 
8757 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8758 		goto noticmpv6;
8759 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8760 	/*
8761 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8762 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8763 	 * packet.
8764 	 */
8765 	if ((*nexthdrp != IPPROTO_TCP) ||
8766 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8767 		goto noticmpv6;
8768 	}
8769 
8770 	/*
8771 	 * ICMP errors come on the right queue or come on
8772 	 * listener/global queue for detached connections and
8773 	 * get switched to the right queue. If it comes on the
8774 	 * right queue, policy check has already been done by IP
8775 	 * and thus free the first_mp without verifying the policy.
8776 	 * If it has come for a non-hard bound connection, we need
8777 	 * to verify policy as IP may not have done it.
8778 	 */
8779 	if (!tcp->tcp_hard_bound) {
8780 		if (ipsec_mctl) {
8781 			secure = ipsec_in_is_secure(first_mp);
8782 		} else {
8783 			secure = B_FALSE;
8784 		}
8785 		if (secure) {
8786 			/*
8787 			 * If we are willing to accept this in clear
8788 			 * we don't have to verify policy.
8789 			 */
8790 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8791 				if (!tcp_check_policy(tcp, first_mp,
8792 				    NULL, ip6h, secure, ipsec_mctl)) {
8793 					/*
8794 					 * tcp_check_policy called
8795 					 * ip_drop_packet() on failure.
8796 					 */
8797 					return;
8798 				}
8799 			}
8800 		}
8801 	} else if (ipsec_mctl) {
8802 		/*
8803 		 * This is a hard_bound connection. IP has already
8804 		 * verified policy. We don't have to do it again.
8805 		 */
8806 		freeb(first_mp);
8807 		first_mp = mp;
8808 		ipsec_mctl = B_FALSE;
8809 	}
8810 
8811 	seg_seq = ntohl(tcpha->tha_seq);
8812 	/*
8813 	 * TCP SHOULD check that the TCP sequence number contained in
8814 	 * payload of the ICMP error message is within the range
8815 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8816 	 */
8817 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8818 		/*
8819 		 * If the ICMP message is bogus, should we kill the
8820 		 * connection, or should we just drop the bogus ICMP
8821 		 * message? It would probably make more sense to just
8822 		 * drop the message so that if this one managed to get
8823 		 * in, the real connection should not suffer.
8824 		 */
8825 		goto noticmpv6;
8826 	}
8827 
8828 	switch (icmp6->icmp6_type) {
8829 	case ICMP6_PACKET_TOO_BIG:
8830 		/*
8831 		 * Reduce the MSS based on the new MTU.  This will
8832 		 * eliminate any fragmentation locally.
8833 		 * N.B.  There may well be some funny side-effects on
8834 		 * the local send policy and the remote receive policy.
8835 		 * Pending further research, we provide
8836 		 * tcp_ignore_path_mtu just in case this proves
8837 		 * disastrous somewhere.
8838 		 *
8839 		 * After updating the MSS, retransmit part of the
8840 		 * dropped segment using the new mss by calling
8841 		 * tcp_wput_data().  Need to adjust all those
8842 		 * params to make sure tcp_wput_data() work properly.
8843 		 */
8844 		if (tcps->tcps_ignore_path_mtu)
8845 			break;
8846 
8847 		/*
8848 		 * Decrease the MSS by time stamp options
8849 		 * IP options and IPSEC options. tcp_hdr_len
8850 		 * includes time stamp option and IP option
8851 		 * length.
8852 		 */
8853 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8854 			    tcp->tcp_ipsec_overhead;
8855 
8856 		/*
8857 		 * Only update the MSS if the new one is
8858 		 * smaller than the previous one.  This is
8859 		 * to avoid problems when getting multiple
8860 		 * ICMP errors for the same MTU.
8861 		 */
8862 		if (new_mss >= tcp->tcp_mss)
8863 			break;
8864 
8865 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8866 		ASSERT(ratio >= 1);
8867 		tcp_mss_set(tcp, new_mss);
8868 
8869 		/*
8870 		 * Make sure we have something to
8871 		 * send.
8872 		 */
8873 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8874 		    (tcp->tcp_xmit_head != NULL)) {
8875 			/*
8876 			 * Shrink tcp_cwnd in
8877 			 * proportion to the old MSS/new MSS.
8878 			 */
8879 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8880 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8881 			    (tcp->tcp_unsent == 0)) {
8882 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8883 			} else {
8884 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8885 			}
8886 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8887 			tcp->tcp_rexmit = B_TRUE;
8888 			tcp->tcp_dupack_cnt = 0;
8889 			tcp->tcp_snd_burst = TCP_CWND_SS;
8890 			tcp_ss_rexmit(tcp);
8891 		}
8892 		break;
8893 
8894 	case ICMP6_DST_UNREACH:
8895 		switch (icmp6->icmp6_code) {
8896 		case ICMP6_DST_UNREACH_NOPORT:
8897 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8898 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8899 			    (seg_seq == tcp->tcp_iss)) {
8900 				(void) tcp_clean_death(tcp,
8901 				    ECONNREFUSED, 8);
8902 			}
8903 			break;
8904 
8905 		case ICMP6_DST_UNREACH_ADMIN:
8906 		case ICMP6_DST_UNREACH_NOROUTE:
8907 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8908 		case ICMP6_DST_UNREACH_ADDR:
8909 			/* Record the error in case we finally time out. */
8910 			tcp->tcp_client_errno = EHOSTUNREACH;
8911 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8912 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8913 			    (seg_seq == tcp->tcp_iss)) {
8914 				if (tcp->tcp_listener != NULL &&
8915 				    tcp->tcp_listener->tcp_syn_defense) {
8916 					/*
8917 					 * Ditch the half-open connection if we
8918 					 * suspect a SYN attack is under way.
8919 					 */
8920 					tcp_ip_ire_mark_advice(tcp);
8921 					(void) tcp_clean_death(tcp,
8922 					    tcp->tcp_client_errno, 9);
8923 				}
8924 			}
8925 
8926 
8927 			break;
8928 		default:
8929 			break;
8930 		}
8931 		break;
8932 
8933 	case ICMP6_PARAM_PROB:
8934 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8935 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8936 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8937 		    (uchar_t *)nexthdrp) {
8938 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8939 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8940 				(void) tcp_clean_death(tcp,
8941 				    ECONNREFUSED, 10);
8942 			}
8943 			break;
8944 		}
8945 		break;
8946 
8947 	case ICMP6_TIME_EXCEEDED:
8948 	default:
8949 		break;
8950 	}
8951 	freemsg(first_mp);
8952 }
8953 
8954 /*
8955  * IP recognizes seven kinds of bind requests:
8956  *
8957  * - A zero-length address binds only to the protocol number.
8958  *
8959  * - A 4-byte address is treated as a request to
8960  * validate that the address is a valid local IPv4
8961  * address, appropriate for an application to bind to.
8962  * IP does the verification, but does not make any note
8963  * of the address at this time.
8964  *
8965  * - A 16-byte address contains is treated as a request
8966  * to validate a local IPv6 address, as the 4-byte
8967  * address case above.
8968  *
8969  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8970  * use it for the inbound fanout of packets.
8971  *
8972  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8973  * use it for the inbound fanout of packets.
8974  *
8975  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8976  * information consisting of local and remote addresses
8977  * and ports.  In this case, the addresses are both
8978  * validated as appropriate for this operation, and, if
8979  * so, the information is retained for use in the
8980  * inbound fanout.
8981  *
8982  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8983  * fanout information, like the 12-byte case above.
8984  *
8985  * IP will also fill in the IRE request mblk with information
8986  * regarding our peer.  In all cases, we notify IP of our protocol
8987  * type by appending a single protocol byte to the bind request.
8988  */
8989 static mblk_t *
8990 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8991 {
8992 	char	*cp;
8993 	mblk_t	*mp;
8994 	struct T_bind_req *tbr;
8995 	ipa_conn_t	*ac;
8996 	ipa6_conn_t	*ac6;
8997 	sin_t		*sin;
8998 	sin6_t		*sin6;
8999 
9000 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9001 	ASSERT((tcp->tcp_family == AF_INET &&
9002 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9003 	    (tcp->tcp_family == AF_INET6 &&
9004 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9005 	    tcp->tcp_ipversion == IPV6_VERSION)));
9006 
9007 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9008 	if (!mp)
9009 		return (mp);
9010 	mp->b_datap->db_type = M_PROTO;
9011 	tbr = (struct T_bind_req *)mp->b_rptr;
9012 	tbr->PRIM_type = bind_prim;
9013 	tbr->ADDR_offset = sizeof (*tbr);
9014 	tbr->CONIND_number = 0;
9015 	tbr->ADDR_length = addr_length;
9016 	cp = (char *)&tbr[1];
9017 	switch (addr_length) {
9018 	case sizeof (ipa_conn_t):
9019 		ASSERT(tcp->tcp_family == AF_INET);
9020 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9021 
9022 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9023 		if (mp->b_cont == NULL) {
9024 			freemsg(mp);
9025 			return (NULL);
9026 		}
9027 		mp->b_cont->b_wptr += sizeof (ire_t);
9028 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9029 
9030 		/* cp known to be 32 bit aligned */
9031 		ac = (ipa_conn_t *)cp;
9032 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9033 		ac->ac_faddr = tcp->tcp_remote;
9034 		ac->ac_fport = tcp->tcp_fport;
9035 		ac->ac_lport = tcp->tcp_lport;
9036 		tcp->tcp_hard_binding = 1;
9037 		break;
9038 
9039 	case sizeof (ipa6_conn_t):
9040 		ASSERT(tcp->tcp_family == AF_INET6);
9041 
9042 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9043 		if (mp->b_cont == NULL) {
9044 			freemsg(mp);
9045 			return (NULL);
9046 		}
9047 		mp->b_cont->b_wptr += sizeof (ire_t);
9048 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9049 
9050 		/* cp known to be 32 bit aligned */
9051 		ac6 = (ipa6_conn_t *)cp;
9052 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9053 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9054 			    &ac6->ac6_laddr);
9055 		} else {
9056 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9057 		}
9058 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9059 		ac6->ac6_fport = tcp->tcp_fport;
9060 		ac6->ac6_lport = tcp->tcp_lport;
9061 		tcp->tcp_hard_binding = 1;
9062 		break;
9063 
9064 	case sizeof (sin_t):
9065 		/*
9066 		 * NOTE: IPV6_ADDR_LEN also has same size.
9067 		 * Use family to discriminate.
9068 		 */
9069 		if (tcp->tcp_family == AF_INET) {
9070 			sin = (sin_t *)cp;
9071 
9072 			*sin = sin_null;
9073 			sin->sin_family = AF_INET;
9074 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9075 			sin->sin_port = tcp->tcp_lport;
9076 			break;
9077 		} else {
9078 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9079 		}
9080 		break;
9081 
9082 	case sizeof (sin6_t):
9083 		ASSERT(tcp->tcp_family == AF_INET6);
9084 		sin6 = (sin6_t *)cp;
9085 
9086 		*sin6 = sin6_null;
9087 		sin6->sin6_family = AF_INET6;
9088 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9089 		sin6->sin6_port = tcp->tcp_lport;
9090 		break;
9091 
9092 	case IP_ADDR_LEN:
9093 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9094 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9095 		break;
9096 
9097 	}
9098 	/* Add protocol number to end */
9099 	cp[addr_length] = (char)IPPROTO_TCP;
9100 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9101 	return (mp);
9102 }
9103 
9104 /*
9105  * Notify IP that we are having trouble with this connection.  IP should
9106  * blow the IRE away and start over.
9107  */
9108 static void
9109 tcp_ip_notify(tcp_t *tcp)
9110 {
9111 	struct iocblk	*iocp;
9112 	ipid_t	*ipid;
9113 	mblk_t	*mp;
9114 
9115 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9116 	if (tcp->tcp_ipversion == IPV6_VERSION)
9117 		return;
9118 
9119 	mp = mkiocb(IP_IOCTL);
9120 	if (mp == NULL)
9121 		return;
9122 
9123 	iocp = (struct iocblk *)mp->b_rptr;
9124 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9125 
9126 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9127 	if (!mp->b_cont) {
9128 		freeb(mp);
9129 		return;
9130 	}
9131 
9132 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9133 	mp->b_cont->b_wptr += iocp->ioc_count;
9134 	bzero(ipid, sizeof (*ipid));
9135 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9136 	ipid->ipid_ire_type = IRE_CACHE;
9137 	ipid->ipid_addr_offset = sizeof (ipid_t);
9138 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9139 	/*
9140 	 * Note: in the case of source routing we want to blow away the
9141 	 * route to the first source route hop.
9142 	 */
9143 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9144 	    sizeof (tcp->tcp_ipha->ipha_dst));
9145 
9146 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9147 }
9148 
9149 /* Unlink and return any mblk that looks like it contains an ire */
9150 static mblk_t *
9151 tcp_ire_mp(mblk_t *mp)
9152 {
9153 	mblk_t	*prev_mp;
9154 
9155 	for (;;) {
9156 		prev_mp = mp;
9157 		mp = mp->b_cont;
9158 		if (mp == NULL)
9159 			break;
9160 		switch (DB_TYPE(mp)) {
9161 		case IRE_DB_TYPE:
9162 		case IRE_DB_REQ_TYPE:
9163 			if (prev_mp != NULL)
9164 				prev_mp->b_cont = mp->b_cont;
9165 			mp->b_cont = NULL;
9166 			return (mp);
9167 		default:
9168 			break;
9169 		}
9170 	}
9171 	return (mp);
9172 }
9173 
9174 /*
9175  * Timer callback routine for keepalive probe.  We do a fake resend of
9176  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9177  * check to see if we have heard anything from the other end for the last
9178  * RTO period.  If we have, set the timer to expire for another
9179  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9180  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9181  * the timeout if we have not heard from the other side.  If for more than
9182  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9183  * kill the connection unless the keepalive abort threshold is 0.  In
9184  * that case, we will probe "forever."
9185  */
9186 static void
9187 tcp_keepalive_killer(void *arg)
9188 {
9189 	mblk_t	*mp;
9190 	conn_t	*connp = (conn_t *)arg;
9191 	tcp_t  	*tcp = connp->conn_tcp;
9192 	int32_t	firetime;
9193 	int32_t	idletime;
9194 	int32_t	ka_intrvl;
9195 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9196 
9197 	tcp->tcp_ka_tid = 0;
9198 
9199 	if (tcp->tcp_fused)
9200 		return;
9201 
9202 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9203 	ka_intrvl = tcp->tcp_ka_interval;
9204 
9205 	/*
9206 	 * Keepalive probe should only be sent if the application has not
9207 	 * done a close on the connection.
9208 	 */
9209 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9210 		return;
9211 	}
9212 	/* Timer fired too early, restart it. */
9213 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9214 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9215 		    MSEC_TO_TICK(ka_intrvl));
9216 		return;
9217 	}
9218 
9219 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9220 	/*
9221 	 * If we have not heard from the other side for a long
9222 	 * time, kill the connection unless the keepalive abort
9223 	 * threshold is 0.  In that case, we will probe "forever."
9224 	 */
9225 	if (tcp->tcp_ka_abort_thres != 0 &&
9226 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9227 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9228 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9229 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9230 		return;
9231 	}
9232 
9233 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9234 	    idletime >= ka_intrvl) {
9235 		/* Fake resend of last ACKed byte. */
9236 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9237 
9238 		if (mp1 != NULL) {
9239 			*mp1->b_wptr++ = '\0';
9240 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9241 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9242 			freeb(mp1);
9243 			/*
9244 			 * if allocation failed, fall through to start the
9245 			 * timer back.
9246 			 */
9247 			if (mp != NULL) {
9248 				TCP_RECORD_TRACE(tcp, mp,
9249 				    TCP_TRACE_SEND_PKT);
9250 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9251 				BUMP_MIB(&tcps->tcps_mib,
9252 				    tcpTimKeepaliveProbe);
9253 				if (tcp->tcp_ka_last_intrvl != 0) {
9254 					int max;
9255 					/*
9256 					 * We should probe again at least
9257 					 * in ka_intrvl, but not more than
9258 					 * tcp_rexmit_interval_max.
9259 					 */
9260 					max = tcps->tcps_rexmit_interval_max;
9261 					firetime = MIN(ka_intrvl - 1,
9262 					    tcp->tcp_ka_last_intrvl << 1);
9263 					if (firetime > max)
9264 						firetime = max;
9265 				} else {
9266 					firetime = tcp->tcp_rto;
9267 				}
9268 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9269 				    tcp_keepalive_killer,
9270 				    MSEC_TO_TICK(firetime));
9271 				tcp->tcp_ka_last_intrvl = firetime;
9272 				return;
9273 			}
9274 		}
9275 	} else {
9276 		tcp->tcp_ka_last_intrvl = 0;
9277 	}
9278 
9279 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9280 	if ((firetime = ka_intrvl - idletime) < 0) {
9281 		firetime = ka_intrvl;
9282 	}
9283 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9284 	    MSEC_TO_TICK(firetime));
9285 }
9286 
9287 int
9288 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9289 {
9290 	queue_t	*q = tcp->tcp_rq;
9291 	int32_t	mss = tcp->tcp_mss;
9292 	int	maxpsz;
9293 
9294 	if (TCP_IS_DETACHED(tcp))
9295 		return (mss);
9296 
9297 	if (tcp->tcp_fused) {
9298 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9299 		mss = INFPSZ;
9300 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9301 		/*
9302 		 * Set the sd_qn_maxpsz according to the socket send buffer
9303 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9304 		 * instruct the stream head to copyin user data into contiguous
9305 		 * kernel-allocated buffers without breaking it up into smaller
9306 		 * chunks.  We round up the buffer size to the nearest SMSS.
9307 		 */
9308 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9309 		if (tcp->tcp_kssl_ctx == NULL)
9310 			mss = INFPSZ;
9311 		else
9312 			mss = SSL3_MAX_RECORD_LEN;
9313 	} else {
9314 		/*
9315 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9316 		 * (and a multiple of the mss).  This instructs the stream
9317 		 * head to break down larger than SMSS writes into SMSS-
9318 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9319 		 */
9320 		maxpsz = tcp->tcp_maxpsz * mss;
9321 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9322 			maxpsz = tcp->tcp_xmit_hiwater/2;
9323 			/* Round up to nearest mss */
9324 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9325 		}
9326 	}
9327 	(void) setmaxps(q, maxpsz);
9328 	tcp->tcp_wq->q_maxpsz = maxpsz;
9329 
9330 	if (set_maxblk)
9331 		(void) mi_set_sth_maxblk(q, mss);
9332 
9333 	return (mss);
9334 }
9335 
9336 /*
9337  * Extract option values from a tcp header.  We put any found values into the
9338  * tcpopt struct and return a bitmask saying which options were found.
9339  */
9340 static int
9341 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9342 {
9343 	uchar_t		*endp;
9344 	int		len;
9345 	uint32_t	mss;
9346 	uchar_t		*up = (uchar_t *)tcph;
9347 	int		found = 0;
9348 	int32_t		sack_len;
9349 	tcp_seq		sack_begin, sack_end;
9350 	tcp_t		*tcp;
9351 
9352 	endp = up + TCP_HDR_LENGTH(tcph);
9353 	up += TCP_MIN_HEADER_LENGTH;
9354 	while (up < endp) {
9355 		len = endp - up;
9356 		switch (*up) {
9357 		case TCPOPT_EOL:
9358 			break;
9359 
9360 		case TCPOPT_NOP:
9361 			up++;
9362 			continue;
9363 
9364 		case TCPOPT_MAXSEG:
9365 			if (len < TCPOPT_MAXSEG_LEN ||
9366 			    up[1] != TCPOPT_MAXSEG_LEN)
9367 				break;
9368 
9369 			mss = BE16_TO_U16(up+2);
9370 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9371 			tcpopt->tcp_opt_mss = mss;
9372 			found |= TCP_OPT_MSS_PRESENT;
9373 
9374 			up += TCPOPT_MAXSEG_LEN;
9375 			continue;
9376 
9377 		case TCPOPT_WSCALE:
9378 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9379 				break;
9380 
9381 			if (up[2] > TCP_MAX_WINSHIFT)
9382 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9383 			else
9384 				tcpopt->tcp_opt_wscale = up[2];
9385 			found |= TCP_OPT_WSCALE_PRESENT;
9386 
9387 			up += TCPOPT_WS_LEN;
9388 			continue;
9389 
9390 		case TCPOPT_SACK_PERMITTED:
9391 			if (len < TCPOPT_SACK_OK_LEN ||
9392 			    up[1] != TCPOPT_SACK_OK_LEN)
9393 				break;
9394 			found |= TCP_OPT_SACK_OK_PRESENT;
9395 			up += TCPOPT_SACK_OK_LEN;
9396 			continue;
9397 
9398 		case TCPOPT_SACK:
9399 			if (len <= 2 || up[1] <= 2 || len < up[1])
9400 				break;
9401 
9402 			/* If TCP is not interested in SACK blks... */
9403 			if ((tcp = tcpopt->tcp) == NULL) {
9404 				up += up[1];
9405 				continue;
9406 			}
9407 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9408 			up += TCPOPT_HEADER_LEN;
9409 
9410 			/*
9411 			 * If the list is empty, allocate one and assume
9412 			 * nothing is sack'ed.
9413 			 */
9414 			ASSERT(tcp->tcp_sack_info != NULL);
9415 			if (tcp->tcp_notsack_list == NULL) {
9416 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9417 				    tcp->tcp_suna, tcp->tcp_snxt,
9418 				    &(tcp->tcp_num_notsack_blk),
9419 				    &(tcp->tcp_cnt_notsack_list));
9420 
9421 				/*
9422 				 * Make sure tcp_notsack_list is not NULL.
9423 				 * This happens when kmem_alloc(KM_NOSLEEP)
9424 				 * returns NULL.
9425 				 */
9426 				if (tcp->tcp_notsack_list == NULL) {
9427 					up += sack_len;
9428 					continue;
9429 				}
9430 				tcp->tcp_fack = tcp->tcp_suna;
9431 			}
9432 
9433 			while (sack_len > 0) {
9434 				if (up + 8 > endp) {
9435 					up = endp;
9436 					break;
9437 				}
9438 				sack_begin = BE32_TO_U32(up);
9439 				up += 4;
9440 				sack_end = BE32_TO_U32(up);
9441 				up += 4;
9442 				sack_len -= 8;
9443 				/*
9444 				 * Bounds checking.  Make sure the SACK
9445 				 * info is within tcp_suna and tcp_snxt.
9446 				 * If this SACK blk is out of bound, ignore
9447 				 * it but continue to parse the following
9448 				 * blks.
9449 				 */
9450 				if (SEQ_LEQ(sack_end, sack_begin) ||
9451 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9452 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9453 					continue;
9454 				}
9455 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9456 				    sack_begin, sack_end,
9457 				    &(tcp->tcp_num_notsack_blk),
9458 				    &(tcp->tcp_cnt_notsack_list));
9459 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9460 					tcp->tcp_fack = sack_end;
9461 				}
9462 			}
9463 			found |= TCP_OPT_SACK_PRESENT;
9464 			continue;
9465 
9466 		case TCPOPT_TSTAMP:
9467 			if (len < TCPOPT_TSTAMP_LEN ||
9468 			    up[1] != TCPOPT_TSTAMP_LEN)
9469 				break;
9470 
9471 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9472 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9473 
9474 			found |= TCP_OPT_TSTAMP_PRESENT;
9475 
9476 			up += TCPOPT_TSTAMP_LEN;
9477 			continue;
9478 
9479 		default:
9480 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9481 				break;
9482 			up += up[1];
9483 			continue;
9484 		}
9485 		break;
9486 	}
9487 	return (found);
9488 }
9489 
9490 /*
9491  * Set the mss associated with a particular tcp based on its current value,
9492  * and a new one passed in. Observe minimums and maximums, and reset
9493  * other state variables that we want to view as multiples of mss.
9494  *
9495  * This function is called in various places mainly because
9496  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9497  *    other side's SYN/SYN-ACK packet arrives.
9498  * 2) PMTUd may get us a new MSS.
9499  * 3) If the other side stops sending us timestamp option, we need to
9500  *    increase the MSS size to use the extra bytes available.
9501  */
9502 static void
9503 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9504 {
9505 	uint32_t	mss_max;
9506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9507 
9508 	if (tcp->tcp_ipversion == IPV4_VERSION)
9509 		mss_max = tcps->tcps_mss_max_ipv4;
9510 	else
9511 		mss_max = tcps->tcps_mss_max_ipv6;
9512 
9513 	if (mss < tcps->tcps_mss_min)
9514 		mss = tcps->tcps_mss_min;
9515 	if (mss > mss_max)
9516 		mss = mss_max;
9517 	/*
9518 	 * Unless naglim has been set by our client to
9519 	 * a non-mss value, force naglim to track mss.
9520 	 * This can help to aggregate small writes.
9521 	 */
9522 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9523 		tcp->tcp_naglim = mss;
9524 	/*
9525 	 * TCP should be able to buffer at least 4 MSS data for obvious
9526 	 * performance reason.
9527 	 */
9528 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9529 		tcp->tcp_xmit_hiwater = mss << 2;
9530 
9531 	/*
9532 	 * Check if we need to apply the tcp_init_cwnd here.  If
9533 	 * it is set and the MSS gets bigger (should not happen
9534 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9535 	 * The new tcp_cwnd should not get bigger.
9536 	 */
9537 	if (tcp->tcp_init_cwnd == 0) {
9538 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * mss,
9539 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9540 	} else {
9541 		if (tcp->tcp_mss < mss) {
9542 			tcp->tcp_cwnd = MAX(1,
9543 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9544 		} else {
9545 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9546 		}
9547 	}
9548 	tcp->tcp_mss = mss;
9549 	tcp->tcp_cwnd_cnt = 0;
9550 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9551 }
9552 
9553 static int
9554 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9555 {
9556 	tcp_t		*tcp = NULL;
9557 	conn_t		*connp;
9558 	int		err;
9559 	dev_t		conn_dev;
9560 	zoneid_t	zoneid;
9561 	tcp_stack_t	*tcps = NULL;
9562 
9563 	if (q->q_ptr != NULL)
9564 		return (0);
9565 
9566 	if (!(flag & SO_ACCEPTOR)) {
9567 		/*
9568 		 * Special case for install: miniroot needs to be able to
9569 		 * access files via NFS as though it were always in the
9570 		 * global zone.
9571 		 */
9572 		if (credp == kcred && nfs_global_client_only != 0) {
9573 			zoneid = GLOBAL_ZONEID;
9574 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9575 			    netstack_tcp;
9576 			ASSERT(tcps != NULL);
9577 		} else {
9578 			netstack_t *ns;
9579 
9580 			ns = netstack_find_by_cred(credp);
9581 			ASSERT(ns != NULL);
9582 			tcps = ns->netstack_tcp;
9583 			ASSERT(tcps != NULL);
9584 
9585 			/*
9586 			 * For exclusive stacks we set the zoneid to zero
9587 			 * to make TCP operate as if in the global zone.
9588 			 */
9589 			if (tcps->tcps_netstack->netstack_stackid !=
9590 			    GLOBAL_NETSTACKID)
9591 				zoneid = GLOBAL_ZONEID;
9592 			else
9593 				zoneid = crgetzoneid(credp);
9594 		}
9595 		/*
9596 		 * For stackid zero this is done from strplumb.c, but
9597 		 * non-zero stackids are handled here.
9598 		 */
9599 		if (tcps->tcps_g_q == NULL &&
9600 		    tcps->tcps_netstack->netstack_stackid !=
9601 		    GLOBAL_NETSTACKID) {
9602 			tcp_g_q_setup(tcps);
9603 		}
9604 	}
9605 	if (sflag == MODOPEN) {
9606 		/*
9607 		 * This is a special case. The purpose of a modopen
9608 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9609 		 * through for MIB browsers. Everything else is failed.
9610 		 */
9611 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9612 		/* tcp_get_conn incremented refcnt */
9613 		netstack_rele(tcps->tcps_netstack);
9614 
9615 		if (connp == NULL)
9616 			return (ENOMEM);
9617 
9618 		connp->conn_flags |= IPCL_TCPMOD;
9619 		connp->conn_cred = credp;
9620 		connp->conn_zoneid = zoneid;
9621 		ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9622 		ASSERT(connp->conn_netstack->netstack_tcp == tcps);
9623 		q->q_ptr = WR(q)->q_ptr = connp;
9624 		crhold(credp);
9625 		q->q_qinfo = &tcp_mod_rinit;
9626 		WR(q)->q_qinfo = &tcp_mod_winit;
9627 		qprocson(q);
9628 		return (0);
9629 	}
9630 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
9631 		if (tcps != NULL)
9632 			netstack_rele(tcps->tcps_netstack);
9633 		return (EBUSY);
9634 	}
9635 
9636 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9637 
9638 	if (flag & SO_ACCEPTOR) {
9639 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9640 		ASSERT(tcps == NULL);
9641 		q->q_qinfo = &tcp_acceptor_rinit;
9642 		q->q_ptr = (void *)conn_dev;
9643 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9644 		WR(q)->q_ptr = (void *)conn_dev;
9645 		qprocson(q);
9646 		return (0);
9647 	}
9648 
9649 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9650 	/*
9651 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9652 	 * so we drop it by one.
9653 	 */
9654 	netstack_rele(tcps->tcps_netstack);
9655 	if (connp == NULL) {
9656 		inet_minor_free(ip_minor_arena, conn_dev);
9657 		q->q_ptr = NULL;
9658 		return (ENOSR);
9659 	}
9660 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9661 	tcp = connp->conn_tcp;
9662 
9663 	q->q_ptr = WR(q)->q_ptr = connp;
9664 	if (getmajor(*devp) == TCP6_MAJ) {
9665 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9666 		connp->conn_send = ip_output_v6;
9667 		connp->conn_af_isv6 = B_TRUE;
9668 		connp->conn_pkt_isv6 = B_TRUE;
9669 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9670 		tcp->tcp_ipversion = IPV6_VERSION;
9671 		tcp->tcp_family = AF_INET6;
9672 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9673 	} else {
9674 		connp->conn_flags |= IPCL_TCP4;
9675 		connp->conn_send = ip_output;
9676 		connp->conn_af_isv6 = B_FALSE;
9677 		connp->conn_pkt_isv6 = B_FALSE;
9678 		tcp->tcp_ipversion = IPV4_VERSION;
9679 		tcp->tcp_family = AF_INET;
9680 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9681 	}
9682 
9683 	/*
9684 	 * TCP keeps a copy of cred for cache locality reasons but
9685 	 * we put a reference only once. If connp->conn_cred
9686 	 * becomes invalid, tcp_cred should also be set to NULL.
9687 	 */
9688 	tcp->tcp_cred = connp->conn_cred = credp;
9689 	crhold(connp->conn_cred);
9690 	tcp->tcp_cpid = curproc->p_pid;
9691 	tcp->tcp_open_time = lbolt64;
9692 	connp->conn_zoneid = zoneid;
9693 	connp->conn_mlp_type = mlptSingle;
9694 	connp->conn_ulp_labeled = !is_system_labeled();
9695 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9696 	ASSERT(tcp->tcp_tcps == tcps);
9697 
9698 	/*
9699 	 * If the caller has the process-wide flag set, then default to MAC
9700 	 * exempt mode.  This allows read-down to unlabeled hosts.
9701 	 */
9702 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9703 		connp->conn_mac_exempt = B_TRUE;
9704 
9705 	connp->conn_dev = conn_dev;
9706 
9707 	ASSERT(q->q_qinfo == &tcp_rinit);
9708 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9709 
9710 	if (flag & SO_SOCKSTR) {
9711 		/*
9712 		 * No need to insert a socket in tcp acceptor hash.
9713 		 * If it was a socket acceptor stream, we dealt with
9714 		 * it above. A socket listener can never accept a
9715 		 * connection and doesn't need acceptor_id.
9716 		 */
9717 		connp->conn_flags |= IPCL_SOCKET;
9718 		tcp->tcp_issocket = 1;
9719 		WR(q)->q_qinfo = &tcp_sock_winit;
9720 	} else {
9721 #ifdef	_ILP32
9722 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9723 #else
9724 		tcp->tcp_acceptor_id = conn_dev;
9725 #endif	/* _ILP32 */
9726 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9727 	}
9728 
9729 	if (tcps->tcps_trace)
9730 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9731 
9732 	err = tcp_init(tcp, q);
9733 	if (err != 0) {
9734 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9735 		tcp_acceptor_hash_remove(tcp);
9736 		CONN_DEC_REF(connp);
9737 		q->q_ptr = WR(q)->q_ptr = NULL;
9738 		return (err);
9739 	}
9740 
9741 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9742 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9743 
9744 	/* Non-zero default values */
9745 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9746 	/*
9747 	 * Put the ref for TCP. Ref for IP was already put
9748 	 * by ipcl_conn_create. Also Make the conn_t globally
9749 	 * visible to walkers
9750 	 */
9751 	mutex_enter(&connp->conn_lock);
9752 	CONN_INC_REF_LOCKED(connp);
9753 	ASSERT(connp->conn_ref == 2);
9754 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9755 	mutex_exit(&connp->conn_lock);
9756 
9757 	qprocson(q);
9758 	return (0);
9759 }
9760 
9761 /*
9762  * Some TCP options can be "set" by requesting them in the option
9763  * buffer. This is needed for XTI feature test though we do not
9764  * allow it in general. We interpret that this mechanism is more
9765  * applicable to OSI protocols and need not be allowed in general.
9766  * This routine filters out options for which it is not allowed (most)
9767  * and lets through those (few) for which it is. [ The XTI interface
9768  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9769  * ever implemented will have to be allowed here ].
9770  */
9771 static boolean_t
9772 tcp_allow_connopt_set(int level, int name)
9773 {
9774 
9775 	switch (level) {
9776 	case IPPROTO_TCP:
9777 		switch (name) {
9778 		case TCP_NODELAY:
9779 			return (B_TRUE);
9780 		default:
9781 			return (B_FALSE);
9782 		}
9783 		/*NOTREACHED*/
9784 	default:
9785 		return (B_FALSE);
9786 	}
9787 	/*NOTREACHED*/
9788 }
9789 
9790 /*
9791  * This routine gets default values of certain options whose default
9792  * values are maintained by protocol specific code
9793  */
9794 /* ARGSUSED */
9795 int
9796 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9797 {
9798 	int32_t	*i1 = (int32_t *)ptr;
9799 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9800 
9801 	switch (level) {
9802 	case IPPROTO_TCP:
9803 		switch (name) {
9804 		case TCP_NOTIFY_THRESHOLD:
9805 			*i1 = tcps->tcps_ip_notify_interval;
9806 			break;
9807 		case TCP_ABORT_THRESHOLD:
9808 			*i1 = tcps->tcps_ip_abort_interval;
9809 			break;
9810 		case TCP_CONN_NOTIFY_THRESHOLD:
9811 			*i1 = tcps->tcps_ip_notify_cinterval;
9812 			break;
9813 		case TCP_CONN_ABORT_THRESHOLD:
9814 			*i1 = tcps->tcps_ip_abort_cinterval;
9815 			break;
9816 		default:
9817 			return (-1);
9818 		}
9819 		break;
9820 	case IPPROTO_IP:
9821 		switch (name) {
9822 		case IP_TTL:
9823 			*i1 = tcps->tcps_ipv4_ttl;
9824 			break;
9825 		default:
9826 			return (-1);
9827 		}
9828 		break;
9829 	case IPPROTO_IPV6:
9830 		switch (name) {
9831 		case IPV6_UNICAST_HOPS:
9832 			*i1 = tcps->tcps_ipv6_hoplimit;
9833 			break;
9834 		default:
9835 			return (-1);
9836 		}
9837 		break;
9838 	default:
9839 		return (-1);
9840 	}
9841 	return (sizeof (int));
9842 }
9843 
9844 
9845 /*
9846  * TCP routine to get the values of options.
9847  */
9848 int
9849 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9850 {
9851 	int		*i1 = (int *)ptr;
9852 	conn_t		*connp = Q_TO_CONN(q);
9853 	tcp_t		*tcp = connp->conn_tcp;
9854 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9855 
9856 	switch (level) {
9857 	case SOL_SOCKET:
9858 		switch (name) {
9859 		case SO_LINGER:	{
9860 			struct linger *lgr = (struct linger *)ptr;
9861 
9862 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9863 			lgr->l_linger = tcp->tcp_lingertime;
9864 			}
9865 			return (sizeof (struct linger));
9866 		case SO_DEBUG:
9867 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9868 			break;
9869 		case SO_KEEPALIVE:
9870 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9871 			break;
9872 		case SO_DONTROUTE:
9873 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9874 			break;
9875 		case SO_USELOOPBACK:
9876 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9877 			break;
9878 		case SO_BROADCAST:
9879 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9880 			break;
9881 		case SO_REUSEADDR:
9882 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9883 			break;
9884 		case SO_OOBINLINE:
9885 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9886 			break;
9887 		case SO_DGRAM_ERRIND:
9888 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9889 			break;
9890 		case SO_TYPE:
9891 			*i1 = SOCK_STREAM;
9892 			break;
9893 		case SO_SNDBUF:
9894 			*i1 = tcp->tcp_xmit_hiwater;
9895 			break;
9896 		case SO_RCVBUF:
9897 			*i1 = RD(q)->q_hiwat;
9898 			break;
9899 		case SO_SND_COPYAVOID:
9900 			*i1 = tcp->tcp_snd_zcopy_on ?
9901 			    SO_SND_COPYAVOID : 0;
9902 			break;
9903 		case SO_ALLZONES:
9904 			*i1 = connp->conn_allzones ? 1 : 0;
9905 			break;
9906 		case SO_ANON_MLP:
9907 			*i1 = connp->conn_anon_mlp;
9908 			break;
9909 		case SO_MAC_EXEMPT:
9910 			*i1 = connp->conn_mac_exempt;
9911 			break;
9912 		case SO_EXCLBIND:
9913 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9914 			break;
9915 		case SO_PROTOTYPE:
9916 			*i1 = IPPROTO_TCP;
9917 			break;
9918 		case SO_DOMAIN:
9919 			*i1 = tcp->tcp_family;
9920 			break;
9921 		default:
9922 			return (-1);
9923 		}
9924 		break;
9925 	case IPPROTO_TCP:
9926 		switch (name) {
9927 		case TCP_NODELAY:
9928 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9929 			break;
9930 		case TCP_MAXSEG:
9931 			*i1 = tcp->tcp_mss;
9932 			break;
9933 		case TCP_NOTIFY_THRESHOLD:
9934 			*i1 = (int)tcp->tcp_first_timer_threshold;
9935 			break;
9936 		case TCP_ABORT_THRESHOLD:
9937 			*i1 = tcp->tcp_second_timer_threshold;
9938 			break;
9939 		case TCP_CONN_NOTIFY_THRESHOLD:
9940 			*i1 = tcp->tcp_first_ctimer_threshold;
9941 			break;
9942 		case TCP_CONN_ABORT_THRESHOLD:
9943 			*i1 = tcp->tcp_second_ctimer_threshold;
9944 			break;
9945 		case TCP_RECVDSTADDR:
9946 			*i1 = tcp->tcp_recvdstaddr;
9947 			break;
9948 		case TCP_ANONPRIVBIND:
9949 			*i1 = tcp->tcp_anon_priv_bind;
9950 			break;
9951 		case TCP_EXCLBIND:
9952 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9953 			break;
9954 		case TCP_INIT_CWND:
9955 			*i1 = tcp->tcp_init_cwnd;
9956 			break;
9957 		case TCP_KEEPALIVE_THRESHOLD:
9958 			*i1 = tcp->tcp_ka_interval;
9959 			break;
9960 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9961 			*i1 = tcp->tcp_ka_abort_thres;
9962 			break;
9963 		case TCP_CORK:
9964 			*i1 = tcp->tcp_cork;
9965 			break;
9966 		default:
9967 			return (-1);
9968 		}
9969 		break;
9970 	case IPPROTO_IP:
9971 		if (tcp->tcp_family != AF_INET)
9972 			return (-1);
9973 		switch (name) {
9974 		case IP_OPTIONS:
9975 		case T_IP_OPTIONS: {
9976 			/*
9977 			 * This is compatible with BSD in that in only return
9978 			 * the reverse source route with the final destination
9979 			 * as the last entry. The first 4 bytes of the option
9980 			 * will contain the final destination.
9981 			 */
9982 			int	opt_len;
9983 
9984 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9985 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9986 			ASSERT(opt_len >= 0);
9987 			/* Caller ensures enough space */
9988 			if (opt_len > 0) {
9989 				/*
9990 				 * TODO: Do we have to handle getsockopt on an
9991 				 * initiator as well?
9992 				 */
9993 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9994 			}
9995 			return (0);
9996 			}
9997 		case IP_TOS:
9998 		case T_IP_TOS:
9999 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10000 			break;
10001 		case IP_TTL:
10002 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10003 			break;
10004 		case IP_NEXTHOP:
10005 			/* Handled at IP level */
10006 			return (-EINVAL);
10007 		default:
10008 			return (-1);
10009 		}
10010 		break;
10011 	case IPPROTO_IPV6:
10012 		/*
10013 		 * IPPROTO_IPV6 options are only supported for sockets
10014 		 * that are using IPv6 on the wire.
10015 		 */
10016 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10017 			return (-1);
10018 		}
10019 		switch (name) {
10020 		case IPV6_UNICAST_HOPS:
10021 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10022 			break;	/* goto sizeof (int) option return */
10023 		case IPV6_BOUND_IF:
10024 			/* Zero if not set */
10025 			*i1 = tcp->tcp_bound_if;
10026 			break;	/* goto sizeof (int) option return */
10027 		case IPV6_RECVPKTINFO:
10028 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10029 				*i1 = 1;
10030 			else
10031 				*i1 = 0;
10032 			break;	/* goto sizeof (int) option return */
10033 		case IPV6_RECVTCLASS:
10034 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10035 				*i1 = 1;
10036 			else
10037 				*i1 = 0;
10038 			break;	/* goto sizeof (int) option return */
10039 		case IPV6_RECVHOPLIMIT:
10040 			if (tcp->tcp_ipv6_recvancillary &
10041 			    TCP_IPV6_RECVHOPLIMIT)
10042 				*i1 = 1;
10043 			else
10044 				*i1 = 0;
10045 			break;	/* goto sizeof (int) option return */
10046 		case IPV6_RECVHOPOPTS:
10047 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10048 				*i1 = 1;
10049 			else
10050 				*i1 = 0;
10051 			break;	/* goto sizeof (int) option return */
10052 		case IPV6_RECVDSTOPTS:
10053 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10054 				*i1 = 1;
10055 			else
10056 				*i1 = 0;
10057 			break;	/* goto sizeof (int) option return */
10058 		case _OLD_IPV6_RECVDSTOPTS:
10059 			if (tcp->tcp_ipv6_recvancillary &
10060 			    TCP_OLD_IPV6_RECVDSTOPTS)
10061 				*i1 = 1;
10062 			else
10063 				*i1 = 0;
10064 			break;	/* goto sizeof (int) option return */
10065 		case IPV6_RECVRTHDR:
10066 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10067 				*i1 = 1;
10068 			else
10069 				*i1 = 0;
10070 			break;	/* goto sizeof (int) option return */
10071 		case IPV6_RECVRTHDRDSTOPTS:
10072 			if (tcp->tcp_ipv6_recvancillary &
10073 			    TCP_IPV6_RECVRTDSTOPTS)
10074 				*i1 = 1;
10075 			else
10076 				*i1 = 0;
10077 			break;	/* goto sizeof (int) option return */
10078 		case IPV6_PKTINFO: {
10079 			/* XXX assumes that caller has room for max size! */
10080 			struct in6_pktinfo *pkti;
10081 
10082 			pkti = (struct in6_pktinfo *)ptr;
10083 			if (ipp->ipp_fields & IPPF_IFINDEX)
10084 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10085 			else
10086 				pkti->ipi6_ifindex = 0;
10087 			if (ipp->ipp_fields & IPPF_ADDR)
10088 				pkti->ipi6_addr = ipp->ipp_addr;
10089 			else
10090 				pkti->ipi6_addr = ipv6_all_zeros;
10091 			return (sizeof (struct in6_pktinfo));
10092 		}
10093 		case IPV6_TCLASS:
10094 			if (ipp->ipp_fields & IPPF_TCLASS)
10095 				*i1 = ipp->ipp_tclass;
10096 			else
10097 				*i1 = IPV6_FLOW_TCLASS(
10098 				    IPV6_DEFAULT_VERS_AND_FLOW);
10099 			break;	/* goto sizeof (int) option return */
10100 		case IPV6_NEXTHOP: {
10101 			sin6_t *sin6 = (sin6_t *)ptr;
10102 
10103 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10104 				return (0);
10105 			*sin6 = sin6_null;
10106 			sin6->sin6_family = AF_INET6;
10107 			sin6->sin6_addr = ipp->ipp_nexthop;
10108 			return (sizeof (sin6_t));
10109 		}
10110 		case IPV6_HOPOPTS:
10111 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10112 				return (0);
10113 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10114 				return (0);
10115 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10116 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10117 			if (tcp->tcp_label_len > 0) {
10118 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10119 				ptr[1] = (ipp->ipp_hopoptslen -
10120 				    tcp->tcp_label_len + 7) / 8 - 1;
10121 			}
10122 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10123 		case IPV6_RTHDRDSTOPTS:
10124 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10125 				return (0);
10126 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10127 			return (ipp->ipp_rtdstoptslen);
10128 		case IPV6_RTHDR:
10129 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10130 				return (0);
10131 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10132 			return (ipp->ipp_rthdrlen);
10133 		case IPV6_DSTOPTS:
10134 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10135 				return (0);
10136 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10137 			return (ipp->ipp_dstoptslen);
10138 		case IPV6_SRC_PREFERENCES:
10139 			return (ip6_get_src_preferences(connp,
10140 			    (uint32_t *)ptr));
10141 		case IPV6_PATHMTU: {
10142 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10143 
10144 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10145 				return (-1);
10146 
10147 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10148 				connp->conn_fport, mtuinfo,
10149 				connp->conn_netstack));
10150 		}
10151 		default:
10152 			return (-1);
10153 		}
10154 		break;
10155 	default:
10156 		return (-1);
10157 	}
10158 	return (sizeof (int));
10159 }
10160 
10161 /*
10162  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10163  * Parameters are assumed to be verified by the caller.
10164  */
10165 /* ARGSUSED */
10166 int
10167 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10168     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10169     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10170 {
10171 	conn_t	*connp = Q_TO_CONN(q);
10172 	tcp_t	*tcp = connp->conn_tcp;
10173 	int	*i1 = (int *)invalp;
10174 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10175 	boolean_t checkonly;
10176 	int	reterr;
10177 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10178 
10179 	switch (optset_context) {
10180 	case SETFN_OPTCOM_CHECKONLY:
10181 		checkonly = B_TRUE;
10182 		/*
10183 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10184 		 * inlen != 0 implies value supplied and
10185 		 * 	we have to "pretend" to set it.
10186 		 * inlen == 0 implies that there is no
10187 		 * 	value part in T_CHECK request and just validation
10188 		 * done elsewhere should be enough, we just return here.
10189 		 */
10190 		if (inlen == 0) {
10191 			*outlenp = 0;
10192 			return (0);
10193 		}
10194 		break;
10195 	case SETFN_OPTCOM_NEGOTIATE:
10196 		checkonly = B_FALSE;
10197 		break;
10198 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10199 	case SETFN_CONN_NEGOTIATE:
10200 		checkonly = B_FALSE;
10201 		/*
10202 		 * Negotiating local and "association-related" options
10203 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10204 		 * primitives is allowed by XTI, but we choose
10205 		 * to not implement this style negotiation for Internet
10206 		 * protocols (We interpret it is a must for OSI world but
10207 		 * optional for Internet protocols) for all options.
10208 		 * [ Will do only for the few options that enable test
10209 		 * suites that our XTI implementation of this feature
10210 		 * works for transports that do allow it ]
10211 		 */
10212 		if (!tcp_allow_connopt_set(level, name)) {
10213 			*outlenp = 0;
10214 			return (EINVAL);
10215 		}
10216 		break;
10217 	default:
10218 		/*
10219 		 * We should never get here
10220 		 */
10221 		*outlenp = 0;
10222 		return (EINVAL);
10223 	}
10224 
10225 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10226 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10227 
10228 	/*
10229 	 * For TCP, we should have no ancillary data sent down
10230 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10231 	 * has to be zero.
10232 	 */
10233 	ASSERT(thisdg_attrs == NULL);
10234 
10235 	/*
10236 	 * For fixed length options, no sanity check
10237 	 * of passed in length is done. It is assumed *_optcom_req()
10238 	 * routines do the right thing.
10239 	 */
10240 
10241 	switch (level) {
10242 	case SOL_SOCKET:
10243 		switch (name) {
10244 		case SO_LINGER: {
10245 			struct linger *lgr = (struct linger *)invalp;
10246 
10247 			if (!checkonly) {
10248 				if (lgr->l_onoff) {
10249 					tcp->tcp_linger = 1;
10250 					tcp->tcp_lingertime = lgr->l_linger;
10251 				} else {
10252 					tcp->tcp_linger = 0;
10253 					tcp->tcp_lingertime = 0;
10254 				}
10255 				/* struct copy */
10256 				*(struct linger *)outvalp = *lgr;
10257 			} else {
10258 				if (!lgr->l_onoff) {
10259 				    ((struct linger *)outvalp)->l_onoff = 0;
10260 				    ((struct linger *)outvalp)->l_linger = 0;
10261 				} else {
10262 				    /* struct copy */
10263 				    *(struct linger *)outvalp = *lgr;
10264 				}
10265 			}
10266 			*outlenp = sizeof (struct linger);
10267 			return (0);
10268 		}
10269 		case SO_DEBUG:
10270 			if (!checkonly)
10271 				tcp->tcp_debug = onoff;
10272 			break;
10273 		case SO_KEEPALIVE:
10274 			if (checkonly) {
10275 				/* T_CHECK case */
10276 				break;
10277 			}
10278 
10279 			if (!onoff) {
10280 				if (tcp->tcp_ka_enabled) {
10281 					if (tcp->tcp_ka_tid != 0) {
10282 						(void) TCP_TIMER_CANCEL(tcp,
10283 						    tcp->tcp_ka_tid);
10284 						tcp->tcp_ka_tid = 0;
10285 					}
10286 					tcp->tcp_ka_enabled = 0;
10287 				}
10288 				break;
10289 			}
10290 			if (!tcp->tcp_ka_enabled) {
10291 				/* Crank up the keepalive timer */
10292 				tcp->tcp_ka_last_intrvl = 0;
10293 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10294 				    tcp_keepalive_killer,
10295 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10296 				tcp->tcp_ka_enabled = 1;
10297 			}
10298 			break;
10299 		case SO_DONTROUTE:
10300 			/*
10301 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10302 			 * only of interest to IP.  We track them here only so
10303 			 * that we can report their current value.
10304 			 */
10305 			if (!checkonly) {
10306 				tcp->tcp_dontroute = onoff;
10307 				tcp->tcp_connp->conn_dontroute = onoff;
10308 			}
10309 			break;
10310 		case SO_USELOOPBACK:
10311 			if (!checkonly) {
10312 				tcp->tcp_useloopback = onoff;
10313 				tcp->tcp_connp->conn_loopback = onoff;
10314 			}
10315 			break;
10316 		case SO_BROADCAST:
10317 			if (!checkonly) {
10318 				tcp->tcp_broadcast = onoff;
10319 				tcp->tcp_connp->conn_broadcast = onoff;
10320 			}
10321 			break;
10322 		case SO_REUSEADDR:
10323 			if (!checkonly) {
10324 				tcp->tcp_reuseaddr = onoff;
10325 				tcp->tcp_connp->conn_reuseaddr = onoff;
10326 			}
10327 			break;
10328 		case SO_OOBINLINE:
10329 			if (!checkonly)
10330 				tcp->tcp_oobinline = onoff;
10331 			break;
10332 		case SO_DGRAM_ERRIND:
10333 			if (!checkonly)
10334 				tcp->tcp_dgram_errind = onoff;
10335 			break;
10336 		case SO_SNDBUF: {
10337 			if (*i1 > tcps->tcps_max_buf) {
10338 				*outlenp = 0;
10339 				return (ENOBUFS);
10340 			}
10341 			if (checkonly)
10342 				break;
10343 
10344 			tcp->tcp_xmit_hiwater = *i1;
10345 			if (tcps->tcps_snd_lowat_fraction != 0)
10346 				tcp->tcp_xmit_lowater =
10347 				    tcp->tcp_xmit_hiwater /
10348 				    tcps->tcps_snd_lowat_fraction;
10349 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10350 			/*
10351 			 * If we are flow-controlled, recheck the condition.
10352 			 * There are apps that increase SO_SNDBUF size when
10353 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10354 			 * control condition to be lifted right away.
10355 			 */
10356 			mutex_enter(&tcp->tcp_non_sq_lock);
10357 			if (tcp->tcp_flow_stopped &&
10358 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10359 				tcp_clrqfull(tcp);
10360 			}
10361 			mutex_exit(&tcp->tcp_non_sq_lock);
10362 			break;
10363 		}
10364 		case SO_RCVBUF:
10365 			if (*i1 > tcps->tcps_max_buf) {
10366 				*outlenp = 0;
10367 				return (ENOBUFS);
10368 			}
10369 			/* Silently ignore zero */
10370 			if (!checkonly && *i1 != 0) {
10371 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10372 				(void) tcp_rwnd_set(tcp, *i1);
10373 			}
10374 			/*
10375 			 * XXX should we return the rwnd here
10376 			 * and tcp_opt_get ?
10377 			 */
10378 			break;
10379 		case SO_SND_COPYAVOID:
10380 			if (!checkonly) {
10381 				/* we only allow enable at most once for now */
10382 				if (tcp->tcp_loopback ||
10383 				    (!tcp->tcp_snd_zcopy_aware &&
10384 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10385 					*outlenp = 0;
10386 					return (EOPNOTSUPP);
10387 				}
10388 				tcp->tcp_snd_zcopy_aware = 1;
10389 			}
10390 			break;
10391 		case SO_ALLZONES:
10392 			/* Handled at the IP level */
10393 			return (-EINVAL);
10394 		case SO_ANON_MLP:
10395 			if (!checkonly) {
10396 				mutex_enter(&connp->conn_lock);
10397 				connp->conn_anon_mlp = onoff;
10398 				mutex_exit(&connp->conn_lock);
10399 			}
10400 			break;
10401 		case SO_MAC_EXEMPT:
10402 			if (secpolicy_net_mac_aware(cr) != 0 ||
10403 			    IPCL_IS_BOUND(connp))
10404 				return (EACCES);
10405 			if (!checkonly) {
10406 				mutex_enter(&connp->conn_lock);
10407 				connp->conn_mac_exempt = onoff;
10408 				mutex_exit(&connp->conn_lock);
10409 			}
10410 			break;
10411 		case SO_EXCLBIND:
10412 			if (!checkonly)
10413 				tcp->tcp_exclbind = onoff;
10414 			break;
10415 		default:
10416 			*outlenp = 0;
10417 			return (EINVAL);
10418 		}
10419 		break;
10420 	case IPPROTO_TCP:
10421 		switch (name) {
10422 		case TCP_NODELAY:
10423 			if (!checkonly)
10424 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10425 			break;
10426 		case TCP_NOTIFY_THRESHOLD:
10427 			if (!checkonly)
10428 				tcp->tcp_first_timer_threshold = *i1;
10429 			break;
10430 		case TCP_ABORT_THRESHOLD:
10431 			if (!checkonly)
10432 				tcp->tcp_second_timer_threshold = *i1;
10433 			break;
10434 		case TCP_CONN_NOTIFY_THRESHOLD:
10435 			if (!checkonly)
10436 				tcp->tcp_first_ctimer_threshold = *i1;
10437 			break;
10438 		case TCP_CONN_ABORT_THRESHOLD:
10439 			if (!checkonly)
10440 				tcp->tcp_second_ctimer_threshold = *i1;
10441 			break;
10442 		case TCP_RECVDSTADDR:
10443 			if (tcp->tcp_state > TCPS_LISTEN)
10444 				return (EOPNOTSUPP);
10445 			if (!checkonly)
10446 				tcp->tcp_recvdstaddr = onoff;
10447 			break;
10448 		case TCP_ANONPRIVBIND:
10449 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10450 				*outlenp = 0;
10451 				return (reterr);
10452 			}
10453 			if (!checkonly) {
10454 				tcp->tcp_anon_priv_bind = onoff;
10455 			}
10456 			break;
10457 		case TCP_EXCLBIND:
10458 			if (!checkonly)
10459 				tcp->tcp_exclbind = onoff;
10460 			break;	/* goto sizeof (int) option return */
10461 		case TCP_INIT_CWND: {
10462 			uint32_t init_cwnd = *((uint32_t *)invalp);
10463 
10464 			if (checkonly)
10465 				break;
10466 
10467 			/*
10468 			 * Only allow socket with network configuration
10469 			 * privilege to set the initial cwnd to be larger
10470 			 * than allowed by RFC 3390.
10471 			 */
10472 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10473 				tcp->tcp_init_cwnd = init_cwnd;
10474 				break;
10475 			}
10476 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10477 				*outlenp = 0;
10478 				return (reterr);
10479 			}
10480 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10481 				*outlenp = 0;
10482 				return (EINVAL);
10483 			}
10484 			tcp->tcp_init_cwnd = init_cwnd;
10485 			break;
10486 		}
10487 		case TCP_KEEPALIVE_THRESHOLD:
10488 			if (checkonly)
10489 				break;
10490 
10491 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10492 			    *i1 > tcps->tcps_keepalive_interval_high) {
10493 				*outlenp = 0;
10494 				return (EINVAL);
10495 			}
10496 			if (*i1 != tcp->tcp_ka_interval) {
10497 				tcp->tcp_ka_interval = *i1;
10498 				/*
10499 				 * Check if we need to restart the
10500 				 * keepalive timer.
10501 				 */
10502 				if (tcp->tcp_ka_tid != 0) {
10503 					ASSERT(tcp->tcp_ka_enabled);
10504 					(void) TCP_TIMER_CANCEL(tcp,
10505 					    tcp->tcp_ka_tid);
10506 					tcp->tcp_ka_last_intrvl = 0;
10507 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10508 					    tcp_keepalive_killer,
10509 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10510 				}
10511 			}
10512 			break;
10513 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10514 			if (!checkonly) {
10515 				if (*i1 <
10516 				    tcps->tcps_keepalive_abort_interval_low ||
10517 				    *i1 >
10518 				    tcps->tcps_keepalive_abort_interval_high) {
10519 					*outlenp = 0;
10520 					return (EINVAL);
10521 				}
10522 				tcp->tcp_ka_abort_thres = *i1;
10523 			}
10524 			break;
10525 		case TCP_CORK:
10526 			if (!checkonly) {
10527 				/*
10528 				 * if tcp->tcp_cork was set and is now
10529 				 * being unset, we have to make sure that
10530 				 * the remaining data gets sent out. Also
10531 				 * unset tcp->tcp_cork so that tcp_wput_data()
10532 				 * can send data even if it is less than mss
10533 				 */
10534 				if (tcp->tcp_cork && onoff == 0 &&
10535 				    tcp->tcp_unsent > 0) {
10536 					tcp->tcp_cork = B_FALSE;
10537 					tcp_wput_data(tcp, NULL, B_FALSE);
10538 				}
10539 				tcp->tcp_cork = onoff;
10540 			}
10541 			break;
10542 		default:
10543 			*outlenp = 0;
10544 			return (EINVAL);
10545 		}
10546 		break;
10547 	case IPPROTO_IP:
10548 		if (tcp->tcp_family != AF_INET) {
10549 			*outlenp = 0;
10550 			return (ENOPROTOOPT);
10551 		}
10552 		switch (name) {
10553 		case IP_OPTIONS:
10554 		case T_IP_OPTIONS:
10555 			reterr = tcp_opt_set_header(tcp, checkonly,
10556 			    invalp, inlen);
10557 			if (reterr) {
10558 				*outlenp = 0;
10559 				return (reterr);
10560 			}
10561 			/* OK return - copy input buffer into output buffer */
10562 			if (invalp != outvalp) {
10563 				/* don't trust bcopy for identical src/dst */
10564 				bcopy(invalp, outvalp, inlen);
10565 			}
10566 			*outlenp = inlen;
10567 			return (0);
10568 		case IP_TOS:
10569 		case T_IP_TOS:
10570 			if (!checkonly) {
10571 				tcp->tcp_ipha->ipha_type_of_service =
10572 				    (uchar_t)*i1;
10573 				tcp->tcp_tos = (uchar_t)*i1;
10574 			}
10575 			break;
10576 		case IP_TTL:
10577 			if (!checkonly) {
10578 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10579 				tcp->tcp_ttl = (uchar_t)*i1;
10580 			}
10581 			break;
10582 		case IP_BOUND_IF:
10583 		case IP_NEXTHOP:
10584 			/* Handled at the IP level */
10585 			return (-EINVAL);
10586 		case IP_SEC_OPT:
10587 			/*
10588 			 * We should not allow policy setting after
10589 			 * we start listening for connections.
10590 			 */
10591 			if (tcp->tcp_state == TCPS_LISTEN) {
10592 				return (EINVAL);
10593 			} else {
10594 				/* Handled at the IP level */
10595 				return (-EINVAL);
10596 			}
10597 		default:
10598 			*outlenp = 0;
10599 			return (EINVAL);
10600 		}
10601 		break;
10602 	case IPPROTO_IPV6: {
10603 		ip6_pkt_t		*ipp;
10604 
10605 		/*
10606 		 * IPPROTO_IPV6 options are only supported for sockets
10607 		 * that are using IPv6 on the wire.
10608 		 */
10609 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10610 			*outlenp = 0;
10611 			return (ENOPROTOOPT);
10612 		}
10613 		/*
10614 		 * Only sticky options; no ancillary data
10615 		 */
10616 		ASSERT(thisdg_attrs == NULL);
10617 		ipp = &tcp->tcp_sticky_ipp;
10618 
10619 		switch (name) {
10620 		case IPV6_UNICAST_HOPS:
10621 			/* -1 means use default */
10622 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10623 				*outlenp = 0;
10624 				return (EINVAL);
10625 			}
10626 			if (!checkonly) {
10627 				if (*i1 == -1) {
10628 					tcp->tcp_ip6h->ip6_hops =
10629 					    ipp->ipp_unicast_hops =
10630 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10631 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10632 					/* Pass modified value to IP. */
10633 					*i1 = tcp->tcp_ip6h->ip6_hops;
10634 				} else {
10635 					tcp->tcp_ip6h->ip6_hops =
10636 					    ipp->ipp_unicast_hops =
10637 					    (uint8_t)*i1;
10638 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10639 				}
10640 				reterr = tcp_build_hdrs(q, tcp);
10641 				if (reterr != 0)
10642 					return (reterr);
10643 			}
10644 			break;
10645 		case IPV6_BOUND_IF:
10646 			if (!checkonly) {
10647 				int error = 0;
10648 
10649 				tcp->tcp_bound_if = *i1;
10650 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10651 				    B_TRUE, checkonly, level, name, mblk);
10652 				if (error != 0) {
10653 					*outlenp = 0;
10654 					return (error);
10655 				}
10656 			}
10657 			break;
10658 		/*
10659 		 * Set boolean switches for ancillary data delivery
10660 		 */
10661 		case IPV6_RECVPKTINFO:
10662 			if (!checkonly) {
10663 				if (onoff)
10664 					tcp->tcp_ipv6_recvancillary |=
10665 					    TCP_IPV6_RECVPKTINFO;
10666 				else
10667 					tcp->tcp_ipv6_recvancillary &=
10668 					    ~TCP_IPV6_RECVPKTINFO;
10669 				/* Force it to be sent up with the next msg */
10670 				tcp->tcp_recvifindex = 0;
10671 			}
10672 			break;
10673 		case IPV6_RECVTCLASS:
10674 			if (!checkonly) {
10675 				if (onoff)
10676 					tcp->tcp_ipv6_recvancillary |=
10677 					    TCP_IPV6_RECVTCLASS;
10678 				else
10679 					tcp->tcp_ipv6_recvancillary &=
10680 					    ~TCP_IPV6_RECVTCLASS;
10681 			}
10682 			break;
10683 		case IPV6_RECVHOPLIMIT:
10684 			if (!checkonly) {
10685 				if (onoff)
10686 					tcp->tcp_ipv6_recvancillary |=
10687 					    TCP_IPV6_RECVHOPLIMIT;
10688 				else
10689 					tcp->tcp_ipv6_recvancillary &=
10690 					    ~TCP_IPV6_RECVHOPLIMIT;
10691 				/* Force it to be sent up with the next msg */
10692 				tcp->tcp_recvhops = 0xffffffffU;
10693 			}
10694 			break;
10695 		case IPV6_RECVHOPOPTS:
10696 			if (!checkonly) {
10697 				if (onoff)
10698 					tcp->tcp_ipv6_recvancillary |=
10699 					    TCP_IPV6_RECVHOPOPTS;
10700 				else
10701 					tcp->tcp_ipv6_recvancillary &=
10702 					    ~TCP_IPV6_RECVHOPOPTS;
10703 			}
10704 			break;
10705 		case IPV6_RECVDSTOPTS:
10706 			if (!checkonly) {
10707 				if (onoff)
10708 					tcp->tcp_ipv6_recvancillary |=
10709 					    TCP_IPV6_RECVDSTOPTS;
10710 				else
10711 					tcp->tcp_ipv6_recvancillary &=
10712 					    ~TCP_IPV6_RECVDSTOPTS;
10713 			}
10714 			break;
10715 		case _OLD_IPV6_RECVDSTOPTS:
10716 			if (!checkonly) {
10717 				if (onoff)
10718 					tcp->tcp_ipv6_recvancillary |=
10719 					    TCP_OLD_IPV6_RECVDSTOPTS;
10720 				else
10721 					tcp->tcp_ipv6_recvancillary &=
10722 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10723 			}
10724 			break;
10725 		case IPV6_RECVRTHDR:
10726 			if (!checkonly) {
10727 				if (onoff)
10728 					tcp->tcp_ipv6_recvancillary |=
10729 					    TCP_IPV6_RECVRTHDR;
10730 				else
10731 					tcp->tcp_ipv6_recvancillary &=
10732 					    ~TCP_IPV6_RECVRTHDR;
10733 			}
10734 			break;
10735 		case IPV6_RECVRTHDRDSTOPTS:
10736 			if (!checkonly) {
10737 				if (onoff)
10738 					tcp->tcp_ipv6_recvancillary |=
10739 					    TCP_IPV6_RECVRTDSTOPTS;
10740 				else
10741 					tcp->tcp_ipv6_recvancillary &=
10742 					    ~TCP_IPV6_RECVRTDSTOPTS;
10743 			}
10744 			break;
10745 		case IPV6_PKTINFO:
10746 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10747 				return (EINVAL);
10748 			if (checkonly)
10749 				break;
10750 
10751 			if (inlen == 0) {
10752 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10753 			} else {
10754 				struct in6_pktinfo *pkti;
10755 
10756 				pkti = (struct in6_pktinfo *)invalp;
10757 				/*
10758 				 * RFC 3542 states that ipi6_addr must be
10759 				 * the unspecified address when setting the
10760 				 * IPV6_PKTINFO sticky socket option on a
10761 				 * TCP socket.
10762 				 */
10763 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10764 					return (EINVAL);
10765 				/*
10766 				 * ip6_set_pktinfo() validates the source
10767 				 * address and interface index.
10768 				 */
10769 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10770 				    pkti, mblk);
10771 				if (reterr != 0)
10772 					return (reterr);
10773 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10774 				ipp->ipp_addr = pkti->ipi6_addr;
10775 				if (ipp->ipp_ifindex != 0)
10776 					ipp->ipp_fields |= IPPF_IFINDEX;
10777 				else
10778 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10779 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10780 					ipp->ipp_fields |= IPPF_ADDR;
10781 				else
10782 					ipp->ipp_fields &= ~IPPF_ADDR;
10783 			}
10784 			reterr = tcp_build_hdrs(q, tcp);
10785 			if (reterr != 0)
10786 				return (reterr);
10787 			break;
10788 		case IPV6_TCLASS:
10789 			if (inlen != 0 && inlen != sizeof (int))
10790 				return (EINVAL);
10791 			if (checkonly)
10792 				break;
10793 
10794 			if (inlen == 0) {
10795 				ipp->ipp_fields &= ~IPPF_TCLASS;
10796 			} else {
10797 				if (*i1 > 255 || *i1 < -1)
10798 					return (EINVAL);
10799 				if (*i1 == -1) {
10800 					ipp->ipp_tclass = 0;
10801 					*i1 = 0;
10802 				} else {
10803 					ipp->ipp_tclass = *i1;
10804 				}
10805 				ipp->ipp_fields |= IPPF_TCLASS;
10806 			}
10807 			reterr = tcp_build_hdrs(q, tcp);
10808 			if (reterr != 0)
10809 				return (reterr);
10810 			break;
10811 		case IPV6_NEXTHOP:
10812 			/*
10813 			 * IP will verify that the nexthop is reachable
10814 			 * and fail for sticky options.
10815 			 */
10816 			if (inlen != 0 && inlen != sizeof (sin6_t))
10817 				return (EINVAL);
10818 			if (checkonly)
10819 				break;
10820 
10821 			if (inlen == 0) {
10822 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10823 			} else {
10824 				sin6_t *sin6 = (sin6_t *)invalp;
10825 
10826 				if (sin6->sin6_family != AF_INET6)
10827 					return (EAFNOSUPPORT);
10828 				if (IN6_IS_ADDR_V4MAPPED(
10829 				    &sin6->sin6_addr))
10830 					return (EADDRNOTAVAIL);
10831 				ipp->ipp_nexthop = sin6->sin6_addr;
10832 				if (!IN6_IS_ADDR_UNSPECIFIED(
10833 				    &ipp->ipp_nexthop))
10834 					ipp->ipp_fields |= IPPF_NEXTHOP;
10835 				else
10836 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10837 			}
10838 			reterr = tcp_build_hdrs(q, tcp);
10839 			if (reterr != 0)
10840 				return (reterr);
10841 			break;
10842 		case IPV6_HOPOPTS: {
10843 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10844 
10845 			/*
10846 			 * Sanity checks - minimum size, size a multiple of
10847 			 * eight bytes, and matching size passed in.
10848 			 */
10849 			if (inlen != 0 &&
10850 			    inlen != (8 * (hopts->ip6h_len + 1)))
10851 				return (EINVAL);
10852 
10853 			if (checkonly)
10854 				break;
10855 
10856 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10857 			    (uchar_t **)&ipp->ipp_hopopts,
10858 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10859 			if (reterr != 0)
10860 				return (reterr);
10861 			if (ipp->ipp_hopoptslen == 0)
10862 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10863 			else
10864 				ipp->ipp_fields |= IPPF_HOPOPTS;
10865 			reterr = tcp_build_hdrs(q, tcp);
10866 			if (reterr != 0)
10867 				return (reterr);
10868 			break;
10869 		}
10870 		case IPV6_RTHDRDSTOPTS: {
10871 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10872 
10873 			/*
10874 			 * Sanity checks - minimum size, size a multiple of
10875 			 * eight bytes, and matching size passed in.
10876 			 */
10877 			if (inlen != 0 &&
10878 			    inlen != (8 * (dopts->ip6d_len + 1)))
10879 				return (EINVAL);
10880 
10881 			if (checkonly)
10882 				break;
10883 
10884 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10885 			    (uchar_t **)&ipp->ipp_rtdstopts,
10886 			    &ipp->ipp_rtdstoptslen, 0);
10887 			if (reterr != 0)
10888 				return (reterr);
10889 			if (ipp->ipp_rtdstoptslen == 0)
10890 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10891 			else
10892 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10893 			reterr = tcp_build_hdrs(q, tcp);
10894 			if (reterr != 0)
10895 				return (reterr);
10896 			break;
10897 		}
10898 		case IPV6_DSTOPTS: {
10899 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10900 
10901 			/*
10902 			 * Sanity checks - minimum size, size a multiple of
10903 			 * eight bytes, and matching size passed in.
10904 			 */
10905 			if (inlen != 0 &&
10906 			    inlen != (8 * (dopts->ip6d_len + 1)))
10907 				return (EINVAL);
10908 
10909 			if (checkonly)
10910 				break;
10911 
10912 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10913 			    (uchar_t **)&ipp->ipp_dstopts,
10914 			    &ipp->ipp_dstoptslen, 0);
10915 			if (reterr != 0)
10916 				return (reterr);
10917 			if (ipp->ipp_dstoptslen == 0)
10918 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10919 			else
10920 				ipp->ipp_fields |= IPPF_DSTOPTS;
10921 			reterr = tcp_build_hdrs(q, tcp);
10922 			if (reterr != 0)
10923 				return (reterr);
10924 			break;
10925 		}
10926 		case IPV6_RTHDR: {
10927 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10928 
10929 			/*
10930 			 * Sanity checks - minimum size, size a multiple of
10931 			 * eight bytes, and matching size passed in.
