xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 148434217c040ea38dc844384f6ba68d9b325906)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <inet/udp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue_impl.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 #include <sys/callo.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
130  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
221  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
222  * directly to the socket (sodirect) and start an asynchronous copyout
223  * to a user-land receive-side buffer (uioa) when a blocking socket read
224  * (e.g. read, recv, ...) is pending.
225  *
226  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
227  * NULL so points to an sodirect_t and if marked enabled then we enqueue
228  * all mblk_t's directly to the socket.
229  *
230  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
231  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
232  * copyout will be started directly to the user-land uio buffer. Also, as we
233  * have a pending read, TCP's push logic can take into account the number of
234  * bytes to be received and only awake the blocked read()er when the uioa_t
235  * byte count has been satisfied.
236  *
237  * IPsec notes :
238  *
239  * Since a packet is always executed on the correct TCP perimeter
240  * all IPsec processing is defered to IP including checking new
241  * connections and setting IPSEC policies for new connection. The
242  * only exception is tcp_xmit_listeners_reset() which is called
243  * directly from IP and needs to policy check to see if TH_RST
244  * can be sent out.
245  *
246  * PFHooks notes :
247  *
248  * For mdt case, one meta buffer contains multiple packets. Mblks for every
249  * packet are assembled and passed to the hooks. When packets are blocked,
250  * or boundary of any packet is changed, the mdt processing is stopped, and
251  * packets of the meta buffer are send to the IP path one by one.
252  */
253 
254 /*
255  * Values for squeue switch:
256  * 1: SQ_NODRAIN
257  * 2: SQ_PROCESS
258  * 3: SQ_FILL
259  */
260 int tcp_squeue_wput = 2;	/* /etc/systems */
261 int tcp_squeue_flag;
262 
263 /*
264  * Macros for sodirect:
265  *
266  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
267  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
268  * if it exists and is enabled, else to NULL. Note, in the current
269  * sodirect implementation the sod_lockp must not be held across any
270  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
271  * will result as sod_lockp is the streamhead stdata.sd_lock.
272  *
273  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
274  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
275  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
276  * being used when sodirect code paths should be.
277  */
278 
279 #define	SOD_PTR_ENTER(tcp, sodp)					\
280 	(sodp) = (tcp)->tcp_sodirect;					\
281 									\
282 	if ((sodp) != NULL) {						\
283 		mutex_enter((sodp)->sod_lockp);				\
284 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
285 			mutex_exit((sodp)->sod_lockp);			\
286 			(sodp) = NULL;					\
287 		}							\
288 	}
289 
290 #define	SOD_NOT_ENABLED(tcp)						\
291 	((tcp)->tcp_sodirect == NULL ||					\
292 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
293 
294 /*
295  * This controls how tiny a write must be before we try to copy it
296  * into the the mblk on the tail of the transmit queue.  Not much
297  * speedup is observed for values larger than sixteen.  Zero will
298  * disable the optimisation.
299  */
300 int tcp_tx_pull_len = 16;
301 
302 /*
303  * TCP Statistics.
304  *
305  * How TCP statistics work.
306  *
307  * There are two types of statistics invoked by two macros.
308  *
309  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
310  * supposed to be used in non MT-hot paths of the code.
311  *
312  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
313  * supposed to be used for DEBUG purposes and may be used on a hot path.
314  *
315  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
316  * (use "kstat tcp" to get them).
317  *
318  * There is also additional debugging facility that marks tcp_clean_death()
319  * instances and saves them in tcp_t structure. It is triggered by
320  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
321  * tcp_clean_death() calls that counts the number of times each tag was hit. It
322  * is triggered by TCP_CLD_COUNTERS define.
323  *
324  * How to add new counters.
325  *
326  * 1) Add a field in the tcp_stat structure describing your counter.
327  * 2) Add a line in the template in tcp_kstat2_init() with the name
328  *    of the counter.
329  *
330  *    IMPORTANT!! - make sure that both are in sync !!
331  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
332  *
333  * Please avoid using private counters which are not kstat-exported.
334  *
335  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
336  * in tcp_t structure.
337  *
338  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
339  */
340 
341 #ifndef TCP_DEBUG_COUNTER
342 #ifdef DEBUG
343 #define	TCP_DEBUG_COUNTER 1
344 #else
345 #define	TCP_DEBUG_COUNTER 0
346 #endif
347 #endif
348 
349 #define	TCP_CLD_COUNTERS 0
350 
351 #define	TCP_TAG_CLEAN_DEATH 1
352 #define	TCP_MAX_CLEAN_DEATH_TAG 32
353 
354 #ifdef lint
355 static int _lint_dummy_;
356 #endif
357 
358 #if TCP_CLD_COUNTERS
359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
360 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
361 #elif defined(lint)
362 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
363 #else
364 #define	TCP_CLD_STAT(x)
365 #endif
366 
367 #if TCP_DEBUG_COUNTER
368 #define	TCP_DBGSTAT(tcps, x)	\
369 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
370 #define	TCP_G_DBGSTAT(x)	\
371 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
372 #elif defined(lint)
373 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
374 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
375 #else
376 #define	TCP_DBGSTAT(tcps, x)
377 #define	TCP_G_DBGSTAT(x)
378 #endif
379 
380 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
381 
382 tcp_g_stat_t	tcp_g_statistics;
383 kstat_t		*tcp_g_kstat;
384 
385 /*
386  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
387  * tcp write side.