10932 			 */
10933 			if (inlen != 0 &&
10934 			    inlen != (8 * (rt->ip6r_len + 1)))
10935 				return (EINVAL);
10936 
10937 			if (checkonly)
10938 				break;
10939 
10940 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10941 			    (uchar_t **)&ipp->ipp_rthdr,
10942 			    &ipp->ipp_rthdrlen, 0);
10943 			if (reterr != 0)
10944 				return (reterr);
10945 			if (ipp->ipp_rthdrlen == 0)
10946 				ipp->ipp_fields &= ~IPPF_RTHDR;
10947 			else
10948 				ipp->ipp_fields |= IPPF_RTHDR;
10949 			reterr = tcp_build_hdrs(q, tcp);
10950 			if (reterr != 0)
10951 				return (reterr);
10952 			break;
10953 		}
10954 		case IPV6_V6ONLY:
10955 			if (!checkonly)
10956 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10957 			break;
10958 		case IPV6_USE_MIN_MTU:
10959 			if (inlen != sizeof (int))
10960 				return (EINVAL);
10961 
10962 			if (*i1 < -1 || *i1 > 1)
10963 				return (EINVAL);
10964 
10965 			if (checkonly)
10966 				break;
10967 
10968 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10969 			ipp->ipp_use_min_mtu = *i1;
10970 			break;
10971 		case IPV6_BOUND_PIF:
10972 			/* Handled at the IP level */
10973 			return (-EINVAL);
10974 		case IPV6_SEC_OPT:
10975 			/*
10976 			 * We should not allow policy setting after
10977 			 * we start listening for connections.
10978 			 */
10979 			if (tcp->tcp_state == TCPS_LISTEN) {
10980 				return (EINVAL);
10981 			} else {
10982 				/* Handled at the IP level */
10983 				return (-EINVAL);
10984 			}
10985 		case IPV6_SRC_PREFERENCES:
10986 			if (inlen != sizeof (uint32_t))
10987 				return (EINVAL);
10988 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10989 			    *(uint32_t *)invalp);
10990 			if (reterr != 0) {
10991 				*outlenp = 0;
10992 				return (reterr);
10993 			}
10994 			break;
10995 		default:
10996 			*outlenp = 0;
10997 			return (EINVAL);
10998 		}
10999 		break;
11000 	}		/* end IPPROTO_IPV6 */
11001 	default:
11002 		*outlenp = 0;
11003 		return (EINVAL);
11004 	}
11005 	/*
11006 	 * Common case of OK return with outval same as inval
11007 	 */
11008 	if (invalp != outvalp) {
11009 		/* don't trust bcopy for identical src/dst */
11010 		(void) bcopy(invalp, outvalp, inlen);
11011 	}
11012 	*outlenp = inlen;
11013 	return (0);
11014 }
11015 
11016 /*
11017  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11018  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11019  * headers, and the maximum size tcp header (to avoid reallocation
11020  * on the fly for additional tcp options).
11021  * Returns failure if can't allocate memory.
11022  */
11023 static int
11024 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11025 {
11026 	char	*hdrs;
11027 	uint_t	hdrs_len;
11028 	ip6i_t	*ip6i;
11029 	char	buf[TCP_MAX_HDR_LENGTH];
11030 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11031 	in6_addr_t src, dst;
11032 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11033 
11034 	/*
11035 	 * save the existing tcp header and source/dest IP addresses
11036 	 */
11037 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11038 	src = tcp->tcp_ip6h->ip6_src;
11039 	dst = tcp->tcp_ip6h->ip6_dst;
11040 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11041 	ASSERT(hdrs_len != 0);
11042 	if (hdrs_len > tcp->tcp_iphc_len) {
11043 		/* Need to reallocate */
11044 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11045 		if (hdrs == NULL)
11046 			return (ENOMEM);
11047 		if (tcp->tcp_iphc != NULL) {
11048 			if (tcp->tcp_hdr_grown) {
11049 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11050 			} else {
11051 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11052 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11053 			}
11054 			tcp->tcp_iphc_len = 0;
11055 		}
11056 		ASSERT(tcp->tcp_iphc_len == 0);
11057 		tcp->tcp_iphc = hdrs;
11058 		tcp->tcp_iphc_len = hdrs_len;
11059 		tcp->tcp_hdr_grown = B_TRUE;
11060 	}
11061 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11062 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11063 
11064 	/* Set header fields not in ipp */
11065 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11066 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11067 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11068 	} else {
11069 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11070 	}
11071 	/*
11072 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11073 	 *
11074 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11075 	 */
11076 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11077 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11078 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11079 
11080 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11081 
11082 	tcp->tcp_ip6h->ip6_src = src;
11083 	tcp->tcp_ip6h->ip6_dst = dst;
11084 
11085 	/*
11086 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11087 	 * the default value for TCP.
11088 	 */
11089 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11090 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11091 
11092 	/*
11093 	 * If we're setting extension headers after a connection
11094 	 * has been established, and if we have a routing header
11095 	 * among the extension headers, call ip_massage_options_v6 to
11096 	 * manipulate the routing header/ip6_dst set the checksum
11097 	 * difference in the tcp header template.
11098 	 * (This happens in tcp_connect_ipv6 if the routing header
11099 	 * is set prior to the connect.)
11100 	 * Set the tcp_sum to zero first in case we've cleared a
11101 	 * routing header or don't have one at all.
11102 	 */
11103 	tcp->tcp_sum = 0;
11104 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11105 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11106 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11107 		    (uint8_t *)tcp->tcp_tcph);
11108 		if (rth != NULL) {
11109 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11110 			    rth, tcps->tcps_netstack);
11111 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11112 			    (tcp->tcp_sum >> 16));
11113 		}
11114 	}
11115 
11116 	/* Try to get everything in a single mblk */
11117 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11118 	return (0);
11119 }
11120 
11121 /*
11122  * Transfer any source route option from ipha to buf/dst in reversed form.
11123  */
11124 static int
11125 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11126 {
11127 	ipoptp_t	opts;
11128 	uchar_t		*opt;
11129 	uint8_t		optval;
11130 	uint8_t		optlen;
11131 	uint32_t	len = 0;
11132 
11133 	for (optval = ipoptp_first(&opts, ipha);
11134 	    optval != IPOPT_EOL;
11135 	    optval = ipoptp_next(&opts)) {
11136 		opt = opts.ipoptp_cur;
11137 		optlen = opts.ipoptp_len;
11138 		switch (optval) {
11139 			int	off1, off2;
11140 		case IPOPT_SSRR:
11141 		case IPOPT_LSRR:
11142 
11143 			/* Reverse source route */
11144 			/*
11145 			 * First entry should be the next to last one in the
11146 			 * current source route (the last entry is our
11147 			 * address.)
11148 			 * The last entry should be the final destination.
11149 			 */
11150 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11151 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11152 			off1 = IPOPT_MINOFF_SR - 1;
11153 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11154 			if (off2 < 0) {
11155 				/* No entries in source route */
11156 				break;
11157 			}
11158 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11159 			/*
11160 			 * Note: use src since ipha has not had its src
11161 			 * and dst reversed (it is in the state it was
11162 			 * received.
11163 			 */
11164 			bcopy(&ipha->ipha_src, buf + off2,
11165 			    IP_ADDR_LEN);
11166 			off2 -= IP_ADDR_LEN;
11167 
11168 			while (off2 > 0) {
11169 				bcopy(opt + off2, buf + off1,
11170 				    IP_ADDR_LEN);
11171 				off1 += IP_ADDR_LEN;
11172 				off2 -= IP_ADDR_LEN;
11173 			}
11174 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11175 			buf += optlen;
11176 			len += optlen;
11177 			break;
11178 		}
11179 	}
11180 done:
11181 	/* Pad the resulting options */
11182 	while (len & 0x3) {
11183 		*buf++ = IPOPT_EOL;
11184 		len++;
11185 	}
11186 	return (len);
11187 }
11188 
11189 
11190 /*
11191  * Extract and revert a source route from ipha (if any)
11192  * and then update the relevant fields in both tcp_t and the standard header.
11193  */
11194 static void
11195 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11196 {
11197 	char	buf[TCP_MAX_HDR_LENGTH];
11198 	uint_t	tcph_len;
11199 	int	len;
11200 
11201 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11202 	len = IPH_HDR_LENGTH(ipha);
11203 	if (len == IP_SIMPLE_HDR_LENGTH)
11204 		/* Nothing to do */
11205 		return;
11206 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11207 	    (len & 0x3))
11208 		return;
11209 
11210 	tcph_len = tcp->tcp_tcp_hdr_len;
11211 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11212 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11213 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11214 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11215 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11216 	len += IP_SIMPLE_HDR_LENGTH;
11217 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11218 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11219 	if ((int)tcp->tcp_sum < 0)
11220 		tcp->tcp_sum--;
11221 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11222 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11223 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11224 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11225 	tcp->tcp_ip_hdr_len = len;
11226 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11227 	    (IP_VERSION << 4) | (len >> 2);
11228 	len += tcph_len;
11229 	tcp->tcp_hdr_len = len;
11230 }
11231 
11232 /*
11233  * Copy the standard header into its new location,
11234  * lay in the new options and then update the relevant
11235  * fields in both tcp_t and the standard header.
11236  */
11237 static int
11238 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11239 {
11240 	uint_t	tcph_len;
11241 	uint8_t	*ip_optp;
11242 	tcph_t	*new_tcph;
11243 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11244 
11245 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11246 		return (EINVAL);
11247 
11248 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11249 		return (EINVAL);
11250 
11251 	if (checkonly) {
11252 		/*
11253 		 * do not really set, just pretend to - T_CHECK
11254 		 */
11255 		return (0);
11256 	}
11257 
11258 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11259 	if (tcp->tcp_label_len > 0) {
11260 		int padlen;
11261 		uint8_t opt;
11262 
11263 		/* convert list termination to no-ops */
11264 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11265 		ip_optp += ip_optp[IPOPT_OLEN];
11266 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11267 		while (--padlen >= 0)
11268 			*ip_optp++ = opt;
11269 	}
11270 	tcph_len = tcp->tcp_tcp_hdr_len;
11271 	new_tcph = (tcph_t *)(ip_optp + len);
11272 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11273 	tcp->tcp_tcph = new_tcph;
11274 	bcopy(ptr, ip_optp, len);
11275 
11276 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11277 
11278 	tcp->tcp_ip_hdr_len = len;
11279 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11280 	    (IP_VERSION << 4) | (len >> 2);
11281 	tcp->tcp_hdr_len = len + tcph_len;
11282 	if (!TCP_IS_DETACHED(tcp)) {
11283 		/* Always allocate room for all options. */
11284 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11285 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11286 	}
11287 	return (0);
11288 }
11289 
11290 /* Get callback routine passed to nd_load by tcp_param_register */
11291 /* ARGSUSED */
11292 static int
11293 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11294 {
11295 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11296 
11297 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11298 	return (0);
11299 }
11300 
11301 /*
11302  * Walk through the param array specified registering each element with the
11303  * named dispatch handler.
11304  */
11305 static boolean_t
11306 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11307 {
11308 	for (; cnt-- > 0; tcppa++) {
11309 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11310 			if (!nd_load(ndp, tcppa->tcp_param_name,
11311 			    tcp_param_get, tcp_param_set,
11312 			    (caddr_t)tcppa)) {
11313 				nd_free(ndp);
11314 				return (B_FALSE);
11315 			}
11316 		}
11317 	}
11318 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11319 	    KM_SLEEP);
11320 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11321 	    sizeof (tcpparam_t));
11322 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11323 	    tcp_param_get, tcp_param_set_aligned,
11324 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11325 		nd_free(ndp);
11326 		return (B_FALSE);
11327 	}
11328 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11329 	    KM_SLEEP);
11330 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11331 	    sizeof (tcpparam_t));
11332 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11333 	    tcp_param_get, tcp_param_set_aligned,
11334 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11335 		nd_free(ndp);
11336 		return (B_FALSE);
11337 	}
11338 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11339 	    KM_SLEEP);
11340 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11341 	    sizeof (tcpparam_t));
11342 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11343 	    tcp_param_get, tcp_param_set_aligned,
11344 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11345 		nd_free(ndp);
11346 		return (B_FALSE);
11347 	}
11348 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11349 	    KM_SLEEP);
11350 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11351 	    sizeof (tcpparam_t));
11352 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11353 	    tcp_param_get, tcp_param_set_aligned,
11354 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11355 		nd_free(ndp);
11356 		return (B_FALSE);
11357 	}
11358 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11359 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11360 		nd_free(ndp);
11361 		return (B_FALSE);
11362 	}
11363 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11364 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11365 		nd_free(ndp);
11366 		return (B_FALSE);
11367 	}
11368 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11369 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11370 		nd_free(ndp);
11371 		return (B_FALSE);
11372 	}
11373 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11374 	    NULL)) {
11375 		nd_free(ndp);
11376 		return (B_FALSE);
11377 	}
11378 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11379 	    NULL, NULL)) {
11380 		nd_free(ndp);
11381 		return (B_FALSE);
11382 	}
11383 	if (!nd_load(ndp, "tcp_listen_hash",
11384 	    tcp_listen_hash_report, NULL, NULL)) {
11385 		nd_free(ndp);
11386 		return (B_FALSE);
11387 	}
11388 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11389 	    NULL, NULL)) {
11390 		nd_free(ndp);
11391 		return (B_FALSE);
11392 	}
11393 	if (!nd_load(ndp, "tcp_acceptor_hash",
11394 	    tcp_acceptor_hash_report, NULL, NULL)) {
11395 		nd_free(ndp);
11396 		return (B_FALSE);
11397 	}
11398 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11399 	    tcp_host_param_set, NULL)) {
11400 		nd_free(ndp);
11401 		return (B_FALSE);
11402 	}
11403 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11404 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11405 		nd_free(ndp);
11406 		return (B_FALSE);
11407 	}
11408 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11409 	    tcp_1948_phrase_set, NULL)) {
11410 		nd_free(ndp);
11411 		return (B_FALSE);
11412 	}
11413 	if (!nd_load(ndp, "tcp_reserved_port_list",
11414 	    tcp_reserved_port_list, NULL, NULL)) {
11415 		nd_free(ndp);
11416 		return (B_FALSE);
11417 	}
11418 	/*
11419 	 * Dummy ndd variables - only to convey obsolescence information
11420 	 * through printing of their name (no get or set routines)
11421 	 * XXX Remove in future releases ?
11422 	 */
11423 	if (!nd_load(ndp,
11424 	    "tcp_close_wait_interval(obsoleted - "
11425 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11426 		nd_free(ndp);
11427 		return (B_FALSE);
11428 	}
11429 	return (B_TRUE);
11430 }
11431 
11432 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11433 /* ARGSUSED */
11434 static int
11435 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11436     cred_t *cr)
11437 {
11438 	long new_value;
11439 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11440 
11441 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11442 	    new_value < tcppa->tcp_param_min ||
11443 	    new_value > tcppa->tcp_param_max) {
11444 		return (EINVAL);
11445 	}
11446 	/*
11447 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11448 	 * round it up.  For future 64 bit requirement, we actually make it
11449 	 * a multiple of 8.
11450 	 */
11451 	if (new_value & 0x7) {
11452 		new_value = (new_value & ~0x7) + 0x8;
11453 	}
11454 	tcppa->tcp_param_val = new_value;
11455 	return (0);
11456 }
11457 
11458 /* Set callback routine passed to nd_load by tcp_param_register */
11459 /* ARGSUSED */
11460 static int
11461 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11462 {
11463 	long	new_value;
11464 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11465 
11466 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11467 	    new_value < tcppa->tcp_param_min ||
11468 	    new_value > tcppa->tcp_param_max) {
11469 		return (EINVAL);
11470 	}
11471 	tcppa->tcp_param_val = new_value;
11472 	return (0);
11473 }
11474 
11475 /*
11476  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11477  * is filled, return as much as we can.  The message passed in may be
11478  * multi-part, chained using b_cont.  "start" is the starting sequence
11479  * number for this piece.
11480  */
11481 static mblk_t *
11482 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11483 {
11484 	uint32_t	end;
11485 	mblk_t		*mp1;
11486 	mblk_t		*mp2;
11487 	mblk_t		*next_mp;
11488 	uint32_t	u1;
11489 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11490 
11491 	/* Walk through all the new pieces. */
11492 	do {
11493 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11494 		    (uintptr_t)INT_MAX);
11495 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11496 		next_mp = mp->b_cont;
11497 		if (start == end) {
11498 			/* Empty.  Blast it. */
11499 			freeb(mp);
11500 			continue;
11501 		}
11502 		mp->b_cont = NULL;
11503 		TCP_REASS_SET_SEQ(mp, start);
11504 		TCP_REASS_SET_END(mp, end);
11505 		mp1 = tcp->tcp_reass_tail;
11506 		if (!mp1) {
11507 			tcp->tcp_reass_tail = mp;
11508 			tcp->tcp_reass_head = mp;
11509 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11510 			UPDATE_MIB(&tcps->tcps_mib,
11511 			    tcpInDataUnorderBytes, end - start);
11512 			continue;
11513 		}
11514 		/* New stuff completely beyond tail? */
11515 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11516 			/* Link it on end. */
11517 			mp1->b_cont = mp;
11518 			tcp->tcp_reass_tail = mp;
11519 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11520 			UPDATE_MIB(&tcps->tcps_mib,
11521 			    tcpInDataUnorderBytes, end - start);
11522 			continue;
11523 		}
11524 		mp1 = tcp->tcp_reass_head;
11525 		u1 = TCP_REASS_SEQ(mp1);
11526 		/* New stuff at the front? */
11527 		if (SEQ_LT(start, u1)) {
11528 			/* Yes... Check for overlap. */
11529 			mp->b_cont = mp1;
11530 			tcp->tcp_reass_head = mp;
11531 			tcp_reass_elim_overlap(tcp, mp);
11532 			continue;
11533 		}
11534 		/*
11535 		 * The new piece fits somewhere between the head and tail.
11536 		 * We find our slot, where mp1 precedes us and mp2 trails.
11537 		 */
11538 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11539 			u1 = TCP_REASS_SEQ(mp2);
11540 			if (SEQ_LEQ(start, u1))
11541 				break;
11542 		}
11543 		/* Link ourselves in */
11544 		mp->b_cont = mp2;
11545 		mp1->b_cont = mp;
11546 
11547 		/* Trim overlap with following mblk(s) first */
11548 		tcp_reass_elim_overlap(tcp, mp);
11549 
11550 		/* Trim overlap with preceding mblk */
11551 		tcp_reass_elim_overlap(tcp, mp1);
11552 
11553 	} while (start = end, mp = next_mp);
11554 	mp1 = tcp->tcp_reass_head;
11555 	/* Anything ready to go? */
11556 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11557 		return (NULL);
11558 	/* Eat what we can off the queue */
11559 	for (;;) {
11560 		mp = mp1->b_cont;
11561 		end = TCP_REASS_END(mp1);
11562 		TCP_REASS_SET_SEQ(mp1, 0);
11563 		TCP_REASS_SET_END(mp1, 0);
11564 		if (!mp) {
11565 			tcp->tcp_reass_tail = NULL;
11566 			break;
11567 		}
11568 		if (end != TCP_REASS_SEQ(mp)) {
11569 			mp1->b_cont = NULL;
11570 			break;
11571 		}
11572 		mp1 = mp;
11573 	}
11574 	mp1 = tcp->tcp_reass_head;
11575 	tcp->tcp_reass_head = mp;
11576 	return (mp1);
11577 }
11578 
11579 /* Eliminate any overlap that mp may have over later mblks */
11580 static void
11581 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11582 {
11583 	uint32_t	end;
11584 	mblk_t		*mp1;
11585 	uint32_t	u1;
11586 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11587 
11588 	end = TCP_REASS_END(mp);
11589 	while ((mp1 = mp->b_cont) != NULL) {
11590 		u1 = TCP_REASS_SEQ(mp1);
11591 		if (!SEQ_GT(end, u1))
11592 			break;
11593 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11594 			mp->b_wptr -= end - u1;
11595 			TCP_REASS_SET_END(mp, u1);
11596 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11597 			UPDATE_MIB(&tcps->tcps_mib,
11598 			    tcpInDataPartDupBytes, end - u1);
11599 			break;
11600 		}
11601 		mp->b_cont = mp1->b_cont;
11602 		TCP_REASS_SET_SEQ(mp1, 0);
11603 		TCP_REASS_SET_END(mp1, 0);
11604 		freeb(mp1);
11605 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11606 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11607 	}
11608 	if (!mp1)
11609 		tcp->tcp_reass_tail = mp;
11610 }
11611 
11612 /*
11613  * Send up all messages queued on tcp_rcv_list.
11614  */
11615 static uint_t
11616 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11617 {
11618 	mblk_t *mp;
11619 	uint_t ret = 0;
11620 	uint_t thwin;
11621 #ifdef DEBUG
11622 	uint_t cnt = 0;
11623 #endif
11624 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11625 
11626 	/* Can't drain on an eager connection */
11627 	if (tcp->tcp_listener != NULL)
11628 		return (ret);
11629 
11630 	/*
11631 	 * Handle two cases here: we are currently fused or we were
11632 	 * previously fused and have some urgent data to be delivered
11633 	 * upstream.  The latter happens because we either ran out of
11634 	 * memory or were detached and therefore sending the SIGURG was
11635 	 * deferred until this point.  In either case we pass control
11636 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11637 	 * some work.
11638 	 */
11639 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11640 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11641 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11642 		    &tcp->tcp_fused_sigurg_mp))
11643 			return (ret);
11644 	}
11645 
11646 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11647 		tcp->tcp_rcv_list = mp->b_next;
11648 		mp->b_next = NULL;
11649 #ifdef DEBUG
11650 		cnt += msgdsize(mp);
11651 #endif
11652 		/* Does this need SSL processing first? */
11653 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11654 			tcp_kssl_input(tcp, mp);
11655 			continue;
11656 		}
11657 		putnext(q, mp);
11658 	}
11659 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11660 	tcp->tcp_rcv_last_head = NULL;
11661 	tcp->tcp_rcv_last_tail = NULL;
11662 	tcp->tcp_rcv_cnt = 0;
11663 
11664 	/* Learn the latest rwnd information that we sent to the other side. */
11665 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11666 	    << tcp->tcp_rcv_ws;
11667 	/* This is peer's calculated send window (our receive window). */
11668 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11669 	/*
11670 	 * Increase the receive window to max.  But we need to do receiver
11671 	 * SWS avoidance.  This means that we need to check the increase of
11672 	 * of receive window is at least 1 MSS.
11673 	 */
11674 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11675 		/*
11676 		 * If the window that the other side knows is less than max
11677 		 * deferred acks segments, send an update immediately.
11678 		 */
11679 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11680 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11681 			ret = TH_ACK_NEEDED;
11682 		}
11683 		tcp->tcp_rwnd = q->q_hiwat;
11684 	}
11685 	/* No need for the push timer now. */
11686 	if (tcp->tcp_push_tid != 0) {
11687 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11688 		tcp->tcp_push_tid = 0;
11689 	}
11690 	return (ret);
11691 }
11692 
11693 /*
11694  * Queue data on tcp_rcv_list which is a b_next chain.
11695  * tcp_rcv_last_head/tail is the last element of this chain.
11696  * Each element of the chain is a b_cont chain.
11697  *
11698  * M_DATA messages are added to the current element.
11699  * Other messages are added as new (b_next) elements.
11700  */
11701 void
11702 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11703 {
11704 	ASSERT(seg_len == msgdsize(mp));
11705 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11706 
11707 	if (tcp->tcp_rcv_list == NULL) {
11708 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11709 		tcp->tcp_rcv_list = mp;
11710 		tcp->tcp_rcv_last_head = mp;
11711 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11712 		tcp->tcp_rcv_last_tail->b_cont = mp;
11713 	} else {
11714 		tcp->tcp_rcv_last_head->b_next = mp;
11715 		tcp->tcp_rcv_last_head = mp;
11716 	}
11717 
11718 	while (mp->b_cont)
11719 		mp = mp->b_cont;
11720 
11721 	tcp->tcp_rcv_last_tail = mp;
11722 	tcp->tcp_rcv_cnt += seg_len;
11723 	tcp->tcp_rwnd -= seg_len;
11724 }
11725 
11726 /*
11727  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11728  *
11729  * This is the default entry function into TCP on the read side. TCP is
11730  * always entered via squeue i.e. using squeue's for mutual exclusion.
11731  * When classifier does a lookup to find the tcp, it also puts a reference
11732  * on the conn structure associated so the tcp is guaranteed to exist
11733  * when we come here. We still need to check the state because it might
11734  * as well has been closed. The squeue processing function i.e. squeue_enter,
11735  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11736  * CONN_DEC_REF.
11737  *
11738  * Apart from the default entry point, IP also sends packets directly to
11739  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11740  * connections.
11741  */
11742 void
11743 tcp_input(void *arg, mblk_t *mp, void *arg2)
11744 {
11745 	conn_t	*connp = (conn_t *)arg;
11746 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11747 
11748 	/* arg2 is the sqp */
11749 	ASSERT(arg2 != NULL);
11750 	ASSERT(mp != NULL);
11751 
11752 	/*
11753 	 * Don't accept any input on a closed tcp as this TCP logically does
11754 	 * not exist on the system. Don't proceed further with this TCP.
11755 	 * For eg. this packet could trigger another close of this tcp
11756 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11757 	 * tcp_clean_death / tcp_closei_local must be called at most once
11758 	 * on a TCP. In this case we need to refeed the packet into the
11759 	 * classifier and figure out where the packet should go. Need to
11760 	 * preserve the recv_ill somehow. Until we figure that out, for
11761 	 * now just drop the packet if we can't classify the packet.
11762 	 */
11763 	if (tcp->tcp_state == TCPS_CLOSED ||
11764 	    tcp->tcp_state == TCPS_BOUND) {
11765 		conn_t	*new_connp;
11766 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11767 
11768 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11769 		if (new_connp != NULL) {
11770 			tcp_reinput(new_connp, mp, arg2);
11771 			return;
11772 		}
11773 		/* We failed to classify. For now just drop the packet */
11774 		freemsg(mp);
11775 		return;
11776 	}
11777 
11778 	if (DB_TYPE(mp) == M_DATA)
11779 		tcp_rput_data(connp, mp, arg2);
11780 	else
11781 		tcp_rput_common(tcp, mp);
11782 }
11783 
11784 /*
11785  * The read side put procedure.
11786  * The packets passed up by ip are assume to be aligned according to
11787  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11788  */
11789 static void
11790 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11791 {
11792 	/*
11793 	 * tcp_rput_data() does not expect M_CTL except for the case
11794 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11795 	 * type. Need to make sure that any other M_CTLs don't make
11796 	 * it to tcp_rput_data since it is not expecting any and doesn't
11797 	 * check for it.
11798 	 */
11799 	if (DB_TYPE(mp) == M_CTL) {
11800 		switch (*(uint32_t *)(mp->b_rptr)) {
11801 		case TCP_IOC_ABORT_CONN:
11802 			/*
11803 			 * Handle connection abort request.
11804 			 */
11805 			tcp_ioctl_abort_handler(tcp, mp);
11806 			return;
11807 		case IPSEC_IN:
11808 			/*
11809 			 * Only secure icmp arrive in TCP and they
11810 			 * don't go through data path.
11811 			 */
11812 			tcp_icmp_error(tcp, mp);
11813 			return;
11814 		case IN_PKTINFO:
11815 			/*
11816 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11817 			 * sockets that are receiving IPv4 traffic. tcp
11818 			 */
11819 			ASSERT(tcp->tcp_family == AF_INET6);
11820 			ASSERT(tcp->tcp_ipv6_recvancillary &
11821 			    TCP_IPV6_RECVPKTINFO);
11822 			tcp_rput_data(tcp->tcp_connp, mp,
11823 			    tcp->tcp_connp->conn_sqp);
11824 			return;
11825 		case MDT_IOC_INFO_UPDATE:
11826 			/*
11827 			 * Handle Multidata information update; the
11828 			 * following routine will free the message.
11829 			 */
11830 			if (tcp->tcp_connp->conn_mdt_ok) {
11831 				tcp_mdt_update(tcp,
11832 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11833 				    B_FALSE);
11834 			}
11835 			freemsg(mp);
11836 			return;
11837 		case LSO_IOC_INFO_UPDATE:
11838 			/*
11839 			 * Handle LSO information update; the following
11840 			 * routine will free the message.
11841 			 */
11842 			if (tcp->tcp_connp->conn_lso_ok) {
11843 				tcp_lso_update(tcp,
11844 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11845 			}
11846 			freemsg(mp);
11847 			return;
11848 		default:
11849 			/*
11850 			 * tcp_icmp_err() will process the M_CTL packets.
11851 			 * Non-ICMP packets, if any, will be discarded in
11852 			 * tcp_icmp_err(). We will process the ICMP packet
11853 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11854 			 * incoming ICMP packet may result in changing
11855 			 * the tcp_mss, which we would need if we have
11856 			 * packets to retransmit.
11857 			 */
11858 			tcp_icmp_error(tcp, mp);
11859 			return;
11860 		}
11861 	}
11862 
11863 	/* No point processing the message if tcp is already closed */
11864 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11865 		freemsg(mp);
11866 		return;
11867 	}
11868 
11869 	tcp_rput_other(tcp, mp);
11870 }
11871 
11872 
11873 /* The minimum of smoothed mean deviation in RTO calculation. */
11874 #define	TCP_SD_MIN	400
11875 
11876 /*
11877  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11878  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11879  * are the same as those in Appendix A.2 of that paper.
11880  *
11881  * m = new measurement
11882  * sa = smoothed RTT average (8 * average estimates).
11883  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11884  */
11885 static void
11886 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11887 {
11888 	long m = TICK_TO_MSEC(rtt);
11889 	clock_t sa = tcp->tcp_rtt_sa;
11890 	clock_t sv = tcp->tcp_rtt_sd;
11891 	clock_t rto;
11892 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11893 
11894 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11895 	tcp->tcp_rtt_update++;
11896 
11897 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11898 	if (sa != 0) {
11899 		/*
11900 		 * Update average estimator:
11901 		 *	new rtt = 7/8 old rtt + 1/8 Error
11902 		 */
11903 
11904 		/* m is now Error in estimate. */
11905 		m -= sa >> 3;
11906 		if ((sa += m) <= 0) {
11907 			/*
11908 			 * Don't allow the smoothed average to be negative.
11909 			 * We use 0 to denote reinitialization of the
11910 			 * variables.
11911 			 */
11912 			sa = 1;
11913 		}
11914 
11915 		/*
11916 		 * Update deviation estimator:
11917 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11918 		 */
11919 		if (m < 0)
11920 			m = -m;
11921 		m -= sv >> 2;
11922 		sv += m;
11923 	} else {
11924 		/*
11925 		 * This follows BSD's implementation.  So the reinitialized
11926 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11927 		 * link is bandwidth dominated, doubling the window size
11928 		 * during slow start means doubling the RTT.  We want to be
11929 		 * more conservative when we reinitialize our estimates.  3
11930 		 * is just a convenient number.
11931 		 */
11932 		sa = m << 3;
11933 		sv = m << 1;
11934 	}
11935 	if (sv < TCP_SD_MIN) {
11936 		/*
11937 		 * We do not know that if sa captures the delay ACK
11938 		 * effect as in a long train of segments, a receiver
11939 		 * does not delay its ACKs.  So set the minimum of sv
11940 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11941 		 * of BSD DATO.  That means the minimum of mean
11942 		 * deviation is 100 ms.
11943 		 *
11944 		 */
11945 		sv = TCP_SD_MIN;
11946 	}
11947 	tcp->tcp_rtt_sa = sa;
11948 	tcp->tcp_rtt_sd = sv;
11949 	/*
11950 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11951 	 *
11952 	 * Add tcp_rexmit_interval extra in case of extreme environment
11953 	 * where the algorithm fails to work.  The default value of
11954 	 * tcp_rexmit_interval_extra should be 0.
11955 	 *
11956 	 * As we use a finer grained clock than BSD and update
11957 	 * RTO for every ACKs, add in another .25 of RTT to the
11958 	 * deviation of RTO to accomodate burstiness of 1/4 of
11959 	 * window size.
11960 	 */
11961 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11962 
11963 	if (rto > tcps->tcps_rexmit_interval_max) {
11964 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11965 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11966 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11967 	} else {
11968 		tcp->tcp_rto = rto;
11969 	}
11970 
11971 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11972 	tcp->tcp_timer_backoff = 0;
11973 }
11974 
11975 /*
11976  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11977  * send queue which starts at the given seq. no.
11978  *
11979  * Parameters:
11980  *	tcp_t *tcp: the tcp instance pointer.
11981  *	uint32_t seq: the starting seq. no of the requested segment.
11982  *	int32_t *off: after the execution, *off will be the offset to
11983  *		the returned mblk which points to the requested seq no.
11984  *		It is the caller's responsibility to send in a non-null off.
11985  *
11986  * Return:
11987  *	A mblk_t pointer pointing to the requested segment in send queue.
11988  */
11989 static mblk_t *
11990 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11991 {
11992 	int32_t	cnt;
11993 	mblk_t	*mp;
11994 
11995 	/* Defensive coding.  Make sure we don't send incorrect data. */
11996 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11997 		return (NULL);
11998 
11999 	cnt = seq - tcp->tcp_suna;
12000 	mp = tcp->tcp_xmit_head;
12001 	while (cnt > 0 && mp != NULL) {
12002 		cnt -= mp->b_wptr - mp->b_rptr;
12003 		if (cnt < 0) {
12004 			cnt += mp->b_wptr - mp->b_rptr;
12005 			break;
12006 		}
12007 		mp = mp->b_cont;
12008 	}
12009 	ASSERT(mp != NULL);
12010 	*off = cnt;
12011 	return (mp);
12012 }
12013 
12014 /*
12015  * This function handles all retransmissions if SACK is enabled for this
12016  * connection.  First it calculates how many segments can be retransmitted
12017  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12018  * segments.  A segment is eligible if sack_cnt for that segment is greater
12019  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12020  * all eligible segments, it checks to see if TCP can send some new segments
12021  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12022  *
12023  * Parameters:
12024  *	tcp_t *tcp: the tcp structure of the connection.
12025  *	uint_t *flags: in return, appropriate value will be set for
12026  *	tcp_rput_data().
12027  */
12028 static void
12029 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12030 {
12031 	notsack_blk_t	*notsack_blk;
12032 	int32_t		usable_swnd;
12033 	int32_t		mss;
12034 	uint32_t	seg_len;
12035 	mblk_t		*xmit_mp;
12036 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12037 
12038 	ASSERT(tcp->tcp_sack_info != NULL);
12039 	ASSERT(tcp->tcp_notsack_list != NULL);
12040 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12041 
12042 	/* Defensive coding in case there is a bug... */
12043 	if (tcp->tcp_notsack_list == NULL) {
12044 		return;
12045 	}
12046 	notsack_blk = tcp->tcp_notsack_list;
12047 	mss = tcp->tcp_mss;
12048 
12049 	/*
12050 	 * Limit the num of outstanding data in the network to be
12051 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12052 	 */
12053 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12054 
12055 	/* At least retransmit 1 MSS of data. */
12056 	if (usable_swnd <= 0) {
12057 		usable_swnd = mss;
12058 	}
12059 
12060 	/* Make sure no new RTT samples will be taken. */
12061 	tcp->tcp_csuna = tcp->tcp_snxt;
12062 
12063 	notsack_blk = tcp->tcp_notsack_list;
12064 	while (usable_swnd > 0) {
12065 		mblk_t		*snxt_mp, *tmp_mp;
12066 		tcp_seq		begin = tcp->tcp_sack_snxt;
12067 		tcp_seq		end;
12068 		int32_t		off;
12069 
12070 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12071 			if (SEQ_GT(notsack_blk->end, begin) &&
12072 			    (notsack_blk->sack_cnt >=
12073 			    tcps->tcps_dupack_fast_retransmit)) {
12074 				end = notsack_blk->end;
12075 				if (SEQ_LT(begin, notsack_blk->begin)) {
12076 					begin = notsack_blk->begin;
12077 				}
12078 				break;
12079 			}
12080 		}
12081 		/*
12082 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12083 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12084 		 * set to tcp_cwnd_ssthresh.
12085 		 */
12086 		if (notsack_blk == NULL) {
12087 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12088 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12089 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12090 				ASSERT(tcp->tcp_cwnd > 0);
12091 				return;
12092 			} else {
12093 				usable_swnd = usable_swnd / mss;
12094 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12095 				    MAX(usable_swnd * mss, mss);
12096 				*flags |= TH_XMIT_NEEDED;
12097 				return;
12098 			}
12099 		}
12100 
12101 		/*
12102 		 * Note that we may send more than usable_swnd allows here
12103 		 * because of round off, but no more than 1 MSS of data.
12104 		 */
12105 		seg_len = end - begin;
12106 		if (seg_len > mss)
12107 			seg_len = mss;
12108 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12109 		ASSERT(snxt_mp != NULL);
12110 		/* This should not happen.  Defensive coding again... */
12111 		if (snxt_mp == NULL) {
12112 			return;
12113 		}
12114 
12115 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12116 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12117 		if (xmit_mp == NULL)
12118 			return;
12119 
12120 		usable_swnd -= seg_len;
12121 		tcp->tcp_pipe += seg_len;
12122 		tcp->tcp_sack_snxt = begin + seg_len;
12123 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12124 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12125 
12126 		/*
12127 		 * Update the send timestamp to avoid false retransmission.
12128 		 */
12129 		snxt_mp->b_prev = (mblk_t *)lbolt;
12130 
12131 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12132 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12133 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12134 		/*
12135 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12136 		 * This happens when new data sent during fast recovery is
12137 		 * also lost.  If TCP retransmits those new data, it needs
12138 		 * to extend SACK recover phase to avoid starting another
12139 		 * fast retransmit/recovery unnecessarily.
12140 		 */
12141 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12142 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12143 		}
12144 	}
12145 }
12146 
12147 /*
12148  * This function handles policy checking at TCP level for non-hard_bound/
12149  * detached connections.
12150  */
12151 static boolean_t
12152 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12153     boolean_t secure, boolean_t mctl_present)
12154 {
12155 	ipsec_latch_t *ipl = NULL;
12156 	ipsec_action_t *act = NULL;
12157 	mblk_t *data_mp;
12158 	ipsec_in_t *ii;
12159 	const char *reason;
12160 	kstat_named_t *counter;
12161 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12162 	ipsec_stack_t	*ipss;
12163 	ip_stack_t	*ipst;
12164 
12165 	ASSERT(mctl_present || !secure);
12166 
12167 	ASSERT((ipha == NULL && ip6h != NULL) ||
12168 	    (ip6h == NULL && ipha != NULL));
12169 
12170 	/*
12171 	 * We don't necessarily have an ipsec_in_act action to verify
12172 	 * policy because of assymetrical policy where we have only
12173 	 * outbound policy and no inbound policy (possible with global
12174 	 * policy).
12175 	 */
12176 	if (!secure) {
12177 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12178 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12179 			return (B_TRUE);
12180 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12181 		    "tcp_check_policy", ipha, ip6h, secure,
12182 		    tcps->tcps_netstack);
12183 		ipss = tcps->tcps_netstack->netstack_ipsec;
12184 
12185 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12186 		    DROPPER(ipss, ipds_tcp_clear),
12187 		    &tcps->tcps_dropper);
12188 		return (B_FALSE);
12189 	}
12190 
12191 	/*
12192 	 * We have a secure packet.
12193 	 */
12194 	if (act == NULL) {
12195 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12196 		    "tcp_check_policy", ipha, ip6h, secure,
12197 		    tcps->tcps_netstack);
12198 		ipss = tcps->tcps_netstack->netstack_ipsec;
12199 
12200 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12201 		    DROPPER(ipss, ipds_tcp_secure),
12202 		    &tcps->tcps_dropper);
12203 		return (B_FALSE);
12204 	}
12205 
12206 	/*
12207 	 * XXX This whole routine is currently incorrect.  ipl should
12208 	 * be set to the latch pointer, but is currently not set, so
12209 	 * we initialize it to NULL to avoid picking up random garbage.
12210 	 */
12211 	if (ipl == NULL)
12212 		return (B_TRUE);
12213 
12214 	data_mp = first_mp->b_cont;
12215 
12216 	ii = (ipsec_in_t *)first_mp->b_rptr;
12217 
12218 	ipst = tcps->tcps_netstack->netstack_ip;
12219 
12220 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12221 	    &counter, tcp->tcp_connp)) {
12222 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12223 		return (B_TRUE);
12224 	}
12225 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12226 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12227 	    reason);
12228 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12229 
12230 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12231 	    &tcps->tcps_dropper);
12232 	return (B_FALSE);
12233 }
12234 
12235 /*
12236  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12237  * retransmission after a timeout.
12238  *
12239  * To limit the number of duplicate segments, we limit the number of segment
12240  * to be sent in one time to tcp_snd_burst, the burst variable.
12241  */
12242 static void
12243 tcp_ss_rexmit(tcp_t *tcp)
12244 {
12245 	uint32_t	snxt;
12246 	uint32_t	smax;
12247 	int32_t		win;
12248 	int32_t		mss;
12249 	int32_t		off;
12250 	int32_t		burst = tcp->tcp_snd_burst;
12251 	mblk_t		*snxt_mp;
12252 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12253 
12254 	/*
12255 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12256 	 * all unack'ed segments.
12257 	 */
12258 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12259 		smax = tcp->tcp_rexmit_max;
12260 		snxt = tcp->tcp_rexmit_nxt;
12261 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12262 			snxt = tcp->tcp_suna;
12263 		}
12264 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12265 		win -= snxt - tcp->tcp_suna;
12266 		mss = tcp->tcp_mss;
12267 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12268 
12269 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12270 		    (burst > 0) && (snxt_mp != NULL)) {
12271 			mblk_t	*xmit_mp;
12272 			mblk_t	*old_snxt_mp = snxt_mp;
12273 			uint32_t cnt = mss;
12274 
12275 			if (win < cnt) {
12276 				cnt = win;
12277 			}
12278 			if (SEQ_GT(snxt + cnt, smax)) {
12279 				cnt = smax - snxt;
12280 			}
12281 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12282 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12283 			if (xmit_mp == NULL)
12284 				return;
12285 
12286 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12287 
12288 			snxt += cnt;
12289 			win -= cnt;
12290 			/*
12291 			 * Update the send timestamp to avoid false
12292 			 * retransmission.
12293 			 */
12294 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12295 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12296 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12297 
12298 			tcp->tcp_rexmit_nxt = snxt;
12299 			burst--;
12300 		}
12301 		/*
12302 		 * If we have transmitted all we have at the time
12303 		 * we started the retranmission, we can leave
12304 		 * the rest of the job to tcp_wput_data().  But we
12305 		 * need to check the send window first.  If the
12306 		 * win is not 0, go on with tcp_wput_data().
12307 		 */
12308 		if (SEQ_LT(snxt, smax) || win == 0) {
12309 			return;
12310 		}
12311 	}
12312 	/* Only call tcp_wput_data() if there is data to be sent. */
12313 	if (tcp->tcp_unsent) {
12314 		tcp_wput_data(tcp, NULL, B_FALSE);
12315 	}
12316 }
12317 
12318 /*
12319  * Process all TCP option in SYN segment.  Note that this function should
12320  * be called after tcp_adapt_ire() is called so that the necessary info
12321  * from IRE is already set in the tcp structure.
12322  *
12323  * This function sets up the correct tcp_mss value according to the
12324  * MSS option value and our header size.  It also sets up the window scale
12325  * and timestamp values, and initialize SACK info blocks.  But it does not
12326  * change receive window size after setting the tcp_mss value.  The caller
12327  * should do the appropriate change.
12328  */
12329 void
12330 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12331 {
12332 	int options;
12333 	tcp_opt_t tcpopt;
12334 	uint32_t mss_max;
12335 	char *tmp_tcph;
12336 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12337 
12338 	tcpopt.tcp = NULL;
12339 	options = tcp_parse_options(tcph, &tcpopt);
12340 
12341 	/*
12342 	 * Process MSS option.  Note that MSS option value does not account
12343 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12344 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12345 	 * IPv6.
12346 	 */
12347 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12348 		if (tcp->tcp_ipversion == IPV4_VERSION)
12349 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12350 		else
12351 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12352 	} else {
12353 		if (tcp->tcp_ipversion == IPV4_VERSION)
12354 			mss_max = tcps->tcps_mss_max_ipv4;
12355 		else
12356 			mss_max = tcps->tcps_mss_max_ipv6;
12357 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12358 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12359 		else if (tcpopt.tcp_opt_mss > mss_max)
12360 			tcpopt.tcp_opt_mss = mss_max;
12361 	}
12362 
12363 	/* Process Window Scale option. */
12364 	if (options & TCP_OPT_WSCALE_PRESENT) {
12365 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12366 		tcp->tcp_snd_ws_ok = B_TRUE;
12367 	} else {
12368 		tcp->tcp_snd_ws = B_FALSE;
12369 		tcp->tcp_snd_ws_ok = B_FALSE;
12370 		tcp->tcp_rcv_ws = B_FALSE;
12371 	}
12372 
12373 	/* Process Timestamp option. */
12374 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12375 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12376 		tmp_tcph = (char *)tcp->tcp_tcph;
12377 
12378 		tcp->tcp_snd_ts_ok = B_TRUE;
12379 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12380 		tcp->tcp_last_rcv_lbolt = lbolt64;
12381 		ASSERT(OK_32PTR(tmp_tcph));
12382 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12383 
12384 		/* Fill in our template header with basic timestamp option. */
12385 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12386 		tmp_tcph[0] = TCPOPT_NOP;
12387 		tmp_tcph[1] = TCPOPT_NOP;
12388 		tmp_tcph[2] = TCPOPT_TSTAMP;
12389 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12390 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12391 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12392 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12393 	} else {
12394 		tcp->tcp_snd_ts_ok = B_FALSE;
12395 	}
12396 
12397 	/*
12398 	 * Process SACK options.  If SACK is enabled for this connection,
12399 	 * then allocate the SACK info structure.  Note the following ways
12400 	 * when tcp_snd_sack_ok is set to true.
12401 	 *
12402 	 * For active connection: in tcp_adapt_ire() called in
12403 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12404 	 * is checked.
12405 	 *
12406 	 * For passive connection: in tcp_adapt_ire() called in
12407 	 * tcp_accept_comm().
12408 	 *
12409 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12410 	 * That check makes sure that if we did not send a SACK OK option,
12411 	 * we will not enable SACK for this connection even though the other
12412 	 * side sends us SACK OK option.  For active connection, the SACK
12413 	 * info structure has already been allocated.  So we need to free
12414 	 * it if SACK is disabled.
12415 	 */
12416 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12417 	    (tcp->tcp_snd_sack_ok ||
12418 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12419 		/* This should be true only in the passive case. */
12420 		if (tcp->tcp_sack_info == NULL) {
12421 			ASSERT(TCP_IS_DETACHED(tcp));
12422 			tcp->tcp_sack_info =
12423 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12424 		}
12425 		if (tcp->tcp_sack_info == NULL) {
12426 			tcp->tcp_snd_sack_ok = B_FALSE;
12427 		} else {
12428 			tcp->tcp_snd_sack_ok = B_TRUE;
12429 			if (tcp->tcp_snd_ts_ok) {
12430 				tcp->tcp_max_sack_blk = 3;
12431 			} else {
12432 				tcp->tcp_max_sack_blk = 4;
12433 			}
12434 		}
12435 	} else {
12436 		/*
12437 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12438 		 * no SACK info will be used for this
12439 		 * connection.  This assumes that SACK usage
12440 		 * permission is negotiated.  This may need
12441 		 * to be changed once this is clarified.
12442 		 */
12443 		if (tcp->tcp_sack_info != NULL) {
12444 			ASSERT(tcp->tcp_notsack_list == NULL);
12445 			kmem_cache_free(tcp_sack_info_cache,
12446 			    tcp->tcp_sack_info);
12447 			tcp->tcp_sack_info = NULL;
12448 		}
12449 		tcp->tcp_snd_sack_ok = B_FALSE;
12450 	}
12451 
12452 	/*
12453 	 * Now we know the exact TCP/IP header length, subtract
12454 	 * that from tcp_mss to get our side's MSS.
12455 	 */
12456 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12457 	/*
12458 	 * Here we assume that the other side's header size will be equal to
12459 	 * our header size.  We calculate the real MSS accordingly.  Need to
12460 	 * take into additional stuffs IPsec puts in.
12461 	 *
12462 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12463 	 */
12464 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12465 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12466 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12467 
12468 	/*
12469 	 * Set MSS to the smaller one of both ends of the connection.
12470 	 * We should not have called tcp_mss_set() before, but our
12471 	 * side of the MSS should have been set to a proper value
12472 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12473 	 * STREAM head parameters properly.
12474 	 *
12475 	 * If we have a larger-than-16-bit window but the other side
12476 	 * didn't want to do window scale, tcp_rwnd_set() will take
12477 	 * care of that.
12478 	 */
12479 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12480 }
12481 
12482 /*
12483  * Sends the T_CONN_IND to the listener. The caller calls this
12484  * functions via squeue to get inside the listener's perimeter
12485  * once the 3 way hand shake is done a T_CONN_IND needs to be
12486  * sent. As an optimization, the caller can call this directly
12487  * if listener's perimeter is same as eager's.
12488  */
12489 /* ARGSUSED */
12490 void
12491 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12492 {
12493 	conn_t			*lconnp = (conn_t *)arg;
12494 	tcp_t			*listener = lconnp->conn_tcp;
12495 	tcp_t			*tcp;
12496 	struct T_conn_ind	*conn_ind;
12497 	ipaddr_t 		*addr_cache;
12498 	boolean_t		need_send_conn_ind = B_FALSE;
12499 	tcp_stack_t		*tcps = listener->tcp_tcps;
12500 
12501 	/* retrieve the eager */
12502 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12503 	ASSERT(conn_ind->OPT_offset != 0 &&
12504 	    conn_ind->OPT_length == sizeof (intptr_t));
12505 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12506 		conn_ind->OPT_length);
12507 
12508 	/*
12509 	 * TLI/XTI applications will get confused by
12510 	 * sending eager as an option since it violates
12511 	 * the option semantics. So remove the eager as
12512 	 * option since TLI/XTI app doesn't need it anyway.
12513 	 */
12514 	if (!TCP_IS_SOCKET(listener)) {
12515 		conn_ind->OPT_length = 0;
12516 		conn_ind->OPT_offset = 0;
12517 	}
12518 	if (listener->tcp_state == TCPS_CLOSED ||
12519 	    TCP_IS_DETACHED(listener)) {
12520 		/*
12521 		 * If listener has closed, it would have caused a
12522 		 * a cleanup/blowoff to happen for the eager. We
12523 		 * just need to return.
12524 		 */
12525 		freemsg(mp);
12526 		return;
12527 	}
12528 
12529 
12530 	/*
12531 	 * if the conn_req_q is full defer passing up the
12532 	 * T_CONN_IND until space is availabe after t_accept()
12533 	 * processing
12534 	 */
12535 	mutex_enter(&listener->tcp_eager_lock);
12536 
12537 	/*
12538 	 * Take the eager out, if it is in the list of droppable eagers
12539 	 * as we are here because the 3W handshake is over.
12540 	 */
12541 	MAKE_UNDROPPABLE(tcp);
12542 
12543 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12544 		tcp_t *tail;
12545 
12546 		/*
12547 		 * The eager already has an extra ref put in tcp_rput_data
12548 		 * so that it stays till accept comes back even though it
12549 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12550 		 */
12551 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12552 		listener->tcp_conn_req_cnt_q0--;
12553 		listener->tcp_conn_req_cnt_q++;
12554 
12555 		/* Move from SYN_RCVD to ESTABLISHED list  */
12556 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12557 		    tcp->tcp_eager_prev_q0;
12558 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12559 		    tcp->tcp_eager_next_q0;
12560 		tcp->tcp_eager_prev_q0 = NULL;
12561 		tcp->tcp_eager_next_q0 = NULL;
12562 
12563 		/*
12564 		 * Insert at end of the queue because sockfs
12565 		 * sends down T_CONN_RES in chronological
12566 		 * order. Leaving the older conn indications
12567 		 * at front of the queue helps reducing search
12568 		 * time.
12569 		 */
12570 		tail = listener->tcp_eager_last_q;
12571 		if (tail != NULL)
12572 			tail->tcp_eager_next_q = tcp;
12573 		else
12574 			listener->tcp_eager_next_q = tcp;
12575 		listener->tcp_eager_last_q = tcp;
12576 		tcp->tcp_eager_next_q = NULL;
12577 		/*
12578 		 * Delay sending up the T_conn_ind until we are
12579 		 * done with the eager. Once we have have sent up
12580 		 * the T_conn_ind, the accept can potentially complete
12581 		 * any time and release the refhold we have on the eager.
12582 		 */
12583 		need_send_conn_ind = B_TRUE;
12584 	} else {
12585 		/*
12586 		 * Defer connection on q0 and set deferred
12587 		 * connection bit true
12588 		 */
12589 		tcp->tcp_conn_def_q0 = B_TRUE;
12590 
12591 		/* take tcp out of q0 ... */
12592 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12593 		    tcp->tcp_eager_next_q0;
12594 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12595 		    tcp->tcp_eager_prev_q0;
12596 
12597 		/* ... and place it at the end of q0 */
12598 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12599 		tcp->tcp_eager_next_q0 = listener;
12600 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12601 		listener->tcp_eager_prev_q0 = tcp;
12602 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12603 	}
12604 
12605 	/* we have timed out before */
12606 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12607 		tcp->tcp_syn_rcvd_timeout = 0;
12608 		listener->tcp_syn_rcvd_timeout--;
12609 		if (listener->tcp_syn_defense &&
12610 		    listener->tcp_syn_rcvd_timeout <=
12611 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12612 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12613 			listener->tcp_last_rcv_lbolt)) {
12614 			/*
12615 			 * Turn off the defense mode if we
12616 			 * believe the SYN attack is over.
12617 			 */
12618 			listener->tcp_syn_defense = B_FALSE;
12619 			if (listener->tcp_ip_addr_cache) {
12620 				kmem_free((void *)listener->tcp_ip_addr_cache,
12621 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12622 				listener->tcp_ip_addr_cache = NULL;
12623 			}
12624 		}
12625 	}
12626 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12627 	if (addr_cache != NULL) {
12628 		/*
12629 		 * We have finished a 3-way handshake with this
12630 		 * remote host. This proves the IP addr is good.
12631 		 * Cache it!
12632 		 */
12633 		addr_cache[IP_ADDR_CACHE_HASH(
12634 			tcp->tcp_remote)] = tcp->tcp_remote;
12635 	}
12636 	mutex_exit(&listener->tcp_eager_lock);
12637 	if (need_send_conn_ind)
12638 		putnext(listener->tcp_rq, mp);
12639 }
12640 
12641 mblk_t *
12642 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12643     uint_t *ifindexp, ip6_pkt_t *ippp)
12644 {
12645 	ip_pktinfo_t	*pinfo;
12646 	ip6_t		*ip6h;
12647 	uchar_t		*rptr;
12648 	mblk_t		*first_mp = mp;
12649 	boolean_t	mctl_present = B_FALSE;
12650 	uint_t 		ifindex = 0;
12651 	ip6_pkt_t	ipp;
12652 	uint_t		ipvers;
12653 	uint_t		ip_hdr_len;
12654 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12655 
12656 	rptr = mp->b_rptr;
12657 	ASSERT(OK_32PTR(rptr));
12658 	ASSERT(tcp != NULL);
12659 	ipp.ipp_fields = 0;
12660 
12661 	switch DB_TYPE(mp) {
12662 	case M_CTL:
12663 		mp = mp->b_cont;
12664 		if (mp == NULL) {
12665 			freemsg(first_mp);
12666 			return (NULL);
12667 		}
12668 		if (DB_TYPE(mp) != M_DATA) {
12669 			freemsg(first_mp);
12670 			return (NULL);
12671 		}
12672 		mctl_present = B_TRUE;
12673 		break;
12674 	case M_DATA:
12675 		break;
12676 	default:
12677 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12678 		freemsg(mp);
12679 		return (NULL);
12680 	}
12681 	ipvers = IPH_HDR_VERSION(rptr);
12682 	if (ipvers == IPV4_VERSION) {
12683 		if (tcp == NULL) {
12684 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12685 			goto done;
12686 		}
12687 
12688 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12689 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12690 
12691 		/*
12692 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12693 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12694 		 */
12695 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12696 		    mctl_present) {
12697 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12698 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12699 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12700 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12701 				ipp.ipp_fields |= IPPF_IFINDEX;
12702 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12703 				ifindex = pinfo->ip_pkt_ifindex;
12704 			}
12705 			freeb(first_mp);
12706 			mctl_present = B_FALSE;
12707 		}
12708 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12709 	} else {
12710 		ip6h = (ip6_t *)rptr;
12711 
12712 		ASSERT(ipvers == IPV6_VERSION);
12713 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12714 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12715 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12716 
12717 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12718 			uint8_t	nexthdrp;
12719 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12720 
12721 			/* Look for ifindex information */
12722 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12723 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12724 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12725 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12726 					freemsg(first_mp);
12727 					return (NULL);
12728 				}
12729 
12730 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12731 					ASSERT(ip6i->ip6i_ifindex != 0);
12732 					ipp.ipp_fields |= IPPF_IFINDEX;
12733 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12734 					ifindex = ip6i->ip6i_ifindex;
12735 				}
12736 				rptr = (uchar_t *)&ip6i[1];
12737 				mp->b_rptr = rptr;
12738 				if (rptr == mp->b_wptr) {
12739 					mblk_t *mp1;
12740 					mp1 = mp->b_cont;
12741 					freeb(mp);
12742 					mp = mp1;
12743 					rptr = mp->b_rptr;
12744 				}
12745 				if (MBLKL(mp) < IPV6_HDR_LEN +
12746 				    sizeof (tcph_t)) {
12747 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12748 					freemsg(first_mp);
12749 					return (NULL);
12750 				}
12751 				ip6h = (ip6_t *)rptr;
12752 			}
12753 
12754 			/*
12755 			 * Find any potentially interesting extension headers
12756 			 * as well as the length of the IPv6 + extension
12757 			 * headers.
12758 			 */
12759 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12760 			/* Verify if this is a TCP packet */
12761 			if (nexthdrp != IPPROTO_TCP) {
12762 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12763 				freemsg(first_mp);
12764 				return (NULL);
12765 			}
12766 		} else {
12767 			ip_hdr_len = IPV6_HDR_LEN;
12768 		}
12769 	}
12770 
12771 done:
12772 	if (ipversp != NULL)
12773 		*ipversp = ipvers;
12774 	if (ip_hdr_lenp != NULL)
12775 		*ip_hdr_lenp = ip_hdr_len;
12776 	if (ippp != NULL)
12777 		*ippp = ipp;
12778 	if (ifindexp != NULL)
12779 		*ifindexp = ifindex;
12780 	if (mctl_present) {
12781 		freeb(first_mp);
12782 	}
12783 	return (mp);
12784 }
12785 
12786 /*
12787  * Handle M_DATA messages from IP. Its called directly from IP via
12788  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12789  * in this path.
12790  *
12791  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12792  * v4 and v6), we are called through tcp_input() and a M_CTL can
12793  * be present for options but tcp_find_pktinfo() deals with it. We
12794  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12795  *
12796  * The first argument is always the connp/tcp to which the mp belongs.
12797  * There are no exceptions to this rule. The caller has already put
12798  * a reference on this connp/tcp and once tcp_rput_data() returns,
12799  * the squeue will do the refrele.
12800  *
12801  * The TH_SYN for the listener directly go to tcp_conn_request via
12802  * squeue.
12803  *
12804  * sqp: NULL = recursive, sqp != NULL means called from squeue
12805  */
12806 void
12807 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12808 {
12809 	int32_t		bytes_acked;
12810 	int32_t		gap;
12811 	mblk_t		*mp1;
12812 	uint_t		flags;
12813 	uint32_t	new_swnd = 0;
12814 	uchar_t		*iphdr;
12815 	uchar_t		*rptr;
12816 	int32_t		rgap;
12817 	uint32_t	seg_ack;
12818 	int		seg_len;
12819 	uint_t		ip_hdr_len;
12820 	uint32_t	seg_seq;
12821 	tcph_t		*tcph;
12822 	int		urp;
12823 	tcp_opt_t	tcpopt;
12824 	uint_t		ipvers;
12825 	ip6_pkt_t	ipp;
12826 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12827 	uint32_t	cwnd;
12828 	uint32_t	add;
12829 	int		npkt;
12830 	int		mss;
12831 	conn_t		*connp = (conn_t *)arg;
12832 	squeue_t	*sqp = (squeue_t *)arg2;
12833 	tcp_t		*tcp = connp->conn_tcp;
12834 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12835 
12836 	/*
12837 	 * RST from fused tcp loopback peer should trigger an unfuse.
12838 	 */
12839 	if (tcp->tcp_fused) {
12840 		TCP_STAT(tcps, tcp_fusion_aborted);
12841 		tcp_unfuse(tcp);
12842 	}
12843 
12844 	iphdr = mp->b_rptr;
12845 	rptr = mp->b_rptr;
12846 	ASSERT(OK_32PTR(rptr));
12847 
12848 	/*
12849 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12850 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12851 	 * necessary information.
12852 	 */
12853 	if (IPCL_IS_TCP4(connp)) {
12854 		ipvers = IPV4_VERSION;
12855 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12856 	} else {
12857 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12858 		    NULL, &ipp);
12859 		if (mp == NULL) {
12860 			TCP_STAT(tcps, tcp_rput_v6_error);
12861 			return;
12862 		}
12863 		iphdr = mp->b_rptr;
12864 		rptr = mp->b_rptr;
12865 	}
12866 	ASSERT(DB_TYPE(mp) == M_DATA);
12867 
12868 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12869 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12870 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12871 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12872 	seg_len = (int)(mp->b_wptr - rptr) -
12873 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12874 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12875 		do {
12876 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12877 			    (uintptr_t)INT_MAX);
12878 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12879 		} while ((mp1 = mp1->b_cont) != NULL &&
12880 		    mp1->b_datap->db_type == M_DATA);
12881 	}
12882 
12883 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12884 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12885 		    seg_len, tcph);
12886 		return;
12887 	}
12888 
12889 	if (sqp != NULL) {
12890 		/*
12891 		 * This is the correct place to update tcp_last_recv_time. Note
12892 		 * that it is also updated for tcp structure that belongs to
12893 		 * global and listener queues which do not really need updating.
12894 		 * But that should not cause any harm.  And it is updated for
12895 		 * all kinds of incoming segments, not only for data segments.
12896 		 */
12897 		tcp->tcp_last_recv_time = lbolt;
12898 	}
12899 
12900 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12901 
12902 	BUMP_LOCAL(tcp->tcp_ibsegs);
12903 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12904 
12905 	if ((flags & TH_URG) && sqp != NULL) {
12906 		/*
12907 		 * TCP can't handle urgent pointers that arrive before
12908 		 * the connection has been accept()ed since it can't
12909 		 * buffer OOB data.  Discard segment if this happens.
12910 		 *
12911 		 * Nor can it reassemble urgent pointers, so discard
12912 		 * if it's not the next segment expected.
12913 		 *
12914 		 * Otherwise, collapse chain into one mblk (discard if
12915 		 * that fails).  This makes sure the headers, retransmitted
12916 		 * data, and new data all are in the same mblk.
12917 		 */
12918 		ASSERT(mp != NULL);
12919 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12920 			freemsg(mp);
12921 			return;
12922 		}
12923 		/* Update pointers into message */
12924 		iphdr = rptr = mp->b_rptr;
12925 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12926 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12927 			/*
12928 			 * Since we can't handle any data with this urgent
12929 			 * pointer that is out of sequence, we expunge
12930 			 * the data.  This allows us to still register
12931 			 * the urgent mark and generate the M_PCSIG,
12932 			 * which we can do.
12933 			 */
12934 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12935 			seg_len = 0;
12936 		}
12937 	}
12938 
12939 	switch (tcp->tcp_state) {
12940 	case TCPS_SYN_SENT:
12941 		if (flags & TH_ACK) {
12942 			/*
12943 			 * Note that our stack cannot send data before a
12944 			 * connection is established, therefore the
12945 			 * following check is valid.  Otherwise, it has
12946 			 * to be changed.
12947 			 */
12948 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12949 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12950 				freemsg(mp);
12951 				if (flags & TH_RST)
12952 					return;
12953 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12954 				    tcp, seg_ack, 0, TH_RST);
12955 				return;
12956 			}
12957 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12958 		}
12959 		if (flags & TH_RST) {
12960 			freemsg(mp);
12961 			if (flags & TH_ACK)
12962 				(void) tcp_clean_death(tcp,
12963 				    ECONNREFUSED, 13);
12964 			return;
12965 		}
12966 		if (!(flags & TH_SYN)) {
12967 			freemsg(mp);
12968 			return;
12969 		}
12970 
12971 		/* Process all TCP options. */
12972 		tcp_process_options(tcp, tcph);
12973 		/*
12974 		 * The following changes our rwnd to be a multiple of the
12975 		 * MIN(peer MSS, our MSS) for performance reason.
12976 		 */
12977 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12978 		    tcp->tcp_mss));
12979 
12980 		/* Is the other end ECN capable? */
12981 		if (tcp->tcp_ecn_ok) {
12982 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12983 				tcp->tcp_ecn_ok = B_FALSE;
12984 			}
12985 		}
12986 		/*
12987 		 * Clear ECN flags because it may interfere with later
12988 		 * processing.
12989 		 */
12990 		flags &= ~(TH_ECE|TH_CWR);
12991 
12992 		tcp->tcp_irs = seg_seq;
12993 		tcp->tcp_rack = seg_seq;
12994 		tcp->tcp_rnxt = seg_seq + 1;
12995 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12996 		if (!TCP_IS_DETACHED(tcp)) {
12997 			/* Allocate room for SACK options if needed. */
12998 			if (tcp->tcp_snd_sack_ok) {
12999 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13000 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13001 				    (tcp->tcp_loopback ? 0 :
13002 				    tcps->tcps_wroff_xtra));
13003 			} else {
13004 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13005 				    tcp->tcp_hdr_len +
13006 				    (tcp->tcp_loopback ? 0 :
13007 				    tcps->tcps_wroff_xtra));
13008 			}
13009 		}
13010 		if (flags & TH_ACK) {
13011 			/*
13012 			 * If we can't get the confirmation upstream, pretend
13013 			 * we didn't even see this one.
13014 			 *
13015 			 * XXX: how can we pretend we didn't see it if we
13016 			 * have updated rnxt et. al.
13017 			 *
13018 			 * For loopback we defer sending up the T_CONN_CON
13019 			 * until after some checks below.
13020 			 */
13021 			mp1 = NULL;
13022 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13023 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13024 				freemsg(mp);
13025 				return;
13026 			}
13027 			/* SYN was acked - making progress */
13028 			if (tcp->tcp_ipversion == IPV6_VERSION)
13029 				tcp->tcp_ip_forward_progress = B_TRUE;
13030 
13031 			/* One for the SYN */
13032 			tcp->tcp_suna = tcp->tcp_iss + 1;
13033 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13034 			tcp->tcp_state = TCPS_ESTABLISHED;
13035 
13036 			/*
13037 			 * If SYN was retransmitted, need to reset all
13038 			 * retransmission info.  This is because this
13039 			 * segment will be treated as a dup ACK.
13040 			 */
13041 			if (tcp->tcp_rexmit) {
13042 				tcp->tcp_rexmit = B_FALSE;
13043 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13044 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13045 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13046 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13047 				tcp->tcp_ms_we_have_waited = 0;
13048 
13049 				/*
13050 				 * Set tcp_cwnd back to 1 MSS, per
13051 				 * recommendation from
13052 				 * draft-floyd-incr-init-win-01.txt,
13053 				 * Increasing TCP's Initial Window.
13054 				 */
13055 				tcp->tcp_cwnd = tcp->tcp_mss;
13056 			}
13057 
13058 			tcp->tcp_swl1 = seg_seq;
13059 			tcp->tcp_swl2 = seg_ack;
13060 
13061 			new_swnd = BE16_TO_U16(tcph->th_win);
13062 			tcp->tcp_swnd = new_swnd;
13063 			if (new_swnd > tcp->tcp_max_swnd)
13064 				tcp->tcp_max_swnd = new_swnd;
13065 
13066 			/*
13067 			 * Always send the three-way handshake ack immediately
13068 			 * in order to make the connection complete as soon as
13069 			 * possible on the accepting host.
13070 			 */
13071 			flags |= TH_ACK_NEEDED;
13072 
13073 			/*
13074 			 * Special case for loopback.  At this point we have
13075 			 * received SYN-ACK from the remote endpoint.  In
13076 			 * order to ensure that both endpoints reach the
13077 			 * fused state prior to any data exchange, the final
13078 			 * ACK needs to be sent before we indicate T_CONN_CON
13079 			 * to the module upstream.
13080 			 */
13081 			if (tcp->tcp_loopback) {
13082 				mblk_t *ack_mp;
13083 
13084 				ASSERT(!tcp->tcp_unfusable);
13085 				ASSERT(mp1 != NULL);
13086 				/*
13087 				 * For loopback, we always get a pure SYN-ACK
13088 				 * and only need to send back the final ACK
13089 				 * with no data (this is because the other
13090 				 * tcp is ours and we don't do T/TCP).  This
13091 				 * final ACK triggers the passive side to
13092 				 * perform fusion in ESTABLISHED state.
13093 				 */
13094 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13095 					if (tcp->tcp_ack_tid != 0) {
13096 						(void) TCP_TIMER_CANCEL(tcp,
13097 						    tcp->tcp_ack_tid);
13098 						tcp->tcp_ack_tid = 0;
13099 					}
13100 					TCP_RECORD_TRACE(tcp, ack_mp,
13101 					    TCP_TRACE_SEND_PKT);
13102 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13103 					BUMP_LOCAL(tcp->tcp_obsegs);
13104 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13105 
13106 					/* Send up T_CONN_CON */
13107 					putnext(tcp->tcp_rq, mp1);
13108 
13109 					freemsg(mp);
13110 					return;
13111 				}
13112 				/*
13113 				 * Forget fusion; we need to handle more
13114 				 * complex cases below.  Send the deferred
13115 				 * T_CONN_CON message upstream and proceed
13116 				 * as usual.  Mark this tcp as not capable
13117 				 * of fusion.
13118 				 */
13119 				TCP_STAT(tcps, tcp_fusion_unfusable);
13120 				tcp->tcp_unfusable = B_TRUE;
13121 				putnext(tcp->tcp_rq, mp1);
13122 			}
13123 
13124 			/*
13125 			 * Check to see if there is data to be sent.  If
13126 			 * yes, set the transmit flag.  Then check to see
13127 			 * if received data processing needs to be done.
13128 			 * If not, go straight to xmit_check.  This short
13129 			 * cut is OK as we don't support T/TCP.
13130 			 */
13131 			if (tcp->tcp_unsent)
13132 				flags |= TH_XMIT_NEEDED;
13133 
13134 			if (seg_len == 0 && !(flags & TH_URG)) {
13135 				freemsg(mp);
13136 				goto xmit_check;
13137 			}
13138 
13139 			flags &= ~TH_SYN;
13140 			seg_seq++;
13141 			break;
13142 		}
13143 		tcp->tcp_state = TCPS_SYN_RCVD;
13144 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13145 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13146 		if (mp1) {
13147 			DB_CPID(mp1) = tcp->tcp_cpid;
13148 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13149 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13150 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13151 		}
13152 		freemsg(mp);
13153 		return;
13154 	case TCPS_SYN_RCVD:
13155 		if (flags & TH_ACK) {
13156 			/*
13157 			 * In this state, a SYN|ACK packet is either bogus
13158 			 * because the other side must be ACKing our SYN which
13159 			 * indicates it has seen the ACK for their SYN and
13160 			 * shouldn't retransmit it or we're crossing SYNs
13161 			 * on active open.
13162 			 */
13163 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13164 				freemsg(mp);
13165 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13166 				    tcp, seg_ack, 0, TH_RST);
13167 				return;
13168 			}
13169 			/*
13170 			 * NOTE: RFC 793 pg. 72 says this should be
13171 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13172 			 * but that would mean we have an ack that ignored
13173 			 * our SYN.
13174 			 */
13175 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13176 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13177 				freemsg(mp);
13178 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13179 				    tcp, seg_ack, 0, TH_RST);
13180 				return;
13181 			}
13182 		}
13183 		break;
13184 	case TCPS_LISTEN:
13185 		/*
13186 		 * Only a TLI listener can come through this path when a
13187 		 * acceptor is going back to be a listener and a packet
13188 		 * for the acceptor hits the classifier. For a socket
13189 		 * listener, this can never happen because a listener
13190 		 * can never accept connection on itself and hence a
13191 		 * socket acceptor can not go back to being a listener.
13192 		 */
13193 		ASSERT(!TCP_IS_SOCKET(tcp));
13194 		/*FALLTHRU*/
13195 	case TCPS_CLOSED:
13196 	case TCPS_BOUND: {
13197 		conn_t	*new_connp;
13198 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13199 
13200 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13201 		if (new_connp != NULL) {
13202 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13203 			return;
13204 		}
13205 		/* We failed to classify. For now just drop the packet */
13206 		freemsg(mp);
13207 		return;
13208 	}
13209 	case TCPS_IDLE:
13210 		/*
13211 		 * Handle the case where the tcp_clean_death() has happened
13212 		 * on a connection (application hasn't closed yet) but a packet
13213 		 * was already queued on squeue before tcp_clean_death()
13214 		 * was processed. Calling tcp_clean_death() twice on same
13215 		 * connection can result in weird behaviour.
13216 		 */
13217 		freemsg(mp);
13218 		return;
13219 	default:
13220 		break;
13221 	}
13222 
13223 	/*
13224 	 * Already on the correct queue/perimeter.
13225 	 * If this is a detached connection and not an eager
13226 	 * connection hanging off a listener then new data
13227 	 * (past the FIN) will cause a reset.
13228 	 * We do a special check here where it
13229 	 * is out of the main line, rather than check
13230 	 * if we are detached every time we see new
13231 	 * data down below.
13232 	 */
13233 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13234 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13235 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13236 		TCP_RECORD_TRACE(tcp,
13237 		    mp, TCP_TRACE_RECV_PKT);
13238 
13239 		freemsg(mp);
13240 		/*
13241 		 * This could be an SSL closure alert. We're detached so just
13242 		 * acknowledge it this last time.
13243 		 */
13244 		if (tcp->tcp_kssl_ctx != NULL) {
13245 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13246 			tcp->tcp_kssl_ctx = NULL;
13247 
13248 			tcp->tcp_rnxt += seg_len;
13249 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13250 			flags |= TH_ACK_NEEDED;
13251 			goto ack_check;
13252 		}
13253 
13254 		tcp_xmit_ctl("new data when detached", tcp,
13255 		    tcp->tcp_snxt, 0, TH_RST);
13256 		(void) tcp_clean_death(tcp, EPROTO, 12);
13257 		return;
13258 	}
13259 
13260 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13261 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13262 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13263 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13264 	mss = tcp->tcp_mss;
13265 
13266 	if (tcp->tcp_snd_ts_ok) {
13267 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13268 			/*
13269 			 * This segment is not acceptable.
13270 			 * Drop it and send back an ACK.
13271 			 */
13272 			freemsg(mp);
13273 			flags |= TH_ACK_NEEDED;
13274 			goto ack_check;
13275 		}
13276 	} else if (tcp->tcp_snd_sack_ok) {
13277 		ASSERT(tcp->tcp_sack_info != NULL);
13278 		tcpopt.tcp = tcp;
13279 		/*
13280 		 * SACK info in already updated in tcp_parse_options.  Ignore
13281 		 * all other TCP options...
13282 		 */
13283 		(void) tcp_parse_options(tcph, &tcpopt);
13284 	}
13285 try_again:;
13286 	gap = seg_seq - tcp->tcp_rnxt;
13287 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13288 	/*
13289 	 * gap is the amount of sequence space between what we expect to see
13290 	 * and what we got for seg_seq.  A positive value for gap means
13291 	 * something got lost.  A negative value means we got some old stuff.
13292 	 */
13293 	if (gap < 0) {
13294 		/* Old stuff present.  Is the SYN in there? */
13295 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13296 		    (seg_len != 0)) {
13297 			flags &= ~TH_SYN;
13298 			seg_seq++;
13299 			urp--;
13300 			/* Recompute the gaps after noting the SYN. */
13301 			goto try_again;
13302 		}
13303 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13304 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13305 		    (seg_len > -gap ? -gap : seg_len));
13306 		/* Remove the old stuff from seg_len. */
13307 		seg_len += gap;
13308 		/*
13309 		 * Anything left?
13310 		 * Make sure to check for unack'd FIN when rest of data
13311 		 * has been previously ack'd.
13312 		 */
13313 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13314 			/*
13315 			 * Resets are only valid if they lie within our offered
13316 			 * window.  If the RST bit is set, we just ignore this
13317 			 * segment.
13318 			 */
13319 			if (flags & TH_RST) {
13320 				freemsg(mp);
13321 				return;
13322 			}
13323 
13324 			/*
13325 			 * The arriving of dup data packets indicate that we
13326 			 * may have postponed an ack for too long, or the other
13327 			 * side's RTT estimate is out of shape. Start acking
13328 			 * more often.
13329 			 */
13330 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13331 			    tcp->tcp_rack_cnt >= 1 &&
13332 			    tcp->tcp_rack_abs_max > 2) {
13333 				tcp->tcp_rack_abs_max--;
13334 			}
13335 			tcp->tcp_rack_cur_max = 1;
13336 
13337 			/*
13338 			 * This segment is "unacceptable".  None of its
13339 			 * sequence space lies within our advertized window.
13340 			 *
13341 			 * Adjust seg_len to the original value for tracing.
13342 			 */
13343 			seg_len -= gap;
13344 			if (tcp->tcp_debug) {
13345 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13346 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13347 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13348 				    "seg_len %d, rnxt %u, snxt %u, %s",
13349 				    gap, rgap, flags, seg_seq, seg_ack,
13350 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13351 				    tcp_display(tcp, NULL,
13352 				    DISP_ADDR_AND_PORT));
13353 			}
13354 
13355 			/*
13356 			 * Arrange to send an ACK in response to the
13357 			 * unacceptable segment per RFC 793 page 69. There
13358 			 * is only one small difference between ours and the
13359 			 * acceptability test in the RFC - we accept ACK-only
13360 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13361 			 * will be generated.
13362 			 *
13363 			 * Note that we have to ACK an ACK-only packet at least
13364 			 * for stacks that send 0-length keep-alives with
13365 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13366 			 * section 4.2.3.6. As long as we don't ever generate
13367 			 * an unacceptable packet in response to an incoming
13368 			 * packet that is unacceptable, it should not cause
13369 			 * "ACK wars".
13370 			 */
13371 			flags |=  TH_ACK_NEEDED;
13372 
13373 			/*
13374 			 * Continue processing this segment in order to use the
13375 			 * ACK information it contains, but skip all other
13376 			 * sequence-number processing.	Processing the ACK
13377 			 * information is necessary in order to
13378 			 * re-synchronize connections that may have lost
13379 			 * synchronization.
13380 			 *
13381 			 * We clear seg_len and flag fields related to
13382 			 * sequence number processing as they are not
13383 			 * to be trusted for an unacceptable segment.
13384 			 */
13385 			seg_len = 0;
13386 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13387 			goto process_ack;
13388 		}
13389 
13390 		/* Fix seg_seq, and chew the gap off the front. */
13391 		seg_seq = tcp->tcp_rnxt;
13392 		urp += gap;
13393 		do {
13394 			mblk_t	*mp2;
13395 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13396 			    (uintptr_t)UINT_MAX);
13397 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13398 			if (gap > 0) {
13399 				mp->b_rptr = mp->b_wptr - gap;
13400 				break;
13401 			}
13402 			mp2 = mp;
13403 			mp = mp->b_cont;
13404 			freeb(mp2);
13405 		} while (gap < 0);
13406 		/*
13407 		 * If the urgent data has already been acknowledged, we
13408 		 * should ignore TH_URG below
13409 		 */
13410 		if (urp < 0)
13411 			flags &= ~TH_URG;
13412 	}
13413 	/*
13414 	 * rgap is the amount of stuff received out of window.  A negative
13415 	 * value is the amount out of window.
13416 	 */
13417 	if (rgap < 0) {
13418 		mblk_t	*mp2;
13419 
13420 		if (tcp->tcp_rwnd == 0) {
13421 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13422 		} else {
13423 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13424 			UPDATE_MIB(&tcps->tcps_mib,
13425 			    tcpInDataPastWinBytes, -rgap);
13426 		}
13427 
13428 		/*
13429 		 * seg_len does not include the FIN, so if more than
13430 		 * just the FIN is out of window, we act like we don't
13431 		 * see it.  (If just the FIN is out of window, rgap
13432 		 * will be zero and we will go ahead and acknowledge
13433 		 * the FIN.)
13434 		 */
13435 		flags &= ~TH_FIN;
13436 
13437 		/* Fix seg_len and make sure there is something left. */
13438 		seg_len += rgap;
13439 		if (seg_len <= 0) {
13440 			/*
13441 			 * Resets are only valid if they lie within our offered
13442 			 * window.  If the RST bit is set, we just ignore this
13443 			 * segment.
13444 			 */
13445 			if (flags & TH_RST) {
13446 				freemsg(mp);
13447 				return;
13448 			}
13449 
13450 			/* Per RFC 793, we need to send back an ACK. */
13451 			flags |= TH_ACK_NEEDED;
13452 
13453 			/*
13454 			 * Send SIGURG as soon as possible i.e. even
13455 			 * if the TH_URG was delivered in a window probe
13456 			 * packet (which will be unacceptable).
13457 			 *
13458 			 * We generate a signal if none has been generated
13459 			 * for this connection or if this is a new urgent
13460 			 * byte. Also send a zero-length "unmarked" message
13461 			 * to inform SIOCATMARK that this is not the mark.
13462 			 *
13463 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13464 			 * is sent up. This plus the check for old data
13465 			 * (gap >= 0) handles the wraparound of the sequence
13466 			 * number space without having to always track the
13467 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13468 			 * this max in its rcv_up variable).
13469 			 *
13470 			 * This prevents duplicate SIGURGS due to a "late"
13471 			 * zero-window probe when the T_EXDATA_IND has already
13472 			 * been sent up.
13473 			 */
13474 			if ((flags & TH_URG) &&
13475 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13476 			    tcp->tcp_urp_last))) {
13477 				mp1 = allocb(0, BPRI_MED);
13478 				if (mp1 == NULL) {
13479 					freemsg(mp);
13480 					return;
13481 				}
13482 				if (!TCP_IS_DETACHED(tcp) &&
13483 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13484 				    SIGURG)) {
13485 					/* Try again on the rexmit. */
13486 					freemsg(mp1);
13487 					freemsg(mp);
13488 					return;
13489 				}
13490 				/*
13491 				 * If the next byte would be the mark
13492 				 * then mark with MARKNEXT else mark
13493 				 * with NOTMARKNEXT.
13494 				 */
13495 				if (gap == 0 && urp == 0)
13496 					mp1->b_flag |= MSGMARKNEXT;
13497 				else
13498 					mp1->b_flag |= MSGNOTMARKNEXT;
13499 				freemsg(tcp->tcp_urp_mark_mp);
13500 				tcp->tcp_urp_mark_mp = mp1;
13501 				flags |= TH_SEND_URP_MARK;
13502 				tcp->tcp_urp_last_valid = B_TRUE;
13503 				tcp->tcp_urp_last = urp + seg_seq;
13504 			}
13505 			/*
13506 			 * If this is a zero window probe, continue to
13507 			 * process the ACK part.  But we need to set seg_len
13508 			 * to 0 to avoid data processing.  Otherwise just
13509 			 * drop the segment and send back an ACK.
13510 			 */
13511 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13512 				flags &= ~(TH_SYN | TH_URG);
13513 				seg_len = 0;
13514 				goto process_ack;
13515 			} else {
13516 				freemsg(mp);
13517 				goto ack_check;
13518 			}
13519 		}
13520 		/* Pitch out of window stuff off the end. */
13521 		rgap = seg_len;
13522 		mp2 = mp;
13523 		do {
13524 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13525 			    (uintptr_t)INT_MAX);
13526 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13527 			if (rgap < 0) {
13528 				mp2->b_wptr += rgap;
13529 				if ((mp1 = mp2->b_cont) != NULL) {
13530 					mp2->b_cont = NULL;
13531 					freemsg(mp1);
13532 				}
13533 				break;
13534 			}
13535 		} while ((mp2 = mp2->b_cont) != NULL);
13536 	}
13537 ok:;
13538 	/*
13539 	 * TCP should check ECN info for segments inside the window only.
13540 	 * Therefore the check should be done here.
13541 	 */
13542 	if (tcp->tcp_ecn_ok) {
13543 		if (flags & TH_CWR) {
13544 			tcp->tcp_ecn_echo_on = B_FALSE;
13545 		}
13546 		/*
13547 		 * Note that both ECN_CE and CWR can be set in the
13548 		 * same segment.  In this case, we once again turn
13549 		 * on ECN_ECHO.
13550 		 */
13551 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13552 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13553 
13554 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13555 				tcp->tcp_ecn_echo_on = B_TRUE;
13556 			}
13557 		} else {
13558 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13559 
13560 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13561 			    htonl(IPH_ECN_CE << 20)) {
13562 				tcp->tcp_ecn_echo_on = B_TRUE;
13563 			}
13564 		}
13565 	}
13566 
13567 	/*
13568 	 * Check whether we can update tcp_ts_recent.  This test is
13569 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13570 	 * Extensions for High Performance: An Update", Internet Draft.
13571 	 */
13572 	if (tcp->tcp_snd_ts_ok &&
13573 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13574 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13575 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13576 		tcp->tcp_last_rcv_lbolt = lbolt64;
13577 	}
13578 
13579 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13580 		/*
13581 		 * FIN in an out of order segment.  We record this in
13582 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13583 		 * Clear the FIN so that any check on FIN flag will fail.
13584 		 * Remember that FIN also counts in the sequence number
13585 		 * space.  So we need to ack out of order FIN only segments.
13586 		 */
13587 		if (flags & TH_FIN) {
13588 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13589 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13590 			flags &= ~TH_FIN;
13591 			flags |= TH_ACK_NEEDED;
13592 		}
13593 		if (seg_len > 0) {
13594 			/* Fill in the SACK blk list. */
13595 			if (tcp->tcp_snd_sack_ok) {
13596 				ASSERT(tcp->tcp_sack_info != NULL);
13597 				tcp_sack_insert(tcp->tcp_sack_list,
13598 				    seg_seq, seg_seq + seg_len,
13599 				    &(tcp->tcp_num_sack_blk));
13600 			}
13601 
13602 			/*
13603 			 * Attempt reassembly and see if we have something
13604 			 * ready to go.
13605 			 */
13606 			mp = tcp_reass(tcp, mp, seg_seq);
13607 			/* Always ack out of order packets */
13608 			flags |= TH_ACK_NEEDED | TH_PUSH;
13609 			if (mp) {
13610 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13611 				    (uintptr_t)INT_MAX);
13612 				seg_len = mp->b_cont ? msgdsize(mp) :
13613 					(int)(mp->b_wptr - mp->b_rptr);
13614 				seg_seq = tcp->tcp_rnxt;
13615 				/*
13616 				 * A gap is filled and the seq num and len
13617 				 * of the gap match that of a previously
13618 				 * received FIN, put the FIN flag back in.
13619 				 */
13620 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13621 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13622 					flags |= TH_FIN;
13623 					tcp->tcp_valid_bits &=
13624 					    ~TCP_OFO_FIN_VALID;
13625 				}
13626 			} else {
13627 				/*
13628 				 * Keep going even with NULL mp.
13629 				 * There may be a useful ACK or something else
13630 				 * we don't want to miss.
13631 				 *
13632 				 * But TCP should not perform fast retransmit
13633 				 * because of the ack number.  TCP uses
13634 				 * seg_len == 0 to determine if it is a pure
13635 				 * ACK.  And this is not a pure ACK.
13636 				 */
13637 				seg_len = 0;
13638 				ofo_seg = B_TRUE;
13639 			}
13640 		}
13641 	} else if (seg_len > 0) {
13642 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13643 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13644 		/*
13645 		 * If an out of order FIN was received before, and the seq
13646 		 * num and len of the new segment match that of the FIN,
13647 		 * put the FIN flag back in.
13648 		 */
13649 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13650 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13651 			flags |= TH_FIN;
13652 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13653 		}
13654 	}
13655 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13656 	if (flags & TH_RST) {
13657 		freemsg(mp);
13658 		switch (tcp->tcp_state) {
13659 		case TCPS_SYN_RCVD:
13660 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13661 			break;
13662 		case TCPS_ESTABLISHED:
13663 		case TCPS_FIN_WAIT_1:
13664 		case TCPS_FIN_WAIT_2:
13665 		case TCPS_CLOSE_WAIT:
13666 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13667 			break;
13668 		case TCPS_CLOSING:
13669 		case TCPS_LAST_ACK:
13670 			(void) tcp_clean_death(tcp, 0, 16);
13671 			break;
13672 		default:
13673 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13674 			(void) tcp_clean_death(tcp, ENXIO, 17);
13675 			break;
13676 		}
13677 		return;
13678 	}
13679 	if (flags & TH_SYN) {
13680 		/*
13681 		 * See RFC 793, Page 71
13682 		 *
13683 		 * The seq number must be in the window as it should
13684 		 * be "fixed" above.  If it is outside window, it should
13685 		 * be already rejected.  Note that we allow seg_seq to be
13686 		 * rnxt + rwnd because we want to accept 0 window probe.
13687 		 */
13688 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13689 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13690 		freemsg(mp);
13691 		/*
13692 		 * If the ACK flag is not set, just use our snxt as the
13693 		 * seq number of the RST segment.
13694 		 */
13695 		if (!(flags & TH_ACK)) {
13696 			seg_ack = tcp->tcp_snxt;
13697 		}
13698 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13699 		    TH_RST|TH_ACK);
13700 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13701 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13702 		return;
13703 	}
13704 	/*
13705 	 * urp could be -1 when the urp field in the packet is 0
13706 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13707 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13708 	 */
13709 	if (flags & TH_URG && urp >= 0) {
13710 		if (!tcp->tcp_urp_last_valid ||
13711 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13712 			/*
13713 			 * If we haven't generated the signal yet for this
13714 			 * urgent pointer value, do it now.  Also, send up a
13715 			 * zero-length M_DATA indicating whether or not this is
13716 			 * the mark. The latter is not needed when a
13717 			 * T_EXDATA_IND is sent up. However, if there are
13718 			 * allocation failures this code relies on the sender
13719 			 * retransmitting and the socket code for determining
13720 			 * the mark should not block waiting for the peer to
13721 			 * transmit. Thus, for simplicity we always send up the
13722 			 * mark indication.
13723 			 */
13724 			mp1 = allocb(0, BPRI_MED);
13725 			if (mp1 == NULL) {
13726 				freemsg(mp);
13727 				return;
13728 			}
13729 			if (!TCP_IS_DETACHED(tcp) &&
13730 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13731 				/* Try again on the rexmit. */
13732 				freemsg(mp1);
13733 				freemsg(mp);
13734 				return;
13735 			}
13736 			/*
13737 			 * Mark with NOTMARKNEXT for now.
13738 			 * The code below will change this to MARKNEXT
13739 			 * if we are at the mark.
13740 			 *
13741 			 * If there are allocation failures (e.g. in dupmsg
13742 			 * below) the next time tcp_rput_data sees the urgent
13743 			 * segment it will send up the MSG*MARKNEXT message.
13744 			 */
13745 			mp1->b_flag |= MSGNOTMARKNEXT;
13746 			freemsg(tcp->tcp_urp_mark_mp);
13747 			tcp->tcp_urp_mark_mp = mp1;
13748 			flags |= TH_SEND_URP_MARK;
13749 #ifdef DEBUG
13750 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13751 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13752 			    "last %x, %s",
13753 			    seg_seq, urp, tcp->tcp_urp_last,
13754 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13755 #endif /* DEBUG */
13756 			tcp->tcp_urp_last_valid = B_TRUE;
13757 			tcp->tcp_urp_last = urp + seg_seq;
13758 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13759 			/*
13760 			 * An allocation failure prevented the previous
13761 			 * tcp_rput_data from sending up the allocated
13762 			 * MSG*MARKNEXT message - send it up this time
13763 			 * around.
13764 			 */
13765 			flags |= TH_SEND_URP_MARK;
13766 		}
13767 
13768 		/*
13769 		 * If the urgent byte is in this segment, make sure that it is
13770 		 * all by itself.  This makes it much easier to deal with the
13771 		 * possibility of an allocation failure on the T_exdata_ind.
13772 		 * Note that seg_len is the number of bytes in the segment, and
13773 		 * urp is the offset into the segment of the urgent byte.
13774 		 * urp < seg_len means that the urgent byte is in this segment.
13775 		 */
13776 		if (urp < seg_len) {
13777 			if (seg_len != 1) {
13778 				uint32_t  tmp_rnxt;
13779 				/*
13780 				 * Break it up and feed it back in.
13781 				 * Re-attach the IP header.
13782 				 */
13783 				mp->b_rptr = iphdr;
13784 				if (urp > 0) {
13785 					/*
13786 					 * There is stuff before the urgent
13787 					 * byte.
13788 					 */
13789 					mp1 = dupmsg(mp);
13790 					if (!mp1) {
13791 						/*
13792 						 * Trim from urgent byte on.
13793 						 * The rest will come back.
13794 						 */
13795 						(void) adjmsg(mp,
13796 						    urp - seg_len);
13797 						tcp_rput_data(connp,
13798 						    mp, NULL);
13799 						return;
13800 					}
13801 					(void) adjmsg(mp1, urp - seg_len);
13802 					/* Feed this piece back in. */
13803 					tmp_rnxt = tcp->tcp_rnxt;
13804 					tcp_rput_data(connp, mp1, NULL);
13805 					/*
13806 					 * If the data passed back in was not
13807 					 * processed (ie: bad ACK) sending
13808 					 * the remainder back in will cause a
13809 					 * loop. In this case, drop the
13810 					 * packet and let the sender try
13811 					 * sending a good packet.
13812 					 */
13813 					if (tmp_rnxt == tcp->tcp_rnxt) {
13814 						freemsg(mp);
13815 						return;
13816 					}
13817 				}
13818 				if (urp != seg_len - 1) {
13819 					uint32_t  tmp_rnxt;
13820 					/*
13821 					 * There is stuff after the urgent
13822 					 * byte.
13823 					 */
13824 					mp1 = dupmsg(mp);
13825 					if (!mp1) {
13826 						/*
13827 						 * Trim everything beyond the
13828 						 * urgent byte.  The rest will
13829 						 * come back.
13830 						 */
13831 						(void) adjmsg(mp,
13832 						    urp + 1 - seg_len);
13833 						tcp_rput_data(connp,
13834 						    mp, NULL);
13835 						return;
13836 					}
13837 					(void) adjmsg(mp1, urp + 1 - seg_len);
13838 					tmp_rnxt = tcp->tcp_rnxt;
13839 					tcp_rput_data(connp, mp1, NULL);
13840 					/*
13841 					 * If the data passed back in was not
13842 					 * processed (ie: bad ACK) sending
13843 					 * the remainder back in will cause a
13844 					 * loop. In this case, drop the
13845 					 * packet and let the sender try
13846 					 * sending a good packet.
13847 					 */
13848 					if (tmp_rnxt == tcp->tcp_rnxt) {
13849 						freemsg(mp);
13850 						return;
13851 					}
13852 				}
13853 				tcp_rput_data(connp, mp, NULL);
13854 				return;
13855 			}
13856 			/*
13857 			 * This segment contains only the urgent byte.  We
13858 			 * have to allocate the T_exdata_ind, if we can.
13859 			 */
13860 			if (!tcp->tcp_urp_mp) {
13861 				struct T_exdata_ind *tei;
13862 				mp1 = allocb(sizeof (struct T_exdata_ind),
13863 				    BPRI_MED);
13864 				if (!mp1) {
13865 					/*
13866 					 * Sigh... It'll be back.
13867 					 * Generate any MSG*MARK message now.
13868 					 */
13869 					freemsg(mp);
13870 					seg_len = 0;
13871 					if (flags & TH_SEND_URP_MARK) {
13872 
13873 
13874 						ASSERT(tcp->tcp_urp_mark_mp);
13875 						tcp->tcp_urp_mark_mp->b_flag &=
13876 							~MSGNOTMARKNEXT;
13877 						tcp->tcp_urp_mark_mp->b_flag |=
13878 							MSGMARKNEXT;
13879 					}
13880 					goto ack_check;
13881 				}
13882 				mp1->b_datap->db_type = M_PROTO;
13883 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13884 				tei->PRIM_type = T_EXDATA_IND;
13885 				tei->MORE_flag = 0;
13886 				mp1->b_wptr = (uchar_t *)&tei[1];
13887 				tcp->tcp_urp_mp = mp1;
13888 #ifdef DEBUG
13889 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13890 				    "tcp_rput: allocated exdata_ind %s",
13891 				    tcp_display(tcp, NULL,
13892 				    DISP_PORT_ONLY));
13893 #endif /* DEBUG */
13894 				/*
13895 				 * There is no need to send a separate MSG*MARK
13896 				 * message since the T_EXDATA_IND will be sent
13897 				 * now.
13898 				 */
13899 				flags &= ~TH_SEND_URP_MARK;
13900 				freemsg(tcp->tcp_urp_mark_mp);
13901 				tcp->tcp_urp_mark_mp = NULL;
13902 			}
13903 			/*
13904 			 * Now we are all set.  On the next putnext upstream,
13905 			 * tcp_urp_mp will be non-NULL and will get prepended
13906 			 * to what has to be this piece containing the urgent
13907 			 * byte.  If for any reason we abort this segment below,
13908 			 * if it comes back, we will have this ready, or it
13909 			 * will get blown off in close.
13910 			 */
13911 		} else if (urp == seg_len) {
13912 			/*
13913 			 * The urgent byte is the next byte after this sequence
13914 			 * number. If there is data it is marked with
13915 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13916 			 * since it is not needed. Otherwise, if the code
13917 			 * above just allocated a zero-length tcp_urp_mark_mp
13918 			 * message, that message is tagged with MSGMARKNEXT.
13919 			 * Sending up these MSGMARKNEXT messages makes
13920 			 * SIOCATMARK work correctly even though
13921 			 * the T_EXDATA_IND will not be sent up until the
13922 			 * urgent byte arrives.
13923 			 */
13924 			if (seg_len != 0) {
13925 				flags |= TH_MARKNEXT_NEEDED;
13926 				freemsg(tcp->tcp_urp_mark_mp);
13927 				tcp->tcp_urp_mark_mp = NULL;
13928 				flags &= ~TH_SEND_URP_MARK;
13929 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13930 				flags |= TH_SEND_URP_MARK;
13931 				tcp->tcp_urp_mark_mp->b_flag &=
13932 					~MSGNOTMARKNEXT;
13933 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13934 			}
13935 #ifdef DEBUG
13936 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13937 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13938 			    seg_len, flags,
13939 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13940 #endif /* DEBUG */
13941 		} else {
13942 			/* Data left until we hit mark */
13943 #ifdef DEBUG
13944 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13945 			    "tcp_rput: URP %d bytes left, %s",
13946 			    urp - seg_len, tcp_display(tcp, NULL,
13947 			    DISP_PORT_ONLY));
13948 #endif /* DEBUG */
13949 		}
13950 	}
13951 
13952 process_ack:
13953 	if (!(flags & TH_ACK)) {
13954 		freemsg(mp);
13955 		goto xmit_check;
13956 	}
13957 	}
13958 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13959 
13960 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13961 		tcp->tcp_ip_forward_progress = B_TRUE;
13962 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13963 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13964 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13965 			/* 3-way handshake complete - pass up the T_CONN_IND */
13966 			tcp_t	*listener = tcp->tcp_listener;
13967 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13968 
13969 			tcp->tcp_tconnind_started = B_TRUE;
13970 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13971 			/*
13972 			 * We are here means eager is fine but it can
13973 			 * get a TH_RST at any point between now and till
13974 			 * accept completes and disappear. We need to
13975 			 * ensure that reference to eager is valid after
13976 			 * we get out of eager's perimeter. So we do
13977 			 * an extra refhold.
13978 			 */
13979 			CONN_INC_REF(connp);
13980 
13981 			/*
13982 			 * The listener also exists because of the refhold
13983 			 * done in tcp_conn_request. Its possible that it
13984 			 * might have closed. We will check that once we
13985 			 * get inside listeners context.
13986 			 */
13987 			CONN_INC_REF(listener->tcp_connp);
13988 			if (listener->tcp_connp->conn_sqp ==
13989 			    connp->conn_sqp) {
13990 				tcp_send_conn_ind(listener->tcp_connp, mp,
13991 				    listener->tcp_connp->conn_sqp);
13992 				CONN_DEC_REF(listener->tcp_connp);
13993 			} else if (!tcp->tcp_loopback) {
13994 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13995 				    tcp_send_conn_ind,
13996 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13997 			} else {
13998 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13999 				    tcp_send_conn_ind, listener->tcp_connp,
14000 				    SQTAG_TCP_CONN_IND);
14001 			}
14002 		}
14003 
14004 		if (tcp->tcp_active_open) {
14005 			/*
14006 			 * We are seeing the final ack in the three way
14007 			 * hand shake of a active open'ed connection
14008 			 * so we must send up a T_CONN_CON
14009 			 */
14010 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14011 				freemsg(mp);
14012 				return;
14013 			}
14014 			/*
14015 			 * Don't fuse the loopback endpoints for
14016 			 * simultaneous active opens.
14017 			 */
14018 			if (tcp->tcp_loopback) {
14019 				TCP_STAT(tcps, tcp_fusion_unfusable);
14020 				tcp->tcp_unfusable = B_TRUE;
14021 			}
14022 		}
14023 
14024 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14025 		bytes_acked--;
14026 		/* SYN was acked - making progress */
14027 		if (tcp->tcp_ipversion == IPV6_VERSION)
14028 			tcp->tcp_ip_forward_progress = B_TRUE;
14029 
14030 		/*
14031 		 * If SYN was retransmitted, need to reset all
14032 		 * retransmission info as this segment will be
14033 		 * treated as a dup ACK.
14034 		 */
14035 		if (tcp->tcp_rexmit) {
14036 			tcp->tcp_rexmit = B_FALSE;
14037 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14038 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14039 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14040 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14041 			tcp->tcp_ms_we_have_waited = 0;
14042 			tcp->tcp_cwnd = mss;
14043 		}
14044 
14045 		/*
14046 		 * We set the send window to zero here.
14047 		 * This is needed if there is data to be
14048 		 * processed already on the queue.
14049 		 * Later (at swnd_update label), the
14050 		 * "new_swnd > tcp_swnd" condition is satisfied
14051 		 * the XMIT_NEEDED flag is set in the current
14052 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14053 		 * called if there is already data on queue in
14054 		 * this state.
14055 		 */
14056 		tcp->tcp_swnd = 0;
14057 
14058 		if (new_swnd > tcp->tcp_max_swnd)
14059 			tcp->tcp_max_swnd = new_swnd;
14060 		tcp->tcp_swl1 = seg_seq;
14061 		tcp->tcp_swl2 = seg_ack;
14062 		tcp->tcp_state = TCPS_ESTABLISHED;
14063 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14064 
14065 		/* Fuse when both sides are in ESTABLISHED state */
14066 		if (tcp->tcp_loopback && do_tcp_fusion)
14067 			tcp_fuse(tcp, iphdr, tcph);
14068 
14069 	}
14070 	/* This code follows 4.4BSD-Lite2 mostly. */
14071 	if (bytes_acked < 0)
14072 		goto est;
14073 
14074 	/*
14075 	 * If TCP is ECN capable and the congestion experience bit is
14076 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14077 	 * done once per window (or more loosely, per RTT).
14078 	 */
14079 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14080 		tcp->tcp_cwr = B_FALSE;
14081 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14082 		if (!tcp->tcp_cwr) {
14083 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14084 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14085 			tcp->tcp_cwnd = npkt * mss;
14086 			/*
14087 			 * If the cwnd is 0, use the timer to clock out
14088 			 * new segments.  This is required by the ECN spec.
14089 			 */
14090 			if (npkt == 0) {
14091 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14092 				/*
14093 				 * This makes sure that when the ACK comes
14094 				 * back, we will increase tcp_cwnd by 1 MSS.
14095 				 */
14096 				tcp->tcp_cwnd_cnt = 0;
14097 			}
14098 			tcp->tcp_cwr = B_TRUE;
14099 			/*
14100 			 * This marks the end of the current window of in
14101 			 * flight data.  That is why we don't use
14102 			 * tcp_suna + tcp_swnd.  Only data in flight can
14103 			 * provide ECN info.
14104 			 */
14105 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14106 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14107 		}
14108 	}
14109 
14110 	mp1 = tcp->tcp_xmit_head;
14111 	if (bytes_acked == 0) {
14112 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14113 			int dupack_cnt;
14114 
14115 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14116 			/*
14117 			 * Fast retransmit.  When we have seen exactly three
14118 			 * identical ACKs while we have unacked data
14119 			 * outstanding we take it as a hint that our peer
14120 			 * dropped something.
14121 			 *
14122 			 * If TCP is retransmitting, don't do fast retransmit.
14123 			 */
14124 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14125 			    ! tcp->tcp_rexmit) {
14126 				/* Do Limited Transmit */
14127 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14128 				    tcps->tcps_dupack_fast_retransmit) {
14129 					/*
14130 					 * RFC 3042
14131 					 *
14132 					 * What we need to do is temporarily
14133 					 * increase tcp_cwnd so that new
14134 					 * data can be sent if it is allowed
14135 					 * by the receive window (tcp_rwnd).
14136 					 * tcp_wput_data() will take care of
14137 					 * the rest.
14138 					 *
14139 					 * If the connection is SACK capable,
14140 					 * only do limited xmit when there
14141 					 * is SACK info.
14142 					 *
14143 					 * Note how tcp_cwnd is incremented.
14144 					 * The first dup ACK will increase
14145 					 * it by 1 MSS.  The second dup ACK
14146 					 * will increase it by 2 MSS.  This
14147 					 * means that only 1 new segment will
14148 					 * be sent for each dup ACK.
14149 					 */
14150 					if (tcp->tcp_unsent > 0 &&
14151 					    (!tcp->tcp_snd_sack_ok ||
14152 					    (tcp->tcp_snd_sack_ok &&
14153 					    tcp->tcp_notsack_list != NULL))) {
14154 						tcp->tcp_cwnd += mss <<
14155 						    (tcp->tcp_dupack_cnt - 1);
14156 						flags |= TH_LIMIT_XMIT;
14157 					}
14158 				} else if (dupack_cnt ==
14159 				    tcps->tcps_dupack_fast_retransmit) {
14160 
14161 				/*
14162 				 * If we have reduced tcp_ssthresh
14163 				 * because of ECN, do not reduce it again
14164 				 * unless it is already one window of data
14165 				 * away.  After one window of data, tcp_cwr
14166 				 * should then be cleared.  Note that
14167 				 * for non ECN capable connection, tcp_cwr
14168 				 * should always be false.
14169 				 *
14170 				 * Adjust cwnd since the duplicate
14171 				 * ack indicates that a packet was
14172 				 * dropped (due to congestion.)
14173 				 */
14174 				if (!tcp->tcp_cwr) {
14175 					npkt = ((tcp->tcp_snxt -
14176 					    tcp->tcp_suna) >> 1) / mss;
14177 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14178 					    mss;
14179 					tcp->tcp_cwnd = (npkt +
14180 					    tcp->tcp_dupack_cnt) * mss;
14181 				}
14182 				if (tcp->tcp_ecn_ok) {
14183 					tcp->tcp_cwr = B_TRUE;
14184 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14185 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14186 				}
14187 
14188 				/*
14189 				 * We do Hoe's algorithm.  Refer to her
14190 				 * paper "Improving the Start-up Behavior
14191 				 * of a Congestion Control Scheme for TCP,"
14192 				 * appeared in SIGCOMM'96.
14193 				 *
14194 				 * Save highest seq no we have sent so far.
14195 				 * Be careful about the invisible FIN byte.
14196 				 */
14197 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14198 				    (tcp->tcp_unsent == 0)) {
14199 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14200 				} else {
14201 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14202 				}
14203 
14204 				/*
14205 				 * Do not allow bursty traffic during.
14206 				 * fast recovery.  Refer to Fall and Floyd's
14207 				 * paper "Simulation-based Comparisons of
14208 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14209 				 * This is a best current practise.
14210 				 */
14211 				tcp->tcp_snd_burst = TCP_CWND_SS;
14212 
14213 				/*
14214 				 * For SACK:
14215 				 * Calculate tcp_pipe, which is the
14216 				 * estimated number of bytes in
14217 				 * network.
14218 				 *
14219 				 * tcp_fack is the highest sack'ed seq num
14220 				 * TCP has received.
14221 				 *
14222 				 * tcp_pipe is explained in the above quoted
14223 				 * Fall and Floyd's paper.  tcp_fack is
14224 				 * explained in Mathis and Mahdavi's
14225 				 * "Forward Acknowledgment: Refining TCP
14226 				 * Congestion Control" in SIGCOMM '96.
14227 				 */
14228 				if (tcp->tcp_snd_sack_ok) {
14229 					ASSERT(tcp->tcp_sack_info != NULL);
14230 					if (tcp->tcp_notsack_list != NULL) {
14231 						tcp->tcp_pipe = tcp->tcp_snxt -
14232 						    tcp->tcp_fack;
14233 						tcp->tcp_sack_snxt = seg_ack;
14234 						flags |= TH_NEED_SACK_REXMIT;
14235 					} else {
14236 						/*
14237 						 * Always initialize tcp_pipe
14238 						 * even though we don't have
14239 						 * any SACK info.  If later
14240 						 * we get SACK info and
14241 						 * tcp_pipe is not initialized,
14242 						 * funny things will happen.
14243 						 */
14244 						tcp->tcp_pipe =
14245 						    tcp->tcp_cwnd_ssthresh;
14246 					}
14247 				} else {
14248 					flags |= TH_REXMIT_NEEDED;
14249 				} /* tcp_snd_sack_ok */
14250 
14251 				} else {
14252 					/*
14253 					 * Here we perform congestion
14254 					 * avoidance, but NOT slow start.
14255 					 * This is known as the Fast
14256 					 * Recovery Algorithm.
14257 					 */
14258 					if (tcp->tcp_snd_sack_ok &&
14259 					    tcp->tcp_notsack_list != NULL) {
14260 						flags |= TH_NEED_SACK_REXMIT;
14261 						tcp->tcp_pipe -= mss;
14262 						if (tcp->tcp_pipe < 0)
14263 							tcp->tcp_pipe = 0;
14264 					} else {
14265 					/*
14266 					 * We know that one more packet has
14267 					 * left the pipe thus we can update
14268 					 * cwnd.
14269 					 */
14270 					cwnd = tcp->tcp_cwnd + mss;
14271 					if (cwnd > tcp->tcp_cwnd_max)
14272 						cwnd = tcp->tcp_cwnd_max;
14273 					tcp->tcp_cwnd = cwnd;
14274 					if (tcp->tcp_unsent > 0)
14275 						flags |= TH_XMIT_NEEDED;
14276 					}
14277 				}
14278 			}
14279 		} else if (tcp->tcp_zero_win_probe) {
14280 			/*
14281 			 * If the window has opened, need to arrange
14282 			 * to send additional data.
14283 			 */
14284 			if (new_swnd != 0) {
14285 				/* tcp_suna != tcp_snxt */
14286 				/* Packet contains a window update */
14287 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14288 				tcp->tcp_zero_win_probe = 0;
14289 				tcp->tcp_timer_backoff = 0;
14290 				tcp->tcp_ms_we_have_waited = 0;
14291 
14292 				/*
14293 				 * Transmit starting with tcp_suna since
14294 				 * the one byte probe is not ack'ed.
14295 				 * If TCP has sent more than one identical
14296 				 * probe, tcp_rexmit will be set.  That means
14297 				 * tcp_ss_rexmit() will send out the one
14298 				 * byte along with new data.  Otherwise,
14299 				 * fake the retransmission.
14300 				 */
14301 				flags |= TH_XMIT_NEEDED;
14302 				if (!tcp->tcp_rexmit) {
14303 					tcp->tcp_rexmit = B_TRUE;
14304 					tcp->tcp_dupack_cnt = 0;
14305 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14306 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14307 				}
14308 			}
14309 		}
14310 		goto swnd_update;
14311 	}
14312 
14313 	/*
14314 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14315 	 * If the ACK value acks something that we have not yet sent, it might
14316 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14317 	 * other side.
14318 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14319 	 * state is handled above, so we can always just drop the segment and
14320 	 * send an ACK here.
14321 	 *
14322 	 * Should we send ACKs in response to ACK only segments?
14323 	 */
14324 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14325 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14326 		/* drop the received segment */
14327 		freemsg(mp);
14328 
14329 		/*
14330 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14331 		 * greater than 0, check if the number of such
14332 		 * bogus ACks is greater than that count.  If yes,
14333 		 * don't send back any ACK.  This prevents TCP from
14334 		 * getting into an ACK storm if somehow an attacker
14335 		 * successfully spoofs an acceptable segment to our
14336 		 * peer.
14337 		 */
14338 		if (tcp_drop_ack_unsent_cnt > 0 &&
14339 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14340 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14341 			return;
14342 		}
14343 		mp = tcp_ack_mp(tcp);
14344 		if (mp != NULL) {
14345 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14346 			BUMP_LOCAL(tcp->tcp_obsegs);
14347 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14348 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14349 		}
14350 		return;
14351 	}
14352 
14353 	/*
14354 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14355 	 * blocks that are covered by this ACK.
14356 	 */
14357 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14358 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14359 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14360 	}
14361 
14362 	/*
14363 	 * If we got an ACK after fast retransmit, check to see
14364 	 * if it is a partial ACK.  If it is not and the congestion
14365 	 * window was inflated to account for the other side's
14366 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14367 	 */
14368 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14369 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14370 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14371 			tcp->tcp_dupack_cnt = 0;
14372 			/*
14373 			 * Restore the orig tcp_cwnd_ssthresh after
14374 			 * fast retransmit phase.
14375 			 */
14376 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14377 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14378 			}
14379 			tcp->tcp_rexmit_max = seg_ack;
14380 			tcp->tcp_cwnd_cnt = 0;
14381 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14382 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14383 
14384 			/*
14385 			 * Remove all notsack info to avoid confusion with
14386 			 * the next fast retrasnmit/recovery phase.
14387 			 */
14388 			if (tcp->tcp_snd_sack_ok &&
14389 			    tcp->tcp_notsack_list != NULL) {
14390 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14391 			}
14392 		} else {
14393 			if (tcp->tcp_snd_sack_ok &&
14394 			    tcp->tcp_notsack_list != NULL) {
14395 				flags |= TH_NEED_SACK_REXMIT;
14396 				tcp->tcp_pipe -= mss;
14397 				if (tcp->tcp_pipe < 0)
14398 					tcp->tcp_pipe = 0;
14399 			} else {
14400 				/*
14401 				 * Hoe's algorithm:
14402 				 *
14403 				 * Retransmit the unack'ed segment and
14404 				 * restart fast recovery.  Note that we
14405 				 * need to scale back tcp_cwnd to the
14406 				 * original value when we started fast
14407 				 * recovery.  This is to prevent overly
14408 				 * aggressive behaviour in sending new
14409 				 * segments.
14410 				 */
14411 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14412 				    tcps->tcps_dupack_fast_retransmit * mss;
14413 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14414 				flags |= TH_REXMIT_NEEDED;
14415 			}
14416 		}
14417 	} else {
14418 		tcp->tcp_dupack_cnt = 0;
14419 		if (tcp->tcp_rexmit) {
14420 			/*
14421 			 * TCP is retranmitting.  If the ACK ack's all
14422 			 * outstanding data, update tcp_rexmit_max and
14423 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14424 			 * to the correct value.
14425 			 *
14426 			 * Note that SEQ_LEQ() is used.  This is to avoid
14427 			 * unnecessary fast retransmit caused by dup ACKs
14428 			 * received when TCP does slow start retransmission
14429 			 * after a time out.  During this phase, TCP may
14430 			 * send out segments which are already received.
14431 			 * This causes dup ACKs to be sent back.
14432 			 */
14433 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14434 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14435 					tcp->tcp_rexmit_nxt = seg_ack;
14436 				}
14437 				if (seg_ack != tcp->tcp_rexmit_max) {
14438 					flags |= TH_XMIT_NEEDED;
14439 				}
14440 			} else {
14441 				tcp->tcp_rexmit = B_FALSE;
14442 				tcp->tcp_xmit_zc_clean = B_FALSE;
14443 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14444 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14445 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14446 			}
14447 			tcp->tcp_ms_we_have_waited = 0;
14448 		}
14449 	}
14450 
14451 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14452 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14453 	tcp->tcp_suna = seg_ack;
14454 	if (tcp->tcp_zero_win_probe != 0) {
14455 		tcp->tcp_zero_win_probe = 0;
14456 		tcp->tcp_timer_backoff = 0;
14457 	}
14458 
14459 	/*
14460 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14461 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14462 	 * will not reach here.
14463 	 */
14464 	if (mp1 == NULL) {
14465 		goto fin_acked;
14466 	}
14467 
14468 	/*
14469 	 * Update the congestion window.
14470 	 *
14471 	 * If TCP is not ECN capable or TCP is ECN capable but the
14472 	 * congestion experience bit is not set, increase the tcp_cwnd as
14473 	 * usual.
14474 	 */
14475 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14476 		cwnd = tcp->tcp_cwnd;
14477 		add = mss;
14478 
14479 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14480 			/*
14481 			 * This is to prevent an increase of less than 1 MSS of
14482 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14483 			 * may send out tinygrams in order to preserve mblk
14484 			 * boundaries.
14485 			 *
14486 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14487 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14488 			 * increased by 1 MSS for every RTTs.
14489 			 */
14490 			if (tcp->tcp_cwnd_cnt <= 0) {
14491 				tcp->tcp_cwnd_cnt = cwnd + add;
14492 			} else {
14493 				tcp->tcp_cwnd_cnt -= add;
14494 				add = 0;
14495 			}
14496 		}
14497 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14498 	}
14499 
14500 	/* See if the latest urgent data has been acknowledged */
14501 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14502 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14503 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14504 
14505 	/* Can we update the RTT estimates? */
14506 	if (tcp->tcp_snd_ts_ok) {
14507 		/* Ignore zero timestamp echo-reply. */
14508 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14509 			tcp_set_rto(tcp, (int32_t)lbolt -
14510 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14511 		}
14512 
14513 		/* If needed, restart the timer. */
14514 		if (tcp->tcp_set_timer == 1) {
14515 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14516 			tcp->tcp_set_timer = 0;
14517 		}
14518 		/*
14519 		 * Update tcp_csuna in case the other side stops sending
14520 		 * us timestamps.
14521 		 */
14522 		tcp->tcp_csuna = tcp->tcp_snxt;
14523 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14524 		/*
14525 		 * An ACK sequence we haven't seen before, so get the RTT
14526 		 * and update the RTO. But first check if the timestamp is
14527 		 * valid to use.
14528 		 */
14529 		if ((mp1->b_next != NULL) &&
14530 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14531 			tcp_set_rto(tcp, (int32_t)lbolt -
14532 			    (int32_t)(intptr_t)mp1->b_prev);
14533 		else
14534 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14535 
14536 		/* Remeber the last sequence to be ACKed */
14537 		tcp->tcp_csuna = seg_ack;
14538 		if (tcp->tcp_set_timer == 1) {
14539 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14540 			tcp->tcp_set_timer = 0;
14541 		}
14542 	} else {
14543 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14544 	}
14545 
14546 	/* Eat acknowledged bytes off the xmit queue. */
14547 	for (;;) {
14548 		mblk_t	*mp2;
14549 		uchar_t	*wptr;
14550 
14551 		wptr = mp1->b_wptr;
14552 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14553 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14554 		if (bytes_acked < 0) {
14555 			mp1->b_rptr = wptr + bytes_acked;
14556 			/*
14557 			 * Set a new timestamp if all the bytes timed by the
14558 			 * old timestamp have been ack'ed.
14559 			 */
14560 			if (SEQ_GT(seg_ack,
14561 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14562 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14563 				mp1->b_next = NULL;
14564 			}
14565 			break;
14566 		}
14567 		mp1->b_next = NULL;
14568 		mp1->b_prev = NULL;
14569 		mp2 = mp1;
14570 		mp1 = mp1->b_cont;
14571 
14572 		/*
14573 		 * This notification is required for some zero-copy
14574 		 * clients to maintain a copy semantic. After the data
14575 		 * is ack'ed, client is safe to modify or reuse the buffer.
14576 		 */
14577 		if (tcp->tcp_snd_zcopy_aware &&
14578 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14579 			tcp_zcopy_notify(tcp);
14580 		freeb(mp2);
14581 		if (bytes_acked == 0) {
14582 			if (mp1 == NULL) {
14583 				/* Everything is ack'ed, clear the tail. */
14584 				tcp->tcp_xmit_tail = NULL;
14585 				/*
14586 				 * Cancel the timer unless we are still
14587 				 * waiting for an ACK for the FIN packet.
14588 				 */
14589 				if (tcp->tcp_timer_tid != 0 &&
14590 				    tcp->tcp_snxt == tcp->tcp_suna) {
14591 					(void) TCP_TIMER_CANCEL(tcp,
14592 					    tcp->tcp_timer_tid);
14593 					tcp->tcp_timer_tid = 0;
14594 				}
14595 				goto pre_swnd_update;
14596 			}
14597 			if (mp2 != tcp->tcp_xmit_tail)
14598 				break;
14599 			tcp->tcp_xmit_tail = mp1;
14600 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14601 			    (uintptr_t)INT_MAX);
14602 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14603 			    mp1->b_rptr);
14604 			break;
14605 		}
14606 		if (mp1 == NULL) {
14607 			/*
14608 			 * More was acked but there is nothing more
14609 			 * outstanding.  This means that the FIN was
14610 			 * just acked or that we're talking to a clown.
14611 			 */
14612 fin_acked:
14613 			ASSERT(tcp->tcp_fin_sent);
14614 			tcp->tcp_xmit_tail = NULL;
14615 			if (tcp->tcp_fin_sent) {
14616 				/* FIN was acked - making progress */
14617 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14618 				    !tcp->tcp_fin_acked)
14619 					tcp->tcp_ip_forward_progress = B_TRUE;
14620 				tcp->tcp_fin_acked = B_TRUE;
14621 				if (tcp->tcp_linger_tid != 0 &&
14622 				    TCP_TIMER_CANCEL(tcp,
14623 					tcp->tcp_linger_tid) >= 0) {
14624 					tcp_stop_lingering(tcp);
14625 				}
14626 			} else {
14627 				/*
14628 				 * We should never get here because
14629 				 * we have already checked that the
14630 				 * number of bytes ack'ed should be
14631 				 * smaller than or equal to what we
14632 				 * have sent so far (it is the
14633 				 * acceptability check of the ACK).
14634 				 * We can only get here if the send
14635 				 * queue is corrupted.
14636 				 *
14637 				 * Terminate the connection and
14638 				 * panic the system.  It is better
14639 				 * for us to panic instead of
14640 				 * continuing to avoid other disaster.
14641 				 */
14642 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14643 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14644 				panic("Memory corruption "
14645 				    "detected for connection %s.",
14646 				    tcp_display(tcp, NULL,
14647 					DISP_ADDR_AND_PORT));
14648 				/*NOTREACHED*/
14649 			}
14650 			goto pre_swnd_update;
14651 		}
14652 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14653 	}
14654 	if (tcp->tcp_unsent) {
14655 		flags |= TH_XMIT_NEEDED;
14656 	}
14657 pre_swnd_update:
14658 	tcp->tcp_xmit_head = mp1;
14659 swnd_update:
14660 	/*
14661 	 * The following check is different from most other implementations.
14662 	 * For bi-directional transfer, when segments are dropped, the
14663 	 * "normal" check will not accept a window update in those
14664 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14665 	 * segments which are outside receiver's window.  As TCP accepts
14666 	 * the ack in those retransmitted segments, if the window update in
14667 	 * the same segment is not accepted, TCP will incorrectly calculates
14668 	 * that it can send more segments.  This can create a deadlock
14669 	 * with the receiver if its window becomes zero.
14670 	 */
14671 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14672 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14673 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14674 		/*
14675 		 * The criteria for update is:
14676 		 *
14677 		 * 1. the segment acknowledges some data.  Or
14678 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14679 		 * 3. the segment is not old and the advertised window is
14680 		 * larger than the previous advertised window.
14681 		 */
14682 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14683 			flags |= TH_XMIT_NEEDED;
14684 		tcp->tcp_swnd = new_swnd;
14685 		if (new_swnd > tcp->tcp_max_swnd)
14686 			tcp->tcp_max_swnd = new_swnd;
14687 		tcp->tcp_swl1 = seg_seq;
14688 		tcp->tcp_swl2 = seg_ack;
14689 	}
14690 est:
14691 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14692 
14693 		switch (tcp->tcp_state) {
14694 		case TCPS_FIN_WAIT_1:
14695 			if (tcp->tcp_fin_acked) {
14696 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14697 				/*
14698 				 * We implement the non-standard BSD/SunOS
14699 				 * FIN_WAIT_2 flushing algorithm.
14700 				 * If there is no user attached to this
14701 				 * TCP endpoint, then this TCP struct
14702 				 * could hang around forever in FIN_WAIT_2
14703 				 * state if the peer forgets to send us
14704 				 * a FIN.  To prevent this, we wait only
14705 				 * 2*MSL (a convenient time value) for
14706 				 * the FIN to arrive.  If it doesn't show up,
14707 				 * we flush the TCP endpoint.  This algorithm,
14708 				 * though a violation of RFC-793, has worked
14709 				 * for over 10 years in BSD systems.
14710 				 * Note: SunOS 4.x waits 675 seconds before
14711 				 * flushing the FIN_WAIT_2 connection.
14712 				 */
14713 				TCP_TIMER_RESTART(tcp,
14714 				    tcps->tcps_fin_wait_2_flush_interval);
14715 			}
14716 			break;
14717 		case TCPS_FIN_WAIT_2:
14718 			break;	/* Shutdown hook? */
14719 		case TCPS_LAST_ACK:
14720 			freemsg(mp);
14721 			if (tcp->tcp_fin_acked) {
14722 				(void) tcp_clean_death(tcp, 0, 19);
14723 				return;
14724 			}
14725 			goto xmit_check;
14726 		case TCPS_CLOSING:
14727 			if (tcp->tcp_fin_acked) {
14728 				tcp->tcp_state = TCPS_TIME_WAIT;
14729 				/*
14730 				 * Unconditionally clear the exclusive binding
14731 				 * bit so this TIME-WAIT connection won't
14732 				 * interfere with new ones.
14733 				 */
14734 				tcp->tcp_exclbind = 0;
14735 				if (!TCP_IS_DETACHED(tcp)) {
14736 					TCP_TIMER_RESTART(tcp,
14737 					    tcps->tcps_time_wait_interval);
14738 				} else {
14739 					tcp_time_wait_append(tcp);
14740 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14741 				}
14742 			}
14743 			/*FALLTHRU*/
14744 		case TCPS_CLOSE_WAIT:
14745 			freemsg(mp);
14746 			goto xmit_check;
14747 		default:
14748 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14749 			break;
14750 		}
14751 	}
14752 	if (flags & TH_FIN) {
14753 		/* Make sure we ack the fin */
14754 		flags |= TH_ACK_NEEDED;
14755 		if (!tcp->tcp_fin_rcvd) {
14756 			tcp->tcp_fin_rcvd = B_TRUE;
14757 			tcp->tcp_rnxt++;
14758 			tcph = tcp->tcp_tcph;
14759 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14760 
14761 			/*
14762 			 * Generate the ordrel_ind at the end unless we
14763 			 * are an eager guy.
14764 			 * In the eager case tcp_rsrv will do this when run
14765 			 * after tcp_accept is done.
14766 			 */
14767 			if (tcp->tcp_listener == NULL &&
14768 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14769 				flags |= TH_ORDREL_NEEDED;
14770 			switch (tcp->tcp_state) {
14771 			case TCPS_SYN_RCVD:
14772 			case TCPS_ESTABLISHED:
14773 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14774 				/* Keepalive? */
14775 				break;
14776 			case TCPS_FIN_WAIT_1:
14777 				if (!tcp->tcp_fin_acked) {
14778 					tcp->tcp_state = TCPS_CLOSING;
14779 					break;
14780 				}
14781 				/* FALLTHRU */
14782 			case TCPS_FIN_WAIT_2:
14783 				tcp->tcp_state = TCPS_TIME_WAIT;
14784 				/*
14785 				 * Unconditionally clear the exclusive binding
14786 				 * bit so this TIME-WAIT connection won't
14787 				 * interfere with new ones.
14788 				 */
14789 				tcp->tcp_exclbind = 0;
14790 				if (!TCP_IS_DETACHED(tcp)) {
14791 					TCP_TIMER_RESTART(tcp,
14792 					    tcps->tcps_time_wait_interval);
14793 				} else {
14794 					tcp_time_wait_append(tcp);
14795 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14796 				}
14797 				if (seg_len) {
14798 					/*
14799 					 * implies data piggybacked on FIN.
14800 					 * break to handle data.
14801 					 */
14802 					break;
14803 				}
14804 				freemsg(mp);
14805 				goto ack_check;
14806 			}
14807 		}
14808 	}
14809 	if (mp == NULL)
14810 		goto xmit_check;
14811 	if (seg_len == 0) {
14812 		freemsg(mp);
14813 		goto xmit_check;
14814 	}
14815 	if (mp->b_rptr == mp->b_wptr) {
14816 		/*
14817 		 * The header has been consumed, so we remove the
14818 		 * zero-length mblk here.
14819 		 */
14820 		mp1 = mp;
14821 		mp = mp->b_cont;
14822 		freeb(mp1);
14823 	}
14824 	tcph = tcp->tcp_tcph;
14825 	tcp->tcp_rack_cnt++;
14826 	{
14827 		uint32_t cur_max;
14828 
14829 		cur_max = tcp->tcp_rack_cur_max;
14830 		if (tcp->tcp_rack_cnt >= cur_max) {
14831 			/*
14832 			 * We have more unacked data than we should - send
14833 			 * an ACK now.
14834 			 */
14835 			flags |= TH_ACK_NEEDED;
14836 			cur_max++;
14837 			if (cur_max > tcp->tcp_rack_abs_max)
14838 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14839 			else
14840 				tcp->tcp_rack_cur_max = cur_max;
14841 		} else if (TCP_IS_DETACHED(tcp)) {
14842 			/* We don't have an ACK timer for detached TCP. */
14843 			flags |= TH_ACK_NEEDED;
14844 		} else if (seg_len < mss) {
14845 			/*
14846 			 * If we get a segment that is less than an mss, and we
14847 			 * already have unacknowledged data, and the amount
14848 			 * unacknowledged is not a multiple of mss, then we
14849 			 * better generate an ACK now.  Otherwise, this may be
14850 			 * the tail piece of a transaction, and we would rather
14851 			 * wait for the response.
14852 			 */
14853 			uint32_t udif;
14854 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14855 			    (uintptr_t)INT_MAX);
14856 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14857 			if (udif && (udif % mss))
14858 				flags |= TH_ACK_NEEDED;
14859 			else
14860 				flags |= TH_ACK_TIMER_NEEDED;
14861 		} else {
14862 			/* Start delayed ack timer */
14863 			flags |= TH_ACK_TIMER_NEEDED;
14864 		}
14865 	}
14866 	tcp->tcp_rnxt += seg_len;
14867 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14868 
14869 	/* Update SACK list */
14870 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14871 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14872 		    &(tcp->tcp_num_sack_blk));
14873 	}
14874 
14875 	if (tcp->tcp_urp_mp) {
14876 		tcp->tcp_urp_mp->b_cont = mp;
14877 		mp = tcp->tcp_urp_mp;
14878 		tcp->tcp_urp_mp = NULL;
14879 		/* Ready for a new signal. */
14880 		tcp->tcp_urp_last_valid = B_FALSE;
14881 #ifdef DEBUG
14882 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14883 		    "tcp_rput: sending exdata_ind %s",
14884 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14885 #endif /* DEBUG */
14886 	}
14887 
14888 	/*
14889 	 * Check for ancillary data changes compared to last segment.
14890 	 */
14891 	if (tcp->tcp_ipv6_recvancillary != 0) {
14892 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14893 		if (mp == NULL)
14894 			return;
14895 	}
14896 
14897 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14898 		/*
14899 		 * Side queue inbound data until the accept happens.
14900 		 * tcp_accept/tcp_rput drains this when the accept happens.
14901 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14902 		 * T_EXDATA_IND) it is queued on b_next.
14903 		 * XXX Make urgent data use this. Requires:
14904 		 *	Removing tcp_listener check for TH_URG
14905 		 *	Making M_PCPROTO and MARK messages skip the eager case
14906 		 */
14907 
14908 		if (tcp->tcp_kssl_pending) {
14909 			tcp_kssl_input(tcp, mp);
14910 		} else {
14911 			tcp_rcv_enqueue(tcp, mp, seg_len);
14912 		}
14913 	} else {
14914 		if (mp->b_datap->db_type != M_DATA ||
14915 		    (flags & TH_MARKNEXT_NEEDED)) {
14916 			if (tcp->tcp_rcv_list != NULL) {
14917 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14918 			}
14919 			ASSERT(tcp->tcp_rcv_list == NULL ||
14920 			    tcp->tcp_fused_sigurg);
14921 			if (flags & TH_MARKNEXT_NEEDED) {
14922 #ifdef DEBUG
14923 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14924 				    "tcp_rput: sending MSGMARKNEXT %s",
14925 				    tcp_display(tcp, NULL,
14926 				    DISP_PORT_ONLY));
14927 #endif /* DEBUG */
14928 				mp->b_flag |= MSGMARKNEXT;
14929 				flags &= ~TH_MARKNEXT_NEEDED;
14930 			}
14931 
14932 			/* Does this need SSL processing first? */
14933 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14934 			    (DB_TYPE(mp) == M_DATA)) {
14935 				tcp_kssl_input(tcp, mp);
14936 			} else {
14937 				putnext(tcp->tcp_rq, mp);
14938 				if (!canputnext(tcp->tcp_rq))
14939 					tcp->tcp_rwnd -= seg_len;
14940 			}
14941 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14942 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14943 			if (tcp->tcp_rcv_list != NULL) {
14944 				/*
14945 				 * Enqueue the new segment first and then
14946 				 * call tcp_rcv_drain() to send all data
14947 				 * up.  The other way to do this is to
14948 				 * send all queued data up and then call
14949 				 * putnext() to send the new segment up.
14950 				 * This way can remove the else part later
14951 				 * on.
14952 				 *
14953 				 * We don't this to avoid one more call to
14954 				 * canputnext() as tcp_rcv_drain() needs to
14955 				 * call canputnext().
14956 				 */
14957 				tcp_rcv_enqueue(tcp, mp, seg_len);
14958 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14959 			} else {
14960 				/* Does this need SSL processing first? */
14961 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14962 				    (DB_TYPE(mp) == M_DATA)) {
14963 					tcp_kssl_input(tcp, mp);
14964 				} else {
14965 					putnext(tcp->tcp_rq, mp);
14966 					if (!canputnext(tcp->tcp_rq))
14967 						tcp->tcp_rwnd -= seg_len;
14968 				}
14969 			}
14970 		} else {
14971 			/*
14972 			 * Enqueue all packets when processing an mblk
14973 			 * from the co queue and also enqueue normal packets.
14974 			 */
14975 			tcp_rcv_enqueue(tcp, mp, seg_len);
14976 		}
14977 		/*
14978 		 * Make sure the timer is running if we have data waiting
14979 		 * for a push bit. This provides resiliency against
14980 		 * implementations that do not correctly generate push bits.
14981 		 */
14982 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14983 			/*
14984 			 * The connection may be closed at this point, so don't
14985 			 * do anything for a detached tcp.
14986 			 */
14987 			if (!TCP_IS_DETACHED(tcp))
14988 			    tcp->tcp_push_tid = TCP_TIMER(tcp,
14989 				tcp_push_timer,
14990 				MSEC_TO_TICK(tcps->tcps_push_timer_interval));
14991 		}
14992 	}
14993 xmit_check:
14994 	/* Is there anything left to do? */
14995 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14996 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14997 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14998 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14999 		goto done;
15000 
15001 	/* Any transmit work to do and a non-zero window? */
15002 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15003 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15004 		if (flags & TH_REXMIT_NEEDED) {
15005 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15006 
15007 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15008 			if (snd_size > mss)
15009 				snd_size = mss;
15010 			if (snd_size > tcp->tcp_swnd)
15011 				snd_size = tcp->tcp_swnd;
15012 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15013 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15014 			    B_TRUE);
15015 
15016 			if (mp1 != NULL) {
15017 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15018 				tcp->tcp_csuna = tcp->tcp_snxt;
15019 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15020 				UPDATE_MIB(&tcps->tcps_mib,
15021 				    tcpRetransBytes, snd_size);
15022 				TCP_RECORD_TRACE(tcp, mp1,
15023 				    TCP_TRACE_SEND_PKT);
15024 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15025 			}
15026 		}
15027 		if (flags & TH_NEED_SACK_REXMIT) {
15028 			tcp_sack_rxmit(tcp, &flags);
15029 		}
15030 		/*
15031 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15032 		 * out new segment.  Note that tcp_rexmit should not be
15033 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15034 		 */
15035 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15036 			if (!tcp->tcp_rexmit) {
15037 				tcp_wput_data(tcp, NULL, B_FALSE);
15038 			} else {
15039 				tcp_ss_rexmit(tcp);
15040 			}
15041 		}
15042 		/*
15043 		 * Adjust tcp_cwnd back to normal value after sending
15044 		 * new data segments.
15045 		 */
15046 		if (flags & TH_LIMIT_XMIT) {
15047 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15048 			/*
15049 			 * This will restart the timer.  Restarting the
15050 			 * timer is used to avoid a timeout before the
15051 			 * limited transmitted segment's ACK gets back.
15052 			 */
15053 			if (tcp->tcp_xmit_head != NULL)
15054 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15055 		}
15056 
15057 		/* Anything more to do? */
15058 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15059 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15060 			goto done;
15061 	}
15062 ack_check:
15063 	if (flags & TH_SEND_URP_MARK) {
15064 		ASSERT(tcp->tcp_urp_mark_mp);
15065 		/*
15066 		 * Send up any queued data and then send the mark message
15067 		 */
15068 		if (tcp->tcp_rcv_list != NULL) {
15069 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15070 		}
15071 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15072 
15073 		mp1 = tcp->tcp_urp_mark_mp;
15074 		tcp->tcp_urp_mark_mp = NULL;
15075 #ifdef DEBUG
15076 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15077 		    "tcp_rput: sending zero-length %s %s",
15078 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15079 		    "MSGNOTMARKNEXT"),
15080 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15081 #endif /* DEBUG */
15082 		putnext(tcp->tcp_rq, mp1);
15083 		flags &= ~TH_SEND_URP_MARK;
15084 	}
15085 	if (flags & TH_ACK_NEEDED) {
15086 		/*
15087 		 * Time to send an ack for some reason.
15088 		 */
15089 		mp1 = tcp_ack_mp(tcp);
15090 
15091 		if (mp1 != NULL) {
15092 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15093 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15094 			BUMP_LOCAL(tcp->tcp_obsegs);
15095 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15096 		}
15097 		if (tcp->tcp_ack_tid != 0) {
15098 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15099 			tcp->tcp_ack_tid = 0;
15100 		}
15101 	}
15102 	if (flags & TH_ACK_TIMER_NEEDED) {
15103 		/*
15104 		 * Arrange for deferred ACK or push wait timeout.
15105 		 * Start timer if it is not already running.
15106 		 */
15107 		if (tcp->tcp_ack_tid == 0) {
15108 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15109 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15110 			    (clock_t)tcps->tcps_local_dack_interval :
15111 			    (clock_t)tcps->tcps_deferred_ack_interval));
15112 		}
15113 	}
15114 	if (flags & TH_ORDREL_NEEDED) {
15115 		/*
15116 		 * Send up the ordrel_ind unless we are an eager guy.
15117 		 * In the eager case tcp_rsrv will do this when run
15118 		 * after tcp_accept is done.
15119 		 */
15120 		ASSERT(tcp->tcp_listener == NULL);
15121 		if (tcp->tcp_rcv_list != NULL) {
15122 			/*
15123 			 * Push any mblk(s) enqueued from co processing.
15124 			 */
15125 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15126 		}
15127 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15128 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15129 			tcp->tcp_ordrel_done = B_TRUE;
15130 			putnext(tcp->tcp_rq, mp1);
15131 			if (tcp->tcp_deferred_clean_death) {
15132 				/*
15133 				 * tcp_clean_death was deferred
15134 				 * for T_ORDREL_IND - do it now
15135 				 */
15136 				(void) tcp_clean_death(tcp,
15137 				    tcp->tcp_client_errno, 20);
15138 				tcp->tcp_deferred_clean_death =	B_FALSE;
15139 			}
15140 		} else {
15141 			/*
15142 			 * Run the orderly release in the
15143 			 * service routine.
15144 			 */
15145 			qenable(tcp->tcp_rq);
15146 			/*
15147 			 * Caveat(XXX): The machine may be so
15148 			 * overloaded that tcp_rsrv() is not scheduled
15149 			 * until after the endpoint has transitioned
15150 			 * to TCPS_TIME_WAIT
15151 			 * and tcp_time_wait_interval expires. Then
15152 			 * tcp_timer() will blow away state in tcp_t
15153 			 * and T_ORDREL_IND will never be delivered
15154 			 * upstream. Unlikely but potentially
15155 			 * a problem.
15156 			 */
15157 		}
15158 	}
15159 done:
15160 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15161 }
15162 
15163 /*
15164  * This function does PAWS protection check. Returns B_TRUE if the
15165  * segment passes the PAWS test, else returns B_FALSE.
15166  */
15167 boolean_t
15168 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15169 {
15170 	uint8_t	flags;
15171 	int	options;
15172 	uint8_t *up;
15173 
15174 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15175 	/*
15176 	 * If timestamp option is aligned nicely, get values inline,
15177 	 * otherwise call general routine to parse.  Only do that
15178 	 * if timestamp is the only option.
15179 	 */
15180 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15181 	    TCPOPT_REAL_TS_LEN &&
15182 	    OK_32PTR((up = ((uint8_t *)tcph) +
15183 	    TCP_MIN_HEADER_LENGTH)) &&
15184 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15185 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15186 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15187 
15188 		options = TCP_OPT_TSTAMP_PRESENT;
15189 	} else {
15190 		if (tcp->tcp_snd_sack_ok) {
15191 			tcpoptp->tcp = tcp;
15192 		} else {
15193 			tcpoptp->tcp = NULL;
15194 		}
15195 		options = tcp_parse_options(tcph, tcpoptp);
15196 	}
15197 
15198 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15199 		/*
15200 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15201 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15202 		 */
15203 		if ((flags & TH_RST) == 0 &&
15204 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15205 		    tcp->tcp_ts_recent)) {
15206 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15207 			    PAWS_TIMEOUT)) {
15208 				/* This segment is not acceptable. */
15209 				return (B_FALSE);
15210 			} else {
15211 				/*
15212 				 * Connection has been idle for
15213 				 * too long.  Reset the timestamp
15214 				 * and assume the segment is valid.
15215 				 */
15216 				tcp->tcp_ts_recent =
15217 				    tcpoptp->tcp_opt_ts_val;
15218 			}
15219 		}
15220 	} else {
15221 		/*
15222 		 * If we don't get a timestamp on every packet, we
15223 		 * figure we can't really trust 'em, so we stop sending
15224 		 * and parsing them.
15225 		 */
15226 		tcp->tcp_snd_ts_ok = B_FALSE;
15227 
15228 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15229 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15230 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15231 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15232 		if (tcp->tcp_snd_sack_ok) {
15233 			ASSERT(tcp->tcp_sack_info != NULL);
15234 			tcp->tcp_max_sack_blk = 4;
15235 		}
15236 	}
15237 	return (B_TRUE);
15238 }
15239 
15240 /*
15241  * Attach ancillary data to a received TCP segments for the
15242  * ancillary pieces requested by the application that are
15243  * different than they were in the previous data segment.
15244  *
15245  * Save the "current" values once memory allocation is ok so that
15246  * when memory allocation fails we can just wait for the next data segment.
15247  */
15248 static mblk_t *
15249 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15250 {
15251 	struct T_optdata_ind *todi;
15252 	int optlen;
15253 	uchar_t *optptr;
15254 	struct T_opthdr *toh;
15255 	uint_t addflag;	/* Which pieces to add */
15256 	mblk_t *mp1;
15257 
15258 	optlen = 0;
15259 	addflag = 0;
15260 	/* If app asked for pktinfo and the index has changed ... */
15261 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15262 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15263 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15264 		optlen += sizeof (struct T_opthdr) +
15265 		    sizeof (struct in6_pktinfo);
15266 		addflag |= TCP_IPV6_RECVPKTINFO;
15267 	}
15268 	/* If app asked for hoplimit and it has changed ... */
15269 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15270 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15271 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15272 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15273 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15274 	}
15275 	/* If app asked for tclass and it has changed ... */
15276 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15277 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15278 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15279 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15280 		addflag |= TCP_IPV6_RECVTCLASS;
15281 	}
15282 	/*
15283 	 * If app asked for hopbyhop headers and it has changed ...
15284 	 * For security labels, note that (1) security labels can't change on
15285 	 * a connected socket at all, (2) we're connected to at most one peer,
15286 	 * (3) if anything changes, then it must be some other extra option.