388  */
389 #define	CALL_IP_WPUT(connp, q, mp) {					\
390 	ASSERT(((q)->q_flag & QREADR) == 0);				\
391 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
392 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
393 }
394 
395 /* Macros for timestamp comparisons */
396 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
397 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
398 
399 /*
400  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
401  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
402  * by adding three components: a time component which grows by 1 every 4096
403  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
404  * a per-connection component which grows by 125000 for every new connection;
405  * and an "extra" component that grows by a random amount centered
406  * approximately on 64000.  This causes the the ISS generator to cycle every
407  * 4.89 hours if no TCP connections are made, and faster if connections are
408  * made.
409  *
410  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
411  * components: a time component which grows by 250000 every second; and
412  * a per-connection component which grows by 125000 for every new connections.
413  *
414  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
415  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
416  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
417  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
418  * password.
419  */
420 #define	ISS_INCR	250000
421 #define	ISS_NSEC_SHT	12
422 
423 static sin_t	sin_null;	/* Zero address for quick clears */
424 static sin6_t	sin6_null;	/* Zero address for quick clears */
425 
426 /*
427  * This implementation follows the 4.3BSD interpretation of the urgent
428  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
429  * incompatible changes in protocols like telnet and rlogin.
430  */
431 #define	TCP_OLD_URP_INTERPRETATION	1
432 
433 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
434 	(TCP_IS_DETACHED(tcp) && \
435 	    (!(tcp)->tcp_hard_binding))
436 
437 /*
438  * TCP reassembly macros.  We hide starting and ending sequence numbers in
439  * b_next and b_prev of messages on the reassembly queue.  The messages are
440  * chained using b_cont.  These macros are used in tcp_reass() so we don't
441  * have to see the ugly casts and assignments.
442  */
443 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
444 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
445 					(mblk_t *)(uintptr_t)(u))
446 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
447 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
448 					(mblk_t *)(uintptr_t)(u))
449 
450 /*
451  * Implementation of TCP Timers.
452  * =============================
453  *
454  * INTERFACE:
455  *
456  * There are two basic functions dealing with tcp timers:
457  *
458  *	timeout_id_t	tcp_timeout(connp, func, time)
459  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
460  *	TCP_TIMER_RESTART(tcp, intvl)
461  *
462  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
463  * after 'time' ticks passed. The function called by timeout() must adhere to
464  * the same restrictions as a driver soft interrupt handler - it must not sleep
465  * or call other functions that might sleep. The value returned is the opaque
466  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
467  * cancel the request. The call to tcp_timeout() may fail in which case it
468  * returns zero. This is different from the timeout(9F) function which never
469  * fails.
470  *
471  * The call-back function 'func' always receives 'connp' as its single
472  * argument. It is always executed in the squeue corresponding to the tcp
473  * structure. The tcp structure is guaranteed to be present at the time the
474  * call-back is called.
475  *
476  * NOTE: The call-back function 'func' is never called if tcp is in
477  * 	the TCPS_CLOSED state.
478  *
479  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
480  * request. locks acquired by the call-back routine should not be held across
481  * the call to tcp_timeout_cancel() or a deadlock may result.
482  *
483  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
484  * Otherwise, it returns an integer value greater than or equal to 0. In
485  * particular, if the call-back function is already placed on the squeue, it can
486  * not be canceled.
487  *
488  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
489  * 	within squeue context corresponding to the tcp instance. Since the
490  *	call-back is also called via the same squeue, there are no race
491  *	conditions described in untimeout(9F) manual page since all calls are
492  *	strictly serialized.
493  *
494  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
495  *	stored in tcp_timer_tid and starts a new one using
496  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
497  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
498  *	field.
499  *
500  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
501  *	call-back may still be called, so it is possible tcp_timer() will be
502  *	called several times. This should not be a problem since tcp_timer()
503  *	should always check the tcp instance state.
504  *
505  *
506  * IMPLEMENTATION:
507  *
508  * TCP timers are implemented using three-stage process. The call to
509  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
510  * when the timer expires. The tcp_timer_callback() arranges the call of the
511  * tcp_timer_handler() function via squeue corresponding to the tcp
512  * instance. The tcp_timer_handler() calls actual requested timeout call-back
513  * and passes tcp instance as an argument to it. Information is passed between
514  * stages using the tcp_timer_t structure which contains the connp pointer, the
515  * tcp call-back to call and the timeout id returned by the timeout(9F).
516  *
517  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
518  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
519  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
520  * returns the pointer to this mblk.
521  *
522  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
523  * looks like a normal mblk without actual dblk attached to it.
524  *
525  * To optimize performance each tcp instance holds a small cache of timer
526  * mblocks. In the current implementation it caches up to two timer mblocks per
527  * tcp instance. The cache is preserved over tcp frees and is only freed when
528  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
529  * timer processing happens on a corresponding squeue, the cache manipulation
530  * does not require any locks. Experiments show that majority of timer mblocks
531  * allocations are satisfied from the tcp cache and do not involve kmem calls.
532  *
533  * The tcp_timeout() places a refhold on the connp instance which guarantees
534  * that it will be present at the time the call-back function fires. The
535  * tcp_timer_handler() drops the reference after calling the call-back, so the
536  * call-back function does not need to manipulate the references explicitly.
537  */
538 
539 typedef struct tcp_timer_s {
540 	conn_t	*connp;
541 	void 	(*tcpt_proc)(void *);
542 	callout_id_t   tcpt_tid;
543 } tcp_timer_t;
544 
545 static kmem_cache_t *tcp_timercache;
546 kmem_cache_t	*tcp_sack_info_cache;
547 kmem_cache_t	*tcp_iphc_cache;
548 
549 /*
550  * For scalability, we must not run a timer for every TCP connection
551  * in TIME_WAIT state.  To see why, consider (for time wait interval of
552  * 4 minutes):
553  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
554  *
555  * This list is ordered by time, so you need only delete from the head
556  * until you get to entries which aren't old enough to delete yet.
557  * The list consists of only the detached TIME_WAIT connections.
558  *
559  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
560  * becomes detached TIME_WAIT (either by changing the state and already
561  * being detached or the other way around). This means that the TIME_WAIT
562  * state can be extended (up to doubled) if the connection doesn't become
563  * detached for a long time.
564  *
565  * The list manipulations (including tcp_time_wait_next/prev)
566  * are protected by the tcp_time_wait_lock. The content of the
567  * detached TIME_WAIT connections is protected by the normal perimeters.
568  *
569  * This list is per squeue and squeues are shared across the tcp_stack_t's.
570  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
571  * and conn_netstack.
572  * The tcp_t's that are added to tcp_free_list are disassociated and
573  * have NULL tcp_tcps and conn_netstack pointers.
574  */
575 typedef struct tcp_squeue_priv_s {
576 	kmutex_t	tcp_time_wait_lock;
577 	callout_id_t	tcp_time_wait_tid;
578 	tcp_t		*tcp_time_wait_head;
579 	tcp_t		*tcp_time_wait_tail;
580 	tcp_t		*tcp_free_list;
581 	uint_t		tcp_free_list_cnt;
582 } tcp_squeue_priv_t;
583 
584 /*
585  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
586  * Running it every 5 seconds seems to give the best results.
587  */
588 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
589 
590 /*
591  * To prevent memory hog, limit the number of entries in tcp_free_list
592  * to 1% of available memory / number of cpus
593  */
594 uint_t tcp_free_list_max_cnt = 0;
595 
596 #define	TCP_XMIT_LOWATER	4096
597 #define	TCP_XMIT_HIWATER	49152
598 #define	TCP_RECV_LOWATER	2048
599 #define	TCP_RECV_HIWATER	49152
600 
601 /*
602  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
603  */
604 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
605 
606 #define	TIDUSZ	4096	/* transport interface data unit size */
607 
608 /*
609  * Bind hash list size and has function.  It has to be a power of 2 for
610  * hashing.
611  */
612 #define	TCP_BIND_FANOUT_SIZE	512
613 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
614 /*
615  * Size of listen and acceptor hash list.  It has to be a power of 2 for
616  * hashing.
617  */
618 #define	TCP_FANOUT_SIZE		256
619 
620 #ifdef	_ILP32
621 #define	TCP_ACCEPTOR_HASH(accid)					\
622 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
623 #else
624 #define	TCP_ACCEPTOR_HASH(accid)					\
625 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
626 #endif	/* _ILP32 */
627 
628 #define	IP_ADDR_CACHE_SIZE	2048
629 #define	IP_ADDR_CACHE_HASH(faddr)					\
630 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
631 
632 /*
633  * TCP options struct returned from tcp_parse_options.
634  */
635 typedef struct tcp_opt_s {
636 	uint32_t	tcp_opt_mss;
637 	uint32_t	tcp_opt_wscale;
638 	uint32_t	tcp_opt_ts_val;
639 	uint32_t	tcp_opt_ts_ecr;
640 	tcp_t		*tcp;
641 } tcp_opt_t;
642 
643 /*
644  * TCP option struct passing information b/w lisenter and eager.
645  */
646 struct tcp_options {
647 	uint_t			to_flags;
648 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
649 };
650 
651 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
652 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
653 
654 /*
655  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
656  */
657 
658 #ifdef _BIG_ENDIAN
659 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
660 	(TCPOPT_TSTAMP << 8) | 10)
661 #else
662 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
663 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
664 #endif
665 
666 /*
667  * Flags returned from tcp_parse_options.