15287 	 */
15288 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15289 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15290 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15291 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15292 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15293 		    tcp->tcp_label_len;
15294 		addflag |= TCP_IPV6_RECVHOPOPTS;
15295 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15296 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15297 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15298 			return (mp);
15299 	}
15300 	/* If app asked for dst headers before routing headers ... */
15301 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15302 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15303 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15304 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15305 		optlen += sizeof (struct T_opthdr) +
15306 		    ipp->ipp_rtdstoptslen;
15307 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15308 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15309 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15310 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15311 			return (mp);
15312 	}
15313 	/* If app asked for routing headers and it has changed ... */
15314 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15315 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15316 	    (ipp->ipp_fields & IPPF_RTHDR),
15317 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15318 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15319 		addflag |= TCP_IPV6_RECVRTHDR;
15320 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15321 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15322 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15323 			return (mp);
15324 	}
15325 	/* If app asked for dest headers and it has changed ... */
15326 	if ((tcp->tcp_ipv6_recvancillary &
15327 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15328 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15329 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15330 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15331 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15332 		addflag |= TCP_IPV6_RECVDSTOPTS;
15333 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15334 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15335 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15336 			return (mp);
15337 	}
15338 
15339 	if (optlen == 0) {
15340 		/* Nothing to add */
15341 		return (mp);
15342 	}
15343 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15344 	if (mp1 == NULL) {
15345 		/*
15346 		 * Defer sending ancillary data until the next TCP segment
15347 		 * arrives.
15348 		 */
15349 		return (mp);
15350 	}
15351 	mp1->b_cont = mp;
15352 	mp = mp1;
15353 	mp->b_wptr += sizeof (*todi) + optlen;
15354 	mp->b_datap->db_type = M_PROTO;
15355 	todi = (struct T_optdata_ind *)mp->b_rptr;
15356 	todi->PRIM_type = T_OPTDATA_IND;
15357 	todi->DATA_flag = 1;	/* MORE data */
15358 	todi->OPT_length = optlen;
15359 	todi->OPT_offset = sizeof (*todi);
15360 	optptr = (uchar_t *)&todi[1];
15361 	/*
15362 	 * If app asked for pktinfo and the index has changed ...
15363 	 * Note that the local address never changes for the connection.
15364 	 */
15365 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15366 		struct in6_pktinfo *pkti;
15367 
15368 		toh = (struct T_opthdr *)optptr;
15369 		toh->level = IPPROTO_IPV6;
15370 		toh->name = IPV6_PKTINFO;
15371 		toh->len = sizeof (*toh) + sizeof (*pkti);
15372 		toh->status = 0;
15373 		optptr += sizeof (*toh);
15374 		pkti = (struct in6_pktinfo *)optptr;
15375 		if (tcp->tcp_ipversion == IPV6_VERSION)
15376 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15377 		else
15378 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15379 			    &pkti->ipi6_addr);
15380 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15381 		optptr += sizeof (*pkti);
15382 		ASSERT(OK_32PTR(optptr));
15383 		/* Save as "last" value */
15384 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15385 	}
15386 	/* If app asked for hoplimit and it has changed ... */
15387 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15388 		toh = (struct T_opthdr *)optptr;
15389 		toh->level = IPPROTO_IPV6;
15390 		toh->name = IPV6_HOPLIMIT;
15391 		toh->len = sizeof (*toh) + sizeof (uint_t);
15392 		toh->status = 0;
15393 		optptr += sizeof (*toh);
15394 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15395 		optptr += sizeof (uint_t);
15396 		ASSERT(OK_32PTR(optptr));
15397 		/* Save as "last" value */
15398 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15399 	}
15400 	/* If app asked for tclass and it has changed ... */
15401 	if (addflag & TCP_IPV6_RECVTCLASS) {
15402 		toh = (struct T_opthdr *)optptr;
15403 		toh->level = IPPROTO_IPV6;
15404 		toh->name = IPV6_TCLASS;
15405 		toh->len = sizeof (*toh) + sizeof (uint_t);
15406 		toh->status = 0;
15407 		optptr += sizeof (*toh);
15408 		*(uint_t *)optptr = ipp->ipp_tclass;
15409 		optptr += sizeof (uint_t);
15410 		ASSERT(OK_32PTR(optptr));
15411 		/* Save as "last" value */
15412 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15413 	}
15414 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15415 		toh = (struct T_opthdr *)optptr;
15416 		toh->level = IPPROTO_IPV6;
15417 		toh->name = IPV6_HOPOPTS;
15418 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15419 		    tcp->tcp_label_len;
15420 		toh->status = 0;
15421 		optptr += sizeof (*toh);
15422 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15423 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15424 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15425 		ASSERT(OK_32PTR(optptr));
15426 		/* Save as last value */
15427 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15428 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15429 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15430 	}
15431 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15432 		toh = (struct T_opthdr *)optptr;
15433 		toh->level = IPPROTO_IPV6;
15434 		toh->name = IPV6_RTHDRDSTOPTS;
15435 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15436 		toh->status = 0;
15437 		optptr += sizeof (*toh);
15438 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15439 		optptr += ipp->ipp_rtdstoptslen;
15440 		ASSERT(OK_32PTR(optptr));
15441 		/* Save as last value */
15442 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15443 		    &tcp->tcp_rtdstoptslen,
15444 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15445 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15446 	}
15447 	if (addflag & TCP_IPV6_RECVRTHDR) {
15448 		toh = (struct T_opthdr *)optptr;
15449 		toh->level = IPPROTO_IPV6;
15450 		toh->name = IPV6_RTHDR;
15451 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15452 		toh->status = 0;
15453 		optptr += sizeof (*toh);
15454 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15455 		optptr += ipp->ipp_rthdrlen;
15456 		ASSERT(OK_32PTR(optptr));
15457 		/* Save as last value */
15458 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15459 		    (ipp->ipp_fields & IPPF_RTHDR),
15460 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15461 	}
15462 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15463 		toh = (struct T_opthdr *)optptr;
15464 		toh->level = IPPROTO_IPV6;
15465 		toh->name = IPV6_DSTOPTS;
15466 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15467 		toh->status = 0;
15468 		optptr += sizeof (*toh);
15469 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15470 		optptr += ipp->ipp_dstoptslen;
15471 		ASSERT(OK_32PTR(optptr));
15472 		/* Save as last value */
15473 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15474 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15475 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15476 	}
15477 	ASSERT(optptr == mp->b_wptr);
15478 	return (mp);
15479 }
15480 
15481 
15482 /*
15483  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15484  * or a "bad" IRE detected by tcp_adapt_ire.
15485  * We can't tell if the failure was due to the laddr or the faddr
15486  * thus we clear out all addresses and ports.
15487  */
15488 static void
15489 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15490 {
15491 	queue_t	*q = tcp->tcp_rq;
15492 	tcph_t	*tcph;
15493 	struct T_error_ack *tea;
15494 	conn_t	*connp = tcp->tcp_connp;
15495 
15496 
15497 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15498 
15499 	if (mp->b_cont) {
15500 		freemsg(mp->b_cont);
15501 		mp->b_cont = NULL;
15502 	}
15503 	tea = (struct T_error_ack *)mp->b_rptr;
15504 	switch (tea->PRIM_type) {
15505 	case T_BIND_ACK:
15506 		/*
15507 		 * Need to unbind with classifier since we were just told that
15508 		 * our bind succeeded.
15509 		 */
15510 		tcp->tcp_hard_bound = B_FALSE;
15511 		tcp->tcp_hard_binding = B_FALSE;
15512 
15513 		ipcl_hash_remove(connp);
15514 		/* Reuse the mblk if possible */
15515 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15516 			sizeof (*tea));
15517 		mp->b_rptr = mp->b_datap->db_base;
15518 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15519 		tea = (struct T_error_ack *)mp->b_rptr;
15520 		tea->PRIM_type = T_ERROR_ACK;
15521 		tea->TLI_error = TSYSERR;
15522 		tea->UNIX_error = error;
15523 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15524 			tea->ERROR_prim = T_CONN_REQ;
15525 		} else {
15526 			tea->ERROR_prim = O_T_BIND_REQ;
15527 		}
15528 		break;
15529 
15530 	case T_ERROR_ACK:
15531 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15532 			tea->ERROR_prim = T_CONN_REQ;
15533 		break;
15534 	default:
15535 		panic("tcp_bind_failed: unexpected TPI type");
15536 		/*NOTREACHED*/
15537 	}
15538 
15539 	tcp->tcp_state = TCPS_IDLE;
15540 	if (tcp->tcp_ipversion == IPV4_VERSION)
15541 		tcp->tcp_ipha->ipha_src = 0;
15542 	else
15543 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15544 	/*
15545 	 * Copy of the src addr. in tcp_t is needed since
15546 	 * the lookup funcs. can only look at tcp_t
15547 	 */
15548 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15549 
15550 	tcph = tcp->tcp_tcph;
15551 	tcph->th_lport[0] = 0;
15552 	tcph->th_lport[1] = 0;
15553 	tcp_bind_hash_remove(tcp);
15554 	bzero(&connp->u_port, sizeof (connp->u_port));
15555 	/* blow away saved option results if any */
15556 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15557 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15558 
15559 	conn_delete_ire(tcp->tcp_connp, NULL);
15560 	putnext(q, mp);
15561 }
15562 
15563 /*
15564  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15565  * messages.
15566  */
15567 void
15568 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15569 {
15570 	mblk_t	*mp1;
15571 	uchar_t	*rptr = mp->b_rptr;
15572 	queue_t	*q = tcp->tcp_rq;
15573 	struct T_error_ack *tea;
15574 	uint32_t mss;
15575 	mblk_t *syn_mp;
15576 	mblk_t *mdti;
15577 	mblk_t *lsoi;
15578 	int	retval;
15579 	mblk_t *ire_mp;
15580 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15581 
15582 	switch (mp->b_datap->db_type) {
15583 	case M_PROTO:
15584 	case M_PCPROTO:
15585 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15586 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15587 			break;
15588 		tea = (struct T_error_ack *)rptr;
15589 		switch (tea->PRIM_type) {
15590 		case T_BIND_ACK:
15591 			/*
15592 			 * Adapt Multidata information, if any.  The
15593 			 * following tcp_mdt_update routine will free
15594 			 * the message.
15595 			 */
15596 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15597 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15598 				    b_rptr)->mdt_capab, B_TRUE);
15599 				freemsg(mdti);
15600 			}
15601 
15602 			/*
15603 			 * Check to update LSO information with tcp, and
15604 			 * tcp_lso_update routine will free the message.
15605 			 */
15606 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15607 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15608 				    b_rptr)->lso_capab);
15609 				freemsg(lsoi);
15610 			}
15611 
15612 			/* Get the IRE, if we had requested for it */
15613 			ire_mp = tcp_ire_mp(mp);
15614 
15615 			if (tcp->tcp_hard_binding) {
15616 				tcp->tcp_hard_binding = B_FALSE;
15617 				tcp->tcp_hard_bound = B_TRUE;
15618 				CL_INET_CONNECT(tcp);
15619 			} else {
15620 				if (ire_mp != NULL)
15621 					freeb(ire_mp);
15622 				goto after_syn_sent;
15623 			}
15624 
15625 			retval = tcp_adapt_ire(tcp, ire_mp);
15626 			if (ire_mp != NULL)
15627 				freeb(ire_mp);
15628 			if (retval == 0) {
15629 				tcp_bind_failed(tcp, mp,
15630 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15631 				    ENETUNREACH : EADDRNOTAVAIL));
15632 				return;
15633 			}
15634 			/*
15635 			 * Don't let an endpoint connect to itself.
15636 			 * Also checked in tcp_connect() but that
15637 			 * check can't handle the case when the
15638 			 * local IP address is INADDR_ANY.
15639 			 */
15640 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15641 				if ((tcp->tcp_ipha->ipha_dst ==
15642 				    tcp->tcp_ipha->ipha_src) &&
15643 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15644 				    tcp->tcp_tcph->th_fport))) {
15645 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15646 					return;
15647 				}
15648 			} else {
15649 				if (IN6_ARE_ADDR_EQUAL(
15650 				    &tcp->tcp_ip6h->ip6_dst,
15651 				    &tcp->tcp_ip6h->ip6_src) &&
15652 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15653 				    tcp->tcp_tcph->th_fport))) {
15654 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15655 					return;
15656 				}
15657 			}
15658 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15659 			/*
15660 			 * This should not be possible!  Just for
15661 			 * defensive coding...
15662 			 */
15663 			if (tcp->tcp_state != TCPS_SYN_SENT)
15664 				goto after_syn_sent;
15665 
15666 			if (is_system_labeled() &&
15667 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15668 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15669 				return;
15670 			}
15671 
15672 			ASSERT(q == tcp->tcp_rq);
15673 			/*
15674 			 * tcp_adapt_ire() does not adjust
15675 			 * for TCP/IP header length.
15676 			 */
15677 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15678 
15679 			/*
15680 			 * Just make sure our rwnd is at
15681 			 * least tcp_recv_hiwat_mss * MSS
15682 			 * large, and round up to the nearest
15683 			 * MSS.
15684 			 *
15685 			 * We do the round up here because
15686 			 * we need to get the interface
15687 			 * MTU first before we can do the
15688 			 * round up.
15689 			 */
15690 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15691 			    tcps->tcps_recv_hiwat_minmss * mss);
15692 			q->q_hiwat = tcp->tcp_rwnd;
15693 			tcp_set_ws_value(tcp);
15694 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15695 			    tcp->tcp_tcph->th_win);
15696 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15697 				tcp->tcp_snd_ws_ok = B_TRUE;
15698 
15699 			/*
15700 			 * Set tcp_snd_ts_ok to true
15701 			 * so that tcp_xmit_mp will
15702 			 * include the timestamp
15703 			 * option in the SYN segment.
15704 			 */
15705 			if (tcps->tcps_tstamp_always ||
15706 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15707 				tcp->tcp_snd_ts_ok = B_TRUE;
15708 			}
15709 
15710 			/*
15711 			 * tcp_snd_sack_ok can be set in
15712 			 * tcp_adapt_ire() if the sack metric
15713 			 * is set.  So check it here also.
15714 			 */
15715 			if (tcps->tcps_sack_permitted == 2 ||
15716 			    tcp->tcp_snd_sack_ok) {
15717 				if (tcp->tcp_sack_info == NULL) {
15718 					tcp->tcp_sack_info =
15719 					kmem_cache_alloc(tcp_sack_info_cache,
15720 					    KM_SLEEP);
15721 				}
15722 				tcp->tcp_snd_sack_ok = B_TRUE;
15723 			}
15724 
15725 			/*
15726 			 * Should we use ECN?  Note that the current
15727 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15728 			 * is 1.  The reason for doing this is that there
15729 			 * are equipments out there that will drop ECN
15730 			 * enabled IP packets.  Setting it to 1 avoids
15731 			 * compatibility problems.
15732 			 */
15733 			if (tcps->tcps_ecn_permitted == 2)
15734 				tcp->tcp_ecn_ok = B_TRUE;
15735 
15736 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15737 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15738 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15739 			if (syn_mp) {
15740 				cred_t *cr;
15741 				pid_t pid;
15742 
15743 				/*
15744 				 * Obtain the credential from the
15745 				 * thread calling connect(); the credential
15746 				 * lives on in the second mblk which
15747 				 * originated from T_CONN_REQ and is echoed
15748 				 * with the T_BIND_ACK from ip.  If none
15749 				 * can be found, default to the creator
15750 				 * of the socket.
15751 				 */
15752 				if (mp->b_cont == NULL ||
15753 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15754 					cr = tcp->tcp_cred;
15755 					pid = tcp->tcp_cpid;
15756 				} else {
15757 					pid = DB_CPID(mp->b_cont);
15758 				}
15759 
15760 				TCP_RECORD_TRACE(tcp, syn_mp,
15761 				    TCP_TRACE_SEND_PKT);
15762 				mblk_setcred(syn_mp, cr);
15763 				DB_CPID(syn_mp) = pid;
15764 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15765 			}
15766 		after_syn_sent:
15767 			/*
15768 			 * A trailer mblk indicates a waiting client upstream.
15769 			 * We complete here the processing begun in
15770 			 * either tcp_bind() or tcp_connect() by passing
15771 			 * upstream the reply message they supplied.
15772 			 */
15773 			mp1 = mp;
15774 			mp = mp->b_cont;
15775 			freeb(mp1);
15776 			if (mp)
15777 				break;
15778 			return;
15779 		case T_ERROR_ACK:
15780 			if (tcp->tcp_debug) {
15781 				(void) strlog(TCP_MOD_ID, 0, 1,
15782 				    SL_TRACE|SL_ERROR,
15783 				    "tcp_rput_other: case T_ERROR_ACK, "
15784 				    "ERROR_prim == %d",
15785 				    tea->ERROR_prim);
15786 			}
15787 			switch (tea->ERROR_prim) {
15788 			case O_T_BIND_REQ:
15789 			case T_BIND_REQ:
15790 				tcp_bind_failed(tcp, mp,
15791 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15792 				    ENETUNREACH : EADDRNOTAVAIL));
15793 				return;
15794 			case T_UNBIND_REQ:
15795 				tcp->tcp_hard_binding = B_FALSE;
15796 				tcp->tcp_hard_bound = B_FALSE;
15797 				if (mp->b_cont) {
15798 					freemsg(mp->b_cont);
15799 					mp->b_cont = NULL;
15800 				}
15801 				if (tcp->tcp_unbind_pending)
15802 					tcp->tcp_unbind_pending = 0;
15803 				else {
15804 					/* From tcp_ip_unbind() - free */
15805 					freemsg(mp);
15806 					return;
15807 				}
15808 				break;
15809 			case T_SVR4_OPTMGMT_REQ:
15810 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15811 					/* T_OPTMGMT_REQ generated by TCP */
15812 					printf("T_SVR4_OPTMGMT_REQ failed "
15813 					    "%d/%d - dropped (cnt %d)\n",
15814 					    tea->TLI_error, tea->UNIX_error,
15815 					    tcp->tcp_drop_opt_ack_cnt);
15816 					freemsg(mp);
15817 					tcp->tcp_drop_opt_ack_cnt--;
15818 					return;
15819 				}
15820 				break;
15821 			}
15822 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15823 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15824 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15825 				    "- dropped (cnt %d)\n",
15826 				    tea->TLI_error, tea->UNIX_error,
15827 				    tcp->tcp_drop_opt_ack_cnt);
15828 				freemsg(mp);
15829 				tcp->tcp_drop_opt_ack_cnt--;
15830 				return;
15831 			}
15832 			break;
15833 		case T_OPTMGMT_ACK:
15834 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15835 				/* T_OPTMGMT_REQ generated by TCP */
15836 				freemsg(mp);
15837 				tcp->tcp_drop_opt_ack_cnt--;
15838 				return;
15839 			}
15840 			break;
15841 		default:
15842 			break;
15843 		}
15844 		break;
15845 	case M_FLUSH:
15846 		if (*rptr & FLUSHR)
15847 			flushq(q, FLUSHDATA);
15848 		break;
15849 	default:
15850 		/* M_CTL will be directly sent to tcp_icmp_error() */
15851 		ASSERT(DB_TYPE(mp) != M_CTL);
15852 		break;
15853 	}
15854 	/*
15855 	 * Make sure we set this bit before sending the ACK for
15856 	 * bind. Otherwise accept could possibly run and free
15857 	 * this tcp struct.
15858 	 */
15859 	putnext(q, mp);
15860 }
15861 
15862 /*
15863  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15864  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15865  * tcp_rsrv() try again.
15866  */
15867 static void
15868 tcp_ordrel_kick(void *arg)
15869 {
15870 	conn_t 	*connp = (conn_t *)arg;
15871 	tcp_t	*tcp = connp->conn_tcp;
15872 
15873 	tcp->tcp_ordrelid = 0;
15874 	tcp->tcp_timeout = B_FALSE;
15875 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15876 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15877 		qenable(tcp->tcp_rq);
15878 	}
15879 }
15880 
15881 /* ARGSUSED */
15882 static void
15883 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15884 {
15885 	conn_t	*connp = (conn_t *)arg;
15886 	tcp_t	*tcp = connp->conn_tcp;
15887 	queue_t	*q = tcp->tcp_rq;
15888 	uint_t	thwin;
15889 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15890 
15891 	freeb(mp);
15892 
15893 	TCP_STAT(tcps, tcp_rsrv_calls);
15894 
15895 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15896 		return;
15897 	}
15898 
15899 	if (tcp->tcp_fused) {
15900 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15901 
15902 		ASSERT(tcp->tcp_fused);
15903 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15904 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15905 		ASSERT(!TCP_IS_DETACHED(tcp));
15906 		ASSERT(tcp->tcp_connp->conn_sqp ==
15907 		    peer_tcp->tcp_connp->conn_sqp);
15908 
15909 		/*
15910 		 * Normally we would not get backenabled in synchronous
15911 		 * streams mode, but in case this happens, we need to plug
15912 		 * synchronous streams during our drain to prevent a race
15913 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15914 		 */
15915 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15916 		if (tcp->tcp_rcv_list != NULL)
15917 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15918 
15919 		tcp_clrqfull(peer_tcp);
15920 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15921 		TCP_STAT(tcps, tcp_fusion_backenabled);
15922 		return;
15923 	}
15924 
15925 	if (canputnext(q)) {
15926 		tcp->tcp_rwnd = q->q_hiwat;
15927 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15928 		    << tcp->tcp_rcv_ws;
15929 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15930 		/*
15931 		 * Send back a window update immediately if TCP is above
15932 		 * ESTABLISHED state and the increase of the rcv window
15933 		 * that the other side knows is at least 1 MSS after flow
15934 		 * control is lifted.
15935 		 */
15936 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15937 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15938 			tcp_xmit_ctl(NULL, tcp,
15939 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15940 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15941 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15942 		}
15943 	}
15944 	/* Handle a failure to allocate a T_ORDREL_IND here */
15945 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15946 		ASSERT(tcp->tcp_listener == NULL);
15947 		if (tcp->tcp_rcv_list != NULL) {
15948 			(void) tcp_rcv_drain(q, tcp);
15949 		}
15950 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15951 		mp = mi_tpi_ordrel_ind();
15952 		if (mp) {
15953 			tcp->tcp_ordrel_done = B_TRUE;
15954 			putnext(q, mp);
15955 			if (tcp->tcp_deferred_clean_death) {
15956 				/*
15957 				 * tcp_clean_death was deferred for
15958 				 * T_ORDREL_IND - do it now
15959 				 */
15960 				tcp->tcp_deferred_clean_death = B_FALSE;
15961 				(void) tcp_clean_death(tcp,
15962 				    tcp->tcp_client_errno, 22);
15963 			}
15964 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15965 			/*
15966 			 * If there isn't already a timer running
15967 			 * start one.  Use a 4 second
15968 			 * timer as a fallback since it can't fail.
15969 			 */
15970 			tcp->tcp_timeout = B_TRUE;
15971 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15972 			    MSEC_TO_TICK(4000));
15973 		}
15974 	}
15975 }
15976 
15977 /*
15978  * The read side service routine is called mostly when we get back-enabled as a
15979  * result of flow control relief.  Since we don't actually queue anything in
15980  * TCP, we have no data to send out of here.  What we do is clear the receive
15981  * window, and send out a window update.
15982  * This routine is also called to drive an orderly release message upstream
15983  * if the attempt in tcp_rput failed.
15984  */
15985 static void
15986 tcp_rsrv(queue_t *q)
15987 {
15988 	conn_t *connp = Q_TO_CONN(q);
15989 	tcp_t	*tcp = connp->conn_tcp;
15990 	mblk_t	*mp;
15991 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15992 
15993 	/* No code does a putq on the read side */
15994 	ASSERT(q->q_first == NULL);
15995 
15996 	/* Nothing to do for the default queue */
15997 	if (q == tcps->tcps_g_q) {
15998 		return;
15999 	}
16000 
16001 	mp = allocb(0, BPRI_HI);
16002 	if (mp == NULL) {
16003 		/*
16004 		 * We are under memory pressure. Return for now and we
16005 		 * we will be called again later.
16006 		 */
16007 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16008 			/*
16009 			 * If there isn't already a timer running
16010 			 * start one.  Use a 4 second
16011 			 * timer as a fallback since it can't fail.
16012 			 */
16013 			tcp->tcp_timeout = B_TRUE;
16014 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16015 			    MSEC_TO_TICK(4000));
16016 		}
16017 		return;
16018 	}
16019 	CONN_INC_REF(connp);
16020 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16021 	    SQTAG_TCP_RSRV);
16022 }
16023 
16024 /*
16025  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16026  * We do not allow the receive window to shrink.  After setting rwnd,
16027  * set the flow control hiwat of the stream.
16028  *
16029  * This function is called in 2 cases:
16030  *
16031  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16032  *    connection (passive open) and in tcp_rput_data() for active connect.
16033  *    This is called after tcp_mss_set() when the desired MSS value is known.
16034  *    This makes sure that our window size is a mutiple of the other side's
16035  *    MSS.
16036  * 2) Handling SO_RCVBUF option.
16037  *
16038  * It is ASSUMED that the requested size is a multiple of the current MSS.
16039  *
16040  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16041  * user requests so.
16042  */
16043 static int
16044 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16045 {
16046 	uint32_t	mss = tcp->tcp_mss;
16047 	uint32_t	old_max_rwnd;
16048 	uint32_t	max_transmittable_rwnd;
16049 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16050 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16051 
16052 	if (tcp->tcp_fused) {
16053 		size_t sth_hiwat;
16054 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16055 
16056 		ASSERT(peer_tcp != NULL);
16057 		/*
16058 		 * Record the stream head's high water mark for
16059 		 * this endpoint; this is used for flow-control
16060 		 * purposes in tcp_fuse_output().
16061 		 */
16062 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16063 		if (!tcp_detached)
16064 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16065 
16066 		/*
16067 		 * In the fusion case, the maxpsz stream head value of
16068 		 * our peer is set according to its send buffer size
16069 		 * and our receive buffer size; since the latter may
16070 		 * have changed we need to update the peer's maxpsz.
16071 		 */
16072 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16073 		return (rwnd);
16074 	}
16075 
16076 	if (tcp_detached)
16077 		old_max_rwnd = tcp->tcp_rwnd;
16078 	else
16079 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16080 
16081 	/*
16082 	 * Insist on a receive window that is at least
16083 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16084 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16085 	 * and delayed acknowledgement.
16086 	 */
16087 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16088 
16089 	/*
16090 	 * If window size info has already been exchanged, TCP should not
16091 	 * shrink the window.  Shrinking window is doable if done carefully.
16092 	 * We may add that support later.  But so far there is not a real
16093 	 * need to do that.
16094 	 */
16095 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16096 		/* MSS may have changed, do a round up again. */
16097 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16098 	}
16099 
16100 	/*
16101 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16102 	 * can be applied even before the window scale option is decided.
16103 	 */
16104 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16105 	if (rwnd > max_transmittable_rwnd) {
16106 		rwnd = max_transmittable_rwnd -
16107 		    (max_transmittable_rwnd % mss);
16108 		if (rwnd < mss)
16109 			rwnd = max_transmittable_rwnd;
16110 		/*
16111 		 * If we're over the limit we may have to back down tcp_rwnd.
16112 		 * The increment below won't work for us. So we set all three
16113 		 * here and the increment below will have no effect.
16114 		 */
16115 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16116 	}
16117 	if (tcp->tcp_localnet) {
16118 		tcp->tcp_rack_abs_max =
16119 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16120 	} else {
16121 		/*
16122 		 * For a remote host on a different subnet (through a router),
16123 		 * we ack every other packet to be conforming to RFC1122.
16124 		 * tcp_deferred_acks_max is default to 2.
16125 		 */
16126 		tcp->tcp_rack_abs_max =
16127 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16128 	}
16129 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16130 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16131 	else
16132 		tcp->tcp_rack_cur_max = 0;
16133 	/*
16134 	 * Increment the current rwnd by the amount the maximum grew (we
16135 	 * can not overwrite it since we might be in the middle of a
16136 	 * connection.)
16137 	 */
16138 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16139 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16140 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16141 		tcp->tcp_cwnd_max = rwnd;
16142 
16143 	if (tcp_detached)
16144 		return (rwnd);
16145 	/*
16146 	 * We set the maximum receive window into rq->q_hiwat.
16147 	 * This is not actually used for flow control.
16148 	 */
16149 	tcp->tcp_rq->q_hiwat = rwnd;
16150 	/*
16151 	 * Set the Stream head high water mark. This doesn't have to be
16152 	 * here, since we are simply using default values, but we would
16153 	 * prefer to choose these values algorithmically, with a likely
16154 	 * relationship to rwnd.
16155 	 */
16156 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16157 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16158 	return (rwnd);
16159 }
16160 
16161 /*
16162  * Return SNMP stuff in buffer in mpdata.
16163  */
16164 int
16165 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16166 {
16167 	mblk_t			*mpdata;
16168 	mblk_t			*mp_conn_ctl = NULL;
16169 	mblk_t			*mp_conn_tail;
16170 	mblk_t			*mp_attr_ctl = NULL;
16171 	mblk_t			*mp_attr_tail;
16172 	mblk_t			*mp6_conn_ctl = NULL;
16173 	mblk_t			*mp6_conn_tail;
16174 	mblk_t			*mp6_attr_ctl = NULL;
16175 	mblk_t			*mp6_attr_tail;
16176 	struct opthdr		*optp;
16177 	mib2_tcpConnEntry_t	tce;
16178 	mib2_tcp6ConnEntry_t	tce6;
16179 	mib2_transportMLPEntry_t mlp;
16180 	connf_t			*connfp;
16181 	conn_t			*connp;
16182 	int			i;
16183 	boolean_t 		ispriv;
16184 	zoneid_t 		zoneid;
16185 	int			v4_conn_idx;
16186 	int			v6_conn_idx;
16187 	tcp_stack_t		*tcps = Q_TO_TCP(q)->tcp_tcps;
16188 	ip_stack_t	*ipst;
16189 
16190 	if (mpctl == NULL ||
16191 	    (mpdata = mpctl->b_cont) == NULL ||
16192 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16193 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16194 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16195 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16196 		freemsg(mp_conn_ctl);
16197 		freemsg(mp_attr_ctl);
16198 		freemsg(mp6_conn_ctl);
16199 		freemsg(mp6_attr_ctl);
16200 		return (0);
16201 	}
16202 
16203 	/* build table of connections -- need count in fixed part */
16204 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16205 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16206 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16207 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16208 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16209 
16210 	ispriv =
16211 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16212 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16213 
16214 	v4_conn_idx = v6_conn_idx = 0;
16215 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16216 
16217 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16218 		ipst = tcps->tcps_netstack->netstack_ip;
16219 
16220 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16221 
16222 		connp = NULL;
16223 
16224 		while ((connp =
16225 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16226 			tcp_t *tcp;
16227 			boolean_t needattr;
16228 
16229 			if (connp->conn_zoneid != zoneid)
16230 				continue;	/* not in this zone */
16231 
16232 			tcp = connp->conn_tcp;
16233 			UPDATE_MIB(&tcps->tcps_mib,
16234 			    tcpHCInSegs, tcp->tcp_ibsegs);
16235 			tcp->tcp_ibsegs = 0;
16236 			UPDATE_MIB(&tcps->tcps_mib,
16237 			    tcpHCOutSegs, tcp->tcp_obsegs);
16238 			tcp->tcp_obsegs = 0;
16239 
16240 			tce6.tcp6ConnState = tce.tcpConnState =
16241 			    tcp_snmp_state(tcp);
16242 			if (tce.tcpConnState == MIB2_TCP_established ||
16243 			    tce.tcpConnState == MIB2_TCP_closeWait)
16244 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16245 
16246 			needattr = B_FALSE;
16247 			bzero(&mlp, sizeof (mlp));
16248 			if (connp->conn_mlp_type != mlptSingle) {
16249 				if (connp->conn_mlp_type == mlptShared ||
16250 				    connp->conn_mlp_type == mlptBoth)
16251 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16252 				if (connp->conn_mlp_type == mlptPrivate ||
16253 				    connp->conn_mlp_type == mlptBoth)
16254 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16255 				needattr = B_TRUE;
16256 			}
16257 			if (connp->conn_peercred != NULL) {
16258 				ts_label_t *tsl;
16259 
16260 				tsl = crgetlabel(connp->conn_peercred);
16261 				mlp.tme_doi = label2doi(tsl);
16262 				mlp.tme_label = *label2bslabel(tsl);
16263 				needattr = B_TRUE;
16264 			}
16265 
16266 			/* Create a message to report on IPv6 entries */
16267 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16268 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16269 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16270 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16271 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16272 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16273 			/* Don't want just anybody seeing these... */
16274 			if (ispriv) {
16275 				tce6.tcp6ConnEntryInfo.ce_snxt =
16276 				    tcp->tcp_snxt;
16277 				tce6.tcp6ConnEntryInfo.ce_suna =
16278 				    tcp->tcp_suna;
16279 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16280 				    tcp->tcp_rnxt;
16281 				tce6.tcp6ConnEntryInfo.ce_rack =
16282 				    tcp->tcp_rack;
16283 			} else {
16284 				/*
16285 				 * Netstat, unfortunately, uses this to
16286 				 * get send/receive queue sizes.  How to fix?
16287 				 * Why not compute the difference only?
16288 				 */
16289 				tce6.tcp6ConnEntryInfo.ce_snxt =
16290 				    tcp->tcp_snxt - tcp->tcp_suna;
16291 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16292 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16293 				    tcp->tcp_rnxt - tcp->tcp_rack;
16294 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16295 			}
16296 
16297 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16298 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16299 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16300 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16301 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16302 
16303 			tce6.tcp6ConnCreationProcess =
16304 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16305 			    tcp->tcp_cpid;
16306 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16307 
16308 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16309 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16310 
16311 			mlp.tme_connidx = v6_conn_idx++;
16312 			if (needattr)
16313 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16314 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16315 			}
16316 			/*
16317 			 * Create an IPv4 table entry for IPv4 entries and also
16318 			 * for IPv6 entries which are bound to in6addr_any
16319 			 * but don't have IPV6_V6ONLY set.
16320 			 * (i.e. anything an IPv4 peer could connect to)
16321 			 */
16322 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16323 			    (tcp->tcp_state <= TCPS_LISTEN &&
16324 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16325 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16326 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16327 					tce.tcpConnRemAddress = INADDR_ANY;
16328 					tce.tcpConnLocalAddress = INADDR_ANY;
16329 				} else {
16330 					tce.tcpConnRemAddress =
16331 					    tcp->tcp_remote;
16332 					tce.tcpConnLocalAddress =
16333 					    tcp->tcp_ip_src;
16334 				}
16335 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16336 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16337 				/* Don't want just anybody seeing these... */
16338 				if (ispriv) {
16339 					tce.tcpConnEntryInfo.ce_snxt =
16340 					    tcp->tcp_snxt;
16341 					tce.tcpConnEntryInfo.ce_suna =
16342 					    tcp->tcp_suna;
16343 					tce.tcpConnEntryInfo.ce_rnxt =
16344 					    tcp->tcp_rnxt;
16345 					tce.tcpConnEntryInfo.ce_rack =
16346 					    tcp->tcp_rack;
16347 				} else {
16348 					/*
16349 					 * Netstat, unfortunately, uses this to
16350 					 * get send/receive queue sizes.  How
16351 					 * to fix?
16352 					 * Why not compute the difference only?
16353 					 */
16354 					tce.tcpConnEntryInfo.ce_snxt =
16355 					    tcp->tcp_snxt - tcp->tcp_suna;
16356 					tce.tcpConnEntryInfo.ce_suna = 0;
16357 					tce.tcpConnEntryInfo.ce_rnxt =
16358 					    tcp->tcp_rnxt - tcp->tcp_rack;
16359 					tce.tcpConnEntryInfo.ce_rack = 0;
16360 				}
16361 
16362 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16363 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16364 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16365 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16366 				tce.tcpConnEntryInfo.ce_state =
16367 				    tcp->tcp_state;
16368 
16369 				tce.tcpConnCreationProcess =
16370 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16371 				    tcp->tcp_cpid;
16372 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16373 
16374 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16375 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16376 
16377 				mlp.tme_connidx = v4_conn_idx++;
16378 				if (needattr)
16379 					(void) snmp_append_data2(
16380 					    mp_attr_ctl->b_cont,
16381 					    &mp_attr_tail, (char *)&mlp,
16382 					    sizeof (mlp));
16383 			}
16384 		}
16385 	}
16386 
16387 	/* fixed length structure for IPv4 and IPv6 counters */
16388 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16389 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16390 	    sizeof (mib2_tcp6ConnEntry_t));
16391 	/* synchronize 32- and 64-bit counters */
16392 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16393 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16394 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16395 	optp->level = MIB2_TCP;
16396 	optp->name = 0;
16397 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16398 	    sizeof (tcps->tcps_mib));
16399 	optp->len = msgdsize(mpdata);
16400 	qreply(q, mpctl);
16401 
16402 	/* table of connections... */
16403 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16404 	    sizeof (struct T_optmgmt_ack)];
16405 	optp->level = MIB2_TCP;
16406 	optp->name = MIB2_TCP_CONN;
16407 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16408 	qreply(q, mp_conn_ctl);
16409 
16410 	/* table of MLP attributes... */
16411 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16412 	    sizeof (struct T_optmgmt_ack)];
16413 	optp->level = MIB2_TCP;
16414 	optp->name = EXPER_XPORT_MLP;
16415 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16416 	if (optp->len == 0)
16417 		freemsg(mp_attr_ctl);
16418 	else
16419 		qreply(q, mp_attr_ctl);
16420 
16421 	/* table of IPv6 connections... */
16422 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16423 	    sizeof (struct T_optmgmt_ack)];
16424 	optp->level = MIB2_TCP6;
16425 	optp->name = MIB2_TCP6_CONN;
16426 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16427 	qreply(q, mp6_conn_ctl);
16428 
16429 	/* table of IPv6 MLP attributes... */
16430 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16431 	    sizeof (struct T_optmgmt_ack)];
16432 	optp->level = MIB2_TCP6;
16433 	optp->name = EXPER_XPORT_MLP;
16434 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16435 	if (optp->len == 0)
16436 		freemsg(mp6_attr_ctl);
16437 	else
16438 		qreply(q, mp6_attr_ctl);
16439 	return (1);
16440 }
16441 
16442 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16443 /* ARGSUSED */
16444 int
16445 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16446 {
16447 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16448 
16449 	switch (level) {
16450 	case MIB2_TCP:
16451 		switch (name) {
16452 		case 13:
16453 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16454 				return (0);
16455 			/* TODO: delete entry defined by tce */
16456 			return (1);
16457 		default:
16458 			return (0);
16459 		}
16460 	default:
16461 		return (1);
16462 	}
16463 }
16464 
16465 /* Translate TCP state to MIB2 TCP state. */
16466 static int
16467 tcp_snmp_state(tcp_t *tcp)
16468 {
16469 	if (tcp == NULL)
16470 		return (0);
16471 
16472 	switch (tcp->tcp_state) {
16473 	case TCPS_CLOSED:
16474 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16475 	case TCPS_BOUND:
16476 		return (MIB2_TCP_closed);
16477 	case TCPS_LISTEN:
16478 		return (MIB2_TCP_listen);
16479 	case TCPS_SYN_SENT:
16480 		return (MIB2_TCP_synSent);
16481 	case TCPS_SYN_RCVD:
16482 		return (MIB2_TCP_synReceived);
16483 	case TCPS_ESTABLISHED:
16484 		return (MIB2_TCP_established);
16485 	case TCPS_CLOSE_WAIT:
16486 		return (MIB2_TCP_closeWait);
16487 	case TCPS_FIN_WAIT_1:
16488 		return (MIB2_TCP_finWait1);
16489 	case TCPS_CLOSING:
16490 		return (MIB2_TCP_closing);
16491 	case TCPS_LAST_ACK:
16492 		return (MIB2_TCP_lastAck);
16493 	case TCPS_FIN_WAIT_2:
16494 		return (MIB2_TCP_finWait2);
16495 	case TCPS_TIME_WAIT:
16496 		return (MIB2_TCP_timeWait);
16497 	default:
16498 		return (0);
16499 	}
16500 }
16501 
16502 static char tcp_report_header[] =
16503 	"TCP     " MI_COL_HDRPAD_STR
16504 	"zone dest            snxt     suna     "
16505 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16506 	"recent   [lport,fport] state";
16507 
16508 /*
16509  * TCP status report triggered via the Named Dispatch mechanism.
16510  */
16511 /* ARGSUSED */
16512 static void
16513 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16514     cred_t *cr)
16515 {
16516 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16517 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16518 	char cflag;
16519 	in6_addr_t	v6dst;
16520 	char buf[80];
16521 	uint_t print_len, buf_len;
16522 
16523 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16524 	if (buf_len <= 0)
16525 		return;
16526 
16527 	if (hashval >= 0)
16528 		(void) sprintf(hash, "%03d ", hashval);
16529 	else
16530 		hash[0] = '\0';
16531 
16532 	/*
16533 	 * Note that we use the remote address in the tcp_b  structure.
16534 	 * This means that it will print out the real destination address,
16535 	 * not the next hop's address if source routing is used.  This
16536 	 * avoid the confusion on the output because user may not
16537 	 * know that source routing is used for a connection.
16538 	 */
16539 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16540 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16541 	} else {
16542 		v6dst = tcp->tcp_remote_v6;
16543 	}
16544 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16545 	/*
16546 	 * the ispriv checks are so that normal users cannot determine
16547 	 * sequence number information using NDD.
16548 	 */
16549 
16550 	if (TCP_IS_DETACHED(tcp))
16551 		cflag = '*';
16552 	else
16553 		cflag = ' ';
16554 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16555 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16556 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16557 	    hash,
16558 	    (void *)tcp,
16559 	    tcp->tcp_connp->conn_zoneid,
16560 	    addrbuf,
16561 	    (ispriv) ? tcp->tcp_snxt : 0,
16562 	    (ispriv) ? tcp->tcp_suna : 0,
16563 	    tcp->tcp_swnd,
16564 	    (ispriv) ? tcp->tcp_rnxt : 0,
16565 	    (ispriv) ? tcp->tcp_rack : 0,
16566 	    tcp->tcp_rwnd,
16567 	    tcp->tcp_rto,
16568 	    tcp->tcp_mss,
16569 	    tcp->tcp_snd_ws_ok,
16570 	    tcp->tcp_snd_ws,
16571 	    tcp->tcp_rcv_ws,
16572 	    tcp->tcp_snd_ts_ok,
16573 	    tcp->tcp_ts_recent,
16574 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16575 	if (print_len < buf_len) {
16576 		((mblk_t *)mp)->b_wptr += print_len;
16577 	} else {
16578 		((mblk_t *)mp)->b_wptr += buf_len;
16579 	}
16580 }
16581 
16582 /*
16583  * TCP status report (for listeners only) triggered via the Named Dispatch
16584  * mechanism.
16585  */
16586 /* ARGSUSED */
16587 static void
16588 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16589 {
16590 	char addrbuf[INET6_ADDRSTRLEN];
16591 	in6_addr_t	v6dst;
16592 	uint_t print_len, buf_len;
16593 
16594 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16595 	if (buf_len <= 0)
16596 		return;
16597 
16598 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16599 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16600 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16601 	} else {
16602 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16603 		    addrbuf, sizeof (addrbuf));
16604 	}
16605 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16606 	    "%03d "
16607 	    MI_COL_PTRFMT_STR
16608 	    "%d %s %05u %08u %d/%d/%d%c\n",
16609 	    hashval, (void *)tcp,
16610 	    tcp->tcp_connp->conn_zoneid,
16611 	    addrbuf,
16612 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16613 	    tcp->tcp_conn_req_seqnum,
16614 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16615 	    tcp->tcp_conn_req_max,
16616 	    tcp->tcp_syn_defense ? '*' : ' ');
16617 	if (print_len < buf_len) {
16618 		((mblk_t *)mp)->b_wptr += print_len;
16619 	} else {
16620 		((mblk_t *)mp)->b_wptr += buf_len;
16621 	}
16622 }
16623 
16624 /* TCP status report triggered via the Named Dispatch mechanism. */
16625 /* ARGSUSED */
16626 static int
16627 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16628 {
16629 	tcp_t	*tcp;
16630 	int	i;
16631 	conn_t	*connp;
16632 	connf_t	*connfp;
16633 	zoneid_t zoneid;
16634 	tcp_stack_t *tcps;
16635 	ip_stack_t *ipst;
16636 
16637 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16638 	tcps = Q_TO_TCP(q)->tcp_tcps;
16639 
16640 	/*
16641 	 * Because of the ndd constraint, at most we can have 64K buffer
16642 	 * to put in all TCP info.  So to be more efficient, just
16643 	 * allocate a 64K buffer here, assuming we need that large buffer.
16644 	 * This may be a problem as any user can read tcp_status.  Therefore
16645 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16646 	 * This should be OK as normal users should not do this too often.
16647 	 */
16648 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16649 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16650 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16651 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16652 			return (0);
16653 		}
16654 	}
16655 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16656 		/* The following may work even if we cannot get a large buf. */
16657 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16658 		return (0);
16659 	}
16660 
16661 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16662 
16663 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16664 
16665 		ipst = tcps->tcps_netstack->netstack_ip;
16666 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16667 
16668 		connp = NULL;
16669 
16670 		while ((connp =
16671 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16672 			tcp = connp->conn_tcp;
16673 			if (zoneid != GLOBAL_ZONEID &&
16674 			    zoneid != connp->conn_zoneid)
16675 				continue;
16676 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16677 			    cr);
16678 		}
16679 
16680 	}
16681 
16682 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16683 	return (0);
16684 }
16685 
16686 /* TCP status report triggered via the Named Dispatch mechanism. */
16687 /* ARGSUSED */
16688 static int
16689 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16690 {
16691 	tf_t	*tbf;
16692 	tcp_t	*tcp;
16693 	int	i;
16694 	zoneid_t zoneid;
16695 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16696 
16697 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16698 
16699 	/* Refer to comments in tcp_status_report(). */
16700 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16701 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16702 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16703 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16704 			return (0);
16705 		}
16706 	}
16707 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16708 		/* The following may work even if we cannot get a large buf. */
16709 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16710 		return (0);
16711 	}
16712 
16713 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16714 
16715 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16716 		tbf = &tcps->tcps_bind_fanout[i];
16717 		mutex_enter(&tbf->tf_lock);
16718 		for (tcp = tbf->tf_tcp; tcp != NULL;
16719 		    tcp = tcp->tcp_bind_hash) {
16720 			if (zoneid != GLOBAL_ZONEID &&
16721 			    zoneid != tcp->tcp_connp->conn_zoneid)
16722 				continue;
16723 			CONN_INC_REF(tcp->tcp_connp);
16724 			tcp_report_item(mp->b_cont, tcp, i,
16725 			    Q_TO_TCP(q), cr);
16726 			CONN_DEC_REF(tcp->tcp_connp);
16727 		}
16728 		mutex_exit(&tbf->tf_lock);
16729 	}
16730 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16731 	return (0);
16732 }
16733 
16734 /* TCP status report triggered via the Named Dispatch mechanism. */
16735 /* ARGSUSED */
16736 static int
16737 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16738 {
16739 	connf_t	*connfp;
16740 	conn_t	*connp;
16741 	tcp_t	*tcp;
16742 	int	i;
16743 	zoneid_t zoneid;
16744 	tcp_stack_t *tcps;
16745 	ip_stack_t	*ipst;
16746 
16747 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16748 	tcps = Q_TO_TCP(q)->tcp_tcps;
16749 
16750 	/* Refer to comments in tcp_status_report(). */
16751 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16752 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16753 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16754 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16755 			return (0);
16756 		}
16757 	}
16758 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16759 		/* The following may work even if we cannot get a large buf. */
16760 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16761 		return (0);
16762 	}
16763 
16764 	(void) mi_mpprintf(mp,
16765 	    "    TCP    " MI_COL_HDRPAD_STR
16766 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16767 
16768 	ipst = tcps->tcps_netstack->netstack_ip;
16769 
16770 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16771 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16772 		connp = NULL;
16773 		while ((connp =
16774 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16775 			tcp = connp->conn_tcp;
16776 			if (zoneid != GLOBAL_ZONEID &&
16777 			    zoneid != connp->conn_zoneid)
16778 				continue;
16779 			tcp_report_listener(mp->b_cont, tcp, i);
16780 		}
16781 	}
16782 
16783 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16784 	return (0);
16785 }
16786 
16787 /* TCP status report triggered via the Named Dispatch mechanism. */
16788 /* ARGSUSED */
16789 static int
16790 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16791 {
16792 	connf_t	*connfp;
16793 	conn_t	*connp;
16794 	tcp_t	*tcp;
16795 	int	i;
16796 	zoneid_t zoneid;
16797 	tcp_stack_t *tcps;
16798 	ip_stack_t *ipst;
16799 
16800 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16801 	tcps = Q_TO_TCP(q)->tcp_tcps;
16802 	ipst = tcps->tcps_netstack->netstack_ip;
16803 
16804 	/* Refer to comments in tcp_status_report(). */
16805 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16806 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16807 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16808 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16809 			return (0);
16810 		}
16811 	}
16812 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16813 		/* The following may work even if we cannot get a large buf. */
16814 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16815 		return (0);
16816 	}
16817 
16818 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16819 	    ipst->ips_ipcl_conn_fanout_size);
16820 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16821 
16822 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16823 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16824 		connp = NULL;
16825 		while ((connp =
16826 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16827 			tcp = connp->conn_tcp;
16828 			if (zoneid != GLOBAL_ZONEID &&
16829 			    zoneid != connp->conn_zoneid)
16830 				continue;
16831 			tcp_report_item(mp->b_cont, tcp, i,
16832 			    Q_TO_TCP(q), cr);
16833 		}
16834 	}
16835 
16836 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16837 	return (0);
16838 }
16839 
16840 /* TCP status report triggered via the Named Dispatch mechanism. */
16841 /* ARGSUSED */
16842 static int
16843 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16844 {
16845 	tf_t	*tf;
16846 	tcp_t	*tcp;
16847 	int	i;
16848 	zoneid_t zoneid;
16849 	tcp_stack_t	*tcps;
16850 
16851 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16852 	tcps = Q_TO_TCP(q)->tcp_tcps;
16853 
16854 	/* Refer to comments in tcp_status_report(). */
16855 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16856 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16857 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16858 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16859 			return (0);
16860 		}
16861 	}
16862 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16863 		/* The following may work even if we cannot get a large buf. */
16864 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16865 		return (0);
16866 	}
16867 
16868 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16869 
16870 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16871 		tf = &tcps->tcps_acceptor_fanout[i];
16872 		mutex_enter(&tf->tf_lock);
16873 		for (tcp = tf->tf_tcp; tcp != NULL;
16874 		    tcp = tcp->tcp_acceptor_hash) {
16875 			if (zoneid != GLOBAL_ZONEID &&
16876 			    zoneid != tcp->tcp_connp->conn_zoneid)
16877 				continue;
16878 			tcp_report_item(mp->b_cont, tcp, i,
16879 			    Q_TO_TCP(q), cr);
16880 		}
16881 		mutex_exit(&tf->tf_lock);
16882 	}
16883 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16884 	return (0);
16885 }
16886 
16887 /*
16888  * tcp_timer is the timer service routine.  It handles the retransmission,
16889  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16890  * from the state of the tcp instance what kind of action needs to be done
16891  * at the time it is called.
16892  */
16893 static void
16894 tcp_timer(void *arg)
16895 {
16896 	mblk_t		*mp;
16897 	clock_t		first_threshold;
16898 	clock_t		second_threshold;
16899 	clock_t		ms;
16900 	uint32_t	mss;
16901 	conn_t		*connp = (conn_t *)arg;
16902 	tcp_t		*tcp = connp->conn_tcp;
16903 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16904 
16905 	tcp->tcp_timer_tid = 0;
16906 
16907 	if (tcp->tcp_fused)
16908 		return;
16909 
16910 	first_threshold =  tcp->tcp_first_timer_threshold;
16911 	second_threshold = tcp->tcp_second_timer_threshold;
16912 	switch (tcp->tcp_state) {
16913 	case TCPS_IDLE:
16914 	case TCPS_BOUND:
16915 	case TCPS_LISTEN:
16916 		return;
16917 	case TCPS_SYN_RCVD: {
16918 		tcp_t	*listener = tcp->tcp_listener;
16919 
16920 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16921 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16922 			/* it's our first timeout */
16923 			tcp->tcp_syn_rcvd_timeout = 1;
16924 			mutex_enter(&listener->tcp_eager_lock);
16925 			listener->tcp_syn_rcvd_timeout++;
16926 			if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) {
16927 				/*
16928 				 * Make this eager available for drop if we
16929 				 * need to drop one to accomodate a new
16930 				 * incoming SYN request.
16931 				 */
16932 				MAKE_DROPPABLE(listener, tcp);
16933 			}
16934 			if (!listener->tcp_syn_defense &&
16935 			    (listener->tcp_syn_rcvd_timeout >
16936 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16937 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16938 				/* We may be under attack. Put on a defense. */
16939 				listener->tcp_syn_defense = B_TRUE;
16940 				cmn_err(CE_WARN, "High TCP connect timeout "
16941 				    "rate! System (port %d) may be under a "
16942 				    "SYN flood attack!",
16943 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16944 
16945 				listener->tcp_ip_addr_cache = kmem_zalloc(
16946 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16947 				    KM_NOSLEEP);
16948 			}
16949 			mutex_exit(&listener->tcp_eager_lock);
16950 		} else if (listener != NULL) {
16951 			mutex_enter(&listener->tcp_eager_lock);
16952 			tcp->tcp_syn_rcvd_timeout++;
16953 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16954 			    tcp->tcp_closemp_used == 0) {
16955 				/*
16956 				 * This is our second timeout. Put the tcp in
16957 				 * the list of droppable eagers to allow it to
16958 				 * be dropped, if needed. We don't check
16959 				 * whether tcp_dontdrop is set or not to
16960 				 * protect ourselve from a SYN attack where a
16961 				 * remote host can spoof itself as one of the
16962 				 * good IP source and continue to hold
16963 				 * resources too long.
16964 				 */
16965 				MAKE_DROPPABLE(listener, tcp);
16966 			}
16967 			mutex_exit(&listener->tcp_eager_lock);
16968 		}
16969 	}
16970 		/* FALLTHRU */
16971 	case TCPS_SYN_SENT:
16972 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16973 		second_threshold = tcp->tcp_second_ctimer_threshold;
16974 		break;
16975 	case TCPS_ESTABLISHED:
16976 	case TCPS_FIN_WAIT_1:
16977 	case TCPS_CLOSING:
16978 	case TCPS_CLOSE_WAIT:
16979 	case TCPS_LAST_ACK:
16980 		/* If we have data to rexmit */
16981 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16982 			clock_t	time_to_wait;
16983 
16984 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16985 			if (!tcp->tcp_xmit_head)
16986 				break;
16987 			time_to_wait = lbolt -
16988 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16989 			time_to_wait = tcp->tcp_rto -
16990 			    TICK_TO_MSEC(time_to_wait);
16991 			/*
16992 			 * If the timer fires too early, 1 clock tick earlier,
16993 			 * restart the timer.
16994 			 */
16995 			if (time_to_wait > msec_per_tick) {
16996 				TCP_STAT(tcps, tcp_timer_fire_early);
16997 				TCP_TIMER_RESTART(tcp, time_to_wait);
16998 				return;
16999 			}
17000 			/*
17001 			 * When we probe zero windows, we force the swnd open.
17002 			 * If our peer acks with a closed window swnd will be
17003 			 * set to zero by tcp_rput(). As long as we are
17004 			 * receiving acks tcp_rput will
17005 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17006 			 * first and second interval actions.  NOTE: the timer
17007 			 * interval is allowed to continue its exponential
17008 			 * backoff.
17009 			 */
17010 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17011 				if (tcp->tcp_debug) {
17012 					(void) strlog(TCP_MOD_ID, 0, 1,
17013 					    SL_TRACE, "tcp_timer: zero win");
17014 				}
17015 			} else {
17016 				/*
17017 				 * After retransmission, we need to do
17018 				 * slow start.  Set the ssthresh to one
17019 				 * half of current effective window and
17020 				 * cwnd to one MSS.  Also reset
17021 				 * tcp_cwnd_cnt.
17022 				 *
17023 				 * Note that if tcp_ssthresh is reduced because
17024 				 * of ECN, do not reduce it again unless it is
17025 				 * already one window of data away (tcp_cwr
17026 				 * should then be cleared) or this is a
17027 				 * timeout for a retransmitted segment.
17028 				 */
17029 				uint32_t npkt;
17030 
17031 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17032 					npkt = ((tcp->tcp_timer_backoff ?
17033 					    tcp->tcp_cwnd_ssthresh :
17034 					    tcp->tcp_snxt -
17035 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17036 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17037 					    tcp->tcp_mss;
17038 				}
17039 				tcp->tcp_cwnd = tcp->tcp_mss;
17040 				tcp->tcp_cwnd_cnt = 0;
17041 				if (tcp->tcp_ecn_ok) {
17042 					tcp->tcp_cwr = B_TRUE;
17043 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17044 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17045 				}
17046 			}
17047 			break;
17048 		}
17049 		/*
17050 		 * We have something to send yet we cannot send.  The
17051 		 * reason can be:
17052 		 *
17053 		 * 1. Zero send window: we need to do zero window probe.
17054 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17055 		 * segments.
17056 		 * 3. SWS avoidance: receiver may have shrunk window,
17057 		 * reset our knowledge.
17058 		 *
17059 		 * Note that condition 2 can happen with either 1 or
17060 		 * 3.  But 1 and 3 are exclusive.
17061 		 */
17062 		if (tcp->tcp_unsent != 0) {
17063 			if (tcp->tcp_cwnd == 0) {
17064 				/*
17065 				 * Set tcp_cwnd to 1 MSS so that a
17066 				 * new segment can be sent out.  We
17067 				 * are "clocking out" new data when
17068 				 * the network is really congested.
17069 				 */
17070 				ASSERT(tcp->tcp_ecn_ok);
17071 				tcp->tcp_cwnd = tcp->tcp_mss;
17072 			}
17073 			if (tcp->tcp_swnd == 0) {
17074 				/* Extend window for zero window probe */
17075 				tcp->tcp_swnd++;
17076 				tcp->tcp_zero_win_probe = B_TRUE;
17077 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17078 			} else {
17079 				/*
17080 				 * Handle timeout from sender SWS avoidance.
17081 				 * Reset our knowledge of the max send window
17082 				 * since the receiver might have reduced its
17083 				 * receive buffer.  Avoid setting tcp_max_swnd
17084 				 * to one since that will essentially disable
17085 				 * the SWS checks.
17086 				 *
17087 				 * Note that since we don't have a SWS
17088 				 * state variable, if the timeout is set
17089 				 * for ECN but not for SWS, this
17090 				 * code will also be executed.  This is
17091 				 * fine as tcp_max_swnd is updated
17092 				 * constantly and it will not affect
17093 				 * anything.
17094 				 */
17095 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17096 			}
17097 			tcp_wput_data(tcp, NULL, B_FALSE);
17098 			return;
17099 		}
17100 		/* Is there a FIN that needs to be to re retransmitted? */
17101 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17102 		    !tcp->tcp_fin_acked)
17103 			break;
17104 		/* Nothing to do, return without restarting timer. */
17105 		TCP_STAT(tcps, tcp_timer_fire_miss);
17106 		return;
17107 	case TCPS_FIN_WAIT_2:
17108 		/*
17109 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17110 		 * We waited some time for for peer's FIN, but it hasn't
17111 		 * arrived.  We flush the connection now to avoid
17112 		 * case where the peer has rebooted.
17113 		 */
17114 		if (TCP_IS_DETACHED(tcp)) {
17115 			(void) tcp_clean_death(tcp, 0, 23);
17116 		} else {
17117 			TCP_TIMER_RESTART(tcp,
17118 			    tcps->tcps_fin_wait_2_flush_interval);
17119 		}
17120 		return;
17121 	case TCPS_TIME_WAIT:
17122 		(void) tcp_clean_death(tcp, 0, 24);
17123 		return;
17124 	default:
17125 		if (tcp->tcp_debug) {
17126 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17127 			    "tcp_timer: strange state (%d) %s",
17128 			    tcp->tcp_state, tcp_display(tcp, NULL,
17129 			    DISP_PORT_ONLY));
17130 		}
17131 		return;
17132 	}
17133 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17134 		/*
17135 		 * For zero window probe, we need to send indefinitely,
17136 		 * unless we have not heard from the other side for some
17137 		 * time...
17138 		 */
17139 		if ((tcp->tcp_zero_win_probe == 0) ||
17140 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17141 		    second_threshold)) {
17142 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17143 			/*
17144 			 * If TCP is in SYN_RCVD state, send back a
17145 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17146 			 * should be zero in TCPS_SYN_RCVD state.
17147 			 */
17148 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17149 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17150 				    "in SYN_RCVD",
17151 				    tcp, tcp->tcp_snxt,
17152 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17153 			}
17154 			(void) tcp_clean_death(tcp,
17155 			    tcp->tcp_client_errno ?
17156 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17157 			return;
17158 		} else {
17159 			/*
17160 			 * Set tcp_ms_we_have_waited to second_threshold
17161 			 * so that in next timeout, we will do the above
17162 			 * check (lbolt - tcp_last_recv_time).  This is
17163 			 * also to avoid overflow.
17164 			 *
17165 			 * We don't need to decrement tcp_timer_backoff
17166 			 * to avoid overflow because it will be decremented
17167 			 * later if new timeout value is greater than
17168 			 * tcp_rexmit_interval_max.  In the case when
17169 			 * tcp_rexmit_interval_max is greater than
17170 			 * second_threshold, it means that we will wait
17171 			 * longer than second_threshold to send the next
17172 			 * window probe.
17173 			 */
17174 			tcp->tcp_ms_we_have_waited = second_threshold;
17175 		}
17176 	} else if (ms > first_threshold) {
17177 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17178 		    tcp->tcp_xmit_head != NULL) {
17179 			tcp->tcp_xmit_head =
17180 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17181 		}
17182 		/*
17183 		 * We have been retransmitting for too long...  The RTT
17184 		 * we calculated is probably incorrect.  Reinitialize it.
17185 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17186 		 * tcp_rtt_update so that we won't accidentally cache a
17187 		 * bad value.  But only do this if this is not a zero
17188 		 * window probe.
17189 		 */
17190 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17191 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17192 			    (tcp->tcp_rtt_sa >> 5);
17193 			tcp->tcp_rtt_sa = 0;
17194 			tcp_ip_notify(tcp);
17195 			tcp->tcp_rtt_update = 0;
17196 		}
17197 	}
17198 	tcp->tcp_timer_backoff++;
17199 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17200 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17201 	    tcps->tcps_rexmit_interval_min) {
17202 		/*
17203 		 * This means the original RTO is tcp_rexmit_interval_min.
17204 		 * So we will use tcp_rexmit_interval_min as the RTO value
17205 		 * and do the backoff.
17206 		 */
17207 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17208 	} else {
17209 		ms <<= tcp->tcp_timer_backoff;
17210 	}
17211 	if (ms > tcps->tcps_rexmit_interval_max) {
17212 		ms = tcps->tcps_rexmit_interval_max;
17213 		/*
17214 		 * ms is at max, decrement tcp_timer_backoff to avoid
17215 		 * overflow.
17216 		 */
17217 		tcp->tcp_timer_backoff--;
17218 	}
17219 	tcp->tcp_ms_we_have_waited += ms;
17220 	if (tcp->tcp_zero_win_probe == 0) {
17221 		tcp->tcp_rto = ms;
17222 	}
17223 	TCP_TIMER_RESTART(tcp, ms);
17224 	/*
17225 	 * This is after a timeout and tcp_rto is backed off.  Set
17226 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17227 	 * restart the timer with a correct value.
17228 	 */
17229 	tcp->tcp_set_timer = 1;
17230 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17231 	if (mss > tcp->tcp_mss)
17232 		mss = tcp->tcp_mss;
17233 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17234 		mss = tcp->tcp_swnd;
17235 
17236 	if ((mp = tcp->tcp_xmit_head) != NULL)
17237 		mp->b_prev = (mblk_t *)lbolt;
17238 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17239 	    B_TRUE);
17240 
17241 	/*
17242 	 * When slow start after retransmission begins, start with
17243 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17244 	 * start phase.  tcp_snd_burst controls how many segments
17245 	 * can be sent because of an ack.
17246 	 */
17247 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17248 	tcp->tcp_snd_burst = TCP_CWND_SS;
17249 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17250 	    (tcp->tcp_unsent == 0)) {
17251 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17252 	} else {
17253 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17254 	}
17255 	tcp->tcp_rexmit = B_TRUE;
17256 	tcp->tcp_dupack_cnt = 0;
17257 
17258 	/*
17259 	 * Remove all rexmit SACK blk to start from fresh.
17260 	 */
17261 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17262 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17263 		tcp->tcp_num_notsack_blk = 0;
17264 		tcp->tcp_cnt_notsack_list = 0;
17265 	}
17266 	if (mp == NULL) {
17267 		return;
17268 	}
17269 	/* Attach credentials to retransmitted initial SYNs. */
17270 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17271 		mblk_setcred(mp, tcp->tcp_cred);
17272 		DB_CPID(mp) = tcp->tcp_cpid;
17273 	}
17274 
17275 	tcp->tcp_csuna = tcp->tcp_snxt;
17276 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17277 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17278 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17279 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17280 
17281 }
17282 
17283 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17284 static void
17285 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17286 {
17287 	conn_t	*connp;
17288 
17289 	switch (tcp->tcp_state) {
17290 	case TCPS_BOUND:
17291 	case TCPS_LISTEN:
17292 		break;
17293 	default:
17294 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17295 		return;
17296 	}
17297 
17298 	/*
17299 	 * Need to clean up all the eagers since after the unbind, segments
17300 	 * will no longer be delivered to this listener stream.
17301 	 */
17302 	mutex_enter(&tcp->tcp_eager_lock);
17303 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17304 		tcp_eager_cleanup(tcp, 0);
17305 	}
17306 	mutex_exit(&tcp->tcp_eager_lock);
17307 
17308 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17309 		tcp->tcp_ipha->ipha_src = 0;
17310 	} else {
17311 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17312 	}
17313 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17314 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17315 	tcp_bind_hash_remove(tcp);
17316 	tcp->tcp_state = TCPS_IDLE;
17317 	tcp->tcp_mdt = B_FALSE;
17318 	/* Send M_FLUSH according to TPI */
17319 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17320 	connp = tcp->tcp_connp;
17321 	connp->conn_mdt_ok = B_FALSE;
17322 	ipcl_hash_remove(connp);
17323 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17324 	mp = mi_tpi_ok_ack_alloc(mp);
17325 	putnext(tcp->tcp_rq, mp);
17326 }
17327 
17328 /*
17329  * Don't let port fall into the privileged range.
17330  * Since the extra privileged ports can be arbitrary we also
17331  * ensure that we exclude those from consideration.
17332  * tcp_g_epriv_ports is not sorted thus we loop over it until
17333  * there are no changes.
17334  *
17335  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17336  * but instead the code relies on:
17337  * - the fact that the address of the array and its size never changes
17338  * - the atomic assignment of the elements of the array
17339  *
17340  * Returns 0 if there are no more ports available.
17341  *
17342  * TS note: skip multilevel ports.
17343  */
17344 static in_port_t
17345 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17346 {
17347 	int i;
17348 	boolean_t restart = B_FALSE;
17349 	tcp_stack_t *tcps = tcp->tcp_tcps;
17350 
17351 	if (random && tcp_random_anon_port != 0) {
17352 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17353 		    sizeof (in_port_t));
17354 		/*
17355 		 * Unless changed by a sys admin, the smallest anon port
17356 		 * is 32768 and the largest anon port is 65535.  It is
17357 		 * very likely (50%) for the random port to be smaller
17358 		 * than the smallest anon port.  When that happens,
17359 		 * add port % (anon port range) to the smallest anon
17360 		 * port to get the random port.  It should fall into the
17361 		 * valid anon port range.
17362 		 */
17363 		if (port < tcps->tcps_smallest_anon_port) {
17364 			port = tcps->tcps_smallest_anon_port +
17365 			    port % (tcps->tcps_largest_anon_port -
17366 			    tcps->tcps_smallest_anon_port);
17367 		}
17368 	}
17369 
17370 retry:
17371 	if (port < tcps->tcps_smallest_anon_port)
17372 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17373 
17374 	if (port > tcps->tcps_largest_anon_port) {
17375 		if (restart)
17376 			return (0);
17377 		restart = B_TRUE;
17378 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17379 	}
17380 
17381 	if (port < tcps->tcps_smallest_nonpriv_port)
17382 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17383 
17384 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17385 		if (port == tcps->tcps_g_epriv_ports[i]) {
17386 			port++;
17387 			/*
17388 			 * Make sure whether the port is in the
17389 			 * valid range.
17390 			 */
17391 			goto retry;
17392 		}
17393 	}
17394 	if (is_system_labeled() &&
17395 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17396 	    IPPROTO_TCP, B_TRUE)) != 0) {
17397 		port = i;
17398 		goto retry;
17399 	}
17400 	return (port);
17401 }
17402 
17403 /*
17404  * Return the next anonymous port in the privileged port range for
17405  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17406  * downwards.  This is the same behavior as documented in the userland
17407  * library call rresvport(3N).
17408  *
17409  * TS note: skip multilevel ports.
17410  */
17411 static in_port_t
17412 tcp_get_next_priv_port(const tcp_t *tcp)
17413 {
17414 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17415 	in_port_t nextport;
17416 	boolean_t restart = B_FALSE;
17417 	tcp_stack_t *tcps = tcp->tcp_tcps;
17418 retry:
17419 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17420 	    next_priv_port >= IPPORT_RESERVED) {
17421 		next_priv_port = IPPORT_RESERVED - 1;
17422 		if (restart)
17423 			return (0);
17424 		restart = B_TRUE;
17425 	}
17426 	if (is_system_labeled() &&
17427 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17428 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17429 		next_priv_port = nextport;
17430 		goto retry;
17431 	}
17432 	return (next_priv_port--);
17433 }
17434 
17435 /* The write side r/w procedure. */
17436 
17437 #if CCS_STATS
17438 struct {
17439 	struct {
17440 		int64_t count, bytes;
17441 	} tot, hit;
17442 } wrw_stats;
17443 #endif
17444 
17445 /*
17446  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17447  * messages.
17448  */
17449 /* ARGSUSED */
17450 static void
17451 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17452 {
17453 	conn_t	*connp = (conn_t *)arg;
17454 	tcp_t	*tcp = connp->conn_tcp;
17455 	queue_t	*q = tcp->tcp_wq;
17456 
17457 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17458 	/*
17459 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17460 	 * Once the close starts, streamhead and sockfs will not let any data
17461 	 * packets come down (close ensures that there are no threads using the
17462 	 * queue and no new threads will come down) but since qprocsoff()
17463 	 * hasn't happened yet, a M_FLUSH or some non data message might
17464 	 * get reflected back (in response to our own FLUSHRW) and get
17465 	 * processed after tcp_close() is done. The conn would still be valid
17466 	 * because a ref would have added but we need to check the state
17467 	 * before actually processing the packet.
17468 	 */
17469 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17470 		freemsg(mp);
17471 		return;
17472 	}
17473 
17474 	switch (DB_TYPE(mp)) {
17475 	case M_IOCDATA:
17476 		tcp_wput_iocdata(tcp, mp);
17477 		break;
17478 	case M_FLUSH:
17479 		tcp_wput_flush(tcp, mp);
17480 		break;
17481 	default:
17482 		CALL_IP_WPUT(connp, q, mp);
17483 		break;
17484 	}
17485 }
17486 
17487 /*
17488  * The TCP fast path write put procedure.
17489  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17490  */
17491 /* ARGSUSED */
17492 void
17493 tcp_output(void *arg, mblk_t *mp, void *arg2)
17494 {
17495 	int		len;
17496 	int		hdrlen;
17497 	int		plen;
17498 	mblk_t		*mp1;
17499 	uchar_t		*rptr;
17500 	uint32_t	snxt;
17501 	tcph_t		*tcph;
17502 	struct datab	*db;
17503 	uint32_t	suna;
17504 	uint32_t	mss;
17505 	ipaddr_t	*dst;
17506 	ipaddr_t	*src;
17507 	uint32_t	sum;
17508 	int		usable;
17509 	conn_t		*connp = (conn_t *)arg;
17510 	tcp_t		*tcp = connp->conn_tcp;
17511 	uint32_t	msize;
17512 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17513 
17514 	/*
17515 	 * Try and ASSERT the minimum possible references on the
17516 	 * conn early enough. Since we are executing on write side,
17517 	 * the connection is obviously not detached and that means
17518 	 * there is a ref each for TCP and IP. Since we are behind
17519 	 * the squeue, the minimum references needed are 3. If the
17520 	 * conn is in classifier hash list, there should be an
17521 	 * extra ref for that (we check both the possibilities).