668  */
669 #define	TCP_OPT_MSS_PRESENT	1
670 #define	TCP_OPT_WSCALE_PRESENT	2
671 #define	TCP_OPT_TSTAMP_PRESENT	4
672 #define	TCP_OPT_SACK_OK_PRESENT	8
673 #define	TCP_OPT_SACK_PRESENT	16
674 
675 /* TCP option length */
676 #define	TCPOPT_NOP_LEN		1
677 #define	TCPOPT_MAXSEG_LEN	4
678 #define	TCPOPT_WS_LEN		3
679 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
680 #define	TCPOPT_TSTAMP_LEN	10
681 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
682 #define	TCPOPT_SACK_OK_LEN	2
683 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
684 #define	TCPOPT_REAL_SACK_LEN	4
685 #define	TCPOPT_MAX_SACK_LEN	36
686 #define	TCPOPT_HEADER_LEN	2
687 
688 /* TCP cwnd burst factor. */
689 #define	TCP_CWND_INFINITE	65535
690 #define	TCP_CWND_SS		3
691 #define	TCP_CWND_NORMAL		5
692 
693 /* Maximum TCP initial cwin (start/restart). */
694 #define	TCP_MAX_INIT_CWND	8
695 
696 /*
697  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
698  * either tcp_slow_start_initial or tcp_slow_start_after idle
699  * depending on the caller.  If the upper layer has not used the
700  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
701  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
702  * If the upper layer has changed set the tcp_init_cwnd, just use
703  * it to calculate the tcp_cwnd.
704  */
705 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
706 {									\
707 	if ((tcp)->tcp_init_cwnd == 0) {				\
708 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
709 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
710 	} else {							\
711 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
712 	}								\
713 	tcp->tcp_cwnd_cnt = 0;						\
714 }
715 
716 /* TCP Timer control structure */
717 typedef struct tcpt_s {
718 	pfv_t	tcpt_pfv;	/* The routine we are to call */
719 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
720 } tcpt_t;
721 
722 /*
723  * Functions called directly via squeue having a prototype of edesc_t.
724  */
725 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
726 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
727 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
728 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
729 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
730 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
731 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
732 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
733 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
734 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
735 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
736 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
737 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
738 
739 
740 /* Prototype for TCP functions */
741 static void	tcp_random_init(void);
742 int		tcp_random(void);
743 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
744 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
745 		    tcp_t *eager);
746 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
747 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
748     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
749     boolean_t user_specified);
750 static void	tcp_closei_local(tcp_t *tcp);
751 static void	tcp_close_detached(tcp_t *tcp);
752 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
753 			mblk_t *idmp, mblk_t **defermp);
754 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
755 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
756 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
757 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
758 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
759 		    uint32_t scope_id, cred_t *cr, pid_t pid);
760 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
761 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
762 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
763 static char	*tcp_display(tcp_t *tcp, char *, char);
764 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
765 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
766 static void	tcp_eager_unlink(tcp_t *tcp);
767 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
768 		    int unixerr);
769 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
770 		    int tlierr, int unixerr);
771 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
772 		    cred_t *cr);
773 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
774 		    char *value, caddr_t cp, cred_t *cr);
775 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
776 		    char *value, caddr_t cp, cred_t *cr);
777 static int	tcp_tpistate(tcp_t *tcp);
778 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
779     int caller_holds_lock);
780 static void	tcp_bind_hash_remove(tcp_t *tcp);
781 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
782 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
783 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
784 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
785 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
786 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
787 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
788 void		tcp_g_q_setup(tcp_stack_t *);
789 void		tcp_g_q_create(tcp_stack_t *);
790 void		tcp_g_q_destroy(tcp_stack_t *);
791 static int	tcp_header_init_ipv4(tcp_t *tcp);
792 static int	tcp_header_init_ipv6(tcp_t *tcp);
793 int		tcp_init(tcp_t *tcp, queue_t *q);
794 static int	tcp_init_values(tcp_t *tcp);
795 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
796 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
797 static void	tcp_ip_notify(tcp_t *tcp);
798 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
799 static void	tcp_iss_init(tcp_t *tcp);
800 static void	tcp_keepalive_killer(void *arg);
801 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
802 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
803 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
804 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
805 static boolean_t tcp_allow_connopt_set(int level, int name);
806 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
807 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
808 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
809 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
810 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
811 		    mblk_t *mblk);
812 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
813 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
814 		    uchar_t *ptr, uint_t len);
815 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
816 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
817     tcp_stack_t *);
818 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
819 		    caddr_t cp, cred_t *cr);
820 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
821 		    caddr_t cp, cred_t *cr);
822 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
823 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
824 		    caddr_t cp, cred_t *cr);
825 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
826 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
827 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
828 static void	tcp_reinit(tcp_t *tcp);
829 static void	tcp_reinit_values(tcp_t *tcp);
830 
831 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
832 static uint_t	tcp_rcv_drain(tcp_t *tcp);
833 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
834 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
835 static void	tcp_ss_rexmit(tcp_t *tcp);
836 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
837 static void	tcp_process_options(tcp_t *, tcph_t *);
838 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
839 static void	tcp_rsrv(queue_t *q);
840 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
841 static int	tcp_snmp_state(tcp_t *tcp);
842 static void	tcp_timer(void *arg);
843 static void	tcp_timer_callback(void *);
844 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
845     boolean_t random);
846 static in_port_t tcp_get_next_priv_port(const tcp_t *);
847 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
848 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
849 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
850 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
851 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
852 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
853 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
854 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
855 		    const int num_sack_blk, int *usable, uint_t *snxt,
856 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
857 		    const int mdt_thres);
858 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
859 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
860 		    const int num_sack_blk, int *usable, uint_t *snxt,
861 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
862 		    const int mdt_thres);
863 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
864 		    int num_sack_blk);
865 static void	tcp_wsrv(queue_t *q);
866 static int	tcp_xmit_end(tcp_t *tcp);
867 static void	tcp_ack_timer(void *arg);
868 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
869 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
870 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
871 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
872 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
873 		    uint32_t ack, int ctl);
874 static int	setmaxps(queue_t *q, int maxpsz);
875 static void	tcp_set_rto(tcp_t *, time_t);
876 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
877 		    boolean_t, boolean_t);
878 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
879 		    boolean_t ipsec_mctl);
880 static int	tcp_build_hdrs(tcp_t *);
881 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
882 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
883 		    tcph_t *tcph);
884 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
885 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
886 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
887 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
888 		    const boolean_t, const uint32_t, const uint32_t,
889 		    const uint32_t, const uint32_t, tcp_stack_t *);
890 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
891 		    const uint_t, const uint_t, boolean_t *);
892 static mblk_t	*tcp_lso_info_mp(mblk_t *);
893 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
894 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
895 extern mblk_t	*tcp_timermp_alloc(int);
896 extern void	tcp_timermp_free(tcp_t *);
897 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
898 static void	tcp_stop_lingering(tcp_t *tcp);
899 static void	tcp_close_linger_timeout(void *arg);
900 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
901 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
902 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
903 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
904 static void	tcp_g_kstat_fini(kstat_t *);
905 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
906 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
907 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
908 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
909 static int	tcp_kstat_update(kstat_t *kp, int rw);
910 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
911 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
912 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
913 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
914 			tcph_t *tcph, mblk_t *idmp);
915 static int	tcp_squeue_switch(int);
916 
917 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
918 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
919 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
920 static int	tcp_tpi_close(queue_t *, int);
921 static int	tcp_tpi_close_accept(queue_t *);
922 
923 static void	tcp_squeue_add(squeue_t *);
924 static boolean_t tcp_zcopy_check(tcp_t *);
925 static void	tcp_zcopy_notify(tcp_t *);
926 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
927 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
928 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
929 
930 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
931 
932 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
933 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
934 
935 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
936 	    sock_upper_handle_t, cred_t *);
937 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
938 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
939 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
940     boolean_t);
941 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
942     cred_t *, pid_t);
943 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
944     boolean_t);
945 static int tcp_do_unbind(conn_t *);
946 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
947     boolean_t);
948 
949 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
950 
951 /*
952  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
953  *
954  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
955  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
956  * (defined in tcp.h) needs to be filled in and passed into the kernel
957  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
958  * structure contains the four-tuple of a TCP connection and a range of TCP
959  * states (specified by ac_start and ac_end). The use of wildcard addresses
960  * and ports is allowed. Connections with a matching four tuple and a state
961  * within the specified range will be aborted. The valid states for the
962  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
963  * inclusive.
964  *
965  * An application which has its connection aborted by this ioctl will receive
966  * an error that is dependent on the connection state at the time of the abort.
967  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
968  * though a RST packet has been received.  If the connection state is equal to
969  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
970  * and all resources associated with the connection will be freed.
971  */
972 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
973 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
974 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
975 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
976 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
977 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
978     boolean_t, tcp_stack_t *);
979 
980 static struct module_info tcp_rinfo =  {
981 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
982 };
983 
984 static struct module_info tcp_winfo =  {
985 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
986 };
987 
988 /*
989  * Entry points for TCP as a device. The normal case which supports
990  * the TCP functionality.
991  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
992  */
993 struct qinit tcp_rinitv4 = {
994 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
995 };
996 
997 struct qinit tcp_rinitv6 = {
998 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
999 };
1000 
1001 struct qinit tcp_winit = {
1002 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1003 };
1004 
1005 /* Initial entry point for TCP in socket mode. */
1006 struct qinit tcp_sock_winit = {
1007 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1008 };
1009 
1010 /* TCP entry point during fallback */
1011 struct qinit tcp_fallback_sock_winit = {
1012 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
1013 };
1014 
1015 /*
1016  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1017  * an accept. Avoid allocating data structures since eager has already
1018  * been created.
1019  */
1020 struct qinit tcp_acceptor_rinit = {
1021 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
1022 };
1023 
1024 struct qinit tcp_acceptor_winit = {
1025 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1026 };
1027 
1028 /*
1029  * Entry points for TCP loopback (read side only)
1030  * The open routine is only used for reopens, thus no need to
1031  * have a separate one for tcp_openv6.
1032  */
1033 struct qinit tcp_loopback_rinit = {
1034 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
1035 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1036 };
1037 
1038 /* For AF_INET aka /dev/tcp */
1039 struct streamtab tcpinfov4 = {
1040 	&tcp_rinitv4, &tcp_winit
1041 };
1042 
1043 /* For AF_INET6 aka /dev/tcp6 */
1044 struct streamtab tcpinfov6 = {
1045 	&tcp_rinitv6, &tcp_winit
1046 };
1047 
1048 sock_downcalls_t sock_tcp_downcalls;
1049 
1050 /*
1051  * Have to ensure that tcp_g_q_close is not done by an
1052  * interrupt thread.