17522 	 */
17523 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17524 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17525 
17526 	ASSERT(DB_TYPE(mp) == M_DATA);
17527 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17528 
17529 	mutex_enter(&tcp->tcp_non_sq_lock);
17530 	tcp->tcp_squeue_bytes -= msize;
17531 	mutex_exit(&tcp->tcp_non_sq_lock);
17532 
17533 	/* Bypass tcp protocol for fused tcp loopback */
17534 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17535 		return;
17536 
17537 	mss = tcp->tcp_mss;
17538 	if (tcp->tcp_xmit_zc_clean)
17539 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17540 
17541 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17542 	len = (int)(mp->b_wptr - mp->b_rptr);
17543 
17544 	/*
17545 	 * Criteria for fast path:
17546 	 *
17547 	 *   1. no unsent data
17548 	 *   2. single mblk in request
17549 	 *   3. connection established
17550 	 *   4. data in mblk
17551 	 *   5. len <= mss
17552 	 *   6. no tcp_valid bits
17553 	 */
17554 	if ((tcp->tcp_unsent != 0) ||
17555 	    (tcp->tcp_cork) ||
17556 	    (mp->b_cont != NULL) ||
17557 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17558 	    (len == 0) ||
17559 	    (len > mss) ||
17560 	    (tcp->tcp_valid_bits != 0)) {
17561 		tcp_wput_data(tcp, mp, B_FALSE);
17562 		return;
17563 	}
17564 
17565 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17566 	ASSERT(tcp->tcp_fin_sent == 0);
17567 
17568 	/* queue new packet onto retransmission queue */
17569 	if (tcp->tcp_xmit_head == NULL) {
17570 		tcp->tcp_xmit_head = mp;
17571 	} else {
17572 		tcp->tcp_xmit_last->b_cont = mp;
17573 	}
17574 	tcp->tcp_xmit_last = mp;
17575 	tcp->tcp_xmit_tail = mp;
17576 
17577 	/* find out how much we can send */
17578 	/* BEGIN CSTYLED */
17579 	/*
17580 	 *    un-acked           usable
17581 	 *  |--------------|-----------------|
17582 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17583 	 */
17584 	/* END CSTYLED */
17585 
17586 	/* start sending from tcp_snxt */
17587 	snxt = tcp->tcp_snxt;
17588 
17589 	/*
17590 	 * Check to see if this connection has been idled for some
17591 	 * time and no ACK is expected.  If it is, we need to slow
17592 	 * start again to get back the connection's "self-clock" as
17593 	 * described in VJ's paper.
17594 	 *
17595 	 * Refer to the comment in tcp_mss_set() for the calculation
17596 	 * of tcp_cwnd after idle.
17597 	 */
17598 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17599 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17600 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17601 	}
17602 
17603 	usable = tcp->tcp_swnd;		/* tcp window size */
17604 	if (usable > tcp->tcp_cwnd)
17605 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17606 	usable -= snxt;		/* subtract stuff already sent */
17607 	suna = tcp->tcp_suna;
17608 	usable += suna;
17609 	/* usable can be < 0 if the congestion window is smaller */
17610 	if (len > usable) {
17611 		/* Can't send complete M_DATA in one shot */
17612 		goto slow;
17613 	}
17614 
17615 	mutex_enter(&tcp->tcp_non_sq_lock);
17616 	if (tcp->tcp_flow_stopped &&
17617 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17618 		tcp_clrqfull(tcp);
17619 	}
17620 	mutex_exit(&tcp->tcp_non_sq_lock);
17621 
17622 	/*
17623 	 * determine if anything to send (Nagle).
17624 	 *
17625 	 *   1. len < tcp_mss (i.e. small)
17626 	 *   2. unacknowledged data present
17627 	 *   3. len < nagle limit
17628 	 *   4. last packet sent < nagle limit (previous packet sent)
17629 	 */
17630 	if ((len < mss) && (snxt != suna) &&
17631 	    (len < (int)tcp->tcp_naglim) &&
17632 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17633 		/*
17634 		 * This was the first unsent packet and normally
17635 		 * mss < xmit_hiwater so there is no need to worry
17636 		 * about flow control. The next packet will go
17637 		 * through the flow control check in tcp_wput_data().
17638 		 */
17639 		/* leftover work from above */
17640 		tcp->tcp_unsent = len;
17641 		tcp->tcp_xmit_tail_unsent = len;
17642 
17643 		return;
17644 	}
17645 
17646 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17647 
17648 	if (snxt == suna) {
17649 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17650 	}
17651 
17652 	/* we have always sent something */
17653 	tcp->tcp_rack_cnt = 0;
17654 
17655 	tcp->tcp_snxt = snxt + len;
17656 	tcp->tcp_rack = tcp->tcp_rnxt;
17657 
17658 	if ((mp1 = dupb(mp)) == 0)
17659 		goto no_memory;
17660 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17661 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17662 
17663 	/* adjust tcp header information */
17664 	tcph = tcp->tcp_tcph;
17665 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17666 
17667 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17668 	sum = (sum >> 16) + (sum & 0xFFFF);
17669 	U16_TO_ABE16(sum, tcph->th_sum);
17670 
17671 	U32_TO_ABE32(snxt, tcph->th_seq);
17672 
17673 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17674 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17675 	BUMP_LOCAL(tcp->tcp_obsegs);
17676 
17677 	/* Update the latest receive window size in TCP header. */
17678 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17679 	    tcph->th_win);
17680 
17681 	tcp->tcp_last_sent_len = (ushort_t)len;
17682 
17683 	plen = len + tcp->tcp_hdr_len;
17684 
17685 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17686 		tcp->tcp_ipha->ipha_length = htons(plen);
17687 	} else {
17688 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17689 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17690 	}
17691 
17692 	/* see if we need to allocate a mblk for the headers */
17693 	hdrlen = tcp->tcp_hdr_len;
17694 	rptr = mp1->b_rptr - hdrlen;
17695 	db = mp1->b_datap;
17696 	if ((db->db_ref != 2) || rptr < db->db_base ||
17697 	    (!OK_32PTR(rptr))) {
17698 		/* NOTE: we assume allocb returns an OK_32PTR */
17699 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17700 		    tcps->tcps_wroff_xtra, BPRI_MED);
17701 		if (!mp) {
17702 			freemsg(mp1);
17703 			goto no_memory;
17704 		}
17705 		mp->b_cont = mp1;
17706 		mp1 = mp;
17707 		/* Leave room for Link Level header */
17708 		/* hdrlen = tcp->tcp_hdr_len; */
17709 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17710 		mp1->b_wptr = &rptr[hdrlen];
17711 	}
17712 	mp1->b_rptr = rptr;
17713 
17714 	/* Fill in the timestamp option. */
17715 	if (tcp->tcp_snd_ts_ok) {
17716 		U32_TO_BE32((uint32_t)lbolt,
17717 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17718 		U32_TO_BE32(tcp->tcp_ts_recent,
17719 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17720 	} else {
17721 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17722 	}
17723 
17724 	/* copy header into outgoing packet */
17725 	dst = (ipaddr_t *)rptr;
17726 	src = (ipaddr_t *)tcp->tcp_iphc;
17727 	dst[0] = src[0];
17728 	dst[1] = src[1];
17729 	dst[2] = src[2];
17730 	dst[3] = src[3];
17731 	dst[4] = src[4];
17732 	dst[5] = src[5];
17733 	dst[6] = src[6];
17734 	dst[7] = src[7];
17735 	dst[8] = src[8];
17736 	dst[9] = src[9];
17737 	if (hdrlen -= 40) {
17738 		hdrlen >>= 2;
17739 		dst += 10;
17740 		src += 10;
17741 		do {
17742 			*dst++ = *src++;
17743 		} while (--hdrlen);
17744 	}
17745 
17746 	/*
17747 	 * Set the ECN info in the TCP header.  Note that this
17748 	 * is not the template header.
17749 	 */
17750 	if (tcp->tcp_ecn_ok) {
17751 		SET_ECT(tcp, rptr);
17752 
17753 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17754 		if (tcp->tcp_ecn_echo_on)
17755 			tcph->th_flags[0] |= TH_ECE;
17756 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17757 			tcph->th_flags[0] |= TH_CWR;
17758 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17759 		}
17760 	}
17761 
17762 	if (tcp->tcp_ip_forward_progress) {
17763 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17764 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17765 		tcp->tcp_ip_forward_progress = B_FALSE;
17766 	}
17767 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17768 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17769 	return;
17770 
17771 	/*
17772 	 * If we ran out of memory, we pretend to have sent the packet
17773 	 * and that it was lost on the wire.
17774 	 */
17775 no_memory:
17776 	return;
17777 
17778 slow:
17779 	/* leftover work from above */
17780 	tcp->tcp_unsent = len;
17781 	tcp->tcp_xmit_tail_unsent = len;
17782 	tcp_wput_data(tcp, NULL, B_FALSE);
17783 }
17784 
17785 /*
17786  * The function called through squeue to get behind eager's perimeter to
17787  * finish the accept processing.
17788  */
17789 /* ARGSUSED */
17790 void
17791 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17792 {
17793 	conn_t			*connp = (conn_t *)arg;
17794 	tcp_t			*tcp = connp->conn_tcp;
17795 	queue_t			*q = tcp->tcp_rq;
17796 	mblk_t			*mp1;
17797 	mblk_t			*stropt_mp = mp;
17798 	struct  stroptions	*stropt;
17799 	uint_t			thwin;
17800 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17801 
17802 	/*
17803 	 * Drop the eager's ref on the listener, that was placed when
17804 	 * this eager began life in tcp_conn_request.
17805 	 */
17806 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17807 
17808 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17809 		/*
17810 		 * Someone blewoff the eager before we could finish
17811 		 * the accept.
17812 		 *
17813 		 * The only reason eager exists it because we put in
17814 		 * a ref on it when conn ind went up. We need to send
17815 		 * a disconnect indication up while the last reference
17816 		 * on the eager will be dropped by the squeue when we
17817 		 * return.
17818 		 */
17819 		ASSERT(tcp->tcp_listener == NULL);
17820 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17821 			struct	T_discon_ind	*tdi;
17822 
17823 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17824 			/*
17825 			 * Let us reuse the incoming mblk to avoid memory
17826 			 * allocation failure problems. We know that the
17827 			 * size of the incoming mblk i.e. stroptions is greater
17828 			 * than sizeof T_discon_ind. So the reallocb below
17829 			 * can't fail.
17830 			 */
17831 			freemsg(mp->b_cont);
17832 			mp->b_cont = NULL;
17833 			ASSERT(DB_REF(mp) == 1);
17834 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17835 			    B_FALSE);
17836 			ASSERT(mp != NULL);
17837 			DB_TYPE(mp) = M_PROTO;
17838 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17839 			tdi = (struct T_discon_ind *)mp->b_rptr;
17840 			if (tcp->tcp_issocket) {
17841 				tdi->DISCON_reason = ECONNREFUSED;
17842 				tdi->SEQ_number = 0;
17843 			} else {
17844 				tdi->DISCON_reason = ENOPROTOOPT;
17845 				tdi->SEQ_number =
17846 				    tcp->tcp_conn_req_seqnum;
17847 			}
17848 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17849 			putnext(q, mp);
17850 		} else {
17851 			freemsg(mp);
17852 		}
17853 		if (tcp->tcp_hard_binding) {
17854 			tcp->tcp_hard_binding = B_FALSE;
17855 			tcp->tcp_hard_bound = B_TRUE;
17856 		}
17857 		tcp->tcp_detached = B_FALSE;
17858 		return;
17859 	}
17860 
17861 	mp1 = stropt_mp->b_cont;
17862 	stropt_mp->b_cont = NULL;
17863 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17864 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17865 
17866 	while (mp1 != NULL) {
17867 		mp = mp1;
17868 		mp1 = mp1->b_cont;
17869 		mp->b_cont = NULL;
17870 		tcp->tcp_drop_opt_ack_cnt++;
17871 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17872 	}
17873 	mp = NULL;
17874 
17875 	/*
17876 	 * For a loopback connection with tcp_direct_sockfs on, note that
17877 	 * we don't have to protect tcp_rcv_list yet because synchronous
17878 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17879 	 * possibly race with us.
17880 	 */
17881 
17882 	/*
17883 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17884 	 * properly.  This is the first time we know of the acceptor'
17885 	 * queue.  So we do it here.
17886 	 */
17887 	if (tcp->tcp_rcv_list == NULL) {
17888 		/*
17889 		 * Recv queue is empty, tcp_rwnd should not have changed.
17890 		 * That means it should be equal to the listener's tcp_rwnd.
17891 		 */
17892 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17893 	} else {
17894 #ifdef DEBUG
17895 		uint_t cnt = 0;
17896 
17897 		mp1 = tcp->tcp_rcv_list;
17898 		while ((mp = mp1) != NULL) {
17899 			mp1 = mp->b_next;
17900 			cnt += msgdsize(mp);
17901 		}
17902 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17903 #endif
17904 		/* There is some data, add them back to get the max. */
17905 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17906 	}
17907 
17908 	stropt->so_flags = SO_HIWAT;
17909 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
17910 
17911 	stropt->so_flags |= SO_MAXBLK;
17912 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17913 
17914 	/*
17915 	 * This is the first time we run on the correct
17916 	 * queue after tcp_accept. So fix all the q parameters
17917 	 * here.
17918 	 */
17919 	/* Allocate room for SACK options if needed. */
17920 	stropt->so_flags |= SO_WROFF;
17921 	if (tcp->tcp_fused) {
17922 		ASSERT(tcp->tcp_loopback);
17923 		ASSERT(tcp->tcp_loopback_peer != NULL);
17924 		/*
17925 		 * For fused tcp loopback, set the stream head's write
17926 		 * offset value to zero since we won't be needing any room
17927 		 * for TCP/IP headers.  This would also improve performance
17928 		 * since it would reduce the amount of work done by kmem.
17929 		 * Non-fused tcp loopback case is handled separately below.
17930 		 */
17931 		stropt->so_wroff = 0;
17932 		/*
17933 		 * Record the stream head's high water mark for this endpoint;
17934 		 * this is used for flow-control purposes in tcp_fuse_output().
17935 		 */
17936 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17937 		/*
17938 		 * Update the peer's transmit parameters according to
17939 		 * our recently calculated high water mark value.
17940 		 */
17941 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17942 	} else if (tcp->tcp_snd_sack_ok) {
17943 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17944 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17945 	} else {
17946 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17947 		    tcps->tcps_wroff_xtra);
17948 	}
17949 
17950 	/*
17951 	 * If this is endpoint is handling SSL, then reserve extra
17952 	 * offset and space at the end.
17953 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17954 	 * overriding the previous setting. The extra cost of signing and
17955 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17956 	 * instead of a single contiguous one by the stream head
17957 	 * largely outweighs the statistical reduction of ACKs, when
17958 	 * applicable. The peer will also save on decyption and verification
17959 	 * costs.
17960 	 */
17961 	if (tcp->tcp_kssl_ctx != NULL) {
17962 		stropt->so_wroff += SSL3_WROFFSET;
17963 
17964 		stropt->so_flags |= SO_TAIL;
17965 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17966 
17967 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17968 	}
17969 
17970 	/* Send the options up */
17971 	putnext(q, stropt_mp);
17972 
17973 	/*
17974 	 * Pass up any data and/or a fin that has been received.
17975 	 *
17976 	 * Adjust receive window in case it had decreased
17977 	 * (because there is data <=> tcp_rcv_list != NULL)
17978 	 * while the connection was detached. Note that
17979 	 * in case the eager was flow-controlled, w/o this
17980 	 * code, the rwnd may never open up again!
17981 	 */
17982 	if (tcp->tcp_rcv_list != NULL) {
17983 		/* We drain directly in case of fused tcp loopback */
17984 		if (!tcp->tcp_fused && canputnext(q)) {
17985 			tcp->tcp_rwnd = q->q_hiwat;
17986 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17987 			    << tcp->tcp_rcv_ws;
17988 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17989 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17990 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17991 				tcp_xmit_ctl(NULL,
17992 				    tcp, (tcp->tcp_swnd == 0) ?
17993 				    tcp->tcp_suna : tcp->tcp_snxt,
17994 				    tcp->tcp_rnxt, TH_ACK);
17995 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
17996 			}
17997 
17998 		}
17999 		(void) tcp_rcv_drain(q, tcp);
18000 
18001 		/*
18002 		 * For fused tcp loopback, back-enable peer endpoint
18003 		 * if it's currently flow-controlled.
18004 		 */
18005 		if (tcp->tcp_fused) {
18006 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18007 
18008 			ASSERT(peer_tcp != NULL);
18009 			ASSERT(peer_tcp->tcp_fused);
18010 			/*
18011 			 * In order to change the peer's tcp_flow_stopped,
18012 			 * we need to take locks for both end points. The
18013 			 * highest address is taken first.
18014 			 */
18015 			if (peer_tcp > tcp) {
18016 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18017 				mutex_enter(&tcp->tcp_non_sq_lock);
18018 			} else {
18019 				mutex_enter(&tcp->tcp_non_sq_lock);
18020 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18021 			}
18022 			if (peer_tcp->tcp_flow_stopped) {
18023 				tcp_clrqfull(peer_tcp);
18024 				TCP_STAT(tcps, tcp_fusion_backenabled);
18025 			}
18026 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18027 			mutex_exit(&tcp->tcp_non_sq_lock);
18028 		}
18029 	}
18030 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18031 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18032 		mp = mi_tpi_ordrel_ind();
18033 		if (mp) {
18034 			tcp->tcp_ordrel_done = B_TRUE;
18035 			putnext(q, mp);
18036 			if (tcp->tcp_deferred_clean_death) {
18037 				/*
18038 				 * tcp_clean_death was deferred
18039 				 * for T_ORDREL_IND - do it now
18040 				 */
18041 				(void) tcp_clean_death(tcp,
18042 				    tcp->tcp_client_errno, 21);
18043 				tcp->tcp_deferred_clean_death = B_FALSE;
18044 			}
18045 		} else {
18046 			/*
18047 			 * Run the orderly release in the
18048 			 * service routine.
18049 			 */
18050 			qenable(q);
18051 		}
18052 	}
18053 	if (tcp->tcp_hard_binding) {
18054 		tcp->tcp_hard_binding = B_FALSE;
18055 		tcp->tcp_hard_bound = B_TRUE;
18056 	}
18057 
18058 	tcp->tcp_detached = B_FALSE;
18059 
18060 	/* We can enable synchronous streams now */
18061 	if (tcp->tcp_fused) {
18062 		tcp_fuse_syncstr_enable_pair(tcp);
18063 	}
18064 
18065 	if (tcp->tcp_ka_enabled) {
18066 		tcp->tcp_ka_last_intrvl = 0;
18067 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18068 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18069 	}
18070 
18071 	/*
18072 	 * At this point, eager is fully established and will
18073 	 * have the following references -
18074 	 *
18075 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18076 	 * 1 reference for the squeue which will be dropped by the squeue as
18077 	 *	soon as this function returns.
18078 	 * There will be 1 additonal reference for being in classifier
18079 	 *	hash list provided something bad hasn't happened.
18080 	 */
18081 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18082 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18083 }
18084 
18085 /*
18086  * The function called through squeue to get behind listener's perimeter to
18087  * send a deffered conn_ind.
18088  */
18089 /* ARGSUSED */
18090 void
18091 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18092 {
18093 	conn_t	*connp = (conn_t *)arg;
18094 	tcp_t *listener = connp->conn_tcp;
18095 
18096 	if (listener->tcp_state == TCPS_CLOSED ||
18097 	    TCP_IS_DETACHED(listener)) {
18098 		/*
18099 		 * If listener has closed, it would have caused a
18100 		 * a cleanup/blowoff to happen for the eager.
18101 		 */
18102 		tcp_t *tcp;
18103 		struct T_conn_ind	*conn_ind;
18104 
18105 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18106 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18107 		    conn_ind->OPT_length);
18108 		/*
18109 		 * We need to drop the ref on eager that was put
18110 		 * tcp_rput_data() before trying to send the conn_ind
18111 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18112 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18113 		 * listener is closed so we drop the ref.
18114 		 */
18115 		CONN_DEC_REF(tcp->tcp_connp);
18116 		freemsg(mp);
18117 		return;
18118 	}
18119 	putnext(listener->tcp_rq, mp);
18120 }
18121 
18122 
18123 /*
18124  * This is the STREAMS entry point for T_CONN_RES coming down on
18125  * Acceptor STREAM when  sockfs listener does accept processing.
18126  * Read the block comment on top of tcp_conn_request().
18127  */
18128 void
18129 tcp_wput_accept(queue_t *q, mblk_t *mp)
18130 {
18131 	queue_t *rq = RD(q);
18132 	struct T_conn_res *conn_res;
18133 	tcp_t *eager;
18134 	tcp_t *listener;
18135 	struct T_ok_ack *ok;
18136 	t_scalar_t PRIM_type;
18137 	mblk_t *opt_mp;
18138 	conn_t *econnp;
18139 
18140 	ASSERT(DB_TYPE(mp) == M_PROTO);
18141 
18142 	conn_res = (struct T_conn_res *)mp->b_rptr;
18143 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18144 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18145 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18146 		if (mp != NULL)
18147 			putnext(rq, mp);
18148 		return;
18149 	}
18150 	switch (conn_res->PRIM_type) {
18151 	case O_T_CONN_RES:
18152 	case T_CONN_RES:
18153 		/*
18154 		 * We pass up an err ack if allocb fails. This will
18155 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18156 		 * tcp_eager_blowoff to be called. sockfs will then call
18157 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18158 		 * we need to do the allocb up here because we have to
18159 		 * make sure rq->q_qinfo->qi_qclose still points to the
18160 		 * correct function (tcpclose_accept) in case allocb
18161 		 * fails.
18162 		 */
18163 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18164 		if (opt_mp == NULL) {
18165 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18166 			if (mp != NULL)
18167 				putnext(rq, mp);
18168 			return;
18169 		}
18170 
18171 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18172 		    &eager, conn_res->OPT_length);
18173 		PRIM_type = conn_res->PRIM_type;
18174 		mp->b_datap->db_type = M_PCPROTO;
18175 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18176 		ok = (struct T_ok_ack *)mp->b_rptr;
18177 		ok->PRIM_type = T_OK_ACK;
18178 		ok->CORRECT_prim = PRIM_type;
18179 		econnp = eager->tcp_connp;
18180 		econnp->conn_dev = (dev_t)q->q_ptr;
18181 		eager->tcp_rq = rq;
18182 		eager->tcp_wq = q;
18183 		rq->q_ptr = econnp;
18184 		rq->q_qinfo = &tcp_rinit;
18185 		q->q_ptr = econnp;
18186 		q->q_qinfo = &tcp_winit;
18187 		listener = eager->tcp_listener;
18188 		eager->tcp_issocket = B_TRUE;
18189 
18190 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18191 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18192 		ASSERT(econnp->conn_netstack ==
18193 		    listener->tcp_connp->conn_netstack);
18194 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18195 
18196 		/* Put the ref for IP */
18197 		CONN_INC_REF(econnp);
18198 
18199 		/*
18200 		 * We should have minimum of 3 references on the conn
18201 		 * at this point. One each for TCP and IP and one for
18202 		 * the T_conn_ind that was sent up when the 3-way handshake
18203 		 * completed. In the normal case we would also have another
18204 		 * reference (making a total of 4) for the conn being in the
18205 		 * classifier hash list. However the eager could have received
18206 		 * an RST subsequently and tcp_closei_local could have removed
18207 		 * the eager from the classifier hash list, hence we can't
18208 		 * assert that reference.
18209 		 */
18210 		ASSERT(econnp->conn_ref >= 3);
18211 
18212 		/*
18213 		 * Send the new local address also up to sockfs. There
18214 		 * should already be enough space in the mp that came
18215 		 * down from soaccept().
18216 		 */
18217 		if (eager->tcp_family == AF_INET) {
18218 			sin_t *sin;
18219 
18220 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18221 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18222 			sin = (sin_t *)mp->b_wptr;
18223 			mp->b_wptr += sizeof (sin_t);
18224 			sin->sin_family = AF_INET;
18225 			sin->sin_port = eager->tcp_lport;
18226 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18227 		} else {
18228 			sin6_t *sin6;
18229 
18230 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18231 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18232 			sin6 = (sin6_t *)mp->b_wptr;
18233 			mp->b_wptr += sizeof (sin6_t);
18234 			sin6->sin6_family = AF_INET6;
18235 			sin6->sin6_port = eager->tcp_lport;
18236 			if (eager->tcp_ipversion == IPV4_VERSION) {
18237 				sin6->sin6_flowinfo = 0;
18238 				IN6_IPADDR_TO_V4MAPPED(
18239 					eager->tcp_ipha->ipha_src,
18240 					    &sin6->sin6_addr);
18241 			} else {
18242 				ASSERT(eager->tcp_ip6h != NULL);
18243 				sin6->sin6_flowinfo =
18244 				    eager->tcp_ip6h->ip6_vcf &
18245 				    ~IPV6_VERS_AND_FLOW_MASK;
18246 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18247 			}
18248 			sin6->sin6_scope_id = 0;
18249 			sin6->__sin6_src_id = 0;
18250 		}
18251 
18252 		putnext(rq, mp);
18253 
18254 		opt_mp->b_datap->db_type = M_SETOPTS;
18255 		opt_mp->b_wptr += sizeof (struct stroptions);
18256 
18257 		/*
18258 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18259 		 * from listener to acceptor. The message is chained on the
18260 		 * bind_mp which tcp_rput_other will send down to IP.
18261 		 */
18262 		if (listener->tcp_bound_if != 0) {
18263 			/* allocate optmgmt req */
18264 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18265 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18266 			    sizeof (int));
18267 			if (mp != NULL)
18268 				linkb(opt_mp, mp);
18269 		}
18270 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18271 			uint_t on = 1;
18272 
18273 			/* allocate optmgmt req */
18274 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18275 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18276 			if (mp != NULL)
18277 				linkb(opt_mp, mp);
18278 		}
18279 
18280 
18281 		mutex_enter(&listener->tcp_eager_lock);
18282 
18283 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18284 
18285 			tcp_t *tail;
18286 			tcp_t *tcp;
18287 			mblk_t *mp1;
18288 
18289 			tcp = listener->tcp_eager_prev_q0;
18290 			/*
18291 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18292 			 * deferred T_conn_ind queue. We need to get to the head
18293 			 * of the queue in order to send up T_conn_ind the same
18294 			 * order as how the 3WHS is completed.
18295 			 */
18296 			while (tcp != listener) {
18297 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18298 				    !tcp->tcp_kssl_pending)
18299 					break;
18300 				else
18301 					tcp = tcp->tcp_eager_prev_q0;
18302 			}
18303 			/* None of the pending eagers can be sent up now */
18304 			if (tcp == listener)
18305 				goto no_more_eagers;
18306 
18307 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18308 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18309 			/* Move from q0 to q */
18310 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18311 			listener->tcp_conn_req_cnt_q0--;
18312 			listener->tcp_conn_req_cnt_q++;
18313 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18314 			    tcp->tcp_eager_prev_q0;
18315 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18316 			    tcp->tcp_eager_next_q0;
18317 			tcp->tcp_eager_prev_q0 = NULL;
18318 			tcp->tcp_eager_next_q0 = NULL;
18319 			tcp->tcp_conn_def_q0 = B_FALSE;
18320 
18321 			/* Make sure the tcp isn't in the list of droppables */
18322 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18323 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18324 
18325 			/*
18326 			 * Insert at end of the queue because sockfs sends
18327 			 * down T_CONN_RES in chronological order. Leaving
18328 			 * the older conn indications at front of the queue
18329 			 * helps reducing search time.
18330 			 */
18331 			tail = listener->tcp_eager_last_q;
18332 			if (tail != NULL) {
18333 				tail->tcp_eager_next_q = tcp;
18334 			} else {
18335 				listener->tcp_eager_next_q = tcp;
18336 			}
18337 			listener->tcp_eager_last_q = tcp;
18338 			tcp->tcp_eager_next_q = NULL;
18339 
18340 			/* Need to get inside the listener perimeter */
18341 			CONN_INC_REF(listener->tcp_connp);
18342 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18343 			    tcp_send_pending, listener->tcp_connp,
18344 			    SQTAG_TCP_SEND_PENDING);
18345 		}
18346 no_more_eagers:
18347 		tcp_eager_unlink(eager);
18348 		mutex_exit(&listener->tcp_eager_lock);
18349 
18350 		/*
18351 		 * At this point, the eager is detached from the listener
18352 		 * but we still have an extra refs on eager (apart from the
18353 		 * usual tcp references). The ref was placed in tcp_rput_data
18354 		 * before sending the conn_ind in tcp_send_conn_ind.
18355 		 * The ref will be dropped in tcp_accept_finish().
18356 		 */
18357 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18358 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18359 		return;
18360 	default:
18361 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18362 		if (mp != NULL)
18363 			putnext(rq, mp);
18364 		return;
18365 	}
18366 }
18367 
18368 void
18369 tcp_wput(queue_t *q, mblk_t *mp)
18370 {
18371 	conn_t	*connp = Q_TO_CONN(q);
18372 	tcp_t	*tcp;
18373 	void (*output_proc)();
18374 	t_scalar_t type;
18375 	uchar_t *rptr;
18376 	struct iocblk	*iocp;
18377 	uint32_t	msize;
18378 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18379 
18380 	ASSERT(connp->conn_ref >= 2);
18381 
18382 	switch (DB_TYPE(mp)) {
18383 	case M_DATA:
18384 		tcp = connp->conn_tcp;
18385 		ASSERT(tcp != NULL);
18386 
18387 		msize = msgdsize(mp);
18388 
18389 		mutex_enter(&tcp->tcp_non_sq_lock);
18390 		tcp->tcp_squeue_bytes += msize;
18391 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18392 			tcp_setqfull(tcp);
18393 		}
18394 		mutex_exit(&tcp->tcp_non_sq_lock);
18395 
18396 		CONN_INC_REF(connp);
18397 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18398 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18399 		return;
18400 	case M_PROTO:
18401 	case M_PCPROTO:
18402 		/*
18403 		 * if it is a snmp message, don't get behind the squeue
18404 		 */
18405 		tcp = connp->conn_tcp;
18406 		rptr = mp->b_rptr;
18407 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18408 			type = ((union T_primitives *)rptr)->type;
18409 		} else {
18410 			if (tcp->tcp_debug) {
18411 				(void) strlog(TCP_MOD_ID, 0, 1,
18412 				    SL_ERROR|SL_TRACE,
18413 				    "tcp_wput_proto, dropping one...");
18414 			}
18415 			freemsg(mp);
18416 			return;
18417 		}
18418 		if (type == T_SVR4_OPTMGMT_REQ) {
18419 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18420 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18421 			    cr)) {
18422 				/*
18423 				 * This was a SNMP request
18424 				 */
18425 				return;
18426 			} else {
18427 				output_proc = tcp_wput_proto;
18428 			}
18429 		} else {
18430 			output_proc = tcp_wput_proto;
18431 		}
18432 		break;
18433 	case M_IOCTL:
18434 		/*
18435 		 * Most ioctls can be processed right away without going via
18436 		 * squeues - process them right here. Those that do require
18437 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18438 		 * are processed by tcp_wput_ioctl().
18439 		 */
18440 		iocp = (struct iocblk *)mp->b_rptr;
18441 		tcp = connp->conn_tcp;
18442 
18443 		switch (iocp->ioc_cmd) {
18444 		case TCP_IOC_ABORT_CONN:
18445 			tcp_ioctl_abort_conn(q, mp);
18446 			return;
18447 		case TI_GETPEERNAME:
18448 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18449 				iocp->ioc_error = ENOTCONN;
18450 				iocp->ioc_count = 0;
18451 				mp->b_datap->db_type = M_IOCACK;
18452 				qreply(q, mp);
18453 				return;
18454 			}
18455 			/* FALLTHRU */
18456 		case TI_GETMYNAME:
18457 			mi_copyin(q, mp, NULL,
18458 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18459 			return;
18460 		case ND_SET:
18461 			/* nd_getset does the necessary checks */
18462 		case ND_GET:
18463 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18464 				CALL_IP_WPUT(connp, q, mp);
18465 				return;
18466 			}
18467 			qreply(q, mp);
18468 			return;
18469 		case TCP_IOC_DEFAULT_Q:
18470 			/*
18471 			 * Wants to be the default wq. Check the credentials
18472 			 * first, the rest is executed via squeue.
18473 			 */
18474 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18475 				iocp->ioc_error = EPERM;
18476 				iocp->ioc_count = 0;
18477 				mp->b_datap->db_type = M_IOCACK;
18478 				qreply(q, mp);
18479 				return;
18480 			}
18481 			output_proc = tcp_wput_ioctl;
18482 			break;
18483 		default:
18484 			output_proc = tcp_wput_ioctl;
18485 			break;
18486 		}
18487 		break;
18488 	default:
18489 		output_proc = tcp_wput_nondata;
18490 		break;
18491 	}
18492 
18493 	CONN_INC_REF(connp);
18494 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18495 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18496 }
18497 
18498 /*
18499  * Initial STREAMS write side put() procedure for sockets. It tries to
18500  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18501  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18502  * are handled by tcp_wput() as usual.
18503  *
18504  * All further messages will also be handled by tcp_wput() because we cannot
18505  * be sure that the above short cut is safe later.
18506  */
18507 static void
18508 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18509 {
18510 	conn_t			*connp = Q_TO_CONN(wq);
18511 	tcp_t			*tcp = connp->conn_tcp;
18512 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18513 
18514 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18515 	wq->q_qinfo = &tcp_winit;
18516 
18517 	ASSERT(IPCL_IS_TCP(connp));
18518 	ASSERT(TCP_IS_SOCKET(tcp));
18519 
18520 	if (DB_TYPE(mp) == M_PCPROTO &&
18521 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18522 	    car->PRIM_type == T_CAPABILITY_REQ) {
18523 		tcp_capability_req(tcp, mp);
18524 		return;
18525 	}
18526 
18527 	tcp_wput(wq, mp);
18528 }
18529 
18530 static boolean_t
18531 tcp_zcopy_check(tcp_t *tcp)
18532 {
18533 	conn_t	*connp = tcp->tcp_connp;
18534 	ire_t	*ire;
18535 	boolean_t	zc_enabled = B_FALSE;
18536 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18537 
18538 	if (do_tcpzcopy == 2)
18539 		zc_enabled = B_TRUE;
18540 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18541 	    IPCL_IS_CONNECTED(connp) &&
18542 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18543 	    connp->conn_dontroute == 0 &&
18544 	    !connp->conn_nexthop_set &&
18545 	    connp->conn_xmit_if_ill == NULL &&
18546 	    connp->conn_nofailover_ill == NULL &&
18547 	    do_tcpzcopy == 1) {
18548 		/*
18549 		 * the checks above  closely resemble the fast path checks
18550 		 * in tcp_send_data().
18551 		 */
18552 		mutex_enter(&connp->conn_lock);
18553 		ire = connp->conn_ire_cache;
18554 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18555 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18556 			IRE_REFHOLD(ire);
18557 			if (ire->ire_stq != NULL) {
18558 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18559 
18560 				zc_enabled = ill && (ill->ill_capabilities &
18561 				    ILL_CAPAB_ZEROCOPY) &&
18562 				    (ill->ill_zerocopy_capab->
18563 				    ill_zerocopy_flags != 0);
18564 			}
18565 			IRE_REFRELE(ire);
18566 		}
18567 		mutex_exit(&connp->conn_lock);
18568 	}
18569 	tcp->tcp_snd_zcopy_on = zc_enabled;
18570 	if (!TCP_IS_DETACHED(tcp)) {
18571 		if (zc_enabled) {
18572 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18573 			TCP_STAT(tcps, tcp_zcopy_on);
18574 		} else {
18575 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18576 			TCP_STAT(tcps, tcp_zcopy_off);
18577 		}
18578 	}
18579 	return (zc_enabled);
18580 }
18581 
18582 static mblk_t *
18583 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18584 {
18585 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18586 
18587 	if (do_tcpzcopy == 2)
18588 		return (bp);
18589 	else if (tcp->tcp_snd_zcopy_on) {
18590 		tcp->tcp_snd_zcopy_on = B_FALSE;
18591 		if (!TCP_IS_DETACHED(tcp)) {
18592 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18593 			TCP_STAT(tcps, tcp_zcopy_disable);
18594 		}
18595 	}
18596 	return (tcp_zcopy_backoff(tcp, bp, 0));
18597 }
18598 
18599 /*
18600  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18601  * the original desballoca'ed segmapped mblk.
18602  */
18603 static mblk_t *
18604 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18605 {
18606 	mblk_t *head, *tail, *nbp;
18607 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18608 
18609 	if (IS_VMLOANED_MBLK(bp)) {
18610 		TCP_STAT(tcps, tcp_zcopy_backoff);
18611 		if ((head = copyb(bp)) == NULL) {
18612 			/* fail to backoff; leave it for the next backoff */
18613 			tcp->tcp_xmit_zc_clean = B_FALSE;
18614 			return (bp);
18615 		}
18616 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18617 			if (fix_xmitlist)
18618 				tcp_zcopy_notify(tcp);
18619 			else
18620 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18621 		}
18622 		nbp = bp->b_cont;
18623 		if (fix_xmitlist) {
18624 			head->b_prev = bp->b_prev;
18625 			head->b_next = bp->b_next;
18626 			if (tcp->tcp_xmit_tail == bp)
18627 				tcp->tcp_xmit_tail = head;
18628 		}
18629 		bp->b_next = NULL;
18630 		bp->b_prev = NULL;
18631 		freeb(bp);
18632 	} else {
18633 		head = bp;
18634 		nbp = bp->b_cont;
18635 	}
18636 	tail = head;
18637 	while (nbp) {
18638 		if (IS_VMLOANED_MBLK(nbp)) {
18639 			TCP_STAT(tcps, tcp_zcopy_backoff);
18640 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18641 				tcp->tcp_xmit_zc_clean = B_FALSE;
18642 				tail->b_cont = nbp;
18643 				return (head);
18644 			}
18645 			tail = tail->b_cont;
18646 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18647 				if (fix_xmitlist)
18648 					tcp_zcopy_notify(tcp);
18649 				else
18650 					tail->b_datap->db_struioflag |=
18651 					    STRUIO_ZCNOTIFY;
18652 			}
18653 			bp = nbp;
18654 			nbp = nbp->b_cont;
18655 			if (fix_xmitlist) {
18656 				tail->b_prev = bp->b_prev;
18657 				tail->b_next = bp->b_next;
18658 				if (tcp->tcp_xmit_tail == bp)
18659 					tcp->tcp_xmit_tail = tail;
18660 			}
18661 			bp->b_next = NULL;
18662 			bp->b_prev = NULL;
18663 			freeb(bp);
18664 		} else {
18665 			tail->b_cont = nbp;
18666 			tail = nbp;
18667 			nbp = nbp->b_cont;
18668 		}
18669 	}
18670 	if (fix_xmitlist) {
18671 		tcp->tcp_xmit_last = tail;
18672 		tcp->tcp_xmit_zc_clean = B_TRUE;
18673 	}
18674 	return (head);
18675 }
18676 
18677 static void
18678 tcp_zcopy_notify(tcp_t *tcp)
18679 {
18680 	struct stdata	*stp;
18681 
18682 	if (tcp->tcp_detached)
18683 		return;
18684 	stp = STREAM(tcp->tcp_rq);
18685 	mutex_enter(&stp->sd_lock);
18686 	stp->sd_flag |= STZCNOTIFY;
18687 	cv_broadcast(&stp->sd_zcopy_wait);
18688 	mutex_exit(&stp->sd_lock);
18689 }
18690 
18691 static boolean_t
18692 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18693 {
18694 	ire_t	*ire;
18695 	conn_t	*connp = tcp->tcp_connp;
18696 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18697 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18698 
18699 	mutex_enter(&connp->conn_lock);
18700 	ire = connp->conn_ire_cache;
18701 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18702 
18703 	if ((ire != NULL) &&
18704 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18705 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18706 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18707 		IRE_REFHOLD(ire);
18708 		mutex_exit(&connp->conn_lock);
18709 	} else {
18710 		boolean_t cached = B_FALSE;
18711 		ts_label_t *tsl;
18712 
18713 		/* force a recheck later on */
18714 		tcp->tcp_ire_ill_check_done = B_FALSE;
18715 
18716 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18717 		connp->conn_ire_cache = NULL;
18718 		mutex_exit(&connp->conn_lock);
18719 
18720 		if (ire != NULL)
18721 			IRE_REFRELE_NOTR(ire);
18722 
18723 		tsl = crgetlabel(CONN_CRED(connp));
18724 		ire = (dst ?
18725 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18726 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18727 		    connp->conn_zoneid, tsl, ipst));
18728 
18729 		if (ire == NULL) {
18730 			TCP_STAT(tcps, tcp_ire_null);
18731 			return (B_FALSE);
18732 		}
18733 
18734 		IRE_REFHOLD_NOTR(ire);
18735 		/*
18736 		 * Since we are inside the squeue, there cannot be another
18737 		 * thread in TCP trying to set the conn_ire_cache now.  The
18738 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18739 		 * unplumb thread has not yet started cleaning up the conns.
18740 		 * Hence we don't need to grab the conn lock.
18741 		 */
18742 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18743 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18744 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18745 				connp->conn_ire_cache = ire;
18746 				cached = B_TRUE;
18747 			}
18748 			rw_exit(&ire->ire_bucket->irb_lock);
18749 		}
18750 
18751 		/*
18752 		 * We can continue to use the ire but since it was
18753 		 * not cached, we should drop the extra reference.
18754 		 */
18755 		if (!cached)
18756 			IRE_REFRELE_NOTR(ire);
18757 
18758 		/*
18759 		 * Rampart note: no need to select a new label here, since
18760 		 * labels are not allowed to change during the life of a TCP
18761 		 * connection.
18762 		 */
18763 	}
18764 
18765 	*irep = ire;
18766 
18767 	return (B_TRUE);
18768 }
18769 
18770 /*
18771  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18772  *
18773  * 0 = success;
18774  * 1 = failed to find ire and ill.
18775  */
18776 static boolean_t
18777 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18778 {
18779 	ipha_t		*ipha;
18780 	ipaddr_t	dst;
18781 	ire_t		*ire;
18782 	ill_t		*ill;
18783 	conn_t		*connp = tcp->tcp_connp;
18784 	mblk_t		*ire_fp_mp;
18785 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18786 
18787 	if (mp != NULL)
18788 		ipha = (ipha_t *)mp->b_rptr;
18789 	else
18790 		ipha = tcp->tcp_ipha;
18791 	dst = ipha->ipha_dst;
18792 
18793 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18794 		return (B_FALSE);
18795 
18796 	if ((ire->ire_flags & RTF_MULTIRT) ||
18797 	    (ire->ire_stq == NULL) ||
18798 	    (ire->ire_nce == NULL) ||
18799 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18800 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18801 		MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18802 		TCP_STAT(tcps, tcp_ip_ire_send);
18803 		IRE_REFRELE(ire);
18804 		return (B_FALSE);
18805 	}
18806 
18807 	ill = ire_to_ill(ire);
18808 	if (connp->conn_outgoing_ill != NULL) {
18809 		ill_t *conn_outgoing_ill = NULL;
18810 		/*
18811 		 * Choose a good ill in the group to send the packets on.
18812 		 */
18813 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18814 		ill = ire_to_ill(ire);
18815 	}
18816 	ASSERT(ill != NULL);
18817 
18818 	if (!tcp->tcp_ire_ill_check_done) {
18819 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18820 		tcp->tcp_ire_ill_check_done = B_TRUE;
18821 	}
18822 
18823 	*irep = ire;
18824 	*illp = ill;
18825 
18826 	return (B_TRUE);
18827 }
18828 
18829 static void
18830 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18831 {
18832 	ipha_t		*ipha;
18833 	ipaddr_t	src;
18834 	ipaddr_t	dst;
18835 	uint32_t	cksum;
18836 	ire_t		*ire;
18837 	uint16_t	*up;
18838 	ill_t		*ill;
18839 	conn_t		*connp = tcp->tcp_connp;
18840 	uint32_t	hcksum_txflags = 0;
18841 	mblk_t		*ire_fp_mp;
18842 	uint_t		ire_fp_mp_len;
18843 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18844 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18845 
18846 	ASSERT(DB_TYPE(mp) == M_DATA);
18847 
18848 	if (DB_CRED(mp) == NULL)
18849 		mblk_setcred(mp, CONN_CRED(connp));
18850 
18851 	ipha = (ipha_t *)mp->b_rptr;
18852 	src = ipha->ipha_src;
18853 	dst = ipha->ipha_dst;
18854 
18855 	/*
18856 	 * Drop off fast path for IPv6 and also if options are present or
18857 	 * we need to resolve a TS label.
18858 	 */
18859 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18860 	    !IPCL_IS_CONNECTED(connp) ||
18861 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18862 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18863 	    !connp->conn_ulp_labeled ||
18864 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18865 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18866 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18867 		if (tcp->tcp_snd_zcopy_aware)
18868 			mp = tcp_zcopy_disable(tcp, mp);
18869 		TCP_STAT(tcps, tcp_ip_send);
18870 		CALL_IP_WPUT(connp, q, mp);
18871 		return;
18872 	}
18873 
18874 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18875 		if (tcp->tcp_snd_zcopy_aware)
18876 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18877 		CALL_IP_WPUT(connp, q, mp);
18878 		return;
18879 	}
18880 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18881 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18882 
18883 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18884 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18885 #ifndef _BIG_ENDIAN
18886 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18887 #endif
18888 
18889 	/*
18890 	 * Check to see if we need to re-enable LSO/MDT for this connection
18891 	 * because it was previously disabled due to changes in the ill;
18892 	 * note that by doing it here, this re-enabling only applies when
18893 	 * the packet is not dispatched through CALL_IP_WPUT().
18894 	 *
18895 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18896 	 * case, since that's how we ended up here.  For IPv6, we do the
18897 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18898 	 */
18899 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18900 		/*
18901 		 * Restore LSO for this connection, so that next time around
18902 		 * it is eligible to go through tcp_lsosend() path again.
18903 		 */
18904 		TCP_STAT(tcps, tcp_lso_enabled);
18905 		tcp->tcp_lso = B_TRUE;
18906 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18907 		    "interface %s\n", (void *)connp, ill->ill_name));
18908 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18909 		/*
18910 		 * Restore MDT for this connection, so that next time around
18911 		 * it is eligible to go through tcp_multisend() path again.
18912 		 */
18913 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18914 		tcp->tcp_mdt = B_TRUE;
18915 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18916 		    "interface %s\n", (void *)connp, ill->ill_name));
18917 	}
18918 
18919 	if (tcp->tcp_snd_zcopy_aware) {
18920 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18921 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18922 			mp = tcp_zcopy_disable(tcp, mp);
18923 		/*
18924 		 * we shouldn't need to reset ipha as the mp containing
18925 		 * ipha should never be a zero-copy mp.
18926 		 */
18927 	}
18928 
18929 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18930 		ASSERT(ill->ill_hcksum_capab != NULL);
18931 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18932 	}
18933 
18934 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18935 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18936 
18937 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18938 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18939 
18940 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18941 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18942 
18943 	/* Software checksum? */
18944 	if (DB_CKSUMFLAGS(mp) == 0) {
18945 		TCP_STAT(tcps, tcp_out_sw_cksum);
18946 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18947 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18948 	}
18949 
18950 	ipha->ipha_fragment_offset_and_flags |=
18951 	    (uint32_t)htons(ire->ire_frag_flag);
18952 
18953 	/* Calculate IP header checksum if hardware isn't capable */
18954 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18955 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18956 		    ((uint16_t *)ipha)[4]);
18957 	}
18958 
18959 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18960 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18961 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18962 
18963 	UPDATE_OB_PKT_COUNT(ire);
18964 	ire->ire_last_used_time = lbolt;
18965 
18966 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18967 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18968 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18969 	    ntohs(ipha->ipha_length));
18970 
18971 	if (ILL_DLS_CAPABLE(ill)) {
18972 		/*
18973 		 * Send the packet directly to DLD, where it may be queued
18974 		 * depending on the availability of transmit resources at
18975 		 * the media layer.
18976 		 */
18977 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
18978 	} else {
18979 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
18980 		DTRACE_PROBE4(ip4__physical__out__start,
18981 		    ill_t *, NULL, ill_t *, out_ill,
18982 		    ipha_t *, ipha, mblk_t *, mp);
18983 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
18984 		    ipst->ips_ipv4firewall_physical_out,
18985 		    NULL, out_ill, ipha, mp, mp, ipst);
18986 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18987 		if (mp != NULL)
18988 			putnext(ire->ire_stq, mp);
18989 	}
18990 	IRE_REFRELE(ire);
18991 }
18992 
18993 /*
18994  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18995  * if the receiver shrinks the window, i.e. moves the right window to the
18996  * left, the we should not send new data, but should retransmit normally the
18997  * old unacked data between suna and suna + swnd. We might has sent data
18998  * that is now outside the new window, pretend that we didn't send  it.
18999  */
19000 static void
19001 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19002 {
19003 	uint32_t	snxt = tcp->tcp_snxt;
19004 	mblk_t		*xmit_tail;
19005 	int32_t		offset;
19006 
19007 	ASSERT(shrunk_count > 0);
19008 
19009 	/* Pretend we didn't send the data outside the window */
19010 	snxt -= shrunk_count;
19011 
19012 	/* Get the mblk and the offset in it per the shrunk window */
19013 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19014 
19015 	ASSERT(xmit_tail != NULL);
19016 
19017 	/* Reset all the values per the now shrunk window */
19018 	tcp->tcp_snxt = snxt;
19019 	tcp->tcp_xmit_tail = xmit_tail;
19020 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19021 	    offset;
19022 	tcp->tcp_unsent += shrunk_count;
19023 
19024 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19025 		/*
19026 		 * Make sure the timer is running so that we will probe a zero
19027 		 * window.
19028 		 */
19029 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19030 }
19031 
19032 
19033 /*
19034  * The TCP normal data output path.
19035  * NOTE: the logic of the fast path is duplicated from this function.
19036  */
19037 static void
19038 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19039 {
19040 	int		len;
19041 	mblk_t		*local_time;
19042 	mblk_t		*mp1;
19043 	uint32_t	snxt;
19044 	int		tail_unsent;
19045 	int		tcpstate;
19046 	int		usable = 0;
19047 	mblk_t		*xmit_tail;
19048 	queue_t		*q = tcp->tcp_wq;
19049 	int32_t		mss;
19050 	int32_t		num_sack_blk = 0;
19051 	int32_t		tcp_hdr_len;
19052 	int32_t		tcp_tcp_hdr_len;
19053 	int		mdt_thres;
19054 	int		rc;
19055 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19056 	ip_stack_t	*ipst;
19057 
19058 	tcpstate = tcp->tcp_state;
19059 	if (mp == NULL) {
19060 		/*
19061 		 * tcp_wput_data() with NULL mp should only be called when
19062 		 * there is unsent data.
19063 		 */
19064 		ASSERT(tcp->tcp_unsent > 0);
19065 		/* Really tacky... but we need this for detached closes. */
19066 		len = tcp->tcp_unsent;
19067 		goto data_null;
19068 	}
19069 
19070 #if CCS_STATS
19071 	wrw_stats.tot.count++;
19072 	wrw_stats.tot.bytes += msgdsize(mp);
19073 #endif
19074 	ASSERT(mp->b_datap->db_type == M_DATA);
19075 	/*
19076 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19077 	 * or before a connection attempt has begun.
19078 	 */
19079 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19080 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19081 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19082 #ifdef DEBUG
19083 			cmn_err(CE_WARN,
19084 			    "tcp_wput_data: data after ordrel, %s",
19085 			    tcp_display(tcp, NULL,
19086 			    DISP_ADDR_AND_PORT));
19087 #else
19088 			if (tcp->tcp_debug) {
19089 				(void) strlog(TCP_MOD_ID, 0, 1,
19090 				    SL_TRACE|SL_ERROR,
19091 				    "tcp_wput_data: data after ordrel, %s\n",
19092 				    tcp_display(tcp, NULL,
19093 				    DISP_ADDR_AND_PORT));
19094 			}
19095 #endif /* DEBUG */
19096 		}
19097 		if (tcp->tcp_snd_zcopy_aware &&
19098 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19099 			tcp_zcopy_notify(tcp);
19100 		freemsg(mp);
19101 		mutex_enter(&tcp->tcp_non_sq_lock);
19102 		if (tcp->tcp_flow_stopped &&
19103 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19104 			tcp_clrqfull(tcp);
19105 		}
19106 		mutex_exit(&tcp->tcp_non_sq_lock);
19107 		return;
19108 	}
19109 
19110 	/* Strip empties */
19111 	for (;;) {
19112 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19113 		    (uintptr_t)INT_MAX);
19114 		len = (int)(mp->b_wptr - mp->b_rptr);
19115 		if (len > 0)
19116 			break;
19117 		mp1 = mp;
19118 		mp = mp->b_cont;
19119 		freeb(mp1);
19120 		if (!mp) {
19121 			return;
19122 		}
19123 	}
19124 
19125 	/* If we are the first on the list ... */
19126 	if (tcp->tcp_xmit_head == NULL) {
19127 		tcp->tcp_xmit_head = mp;
19128 		tcp->tcp_xmit_tail = mp;
19129 		tcp->tcp_xmit_tail_unsent = len;
19130 	} else {
19131 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19132 		struct datab *dp;
19133 
19134 		mp1 = tcp->tcp_xmit_last;
19135 		if (len < tcp_tx_pull_len &&
19136 		    (dp = mp1->b_datap)->db_ref == 1 &&
19137 		    dp->db_lim - mp1->b_wptr >= len) {
19138 			ASSERT(len > 0);
19139 			ASSERT(!mp1->b_cont);
19140 			if (len == 1) {
19141 				*mp1->b_wptr++ = *mp->b_rptr;
19142 			} else {
19143 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19144 				mp1->b_wptr += len;
19145 			}
19146 			if (mp1 == tcp->tcp_xmit_tail)
19147 				tcp->tcp_xmit_tail_unsent += len;
19148 			mp1->b_cont = mp->b_cont;
19149 			if (tcp->tcp_snd_zcopy_aware &&
19150 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19151 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19152 			freeb(mp);
19153 			mp = mp1;
19154 		} else {
19155 			tcp->tcp_xmit_last->b_cont = mp;
19156 		}
19157 		len += tcp->tcp_unsent;
19158 	}
19159 
19160 	/* Tack on however many more positive length mblks we have */
19161 	if ((mp1 = mp->b_cont) != NULL) {
19162 		do {
19163 			int tlen;
19164 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19165 			    (uintptr_t)INT_MAX);
19166 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19167 			if (tlen <= 0) {
19168 				mp->b_cont = mp1->b_cont;
19169 				freeb(mp1);
19170 			} else {
19171 				len += tlen;
19172 				mp = mp1;
19173 			}
19174 		} while ((mp1 = mp->b_cont) != NULL);
19175 	}
19176 	tcp->tcp_xmit_last = mp;
19177 	tcp->tcp_unsent = len;
19178 
19179 	if (urgent)
19180 		usable = 1;
19181 
19182 data_null:
19183 	snxt = tcp->tcp_snxt;
19184 	xmit_tail = tcp->tcp_xmit_tail;
19185 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19186 
19187 	/*
19188 	 * Note that tcp_mss has been adjusted to take into account the
19189 	 * timestamp option if applicable.  Because SACK options do not
19190 	 * appear in every TCP segments and they are of variable lengths,
19191 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19192 	 * the actual segment length when we need to send a segment which
19193 	 * includes SACK options.
19194 	 */
19195 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19196 		int32_t	opt_len;
19197 
19198 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19199 		    tcp->tcp_num_sack_blk);
19200 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19201 		    2 + TCPOPT_HEADER_LEN;
19202 		mss = tcp->tcp_mss - opt_len;
19203 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19204 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19205 	} else {
19206 		mss = tcp->tcp_mss;
19207 		tcp_hdr_len = tcp->tcp_hdr_len;
19208 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19209 	}
19210 
19211 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19212 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19213 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19214 	}
19215 	if (tcpstate == TCPS_SYN_RCVD) {
19216 		/*
19217 		 * The three-way connection establishment handshake is not
19218 		 * complete yet. We want to queue the data for transmission
19219 		 * after entering ESTABLISHED state (RFC793). A jump to
19220 		 * "done" label effectively leaves data on the queue.
19221 		 */
19222 		goto done;
19223 	} else {
19224 		int usable_r;
19225 
19226 		/*
19227 		 * In the special case when cwnd is zero, which can only
19228 		 * happen if the connection is ECN capable, return now.
19229 		 * New segments is sent using tcp_timer().  The timer
19230 		 * is set in tcp_rput_data().
19231 		 */
19232 		if (tcp->tcp_cwnd == 0) {
19233 			/*
19234 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19235 			 * finished.
19236 			 */
19237 			ASSERT(tcp->tcp_ecn_ok ||
19238 			    tcp->tcp_state < TCPS_ESTABLISHED);
19239 			return;
19240 		}
19241 
19242 		/* NOTE: trouble if xmitting while SYN not acked? */
19243 		usable_r = snxt - tcp->tcp_suna;
19244 		usable_r = tcp->tcp_swnd - usable_r;
19245 
19246 		/*
19247 		 * Check if the receiver has shrunk the window.  If
19248 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19249 		 * cannot be set as there is unsent data, so FIN cannot
19250 		 * be sent out.  Otherwise, we need to take into account
19251 		 * of FIN as it consumes an "invisible" sequence number.
19252 		 */
19253 		ASSERT(tcp->tcp_fin_sent == 0);
19254 		if (usable_r < 0) {
19255 			/*
19256 			 * The receiver has shrunk the window and we have sent
19257 			 * -usable_r date beyond the window, re-adjust.
19258 			 *
19259 			 * If TCP window scaling is enabled, there can be
19260 			 * round down error as the advertised receive window
19261 			 * is actually right shifted n bits.  This means that
19262 			 * the lower n bits info is wiped out.  It will look
19263 			 * like the window is shrunk.  Do a check here to
19264 			 * see if the shrunk amount is actually within the
19265 			 * error in window calculation.  If it is, just
19266 			 * return.  Note that this check is inside the
19267 			 * shrunk window check.  This makes sure that even
19268 			 * though tcp_process_shrunk_swnd() is not called,
19269 			 * we will stop further processing.
19270 			 */
19271 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19272 				tcp_process_shrunk_swnd(tcp, -usable_r);
19273 			}
19274 			return;
19275 		}
19276 
19277 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19278 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19279 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19280 
19281 		/* usable = MIN(usable, unsent) */
19282 		if (usable_r > len)
19283 			usable_r = len;
19284 
19285 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19286 		if (usable_r > 0) {
19287 			usable = usable_r;
19288 		} else {
19289 			/* Bypass all other unnecessary processing. */
19290 			goto done;
19291 		}
19292 	}
19293 
19294 	local_time = (mblk_t *)lbolt;
19295 
19296 	/*
19297 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19298 	 * BSD.  This is more in line with the true intent of Nagle.
19299 	 *
19300 	 * The conditions are:
19301 	 * 1. The amount of unsent data (or amount of data which can be
19302 	 *    sent, whichever is smaller) is less than Nagle limit.
19303 	 * 2. The last sent size is also less than Nagle limit.
19304 	 * 3. There is unack'ed data.
19305 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19306 	 *    Nagle algorithm.  This reduces the probability that urgent
19307 	 *    bytes get "merged" together.
19308 	 * 5. The app has not closed the connection.  This eliminates the
19309 	 *    wait time of the receiving side waiting for the last piece of
19310 	 *    (small) data.
19311 	 *
19312 	 * If all are satisified, exit without sending anything.  Note
19313 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19314 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19315 	 * 4095).
19316 	 */
19317 	if (usable < (int)tcp->tcp_naglim &&
19318 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19319 	    snxt != tcp->tcp_suna &&
19320 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19321 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19322 		goto done;
19323 	}
19324 
19325 	if (tcp->tcp_cork) {
19326 		/*
19327 		 * if the tcp->tcp_cork option is set, then we have to force
19328 		 * TCP not to send partial segment (smaller than MSS bytes).
19329 		 * We are calculating the usable now based on full mss and
19330 		 * will save the rest of remaining data for later.
19331 		 */
19332 		if (usable < mss)
19333 			goto done;
19334 		usable = (usable / mss) * mss;
19335 	}
19336 
19337 	/* Update the latest receive window size in TCP header. */
19338 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19339 	    tcp->tcp_tcph->th_win);
19340 
19341 	/*
19342 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19343 	 *
19344 	 * 1. Simple TCP/IP{v4,v6} (no options).
19345 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19346 	 * 3. If the TCP connection is in ESTABLISHED state.
19347 	 * 4. The TCP is not detached.
19348 	 *
19349 	 * If any of the above conditions have changed during the
19350 	 * connection, stop using LSO/MDT and restore the stream head
19351 	 * parameters accordingly.
19352 	 */
19353 	ipst = tcps->tcps_netstack->netstack_ip;
19354 
19355 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19356 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19357 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19358 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19359 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19360 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19361 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19362 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19363 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19364 		if (tcp->tcp_lso) {
19365 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19366 			tcp->tcp_lso = B_FALSE;
19367 		} else {
19368 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19369 			tcp->tcp_mdt = B_FALSE;
19370 		}
19371 
19372 		/* Anything other than detached is considered pathological */
19373 		if (!TCP_IS_DETACHED(tcp)) {
19374 			if (tcp->tcp_lso)
19375 				TCP_STAT(tcps, tcp_lso_disabled);
19376 			else
19377 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19378 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19379 		}
19380 	}
19381 
19382 	/* Use MDT if sendable amount is greater than the threshold */
19383 	if (tcp->tcp_mdt &&
19384 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19385 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19386 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19387 	    (tcp->tcp_valid_bits == 0 ||
19388 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19389 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19390 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19391 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19392 		    local_time, mdt_thres);
19393 	} else {
19394 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19395 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19396 		    local_time, INT_MAX);
19397 	}
19398 
19399 	/* Pretend that all we were trying to send really got sent */
19400 	if (rc < 0 && tail_unsent < 0) {
19401 		do {
19402 			xmit_tail = xmit_tail->b_cont;
19403 			xmit_tail->b_prev = local_time;
19404 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19405 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19406 			tail_unsent += (int)(xmit_tail->b_wptr -
19407 			    xmit_tail->b_rptr);
19408 		} while (tail_unsent < 0);
19409 	}
19410 done:;
19411 	tcp->tcp_xmit_tail = xmit_tail;
19412 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19413 	len = tcp->tcp_snxt - snxt;
19414 	if (len) {
19415 		/*
19416 		 * If new data was sent, need to update the notsack
19417 		 * list, which is, afterall, data blocks that have
19418 		 * not been sack'ed by the receiver.  New data is
19419 		 * not sack'ed.
19420 		 */
19421 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19422 			/* len is a negative value. */
19423 			tcp->tcp_pipe -= len;
19424 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19425 			    tcp->tcp_snxt, snxt,
19426 			    &(tcp->tcp_num_notsack_blk),
19427 			    &(tcp->tcp_cnt_notsack_list));
19428 		}
19429 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19430 		tcp->tcp_rack = tcp->tcp_rnxt;
19431 		tcp->tcp_rack_cnt = 0;
19432 		if ((snxt + len) == tcp->tcp_suna) {
19433 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19434 		}
19435 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19436 		/*
19437 		 * Didn't send anything. Make sure the timer is running
19438 		 * so that we will probe a zero window.
19439 		 */
19440 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19441 	}
19442 	/* Note that len is the amount we just sent but with a negative sign */
19443 	tcp->tcp_unsent += len;
19444 	mutex_enter(&tcp->tcp_non_sq_lock);
19445 	if (tcp->tcp_flow_stopped) {
19446 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19447 			tcp_clrqfull(tcp);
19448 		}
19449 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19450 		tcp_setqfull(tcp);
19451 	}
19452 	mutex_exit(&tcp->tcp_non_sq_lock);
19453 }
19454 
19455 /*
19456  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19457  * outgoing TCP header with the template header, as well as other
19458  * options such as time-stamp, ECN and/or SACK.
19459  */
19460 static void
19461 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19462 {
19463 	tcph_t *tcp_tmpl, *tcp_h;
19464 	uint32_t *dst, *src;
19465 	int hdrlen;
19466 
19467 	ASSERT(OK_32PTR(rptr));
19468 
19469 	/* Template header */
19470 	tcp_tmpl = tcp->tcp_tcph;
19471 
19472 	/* Header of outgoing packet */
19473 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19474 
19475 	/* dst and src are opaque 32-bit fields, used for copying */
19476 	dst = (uint32_t *)rptr;
19477 	src = (uint32_t *)tcp->tcp_iphc;
19478 	hdrlen = tcp->tcp_hdr_len;
19479 
19480 	/* Fill time-stamp option if needed */
19481 	if (tcp->tcp_snd_ts_ok) {
19482 		U32_TO_BE32((uint32_t)now,
19483 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19484 		U32_TO_BE32(tcp->tcp_ts_recent,
19485 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19486 	} else {
19487 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19488 	}
19489 
19490 	/*
19491 	 * Copy the template header; is this really more efficient than
19492 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19493 	 * but perhaps not for other scenarios.
19494 	 */
19495 	dst[0] = src[0];
19496 	dst[1] = src[1];
19497 	dst[2] = src[2];
19498 	dst[3] = src[3];
19499 	dst[4] = src[4];
19500 	dst[5] = src[5];
19501 	dst[6] = src[6];
19502 	dst[7] = src[7];
19503 	dst[8] = src[8];
19504 	dst[9] = src[9];
19505 	if (hdrlen -= 40) {
19506 		hdrlen >>= 2;
19507 		dst += 10;
19508 		src += 10;
19509 		do {
19510 			*dst++ = *src++;
19511 		} while (--hdrlen);
19512 	}
19513 
19514 	/*
19515 	 * Set the ECN info in the TCP header if it is not a zero
19516 	 * window probe.  Zero window probe is only sent in
19517 	 * tcp_wput_data() and tcp_timer().
19518 	 */
19519 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19520 		SET_ECT(tcp, rptr);
19521 
19522 		if (tcp->tcp_ecn_echo_on)
19523 			tcp_h->th_flags[0] |= TH_ECE;
19524 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19525 			tcp_h->th_flags[0] |= TH_CWR;
19526 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19527 		}
19528 	}
19529 
19530 	/* Fill in SACK options */
19531 	if (num_sack_blk > 0) {
19532 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19533 		sack_blk_t *tmp;
19534 		int32_t	i;
19535 
19536 		wptr[0] = TCPOPT_NOP;
19537 		wptr[1] = TCPOPT_NOP;
19538 		wptr[2] = TCPOPT_SACK;
19539 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19540 		    sizeof (sack_blk_t);
19541 		wptr += TCPOPT_REAL_SACK_LEN;
19542 
19543 		tmp = tcp->tcp_sack_list;
19544 		for (i = 0; i < num_sack_blk; i++) {
19545 			U32_TO_BE32(tmp[i].begin, wptr);
19546 			wptr += sizeof (tcp_seq);
19547 			U32_TO_BE32(tmp[i].end, wptr);
19548 			wptr += sizeof (tcp_seq);
19549 		}
19550 		tcp_h->th_offset_and_rsrvd[0] +=
19551 		    ((num_sack_blk * 2 + 1) << 4);
19552 	}
19553 }
19554 
19555 /*
19556  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19557  * the destination address and SAP attribute, and if necessary, the
19558  * hardware checksum offload attribute to a Multidata message.
19559  */
19560 static int
19561 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19562     const uint32_t start, const uint32_t stuff, const uint32_t end,
19563     const uint32_t flags, tcp_stack_t *tcps)
19564 {
19565 	/* Add global destination address & SAP attribute */
19566 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19567 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19568 		    "destination address+SAP\n"));
19569 
19570 		if (dlmp != NULL)
19571 			TCP_STAT(tcps, tcp_mdt_allocfail);
19572 		return (-1);
19573 	}
19574 
19575 	/* Add global hwcksum attribute */
19576 	if (hwcksum &&
19577 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19578 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19579 		    "checksum attribute\n"));
19580 
19581 		TCP_STAT(tcps, tcp_mdt_allocfail);
19582 		return (-1);
19583 	}
19584 
19585 	return (0);
19586 }
19587 
19588 /*
19589  * Smaller and private version of pdescinfo_t used specifically for TCP,
19590  * which allows for only two payload spans per packet.
19591  */
19592 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19593 
19594 /*
19595  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19596  * scheme, and returns one the following:
19597  *
19598  * -1 = failed allocation.
19599  *  0 = success; burst count reached, or usable send window is too small,
19600  *      and that we'd rather wait until later before sending again.
19601  */
19602 static int
19603 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19604     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19605     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19606     const int mdt_thres)
19607 {
19608 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19609 	multidata_t	*mmd;
19610 	uint_t		obsegs, obbytes, hdr_frag_sz;
19611 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19612 	int		num_burst_seg, max_pld;
19613 	pdesc_t		*pkt;
19614 	tcp_pdescinfo_t	tcp_pkt_info;
19615 	pdescinfo_t	*pkt_info;
19616 	int		pbuf_idx, pbuf_idx_nxt;
19617 	int		seg_len, len, spill, af;
19618 	boolean_t	add_buffer, zcopy, clusterwide;
19619 	boolean_t	buf_trunked = B_FALSE;
19620 	boolean_t	rconfirm = B_FALSE;
19621 	boolean_t	done = B_FALSE;
19622 	uint32_t	cksum;
19623 	uint32_t	hwcksum_flags;
19624 	ire_t		*ire = NULL;
19625 	ill_t		*ill;
19626 	ipha_t		*ipha;
19627 	ip6_t		*ip6h;
19628 	ipaddr_t	src, dst;
19629 	ill_zerocopy_capab_t *zc_cap = NULL;
19630 	uint16_t	*up;
19631 	int		err;
19632 	conn_t		*connp;
19633 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19634 	uchar_t		*pld_start;
19635 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19636 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19637 
19638 #ifdef	_BIG_ENDIAN
19639 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19640 #else
19641 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19642 #endif
19643 
19644 #define	PREP_NEW_MULTIDATA() {			\
19645 	mmd = NULL;				\
19646 	md_mp = md_hbuf = NULL;			\
19647 	cur_hdr_off = 0;			\
19648 	max_pld = tcp->tcp_mdt_max_pld;		\
19649 	pbuf_idx = pbuf_idx_nxt = -1;		\
19650 	add_buffer = B_TRUE;			\
19651 	zcopy = B_FALSE;			\
19652 }
19653 
19654 #define	PREP_NEW_PBUF() {			\
19655 	md_pbuf = md_pbuf_nxt = NULL;		\
19656 	pbuf_idx = pbuf_idx_nxt = -1;		\
19657 	cur_pld_off = 0;			\
19658 	first_snxt = *snxt;			\
19659 	ASSERT(*tail_unsent > 0);		\
19660 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19661 }
19662 
19663 	ASSERT(mdt_thres >= mss);
19664 	ASSERT(*usable > 0 && *usable > mdt_thres);
19665 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19666 	ASSERT(!TCP_IS_DETACHED(tcp));
19667 	ASSERT(tcp->tcp_valid_bits == 0 ||
19668 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19669 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19670 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19671 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19672 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19673 
19674 	connp = tcp->tcp_connp;
19675 	ASSERT(connp != NULL);
19676 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19677 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19678 
19679 	/*
19680 	 * Note that tcp will only declare at most 2 payload spans per
19681 	 * packet, which is much lower than the maximum allowable number
19682 	 * of packet spans per Multidata.  For this reason, we use the
19683 	 * privately declared and smaller descriptor info structure, in
19684 	 * order to save some stack space.
19685 	 */
19686 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19687 
19688 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19689 	if (af == AF_INET) {
19690 		dst = tcp->tcp_ipha->ipha_dst;
19691 		src = tcp->tcp_ipha->ipha_src;
19692 		ASSERT(!CLASSD(dst));
19693 	}
19694 	ASSERT(af == AF_INET ||
19695 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19696 
19697 	obsegs = obbytes = 0;
19698 	num_burst_seg = tcp->tcp_snd_burst;
19699 	md_mp_head = NULL;
19700 	PREP_NEW_MULTIDATA();
19701 
19702 	/*
19703 	 * Before we go on further, make sure there is an IRE that we can
19704 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19705 	 * in proceeding any further, and we should just hand everything
19706 	 * off to the legacy path.
19707 	 */
19708 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19709 		goto legacy_send_no_md;
19710 
19711 	ASSERT(ire != NULL);
19712 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19713 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19714 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19715 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19716 	/*
19717 	 * If we do support loopback for MDT (which requires modifications
19718 	 * to the receiving paths), the following assertions should go away,
19719 	 * and we would be sending the Multidata to loopback conn later on.
19720 	 */
19721 	ASSERT(!IRE_IS_LOCAL(ire));
19722 	ASSERT(ire->ire_stq != NULL);
19723 
19724 	ill = ire_to_ill(ire);
19725 	ASSERT(ill != NULL);
19726 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19727 
19728 	if (!tcp->tcp_ire_ill_check_done) {
19729 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19730 		tcp->tcp_ire_ill_check_done = B_TRUE;
19731 	}
19732 
19733 	/*
19734 	 * If the underlying interface conditions have changed, or if the
19735 	 * new interface does not support MDT, go back to legacy path.
19736 	 */
19737 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19738 		/* don't go through this path anymore for this connection */
19739 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19740 		tcp->tcp_mdt = B_FALSE;
19741 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19742 		    "interface %s\n", (void *)connp, ill->ill_name));
19743 		/* IRE will be released prior to returning */
19744 		goto legacy_send_no_md;
19745 	}
19746 
19747 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19748 		zc_cap = ill->ill_zerocopy_capab;
19749 
19750 	/*
19751 	 * Check if we can take tcp fast-path. Note that "incomplete"
19752 	 * ire's (where the link-layer for next hop is not resolved
19753 	 * or where the fast-path header in nce_fp_mp is not available
19754 	 * yet) are sent down the legacy (slow) path.
19755 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19756 	 */
19757 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19758 		/* IRE will be released prior to returning */
19759 		goto legacy_send_no_md;
19760 	}
19761 
19762 	/* go to legacy path if interface doesn't support zerocopy */
19763 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19764 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19765 		/* IRE will be released prior to returning */
19766 		goto legacy_send_no_md;
19767 	}
19768 
19769 	/* does the interface support hardware checksum offload? */
19770 	hwcksum_flags = 0;
19771 	if (ILL_HCKSUM_CAPABLE(ill) &&
19772 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19773 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19774 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19775 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19776 		    HCKSUM_IPHDRCKSUM)
19777 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19778 
19779 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19780 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19781 			hwcksum_flags |= HCK_FULLCKSUM;
19782 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19783 		    HCKSUM_INET_PARTIAL)
19784 			hwcksum_flags |= HCK_PARTIALCKSUM;
19785 	}
19786 
19787 	/*
19788 	 * Each header fragment consists of the leading extra space,
19789 	 * followed by the TCP/IP header, and the trailing extra space.
19790 	 * We make sure that each header fragment begins on a 32-bit
19791 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19792 	 * aligned in tcp_mdt_update).
19793 	 */
19794 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19795 	    tcp->tcp_mdt_hdr_tail), 4);
19796 
19797 	/* are we starting from the beginning of data block? */
19798 	if (*tail_unsent == 0) {
19799 		*xmit_tail = (*xmit_tail)->b_cont;
19800 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19801 		*tail_unsent = (int)MBLKL(*xmit_tail);
19802 	}
19803 
19804 	/*
19805 	 * Here we create one or more Multidata messages, each made up of
19806 	 * one header buffer and up to N payload buffers.  This entire
19807 	 * operation is done within two loops:
19808 	 *
19809 	 * The outer loop mostly deals with creating the Multidata message,
19810 	 * as well as the header buffer that gets added to it.  It also
19811 	 * links the Multidata messages together such that all of them can
19812 	 * be sent down to the lower layer in a single putnext call; this
19813 	 * linking behavior depends on the tcp_mdt_chain tunable.
19814 	 *
19815 	 * The inner loop takes an existing Multidata message, and adds
19816 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19817 	 * packetizes those buffers by filling up the corresponding header
19818 	 * buffer fragments with the proper IP and TCP headers, and by
19819 	 * describing the layout of each packet in the packet descriptors
19820 	 * that get added to the Multidata.
19821 	 */
19822 	do {
19823 		/*
19824 		 * If usable send window is too small, or data blocks in
19825 		 * transmit list are smaller than our threshold (i.e. app
19826 		 * performs large writes followed by small ones), we hand
19827 		 * off the control over to the legacy path.  Note that we'll
19828 		 * get back the control once it encounters a large block.
19829 		 */
19830 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19831 		    (*xmit_tail)->b_cont != NULL &&
19832 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19833 			/* send down what we've got so far */
19834 			if (md_mp_head != NULL) {
19835 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19836 				    obsegs, obbytes, &rconfirm);
19837 			}
19838 			/*
19839 			 * Pass control over to tcp_send(), but tell it to
19840 			 * return to us once a large-size transmission is
19841 			 * possible.
19842 			 */
19843 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19844 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19845 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19846 			    tail_unsent, xmit_tail, local_time,
19847 			    mdt_thres)) <= 0) {
19848 				/* burst count reached, or alloc failed */
19849 				IRE_REFRELE(ire);
19850 				return (err);
19851 			}
19852 
19853 			/* tcp_send() may have sent everything, so check */
19854 			if (*usable <= 0) {
19855 				IRE_REFRELE(ire);
19856 				return (0);
19857 			}
19858 
19859 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19860 			/*
19861 			 * We may have delivered the Multidata, so make sure
19862 			 * to re-initialize before the next round.
19863 			 */
19864 			md_mp_head = NULL;
19865 			obsegs = obbytes = 0;
19866 			num_burst_seg = tcp->tcp_snd_burst;
19867 			PREP_NEW_MULTIDATA();
19868 
19869 			/* are we starting from the beginning of data block? */
19870 			if (*tail_unsent == 0) {
19871 				*xmit_tail = (*xmit_tail)->b_cont;
19872 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19873 				    (uintptr_t)INT_MAX);
19874 				*tail_unsent = (int)MBLKL(*xmit_tail);
19875 			}
19876 		}
19877 
19878 		/*
19879 		 * max_pld limits the number of mblks in tcp's transmit
19880 		 * queue that can be added to a Multidata message.  Once
19881 		 * this counter reaches zero, no more additional mblks
19882 		 * can be added to it.  What happens afterwards depends
19883 		 * on whether or not we are set to chain the Multidata
19884 		 * messages.  If we are to link them together, reset
19885 		 * max_pld to its original value (tcp_mdt_max_pld) and
19886 		 * prepare to create a new Multidata message which will
19887 		 * get linked to md_mp_head.  Else, leave it alone and
19888 		 * let the inner loop break on its own.
19889 		 */
19890 		if (tcp_mdt_chain && max_pld == 0)
19891 			PREP_NEW_MULTIDATA();
19892 
19893 		/* adding a payload buffer; re-initialize values */
19894 		if (add_buffer)
19895 			PREP_NEW_PBUF();
19896 
19897 		/*
19898 		 * If we don't have a Multidata, either because we just
19899 		 * (re)entered this outer loop, or after we branched off
19900 		 * to tcp_send above, setup the Multidata and header
19901 		 * buffer to be used.
19902 		 */
19903 		if (md_mp == NULL) {
19904 			int md_hbuflen;
19905 			uint32_t start, stuff;
19906 
19907 			/*
19908 			 * Calculate Multidata header buffer size large enough
19909 			 * to hold all of the headers that can possibly be
19910 			 * sent at this moment.  We'd rather over-estimate
19911 			 * the size than running out of space; this is okay
19912 			 * since this buffer is small anyway.
19913 			 */
19914 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19915 
19916 			/*
19917 			 * Start and stuff offset for partial hardware
19918 			 * checksum offload; these are currently for IPv4.
19919 			 * For full checksum offload, they are set to zero.
19920 			 */
19921 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19922 				if (af == AF_INET) {
19923 					start = IP_SIMPLE_HDR_LENGTH;
19924 					stuff = IP_SIMPLE_HDR_LENGTH +
19925 					    TCP_CHECKSUM_OFFSET;
19926 				} else {
19927 					start = IPV6_HDR_LEN;
19928 					stuff = IPV6_HDR_LEN +
19929 					    TCP_CHECKSUM_OFFSET;
19930 				}
19931 			} else {
19932 				start = stuff = 0;
19933 			}
19934 
19935 			/*
19936 			 * Create the header buffer, Multidata, as well as
19937 			 * any necessary attributes (destination address,
19938 			 * SAP and hardware checksum offload) that should
19939 			 * be associated with the Multidata message.
19940 			 */
19941 			ASSERT(cur_hdr_off == 0);
19942 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19943 			    ((md_hbuf->b_wptr += md_hbuflen),
19944 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19945 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19946 			    /* fastpath mblk */
19947 			    ire->ire_nce->nce_res_mp,
19948 			    /* hardware checksum enabled */
19949 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19950 			    /* hardware checksum offsets */
19951 			    start, stuff, 0,
19952 			    /* hardware checksum flag */
19953 			    hwcksum_flags, tcps) != 0)) {
19954 legacy_send:
19955 				if (md_mp != NULL) {
19956 					/* Unlink message from the chain */
19957 					if (md_mp_head != NULL) {
19958 						err = (intptr_t)rmvb(md_mp_head,
19959 						    md_mp);
19960 						/*
19961 						 * We can't assert that rmvb
19962 						 * did not return -1, since we
19963 						 * may get here before linkb
19964 						 * happens.  We do, however,
19965 						 * check if we just removed the
19966 						 * only element in the list.
19967 						 */
19968 						if (err == 0)
19969 							md_mp_head = NULL;
19970 					}
19971 					/* md_hbuf gets freed automatically */
19972 					TCP_STAT(tcps, tcp_mdt_discarded);
19973 					freeb(md_mp);
19974 				} else {
19975 					/* Either allocb or mmd_alloc failed */
19976 					TCP_STAT(tcps, tcp_mdt_allocfail);
19977 					if (md_hbuf != NULL)
19978 						freeb(md_hbuf);
19979 				}
19980 
19981 				/* send down what we've got so far */
19982 				if (md_mp_head != NULL) {
19983 					tcp_multisend_data(tcp, ire, ill,
19984 					    md_mp_head, obsegs, obbytes,
19985 					    &rconfirm);
19986 				}
19987 legacy_send_no_md:
19988 				if (ire != NULL)
19989 					IRE_REFRELE(ire);
19990 				/*
19991 				 * Too bad; let the legacy path handle this.
19992 				 * We specify INT_MAX for the threshold, since
19993 				 * we gave up with the Multidata processings
19994 				 * and let the old path have it all.
19995 				 */
19996 				TCP_STAT(tcps, tcp_mdt_legacy_all);
19997 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19998 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19999 				    snxt, tail_unsent, xmit_tail, local_time,
20000 				    INT_MAX));
20001 			}
20002 
20003 			/* link to any existing ones, if applicable */
20004 			TCP_STAT(tcps, tcp_mdt_allocd);
20005 			if (md_mp_head == NULL) {
20006 				md_mp_head = md_mp;
20007 			} else if (tcp_mdt_chain) {
20008 				TCP_STAT(tcps, tcp_mdt_linked);
20009 				linkb(md_mp_head, md_mp);
20010 			}
20011 		}
20012 
20013 		ASSERT(md_mp_head != NULL);
20014 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20015 		ASSERT(md_mp != NULL && mmd != NULL);
20016 		ASSERT(md_hbuf != NULL);
20017 
20018 		/*
20019 		 * Packetize the transmittable portion of the data block;
20020 		 * each data block is essentially added to the Multidata
20021 		 * as a payload buffer.  We also deal with adding more
20022 		 * than one payload buffers, which happens when the remaining
20023 		 * packetized portion of the current payload buffer is less
20024 		 * than MSS, while the next data block in transmit queue
20025 		 * has enough data to make up for one.  This "spillover"
20026 		 * case essentially creates a split-packet, where portions
20027 		 * of the packet's payload fragments may span across two
20028 		 * virtually discontiguous address blocks.
20029 		 */
20030 		seg_len = mss;
20031 		do {
20032 			len = seg_len;
20033 
20034 			ASSERT(len > 0);
20035 			ASSERT(max_pld >= 0);
20036 			ASSERT(!add_buffer || cur_pld_off == 0);
20037 
20038 			/*
20039 			 * First time around for this payload buffer; note
20040 			 * in the case of a spillover, the following has
20041 			 * been done prior to adding the split-packet
20042 			 * descriptor to Multidata, and we don't want to
20043 			 * repeat the process.
20044 			 */
20045 			if (add_buffer) {
20046 				ASSERT(mmd != NULL);
20047 				ASSERT(md_pbuf == NULL);
20048 				ASSERT(md_pbuf_nxt == NULL);
20049 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20050 
20051 				/*
20052 				 * Have we reached the limit?  We'd get to
20053 				 * this case when we're not chaining the
20054 				 * Multidata messages together, and since
20055 				 * we're done, terminate this loop.
20056 				 */
20057 				if (max_pld == 0)
20058 					break; /* done */
20059 
20060 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20061 					TCP_STAT(tcps, tcp_mdt_allocfail);
20062 					goto legacy_send; /* out_of_mem */
20063 				}
20064 
20065 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20066 				    zc_cap != NULL) {
20067 					if (!ip_md_zcopy_attr(mmd, NULL,
20068 					    zc_cap->ill_zerocopy_flags)) {
20069 						freeb(md_pbuf);
20070 						TCP_STAT(tcps,
20071 						    tcp_mdt_allocfail);
20072 						/* out_of_mem */
20073 						goto legacy_send;
20074 					}
20075 					zcopy = B_TRUE;
20076 				}
20077 
20078 				md_pbuf->b_rptr += base_pld_off;
20079 
20080 				/*
20081 				 * Add a payload buffer to the Multidata; this
20082 				 * operation must not fail, or otherwise our
20083 				 * logic in this routine is broken.  There
20084 				 * is no memory allocation done by the
20085 				 * routine, so any returned failure simply
20086 				 * tells us that we've done something wrong.
20087 				 *
20088 				 * A failure tells us that either we're adding
20089 				 * the same payload buffer more than once, or
20090 				 * we're trying to add more buffers than
20091 				 * allowed (max_pld calculation is wrong).
20092 				 * None of the above cases should happen, and
20093 				 * we panic because either there's horrible
20094 				 * heap corruption, and/or programming mistake.
20095 				 */
20096 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20097 				if (pbuf_idx < 0) {
20098 					cmn_err(CE_PANIC, "tcp_multisend: "
20099 					    "payload buffer logic error "
20100 					    "detected for tcp %p mmd %p "
20101 					    "pbuf %p (%d)\n",
20102 					    (void *)tcp, (void *)mmd,
20103 					    (void *)md_pbuf, pbuf_idx);
20104 				}
20105 
20106 				ASSERT(max_pld > 0);
20107 				--max_pld;
20108 				add_buffer = B_FALSE;
20109 			}
20110 
20111 			ASSERT(md_mp_head != NULL);
20112 			ASSERT(md_pbuf != NULL);
20113 			ASSERT(md_pbuf_nxt == NULL);
20114 			ASSERT(pbuf_idx != -1);
20115 			ASSERT(pbuf_idx_nxt == -1);
20116 			ASSERT(*usable > 0);
20117 
20118 			/*
20119 			 * We spillover to the next payload buffer only
20120 			 * if all of the following is true:
20121 			 *
20122 			 *   1. There is not enough data on the current
20123 			 *	payload buffer to make up `len',
20124 			 *   2. We are allowed to send `len',
20125 			 *   3. The next payload buffer length is large
20126 			 *	enough to accomodate `spill'.
20127 			 */
20128 			if ((spill = len - *tail_unsent) > 0 &&
20129 			    *usable >= len &&
20130 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20131 			    max_pld > 0) {
20132 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20133 				if (md_pbuf_nxt == NULL) {
20134 					TCP_STAT(tcps, tcp_mdt_allocfail);
20135 					goto legacy_send; /* out_of_mem */
20136 				}
20137 
20138 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20139 				    zc_cap != NULL) {
20140 					if (!ip_md_zcopy_attr(mmd, NULL,
20141 					    zc_cap->ill_zerocopy_flags)) {
20142 						freeb(md_pbuf_nxt);
20143 						TCP_STAT(tcps,
20144 						    tcp_mdt_allocfail);
20145 						/* out_of_mem */
20146 						goto legacy_send;
20147 					}
20148 					zcopy = B_TRUE;
20149 				}
20150 
20151 				/*
20152 				 * See comments above on the first call to
20153 				 * mmd_addpldbuf for explanation on the panic.
20154 				 */
20155 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20156 				if (pbuf_idx_nxt < 0) {
20157 					panic("tcp_multisend: "
20158 					    "next payload buffer logic error "
20159 					    "detected for tcp %p mmd %p "
20160 					    "pbuf %p (%d)\n",
20161 					    (void *)tcp, (void *)mmd,
20162 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20163 				}
20164 
20165 				ASSERT(max_pld > 0);
20166 				--max_pld;
20167 			} else if (spill > 0) {
20168 				/*
20169 				 * If there's a spillover, but the following
20170 				 * xmit_tail couldn't give us enough octets
20171 				 * to reach "len", then stop the current
20172 				 * Multidata creation and let the legacy
20173 				 * tcp_send() path take over.  We don't want
20174 				 * to send the tiny segment as part of this
20175 				 * Multidata for performance reasons; instead,
20176 				 * we let the legacy path deal with grouping
20177 				 * it with the subsequent small mblks.
20178 				 */
20179 				if (*usable >= len &&
20180 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20181 					max_pld = 0;
20182 					break;	/* done */
20183 				}
20184 
20185 				/*
20186 				 * We can't spillover, and we are near
20187 				 * the end of the current payload buffer,
20188 				 * so send what's left.
20189 				 */
20190 				ASSERT(*tail_unsent > 0);
20191 				len = *tail_unsent;
20192 			}
20193 
20194 			/* tail_unsent is negated if there is a spillover */
20195 			*tail_unsent -= len;
20196 			*usable -= len;
20197 			ASSERT(*usable >= 0);
20198 
20199 			if (*usable < mss)
20200 				seg_len = *usable;
20201 			/*
20202 			 * Sender SWS avoidance; see comments in tcp_send();
20203 			 * everything else is the same, except that we only
20204 			 * do this here if there is no more data to be sent
20205 			 * following the current xmit_tail.  We don't check
20206 			 * for 1-byte urgent data because we shouldn't get
20207 			 * here if TCP_URG_VALID is set.
20208 			 */
20209 			if (*usable > 0 && *usable < mss &&
20210 			    ((md_pbuf_nxt == NULL &&
20211 			    (*xmit_tail)->b_cont == NULL) ||
20212 			    (md_pbuf_nxt != NULL &&
20213 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20214 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20215 			    (tcp->tcp_unsent -
20216 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20217 			    !tcp->tcp_zero_win_probe) {
20218 				if ((*snxt + len) == tcp->tcp_snxt &&
20219 				    (*snxt + len) == tcp->tcp_suna) {
20220 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20221 				}
20222 				done = B_TRUE;
20223 			}
20224 
20225 			/*
20226 			 * Prime pump for IP's checksumming on our behalf;
20227 			 * include the adjustment for a source route if any.
20228 			 * Do this only for software/partial hardware checksum
20229 			 * offload, as this field gets zeroed out later for
20230 			 * the full hardware checksum offload case.
20231 			 */
20232 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20233 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20234 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20235 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20236 			}
20237 
20238 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20239 			*snxt += len;
20240 
20241 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20242 			/*
20243 			 * We set the PUSH bit only if TCP has no more buffered
20244 			 * data to be transmitted (or if sender SWS avoidance
20245 			 * takes place), as opposed to setting it for every
20246 			 * last packet in the burst.
20247 			 */
20248 			if (done ||
20249 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20250 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20251 
20252 			/*
20253 			 * Set FIN bit if this is our last segment; snxt
20254 			 * already includes its length, and it will not
20255 			 * be adjusted after this point.
20256 			 */
20257 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20258 			    *snxt == tcp->tcp_fss) {
20259 				if (!tcp->tcp_fin_acked) {
20260 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20261 					BUMP_MIB(&tcps->tcps_mib,
20262 					    tcpOutControl);
20263 				}
20264 				if (!tcp->tcp_fin_sent) {
20265 					tcp->tcp_fin_sent = B_TRUE;
20266 					/*
20267 					 * tcp state must be ESTABLISHED
20268 					 * in order for us to get here in
20269 					 * the first place.
20270 					 */
20271 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20272 
20273 					/*
20274 					 * Upon returning from this routine,
20275 					 * tcp_wput_data() will set tcp_snxt
20276 					 * to be equal to snxt + tcp_fin_sent.
20277 					 * This is essentially the same as
20278 					 * setting it to tcp_fss + 1.
20279 					 */
20280 				}
20281 			}
20282 
20283 			tcp->tcp_last_sent_len = (ushort_t)len;
20284 
20285 			len += tcp_hdr_len;
20286 			if (tcp->tcp_ipversion == IPV4_VERSION)
20287 				tcp->tcp_ipha->ipha_length = htons(len);
20288 			else
20289 				tcp->tcp_ip6h->ip6_plen = htons(len -
20290 				    ((char *)&tcp->tcp_ip6h[1] -
20291 				    tcp->tcp_iphc));
20292 
20293 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20294 
20295 			/* setup header fragment */
20296 			PDESC_HDR_ADD(pkt_info,
20297 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20298 			    tcp->tcp_mdt_hdr_head,		/* head room */
20299 			    tcp_hdr_len,			/* len */
20300 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20301 
20302 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20303 			    hdr_frag_sz);
20304 			ASSERT(MBLKIN(md_hbuf,
20305 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20306 			    PDESC_HDRSIZE(pkt_info)));
20307 
20308 			/* setup first payload fragment */
20309 			PDESC_PLD_INIT(pkt_info);
20310 			PDESC_PLD_SPAN_ADD(pkt_info,
20311 			    pbuf_idx,				/* index */
20312 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20313 			    tcp->tcp_last_sent_len);		/* len */
20314 
20315 			/* create a split-packet in case of a spillover */
20316 			if (md_pbuf_nxt != NULL) {
20317 				ASSERT(spill > 0);
20318 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20319 				ASSERT(!add_buffer);
20320 
20321 				md_pbuf = md_pbuf_nxt;
20322 				md_pbuf_nxt = NULL;
20323 				pbuf_idx = pbuf_idx_nxt;
20324 				pbuf_idx_nxt = -1;
20325 				cur_pld_off = spill;
20326 
20327 				/* trim out first payload fragment */
20328 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20329 
20330 				/* setup second payload fragment */
20331 				PDESC_PLD_SPAN_ADD(pkt_info,
20332 				    pbuf_idx,			/* index */
20333 				    md_pbuf->b_rptr,		/* start */
20334 				    spill);			/* len */
20335 
20336 				if ((*xmit_tail)->b_next == NULL) {
20337 					/*
20338 					 * Store the lbolt used for RTT
20339 					 * estimation. We can only record one
20340 					 * timestamp per mblk so we do it when
20341 					 * we reach the end of the payload
20342 					 * buffer.  Also we only take a new
20343 					 * timestamp sample when the previous
20344 					 * timed data from the same mblk has
20345 					 * been ack'ed.
20346 					 */
20347 					(*xmit_tail)->b_prev = local_time;
20348 					(*xmit_tail)->b_next =
20349 					    (mblk_t *)(uintptr_t)first_snxt;
20350 				}
20351 
20352 				first_snxt = *snxt - spill;
20353 
20354 				/*
20355 				 * Advance xmit_tail; usable could be 0 by
20356 				 * the time we got here, but we made sure
20357 				 * above that we would only spillover to
20358 				 * the next data block if usable includes
20359 				 * the spilled-over amount prior to the
20360 				 * subtraction.  Therefore, we are sure
20361 				 * that xmit_tail->b_cont can't be NULL.
20362 				 */
20363 				ASSERT((*xmit_tail)->b_cont != NULL);
20364 				*xmit_tail = (*xmit_tail)->b_cont;
20365 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20366 				    (uintptr_t)INT_MAX);
20367 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20368 			} else {
20369 				cur_pld_off += tcp->tcp_last_sent_len;
20370 			}
20371 
20372 			/*
20373 			 * Fill in the header using the template header, and
20374 			 * add options such as time-stamp, ECN and/or SACK,
20375 			 * as needed.
20376 			 */
20377 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20378 			    (clock_t)local_time, num_sack_blk);
20379 
20380 			/* take care of some IP header businesses */
20381 			if (af == AF_INET) {
20382 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20383 
20384 				ASSERT(OK_32PTR((uchar_t *)ipha));
20385 				ASSERT(PDESC_HDRL(pkt_info) >=
20386 				    IP_SIMPLE_HDR_LENGTH);
20387 				ASSERT(ipha->ipha_version_and_hdr_length ==
20388 				    IP_SIMPLE_HDR_VERSION);
20389 
20390 				/*
20391 				 * Assign ident value for current packet; see
20392 				 * related comments in ip_wput_ire() about the
20393 				 * contract private interface with clustering
20394 				 * group.
20395 				 */
20396 				clusterwide = B_FALSE;
20397 				if (cl_inet_ipident != NULL) {
20398 					ASSERT(cl_inet_isclusterwide != NULL);
20399 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20400 					    AF_INET,
20401 					    (uint8_t *)(uintptr_t)src)) {
20402 						ipha->ipha_ident =
20403 						    (*cl_inet_ipident)
20404 						    (IPPROTO_IP, AF_INET,
20405 						    (uint8_t *)(uintptr_t)src,
20406 						    (uint8_t *)(uintptr_t)dst);
20407 						clusterwide = B_TRUE;
20408 					}
20409 				}
20410 
20411 				if (!clusterwide) {
20412 					ipha->ipha_ident = (uint16_t)
20413 					    atomic_add_32_nv(
20414 						&ire->ire_ident, 1);
20415 				}
20416 #ifndef _BIG_ENDIAN
20417 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20418 				    (ipha->ipha_ident >> 8);
20419 #endif
20420 			} else {
20421 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20422 
20423 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20424 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20425 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20426 				ASSERT(PDESC_HDRL(pkt_info) >=
20427 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20428 				    TCP_CHECKSUM_SIZE));
20429 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20430 
20431 				if (tcp->tcp_ip_forward_progress) {
20432 					rconfirm = B_TRUE;
20433 					tcp->tcp_ip_forward_progress = B_FALSE;
20434 				}
20435 			}
20436 
20437 			/* at least one payload span, and at most two */
20438 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20439 
20440 			/* add the packet descriptor to Multidata */
20441 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20442 			    KM_NOSLEEP)) == NULL) {
20443 				/*
20444 				 * Any failure other than ENOMEM indicates
20445 				 * that we have passed in invalid pkt_info
20446 				 * or parameters to mmd_addpdesc, which must
20447 				 * not happen.
20448 				 *
20449 				 * EINVAL is a result of failure on boundary
20450 				 * checks against the pkt_info contents.  It
20451 				 * should not happen, and we panic because
20452 				 * either there's horrible heap corruption,
20453 				 * and/or programming mistake.
20454 				 */
20455 				if (err != ENOMEM) {
20456 					cmn_err(CE_PANIC, "tcp_multisend: "
20457 					    "pdesc logic error detected for "
20458 					    "tcp %p mmd %p pinfo %p (%d)\n",
20459 					    (void *)tcp, (void *)mmd,
20460 					    (void *)pkt_info, err);
20461 				}
20462 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20463 				goto legacy_send; /* out_of_mem */
20464 			}
20465 			ASSERT(pkt != NULL);
20466 
20467 			/* calculate IP header and TCP checksums */
20468 			if (af == AF_INET) {
20469 				/* calculate pseudo-header checksum */
20470 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20471 				    (src >> 16) + (src & 0xFFFF);
20472 
20473 				/* offset for TCP header checksum */
20474 				up = IPH_TCPH_CHECKSUMP(ipha,
20475 				    IP_SIMPLE_HDR_LENGTH);
20476 			} else {
20477 				up = (uint16_t *)&ip6h->ip6_src;
20478 
20479 				/* calculate pseudo-header checksum */
20480 				cksum = up[0] + up[1] + up[2] + up[3] +
20481 				    up[4] + up[5] + up[6] + up[7] +
20482 				    up[8] + up[9] + up[10] + up[11] +
20483 				    up[12] + up[13] + up[14] + up[15];
20484 
20485 				/* Fold the initial sum */
20486 				cksum = (cksum & 0xffff) + (cksum >> 16);
20487 
20488 				up = (uint16_t *)(((uchar_t *)ip6h) +
20489 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20490 			}
20491 
20492 			if (hwcksum_flags & HCK_FULLCKSUM) {
20493 				/* clear checksum field for hardware */
20494 				*up = 0;
20495 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20496 				uint32_t sum;
20497 
20498 				/* pseudo-header checksumming */
20499 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20500 				sum = (sum & 0xFFFF) + (sum >> 16);
20501 				*up = (sum & 0xFFFF) + (sum >> 16);
20502 			} else {
20503 				/* software checksumming */
20504 				TCP_STAT(tcps, tcp_out_sw_cksum);
20505 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20506 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20507 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20508 				    cksum + IP_TCP_CSUM_COMP);
20509 				if (*up == 0)
20510 					*up = 0xFFFF;
20511 			}
20512 
20513 			/* IPv4 header checksum */
20514 			if (af == AF_INET) {
20515 				ipha->ipha_fragment_offset_and_flags |=
20516 				    (uint32_t)htons(ire->ire_frag_flag);
20517 
20518 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20519 					ipha->ipha_hdr_checksum = 0;
20520 				} else {
20521 					IP_HDR_CKSUM(ipha, cksum,
20522 					    ((uint32_t *)ipha)[0],
20523 					    ((uint16_t *)ipha)[4]);
20524 				}
20525 			}
20526 
20527 			if (af == AF_INET &&
20528 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20529 			    af == AF_INET6 &&
20530 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20531 				/* build header(IP/TCP) mblk for this segment */
20532 				if ((mp = dupb(md_hbuf)) == NULL)
20533 					goto legacy_send;
20534 
20535 				mp->b_rptr = pkt_info->hdr_rptr;
20536 				mp->b_wptr = pkt_info->hdr_wptr;
20537 
20538 				/* build payload mblk for this segment */
20539 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20540 					freemsg(mp);
20541 					goto legacy_send;
20542 				}
20543 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20544 				mp1->b_rptr = mp1->b_wptr -
20545 				    tcp->tcp_last_sent_len;
20546 				linkb(mp, mp1);
20547 
20548 				pld_start = mp1->b_rptr;
20549 
20550 				if (af == AF_INET) {
20551 					DTRACE_PROBE4(
20552 					    ip4__physical__out__start,
20553 					    ill_t *, NULL,
20554 					    ill_t *, ill,
20555 					    ipha_t *, ipha,
20556 					    mblk_t *, mp);
20557 					FW_HOOKS(
20558 					    ipst->ips_ip4_physical_out_event,
20559 					    ipst->ips_ipv4firewall_physical_out,
20560 					    NULL, ill, ipha, mp, mp, ipst);
20561 					DTRACE_PROBE1(
20562 					    ip4__physical__out__end,
20563 					    mblk_t *, mp);
20564 				} else {
20565 					DTRACE_PROBE4(
20566 					    ip6__physical__out_start,
20567 					    ill_t *, NULL,
20568 					    ill_t *, ill,
20569 					    ip6_t *, ip6h,
20570 					    mblk_t *, mp);
20571 					FW_HOOKS6(
20572 					    ipst->ips_ip6_physical_out_event,
20573 					    ipst->ips_ipv6firewall_physical_out,
20574 					    NULL, ill, ip6h, mp, mp, ipst);
20575 					DTRACE_PROBE1(
20576 					    ip6__physical__out__end,
20577 					    mblk_t *, mp);
20578 				}
20579 
20580 				if (buf_trunked && mp != NULL) {
20581 					/*
20582 					 * Need to pass it to normal path.
20583 					 */
20584 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20585 				} else if (mp == NULL ||
20586 				    mp->b_rptr != pkt_info->hdr_rptr ||
20587 				    mp->b_wptr != pkt_info->hdr_wptr ||
20588 				    (mp1 = mp->b_cont) == NULL ||
20589 				    mp1->b_rptr != pld_start ||
20590 				    mp1->b_wptr != pld_start +
20591 				    tcp->tcp_last_sent_len ||
20592 				    mp1->b_cont != NULL) {
20593 					/*
20594 					 * Need to pass all packets of this
20595 					 * buffer to normal path, either when
20596 					 * packet is blocked, or when boundary
20597 					 * of header buffer or payload buffer
20598 					 * has been changed by FW_HOOKS[6].
20599 					 */
20600 					buf_trunked = B_TRUE;
20601 					if (md_mp_head != NULL) {
20602 						err = (intptr_t)rmvb(md_mp_head,
20603 						    md_mp);
20604 						if (err == 0)
20605 							md_mp_head = NULL;
20606 					}
20607 
20608 					/* send down what we've got so far */
20609 					if (md_mp_head != NULL) {
20610 						tcp_multisend_data(tcp, ire,
20611 						    ill, md_mp_head, obsegs,
20612 						    obbytes, &rconfirm);
20613 					}
20614 					md_mp_head = NULL;
20615 
20616 					if (mp != NULL)
20617 						CALL_IP_WPUT(tcp->tcp_connp,
20618 						    q, mp);
20619 
20620 					mp1 = fw_mp_head;
20621 					do {
20622 						mp = mp1;
20623 						mp1 = mp1->b_next;
20624 						mp->b_next = NULL;
20625 						mp->b_prev = NULL;
20626 						CALL_IP_WPUT(tcp->tcp_connp,
20627 						    q, mp);
20628 					} while (mp1 != NULL);
20629 
20630 					fw_mp_head = NULL;
20631 				} else {
20632 					if (fw_mp_head == NULL)
20633 						fw_mp_head = mp;
20634 					else
20635 						fw_mp_head->b_prev->b_next = mp;
20636 					fw_mp_head->b_prev = mp;
20637 				}
20638 			}
20639 
20640 			/* advance header offset */
20641 			cur_hdr_off += hdr_frag_sz;
20642 
20643 			obbytes += tcp->tcp_last_sent_len;
20644 			++obsegs;
20645 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20646 		    *tail_unsent > 0);
20647 
20648 		if ((*xmit_tail)->b_next == NULL) {
20649 			/*
20650 			 * Store the lbolt used for RTT estimation. We can only
20651 			 * record one timestamp per mblk so we do it when we
20652 			 * reach the end of the payload buffer. Also we only
20653 			 * take a new timestamp sample when the previous timed
20654 			 * data from the same mblk has been ack'ed.
20655 			 */
20656 			(*xmit_tail)->b_prev = local_time;
20657 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20658 		}
20659 
20660 		ASSERT(*tail_unsent >= 0);
20661 		if (*tail_unsent > 0) {
20662 			/*
20663 			 * We got here because we broke out of the above
20664 			 * loop due to of one of the following cases:
20665 			 *
20666 			 *   1. len < adjusted MSS (i.e. small),
20667 			 *   2. Sender SWS avoidance,
20668 			 *   3. max_pld is zero.
20669 			 *
20670 			 * We are done for this Multidata, so trim our
20671 			 * last payload buffer (if any) accordingly.
20672 			 */
20673 			if (md_pbuf != NULL)
20674 				md_pbuf->b_wptr -= *tail_unsent;
20675 		} else if (*usable > 0) {
20676 			*xmit_tail = (*xmit_tail)->b_cont;
20677 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20678 			    (uintptr_t)INT_MAX);
20679 			*tail_unsent = (int)MBLKL(*xmit_tail);
20680 			add_buffer = B_TRUE;
20681 		}
20682 
20683 		while (fw_mp_head) {
20684 			mp = fw_mp_head;
20685 			fw_mp_head = fw_mp_head->b_next;
20686 			mp->b_prev = mp->b_next = NULL;
20687 			freemsg(mp);
20688 		}
20689 		if (buf_trunked) {
20690 			TCP_STAT(tcps, tcp_mdt_discarded);
20691 			freeb(md_mp);
20692 			buf_trunked = B_FALSE;
20693 		}
20694 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20695 	    (tcp_mdt_chain || max_pld > 0));
20696 
20697 	if (md_mp_head != NULL) {
20698 		/* send everything down */
20699 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20700 		    &rconfirm);
20701 	}
20702 
20703 #undef PREP_NEW_MULTIDATA
20704 #undef PREP_NEW_PBUF
20705 #undef IPVER
20706 
20707 	IRE_REFRELE(ire);
20708 	return (0);
20709 }
20710 
20711 /*
20712  * A wrapper function for sending one or more Multidata messages down to
20713  * the module below ip; this routine does not release the reference of the
20714  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20715  */
20716 static void
20717 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20718     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20719 {
20720 	uint64_t delta;
20721 	nce_t *nce;
20722 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20723 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20724 
20725 	ASSERT(ire != NULL && ill != NULL);
20726 	ASSERT(ire->ire_stq != NULL);
20727 	ASSERT(md_mp_head != NULL);
20728 	ASSERT(rconfirm != NULL);
20729 
20730 	/* adjust MIBs and IRE timestamp */
20731 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20732 	tcp->tcp_obsegs += obsegs;
20733 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20734 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20735 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20736 
20737 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20738 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20739 	} else {
20740 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20741 	}
20742 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20743 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20744 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20745 
20746 	ire->ire_ob_pkt_count += obsegs;
20747 	if (ire->ire_ipif != NULL)
20748 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20749 	ire->ire_last_used_time = lbolt;
20750 
20751 	/* send it down */
20752 	putnext(ire->ire_stq, md_mp_head);
20753 
20754 	/* we're done for TCP/IPv4 */
20755 	if (tcp->tcp_ipversion == IPV4_VERSION)
20756 		return;
20757 
20758 	nce = ire->ire_nce;
20759 
20760 	ASSERT(nce != NULL);
20761 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20762 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20763 
20764 	/* reachability confirmation? */
20765 	if (*rconfirm) {
20766 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20767 		if (nce->nce_state != ND_REACHABLE) {
20768 			mutex_enter(&nce->nce_lock);
20769 			nce->nce_state = ND_REACHABLE;
20770 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20771 			mutex_exit(&nce->nce_lock);
20772 			(void) untimeout(nce->nce_timeout_id);
20773 			if (ip_debug > 2) {
20774 				/* ip1dbg */
20775 				pr_addr_dbg("tcp_multisend_data: state "
20776 				    "for %s changed to REACHABLE\n",
20777 				    AF_INET6, &ire->ire_addr_v6);
20778 			}
20779 		}
20780 		/* reset transport reachability confirmation */
20781 		*rconfirm = B_FALSE;
20782 	}
20783 
20784 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20785 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20786 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20787 
20788 	if (delta > (uint64_t)ill->ill_reachable_time) {
20789 		mutex_enter(&nce->nce_lock);
20790 		switch (nce->nce_state) {
20791 		case ND_REACHABLE:
20792 		case ND_STALE:
20793 			/*
20794 			 * ND_REACHABLE is identical to ND_STALE in this
20795 			 * specific case. If reachable time has expired for
20796 			 * this neighbor (delta is greater than reachable
20797 			 * time), conceptually, the neighbor cache is no
20798 			 * longer in REACHABLE state, but already in STALE
20799 			 * state.  So the correct transition here is to
20800 			 * ND_DELAY.
20801 			 */
20802 			nce->nce_state = ND_DELAY;
20803 			mutex_exit(&nce->nce_lock);
20804 			NDP_RESTART_TIMER(nce,
20805 			    ipst->ips_delay_first_probe_time);
20806 			if (ip_debug > 3) {
20807 				/* ip2dbg */
20808 				pr_addr_dbg("tcp_multisend_data: state "
20809 				    "for %s changed to DELAY\n",
20810 				    AF_INET6, &ire->ire_addr_v6);
20811 			}
20812 			break;
20813 		case ND_DELAY:
20814 		case ND_PROBE:
20815 			mutex_exit(&nce->nce_lock);
20816 			/* Timers have already started */
20817 			break;
20818 		case ND_UNREACHABLE:
20819 			/*
20820 			 * ndp timer has detected that this nce is
20821 			 * unreachable and initiated deleting this nce
20822 			 * and all its associated IREs. This is a race
20823 			 * where we found the ire before it was deleted
20824 			 * and have just sent out a packet using this
20825 			 * unreachable nce.
20826 			 */
20827 			mutex_exit(&nce->nce_lock);
20828 			break;
20829 		default:
20830 			ASSERT(0);
20831 		}
20832 	}
20833 }
20834 
20835 /*
20836  * Derived from tcp_send_data().
20837  */
20838 static void
20839 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20840     int num_lso_seg)
20841 {
20842 	ipha_t		*ipha;
20843 	mblk_t		*ire_fp_mp;
20844 	uint_t		ire_fp_mp_len;
20845 	uint32_t	hcksum_txflags = 0;
20846 	ipaddr_t	src;
20847 	ipaddr_t	dst;
20848 	uint32_t	cksum;
20849 	uint16_t	*up;
20850 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20851 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20852 
20853 	ASSERT(DB_TYPE(mp) == M_DATA);
20854 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20855 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20856 	ASSERT(tcp->tcp_connp != NULL);
20857 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20858 
20859 	ipha = (ipha_t *)mp->b_rptr;
20860 	src = ipha->ipha_src;
20861 	dst = ipha->ipha_dst;
20862 
20863 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20864 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20865 	    num_lso_seg);
20866 #ifndef _BIG_ENDIAN
20867 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20868 #endif
20869 	if (tcp->tcp_snd_zcopy_aware) {
20870 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20871 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20872 			mp = tcp_zcopy_disable(tcp, mp);
20873 	}
20874 
20875 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20876 		ASSERT(ill->ill_hcksum_capab != NULL);
20877 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20878 	}
20879 
20880 	/*
20881 	 * Since the TCP checksum should be recalculated by h/w, we can just
20882 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20883 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20884 	 * The partial pseudo-header excludes TCP length, that was calculated
20885 	 * in tcp_send(), so to zero *up before further processing.
20886 	 */
20887 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20888 
20889 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20890 	*up = 0;
20891 
20892 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20893 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20894 
20895 	/*
20896 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20897 	 */
20898 	DB_LSOFLAGS(mp) |= HW_LSO;
20899 	DB_LSOMSS(mp) = mss;
20900 
20901 	ipha->ipha_fragment_offset_and_flags |=
20902 	    (uint32_t)htons(ire->ire_frag_flag);
20903 
20904 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20905 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20906 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20907 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20908 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20909 
20910 	UPDATE_OB_PKT_COUNT(ire);
20911 	ire->ire_last_used_time = lbolt;
20912 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20913 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20914 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20915 	    ntohs(ipha->ipha_length));
20916 
20917 	if (ILL_DLS_CAPABLE(ill)) {
20918 		/*
20919 		 * Send the packet directly to DLD, where it may be queued
20920 		 * depending on the availability of transmit resources at
20921 		 * the media layer.
20922 		 */
20923 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
20924 	} else {
20925 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20926 		DTRACE_PROBE4(ip4__physical__out__start,
20927 		    ill_t *, NULL, ill_t *, out_ill,
20928 		    ipha_t *, ipha, mblk_t *, mp);
20929 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
20930 		    ipst->ips_ipv4firewall_physical_out,
20931 		    NULL, out_ill, ipha, mp, mp, ipst);
20932 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20933 		if (mp != NULL)
20934 			putnext(ire->ire_stq, mp);
20935 	}
20936 }
20937 
20938 /*
20939  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20940  * scheme, and returns one of the following:
20941  *
20942  * -1 = failed allocation.
20943  *  0 = success; burst count reached, or usable send window is too small,
20944  *      and that we'd rather wait until later before sending again.
20945  *  1 = success; we are called from tcp_multisend(), and both usable send
20946  *      window and tail_unsent are greater than the MDT threshold, and thus
20947  *      Multidata Transmit should be used instead.
20948  */
20949 static int
20950 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20951     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20952     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20953     const int mdt_thres)
20954 {
20955 	int num_burst_seg = tcp->tcp_snd_burst;
20956 	ire_t		*ire = NULL;
20957 	ill_t		*ill = NULL;
20958 	mblk_t		*ire_fp_mp = NULL;
20959 	uint_t		ire_fp_mp_len = 0;
20960 	int		num_lso_seg = 1;
20961 	uint_t		lso_usable;
20962 	boolean_t	do_lso_send = B_FALSE;
20963 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20964 
20965 	/*
20966 	 * Check LSO capability before any further work. And the similar check
20967 	 * need to be done in for(;;) loop.
20968 	 * LSO will be deployed when therer is more than one mss of available
20969 	 * data and a burst transmission is allowed.
20970 	 */
20971 	if (tcp->tcp_lso &&
20972 	    (tcp->tcp_valid_bits == 0 ||
20973 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20974 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20975 		/*
20976 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20977 		 */
20978 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
20979 			/*
20980 			 * Enable LSO with this transmission.
20981 			 * Since IRE has been hold in
20982 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
20983 			 * should be called before return.
20984 			 */
20985 			do_lso_send = B_TRUE;
20986 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20987 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20988 			/* Round up to multiple of 4 */
20989 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20990 		} else {
20991 			do_lso_send = B_FALSE;
20992 			ill = NULL;
20993 		}
20994 	}
20995 
20996 	for (;;) {
20997 		struct datab	*db;
20998 		tcph_t		*tcph;
20999 		uint32_t	sum;
21000 		mblk_t		*mp, *mp1;
21001 		uchar_t		*rptr;
21002 		int		len;
21003 
21004 		/*
21005 		 * If we're called by tcp_multisend(), and the amount of
21006 		 * sendable data as well as the size of current xmit_tail
21007 		 * is beyond the MDT threshold, return to the caller and
21008 		 * let the large data transmit be done using MDT.
21009 		 */
21010 		if (*usable > 0 && *usable > mdt_thres &&
21011 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21012 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21013 			ASSERT(tcp->tcp_mdt);
21014 			return (1);	/* success; do large send */
21015 		}
21016 
21017 		if (num_burst_seg == 0)
21018 			break;		/* success; burst count reached */
21019 
21020 		/*
21021 		 * Calculate the maximum payload length we can send in *one*
21022 		 * time.
21023 		 */
21024 		if (do_lso_send) {
21025 			/*
21026 			 * Check whether need to do LSO any more.
21027 			 */
21028 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21029 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21030 				lso_usable = MIN(lso_usable,
21031 				    num_burst_seg * mss);
21032 
21033 				num_lso_seg = lso_usable / mss;
21034 				if (lso_usable % mss) {
21035 					num_lso_seg++;
21036 					tcp->tcp_last_sent_len = (ushort_t)
21037 					    (lso_usable % mss);
21038 				} else {
21039 					tcp->tcp_last_sent_len = (ushort_t)mss;
21040 				}
21041 			} else {
21042 				do_lso_send = B_FALSE;
21043 				num_lso_seg = 1;
21044 				lso_usable = mss;
21045 			}
21046 		}
21047 
21048 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21049 
21050 		/*
21051 		 * Adjust num_burst_seg here.
21052 		 */
21053 		num_burst_seg -= num_lso_seg;
21054 
21055 		len = mss;
21056 		if (len > *usable) {
21057 			ASSERT(do_lso_send == B_FALSE);
21058 
21059 			len = *usable;
21060 			if (len <= 0) {
21061 				/* Terminate the loop */
21062 				break;	/* success; too small */
21063 			}
21064 			/*
21065 			 * Sender silly-window avoidance.
21066 			 * Ignore this if we are going to send a
21067 			 * zero window probe out.
21068 			 *
21069 			 * TODO: force data into microscopic window?
21070 			 *	==> (!pushed || (unsent > usable))
21071 			 */
21072 			if (len < (tcp->tcp_max_swnd >> 1) &&
21073 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21074 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21075 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21076 				/*
21077 				 * If the retransmit timer is not running
21078 				 * we start it so that we will retransmit
21079 				 * in the case when the the receiver has
21080 				 * decremented the window.
21081 				 */
21082 				if (*snxt == tcp->tcp_snxt &&
21083 				    *snxt == tcp->tcp_suna) {
21084 					/*
21085 					 * We are not supposed to send
21086 					 * anything.  So let's wait a little
21087 					 * bit longer before breaking SWS
21088 					 * avoidance.
21089 					 *
21090 					 * What should the value be?
21091 					 * Suggestion: MAX(init rexmit time,
21092 					 * tcp->tcp_rto)
21093 					 */
21094 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21095 				}
21096 				break;	/* success; too small */
21097 			}
21098 		}
21099 
21100 		tcph = tcp->tcp_tcph;
21101 
21102 		/*
21103 		 * The reason to adjust len here is that we need to set flags
21104 		 * and calculate checksum.
21105 		 */
21106 		if (do_lso_send)
21107 			len = lso_usable;
21108 
21109 		*usable -= len; /* Approximate - can be adjusted later */
21110 		if (*usable > 0)
21111 			tcph->th_flags[0] = TH_ACK;
21112 		else
21113 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21114 
21115 		/*
21116 		 * Prime pump for IP's checksumming on our behalf
21117 		 * Include the adjustment for a source route if any.
21118 		 */
21119 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21120 		sum = (sum >> 16) + (sum & 0xFFFF);
21121 		U16_TO_ABE16(sum, tcph->th_sum);
21122 
21123 		U32_TO_ABE32(*snxt, tcph->th_seq);
21124 
21125 		/*
21126 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21127 		 * set.  For the case when TCP_FSS_VALID is the only valid
21128 		 * bit (normal active close), branch off only when we think
21129 		 * that the FIN flag needs to be set.  Note for this case,
21130 		 * that (snxt + len) may not reflect the actual seg_len,
21131 		 * as len may be further reduced in tcp_xmit_mp().  If len
21132 		 * gets modified, we will end up here again.
21133 		 */
21134 		if (tcp->tcp_valid_bits != 0 &&
21135 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21136 		    ((*snxt + len) == tcp->tcp_fss))) {
21137 			uchar_t		*prev_rptr;
21138 			uint32_t	prev_snxt = tcp->tcp_snxt;
21139 
21140 			if (*tail_unsent == 0) {
21141 				ASSERT((*xmit_tail)->b_cont != NULL);
21142 				*xmit_tail = (*xmit_tail)->b_cont;
21143 				prev_rptr = (*xmit_tail)->b_rptr;
21144 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21145 				    (*xmit_tail)->b_rptr);
21146 			} else {
21147 				prev_rptr = (*xmit_tail)->b_rptr;
21148 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21149 				    *tail_unsent;
21150 			}
21151 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21152 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21153 			/* Restore tcp_snxt so we get amount sent right. */
21154 			tcp->tcp_snxt = prev_snxt;
21155 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21156 				/*
21157 				 * If the previous timestamp is still in use,
21158 				 * don't stomp on it.
21159 				 */
21160 				if ((*xmit_tail)->b_next == NULL) {
21161 					(*xmit_tail)->b_prev = local_time;
21162 					(*xmit_tail)->b_next =
21163 					    (mblk_t *)(uintptr_t)(*snxt);
21164 				}
21165 			} else
21166 				(*xmit_tail)->b_rptr = prev_rptr;
21167 
21168 			if (mp == NULL) {
21169 				if (ire != NULL)
21170 					IRE_REFRELE(ire);
21171 				return (-1);
21172 			}
21173 			mp1 = mp->b_cont;
21174 
21175 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21176 				tcp->tcp_last_sent_len = (ushort_t)len;
21177 			while (mp1->b_cont) {
21178 				*xmit_tail = (*xmit_tail)->b_cont;
21179 				(*xmit_tail)->b_prev = local_time;
21180 				(*xmit_tail)->b_next =
21181 				    (mblk_t *)(uintptr_t)(*snxt);
21182 				mp1 = mp1->b_cont;
21183 			}
21184 			*snxt += len;
21185 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21186 			BUMP_LOCAL(tcp->tcp_obsegs);
21187 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21188 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21189 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21190 			tcp_send_data(tcp, q, mp);
21191 			continue;
21192 		}
21193 
21194 		*snxt += len;	/* Adjust later if we don't send all of len */
21195 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21196 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21197 
21198 		if (*tail_unsent) {
21199 			/* Are the bytes above us in flight? */
21200 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21201 			if (rptr != (*xmit_tail)->b_rptr) {
21202 				*tail_unsent -= len;
21203 				if (len <= mss) /* LSO is unusable */
21204 					tcp->tcp_last_sent_len = (ushort_t)len;
21205 				len += tcp_hdr_len;
21206 				if (tcp->tcp_ipversion == IPV4_VERSION)
21207 					tcp->tcp_ipha->ipha_length = htons(len);
21208 				else
21209 					tcp->tcp_ip6h->ip6_plen =
21210 					    htons(len -
21211 					    ((char *)&tcp->tcp_ip6h[1] -
21212 					    tcp->tcp_iphc));
21213 				mp = dupb(*xmit_tail);
21214 				if (mp == NULL) {
21215 					if (ire != NULL)
21216 						IRE_REFRELE(ire);
21217 					return (-1);	/* out_of_mem */
21218 				}
21219 				mp->b_rptr = rptr;
21220 				/*
21221 				 * If the old timestamp is no longer in use,
21222 				 * sample a new timestamp now.
21223 				 */
21224 				if ((*xmit_tail)->b_next == NULL) {
21225 					(*xmit_tail)->b_prev = local_time;
21226 					(*xmit_tail)->b_next =
21227 					    (mblk_t *)(uintptr_t)(*snxt-len);
21228 				}
21229 				goto must_alloc;
21230 			}
21231 		} else {
21232 			*xmit_tail = (*xmit_tail)->b_cont;
21233 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21234 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21235 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21236 			    (*xmit_tail)->b_rptr);
21237 		}
21238 
21239 		(*xmit_tail)->b_prev = local_time;
21240 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21241 
21242 		*tail_unsent -= len;
21243 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21244 			tcp->tcp_last_sent_len = (ushort_t)len;
21245 
21246 		len += tcp_hdr_len;
21247 		if (tcp->tcp_ipversion == IPV4_VERSION)
21248 			tcp->tcp_ipha->ipha_length = htons(len);
21249 		else
21250 			tcp->tcp_ip6h->ip6_plen = htons(len -
21251 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21252 
21253 		mp = dupb(*xmit_tail);
21254 		if (mp == NULL) {
21255 			if (ire != NULL)
21256 				IRE_REFRELE(ire);
21257 			return (-1);	/* out_of_mem */
21258 		}
21259 
21260 		len = tcp_hdr_len;
21261 		/*
21262 		 * There are four reasons to allocate a new hdr mblk:
21263 		 *  1) The bytes above us are in use by another packet
21264 		 *  2) We don't have good alignment
21265 		 *  3) The mblk is being shared
21266 		 *  4) We don't have enough room for a header
21267 		 */
21268 		rptr = mp->b_rptr - len;
21269 		if (!OK_32PTR(rptr) ||
21270 		    ((db = mp->b_datap), db->db_ref != 2) ||
21271 		    rptr < db->db_base + ire_fp_mp_len) {
21272 			/* NOTE: we assume allocb returns an OK_32PTR */
21273 
21274 		must_alloc:;
21275 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21276 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21277 			if (mp1 == NULL) {
21278 				freemsg(mp);
21279 				if (ire != NULL)
21280 					IRE_REFRELE(ire);
21281 				return (-1);	/* out_of_mem */
21282 			}
21283 			mp1->b_cont = mp;
21284 			mp = mp1;
21285 			/* Leave room for Link Level header */
21286 			len = tcp_hdr_len;
21287 			rptr =
21288 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21289 			mp->b_wptr = &rptr[len];
21290 		}
21291 
21292 		/*
21293 		 * Fill in the header using the template header, and add
21294 		 * options such as time-stamp, ECN and/or SACK, as needed.
21295 		 */
21296 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21297 
21298 		mp->b_rptr = rptr;
21299 
21300 		if (*tail_unsent) {
21301 			int spill = *tail_unsent;
21302 
21303 			mp1 = mp->b_cont;
21304 			if (mp1 == NULL)
21305 				mp1 = mp;
21306 
21307 			/*
21308 			 * If we're a little short, tack on more mblks until
21309 			 * there is no more spillover.
21310 			 */
21311 			while (spill < 0) {
21312 				mblk_t *nmp;
21313 				int nmpsz;
21314 
21315 				nmp = (*xmit_tail)->b_cont;
21316 				nmpsz = MBLKL(nmp);
21317 
21318 				/*
21319 				 * Excess data in mblk; can we split it?
21320 				 * If MDT is enabled for the connection,
21321 				 * keep on splitting as this is a transient
21322 				 * send path.
21323 				 */
21324 				if (!do_lso_send && !tcp->tcp_mdt &&
21325 				    (spill + nmpsz > 0)) {
21326 					/*
21327 					 * Don't split if stream head was
21328 					 * told to break up larger writes
21329 					 * into smaller ones.
21330 					 */
21331 					if (tcp->tcp_maxpsz > 0)
21332 						break;
21333 
21334 					/*
21335 					 * Next mblk is less than SMSS/2
21336 					 * rounded up to nearest 64-byte;
21337 					 * let it get sent as part of the
21338 					 * next segment.
21339 					 */
21340 					if (tcp->tcp_localnet &&
21341 					    !tcp->tcp_cork &&
21342 					    (nmpsz < roundup((mss >> 1), 64)))
21343 						break;
21344 				}
21345 
21346 				*xmit_tail = nmp;
21347 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21348 				/* Stash for rtt use later */
21349 				(*xmit_tail)->b_prev = local_time;
21350 				(*xmit_tail)->b_next =
21351 				    (mblk_t *)(uintptr_t)(*snxt - len);
21352 				mp1->b_cont = dupb(*xmit_tail);
21353 				mp1 = mp1->b_cont;
21354 
21355 				spill += nmpsz;
21356 				if (mp1 == NULL) {
21357 					*tail_unsent = spill;
21358 					freemsg(mp);
21359 					if (ire != NULL)
21360 						IRE_REFRELE(ire);
21361 					return (-1);	/* out_of_mem */
21362 				}
21363 			}
21364 
21365 			/* Trim back any surplus on the last mblk */
21366 			if (spill >= 0) {
21367 				mp1->b_wptr -= spill;
21368 				*tail_unsent = spill;
21369 			} else {
21370 				/*
21371 				 * We did not send everything we could in
21372 				 * order to remain within the b_cont limit.
21373 				 */
21374 				*usable -= spill;
21375 				*snxt += spill;
21376 				tcp->tcp_last_sent_len += spill;
21377 				UPDATE_MIB(&tcps->tcps_mib,
21378 				    tcpOutDataBytes, spill);
21379 				/*
21380 				 * Adjust the checksum
21381 				 */
21382 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21383 				sum += spill;
21384 				sum = (sum >> 16) + (sum & 0xFFFF);
21385 				U16_TO_ABE16(sum, tcph->th_sum);
21386 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21387 					sum = ntohs(
21388 					    ((ipha_t *)rptr)->ipha_length) +
21389 					    spill;
21390 					((ipha_t *)rptr)->ipha_length =
21391 					    htons(sum);
21392 				} else {
21393 					sum = ntohs(
21394 					    ((ip6_t *)rptr)->ip6_plen) +
21395 					    spill;
21396 					((ip6_t *)rptr)->ip6_plen =
21397 					    htons(sum);
21398 				}
21399 				*tail_unsent = 0;
21400 			}
21401 		}
21402 		if (tcp->tcp_ip_forward_progress) {
21403 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21404 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21405 			tcp->tcp_ip_forward_progress = B_FALSE;
21406 		}
21407 
21408 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21409 		if (do_lso_send) {
21410 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21411 			    num_lso_seg);
21412 			tcp->tcp_obsegs += num_lso_seg;
21413 
21414 			TCP_STAT(tcps, tcp_lso_times);
21415 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21416 		} else {
21417 			tcp_send_data(tcp, q, mp);
21418 			BUMP_LOCAL(tcp->tcp_obsegs);
21419 		}
21420 	}
21421 
21422 	if (ire != NULL)
21423 		IRE_REFRELE(ire);
21424 	return (0);
21425 }
21426 
21427 /* Unlink and return any mblk that looks like it contains a MDT info */
21428 static mblk_t *
21429 tcp_mdt_info_mp(mblk_t *mp)
21430 {
21431 	mblk_t	*prev_mp;
21432 
21433 	for (;;) {
21434 		prev_mp = mp;
21435 		/* no more to process? */
21436 		if ((mp = mp->b_cont) == NULL)
21437 			break;
21438 
21439 		switch (DB_TYPE(mp)) {
21440 		case M_CTL:
21441 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21442 				continue;
21443 			ASSERT(prev_mp != NULL);
21444 			prev_mp->b_cont = mp->b_cont;
21445 			mp->b_cont = NULL;
21446 			return (mp);
21447 		default:
21448 			break;
21449 		}
21450 	}
21451 	return (mp);
21452 }
21453 
21454 /* MDT info update routine, called when IP notifies us about MDT */
21455 static void
21456 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21457 {
21458 	boolean_t prev_state;
21459 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21460 
21461 	/*
21462 	 * IP is telling us to abort MDT on this connection?  We know
21463 	 * this because the capability is only turned off when IP
21464 	 * encounters some pathological cases, e.g. link-layer change
21465 	 * where the new driver doesn't support MDT, or in situation
21466 	 * where MDT usage on the link-layer has been switched off.
21467 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21468 	 * if the link-layer doesn't support MDT, and if it does, it
21469 	 * will indicate that the feature is to be turned on.
21470 	 */
21471 	prev_state = tcp->tcp_mdt;
21472 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21473 	if (!tcp->tcp_mdt && !first) {
21474 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21475 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21476 		    (void *)tcp->tcp_connp));
21477 	}
21478 
21479 	/*
21480 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21481 	 * so disable MDT otherwise.  The checks are done here
21482 	 * and in tcp_wput_data().
21483 	 */
21484 	if (tcp->tcp_mdt &&
21485 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21486 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21487 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21488 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21489 		tcp->tcp_mdt = B_FALSE;
21490 
21491 	if (tcp->tcp_mdt) {
21492 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21493 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21494 			    "version (%d), expected version is %d",
21495 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21496 			tcp->tcp_mdt = B_FALSE;
21497 			return;
21498 		}
21499 
21500 		/*
21501 		 * We need the driver to be able to handle at least three
21502 		 * spans per packet in order for tcp MDT to be utilized.
21503 		 * The first is for the header portion, while the rest are
21504 		 * needed to handle a packet that straddles across two
21505 		 * virtually non-contiguous buffers; a typical tcp packet
21506 		 * therefore consists of only two spans.  Note that we take
21507 		 * a zero as "don't care".
21508 		 */
21509 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21510 		    mdt_capab->ill_mdt_span_limit < 3) {
21511 			tcp->tcp_mdt = B_FALSE;
21512 			return;
21513 		}
21514 
21515 		/* a zero means driver wants default value */
21516 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21517 		    tcps->tcps_mdt_max_pbufs);
21518 		if (tcp->tcp_mdt_max_pld == 0)
21519 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21520 
21521 		/* ensure 32-bit alignment */
21522 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21523 		    mdt_capab->ill_mdt_hdr_head), 4);
21524 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21525 		    mdt_capab->ill_mdt_hdr_tail), 4);
21526 
21527 		if (!first && !prev_state) {
21528 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21529 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21530 			    (void *)tcp->tcp_connp));
21531 		}
21532 	}
21533 }
21534 
21535 /* Unlink and return any mblk that looks like it contains a LSO info */
21536 static mblk_t *
21537 tcp_lso_info_mp(mblk_t *mp)
21538 {
21539 	mblk_t	*prev_mp;
21540 
21541 	for (;;) {
21542 		prev_mp = mp;
21543 		/* no more to process? */
21544 		if ((mp = mp->b_cont) == NULL)
21545 			break;
21546 
21547 		switch (DB_TYPE(mp)) {
21548 		case M_CTL:
21549 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21550 				continue;
21551 			ASSERT(prev_mp != NULL);
21552 			prev_mp->b_cont = mp->b_cont;
21553 			mp->b_cont = NULL;
21554 			return (mp);
21555 		default:
21556 			break;
21557 		}
21558 	}
21559 
21560 	return (mp);
21561 }
21562 
21563 /* LSO info update routine, called when IP notifies us about LSO */
21564 static void
21565 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21566 {
21567 	tcp_stack_t *tcps = tcp->tcp_tcps;
21568 
21569 	/*
21570 	 * IP is telling us to abort LSO on this connection?  We know
21571 	 * this because the capability is only turned off when IP
21572 	 * encounters some pathological cases, e.g. link-layer change
21573 	 * where the new NIC/driver doesn't support LSO, or in situation
21574 	 * where LSO usage on the link-layer has been switched off.
21575 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21576 	 * if the link-layer doesn't support LSO, and if it does, it
21577 	 * will indicate that the feature is to be turned on.
21578 	 */
21579 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21580 	TCP_STAT(tcps, tcp_lso_enabled);
21581 
21582 	/*
21583 	 * We currently only support LSO on simple TCP/IPv4,
21584 	 * so disable LSO otherwise.  The checks are done here
21585 	 * and in tcp_wput_data().
21586 	 */
21587 	if (tcp->tcp_lso &&
21588 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21589 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21590 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21591 		tcp->tcp_lso = B_FALSE;
21592 		TCP_STAT(tcps, tcp_lso_disabled);
21593 	} else {
21594 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21595 		    lso_capab->ill_lso_max);
21596 	}
21597 }
21598 
21599 static void
21600 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21601 {
21602 	conn_t *connp = tcp->tcp_connp;
21603 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21604 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21605 
21606 	ASSERT(ire != NULL);
21607 
21608 	/*
21609 	 * We may be in the fastpath here, and although we essentially do
21610 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21611 	 * we try to keep things as brief as possible.  After all, these
21612 	 * are only best-effort checks, and we do more thorough ones prior
21613 	 * to calling tcp_send()/tcp_multisend().
21614 	 */
21615 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21616 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21617 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21618 	    !(ire->ire_flags & RTF_MULTIRT) &&
21619 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21620 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21621 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21622 			/* Cache the result */
21623 			connp->conn_lso_ok = B_TRUE;
21624 
21625 			ASSERT(ill->ill_lso_capab != NULL);
21626 			if (!ill->ill_lso_capab->ill_lso_on) {
21627 				ill->ill_lso_capab->ill_lso_on = 1;
21628 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21629 				    "LSO for interface %s\n", (void *)connp,
21630 				    ill->ill_name));
21631 			}
21632 			tcp_lso_update(tcp, ill->ill_lso_capab);
21633 		} else if (ipst->ips_ip_multidata_outbound &&
21634 		    ILL_MDT_CAPABLE(ill)) {
21635 			/* Cache the result */
21636 			connp->conn_mdt_ok = B_TRUE;
21637 
21638 			ASSERT(ill->ill_mdt_capab != NULL);
21639 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21640 				ill->ill_mdt_capab->ill_mdt_on = 1;
21641 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21642 				    "MDT for interface %s\n", (void *)connp,
21643 				    ill->ill_name));
21644 			}
21645 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21646 		}
21647 	}
21648 
21649 	/*
21650 	 * The goal is to reduce the number of generated tcp segments by
21651 	 * setting the maxpsz multiplier to 0; this will have an affect on
21652 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21653 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21654 	 * of outbound segments and incoming ACKs, thus allowing for better
21655 	 * network and system performance.  In contrast the legacy behavior
21656 	 * may result in sending less than SMSS size, because the last mblk
21657 	 * for some packets may have more data than needed to make up SMSS,
21658 	 * and the legacy code refused to "split" it.
21659 	 *
21660 	 * We apply the new behavior on following situations:
21661 	 *
21662 	 *   1) Loopback connections,
21663 	 *   2) Connections in which the remote peer is not on local subnet,
21664 	 *   3) Local subnet connections over the bge interface (see below).
21665 	 *
21666 	 * Ideally, we would like this behavior to apply for interfaces other
21667 	 * than bge.  However, doing so would negatively impact drivers which
21668 	 * perform dynamic mapping and unmapping of DMA resources, which are
21669 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21670 	 * packet will be generated by tcp).  The bge driver does not suffer
21671 	 * from this, as it copies the mblks into pre-mapped buffers, and
21672 	 * therefore does not require more I/O resources than before.
21673 	 *
21674 	 * Otherwise, this behavior is present on all network interfaces when
21675 	 * the destination endpoint is non-local, since reducing the number
21676 	 * of packets in general is good for the network.
21677 	 *
21678 	 * TODO We need to remove this hard-coded conditional for bge once
21679 	 *	a better "self-tuning" mechanism, or a way to comprehend
21680 	 *	the driver transmit strategy is devised.  Until the solution
21681 	 *	is found and well understood, we live with this hack.
21682 	 */
21683 	if (!tcp_static_maxpsz &&
21684 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21685 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21686 		/* override the default value */
21687 		tcp->tcp_maxpsz = 0;
21688 
21689 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21690 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21691 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21692 	}
21693 
21694 	/* set the stream head parameters accordingly */
21695 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21696 }
21697 
21698 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21699 static void
21700 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21701 {
21702 	uchar_t	fval = *mp->b_rptr;
21703 	mblk_t	*tail;
21704 	queue_t	*q = tcp->tcp_wq;
21705 
21706 	/* TODO: How should flush interact with urgent data? */
21707 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21708 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21709 		/*
21710 		 * Flush only data that has not yet been put on the wire.  If
21711 		 * we flush data that we have already transmitted, life, as we
21712 		 * know it, may come to an end.
21713 		 */
21714 		tail = tcp->tcp_xmit_tail;
21715 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21716 		tcp->tcp_xmit_tail_unsent = 0;
21717 		tcp->tcp_unsent = 0;
21718 		if (tail->b_wptr != tail->b_rptr)
21719 			tail = tail->b_cont;
21720 		if (tail) {
21721 			mblk_t **excess = &tcp->tcp_xmit_head;
21722 			for (;;) {
21723 				mblk_t *mp1 = *excess;
21724 				if (mp1 == tail)
21725 					break;
21726 				tcp->tcp_xmit_tail = mp1;
21727 				tcp->tcp_xmit_last = mp1;
21728 				excess = &mp1->b_cont;
21729 			}
21730 			*excess = NULL;
21731 			tcp_close_mpp(&tail);
21732 			if (tcp->tcp_snd_zcopy_aware)
21733 				tcp_zcopy_notify(tcp);
21734 		}
21735 		/*
21736 		 * We have no unsent data, so unsent must be less than
21737 		 * tcp_xmit_lowater, so re-enable flow.
21738 		 */
21739 		mutex_enter(&tcp->tcp_non_sq_lock);
21740 		if (tcp->tcp_flow_stopped) {
21741 			tcp_clrqfull(tcp);
21742 		}
21743 		mutex_exit(&tcp->tcp_non_sq_lock);
21744 	}
21745 	/*
21746 	 * TODO: you can't just flush these, you have to increase rwnd for one
21747 	 * thing.  For another, how should urgent data interact?
21748 	 */
21749 	if (fval & FLUSHR) {
21750 		*mp->b_rptr = fval & ~FLUSHW;
21751 		/* XXX */
21752 		qreply(q, mp);
21753 		return;
21754 	}
21755 	freemsg(mp);
21756 }
21757 
21758 /*
21759  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21760  * messages.
21761  */
21762 static void
21763 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21764 {
21765 	mblk_t	*mp1;
21766 	STRUCT_HANDLE(strbuf, sb);
21767 	uint16_t port;
21768 	queue_t 	*q = tcp->tcp_wq;
21769 	in6_addr_t	v6addr;
21770 	ipaddr_t	v4addr;
21771 	uint32_t	flowinfo = 0;
21772 	int		addrlen;
21773 
21774 	/* Make sure it is one of ours. */
21775 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21776 	case TI_GETMYNAME:
21777 	case TI_GETPEERNAME:
21778 		break;
21779 	default:
21780 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21781 		return;
21782 	}
21783 	switch (mi_copy_state(q, mp, &mp1)) {
21784 	case -1:
21785 		return;
21786 	case MI_COPY_CASE(MI_COPY_IN, 1):
21787 		break;
21788 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21789 		/* Copy out the strbuf. */
21790 		mi_copyout(q, mp);
21791 		return;
21792 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21793 		/* All done. */
21794 		mi_copy_done(q, mp, 0);
21795 		return;
21796 	default:
21797 		mi_copy_done(q, mp, EPROTO);
21798 		return;
21799 	}
21800 	/* Check alignment of the strbuf */
21801 	if (!OK_32PTR(mp1->b_rptr)) {
21802 		mi_copy_done(q, mp, EINVAL);
21803 		return;
21804 	}
21805 
21806 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21807 	    (void *)mp1->b_rptr);
21808 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21809 
21810 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21811 		mi_copy_done(q, mp, EINVAL);
21812 		return;
21813 	}
21814 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21815 	case TI_GETMYNAME:
21816 		if (tcp->tcp_family == AF_INET) {
21817 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21818 				v4addr = tcp->tcp_ipha->ipha_src;
21819 			} else {
21820 				/* can't return an address in this case */
21821 				v4addr = 0;
21822 			}
21823 		} else {
21824 			/* tcp->tcp_family == AF_INET6 */
21825 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21826 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21827 				    &v6addr);
21828 			} else {
21829 				v6addr = tcp->tcp_ip6h->ip6_src;
21830 			}
21831 		}
21832 		port = tcp->tcp_lport;
21833 		break;
21834 	case TI_GETPEERNAME:
21835 		if (tcp->tcp_family == AF_INET) {
21836 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21837 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21838 				    v4addr);
21839 			} else {
21840 				/* can't return an address in this case */
21841 				v4addr = 0;
21842 			}
21843 		} else {
21844 			/* tcp->tcp_family == AF_INET6) */
21845 			v6addr = tcp->tcp_remote_v6;
21846 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21847 				/*
21848 				 * No flowinfo if tcp->tcp_ipversion is v4.
21849 				 *
21850 				 * flowinfo was already initialized to zero
21851 				 * where it was declared above, so only
21852 				 * set it if ipversion is v6.
21853 				 */
21854 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21855 				    ~IPV6_VERS_AND_FLOW_MASK;
21856 			}
21857 		}
21858 		port = tcp->tcp_fport;
21859 		break;
21860 	default:
21861 		mi_copy_done(q, mp, EPROTO);
21862 		return;
21863 	}
21864 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21865 	if (!mp1)
21866 		return;
21867 
21868 	if (tcp->tcp_family == AF_INET) {
21869 		sin_t *sin;
21870 
21871 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21872 		sin = (sin_t *)mp1->b_rptr;
21873 		mp1->b_wptr = (uchar_t *)&sin[1];
21874 		*sin = sin_null;
21875 		sin->sin_family = AF_INET;
21876 		sin->sin_addr.s_addr = v4addr;
21877 		sin->sin_port = port;
21878 	} else {
21879 		/* tcp->tcp_family == AF_INET6 */
21880 		sin6_t *sin6;
21881 
21882 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21883 		sin6 = (sin6_t *)mp1->b_rptr;
21884 		mp1->b_wptr = (uchar_t *)&sin6[1];
21885 		*sin6 = sin6_null;
21886 		sin6->sin6_family = AF_INET6;
21887 		sin6->sin6_flowinfo = flowinfo;
21888 		sin6->sin6_addr = v6addr;
21889 		sin6->sin6_port = port;
21890 	}
21891 	/* Copy out the address */
21892 	mi_copyout(q, mp);
21893 }
21894 
21895 /*
21896  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21897  * messages.