1053  */
1054 static taskq_t *tcp_taskq;
1055 
1056 /* Setable only in /etc/system. Move to ndd? */
1057 boolean_t tcp_icmp_source_quench = B_FALSE;
1058 
1059 /*
1060  * Following assumes TPI alignment requirements stay along 32 bit
1061  * boundaries
1062  */
1063 #define	ROUNDUP32(x) \
1064 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1065 
1066 /* Template for response to info request. */
1067 static struct T_info_ack tcp_g_t_info_ack = {
1068 	T_INFO_ACK,		/* PRIM_type */
1069 	0,			/* TSDU_size */
1070 	T_INFINITE,		/* ETSDU_size */
1071 	T_INVALID,		/* CDATA_size */
1072 	T_INVALID,		/* DDATA_size */
1073 	sizeof (sin_t),		/* ADDR_size */
1074 	0,			/* OPT_size - not initialized here */
1075 	TIDUSZ,			/* TIDU_size */
1076 	T_COTS_ORD,		/* SERV_type */
1077 	TCPS_IDLE,		/* CURRENT_state */
1078 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1079 };
1080 
1081 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1082 	T_INFO_ACK,		/* PRIM_type */
1083 	0,			/* TSDU_size */
1084 	T_INFINITE,		/* ETSDU_size */
1085 	T_INVALID,		/* CDATA_size */
1086 	T_INVALID,		/* DDATA_size */
1087 	sizeof (sin6_t),	/* ADDR_size */
1088 	0,			/* OPT_size - not initialized here */
1089 	TIDUSZ,		/* TIDU_size */
1090 	T_COTS_ORD,		/* SERV_type */
1091 	TCPS_IDLE,		/* CURRENT_state */
1092 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1093 };
1094 
1095 #define	MS	1L
1096 #define	SECONDS	(1000 * MS)
1097 #define	MINUTES	(60 * SECONDS)
1098 #define	HOURS	(60 * MINUTES)
1099 #define	DAYS	(24 * HOURS)
1100 
1101 #define	PARAM_MAX (~(uint32_t)0)
1102 
1103 /* Max size IP datagram is 64k - 1 */
1104 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1105 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1106 /* Max of the above */
1107 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1108 
1109 /* Largest TCP port number */
1110 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1111 
1112 /*
1113  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1114  * layer header.  It has to be a multiple of 4.
1115  */
1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1117 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1118 
1119 /*
1120  * All of these are alterable, within the min/max values given, at run time.
1121  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1122  * per the TCP spec.
1123  */
1124 /* BEGIN CSTYLED */
1125 static tcpparam_t	lcl_tcp_param_arr[] = {
1126  /*min		max		value		name */
1127  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1128  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1129  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1130  { 1,		1024,		1,		"tcp_conn_req_min" },
1131  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1132  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1133  { 0,		10,		0,		"tcp_debug" },
1134  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1135  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1136  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1137  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1138  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1139  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1140  { 1,		255,		64,		"tcp_ipv4_ttl"},
1141  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1142  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1143  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1144  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1145  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1146  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1147  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1148  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1149  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1150  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1151  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1152  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1153  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1154  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1155  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1156  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1157  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1158  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1159  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1160  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1161  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1162  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1163  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1164 /*
1165  * Question:  What default value should I set for tcp_strong_iss?
1166  */
1167  { 0,		2,		1,		"tcp_strong_iss"},
1168  { 0,		65536,		20,		"tcp_rtt_updates"},
1169  { 0,		1,		1,		"tcp_wscale_always"},
1170  { 0,		1,		0,		"tcp_tstamp_always"},
1171  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1172  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1173  { 0,		16,		2,		"tcp_deferred_acks_max"},
1174  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1175  { 1,		4,		4,		"tcp_slow_start_initial"},
1176  { 0,		2,		2,		"tcp_sack_permitted"},
1177  { 0,		1,		1,		"tcp_compression_enabled"},
1178  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1179  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1180  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1181  { 0,		1,		0,		"tcp_rev_src_routes"},
1182  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1183  { 0,		16,		8,		"tcp_local_dacks_max"},
1184  { 0,		2,		1,		"tcp_ecn_permitted"},
1185  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1186  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1187  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1188  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1189  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1190 };
1191 /* END CSTYLED */
1192 
1193 /*
1194  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1195  * each header fragment in the header buffer.  Each parameter value has
1196  * to be a multiple of 4 (32-bit aligned).
1197  */
1198 static tcpparam_t lcl_tcp_mdt_head_param =
1199 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1200 static tcpparam_t lcl_tcp_mdt_tail_param =
1201 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1202 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1203 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1204 
1205 /*
1206  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1207  * the maximum number of payload buffers associated per Multidata.
1208  */
1209 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1210 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1211 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1212 
1213 /* Round up the value to the nearest mss. */
1214 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1215 
1216 /*
1217  * Set ECN capable transport (ECT) code point in IP header.