21898  */
21899 /* ARGSUSED */
21900 static void
21901 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21902 {
21903 	conn_t 	*connp = (conn_t *)arg;
21904 	tcp_t	*tcp = connp->conn_tcp;
21905 	queue_t	*q = tcp->tcp_wq;
21906 	struct iocblk	*iocp;
21907 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21908 
21909 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21910 	/*
21911 	 * Try and ASSERT the minimum possible references on the
21912 	 * conn early enough. Since we are executing on write side,
21913 	 * the connection is obviously not detached and that means
21914 	 * there is a ref each for TCP and IP. Since we are behind
21915 	 * the squeue, the minimum references needed are 3. If the
21916 	 * conn is in classifier hash list, there should be an
21917 	 * extra ref for that (we check both the possibilities).
21918 	 */
21919 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21920 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21921 
21922 	iocp = (struct iocblk *)mp->b_rptr;
21923 	switch (iocp->ioc_cmd) {
21924 	case TCP_IOC_DEFAULT_Q:
21925 		/* Wants to be the default wq. */
21926 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21927 			iocp->ioc_error = EPERM;
21928 			iocp->ioc_count = 0;
21929 			mp->b_datap->db_type = M_IOCACK;
21930 			qreply(q, mp);
21931 			return;
21932 		}
21933 		tcp_def_q_set(tcp, mp);
21934 		return;
21935 	case _SIOCSOCKFALLBACK:
21936 		/*
21937 		 * Either sockmod is about to be popped and the socket
21938 		 * would now be treated as a plain stream, or a module
21939 		 * is about to be pushed so we could no longer use read-
21940 		 * side synchronous streams for fused loopback tcp.
21941 		 * Drain any queued data and disable direct sockfs
21942 		 * interface from now on.
21943 		 */
21944 		if (!tcp->tcp_issocket) {
21945 			DB_TYPE(mp) = M_IOCNAK;
21946 			iocp->ioc_error = EINVAL;
21947 		} else {
21948 #ifdef	_ILP32
21949 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21950 #else
21951 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21952 #endif
21953 			/*
21954 			 * Insert this socket into the acceptor hash.
21955 			 * We might need it for T_CONN_RES message
21956 			 */
21957 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21958 
21959 			if (tcp->tcp_fused) {
21960 				/*
21961 				 * This is a fused loopback tcp; disable
21962 				 * read-side synchronous streams interface
21963 				 * and drain any queued data.  It is okay
21964 				 * to do this for non-synchronous streams
21965 				 * fused tcp as well.
21966 				 */
21967 				tcp_fuse_disable_pair(tcp, B_FALSE);
21968 			}
21969 			tcp->tcp_issocket = B_FALSE;
21970 			TCP_STAT(tcps, tcp_sock_fallback);
21971 
21972 			DB_TYPE(mp) = M_IOCACK;
21973 			iocp->ioc_error = 0;
21974 		}
21975 		iocp->ioc_count = 0;
21976 		iocp->ioc_rval = 0;
21977 		qreply(q, mp);
21978 		return;
21979 	}
21980 	CALL_IP_WPUT(connp, q, mp);
21981 }
21982 
21983 /*
21984  * This routine is called by tcp_wput() to handle all TPI requests.
21985  */
21986 /* ARGSUSED */
21987 static void
21988 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21989 {
21990 	conn_t 	*connp = (conn_t *)arg;
21991 	tcp_t	*tcp = connp->conn_tcp;
21992 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21993 	uchar_t *rptr;
21994 	t_scalar_t type;
21995 	int len;
21996 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21997 
21998 	/*
21999 	 * Try and ASSERT the minimum possible references on the
22000 	 * conn early enough. Since we are executing on write side,
22001 	 * the connection is obviously not detached and that means
22002 	 * there is a ref each for TCP and IP. Since we are behind
22003 	 * the squeue, the minimum references needed are 3. If the
22004 	 * conn is in classifier hash list, there should be an
22005 	 * extra ref for that (we check both the possibilities).
22006 	 */
22007 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22008 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22009 
22010 	rptr = mp->b_rptr;
22011 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22012 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22013 		type = ((union T_primitives *)rptr)->type;
22014 		if (type == T_EXDATA_REQ) {
22015 			uint32_t msize = msgdsize(mp->b_cont);
22016 
22017 			len = msize - 1;
22018 			if (len < 0) {
22019 				freemsg(mp);
22020 				return;
22021 			}
22022 			/*
22023 			 * Try to force urgent data out on the wire.
22024 			 * Even if we have unsent data this will
22025 			 * at least send the urgent flag.
22026 			 * XXX does not handle more flag correctly.
22027 			 */
22028 			len += tcp->tcp_unsent;
22029 			len += tcp->tcp_snxt;
22030 			tcp->tcp_urg = len;
22031 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22032 
22033 			/* Bypass tcp protocol for fused tcp loopback */
22034 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22035 				return;
22036 		} else if (type != T_DATA_REQ) {
22037 			goto non_urgent_data;
22038 		}
22039 		/* TODO: options, flags, ... from user */
22040 		/* Set length to zero for reclamation below */
22041 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22042 		freeb(mp);
22043 		return;
22044 	} else {
22045 		if (tcp->tcp_debug) {
22046 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22047 			    "tcp_wput_proto, dropping one...");
22048 		}
22049 		freemsg(mp);
22050 		return;
22051 	}
22052 
22053 non_urgent_data:
22054 
22055 	switch ((int)tprim->type) {
22056 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22057 		/*
22058 		 * save the kssl_ent_t from the next block, and convert this
22059 		 * back to a normal bind_req.
22060 		 */
22061 		if (mp->b_cont != NULL) {
22062 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22063 
22064 			if (tcp->tcp_kssl_ent != NULL) {
22065 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22066 				    KSSL_NO_PROXY);
22067 				tcp->tcp_kssl_ent = NULL;
22068 			}
22069 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22070 			    sizeof (kssl_ent_t));
22071 			kssl_hold_ent(tcp->tcp_kssl_ent);
22072 			freemsg(mp->b_cont);
22073 			mp->b_cont = NULL;
22074 		}
22075 		tprim->type = T_BIND_REQ;
22076 
22077 	/* FALLTHROUGH */
22078 	case O_T_BIND_REQ:	/* bind request */
22079 	case T_BIND_REQ:	/* new semantics bind request */
22080 		tcp_bind(tcp, mp);
22081 		break;
22082 	case T_UNBIND_REQ:	/* unbind request */
22083 		tcp_unbind(tcp, mp);
22084 		break;
22085 	case O_T_CONN_RES:	/* old connection response XXX */
22086 	case T_CONN_RES:	/* connection response */
22087 		tcp_accept(tcp, mp);
22088 		break;
22089 	case T_CONN_REQ:	/* connection request */
22090 		tcp_connect(tcp, mp);
22091 		break;
22092 	case T_DISCON_REQ:	/* disconnect request */
22093 		tcp_disconnect(tcp, mp);
22094 		break;
22095 	case T_CAPABILITY_REQ:
22096 		tcp_capability_req(tcp, mp);	/* capability request */
22097 		break;
22098 	case T_INFO_REQ:	/* information request */
22099 		tcp_info_req(tcp, mp);
22100 		break;
22101 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22102 		/* Only IP is allowed to return meaningful value */
22103 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22104 		break;
22105 	case T_OPTMGMT_REQ:
22106 		/*
22107 		 * Note:  no support for snmpcom_req() through new
22108 		 * T_OPTMGMT_REQ. See comments in ip.c
22109 		 */
22110 		/* Only IP is allowed to return meaningful value */
22111 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22112 		break;
22113 
22114 	case T_UNITDATA_REQ:	/* unitdata request */
22115 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22116 		break;
22117 	case T_ORDREL_REQ:	/* orderly release req */
22118 		freemsg(mp);
22119 
22120 		if (tcp->tcp_fused)
22121 			tcp_unfuse(tcp);
22122 
22123 		if (tcp_xmit_end(tcp) != 0) {
22124 			/*
22125 			 * We were crossing FINs and got a reset from
22126 			 * the other side. Just ignore it.
22127 			 */
22128 			if (tcp->tcp_debug) {
22129 				(void) strlog(TCP_MOD_ID, 0, 1,
22130 				    SL_ERROR|SL_TRACE,
22131 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22132 				    "state %s",
22133 				    tcp_display(tcp, NULL,
22134 				    DISP_ADDR_AND_PORT));
22135 			}
22136 		}
22137 		break;
22138 	case T_ADDR_REQ:
22139 		tcp_addr_req(tcp, mp);
22140 		break;
22141 	default:
22142 		if (tcp->tcp_debug) {
22143 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22144 			    "tcp_wput_proto, bogus TPI msg, type %d",
22145 			    tprim->type);
22146 		}
22147 		/*
22148 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22149 		 * to recover.
22150 		 */
22151 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22152 		break;
22153 	}
22154 }
22155 
22156 /*
22157  * The TCP write service routine should never be called...
22158  */
22159 /* ARGSUSED */
22160 static void
22161 tcp_wsrv(queue_t *q)
22162 {
22163 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22164 
22165 	TCP_STAT(tcps, tcp_wsrv_called);
22166 }
22167 
22168 /* Non overlapping byte exchanger */
22169 static void
22170 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22171 {
22172 	uchar_t	uch;
22173 
22174 	while (len-- > 0) {
22175 		uch = a[len];
22176 		a[len] = b[len];
22177 		b[len] = uch;
22178 	}
22179 }
22180 
22181 /*
22182  * Send out a control packet on the tcp connection specified.  This routine
22183  * is typically called where we need a simple ACK or RST generated.
22184  */
22185 static void
22186 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22187 {
22188 	uchar_t		*rptr;
22189 	tcph_t		*tcph;
22190 	ipha_t		*ipha = NULL;
22191 	ip6_t		*ip6h = NULL;
22192 	uint32_t	sum;
22193 	int		tcp_hdr_len;
22194 	int		tcp_ip_hdr_len;
22195 	mblk_t		*mp;
22196 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22197 
22198 	/*
22199 	 * Save sum for use in source route later.
22200 	 */
22201 	ASSERT(tcp != NULL);
22202 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22203 	tcp_hdr_len = tcp->tcp_hdr_len;
22204 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22205 
22206 	/* If a text string is passed in with the request, pass it to strlog. */
22207 	if (str != NULL && tcp->tcp_debug) {
22208 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22209 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22210 		    str, seq, ack, ctl);
22211 	}
22212 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22213 	    BPRI_MED);
22214 	if (mp == NULL) {
22215 		return;
22216 	}
22217 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22218 	mp->b_rptr = rptr;
22219 	mp->b_wptr = &rptr[tcp_hdr_len];
22220 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22221 
22222 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22223 		ipha = (ipha_t *)rptr;
22224 		ipha->ipha_length = htons(tcp_hdr_len);
22225 	} else {
22226 		ip6h = (ip6_t *)rptr;
22227 		ASSERT(tcp != NULL);
22228 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22229 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22230 	}
22231 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22232 	tcph->th_flags[0] = (uint8_t)ctl;
22233 	if (ctl & TH_RST) {
22234 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22235 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22236 		/*
22237 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22238 		 */
22239 		if (tcp->tcp_snd_ts_ok &&
22240 		    tcp->tcp_state > TCPS_SYN_SENT) {
22241 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22242 			*(mp->b_wptr) = TCPOPT_EOL;
22243 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22244 				ipha->ipha_length = htons(tcp_hdr_len -
22245 				    TCPOPT_REAL_TS_LEN);
22246 			} else {
22247 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22248 				    TCPOPT_REAL_TS_LEN);
22249 			}
22250 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22251 			sum -= TCPOPT_REAL_TS_LEN;
22252 		}
22253 	}
22254 	if (ctl & TH_ACK) {
22255 		if (tcp->tcp_snd_ts_ok) {
22256 			U32_TO_BE32(lbolt,
22257 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22258 			U32_TO_BE32(tcp->tcp_ts_recent,
22259 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22260 		}
22261 
22262 		/* Update the latest receive window size in TCP header. */
22263 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22264 		    tcph->th_win);
22265 		tcp->tcp_rack = ack;
22266 		tcp->tcp_rack_cnt = 0;
22267 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22268 	}
22269 	BUMP_LOCAL(tcp->tcp_obsegs);
22270 	U32_TO_BE32(seq, tcph->th_seq);
22271 	U32_TO_BE32(ack, tcph->th_ack);
22272 	/*
22273 	 * Include the adjustment for a source route if any.
22274 	 */
22275 	sum = (sum >> 16) + (sum & 0xFFFF);
22276 	U16_TO_BE16(sum, tcph->th_sum);
22277 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22278 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22279 }
22280 
22281 /*
22282  * If this routine returns B_TRUE, TCP can generate a RST in response
22283  * to a segment.  If it returns B_FALSE, TCP should not respond.
22284  */
22285 static boolean_t
22286 tcp_send_rst_chk(tcp_stack_t *tcps)
22287 {
22288 	clock_t	now;
22289 
22290 	/*
22291 	 * TCP needs to protect itself from generating too many RSTs.
22292 	 * This can be a DoS attack by sending us random segments
22293 	 * soliciting RSTs.
22294 	 *
22295 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22296 	 * in each 1 second interval.  In this way, TCP still generate
22297 	 * RSTs in normal cases but when under attack, the impact is
22298 	 * limited.
22299 	 */
22300 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22301 		now = lbolt;
22302 		/* lbolt can wrap around. */
22303 		if ((tcps->tcps_last_rst_intrvl > now) ||
22304 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22305 		    1*SECONDS)) {
22306 			tcps->tcps_last_rst_intrvl = now;
22307 			tcps->tcps_rst_cnt = 1;
22308 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22309 			return (B_FALSE);
22310 		}
22311 	}
22312 	return (B_TRUE);
22313 }
22314 
22315 /*
22316  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22317  */
22318 static void
22319 tcp_ip_ire_mark_advice(tcp_t *tcp)
22320 {
22321 	mblk_t *mp;
22322 	ipic_t *ipic;
22323 
22324 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22325 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22326 		    &ipic);
22327 	} else {
22328 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22329 		    &ipic);
22330 	}
22331 	if (mp == NULL)
22332 		return;
22333 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22334 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22335 }
22336 
22337 /*
22338  * Return an IP advice ioctl mblk and set ipic to be the pointer
22339  * to the advice structure.
22340  */
22341 static mblk_t *
22342 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22343 {
22344 	struct iocblk *ioc;
22345 	mblk_t *mp, *mp1;
22346 
22347 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22348 	if (mp == NULL)
22349 		return (NULL);
22350 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22351 	*ipic = (ipic_t *)mp->b_rptr;
22352 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22353 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22354 
22355 	bcopy(addr, *ipic + 1, addr_len);
22356 
22357 	(*ipic)->ipic_addr_length = addr_len;
22358 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22359 
22360 	mp1 = mkiocb(IP_IOCTL);
22361 	if (mp1 == NULL) {
22362 		freemsg(mp);
22363 		return (NULL);
22364 	}
22365 	mp1->b_cont = mp;
22366 	ioc = (struct iocblk *)mp1->b_rptr;
22367 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22368 
22369 	return (mp1);
22370 }
22371 
22372 /*
22373  * Generate a reset based on an inbound packet for which there is no active
22374  * tcp state that we can find.
22375  *
22376  * IPSEC NOTE : Try to send the reply with the same protection as it came
22377  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22378  * the packet will go out at the same level of protection as it came in by
22379  * converting the IPSEC_IN to IPSEC_OUT.
22380  */
22381 static void
22382 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22383     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22384     tcp_stack_t *tcps)
22385 {
22386 	ipha_t		*ipha = NULL;
22387 	ip6_t		*ip6h = NULL;
22388 	ushort_t	len;
22389 	tcph_t		*tcph;
22390 	int		i;
22391 	mblk_t		*ipsec_mp;
22392 	boolean_t	mctl_present;
22393 	ipic_t		*ipic;
22394 	ipaddr_t	v4addr;
22395 	in6_addr_t	v6addr;
22396 	int		addr_len;
22397 	void		*addr;
22398 	queue_t		*q = tcps->tcps_g_q;
22399 	tcp_t		*tcp;
22400 	cred_t		*cr;
22401 	mblk_t		*nmp;
22402 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22403 
22404 	if (tcps->tcps_g_q == NULL) {
22405 		/*
22406 		 * For non-zero stackids the default queue isn't created
22407 		 * until the first open, thus there can be a need to send
22408 		 * a reset before then. But we can't do that, hence we just
22409 		 * drop the packet. Later during boot, when the default queue
22410 		 * has been setup, a retransmitted packet from the peer
22411 		 * will result in a reset.
22412 		 */
22413 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22414 		    GLOBAL_NETSTACKID);
22415 		freemsg(mp);
22416 		return;
22417 	}
22418 
22419 	tcp = Q_TO_TCP(q);
22420 
22421 	if (!tcp_send_rst_chk(tcps)) {
22422 		tcps->tcps_rst_unsent++;
22423 		freemsg(mp);
22424 		return;
22425 	}
22426 
22427 	if (mp->b_datap->db_type == M_CTL) {
22428 		ipsec_mp = mp;
22429 		mp = mp->b_cont;
22430 		mctl_present = B_TRUE;
22431 	} else {
22432 		ipsec_mp = mp;
22433 		mctl_present = B_FALSE;
22434 	}
22435 
22436 	if (str && q && tcps->tcps_dbg) {
22437 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22438 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22439 		    "flags 0x%x",
22440 		    str, seq, ack, ctl);
22441 	}
22442 	if (mp->b_datap->db_ref != 1) {
22443 		mblk_t *mp1 = copyb(mp);
22444 		freemsg(mp);
22445 		mp = mp1;
22446 		if (!mp) {
22447 			if (mctl_present)
22448 				freeb(ipsec_mp);
22449 			return;
22450 		} else {
22451 			if (mctl_present) {
22452 				ipsec_mp->b_cont = mp;
22453 			} else {
22454 				ipsec_mp = mp;
22455 			}
22456 		}
22457 	} else if (mp->b_cont) {
22458 		freemsg(mp->b_cont);
22459 		mp->b_cont = NULL;
22460 	}
22461 	/*
22462 	 * We skip reversing source route here.
22463 	 * (for now we replace all IP options with EOL)
22464 	 */
22465 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22466 		ipha = (ipha_t *)mp->b_rptr;
22467 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22468 			mp->b_rptr[i] = IPOPT_EOL;
22469 		/*
22470 		 * Make sure that src address isn't flagrantly invalid.
22471 		 * Not all broadcast address checking for the src address
22472 		 * is possible, since we don't know the netmask of the src
22473 		 * addr.  No check for destination address is done, since
22474 		 * IP will not pass up a packet with a broadcast dest
22475 		 * address to TCP.  Similar checks are done below for IPv6.
22476 		 */
22477 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22478 		    CLASSD(ipha->ipha_src)) {
22479 			freemsg(ipsec_mp);
22480 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22481 			return;
22482 		}
22483 	} else {
22484 		ip6h = (ip6_t *)mp->b_rptr;
22485 
22486 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22487 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22488 			freemsg(ipsec_mp);
22489 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22490 			return;
22491 		}
22492 
22493 		/* Remove any extension headers assuming partial overlay */
22494 		if (ip_hdr_len > IPV6_HDR_LEN) {
22495 			uint8_t *to;
22496 
22497 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22498 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22499 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22500 			ip_hdr_len = IPV6_HDR_LEN;
22501 			ip6h = (ip6_t *)mp->b_rptr;
22502 			ip6h->ip6_nxt = IPPROTO_TCP;
22503 		}
22504 	}
22505 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22506 	if (tcph->th_flags[0] & TH_RST) {
22507 		freemsg(ipsec_mp);
22508 		return;
22509 	}
22510 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22511 	len = ip_hdr_len + sizeof (tcph_t);
22512 	mp->b_wptr = &mp->b_rptr[len];
22513 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22514 		ipha->ipha_length = htons(len);
22515 		/* Swap addresses */
22516 		v4addr = ipha->ipha_src;
22517 		ipha->ipha_src = ipha->ipha_dst;
22518 		ipha->ipha_dst = v4addr;
22519 		ipha->ipha_ident = 0;
22520 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22521 		addr_len = IP_ADDR_LEN;
22522 		addr = &v4addr;
22523 	} else {
22524 		/* No ip6i_t in this case */
22525 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22526 		/* Swap addresses */
22527 		v6addr = ip6h->ip6_src;
22528 		ip6h->ip6_src = ip6h->ip6_dst;
22529 		ip6h->ip6_dst = v6addr;
22530 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22531 		addr_len = IPV6_ADDR_LEN;
22532 		addr = &v6addr;
22533 	}
22534 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22535 	U32_TO_BE32(ack, tcph->th_ack);
22536 	U32_TO_BE32(seq, tcph->th_seq);
22537 	U16_TO_BE16(0, tcph->th_win);
22538 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22539 	tcph->th_flags[0] = (uint8_t)ctl;
22540 	if (ctl & TH_RST) {
22541 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22542 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22543 	}
22544 
22545 	/* IP trusts us to set up labels when required. */
22546 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22547 	    crgetlabel(cr) != NULL) {
22548 		int err, adjust;
22549 
22550 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22551 			err = tsol_check_label(cr, &mp, &adjust,
22552 			    tcp->tcp_connp->conn_mac_exempt,
22553 			    tcps->tcps_netstack->netstack_ip);
22554 		else
22555 			err = tsol_check_label_v6(cr, &mp, &adjust,
22556 			    tcp->tcp_connp->conn_mac_exempt,
22557 			    tcps->tcps_netstack->netstack_ip);
22558 		if (mctl_present)
22559 			ipsec_mp->b_cont = mp;
22560 		else
22561 			ipsec_mp = mp;
22562 		if (err != 0) {
22563 			freemsg(ipsec_mp);
22564 			return;
22565 		}
22566 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22567 			ipha = (ipha_t *)mp->b_rptr;
22568 			adjust += ntohs(ipha->ipha_length);
22569 			ipha->ipha_length = htons(adjust);
22570 		} else {
22571 			ip6h = (ip6_t *)mp->b_rptr;
22572 		}
22573 	}
22574 
22575 	if (mctl_present) {
22576 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22577 
22578 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22579 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22580 			return;
22581 		}
22582 	}
22583 	if (zoneid == ALL_ZONES)
22584 		zoneid = GLOBAL_ZONEID;
22585 
22586 	/* Add the zoneid so ip_output routes it properly */
22587 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22588 		freemsg(ipsec_mp);
22589 		return;
22590 	}
22591 	ipsec_mp = nmp;
22592 
22593 	/*
22594 	 * NOTE:  one might consider tracing a TCP packet here, but
22595 	 * this function has no active TCP state and no tcp structure
22596 	 * that has a trace buffer.  If we traced here, we would have
22597 	 * to keep a local trace buffer in tcp_record_trace().
22598 	 *
22599 	 * TSol note: The mblk that contains the incoming packet was
22600 	 * reused by tcp_xmit_listener_reset, so it already contains
22601 	 * the right credentials and we don't need to call mblk_setcred.
22602 	 * Also the conn's cred is not right since it is associated
22603 	 * with tcps_g_q.
22604 	 */
22605 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22606 
22607 	/*
22608 	 * Tell IP to mark the IRE used for this destination temporary.
22609 	 * This way, we can limit our exposure to DoS attack because IP
22610 	 * creates an IRE for each destination.  If there are too many,
22611 	 * the time to do any routing lookup will be extremely long.  And
22612 	 * the lookup can be in interrupt context.
22613 	 *
22614 	 * Note that in normal circumstances, this marking should not
22615 	 * affect anything.  It would be nice if only 1 message is
22616 	 * needed to inform IP that the IRE created for this RST should
22617 	 * not be added to the cache table.  But there is currently
22618 	 * not such communication mechanism between TCP and IP.  So
22619 	 * the best we can do now is to send the advice ioctl to IP
22620 	 * to mark the IRE temporary.
22621 	 */
22622 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22623 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22624 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22625 	}
22626 }
22627 
22628 /*
22629  * Initiate closedown sequence on an active connection.  (May be called as
22630  * writer.)  Return value zero for OK return, non-zero for error return.
22631  */
22632 static int
22633 tcp_xmit_end(tcp_t *tcp)
22634 {
22635 	ipic_t	*ipic;
22636 	mblk_t	*mp;
22637 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22638 
22639 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22640 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22641 		/*
22642 		 * Invalid state, only states TCPS_SYN_RCVD,
22643 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22644 		 */
22645 		return (-1);
22646 	}
22647 
22648 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22649 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22650 	/*
22651 	 * If there is nothing more unsent, send the FIN now.
22652 	 * Otherwise, it will go out with the last segment.
22653 	 */
22654 	if (tcp->tcp_unsent == 0) {
22655 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22656 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22657 
22658 		if (mp) {
22659 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22660 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22661 		} else {
22662 			/*
22663 			 * Couldn't allocate msg.  Pretend we got it out.
22664 			 * Wait for rexmit timeout.
22665 			 */
22666 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22667 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22668 		}
22669 
22670 		/*
22671 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22672 		 * changed.
22673 		 */
22674 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22675 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22676 		}
22677 	} else {
22678 		/*
22679 		 * If tcp->tcp_cork is set, then the data will not get sent,
22680 		 * so we have to check that and unset it first.
22681 		 */
22682 		if (tcp->tcp_cork)
22683 			tcp->tcp_cork = B_FALSE;
22684 		tcp_wput_data(tcp, NULL, B_FALSE);
22685 	}
22686 
22687 	/*
22688 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22689 	 * is 0, don't update the cache.
22690 	 */
22691 	if (tcps->tcps_rtt_updates == 0 ||
22692 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22693 		return (0);
22694 
22695 	/*
22696 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22697 	 * different from the destination.
22698 	 */
22699 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22700 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22701 			return (0);
22702 		}
22703 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22704 		    &ipic);
22705 	} else {
22706 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22707 		    &tcp->tcp_ip6h->ip6_dst))) {
22708 			return (0);
22709 		}
22710 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22711 		    &ipic);
22712 	}
22713 
22714 	/* Record route attributes in the IRE for use by future connections. */
22715 	if (mp == NULL)
22716 		return (0);
22717 
22718 	/*
22719 	 * We do not have a good algorithm to update ssthresh at this time.
22720 	 * So don't do any update.
22721 	 */
22722 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22723 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22724 
22725 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22726 	return (0);
22727 }
22728 
22729 /*
22730  * Generate a "no listener here" RST in response to an "unknown" segment.
22731  * Note that we are reusing the incoming mp to construct the outgoing
22732  * RST.
22733  */
22734 void
22735 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22736     tcp_stack_t *tcps)
22737 {
22738 	uchar_t		*rptr;
22739 	uint32_t	seg_len;
22740 	tcph_t		*tcph;
22741 	uint32_t	seg_seq;
22742 	uint32_t	seg_ack;
22743 	uint_t		flags;
22744 	mblk_t		*ipsec_mp;
22745 	ipha_t 		*ipha;
22746 	ip6_t 		*ip6h;
22747 	boolean_t	mctl_present = B_FALSE;
22748 	boolean_t	check = B_TRUE;
22749 	boolean_t	policy_present;
22750 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22751 
22752 	TCP_STAT(tcps, tcp_no_listener);
22753 
22754 	ipsec_mp = mp;
22755 
22756 	if (mp->b_datap->db_type == M_CTL) {
22757 		ipsec_in_t *ii;
22758 
22759 		mctl_present = B_TRUE;
22760 		mp = mp->b_cont;
22761 
22762 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22763 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22764 		if (ii->ipsec_in_dont_check) {
22765 			check = B_FALSE;
22766 			if (!ii->ipsec_in_secure) {
22767 				freeb(ipsec_mp);
22768 				mctl_present = B_FALSE;
22769 				ipsec_mp = mp;
22770 			}
22771 		}
22772 	}
22773 
22774 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22775 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22776 		ipha = (ipha_t *)mp->b_rptr;
22777 		ip6h = NULL;
22778 	} else {
22779 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22780 		ipha = NULL;
22781 		ip6h = (ip6_t *)mp->b_rptr;
22782 	}
22783 
22784 	if (check && policy_present) {
22785 		/*
22786 		 * The conn_t parameter is NULL because we already know
22787 		 * nobody's home.
22788 		 */
22789 		ipsec_mp = ipsec_check_global_policy(
22790 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22791 		    tcps->tcps_netstack);
22792 		if (ipsec_mp == NULL)
22793 			return;
22794 	}
22795 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22796 		DTRACE_PROBE2(
22797 		    tx__ip__log__error__nolistener__tcp,
22798 		    char *, "Could not reply with RST to mp(1)",
22799 		    mblk_t *, mp);
22800 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22801 		freemsg(ipsec_mp);
22802 		return;
22803 	}
22804 
22805 	rptr = mp->b_rptr;
22806 
22807 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22808 	seg_seq = BE32_TO_U32(tcph->th_seq);
22809 	seg_ack = BE32_TO_U32(tcph->th_ack);
22810 	flags = tcph->th_flags[0];
22811 
22812 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22813 	if (flags & TH_RST) {
22814 		freemsg(ipsec_mp);
22815 	} else if (flags & TH_ACK) {
22816 		tcp_xmit_early_reset("no tcp, reset",
22817 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps);
22818 	} else {
22819 		if (flags & TH_SYN) {
22820 			seg_len++;
22821 		} else {
22822 			/*
22823 			 * Here we violate the RFC.  Note that a normal
22824 			 * TCP will never send a segment without the ACK
22825 			 * flag, except for RST or SYN segment.  This
22826 			 * segment is neither.  Just drop it on the
22827 			 * floor.
22828 			 */
22829 			freemsg(ipsec_mp);
22830 			tcps->tcps_rst_unsent++;
22831 			return;
22832 		}
22833 
22834 		tcp_xmit_early_reset("no tcp, reset/ack",
22835 		    ipsec_mp, 0, seg_seq + seg_len,
22836 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps);
22837 	}
22838 }
22839 
22840 /*
22841  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22842  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22843  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22844  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22845  * otherwise it will dup partial mblks.)
22846  * Otherwise, an appropriate ACK packet will be generated.  This
22847  * routine is not usually called to send new data for the first time.  It
22848  * is mostly called out of the timer for retransmits, and to generate ACKs.
22849  *
22850  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22851  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22852  * of the original mblk chain will be returned in *offset and *end_mp.
22853  */
22854 mblk_t *
22855 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22856     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22857     boolean_t rexmit)
22858 {
22859 	int	data_length;
22860 	int32_t	off = 0;
22861 	uint_t	flags;
22862 	mblk_t	*mp1;
22863 	mblk_t	*mp2;
22864 	uchar_t	*rptr;
22865 	tcph_t	*tcph;
22866 	int32_t	num_sack_blk = 0;
22867 	int32_t	sack_opt_len = 0;
22868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22869 
22870 	/* Allocate for our maximum TCP header + link-level */
22871 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22872 	    tcps->tcps_wroff_xtra, BPRI_MED);
22873 	if (!mp1)
22874 		return (NULL);
22875 	data_length = 0;
22876 
22877 	/*
22878 	 * Note that tcp_mss has been adjusted to take into account the
22879 	 * timestamp option if applicable.  Because SACK options do not
22880 	 * appear in every TCP segments and they are of variable lengths,
22881 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22882 	 * the actual segment length when we need to send a segment which
22883 	 * includes SACK options.
22884 	 */
22885 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22886 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22887 		    tcp->tcp_num_sack_blk);
22888 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22889 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22890 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22891 			max_to_send -= sack_opt_len;
22892 	}
22893 
22894 	if (offset != NULL) {
22895 		off = *offset;
22896 		/* We use offset as an indicator that end_mp is not NULL. */
22897 		*end_mp = NULL;
22898 	}
22899 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22900 		/* This could be faster with cooperation from downstream */
22901 		if (mp2 != mp1 && !sendall &&
22902 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22903 		    max_to_send)
22904 			/*
22905 			 * Don't send the next mblk since the whole mblk
22906 			 * does not fit.
22907 			 */
22908 			break;
22909 		mp2->b_cont = dupb(mp);
22910 		mp2 = mp2->b_cont;
22911 		if (!mp2) {
22912 			freemsg(mp1);
22913 			return (NULL);
22914 		}
22915 		mp2->b_rptr += off;
22916 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22917 		    (uintptr_t)INT_MAX);
22918 
22919 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22920 		if (data_length > max_to_send) {
22921 			mp2->b_wptr -= data_length - max_to_send;
22922 			data_length = max_to_send;
22923 			off = mp2->b_wptr - mp->b_rptr;
22924 			break;
22925 		} else {
22926 			off = 0;
22927 		}
22928 	}
22929 	if (offset != NULL) {
22930 		*offset = off;
22931 		*end_mp = mp;
22932 	}
22933 	if (seg_len != NULL) {
22934 		*seg_len = data_length;
22935 	}
22936 
22937 	/* Update the latest receive window size in TCP header. */
22938 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22939 	    tcp->tcp_tcph->th_win);
22940 
22941 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22942 	mp1->b_rptr = rptr;
22943 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22944 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22945 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22946 	U32_TO_ABE32(seq, tcph->th_seq);
22947 
22948 	/*
22949 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22950 	 * that this function was called from tcp_wput_data. Thus, when called
22951 	 * to retransmit data the setting of the PUSH bit may appear some
22952 	 * what random in that it might get set when it should not. This
22953 	 * should not pose any performance issues.
22954 	 */
22955 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22956 	    tcp->tcp_unsent == data_length)) {
22957 		flags = TH_ACK | TH_PUSH;
22958 	} else {
22959 		flags = TH_ACK;
22960 	}
22961 
22962 	if (tcp->tcp_ecn_ok) {
22963 		if (tcp->tcp_ecn_echo_on)
22964 			flags |= TH_ECE;
22965 
22966 		/*
22967 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22968 		 * There is no TCP flow control for non-data segments, and
22969 		 * only data segment is transmitted reliably.
22970 		 */
22971 		if (data_length > 0 && !rexmit) {
22972 			SET_ECT(tcp, rptr);
22973 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22974 				flags |= TH_CWR;
22975 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22976 			}
22977 		}
22978 	}
22979 
22980 	if (tcp->tcp_valid_bits) {
22981 		uint32_t u1;
22982 
22983 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22984 		    seq == tcp->tcp_iss) {
22985 			uchar_t	*wptr;
22986 
22987 			/*
22988 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22989 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22990 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22991 			 * our SYN is not ack'ed but the app closes this
22992 			 * TCP connection.
22993 			 */
22994 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22995 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22996 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22997 
22998 			/*
22999 			 * Tack on the MSS option.  It is always needed
23000 			 * for both active and passive open.
23001 			 *
23002 			 * MSS option value should be interface MTU - MIN
23003 			 * TCP/IP header according to RFC 793 as it means
23004 			 * the maximum segment size TCP can receive.  But
23005 			 * to get around some broken middle boxes/end hosts
23006 			 * out there, we allow the option value to be the
23007 			 * same as the MSS option size on the peer side.
23008 			 * In this way, the other side will not send
23009 			 * anything larger than they can receive.
23010 			 *
23011 			 * Note that for SYN_SENT state, the ndd param
23012 			 * tcp_use_smss_as_mss_opt has no effect as we
23013 			 * don't know the peer's MSS option value. So
23014 			 * the only case we need to take care of is in
23015 			 * SYN_RCVD state, which is done later.
23016 			 */
23017 			wptr = mp1->b_wptr;
23018 			wptr[0] = TCPOPT_MAXSEG;
23019 			wptr[1] = TCPOPT_MAXSEG_LEN;
23020 			wptr += 2;
23021 			u1 = tcp->tcp_if_mtu -
23022 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23023 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23024 			    TCP_MIN_HEADER_LENGTH;
23025 			U16_TO_BE16(u1, wptr);
23026 			mp1->b_wptr = wptr + 2;
23027 			/* Update the offset to cover the additional word */
23028 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23029 
23030 			/*
23031 			 * Note that the following way of filling in
23032 			 * TCP options are not optimal.  Some NOPs can
23033 			 * be saved.  But there is no need at this time
23034 			 * to optimize it.  When it is needed, we will
23035 			 * do it.
23036 			 */
23037 			switch (tcp->tcp_state) {
23038 			case TCPS_SYN_SENT:
23039 				flags = TH_SYN;
23040 
23041 				if (tcp->tcp_snd_ts_ok) {
23042 					uint32_t llbolt = (uint32_t)lbolt;
23043 
23044 					wptr = mp1->b_wptr;
23045 					wptr[0] = TCPOPT_NOP;
23046 					wptr[1] = TCPOPT_NOP;
23047 					wptr[2] = TCPOPT_TSTAMP;
23048 					wptr[3] = TCPOPT_TSTAMP_LEN;
23049 					wptr += 4;
23050 					U32_TO_BE32(llbolt, wptr);
23051 					wptr += 4;
23052 					ASSERT(tcp->tcp_ts_recent == 0);
23053 					U32_TO_BE32(0L, wptr);
23054 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23055 					tcph->th_offset_and_rsrvd[0] +=
23056 					    (3 << 4);
23057 				}
23058 
23059 				/*
23060 				 * Set up all the bits to tell other side
23061 				 * we are ECN capable.
23062 				 */
23063 				if (tcp->tcp_ecn_ok) {
23064 					flags |= (TH_ECE | TH_CWR);
23065 				}
23066 				break;
23067 			case TCPS_SYN_RCVD:
23068 				flags |= TH_SYN;
23069 
23070 				/*
23071 				 * Reset the MSS option value to be SMSS
23072 				 * We should probably add back the bytes
23073 				 * for timestamp option and IPsec.  We
23074 				 * don't do that as this is a workaround
23075 				 * for broken middle boxes/end hosts, it
23076 				 * is better for us to be more cautious.
23077 				 * They may not take these things into
23078 				 * account in their SMSS calculation.  Thus
23079 				 * the peer's calculated SMSS may be smaller
23080 				 * than what it can be.  This should be OK.
23081 				 */
23082 				if (tcps->tcps_use_smss_as_mss_opt) {
23083 					u1 = tcp->tcp_mss;
23084 					U16_TO_BE16(u1, wptr);
23085 				}
23086 
23087 				/*
23088 				 * If the other side is ECN capable, reply
23089 				 * that we are also ECN capable.
23090 				 */
23091 				if (tcp->tcp_ecn_ok)
23092 					flags |= TH_ECE;
23093 				break;
23094 			default:
23095 				/*
23096 				 * The above ASSERT() makes sure that this
23097 				 * must be FIN-WAIT-1 state.  Our SYN has
23098 				 * not been ack'ed so retransmit it.
23099 				 */
23100 				flags |= TH_SYN;
23101 				break;
23102 			}
23103 
23104 			if (tcp->tcp_snd_ws_ok) {
23105 				wptr = mp1->b_wptr;
23106 				wptr[0] =  TCPOPT_NOP;
23107 				wptr[1] =  TCPOPT_WSCALE;
23108 				wptr[2] =  TCPOPT_WS_LEN;
23109 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23110 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23111 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23112 			}
23113 
23114 			if (tcp->tcp_snd_sack_ok) {
23115 				wptr = mp1->b_wptr;
23116 				wptr[0] = TCPOPT_NOP;
23117 				wptr[1] = TCPOPT_NOP;
23118 				wptr[2] = TCPOPT_SACK_PERMITTED;
23119 				wptr[3] = TCPOPT_SACK_OK_LEN;
23120 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23121 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23122 			}
23123 
23124 			/* allocb() of adequate mblk assures space */
23125 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23126 			    (uintptr_t)INT_MAX);
23127 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23128 			/*
23129 			 * Get IP set to checksum on our behalf
23130 			 * Include the adjustment for a source route if any.
23131 			 */
23132 			u1 += tcp->tcp_sum;
23133 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23134 			U16_TO_BE16(u1, tcph->th_sum);
23135 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23136 		}
23137 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23138 		    (seq + data_length) == tcp->tcp_fss) {
23139 			if (!tcp->tcp_fin_acked) {
23140 				flags |= TH_FIN;
23141 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23142 			}
23143 			if (!tcp->tcp_fin_sent) {
23144 				tcp->tcp_fin_sent = B_TRUE;
23145 				switch (tcp->tcp_state) {
23146 				case TCPS_SYN_RCVD:
23147 				case TCPS_ESTABLISHED:
23148 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23149 					break;
23150 				case TCPS_CLOSE_WAIT:
23151 					tcp->tcp_state = TCPS_LAST_ACK;
23152 					break;
23153 				}
23154 				if (tcp->tcp_suna == tcp->tcp_snxt)
23155 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23156 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23157 			}
23158 		}
23159 		/*
23160 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23161 		 * is smaller than seq, u1 will become a very huge value.
23162 		 * So the comparison will fail.  Also note that tcp_urp
23163 		 * should be positive, see RFC 793 page 17.
23164 		 */
23165 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23166 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23167 		    u1 < (uint32_t)(64 * 1024)) {
23168 			flags |= TH_URG;
23169 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23170 			U32_TO_ABE16(u1, tcph->th_urp);
23171 		}
23172 	}
23173 	tcph->th_flags[0] = (uchar_t)flags;
23174 	tcp->tcp_rack = tcp->tcp_rnxt;
23175 	tcp->tcp_rack_cnt = 0;
23176 
23177 	if (tcp->tcp_snd_ts_ok) {
23178 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23179 			uint32_t llbolt = (uint32_t)lbolt;
23180 
23181 			U32_TO_BE32(llbolt,
23182 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23183 			U32_TO_BE32(tcp->tcp_ts_recent,
23184 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23185 		}
23186 	}
23187 
23188 	if (num_sack_blk > 0) {
23189 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23190 		sack_blk_t *tmp;
23191 		int32_t	i;
23192 
23193 		wptr[0] = TCPOPT_NOP;
23194 		wptr[1] = TCPOPT_NOP;
23195 		wptr[2] = TCPOPT_SACK;
23196 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23197 		    sizeof (sack_blk_t);
23198 		wptr += TCPOPT_REAL_SACK_LEN;
23199 
23200 		tmp = tcp->tcp_sack_list;
23201 		for (i = 0; i < num_sack_blk; i++) {
23202 			U32_TO_BE32(tmp[i].begin, wptr);
23203 			wptr += sizeof (tcp_seq);
23204 			U32_TO_BE32(tmp[i].end, wptr);
23205 			wptr += sizeof (tcp_seq);
23206 		}
23207 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23208 	}
23209 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23210 	data_length += (int)(mp1->b_wptr - rptr);
23211 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23212 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23213 	} else {
23214 		ip6_t *ip6 = (ip6_t *)(rptr +
23215 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23216 		    sizeof (ip6i_t) : 0));
23217 
23218 		ip6->ip6_plen = htons(data_length -
23219 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23220 	}
23221 
23222 	/*
23223 	 * Prime pump for IP
23224 	 * Include the adjustment for a source route if any.
23225 	 */
23226 	data_length -= tcp->tcp_ip_hdr_len;
23227 	data_length += tcp->tcp_sum;
23228 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23229 	U16_TO_ABE16(data_length, tcph->th_sum);
23230 	if (tcp->tcp_ip_forward_progress) {
23231 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23232 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23233 		tcp->tcp_ip_forward_progress = B_FALSE;
23234 	}
23235 	return (mp1);
23236 }
23237 
23238 /* This function handles the push timeout. */
23239 void
23240 tcp_push_timer(void *arg)
23241 {
23242 	conn_t	*connp = (conn_t *)arg;
23243 	tcp_t *tcp = connp->conn_tcp;
23244 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23245 
23246 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23247 
23248 	ASSERT(tcp->tcp_listener == NULL);
23249 
23250 	/*
23251 	 * We need to plug synchronous streams during our drain to prevent
23252 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23253 	 */
23254 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23255 	tcp->tcp_push_tid = 0;
23256 	if ((tcp->tcp_rcv_list != NULL) &&
23257 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23258 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23259 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23260 }
23261 
23262 /*
23263  * This function handles delayed ACK timeout.
23264  */
23265 static void
23266 tcp_ack_timer(void *arg)
23267 {
23268 	conn_t	*connp = (conn_t *)arg;
23269 	tcp_t *tcp = connp->conn_tcp;
23270 	mblk_t *mp;
23271 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23272 
23273 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23274 
23275 	tcp->tcp_ack_tid = 0;
23276 
23277 	if (tcp->tcp_fused)
23278 		return;
23279 
23280 	/*
23281 	 * Do not send ACK if there is no outstanding unack'ed data.
23282 	 */
23283 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23284 		return;
23285 	}
23286 
23287 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23288 		/*
23289 		 * Make sure we don't allow deferred ACKs to result in
23290 		 * timer-based ACKing.  If we have held off an ACK
23291 		 * when there was more than an mss here, and the timer
23292 		 * goes off, we have to worry about the possibility
23293 		 * that the sender isn't doing slow-start, or is out
23294 		 * of step with us for some other reason.  We fall
23295 		 * permanently back in the direction of
23296 		 * ACK-every-other-packet as suggested in RFC 1122.
23297 		 */
23298 		if (tcp->tcp_rack_abs_max > 2)
23299 			tcp->tcp_rack_abs_max--;
23300 		tcp->tcp_rack_cur_max = 2;
23301 	}
23302 	mp = tcp_ack_mp(tcp);
23303 
23304 	if (mp != NULL) {
23305 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23306 		BUMP_LOCAL(tcp->tcp_obsegs);
23307 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23308 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23309 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23310 	}
23311 }
23312 
23313 
23314 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23315 static mblk_t *
23316 tcp_ack_mp(tcp_t *tcp)
23317 {
23318 	uint32_t	seq_no;
23319 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23320 
23321 	/*
23322 	 * There are a few cases to be considered while setting the sequence no.
23323 	 * Essentially, we can come here while processing an unacceptable pkt
23324 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23325 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23326 	 * If we are here for a zero window probe, stick with suna. In all
23327 	 * other cases, we check if suna + swnd encompasses snxt and set
23328 	 * the sequence number to snxt, if so. If snxt falls outside the
23329 	 * window (the receiver probably shrunk its window), we will go with
23330 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23331 	 * receiver.
23332 	 */
23333 	if (tcp->tcp_zero_win_probe) {
23334 		seq_no = tcp->tcp_suna;
23335 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23336 		ASSERT(tcp->tcp_swnd == 0);
23337 		seq_no = tcp->tcp_snxt;
23338 	} else {
23339 		seq_no = SEQ_GT(tcp->tcp_snxt,
23340 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23341 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23342 	}
23343 
23344 	if (tcp->tcp_valid_bits) {
23345 		/*
23346 		 * For the complex case where we have to send some
23347 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23348 		 */
23349 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23350 		    NULL, B_FALSE));
23351 	} else {
23352 		/* Generate a simple ACK */
23353 		int	data_length;
23354 		uchar_t	*rptr;
23355 		tcph_t	*tcph;
23356 		mblk_t	*mp1;
23357 		int32_t	tcp_hdr_len;
23358 		int32_t	tcp_tcp_hdr_len;
23359 		int32_t	num_sack_blk = 0;
23360 		int32_t sack_opt_len;
23361 
23362 		/*
23363 		 * Allocate space for TCP + IP headers
23364 		 * and link-level header
23365 		 */
23366 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23367 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23368 			    tcp->tcp_num_sack_blk);
23369 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23370 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23371 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23372 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23373 		} else {
23374 			tcp_hdr_len = tcp->tcp_hdr_len;
23375 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23376 		}
23377 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23378 		if (!mp1)
23379 			return (NULL);
23380 
23381 		/* Update the latest receive window size in TCP header. */
23382 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23383 		    tcp->tcp_tcph->th_win);
23384 		/* copy in prototype TCP + IP header */
23385 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23386 		mp1->b_rptr = rptr;
23387 		mp1->b_wptr = rptr + tcp_hdr_len;
23388 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23389 
23390 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23391 
23392 		/* Set the TCP sequence number. */
23393 		U32_TO_ABE32(seq_no, tcph->th_seq);
23394 
23395 		/* Set up the TCP flag field. */
23396 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23397 		if (tcp->tcp_ecn_echo_on)
23398 			tcph->th_flags[0] |= TH_ECE;
23399 
23400 		tcp->tcp_rack = tcp->tcp_rnxt;
23401 		tcp->tcp_rack_cnt = 0;
23402 
23403 		/* fill in timestamp option if in use */
23404 		if (tcp->tcp_snd_ts_ok) {
23405 			uint32_t llbolt = (uint32_t)lbolt;
23406 
23407 			U32_TO_BE32(llbolt,
23408 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23409 			U32_TO_BE32(tcp->tcp_ts_recent,
23410 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23411 		}
23412 
23413 		/* Fill in SACK options */
23414 		if (num_sack_blk > 0) {
23415 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23416 			sack_blk_t *tmp;
23417 			int32_t	i;
23418 
23419 			wptr[0] = TCPOPT_NOP;
23420 			wptr[1] = TCPOPT_NOP;
23421 			wptr[2] = TCPOPT_SACK;
23422 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23423 			    sizeof (sack_blk_t);
23424 			wptr += TCPOPT_REAL_SACK_LEN;
23425 
23426 			tmp = tcp->tcp_sack_list;
23427 			for (i = 0; i < num_sack_blk; i++) {
23428 				U32_TO_BE32(tmp[i].begin, wptr);
23429 				wptr += sizeof (tcp_seq);
23430 				U32_TO_BE32(tmp[i].end, wptr);
23431 				wptr += sizeof (tcp_seq);
23432 			}
23433 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23434 			    << 4);
23435 		}
23436 
23437 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23438 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23439 		} else {
23440 			/* Check for ip6i_t header in sticky hdrs */
23441 			ip6_t *ip6 = (ip6_t *)(rptr +
23442 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23443 			    sizeof (ip6i_t) : 0));
23444 
23445 			ip6->ip6_plen = htons(tcp_hdr_len -
23446 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23447 		}
23448 
23449 		/*
23450 		 * Prime pump for checksum calculation in IP.  Include the
23451 		 * adjustment for a source route if any.
23452 		 */
23453 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23454 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23455 		U16_TO_ABE16(data_length, tcph->th_sum);
23456 
23457 		if (tcp->tcp_ip_forward_progress) {
23458 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23459 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23460 			tcp->tcp_ip_forward_progress = B_FALSE;
23461 		}
23462 		return (mp1);
23463 	}
23464 }
23465 
23466 /*
23467  * To create a temporary tcp structure for inserting into bind hash list.
23468  * The parameter is assumed to be in network byte order, ready for use.
23469  */
23470 /* ARGSUSED */
23471 static tcp_t *
23472 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23473 {
23474 	conn_t	*connp;
23475 	tcp_t	*tcp;
23476 
23477 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23478 	if (connp == NULL)
23479 		return (NULL);
23480 
23481 	tcp = connp->conn_tcp;
23482 	tcp->tcp_tcps = tcps;
23483 	TCPS_REFHOLD(tcps);
23484 
23485 	/*
23486 	 * Only initialize the necessary info in those structures.  Note
23487 	 * that since INADDR_ANY is all 0, we do not need to set
23488 	 * tcp_bound_source to INADDR_ANY here.
23489 	 */
23490 	tcp->tcp_state = TCPS_BOUND;
23491 	tcp->tcp_lport = port;
23492 	tcp->tcp_exclbind = 1;
23493 	tcp->tcp_reserved_port = 1;
23494 
23495 	/* Just for place holding... */
23496 	tcp->tcp_ipversion = IPV4_VERSION;
23497 
23498 	return (tcp);
23499 }
23500 
23501 /*
23502  * To remove a port range specified by lo_port and hi_port from the
23503  * reserved port ranges.  This is one of the three public functions of
23504  * the reserved port interface.  Note that a port range has to be removed
23505  * as a whole.  Ports in a range cannot be removed individually.
23506  *
23507  * Params:
23508  *	in_port_t lo_port: the beginning port of the reserved port range to
23509  *		be deleted.
23510  *	in_port_t hi_port: the ending port of the reserved port range to
23511  *		be deleted.
23512  *
23513  * Return:
23514  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23515  *
23516  * Assumes that nca is only for zoneid=0
23517  */
23518 boolean_t
23519 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23520 {
23521 	int	i, j;
23522 	int	size;
23523 	tcp_t	**temp_tcp_array;
23524 	tcp_t	*tcp;
23525 	tcp_stack_t	*tcps;
23526 
23527 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23528 	ASSERT(tcps != NULL);
23529 
23530 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23531 
23532 	/* First make sure that the port ranage is indeed reserved. */
23533 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23534 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23535 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23536 			temp_tcp_array =
23537 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23538 			break;
23539 		}
23540 	}
23541 	if (i == tcps->tcps_reserved_port_array_size) {
23542 		rw_exit(&tcps->tcps_reserved_port_lock);
23543 		netstack_rele(tcps->tcps_netstack);
23544 		return (B_FALSE);
23545 	}
23546 
23547 	/*
23548 	 * Remove the range from the array.  This simple loop is possible
23549 	 * because port ranges are inserted in ascending order.
23550 	 */
23551 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23552 		tcps->tcps_reserved_port[j].lo_port =
23553 		    tcps->tcps_reserved_port[j+1].lo_port;
23554 		tcps->tcps_reserved_port[j].hi_port =
23555 		    tcps->tcps_reserved_port[j+1].hi_port;
23556 		tcps->tcps_reserved_port[j].temp_tcp_array =
23557 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23558 	}
23559 
23560 	/* Remove all the temporary tcp structures. */
23561 	size = hi_port - lo_port + 1;
23562 	while (size > 0) {
23563 		tcp = temp_tcp_array[size - 1];
23564 		ASSERT(tcp != NULL);
23565 		tcp_bind_hash_remove(tcp);
23566 		CONN_DEC_REF(tcp->tcp_connp);
23567 		size--;
23568 	}
23569 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23570 	tcps->tcps_reserved_port_array_size--;
23571 	rw_exit(&tcps->tcps_reserved_port_lock);
23572 	netstack_rele(tcps->tcps_netstack);
23573 	return (B_TRUE);
23574 }
23575 
23576 /*
23577  * Macro to remove temporary tcp structure from the bind hash list.  The
23578  * first parameter is the list of tcp to be removed.  The second parameter
23579  * is the number of tcps in the array.
23580  */
23581 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23582 { \
23583 	while ((num) > 0) { \
23584 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23585 		tf_t *tbf; \
23586 		tcp_t *tcpnext; \
23587 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23588 		mutex_enter(&tbf->tf_lock); \
23589 		tcpnext = tcp->tcp_bind_hash; \
23590 		if (tcpnext) { \
23591 			tcpnext->tcp_ptpbhn = \
23592 				tcp->tcp_ptpbhn; \
23593 		} \
23594 		*tcp->tcp_ptpbhn = tcpnext; \
23595 		mutex_exit(&tbf->tf_lock); \
23596 		kmem_free(tcp, sizeof (tcp_t)); \
23597 		(tcp_array)[(num) - 1] = NULL; \
23598 		(num)--; \
23599 	} \
23600 }
23601 
23602 /*
23603  * The public interface for other modules to call to reserve a port range
23604  * in TCP.  The caller passes in how large a port range it wants.  TCP
23605  * will try to find a range and return it via lo_port and hi_port.  This is
23606  * used by NCA's nca_conn_init.
23607  * NCA can only be used in the global zone so this only affects the global
23608  * zone's ports.
23609  *
23610  * Params:
23611  *	int size: the size of the port range to be reserved.
23612  *	in_port_t *lo_port (referenced): returns the beginning port of the
23613  *		reserved port range added.
23614  *	in_port_t *hi_port (referenced): returns the ending port of the
23615  *		reserved port range added.
23616  *
23617  * Return:
23618  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23619  *
23620  * Assumes that nca is only for zoneid=0
23621  */
23622 boolean_t
23623 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23624 {
23625 	tcp_t		*tcp;
23626 	tcp_t		*tmp_tcp;
23627 	tcp_t		**temp_tcp_array;
23628 	tf_t		*tbf;
23629 	in_port_t	net_port;
23630 	in_port_t	port;
23631 	int32_t		cur_size;
23632 	int		i, j;
23633 	boolean_t	used;
23634 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23635 	zoneid_t	zoneid = GLOBAL_ZONEID;
23636 	tcp_stack_t	*tcps;
23637 
23638 	/* Sanity check. */
23639 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23640 		return (B_FALSE);
23641 	}
23642 
23643 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23644 	ASSERT(tcps != NULL);
23645 
23646 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23647 	if (tcps->tcps_reserved_port_array_size ==
23648 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23649 		rw_exit(&tcps->tcps_reserved_port_lock);
23650 		netstack_rele(tcps->tcps_netstack);
23651 		return (B_FALSE);
23652 	}
23653 
23654 	/*
23655 	 * Find the starting port to try.  Since the port ranges are ordered
23656 	 * in the reserved port array, we can do a simple search here.
23657 	 */
23658 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23659 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23660 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23661 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23662 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23663 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23664 			break;
23665 		}
23666 	}
23667 	/* No available port range. */
23668 	if (i == tcps->tcps_reserved_port_array_size &&
23669 	    *hi_port - *lo_port < size) {
23670 		rw_exit(&tcps->tcps_reserved_port_lock);
23671 		netstack_rele(tcps->tcps_netstack);
23672 		return (B_FALSE);
23673 	}
23674 
23675 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23676 	if (temp_tcp_array == NULL) {
23677 		rw_exit(&tcps->tcps_reserved_port_lock);
23678 		netstack_rele(tcps->tcps_netstack);
23679 		return (B_FALSE);
23680 	}
23681 
23682 	/* Go thru the port range to see if some ports are already bound. */
23683 	for (port = *lo_port, cur_size = 0;
23684 	    cur_size < size && port <= *hi_port;
23685 	    cur_size++, port++) {
23686 		used = B_FALSE;
23687 		net_port = htons(port);
23688 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23689 		mutex_enter(&tbf->tf_lock);
23690 		for (tcp = tbf->tf_tcp; tcp != NULL;
23691 		    tcp = tcp->tcp_bind_hash) {
23692 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23693 			    net_port == tcp->tcp_lport) {
23694 				/*
23695 				 * A port is already bound.  Search again
23696 				 * starting from port + 1.  Release all
23697 				 * temporary tcps.
23698 				 */
23699 				mutex_exit(&tbf->tf_lock);
23700 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23701 				    tcps);
23702 				*lo_port = port + 1;
23703 				cur_size = -1;
23704 				used = B_TRUE;
23705 				break;
23706 			}
23707 		}
23708 		if (!used) {
23709 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23710 			    NULL) {
23711 				/*
23712 				 * Allocation failure.  Just fail the request.
23713 				 * Need to remove all those temporary tcp
23714 				 * structures.
23715 				 */
23716 				mutex_exit(&tbf->tf_lock);
23717 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23718 				    tcps);
23719 				rw_exit(&tcps->tcps_reserved_port_lock);
23720 				kmem_free(temp_tcp_array,
23721 				    (hi_port - lo_port + 1) *
23722 				    sizeof (tcp_t *));
23723 				netstack_rele(tcps->tcps_netstack);
23724 				return (B_FALSE);
23725 			}
23726 			temp_tcp_array[cur_size] = tmp_tcp;
23727 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23728 			mutex_exit(&tbf->tf_lock);
23729 		}
23730 	}
23731 
23732 	/*
23733 	 * The current range is not large enough.  We can actually do another
23734 	 * search if this search is done between 2 reserved port ranges.  But
23735 	 * for first release, we just stop here and return saying that no port
23736 	 * range is available.
23737 	 */
23738 	if (cur_size < size) {
23739 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23740 		rw_exit(&tcps->tcps_reserved_port_lock);
23741 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23742 		netstack_rele(tcps->tcps_netstack);
23743 		return (B_FALSE);
23744 	}
23745 	*hi_port = port - 1;
23746 
23747 	/*
23748 	 * Insert range into array in ascending order.  Since this function
23749 	 * must not be called often, we choose to use the simplest method.
23750 	 * The above array should not consume excessive stack space as
23751 	 * the size must be very small.  If in future releases, we find
23752 	 * that we should provide more reserved port ranges, this function
23753 	 * has to be modified to be more efficient.
23754 	 */
23755 	if (tcps->tcps_reserved_port_array_size == 0) {
23756 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23757 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23758 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23759 	} else {
23760 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23761 		    i++, j++) {
23762 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23763 			    i == j) {
23764 				tmp_ports[j].lo_port = *lo_port;
23765 				tmp_ports[j].hi_port = *hi_port;
23766 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23767 				j++;
23768 			}
23769 			tmp_ports[j].lo_port =
23770 			    tcps->tcps_reserved_port[i].lo_port;
23771 			tmp_ports[j].hi_port =
23772 			    tcps->tcps_reserved_port[i].hi_port;
23773 			tmp_ports[j].temp_tcp_array =
23774 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23775 		}
23776 		if (j == i) {
23777 			tmp_ports[j].lo_port = *lo_port;
23778 			tmp_ports[j].hi_port = *hi_port;
23779 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23780 		}
23781 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23782 	}
23783 	tcps->tcps_reserved_port_array_size++;
23784 	rw_exit(&tcps->tcps_reserved_port_lock);
23785 	netstack_rele(tcps->tcps_netstack);
23786 	return (B_TRUE);
23787 }
23788 
23789 /*
23790  * Check to see if a port is in any reserved port range.
23791  *
23792  * Params:
23793  *	in_port_t port: the port to be verified.
23794  *
23795  * Return:
23796  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23797  */
23798 boolean_t
23799 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23800 {
23801 	int i;
23802 
23803 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23804 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23805 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23806 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23807 			rw_exit(&tcps->tcps_reserved_port_lock);
23808 			return (B_TRUE);
23809 		}
23810 	}
23811 	rw_exit(&tcps->tcps_reserved_port_lock);
23812 	return (B_FALSE);
23813 }
23814 
23815 /*
23816  * To list all reserved port ranges.  This is the function to handle
23817  * ndd tcp_reserved_port_list.
23818  */
23819 /* ARGSUSED */
23820 static int
23821 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23822 {
23823 	int i;
23824 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23825 
23826 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23827 	if (tcps->tcps_reserved_port_array_size > 0)
23828 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23829 	else
23830 		(void) mi_mpprintf(mp, "No port is reserved.");
23831 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23832 		(void) mi_mpprintf(mp, "%d-%d",
23833 		    tcps->tcps_reserved_port[i].lo_port,
23834 		    tcps->tcps_reserved_port[i].hi_port);
23835 	}
23836 	rw_exit(&tcps->tcps_reserved_port_lock);
23837 	return (0);
23838 }
23839 
23840 /*
23841  * Hash list insertion routine for tcp_t structures.
23842  * Inserts entries with the ones bound to a specific IP address first
23843  * followed by those bound to INADDR_ANY.
23844  */
23845 static void
23846 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23847 {
23848 	tcp_t	**tcpp;
23849 	tcp_t	*tcpnext;
23850 
23851 	if (tcp->tcp_ptpbhn != NULL) {
23852 		ASSERT(!caller_holds_lock);
23853 		tcp_bind_hash_remove(tcp);
23854 	}
23855 	tcpp = &tbf->tf_tcp;
23856 	if (!caller_holds_lock) {
23857 		mutex_enter(&tbf->tf_lock);
23858 	} else {
23859 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23860 	}
23861 	tcpnext = tcpp[0];
23862 	if (tcpnext) {
23863 		/*
23864 		 * If the new tcp bound to the INADDR_ANY address
23865 		 * and the first one in the list is not bound to
23866 		 * INADDR_ANY we skip all entries until we find the
23867 		 * first one bound to INADDR_ANY.
23868 		 * This makes sure that applications binding to a
23869 		 * specific address get preference over those binding to
23870 		 * INADDR_ANY.
23871 		 */
23872 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23873 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23874 			while ((tcpnext = tcpp[0]) != NULL &&
23875 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23876 				tcpp = &(tcpnext->tcp_bind_hash);
23877 			if (tcpnext)
23878 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23879 		} else
23880 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23881 	}
23882 	tcp->tcp_bind_hash = tcpnext;
23883 	tcp->tcp_ptpbhn = tcpp;
23884 	tcpp[0] = tcp;
23885 	if (!caller_holds_lock)
23886 		mutex_exit(&tbf->tf_lock);
23887 }
23888 
23889 /*
23890  * Hash list removal routine for tcp_t structures.
23891  */
23892 static void
23893 tcp_bind_hash_remove(tcp_t *tcp)
23894 {
23895 	tcp_t	*tcpnext;
23896 	kmutex_t *lockp;
23897 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23898 
23899 	if (tcp->tcp_ptpbhn == NULL)
23900 		return;
23901 
23902 	/*
23903 	 * Extract the lock pointer in case there are concurrent
23904 	 * hash_remove's for this instance.
23905 	 */
23906 	ASSERT(tcp->tcp_lport != 0);
23907 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23908 
23909 	ASSERT(lockp != NULL);
23910 	mutex_enter(lockp);
23911 	if (tcp->tcp_ptpbhn) {
23912 		tcpnext = tcp->tcp_bind_hash;
23913 		if (tcpnext) {
23914 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23915 			tcp->tcp_bind_hash = NULL;
23916 		}
23917 		*tcp->tcp_ptpbhn = tcpnext;
23918 		tcp->tcp_ptpbhn = NULL;
23919 	}
23920 	mutex_exit(lockp);
23921 }
23922 
23923 
23924 /*
23925  * Hash list lookup routine for tcp_t structures.
23926  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23927  */
23928 static tcp_t *
23929 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23930 {
23931 	tf_t	*tf;
23932 	tcp_t	*tcp;
23933 
23934 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23935 	mutex_enter(&tf->tf_lock);
23936 	for (tcp = tf->tf_tcp; tcp != NULL;
23937 	    tcp = tcp->tcp_acceptor_hash) {
23938 		if (tcp->tcp_acceptor_id == id) {
23939 			CONN_INC_REF(tcp->tcp_connp);
23940 			mutex_exit(&tf->tf_lock);
23941 			return (tcp);
23942 		}
23943 	}
23944 	mutex_exit(&tf->tf_lock);
23945 	return (NULL);
23946 }
23947 
23948 
23949 /*
23950  * Hash list insertion routine for tcp_t structures.
23951  */
23952 void
23953 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23954 {
23955 	tf_t	*tf;
23956 	tcp_t	**tcpp;
23957 	tcp_t	*tcpnext;
23958 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23959 
23960 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23961 
23962 	if (tcp->tcp_ptpahn != NULL)
23963 		tcp_acceptor_hash_remove(tcp);
23964 	tcpp = &tf->tf_tcp;
23965 	mutex_enter(&tf->tf_lock);
23966 	tcpnext = tcpp[0];
23967 	if (tcpnext)
23968 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23969 	tcp->tcp_acceptor_hash = tcpnext;
23970 	tcp->tcp_ptpahn = tcpp;
23971 	tcpp[0] = tcp;
23972 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23973 	mutex_exit(&tf->tf_lock);
23974 }
23975 
23976 /*
23977  * Hash list removal routine for tcp_t structures.
23978  */
23979 static void
23980 tcp_acceptor_hash_remove(tcp_t *tcp)
23981 {
23982 	tcp_t	*tcpnext;
23983 	kmutex_t *lockp;
23984 
23985 	/*
23986 	 * Extract the lock pointer in case there are concurrent
23987 	 * hash_remove's for this instance.
23988 	 */
23989 	lockp = tcp->tcp_acceptor_lockp;
23990 
23991 	if (tcp->tcp_ptpahn == NULL)
23992 		return;
23993 
23994 	ASSERT(lockp != NULL);
23995 	mutex_enter(lockp);
23996 	if (tcp->tcp_ptpahn) {
23997 		tcpnext = tcp->tcp_acceptor_hash;
23998 		if (tcpnext) {
23999 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24000 			tcp->tcp_acceptor_hash = NULL;
24001 		}
24002 		*tcp->tcp_ptpahn = tcpnext;
24003 		tcp->tcp_ptpahn = NULL;
24004 	}
24005 	mutex_exit(lockp);
24006 	tcp->tcp_acceptor_lockp = NULL;
24007 }
24008 
24009 /* ARGSUSED */
24010 static int
24011 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24012 {
24013 	int error = 0;
24014 	int retval;
24015 	char *end;
24016 	tcp_hsp_t *hsp;
24017 	tcp_hsp_t *hspprev;
24018 	ipaddr_t addr = 0;		/* Address we're looking for */
24019 	in6_addr_t v6addr;		/* Address we're looking for */
24020 	uint32_t hash;			/* Hash of that address */
24021 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24022 
24023 	/*
24024 	 * If the following variables are still zero after parsing the input
24025 	 * string, the user didn't specify them and we don't change them in
24026 	 * the HSP.
24027 	 */
24028 
24029 	ipaddr_t mask = 0;		/* Subnet mask */
24030 	in6_addr_t v6mask;
24031 	long sendspace = 0;		/* Send buffer size */
24032 	long recvspace = 0;		/* Receive buffer size */
24033 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24034 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24035 
24036 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24037 
24038 	/* Parse and validate address */
24039 	if (af == AF_INET) {
24040 		retval = inet_pton(af, value, &addr);
24041 		if (retval == 1)
24042 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24043 	} else if (af == AF_INET6) {
24044 		retval = inet_pton(af, value, &v6addr);
24045 	} else {
24046 		error = EINVAL;
24047 		goto done;
24048 	}
24049 	if (retval == 0) {
24050 		error = EINVAL;
24051 		goto done;
24052 	}
24053 
24054 	while ((*value) && *value != ' ')
24055 		value++;
24056 
24057 	/* Parse individual keywords, set variables if found */
24058 	while (*value) {
24059 		/* Skip leading blanks */
24060 
24061 		while (*value == ' ' || *value == '\t')
24062 			value++;
24063 
24064 		/* If at end of string, we're done */
24065 
24066 		if (!*value)
24067 			break;
24068 
24069 		/* We have a word, figure out what it is */
24070 
24071 		if (strncmp("mask", value, 4) == 0) {
24072 			value += 4;
24073 			while (*value == ' ' || *value == '\t')
24074 				value++;
24075 			/* Parse subnet mask */
24076 			if (af == AF_INET) {
24077 				retval = inet_pton(af, value, &mask);
24078 				if (retval == 1) {
24079 					V4MASK_TO_V6(mask, v6mask);
24080 				}
24081 			} else if (af == AF_INET6) {
24082 				retval = inet_pton(af, value, &v6mask);
24083 			}
24084 			if (retval != 1) {
24085 				error = EINVAL;
24086 				goto done;
24087 			}
24088 			while ((*value) && *value != ' ')
24089 				value++;
24090 		} else if (strncmp("sendspace", value, 9) == 0) {
24091 			value += 9;
24092 
24093 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24094 			    sendspace < TCP_XMIT_HIWATER ||
24095 			    sendspace >= (1L<<30)) {
24096 				error = EINVAL;
24097 				goto done;
24098 			}
24099 			value = end;
24100 		} else if (strncmp("recvspace", value, 9) == 0) {
24101 			value += 9;
24102 
24103 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24104 			    recvspace < TCP_RECV_HIWATER ||
24105 			    recvspace >= (1L<<30)) {
24106 				error = EINVAL;
24107 				goto done;
24108 			}
24109 			value = end;
24110 		} else if (strncmp("timestamp", value, 9) == 0) {
24111 			value += 9;
24112 
24113 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24114 			    timestamp < 0 || timestamp > 1) {
24115 				error = EINVAL;
24116 				goto done;
24117 			}
24118 
24119 			/*
24120 			 * We increment timestamp so we know it's been set;
24121 			 * this is undone when we put it in the HSP
24122 			 */
24123 			timestamp++;
24124 			value = end;
24125 		} else if (strncmp("delete", value, 6) == 0) {
24126 			value += 6;
24127 			delete = B_TRUE;
24128 		} else {
24129 			error = EINVAL;
24130 			goto done;
24131 		}
24132 	}
24133 
24134 	/* Hash address for lookup */
24135 
24136 	hash = TCP_HSP_HASH(addr);
24137 
24138 	if (delete) {
24139 		/*
24140 		 * Note that deletes don't return an error if the thing
24141 		 * we're trying to delete isn't there.
24142 		 */
24143 		if (tcps->tcps_hsp_hash == NULL)
24144 			goto done;
24145 		hsp = tcps->tcps_hsp_hash[hash];
24146 
24147 		if (hsp) {
24148 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24149 			    &v6addr)) {
24150 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24151 				mi_free((char *)hsp);
24152 			} else {
24153 				hspprev = hsp;
24154 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24155 					if (IN6_ARE_ADDR_EQUAL(
24156 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24157 						hspprev->tcp_hsp_next =
24158 						    hsp->tcp_hsp_next;
24159 						mi_free((char *)hsp);
24160 						break;
24161 					}
24162 					hspprev = hsp;
24163 				}
24164 			}
24165 		}
24166 	} else {
24167 		/*
24168 		 * We're adding/modifying an HSP.  If we haven't already done
24169 		 * so, allocate the hash table.