1218  *
1219  * Note that there are 2 ECT code points '01' and '10', which are called
1220  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1221  * point ECT(0) for TCP as described in RFC 2481.
1222  */
1223 #define	SET_ECT(tcp, iph) \
1224 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1225 		/* We need to clear the code point first. */ \
1226 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1227 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1228 	} else { \
1229 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1230 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1231 	}
1232 
1233 /*
1234  * The format argument to pass to tcp_display().
1235  * DISP_PORT_ONLY means that the returned string has only port info.
1236  * DISP_ADDR_AND_PORT means that the returned string also contains the
1237  * remote and local IP address.
1238  */
1239 #define	DISP_PORT_ONLY		1
1240 #define	DISP_ADDR_AND_PORT	2
1241 
1242 #define	IS_VMLOANED_MBLK(mp) \
1243 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1244 
1245 
1246 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1247 boolean_t tcp_mdt_chain = B_TRUE;
1248 
1249 /*
1250  * MDT threshold in the form of effective send MSS multiplier; we take
1251  * the MDT path if the amount of unsent data exceeds the threshold value
1252  * (default threshold is 1*SMSS).
1253  */
1254 uint_t tcp_mdt_smss_threshold = 1;
1255 
1256 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1257 
1258 /*
1259  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1260  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1261  * determined dynamically during tcp_adapt_ire(), which is the default.
1262  */
1263 boolean_t tcp_static_maxpsz = B_FALSE;
1264 
1265 /* Setable in /etc/system */
1266 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1267 uint32_t tcp_random_anon_port = 1;
1268 
1269 /*
1270  * To reach to an eager in Q0 which can be dropped due to an incoming
1271  * new SYN request when Q0 is full, a new doubly linked list is
1272  * introduced. This list allows to select an eager from Q0 in O(1) time.
1273  * This is needed to avoid spending too much time walking through the
1274  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1275  * this new list has to be a member of Q0.
1276  * This list is headed by listener's tcp_t. When the list is empty,
1277  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1278  * of listener's tcp_t point to listener's tcp_t itself.
1279  *
1280  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1281  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1282  * These macros do not affect the eager's membership to Q0.
1283  */
1284 
1285 
1286 #define	MAKE_DROPPABLE(listener, eager)					\
1287 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1288 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1289 		    = (eager);						\
1290 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1291 		(eager)->tcp_eager_next_drop_q0 =			\
1292 		    (listener)->tcp_eager_next_drop_q0;			\
1293 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1294 	}
1295 
1296 #define	MAKE_UNDROPPABLE(eager)						\
1297 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1298 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1299 		    = (eager)->tcp_eager_prev_drop_q0;			\
1300 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1301 		    = (eager)->tcp_eager_next_drop_q0;			\
1302 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1303 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1304 	}
1305 
1306 /*
1307  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1308  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1309  * data, TCP will not respond with an ACK.  RFC 793 requires that
1310  * TCP responds with an ACK for such a bogus ACK.  By not following
1311  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1312  * an attacker successfully spoofs an acceptable segment to our
1313  * peer; or when our peer is "confused."
1314  */
1315 uint32_t tcp_drop_ack_unsent_cnt = 10;
1316 
1317 /*
1318  * Hook functions to enable cluster networking
1319  * On non-clustered systems these vectors must always be NULL.
1320  */
1321 
1322 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1323 			    sa_family_t addr_family, uint8_t *laddrp,
1324 			    in_port_t lport, void *args) = NULL;
1325 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1326 			    sa_family_t addr_family, uint8_t *laddrp,
1327 			    in_port_t lport, void *args) = NULL;
1328 
1329 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1330 			    boolean_t is_outgoing,
1331 			    sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport,
1333 			    uint8_t *faddrp, in_port_t fport,
1334 			    void *args) = NULL;
1335 
1336 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1337 			    sa_family_t addr_family, uint8_t *laddrp,
1338 			    in_port_t lport, uint8_t *faddrp,
1339 			    in_port_t fport, void *args) = NULL;
1340 
1341 /*
1342  * The following are defined in ip.c
1343  */
1344 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1345 			    sa_family_t addr_family, uint8_t *laddrp,
1346 			    void *args);
1347 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1348 			    sa_family_t addr_family, uint8_t *laddrp,
1349 			    uint8_t *faddrp, void *args);
1350 
1351 
1352 /*
1353  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1354  */
1355 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1356 	(err) = 0;						\
1357 	if (cl_inet_connect2 != NULL) {				\
1358 		/*						\
1359 		 * Running in cluster mode - register active connection	\
1360 		 * information						\
1361 		 */							\
1362 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1363 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1364 				(err) = (*cl_inet_connect2)(		\
1365 				    (connp)->conn_netstack->netstack_stackid,\
1366 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1367 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1368 				    (in_port_t)(tcp)->tcp_lport,	\
1369 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1370 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1371 			}						\
1372 		} else {						\
1373 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1374 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1375 				(err) = (*cl_inet_connect2)(		\
1376 				    (connp)->conn_netstack->netstack_stackid,\
1377 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1378 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1379 				    (in_port_t)(tcp)->tcp_lport,	\
1380 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1381 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1382 			}						\
1383 		}							\
1384 	}								\
1385 }
1386 
1387 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1388 	if (cl_inet_disconnect != NULL) {				\
1389 		/*							\
1390 		 * Running in cluster mode - deregister active		\
1391 		 * connection information				\
1392 		 */							\
1393 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1394 			if ((tcp)->tcp_ip_src != 0) {			\
1395 				(*cl_inet_disconnect)(			\
1396 				    (connp)->conn_netstack->netstack_stackid,\
1397 				    IPPROTO_TCP, AF_INET,		\
1398 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1399 				    (in_port_t)(tcp)->tcp_lport,	\
1400 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1402 			}						\
1403 		} else {						\
1404 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1405 			    &(tcp)->tcp_ip_src_v6)) {			\
1406 				(*cl_inet_disconnect)(			\
1407 				    (connp)->conn_netstack->netstack_stackid,\
1408 				    IPPROTO_TCP, AF_INET6,		\
1409 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1410 				    (in_port_t)(tcp)->tcp_lport,	\
1411 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1412 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1413 			}						\
1414 		}							\
1415 	}								\
1416 }
1417 
1418 /*
1419  * Cluster networking hook for traversing current connection list.