24170 		 */
24171 
24172 		if (!tcps->tcps_hsp_hash) {
24173 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24174 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24175 			if (!tcps->tcps_hsp_hash) {
24176 				error = EINVAL;
24177 				goto done;
24178 			}
24179 		}
24180 
24181 		/* Get head of hash chain */
24182 
24183 		hsp = tcps->tcps_hsp_hash[hash];
24184 
24185 		/* Try to find pre-existing hsp on hash chain */
24186 		/* Doesn't handle CIDR prefixes. */
24187 		while (hsp) {
24188 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24189 				break;
24190 			hsp = hsp->tcp_hsp_next;
24191 		}
24192 
24193 		/*
24194 		 * If we didn't, create one with default values and put it
24195 		 * at head of hash chain
24196 		 */
24197 
24198 		if (!hsp) {
24199 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24200 			if (!hsp) {
24201 				error = EINVAL;
24202 				goto done;
24203 			}
24204 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24205 			tcps->tcps_hsp_hash[hash] = hsp;
24206 		}
24207 
24208 		/* Set values that the user asked us to change */
24209 
24210 		hsp->tcp_hsp_addr_v6 = v6addr;
24211 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24212 			hsp->tcp_hsp_vers = IPV4_VERSION;
24213 		else
24214 			hsp->tcp_hsp_vers = IPV6_VERSION;
24215 		hsp->tcp_hsp_subnet_v6 = v6mask;
24216 		if (sendspace > 0)
24217 			hsp->tcp_hsp_sendspace = sendspace;
24218 		if (recvspace > 0)
24219 			hsp->tcp_hsp_recvspace = recvspace;
24220 		if (timestamp > 0)
24221 			hsp->tcp_hsp_tstamp = timestamp - 1;
24222 	}
24223 
24224 done:
24225 	rw_exit(&tcps->tcps_hsp_lock);
24226 	return (error);
24227 }
24228 
24229 /* Set callback routine passed to nd_load by tcp_param_register. */
24230 /* ARGSUSED */
24231 static int
24232 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24233 {
24234 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24235 }
24236 /* ARGSUSED */
24237 static int
24238 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24239     cred_t *cr)
24240 {
24241 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24242 }
24243 
24244 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24245 /* ARGSUSED */
24246 static int
24247 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24248 {
24249 	tcp_hsp_t *hsp;
24250 	int i;
24251 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24252 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24253 
24254 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24255 	(void) mi_mpprintf(mp,
24256 	    "Hash HSP     " MI_COL_HDRPAD_STR
24257 	    "Address         Subnet Mask     Send       Receive    TStamp");
24258 	if (tcps->tcps_hsp_hash) {
24259 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24260 			hsp = tcps->tcps_hsp_hash[i];
24261 			while (hsp) {
24262 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24263 					(void) inet_ntop(AF_INET,
24264 					    &hsp->tcp_hsp_addr,
24265 					    addrbuf, sizeof (addrbuf));
24266 					(void) inet_ntop(AF_INET,
24267 					    &hsp->tcp_hsp_subnet,
24268 					    subnetbuf, sizeof (subnetbuf));
24269 				} else {
24270 					(void) inet_ntop(AF_INET6,
24271 					    &hsp->tcp_hsp_addr_v6,
24272 					    addrbuf, sizeof (addrbuf));
24273 					(void) inet_ntop(AF_INET6,
24274 					    &hsp->tcp_hsp_subnet_v6,
24275 					    subnetbuf, sizeof (subnetbuf));
24276 				}
24277 				(void) mi_mpprintf(mp,
24278 				    " %03d " MI_COL_PTRFMT_STR
24279 				    "%s %s %010d %010d      %d",
24280 				    i,
24281 				    (void *)hsp,
24282 				    addrbuf,
24283 				    subnetbuf,
24284 				    hsp->tcp_hsp_sendspace,
24285 				    hsp->tcp_hsp_recvspace,
24286 				    hsp->tcp_hsp_tstamp);
24287 
24288 				hsp = hsp->tcp_hsp_next;
24289 			}
24290 		}
24291 	}
24292 	rw_exit(&tcps->tcps_hsp_lock);
24293 	return (0);
24294 }
24295 
24296 
24297 /* Data for fast netmask macro used by tcp_hsp_lookup */
24298 
24299 static ipaddr_t netmasks[] = {
24300 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24301 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24302 };
24303 
24304 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24305 
24306 /*
24307  * XXX This routine should go away and instead we should use the metrics
24308  * associated with the routes to determine the default sndspace and rcvspace.
24309  */
24310 static tcp_hsp_t *
24311 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24312 {
24313 	tcp_hsp_t *hsp = NULL;
24314 
24315 	/* Quick check without acquiring the lock. */
24316 	if (tcps->tcps_hsp_hash == NULL)
24317 		return (NULL);
24318 
24319 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24320 
24321 	/* This routine finds the best-matching HSP for address addr. */
24322 
24323 	if (tcps->tcps_hsp_hash) {
24324 		int i;
24325 		ipaddr_t srchaddr;
24326 		tcp_hsp_t *hsp_net;
24327 
24328 		/* We do three passes: host, network, and subnet. */
24329 
24330 		srchaddr = addr;
24331 
24332 		for (i = 1; i <= 3; i++) {
24333 			/* Look for exact match on srchaddr */
24334 
24335 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24336 			while (hsp) {
24337 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24338 				    hsp->tcp_hsp_addr == srchaddr)
24339 					break;
24340 				hsp = hsp->tcp_hsp_next;
24341 			}
24342 			ASSERT(hsp == NULL ||
24343 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24344 
24345 			/*
24346 			 * If this is the first pass:
24347 			 *   If we found a match, great, return it.
24348 			 *   If not, search for the network on the second pass.
24349 			 */
24350 
24351 			if (i == 1)
24352 				if (hsp)
24353 					break;
24354 				else
24355 				{
24356 					srchaddr = addr & netmask(addr);
24357 					continue;
24358 				}
24359 
24360 			/*
24361 			 * If this is the second pass:
24362 			 *   If we found a match, but there's a subnet mask,
24363 			 *    save the match but try again using the subnet
24364 			 *    mask on the third pass.
24365 			 *   Otherwise, return whatever we found.
24366 			 */
24367 
24368 			if (i == 2) {
24369 				if (hsp && hsp->tcp_hsp_subnet) {
24370 					hsp_net = hsp;
24371 					srchaddr = addr & hsp->tcp_hsp_subnet;
24372 					continue;
24373 				} else {
24374 					break;
24375 				}
24376 			}
24377 
24378 			/*
24379 			 * This must be the third pass.  If we didn't find
24380 			 * anything, return the saved network HSP instead.
24381 			 */
24382 
24383 			if (!hsp)
24384 				hsp = hsp_net;
24385 		}
24386 	}
24387 
24388 	rw_exit(&tcps->tcps_hsp_lock);
24389 	return (hsp);
24390 }
24391 
24392 /*
24393  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24394  * match lookup.
24395  */
24396 static tcp_hsp_t *
24397 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24398 {
24399 	tcp_hsp_t *hsp = NULL;
24400 
24401 	/* Quick check without acquiring the lock. */
24402 	if (tcps->tcps_hsp_hash == NULL)
24403 		return (NULL);
24404 
24405 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24406 
24407 	/* This routine finds the best-matching HSP for address addr. */
24408 
24409 	if (tcps->tcps_hsp_hash) {
24410 		int i;
24411 		in6_addr_t v6srchaddr;
24412 		tcp_hsp_t *hsp_net;
24413 
24414 		/* We do three passes: host, network, and subnet. */
24415 
24416 		v6srchaddr = *v6addr;
24417 
24418 		for (i = 1; i <= 3; i++) {
24419 			/* Look for exact match on srchaddr */
24420 
24421 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24422 			    V4_PART_OF_V6(v6srchaddr))];
24423 			while (hsp) {
24424 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24425 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24426 				    &v6srchaddr))
24427 					break;
24428 				hsp = hsp->tcp_hsp_next;
24429 			}
24430 
24431 			/*
24432 			 * If this is the first pass:
24433 			 *   If we found a match, great, return it.
24434 			 *   If not, search for the network on the second pass.
24435 			 */
24436 
24437 			if (i == 1)
24438 				if (hsp)
24439 					break;
24440 				else {
24441 					/* Assume a 64 bit mask */
24442 					v6srchaddr.s6_addr32[0] =
24443 					    v6addr->s6_addr32[0];
24444 					v6srchaddr.s6_addr32[1] =
24445 					    v6addr->s6_addr32[1];
24446 					v6srchaddr.s6_addr32[2] = 0;
24447 					v6srchaddr.s6_addr32[3] = 0;
24448 					continue;
24449 				}
24450 
24451 			/*
24452 			 * If this is the second pass:
24453 			 *   If we found a match, but there's a subnet mask,
24454 			 *    save the match but try again using the subnet
24455 			 *    mask on the third pass.
24456 			 *   Otherwise, return whatever we found.
24457 			 */
24458 
24459 			if (i == 2) {
24460 				ASSERT(hsp == NULL ||
24461 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24462 				if (hsp &&
24463 				    !IN6_IS_ADDR_UNSPECIFIED(
24464 				    &hsp->tcp_hsp_subnet_v6)) {
24465 					hsp_net = hsp;
24466 					V6_MASK_COPY(*v6addr,
24467 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24468 					continue;
24469 				} else {
24470 					break;
24471 				}
24472 			}
24473 
24474 			/*
24475 			 * This must be the third pass.  If we didn't find
24476 			 * anything, return the saved network HSP instead.
24477 			 */
24478 
24479 			if (!hsp)
24480 				hsp = hsp_net;
24481 		}
24482 	}
24483 
24484 	rw_exit(&tcps->tcps_hsp_lock);
24485 	return (hsp);
24486 }
24487 
24488 /*
24489  * Type three generator adapted from the random() function in 4.4 BSD:
24490  */
24491 
24492 /*
24493  * Copyright (c) 1983, 1993
24494  *	The Regents of the University of California.  All rights reserved.
24495  *
24496  * Redistribution and use in source and binary forms, with or without
24497  * modification, are permitted provided that the following conditions
24498  * are met:
24499  * 1. Redistributions of source code must retain the above copyright
24500  *    notice, this list of conditions and the following disclaimer.
24501  * 2. Redistributions in binary form must reproduce the above copyright
24502  *    notice, this list of conditions and the following disclaimer in the
24503  *    documentation and/or other materials provided with the distribution.
24504  * 3. All advertising materials mentioning features or use of this software
24505  *    must display the following acknowledgement:
24506  *	This product includes software developed by the University of
24507  *	California, Berkeley and its contributors.
24508  * 4. Neither the name of the University nor the names of its contributors
24509  *    may be used to endorse or promote products derived from this software
24510  *    without specific prior written permission.
24511  *
24512  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24513  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24514  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24515  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24516  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24517  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24518  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24519  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24520  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24521  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24522  * SUCH DAMAGE.
24523  */
24524 
24525 /* Type 3 -- x**31 + x**3 + 1 */
24526 #define	DEG_3		31
24527 #define	SEP_3		3
24528 
24529 
24530 /* Protected by tcp_random_lock */
24531 static int tcp_randtbl[DEG_3 + 1];
24532 
24533 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24534 static int *tcp_random_rptr = &tcp_randtbl[1];
24535 
24536 static int *tcp_random_state = &tcp_randtbl[1];
24537 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24538 
24539 kmutex_t tcp_random_lock;
24540 
24541 void
24542 tcp_random_init(void)
24543 {
24544 	int i;
24545 	hrtime_t hrt;
24546 	time_t wallclock;
24547 	uint64_t result;
24548 
24549 	/*
24550 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24551 	 * a longlong, which may contain resolution down to nanoseconds.
24552 	 * The current time will either be a 32-bit or a 64-bit quantity.
24553 	 * XOR the two together in a 64-bit result variable.
24554 	 * Convert the result to a 32-bit value by multiplying the high-order
24555 	 * 32-bits by the low-order 32-bits.
24556 	 */
24557 
24558 	hrt = gethrtime();
24559 	(void) drv_getparm(TIME, &wallclock);
24560 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24561 	mutex_enter(&tcp_random_lock);
24562 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24563 	    (result & 0xffffffff);
24564 
24565 	for (i = 1; i < DEG_3; i++)
24566 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24567 			+ 12345;
24568 	tcp_random_fptr = &tcp_random_state[SEP_3];
24569 	tcp_random_rptr = &tcp_random_state[0];
24570 	mutex_exit(&tcp_random_lock);
24571 	for (i = 0; i < 10 * DEG_3; i++)
24572 		(void) tcp_random();
24573 }
24574 
24575 /*
24576  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24577  * This range is selected to be approximately centered on TCP_ISS / 2,
24578  * and easy to compute. We get this value by generating a 32-bit random
24579  * number, selecting out the high-order 17 bits, and then adding one so
24580  * that we never return zero.
24581  */
24582 int
24583 tcp_random(void)
24584 {
24585 	int i;
24586 
24587 	mutex_enter(&tcp_random_lock);
24588 	*tcp_random_fptr += *tcp_random_rptr;
24589 
24590 	/*
24591 	 * The high-order bits are more random than the low-order bits,
24592 	 * so we select out the high-order 17 bits and add one so that
24593 	 * we never return zero.
24594 	 */
24595 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24596 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24597 		tcp_random_fptr = tcp_random_state;
24598 		++tcp_random_rptr;
24599 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24600 		tcp_random_rptr = tcp_random_state;
24601 
24602 	mutex_exit(&tcp_random_lock);
24603 	return (i);
24604 }
24605 
24606 /*
24607  * XXX This will go away when TPI is extended to send
24608  * info reqs to sockfs/timod .....
24609  * Given a queue, set the max packet size for the write
24610  * side of the queue below stream head.  This value is
24611  * cached on the stream head.
24612  * Returns 1 on success, 0 otherwise.
24613  */
24614 static int
24615 setmaxps(queue_t *q, int maxpsz)
24616 {
24617 	struct stdata	*stp;
24618 	queue_t		*wq;
24619 	stp = STREAM(q);
24620 
24621 	/*
24622 	 * At this point change of a queue parameter is not allowed
24623 	 * when a multiplexor is sitting on top.
24624 	 */
24625 	if (stp->sd_flag & STPLEX)
24626 		return (0);
24627 
24628 	claimstr(stp->sd_wrq);
24629 	wq = stp->sd_wrq->q_next;
24630 	ASSERT(wq != NULL);
24631 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24632 	releasestr(stp->sd_wrq);
24633 	return (1);
24634 }
24635 
24636 static int
24637 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24638     int *t_errorp, int *sys_errorp)
24639 {
24640 	int error;
24641 	int is_absreq_failure;
24642 	t_scalar_t *opt_lenp;
24643 	t_scalar_t opt_offset;
24644 	int prim_type;
24645 	struct T_conn_req *tcreqp;
24646 	struct T_conn_res *tcresp;
24647 	cred_t *cr;
24648 
24649 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24650 
24651 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24652 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24653 	    prim_type == T_CONN_RES);
24654 
24655 	switch (prim_type) {
24656 	case T_CONN_REQ:
24657 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24658 		opt_offset = tcreqp->OPT_offset;
24659 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24660 		break;
24661 	case O_T_CONN_RES:
24662 	case T_CONN_RES:
24663 		tcresp = (struct T_conn_res *)mp->b_rptr;
24664 		opt_offset = tcresp->OPT_offset;
24665 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24666 		break;
24667 	}
24668 
24669 	*t_errorp = 0;
24670 	*sys_errorp = 0;
24671 	*do_disconnectp = 0;
24672 
24673 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24674 	    opt_offset, cr, &tcp_opt_obj,
24675 	    NULL, &is_absreq_failure);
24676 
24677 	switch (error) {
24678 	case  0:		/* no error */
24679 		ASSERT(is_absreq_failure == 0);
24680 		return (0);
24681 	case ENOPROTOOPT:
24682 		*t_errorp = TBADOPT;
24683 		break;
24684 	case EACCES:
24685 		*t_errorp = TACCES;
24686 		break;
24687 	default:
24688 		*t_errorp = TSYSERR; *sys_errorp = error;
24689 		break;
24690 	}
24691 	if (is_absreq_failure != 0) {
24692 		/*
24693 		 * The connection request should get the local ack
24694 		 * T_OK_ACK and then a T_DISCON_IND.
24695 		 */
24696 		*do_disconnectp = 1;
24697 	}
24698 	return (-1);
24699 }
24700 
24701 /*
24702  * Split this function out so that if the secret changes, I'm okay.
24703  *
24704  * Initialize the tcp_iss_cookie and tcp_iss_key.
24705  */
24706 
24707 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24708 
24709 static void
24710 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24711 {
24712 	struct {
24713 		int32_t current_time;
24714 		uint32_t randnum;
24715 		uint16_t pad;
24716 		uint8_t ether[6];
24717 		uint8_t passwd[PASSWD_SIZE];
24718 	} tcp_iss_cookie;
24719 	time_t t;
24720 
24721 	/*
24722 	 * Start with the current absolute time.
24723 	 */
24724 	(void) drv_getparm(TIME, &t);
24725 	tcp_iss_cookie.current_time = t;
24726 
24727 	/*
24728 	 * XXX - Need a more random number per RFC 1750, not this crap.
24729 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24730 	 */
24731 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24732 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24733 
24734 	/*
24735 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24736 	 * as a good template.
24737 	 */
24738 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24739 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24740 
24741 	/*
24742 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24743 	 */
24744 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24745 
24746 	/*
24747 	 * See 4010593 if this section becomes a problem again,
24748 	 * but the local ethernet address is useful here.
24749 	 */
24750 	(void) localetheraddr(NULL,
24751 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24752 
24753 	/*
24754 	 * Hash 'em all together.  The MD5Final is called per-connection.
24755 	 */
24756 	mutex_enter(&tcps->tcps_iss_key_lock);
24757 	MD5Init(&tcps->tcps_iss_key);
24758 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24759 	    sizeof (tcp_iss_cookie));
24760 	mutex_exit(&tcps->tcps_iss_key_lock);
24761 }
24762 
24763 /*
24764  * Set the RFC 1948 pass phrase
24765  */
24766 /* ARGSUSED */
24767 static int
24768 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24769     cred_t *cr)
24770 {
24771 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24772 
24773 	/*
24774 	 * Basically, value contains a new pass phrase.  Pass it along!
24775 	 */
24776 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24777 	return (0);
24778 }
24779 
24780 /* ARGSUSED */
24781 static int
24782 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24783 {
24784 	bzero(buf, sizeof (tcp_sack_info_t));
24785 	return (0);
24786 }
24787 
24788 /* ARGSUSED */
24789 static int
24790 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24791 {
24792 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24793 	return (0);
24794 }
24795 
24796 /*
24797  * Make sure we wait until the default queue is setup, yet allow
24798  * tcp_g_q_create() to open a TCP stream.
24799  * We need to allow tcp_g_q_create() do do an open
24800  * of tcp, hence we compare curhread.
24801  * All others have to wait until the tcps_g_q has been
24802  * setup.
24803  */
24804 void
24805 tcp_g_q_setup(tcp_stack_t *tcps)
24806 {
24807 	mutex_enter(&tcps->tcps_g_q_lock);
24808 	if (tcps->tcps_g_q != NULL) {
24809 		mutex_exit(&tcps->tcps_g_q_lock);
24810 		return;
24811 	}
24812 	if (tcps->tcps_g_q_creator == NULL) {
24813 		/* This thread will set it up */
24814 		tcps->tcps_g_q_creator = curthread;
24815 		mutex_exit(&tcps->tcps_g_q_lock);
24816 		tcp_g_q_create(tcps);
24817 		mutex_enter(&tcps->tcps_g_q_lock);
24818 		ASSERT(tcps->tcps_g_q_creator == curthread);
24819 		tcps->tcps_g_q_creator = NULL;
24820 		cv_signal(&tcps->tcps_g_q_cv);
24821 		ASSERT(tcps->tcps_g_q != NULL);
24822 		mutex_exit(&tcps->tcps_g_q_lock);
24823 		return;
24824 	}
24825 	/* Everybody but the creator has to wait */
24826 	if (tcps->tcps_g_q_creator != curthread) {
24827 		while (tcps->tcps_g_q == NULL)
24828 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24829 	}
24830 	mutex_exit(&tcps->tcps_g_q_lock);
24831 }
24832 
24833 major_t IP_MAJ;
24834 #define	IP	"ip"
24835 
24836 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24837 
24838 /*
24839  * Create a default tcp queue here instead of in strplumb
24840  */
24841 void
24842 tcp_g_q_create(tcp_stack_t *tcps)
24843 {
24844 	int error;
24845 	ldi_handle_t	lh = NULL;
24846 	ldi_ident_t	li = NULL;
24847 	int		rval;
24848 	cred_t		*cr;
24849 
24850 #ifdef NS_DEBUG
24851 	(void) printf("tcp_g_q_create()\n");
24852 #endif
24853 
24854 	ASSERT(tcps->tcps_g_q_creator == curthread);
24855 
24856 	error = ldi_ident_from_major(IP_MAJ, &li);
24857 	if (error) {
24858 #ifdef DEBUG
24859 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24860 		    error);
24861 #endif
24862 		return;
24863 	}
24864 
24865 	cr = zone_get_kcred(netstackid_to_zoneid(
24866 				tcps->tcps_netstack->netstack_stackid));
24867 	ASSERT(cr != NULL);
24868 	/*
24869 	 * We set the tcp default queue to IPv6 because IPv4 falls
24870 	 * back to IPv6 when it can't find a client, but
24871 	 * IPv6 does not fall back to IPv4.
24872 	 */
24873 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24874 	if (error) {
24875 #ifdef DEBUG
24876 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24877 		    error);
24878 #endif
24879 		goto out;
24880 	}
24881 
24882 	/*
24883 	 * This ioctl causes the tcp framework to cache a pointer to
24884 	 * this stream, so we don't want to close the stream after
24885 	 * this operation.
24886 	 * Use the kernel credentials that are for the zone we're in.
24887 	 */
24888 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24889 	    (intptr_t)0, FKIOCTL, cr, &rval);
24890 	if (error) {
24891 #ifdef DEBUG
24892 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24893 		    "error %d\n", error);
24894 #endif
24895 		goto out;
24896 	}
24897 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24898 	lh = NULL;
24899 out:
24900 	/* Close layered handles */
24901 	if (li)
24902 		ldi_ident_release(li);
24903 	/* Keep cred around until _inactive needs it */
24904 	tcps->tcps_g_q_cr = cr;
24905 }
24906 
24907 /*
24908  * We keep tcp_g_q set until all other tcp_t's in the zone
24909  * has gone away, and then when tcp_g_q_inactive() is called
24910  * we clear it.
24911  */
24912 void
24913 tcp_g_q_destroy(tcp_stack_t *tcps)
24914 {
24915 #ifdef NS_DEBUG
24916 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24917 	    tcps->tcps_netstack->netstack_stackid);
24918 #endif
24919 
24920 	if (tcps->tcps_g_q == NULL) {
24921 		return;	/* Nothing to cleanup */
24922 	}
24923 	/*
24924 	 * Drop reference corresponding to the default queue.
24925 	 * This reference was added from tcp_open when the default queue
24926 	 * was created, hence we compensate for this extra drop in
24927 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24928 	 * the default queue was the last one to be open, in which
24929 	 * case, then tcp_g_q_inactive will be
24930 	 * called as a result of the refrele.
24931 	 */
24932 	TCPS_REFRELE(tcps);
24933 }
24934 
24935 /*
24936  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24937  * Run by tcp_q_q_inactive using a taskq.
24938  */
24939 static void
24940 tcp_g_q_close(void *arg)
24941 {
24942 	tcp_stack_t *tcps = arg;
24943 	int error;
24944 	ldi_handle_t	lh = NULL;
24945 	ldi_ident_t	li = NULL;
24946 	cred_t		*cr;
24947 
24948 #ifdef NS_DEBUG
24949 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24950 	    tcps->tcps_netstack->netstack_stackid,
24951 	    tcps->tcps_netstack->netstack_refcnt);
24952 #endif
24953 	lh = tcps->tcps_g_q_lh;
24954 	if (lh == NULL)
24955 		return;	/* Nothing to cleanup */
24956 
24957 	ASSERT(tcps->tcps_refcnt == 1);
24958 	ASSERT(tcps->tcps_g_q != NULL);
24959 
24960 	error = ldi_ident_from_major(IP_MAJ, &li);
24961 	if (error) {
24962 #ifdef DEBUG
24963 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24964 		    error);
24965 #endif
24966 		return;
24967 	}
24968 
24969 	cr = tcps->tcps_g_q_cr;
24970 	tcps->tcps_g_q_cr = NULL;
24971 	ASSERT(cr != NULL);
24972 
24973 	/*
24974 	 * Make sure we can break the recursion when tcp_close decrements
24975 	 * the reference count causing g_q_inactive to be called again.
24976 	 */
24977 	tcps->tcps_g_q_lh = NULL;
24978 
24979 	/* close the default queue */
24980 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24981 	/*
24982 	 * At this point in time tcps and the rest of netstack_t might
24983 	 * have been deleted.
24984 	 */
24985 	tcps = NULL;
24986 
24987 	/* Close layered handles */
24988 	ldi_ident_release(li);
24989 	crfree(cr);
24990 }
24991 
24992 /*
24993  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24994  *
24995  * Have to ensure that the ldi routines are not used by an
24996  * interrupt thread by using a taskq.
24997  */
24998 void
24999 tcp_g_q_inactive(tcp_stack_t *tcps)
25000 {
25001 	if (tcps->tcps_g_q_lh == NULL)
25002 		return;	/* Nothing to cleanup */
25003 
25004 	ASSERT(tcps->tcps_refcnt == 0);
25005 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25006 
25007 	if (servicing_interrupt()) {
25008 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25009 			    (void *) tcps, TQ_SLEEP);
25010 	} else {
25011 		tcp_g_q_close(tcps);
25012 	}
25013 }
25014 
25015 /*
25016  * Called by IP when IP is loaded into the kernel
25017  */
25018 void
25019 tcp_ddi_g_init(void)
25020 {
25021 	IP_MAJ = ddi_name_to_major(IP);
25022 
25023 	tcp_timercache = kmem_cache_create("tcp_timercache",
25024 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25025 	    NULL, NULL, NULL, NULL, NULL, 0);
25026 
25027 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25028 	    sizeof (tcp_sack_info_t), 0,
25029 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25030 
25031 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25032 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25033 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25034 
25035 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25036 
25037 	/* Initialize the random number generator */
25038 	tcp_random_init();
25039 
25040 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25041 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25042 
25043 	/* A single callback independently of how many netstacks we have */
25044 	ip_squeue_init(tcp_squeue_add);
25045 
25046 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25047 
25048 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25049 	    TASKQ_PREPOPULATE);
25050 
25051 	/*
25052 	 * We want to be informed each time a stack is created or
25053 	 * destroyed in the kernel, so we can maintain the
25054 	 * set of tcp_stack_t's.
25055 	 */
25056 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25057 	    tcp_stack_fini);
25058 }
25059 
25060 
25061 /*
25062  * Initialize the TCP stack instance.
25063  */
25064 static void *
25065 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25066 {
25067 	tcp_stack_t	*tcps;
25068 	tcpparam_t	*pa;
25069 	int		i;
25070 
25071 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25072 	tcps->tcps_netstack = ns;
25073 
25074 	/* Initialize locks */
25075 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25076 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25077 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25078 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25079 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25080 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25081 
25082 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25083 	tcps->tcps_g_epriv_ports[0] = 2049;
25084 	tcps->tcps_g_epriv_ports[1] = 4045;
25085 	tcps->tcps_min_anonpriv_port = 512;
25086 
25087 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25088 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25089 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25090 	    TCP_FANOUT_SIZE, KM_SLEEP);
25091 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25092 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25093 
25094 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25095 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25096 		    MUTEX_DEFAULT, NULL);
25097 	}
25098 
25099 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25100 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25101 		    MUTEX_DEFAULT, NULL);
25102 	}
25103 
25104 	/* TCP's IPsec code calls the packet dropper. */
25105 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25106 
25107 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25108 	tcps->tcps_params = pa;
25109 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25110 
25111 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25112 	    A_CNT(lcl_tcp_param_arr), tcps);
25113 
25114 	/*
25115 	 * Note: To really walk the device tree you need the devinfo
25116 	 * pointer to your device which is only available after probe/attach.
25117 	 * The following is safe only because it uses ddi_root_node()
25118 	 */
25119 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25120 	    tcp_opt_obj.odb_opt_arr_cnt);
25121 
25122 	/*
25123 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25124 	 * by the boot scripts.
25125 	 *
25126 	 * Use NULL name, as the name is caught by the new lockstats.
25127 	 *
25128 	 * Initialize with some random, non-guessable string, like the global
25129 	 * T_INFO_ACK.
25130 	 */
25131 
25132 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25133 	    sizeof (tcp_g_t_info_ack), tcps);
25134 
25135 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25136 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25137 
25138 	return (tcps);
25139 }
25140 
25141 /*
25142  * Called when the IP module is about to be unloaded.
25143  */
25144 void
25145 tcp_ddi_g_destroy(void)
25146 {
25147 	tcp_g_kstat_fini(tcp_g_kstat);
25148 	tcp_g_kstat = NULL;
25149 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25150 
25151 	mutex_destroy(&tcp_random_lock);
25152 
25153 	kmem_cache_destroy(tcp_timercache);
25154 	kmem_cache_destroy(tcp_sack_info_cache);
25155 	kmem_cache_destroy(tcp_iphc_cache);
25156 
25157 	netstack_unregister(NS_TCP);
25158 	taskq_destroy(tcp_taskq);
25159 }
25160 
25161 /*
25162  * Shut down the TCP stack instance.
25163  */
25164 /* ARGSUSED */
25165 static void
25166 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25167 {
25168 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25169 
25170 	tcp_g_q_destroy(tcps);
25171 }
25172 
25173 /*
25174  * Free the TCP stack instance.
25175  */
25176 static void
25177 tcp_stack_fini(netstackid_t stackid, void *arg)
25178 {
25179 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25180 	int i;
25181 
25182 	nd_free(&tcps->tcps_g_nd);
25183 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25184 	tcps->tcps_params = NULL;
25185 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25186 	tcps->tcps_wroff_xtra_param = NULL;
25187 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25188 	tcps->tcps_mdt_head_param = NULL;
25189 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25190 	tcps->tcps_mdt_tail_param = NULL;
25191 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25192 	tcps->tcps_mdt_max_pbufs_param = NULL;
25193 
25194 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25195 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25196 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25197 	}
25198 
25199 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25200 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25201 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25202 	}
25203 
25204 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25205 	tcps->tcps_bind_fanout = NULL;
25206 
25207 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25208 	tcps->tcps_acceptor_fanout = NULL;
25209 
25210 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25211 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25212 	tcps->tcps_reserved_port = NULL;
25213 
25214 	mutex_destroy(&tcps->tcps_iss_key_lock);
25215 	rw_destroy(&tcps->tcps_hsp_lock);
25216 	mutex_destroy(&tcps->tcps_g_q_lock);
25217 	cv_destroy(&tcps->tcps_g_q_cv);
25218 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25219 	rw_destroy(&tcps->tcps_reserved_port_lock);
25220 
25221 	ip_drop_unregister(&tcps->tcps_dropper);
25222 
25223 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25224 	tcps->tcps_kstat = NULL;
25225 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25226 
25227 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25228 	tcps->tcps_mibkp = NULL;
25229 
25230 	kmem_free(tcps, sizeof (*tcps));
25231 }
25232 
25233 /*
25234  * Generate ISS, taking into account NDD changes may happen halfway through.
25235  * (If the iss is not zero, set it.)
25236  */
25237 
25238 static void
25239 tcp_iss_init(tcp_t *tcp)
25240 {
25241 	MD5_CTX context;
25242 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25243 	uint32_t answer[4];
25244 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25245 
25246 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25247 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25248 	switch (tcps->tcps_strong_iss) {
25249 	case 2:
25250 		mutex_enter(&tcps->tcps_iss_key_lock);
25251 		context = tcps->tcps_iss_key;
25252 		mutex_exit(&tcps->tcps_iss_key_lock);
25253 		arg.ports = tcp->tcp_ports;
25254 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25255 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25256 			    &arg.src);
25257 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25258 			    &arg.dst);
25259 		} else {
25260 			arg.src = tcp->tcp_ip6h->ip6_src;
25261 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25262 		}
25263 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25264 		MD5Final((uchar_t *)answer, &context);
25265 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25266 		/*
25267 		 * Now that we've hashed into a unique per-connection sequence
25268 		 * space, add a random increment per strong_iss == 1.  So I
25269 		 * guess we'll have to...
25270 		 */
25271 		/* FALLTHRU */
25272 	case 1:
25273 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25274 		break;
25275 	default:
25276 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25277 		break;
25278 	}
25279 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25280 	tcp->tcp_fss = tcp->tcp_iss - 1;
25281 	tcp->tcp_suna = tcp->tcp_iss;
25282 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25283 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25284 	tcp->tcp_csuna = tcp->tcp_snxt;
25285 }
25286 
25287 /*
25288  * Exported routine for extracting active tcp connection status.
25289  *
25290  * This is used by the Solaris Cluster Networking software to
25291  * gather a list of connections that need to be forwarded to
25292  * specific nodes in the cluster when configuration changes occur.
25293  *
25294  * The callback is invoked for each tcp_t structure. Returning
25295  * non-zero from the callback routine terminates the search.
25296  */
25297 int
25298 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25299     void *arg)
25300 {
25301 	netstack_handle_t nh;
25302 	netstack_t *ns;
25303 	int ret = 0;
25304 
25305 	netstack_next_init(&nh);
25306 	while ((ns = netstack_next(&nh)) != NULL) {
25307 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25308 		    ns->netstack_tcp);
25309 		netstack_rele(ns);
25310 	}
25311 	netstack_next_fini(&nh);
25312 	return (ret);
25313 }
25314 
25315 static int
25316 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25317     tcp_stack_t *tcps)
25318 {
25319 	tcp_t *tcp;
25320 	cl_tcp_info_t	cl_tcpi;
25321 	connf_t	*connfp;
25322 	conn_t	*connp;
25323 	int	i;
25324 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25325 
25326 	ASSERT(callback != NULL);
25327 
25328 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25329 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25330 		connp = NULL;
25331 
25332 		while ((connp =
25333 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25334 
25335 			tcp = connp->conn_tcp;
25336 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25337 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25338 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25339 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25340 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25341 			/*
25342 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25343 			 * addresses. They are copied implicitly below as
25344 			 * mapped addresses.
25345 			 */
25346 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25347 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25348 				cl_tcpi.cl_tcpi_faddr =
25349 				    tcp->tcp_ipha->ipha_dst;
25350 			} else {
25351 				cl_tcpi.cl_tcpi_faddr_v6 =
25352 				    tcp->tcp_ip6h->ip6_dst;
25353 			}
25354 
25355 			/*
25356 			 * If the callback returns non-zero
25357 			 * we terminate the traversal.
25358 			 */
25359 			if ((*callback)(&cl_tcpi, arg) != 0) {
25360 				CONN_DEC_REF(tcp->tcp_connp);
25361 				return (1);
25362 			}
25363 		}
25364 	}
25365 
25366 	return (0);
25367 }
25368 
25369 /*
25370  * Macros used for accessing the different types of sockaddr
25371  * structures inside a tcp_ioc_abort_conn_t.
25372  */
25373 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25374 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25375 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25376 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25377 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25378 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25379 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25380 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25381 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25382 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25383 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25384 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25385 
25386 /*
25387  * Return the correct error code to mimic the behavior
25388  * of a connection reset.
25389  */
25390 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25391 		switch ((state)) {		\
25392 		case TCPS_SYN_SENT:		\
25393 		case TCPS_SYN_RCVD:		\
25394 			(err) = ECONNREFUSED;	\
25395 			break;			\
25396 		case TCPS_ESTABLISHED:		\
25397 		case TCPS_FIN_WAIT_1:		\
25398 		case TCPS_FIN_WAIT_2:		\
25399 		case TCPS_CLOSE_WAIT:		\
25400 			(err) = ECONNRESET;	\
25401 			break;			\
25402 		case TCPS_CLOSING:		\
25403 		case TCPS_LAST_ACK:		\
25404 		case TCPS_TIME_WAIT:		\
25405 			(err) = 0;		\
25406 			break;			\
25407 		default:			\
25408 			(err) = ENXIO;		\
25409 		}				\
25410 	}
25411 
25412 /*
25413  * Check if a tcp structure matches the info in acp.
25414  */
25415 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25416 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25417 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25418 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25419 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25420 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25421 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25422 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25423 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25424 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25425 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25426 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25427 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25428 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25429 	&(tcp)->tcp_ip_src_v6)) &&				\
25430 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25431 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25432 	&(tcp)->tcp_remote_v6)) &&				\
25433 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25434 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25435 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25436 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25437 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25438 	(acp)->ac_end >= (tcp)->tcp_state))
25439 
25440 #define	TCP_AC_MATCH(acp, tcp)					\
25441 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25442 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25443 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25444 
25445 /*
25446  * Build a message containing a tcp_ioc_abort_conn_t structure
25447  * which is filled in with information from acp and tp.
25448  */
25449 static mblk_t *
25450 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25451 {
25452 	mblk_t *mp;
25453 	tcp_ioc_abort_conn_t *tacp;
25454 
25455 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25456 	if (mp == NULL)
25457 		return (NULL);
25458 
25459 	mp->b_datap->db_type = M_CTL;
25460 
25461 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25462 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25463 		sizeof (uint32_t));
25464 
25465 	tacp->ac_start = acp->ac_start;
25466 	tacp->ac_end = acp->ac_end;
25467 	tacp->ac_zoneid = acp->ac_zoneid;
25468 
25469 	if (acp->ac_local.ss_family == AF_INET) {
25470 		tacp->ac_local.ss_family = AF_INET;
25471 		tacp->ac_remote.ss_family = AF_INET;
25472 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25473 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25474 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25475 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25476 	} else {
25477 		tacp->ac_local.ss_family = AF_INET6;
25478 		tacp->ac_remote.ss_family = AF_INET6;
25479 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25480 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25481 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25482 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25483 	}
25484 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25485 	return (mp);
25486 }
25487 
25488 /*
25489  * Print a tcp_ioc_abort_conn_t structure.
25490  */
25491 static void
25492 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25493 {
25494 	char lbuf[128];
25495 	char rbuf[128];
25496 	sa_family_t af;
25497 	in_port_t lport, rport;
25498 	ushort_t logflags;
25499 
25500 	af = acp->ac_local.ss_family;
25501 
25502 	if (af == AF_INET) {
25503 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25504 				lbuf, 128);
25505 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25506 				rbuf, 128);
25507 		lport = ntohs(TCP_AC_V4LPORT(acp));
25508 		rport = ntohs(TCP_AC_V4RPORT(acp));
25509 	} else {
25510 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25511 				lbuf, 128);
25512 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25513 				rbuf, 128);
25514 		lport = ntohs(TCP_AC_V6LPORT(acp));
25515 		rport = ntohs(TCP_AC_V6RPORT(acp));
25516 	}
25517 
25518 	logflags = SL_TRACE | SL_NOTE;
25519 	/*
25520 	 * Don't print this message to the console if the operation was done
25521 	 * to a non-global zone.
25522 	 */
25523 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25524 		logflags |= SL_CONSOLE;
25525 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25526 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25527 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25528 		acp->ac_start, acp->ac_end);
25529 }
25530 
25531 /*
25532  * Called inside tcp_rput when a message built using
25533  * tcp_ioctl_abort_build_msg is put into a queue.
25534  * Note that when we get here there is no wildcard in acp any more.
25535  */
25536 static void
25537 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25538 {
25539 	tcp_ioc_abort_conn_t *acp;
25540 
25541 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25542 	if (tcp->tcp_state <= acp->ac_end) {
25543 		/*
25544 		 * If we get here, we are already on the correct
25545 		 * squeue. This ioctl follows the following path
25546 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25547 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25548 		 * different squeue)
25549 		 */
25550 		int errcode;
25551 
25552 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25553 		(void) tcp_clean_death(tcp, errcode, 26);
25554 	}
25555 	freemsg(mp);
25556 }
25557 
25558 /*
25559  * Abort all matching connections on a hash chain.
25560  */
25561 static int
25562 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25563     boolean_t exact, tcp_stack_t *tcps)
25564 {
25565 	int nmatch, err = 0;
25566 	tcp_t *tcp;
25567 	MBLKP mp, last, listhead = NULL;
25568 	conn_t	*tconnp;
25569 	connf_t	*connfp;
25570 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25571 
25572 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25573 
25574 startover:
25575 	nmatch = 0;
25576 
25577 	mutex_enter(&connfp->connf_lock);
25578 	for (tconnp = connfp->connf_head; tconnp != NULL;
25579 	    tconnp = tconnp->conn_next) {
25580 		tcp = tconnp->conn_tcp;
25581 		if (TCP_AC_MATCH(acp, tcp)) {
25582 			CONN_INC_REF(tcp->tcp_connp);
25583 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25584 			if (mp == NULL) {
25585 				err = ENOMEM;
25586 				CONN_DEC_REF(tcp->tcp_connp);
25587 				break;
25588 			}
25589 			mp->b_prev = (mblk_t *)tcp;
25590 
25591 			if (listhead == NULL) {
25592 				listhead = mp;
25593 				last = mp;
25594 			} else {
25595 				last->b_next = mp;
25596 				last = mp;
25597 			}
25598 			nmatch++;
25599 			if (exact)
25600 				break;
25601 		}
25602 
25603 		/* Avoid holding lock for too long. */
25604 		if (nmatch >= 500)
25605 			break;
25606 	}
25607 	mutex_exit(&connfp->connf_lock);
25608 
25609 	/* Pass mp into the correct tcp */
25610 	while ((mp = listhead) != NULL) {
25611 		listhead = listhead->b_next;
25612 		tcp = (tcp_t *)mp->b_prev;
25613 		mp->b_next = mp->b_prev = NULL;
25614 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25615 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25616 	}
25617 
25618 	*count += nmatch;
25619 	if (nmatch >= 500 && err == 0)
25620 		goto startover;
25621 	return (err);
25622 }
25623 
25624 /*
25625  * Abort all connections that matches the attributes specified in acp.
25626  */
25627 static int
25628 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25629 {
25630 	sa_family_t af;
25631 	uint32_t  ports;
25632 	uint16_t *pports;
25633 	int err = 0, count = 0;
25634 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25635 	int index = -1;
25636 	ushort_t logflags;
25637 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25638 
25639 	af = acp->ac_local.ss_family;
25640 
25641 	if (af == AF_INET) {
25642 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25643 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25644 			pports = (uint16_t *)&ports;
25645 			pports[1] = TCP_AC_V4LPORT(acp);
25646 			pports[0] = TCP_AC_V4RPORT(acp);
25647 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25648 		}
25649 	} else {
25650 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25651 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25652 			pports = (uint16_t *)&ports;
25653 			pports[1] = TCP_AC_V6LPORT(acp);
25654 			pports[0] = TCP_AC_V6RPORT(acp);
25655 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25656 		}
25657 	}
25658 
25659 	/*
25660 	 * For cases where remote addr, local port, and remote port are non-
25661 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25662 	 */
25663 	if (index != -1) {
25664 		err = tcp_ioctl_abort_bucket(acp, index,
25665 			    &count, exact, tcps);
25666 	} else {
25667 		/*
25668 		 * loop through all entries for wildcard case
25669 		 */
25670 		for (index = 0;
25671 		    index < ipst->ips_ipcl_conn_fanout_size;
25672 		    index++) {
25673 			err = tcp_ioctl_abort_bucket(acp, index,
25674 			    &count, exact, tcps);
25675 			if (err != 0)
25676 				break;
25677 		}
25678 	}
25679 
25680 	logflags = SL_TRACE | SL_NOTE;
25681 	/*
25682 	 * Don't print this message to the console if the operation was done
25683 	 * to a non-global zone.
25684 	 */
25685 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25686 		logflags |= SL_CONSOLE;
25687 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25688 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25689 	if (err == 0 && count == 0)
25690 		err = ENOENT;
25691 	return (err);
25692 }
25693 
25694 /*
25695  * Process the TCP_IOC_ABORT_CONN ioctl request.
25696  */
25697 static void
25698 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25699 {
25700 	int	err;
25701 	IOCP    iocp;
25702 	MBLKP   mp1;
25703 	sa_family_t laf, raf;
25704 	tcp_ioc_abort_conn_t *acp;
25705 	zone_t		*zptr;
25706 	conn_t		*connp = Q_TO_CONN(q);
25707 	zoneid_t	zoneid = connp->conn_zoneid;
25708 	tcp_t		*tcp = connp->conn_tcp;
25709 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25710 
25711 	iocp = (IOCP)mp->b_rptr;
25712 
25713 	if ((mp1 = mp->b_cont) == NULL ||
25714 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25715 		err = EINVAL;
25716 		goto out;
25717 	}
25718 
25719 	/* check permissions */
25720 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25721 		err = EPERM;
25722 		goto out;
25723 	}
25724 
25725 	if (mp1->b_cont != NULL) {
25726 		freemsg(mp1->b_cont);
25727 		mp1->b_cont = NULL;
25728 	}
25729 
25730 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25731 	laf = acp->ac_local.ss_family;
25732 	raf = acp->ac_remote.ss_family;
25733 
25734 	/* check that a zone with the supplied zoneid exists */
25735 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25736 		zptr = zone_find_by_id(zoneid);
25737 		if (zptr != NULL) {
25738 			zone_rele(zptr);
25739 		} else {
25740 			err = EINVAL;
25741 			goto out;
25742 		}
25743 	}
25744 
25745 	/*
25746 	 * For exclusive stacks we set the zoneid to zero
25747 	 * to make TCP operate as if in the global zone.
25748 	 */
25749 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25750 		acp->ac_zoneid = GLOBAL_ZONEID;
25751 
25752 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25753 	    acp->ac_start > acp->ac_end || laf != raf ||
25754 	    (laf != AF_INET && laf != AF_INET6)) {
25755 		err = EINVAL;
25756 		goto out;
25757 	}
25758 
25759 	tcp_ioctl_abort_dump(acp);
25760 	err = tcp_ioctl_abort(acp, tcps);
25761 
25762 out:
25763 	if (mp1 != NULL) {
25764 		freemsg(mp1);
25765 		mp->b_cont = NULL;
25766 	}
25767 
25768 	if (err != 0)
25769 		miocnak(q, mp, 0, err);
25770 	else
25771 		miocack(q, mp, 0, 0);
25772 }
25773 
25774 /*
25775  * tcp_time_wait_processing() handles processing of incoming packets when
25776  * the tcp is in the TIME_WAIT state.
25777  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25778  * on the time wait list.
25779  */
25780 void
25781 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25782     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25783 {
25784 	int32_t		bytes_acked;
25785 	int32_t		gap;
25786 	int32_t		rgap;
25787 	tcp_opt_t	tcpopt;
25788 	uint_t		flags;
25789 	uint32_t	new_swnd = 0;
25790 	conn_t		*connp;
25791 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25792 
25793 	BUMP_LOCAL(tcp->tcp_ibsegs);
25794 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25795 
25796 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25797 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25798 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25799 	if (tcp->tcp_snd_ts_ok) {
25800 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25801 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25802 			    tcp->tcp_rnxt, TH_ACK);
25803 			goto done;
25804 		}
25805 	}
25806 	gap = seg_seq - tcp->tcp_rnxt;
25807 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25808 	if (gap < 0) {
25809 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25810 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25811 		    (seg_len > -gap ? -gap : seg_len));
25812 		seg_len += gap;
25813 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25814 			if (flags & TH_RST) {
25815 				goto done;
25816 			}
25817 			if ((flags & TH_FIN) && seg_len == -1) {
25818 				/*
25819 				 * When TCP receives a duplicate FIN in
25820 				 * TIME_WAIT state, restart the 2 MSL timer.
25821 				 * See page 73 in RFC 793. Make sure this TCP
25822 				 * is already on the TIME_WAIT list. If not,
25823 				 * just restart the timer.
25824 				 */
25825 				if (TCP_IS_DETACHED(tcp)) {
25826 					if (tcp_time_wait_remove(tcp, NULL) ==
25827 					    B_TRUE) {
25828 						tcp_time_wait_append(tcp);
25829 						TCP_DBGSTAT(tcps,
25830 						    tcp_rput_time_wait);
25831 					}
25832 				} else {
25833 					ASSERT(tcp != NULL);
25834 					TCP_TIMER_RESTART(tcp,
25835 					    tcps->tcps_time_wait_interval);
25836 				}
25837 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25838 				    tcp->tcp_rnxt, TH_ACK);
25839 				goto done;
25840 			}
25841 			flags |=  TH_ACK_NEEDED;
25842 			seg_len = 0;
25843 			goto process_ack;
25844 		}
25845 
25846 		/* Fix seg_seq, and chew the gap off the front. */
25847 		seg_seq = tcp->tcp_rnxt;
25848 	}
25849 
25850 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25851 		/*
25852 		 * Make sure that when we accept the connection, pick
25853 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25854 		 * old connection.
25855 		 *
25856 		 * The next ISS generated is equal to tcp_iss_incr_extra
25857 		 * + ISS_INCR/2 + other components depending on the
25858 		 * value of tcp_strong_iss.  We pre-calculate the new
25859 		 * ISS here and compare with tcp_snxt to determine if
25860 		 * we need to make adjustment to tcp_iss_incr_extra.
25861 		 *
25862 		 * The above calculation is ugly and is a
25863 		 * waste of CPU cycles...
25864 		 */
25865 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25866 		int32_t adj;
25867 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25868 
25869 		switch (tcps->tcps_strong_iss) {
25870 		case 2: {
25871 			/* Add time and MD5 components. */
25872 			uint32_t answer[4];
25873 			struct {
25874 				uint32_t ports;
25875 				in6_addr_t src;
25876 				in6_addr_t dst;
25877 			} arg;
25878 			MD5_CTX context;
25879 
25880 			mutex_enter(&tcps->tcps_iss_key_lock);
25881 			context = tcps->tcps_iss_key;
25882 			mutex_exit(&tcps->tcps_iss_key_lock);
25883 			arg.ports = tcp->tcp_ports;
25884 			/* We use MAPPED addresses in tcp_iss_init */
25885 			arg.src = tcp->tcp_ip_src_v6;
25886 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25887 				IN6_IPADDR_TO_V4MAPPED(
25888 					tcp->tcp_ipha->ipha_dst,
25889 					    &arg.dst);
25890 			} else {
25891 				arg.dst =
25892 				    tcp->tcp_ip6h->ip6_dst;
25893 			}
25894 			MD5Update(&context, (uchar_t *)&arg,
25895 			    sizeof (arg));
25896 			MD5Final((uchar_t *)answer, &context);
25897 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25898 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25899 			break;
25900 		}
25901 		case 1:
25902 			/* Add time component and min random (i.e. 1). */
25903 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25904 			break;
25905 		default:
25906 			/* Add only time component. */
25907 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25908 			break;
25909 		}
25910 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25911 			/*
25912 			 * New ISS not guaranteed to be ISS_INCR/2
25913 			 * ahead of the current tcp_snxt, so add the
25914 			 * difference to tcp_iss_incr_extra.
25915 			 */
25916 			tcps->tcps_iss_incr_extra += adj;
25917 		}
25918 		/*
25919 		 * If tcp_clean_death() can not perform the task now,
25920 		 * drop the SYN packet and let the other side re-xmit.
25921 		 * Otherwise pass the SYN packet back in, since the
25922 		 * old tcp state has been cleaned up or freed.
25923 		 */
25924 		if (tcp_clean_death(tcp, 0, 27) == -1)
25925 			goto done;
25926 		/*
25927 		 * We will come back to tcp_rput_data
25928 		 * on the global queue. Packets destined
25929 		 * for the global queue will be checked
25930 		 * with global policy. But the policy for
25931 		 * this packet has already been checked as
25932 		 * this was destined for the detached
25933 		 * connection. We need to bypass policy
25934 		 * check this time by attaching a dummy
25935 		 * ipsec_in with ipsec_in_dont_check set.
25936 		 */
25937 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25938 		if (connp != NULL) {
25939 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25940 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25941 			return;
25942 		}
25943 		goto done;
25944 	}
25945 
25946 	/*
25947 	 * rgap is the amount of stuff received out of window.  A negative
25948 	 * value is the amount out of window.
25949 	 */
25950 	if (rgap < 0) {
25951 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25952 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25953 		/* Fix seg_len and make sure there is something left. */
25954 		seg_len += rgap;
25955 		if (seg_len <= 0) {
25956 			if (flags & TH_RST) {
25957 				goto done;
25958 			}
25959 			flags |=  TH_ACK_NEEDED;
25960 			seg_len = 0;
25961 			goto process_ack;
25962 		}
25963 	}
25964 	/*
25965 	 * Check whether we can update tcp_ts_recent.  This test is
25966 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25967 	 * Extensions for High Performance: An Update", Internet Draft.
25968 	 */
25969 	if (tcp->tcp_snd_ts_ok &&
25970 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25971 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25972 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25973 		tcp->tcp_last_rcv_lbolt = lbolt64;
25974 	}
25975 
25976 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25977 		/* Always ack out of order packets */
25978 		flags |= TH_ACK_NEEDED;
25979 		seg_len = 0;
25980 	} else if (seg_len > 0) {
25981 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25982 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25983 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25984 	}
25985 	if (flags & TH_RST) {
25986 		(void) tcp_clean_death(tcp, 0, 28);
25987 		goto done;
25988 	}
25989 	if (flags & TH_SYN) {
25990 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25991 		    TH_RST|TH_ACK);
25992 		/*
25993 		 * Do not delete the TCP structure if it is in
25994 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25995 		 */
25996 		goto done;
25997 	}
25998 process_ack:
25999 	if (flags & TH_ACK) {
26000 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26001 		if (bytes_acked <= 0) {
26002 			if (bytes_acked == 0 && seg_len == 0 &&
26003 			    new_swnd == tcp->tcp_swnd)
26004 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26005 		} else {
26006 			/* Acks something not sent */
26007 			flags |= TH_ACK_NEEDED;
26008 		}
26009 	}
26010 	if (flags & TH_ACK_NEEDED) {
26011 		/*
26012 		 * Time to send an ack for some reason.
26013 		 */
26014 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26015 		    tcp->tcp_rnxt, TH_ACK);
26016 	}
26017 done:
26018 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26019 		DB_CKSUMSTART(mp) = 0;
26020 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26021 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26022 	}
26023 	freemsg(mp);
26024 }
26025 
26026 /*
26027  * Allocate a T_SVR4_OPTMGMT_REQ.
26028  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26029  * that tcp_rput_other can drop the acks.
26030  */
26031 static mblk_t *
26032 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26033 {
26034 	mblk_t *mp;
26035 	struct T_optmgmt_req *tor;
26036 	struct opthdr *oh;
26037 	uint_t size;
26038 	char *optptr;
26039 
26040 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26041 	mp = allocb(size, BPRI_MED);
26042 	if (mp == NULL)
26043 		return (NULL);
26044 
26045 	mp->b_wptr += size;
26046 	mp->b_datap->db_type = M_PROTO;
26047 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26048 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26049 	tor->MGMT_flags = T_NEGOTIATE;
26050 	tor->OPT_length = sizeof (*oh) + optlen;
26051 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26052 
26053 	oh = (struct opthdr *)&tor[1];
26054 	oh->level = level;
26055 	oh->name = cmd;
26056 	oh->len = optlen;
26057 	if (optlen != 0) {
26058 		optptr = (char *)&oh[1];
26059 		bcopy(opt, optptr, optlen);
26060 	}
26061 	return (mp);
26062 }
26063 
26064 /*
26065  * TCP Timers Implementation.
26066  */
26067 timeout_id_t
26068 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26069 {
26070 	mblk_t *mp;
26071 	tcp_timer_t *tcpt;
26072 	tcp_t *tcp = connp->conn_tcp;
26073 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26074 
26075 	ASSERT(connp->conn_sqp != NULL);
26076 
26077 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26078 
26079 	if (tcp->tcp_timercache == NULL) {
26080 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26081 	} else {
26082 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26083 		mp = tcp->tcp_timercache;
26084 		tcp->tcp_timercache = mp->b_next;
26085 		mp->b_next = NULL;
26086 		ASSERT(mp->b_wptr == NULL);
26087 	}
26088 
26089 	CONN_INC_REF(connp);
26090 	tcpt = (tcp_timer_t *)mp->b_rptr;
26091 	tcpt->connp = connp;
26092 	tcpt->tcpt_proc = f;
26093 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26094 	return ((timeout_id_t)mp);
26095 }
26096 
26097 static void
26098 tcp_timer_callback(void *arg)
26099 {
26100 	mblk_t *mp = (mblk_t *)arg;
26101 	tcp_timer_t *tcpt;
26102 	conn_t	*connp;
26103 
26104 	tcpt = (tcp_timer_t *)mp->b_rptr;
26105 	connp = tcpt->connp;
26106 	squeue_fill(connp->conn_sqp, mp,
26107 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26108 }
26109 
26110 static void
26111 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26112 {
26113 	tcp_timer_t *tcpt;
26114 	conn_t *connp = (conn_t *)arg;
26115 	tcp_t *tcp = connp->conn_tcp;
26116 
26117 	tcpt = (tcp_timer_t *)mp->b_rptr;
26118 	ASSERT(connp == tcpt->connp);
26119 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26120 
26121 	/*
26122 	 * If the TCP has reached the closed state, don't proceed any
26123 	 * further. This TCP logically does not exist on the system.
26124 	 * tcpt_proc could for example access queues, that have already
26125 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26126 	 */
26127 	if (tcp->tcp_state != TCPS_CLOSED) {
26128 		(*tcpt->tcpt_proc)(connp);
26129 	} else {
26130 		tcp->tcp_timer_tid = 0;
26131 	}
26132 	tcp_timer_free(connp->conn_tcp, mp);
26133 }
26134 
26135 /*
26136  * There is potential race with untimeout and the handler firing at the same
26137  * time. The mblock may be freed by the handler while we are trying to use
26138  * it. But since both should execute on the same squeue, this race should not
26139  * occur.
26140  */
26141 clock_t
26142 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26143 {
26144 	mblk_t	*mp = (mblk_t *)id;
26145 	tcp_timer_t *tcpt;
26146 	clock_t delta;
26147 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26148 
26149 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26150 
26151 	if (mp == NULL)
26152 		return (-1);
26153 
26154 	tcpt = (tcp_timer_t *)mp->b_rptr;
26155 	ASSERT(tcpt->connp == connp);
26156 
26157 	delta = untimeout(tcpt->tcpt_tid);
26158 
26159 	if (delta >= 0) {
26160 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26161 		tcp_timer_free(connp->conn_tcp, mp);
26162 		CONN_DEC_REF(connp);
26163 	}
26164 
26165 	return (delta);
26166 }
26167 
26168 /*
26169  * Allocate space for the timer event. The allocation looks like mblk, but it is
26170  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26171  *
26172  * Dealing with failures: If we can't allocate from the timer cache we try
26173  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26174  * points to b_rptr.
26175  * If we can't allocate anything using allocb_tryhard(), we perform a last
26176  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26177  * save the actual allocation size in b_datap.
26178  */
26179 mblk_t *
26180 tcp_timermp_alloc(int kmflags)
26181 {
26182 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26183 	    kmflags & ~KM_PANIC);
26184 
26185 	if (mp != NULL) {
26186 		mp->b_next = mp->b_prev = NULL;
26187 		mp->b_rptr = (uchar_t *)(&mp[1]);
26188 		mp->b_wptr = NULL;
26189 		mp->b_datap = NULL;
26190 		mp->b_queue = NULL;
26191 		mp->b_cont = NULL;
26192 	} else if (kmflags & KM_PANIC) {
26193 		/*
26194 		 * Failed to allocate memory for the timer. Try allocating from
26195 		 * dblock caches.
26196 		 */
26197 		/* ipclassifier calls this from a constructor - hence no tcps */
26198 		TCP_G_STAT(tcp_timermp_allocfail);
26199 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26200 		if (mp == NULL) {
26201 			size_t size = 0;
26202 			/*
26203 			 * Memory is really low. Try tryhard allocation.
26204 			 *
26205 			 * ipclassifier calls this from a constructor -
26206 			 * hence no tcps
26207 			 */
26208 			TCP_G_STAT(tcp_timermp_allocdblfail);
26209 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26210 			    sizeof (tcp_timer_t), &size, kmflags);
26211 			mp->b_rptr = (uchar_t *)(&mp[1]);
26212 			mp->b_next = mp->b_prev = NULL;
26213 			mp->b_wptr = (uchar_t *)-1;
26214 			mp->b_datap = (dblk_t *)size;
26215 			mp->b_queue = NULL;
26216 			mp->b_cont = NULL;
26217 		}
26218 		ASSERT(mp->b_wptr != NULL);
26219 	}
26220 	/* ipclassifier calls this from a constructor - hence no tcps */
26221 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26222 
26223 	return (mp);
26224 }
26225 
26226 /*
26227  * Free per-tcp timer cache.
26228  * It can only contain entries from tcp_timercache.
26229  */
26230 void
26231 tcp_timermp_free(tcp_t *tcp)
26232 {
26233 	mblk_t *mp;
26234 
26235 	while ((mp = tcp->tcp_timercache) != NULL) {
26236 		ASSERT(mp->b_wptr == NULL);
26237 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26238 		kmem_cache_free(tcp_timercache, mp);
26239 	}
26240 }
26241 
26242 /*
26243  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26244  * events there already (currently at most two events are cached).
26245  * If the event is not allocated from the timer cache, free it right away.
26246  */
26247 static void
26248 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26249 {
26250 	mblk_t *mp1 = tcp->tcp_timercache;
26251 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26252 
26253 	if (mp->b_wptr != NULL) {
26254 		/*
26255 		 * This allocation is not from a timer cache, free it right
26256 		 * away.
26257 		 */
26258 		if (mp->b_wptr != (uchar_t *)-1)
26259 			freeb(mp);
26260 		else
26261 			kmem_free(mp, (size_t)mp->b_datap);
26262 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26263 		/* Cache this timer block for future allocations */
26264 		mp->b_rptr = (uchar_t *)(&mp[1]);
26265 		mp->b_next = mp1;
26266 		tcp->tcp_timercache = mp;
26267 	} else {
26268 		kmem_cache_free(tcp_timercache, mp);
26269 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26270 	}
26271 }
26272 
26273 /*
26274  * End of TCP Timers implementation.
26275  */
26276 
26277 /*
26278  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26279  * on the specified backing STREAMS q. Note, the caller may make the
26280  * decision to call based on the tcp_t.tcp_flow_stopped value which
26281  * when check outside the q's lock is only an advisory check ...
26282  */
26283 
26284 void
26285 tcp_setqfull(tcp_t *tcp)
26286 {
26287 	queue_t *q = tcp->tcp_wq;
26288 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26289 
26290 	if (!(q->q_flag & QFULL)) {
26291 		mutex_enter(QLOCK(q));
26292 		if (!(q->q_flag & QFULL)) {
26293 			/* still need to set QFULL */
26294 			q->q_flag |= QFULL;
26295 			tcp->tcp_flow_stopped = B_TRUE;
26296 			mutex_exit(QLOCK(q));
26297 			TCP_STAT(tcps, tcp_flwctl_on);
26298 		} else {
26299 			mutex_exit(QLOCK(q));
26300 		}
26301 	}
26302 }
26303 
26304 void
26305 tcp_clrqfull(tcp_t *tcp)
26306 {
26307 	queue_t *q = tcp->tcp_wq;
26308 
26309 	if (q->q_flag & QFULL) {
26310 		mutex_enter(QLOCK(q));
26311 		if (q->q_flag & QFULL) {
26312 			q->q_flag &= ~QFULL;
26313 			tcp->tcp_flow_stopped = B_FALSE;
26314 			mutex_exit(QLOCK(q));
26315 			if (q->q_flag & QWANTW)
26316 				qbackenable(q, 0);
26317 		} else {
26318 			mutex_exit(QLOCK(q));
26319 		}
26320 	}
26321 }
26322 
26323 
26324 /*
26325  * kstats related to squeues i.e. not per IP instance
26326  */
26327 static void *
26328 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26329 {
26330 	kstat_t *ksp;
26331 
26332 	tcp_g_stat_t template = {
26333 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26334 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26335 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26336 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26337 	};
26338 
26339 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26340 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26341 	    KSTAT_FLAG_VIRTUAL);
26342 
26343 	if (ksp == NULL)
26344 		return (NULL);
26345 
26346 	bcopy(&template, tcp_g_statp, sizeof (template));
26347 	ksp->ks_data = (void *)tcp_g_statp;
26348 
26349 	kstat_install(ksp);
26350 	return (ksp);
26351 }
26352 
26353 static void
26354 tcp_g_kstat_fini(kstat_t *ksp)
26355 {
26356 	if (ksp != NULL) {
26357 		kstat_delete(ksp);
26358 	}
26359 }
26360 
26361 
26362 static void *
26363 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26364 {
26365 	kstat_t *ksp;
26366 
26367 	tcp_stat_t template = {
26368 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26369 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26370 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26371 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26372 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26373 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26374 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26375 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26376 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26377 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26378 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26379 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26380 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26381 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26382 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26383 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26384 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26385 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26386 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26387 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26388 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26389 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26390 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26391 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26392 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26393 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26394 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26395 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26396 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26397 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26398 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26399 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26400 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26401 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26402 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26403 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26404 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26405 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26406 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26407 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26408 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26409 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26410 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26411 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26412 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26413 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26414 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26415 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26416 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26417 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26418 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26419 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26420 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26421 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26422 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26423 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26424 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26425 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26426 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26427 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26428 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26429 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26430 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26431 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26432 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26433 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26434 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26435 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26436 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26437 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26438 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26439 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26440 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26441 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26442 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26443 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26444 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26445 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26446 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26447 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26448 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26449 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26450 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26451 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26452 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26453 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26454 	};
26455 
26456 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26457 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26458 	    KSTAT_FLAG_VIRTUAL, stackid);
26459 
26460 	if (ksp == NULL)
26461 		return (NULL);
26462 
26463 	bcopy(&template, tcps_statisticsp, sizeof (template));
26464 	ksp->ks_data = (void *)tcps_statisticsp;
26465 	ksp->ks_private = (void *)(uintptr_t)stackid;
26466 
26467 	kstat_install(ksp);
26468 	return (ksp);
26469 }
26470 
26471 static void
26472 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26473 {
26474 	if (ksp != NULL) {
26475 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26476 		kstat_delete_netstack(ksp, stackid);
26477 	}
26478 }
26479 
26480 /*
26481  * TCP Kstats implementation
26482  */
26483 static void *
26484 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26485 {
26486 	kstat_t	*ksp;
26487 
26488 	tcp_named_kstat_t template = {
26489 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26490 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26491 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26492 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26493 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26494 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26495 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26496 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26497 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26498 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26499 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26500 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26501 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26502 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26503 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26504 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26505 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26506 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26507 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26508 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26509 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26510 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26511 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26512 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26513 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26514 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26515 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26516 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26517 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26518 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26519 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26520 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26521 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26522 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26523 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26524 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26525 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26526 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26527 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26528 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26529 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26530 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26531 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26532 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26533 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26534 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26535 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26536 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26537 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26538 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26539 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26540 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26541 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26542 	};
26543 
26544 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26545 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26546 
26547 	if (ksp == NULL)
26548 		return (NULL);
26549 
26550 	template.rtoAlgorithm.value.ui32 = 4;
26551 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26552 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26553 	template.maxConn.value.i32 = -1;
26554 
26555 	bcopy(&template, ksp->ks_data, sizeof (template));
26556 	ksp->ks_update = tcp_kstat_update;
26557 	ksp->ks_private = (void *)(uintptr_t)stackid;
26558 
26559 	kstat_install(ksp);
26560 	return (ksp);
26561 }
26562 
26563 static void
26564 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26565 {
26566 	if (ksp != NULL) {
26567 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26568 		kstat_delete_netstack(ksp, stackid);
26569 	}
26570 }
26571 
26572 static int
26573 tcp_kstat_update(kstat_t *kp, int rw)
26574 {
26575 	tcp_named_kstat_t *tcpkp;
26576 	tcp_t		*tcp;
26577 	connf_t		*connfp;
26578 	conn_t		*connp;
26579 	int 		i;
26580 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26581 	netstack_t	*ns;
26582 	tcp_stack_t	*tcps;
26583 	ip_stack_t	*ipst;
26584 
26585 	if ((kp == NULL) || (kp->ks_data == NULL))
26586 		return (EIO);
26587 
26588 	if (rw == KSTAT_WRITE)
26589 		return (EACCES);
26590 
26591 	ns = netstack_find_by_stackid(stackid);
26592 	if (ns == NULL)
26593 		return (-1);
26594 	tcps = ns->netstack_tcp;
26595 	if (tcps == NULL) {
26596 		netstack_rele(ns);
26597 		return (-1);
26598 	}
26599 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26600 
26601 	tcpkp->currEstab.value.ui32 = 0;
26602 
26603 	ipst = ns->netstack_ip;
26604 
26605 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26606 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26607 		connp = NULL;
26608 		while ((connp =
26609 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26610 			tcp = connp->conn_tcp;
26611 			switch (tcp_snmp_state(tcp)) {
26612 			case MIB2_TCP_established:
26613 			case MIB2_TCP_closeWait:
26614 				tcpkp->currEstab.value.ui32++;
26615 				break;
26616 			}
26617 		}
26618 	}
26619 
26620 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26621 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26622 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26623 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26624 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26625 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26626 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26627 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26628 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26629 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26630 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26631 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26632 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26633 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26634 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26635 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26636 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26637 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26638 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26639 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26640 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26641 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26642 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26643 	tcpkp->inDataInorderSegs.value.ui32 =
26644 	    tcps->tcps_mib.tcpInDataInorderSegs;
26645 	tcpkp->inDataInorderBytes.value.ui32 =
26646 	    tcps->tcps_mib.tcpInDataInorderBytes;
26647 	tcpkp->inDataUnorderSegs.value.ui32 =
26648 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26649 	tcpkp->inDataUnorderBytes.value.ui32 =
26650 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26651 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26652 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26653 	tcpkp->inDataPartDupSegs.value.ui32 =
26654 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26655 	tcpkp->inDataPartDupBytes.value.ui32 =
26656 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26657 	tcpkp->inDataPastWinSegs.value.ui32 =
26658 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26659 	tcpkp->inDataPastWinBytes.value.ui32 =
26660 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26661 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26662 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26663 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26664 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26665 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26666 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26667 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26668 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26669 	tcpkp->timKeepaliveProbe.value.ui32 =
26670 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26671 	tcpkp->timKeepaliveDrop.value.ui32 =
26672 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26673 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26674 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26675 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26676 	tcpkp->outSackRetransSegs.value.ui32 =
26677 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26678 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26679 
26680 	netstack_rele(ns);
26681 	return (0);
26682 }
26683 
26684 void
26685 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26686 {
26687 	uint16_t	hdr_len;
26688 	ipha_t		*ipha;
26689 	uint8_t		*nexthdrp;
26690 	tcph_t		*tcph;
26691 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26692 
26693 	/* Already has an eager */
26694 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26695 		TCP_STAT(tcps, tcp_reinput_syn);
26696 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26697 		    connp, SQTAG_TCP_REINPUT_EAGER);
26698 		return;
26699 	}
26700 
26701 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26702 	case IPV4_VERSION:
26703 		ipha = (ipha_t *)mp->b_rptr;
26704 		hdr_len = IPH_HDR_LENGTH(ipha);
26705 		break;
26706 	case IPV6_VERSION:
26707 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26708 		    &hdr_len, &nexthdrp)) {
26709 			CONN_DEC_REF(connp);
26710 			freemsg(mp);
26711 			return;
26712 		}
26713 		break;
26714 	}
26715 
26716 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26717 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26718 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26719 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26720 	}
26721 
26722 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26723 	    SQTAG_TCP_REINPUT);
26724 }
26725 
26726 static squeue_func_t
26727 tcp_squeue_switch(int val)
26728 {
26729 	squeue_func_t rval = squeue_fill;
26730 
26731 	switch (val) {
26732 	case 1:
26733 		rval = squeue_enter_nodrain;
26734 		break;
26735 	case 2:
26736 		rval = squeue_enter;
26737 		break;
26738 	default:
26739 		break;
26740 	}
26741 	return (rval);
26742 }
26743 
26744 /*
26745  * This is called once for each squeue - globally for all stack
26746  * instances.
26747  */
26748 static void
26749 tcp_squeue_add(squeue_t *sqp)
26750 {
26751 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26752 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
26753 
26754 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26755 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26756 	    sqp, TCP_TIME_WAIT_DELAY);
26757 	if (tcp_free_list_max_cnt == 0) {
26758 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26759 			max_ncpus : boot_max_ncpus);
26760 
26761 		/*
26762 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26763 		 */
26764 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26765 			(tcp_ncpus * sizeof (tcp_t) * 100);
26766 	}
26767 	tcp_time_wait->tcp_free_list_cnt = 0;
26768 }
26769