1420  * This routine is used to extract the current list of live connections
1421  * which must continue to to be dispatched to this node.
1422  */
1423 int cl_tcp_walk_list(netstackid_t stack_id,
1424     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1425 
1426 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1427     void *arg, tcp_stack_t *tcps);
1428 
1429 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1430 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1431 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1432 	    ip6_t *, ip6h, int, 0);
1433 
1434 /*
1435  * Figure out the value of window scale opton.  Note that the rwnd is
1436  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1437  * We cannot find the scale value and then do a round up of tcp_rwnd
1438  * because the scale value may not be correct after that.
1439  *
1440  * Set the compiler flag to make this function inline.
1441  */
1442 static void
1443 tcp_set_ws_value(tcp_t *tcp)
1444 {
1445 	int i;
1446 	uint32_t rwnd = tcp->tcp_rwnd;
1447 
1448 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1449 	    i++, rwnd >>= 1)
1450 		;
1451 	tcp->tcp_rcv_ws = i;
1452 }
1453 
1454 /*
1455  * Remove a connection from the list of detached TIME_WAIT connections.
1456  * It returns B_FALSE if it can't remove the connection from the list
1457  * as the connection has already been removed from the list due to an
1458  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1459  */
1460 static boolean_t
1461 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1462 {
1463 	boolean_t	locked = B_FALSE;
1464 
1465 	if (tcp_time_wait == NULL) {
1466 		tcp_time_wait = *((tcp_squeue_priv_t **)
1467 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1468 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1469 		locked = B_TRUE;
1470 	} else {
1471 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1472 	}
1473 
1474 	if (tcp->tcp_time_wait_expire == 0) {
1475 		ASSERT(tcp->tcp_time_wait_next == NULL);
1476 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1477 		if (locked)
1478 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1479 		return (B_FALSE);
1480 	}
1481 	ASSERT(TCP_IS_DETACHED(tcp));
1482 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1483 
1484 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1485 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1486 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1487 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1488 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1489 			    NULL;
1490 		} else {
1491 			tcp_time_wait->tcp_time_wait_tail = NULL;
1492 		}
1493 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1494 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1495 		ASSERT(tcp->tcp_time_wait_next == NULL);
1496 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1497 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1498 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1499 	} else {
1500 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1501 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1502 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1503 		    tcp->tcp_time_wait_next;
1504 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1505 		    tcp->tcp_time_wait_prev;
1506 	}
1507 	tcp->tcp_time_wait_next = NULL;
1508 	tcp->tcp_time_wait_prev = NULL;
1509 	tcp->tcp_time_wait_expire = 0;
1510 
1511 	if (locked)
1512 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1513 	return (B_TRUE);
1514 }
1515 
1516 /*
1517  * Add a connection to the list of detached TIME_WAIT connections
1518  * and set its time to expire.
1519  */
1520 static void
1521 tcp_time_wait_append(tcp_t *tcp)
1522 {
1523 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1524 	tcp_squeue_priv_t *tcp_time_wait =
1525 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1526 	    SQPRIVATE_TCP));
1527 
1528 	tcp_timers_stop(tcp);
1529 
1530 	/* Freed above */
1531 	ASSERT(tcp->tcp_timer_tid == 0);
1532 	ASSERT(tcp->tcp_ack_tid == 0);
1533 
1534 	/* must have happened at the time of detaching the tcp */
1535 	ASSERT(tcp->tcp_ptpahn == NULL);
1536 	ASSERT(tcp->tcp_flow_stopped == 0);
1537 	ASSERT(tcp->tcp_time_wait_next == NULL);
1538 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1539 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1540 	ASSERT(tcp->tcp_listener == NULL);
1541 
1542 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1543 	/*
1544 	 * The value computed below in tcp->tcp_time_wait_expire may
1545 	 * appear negative or wrap around. That is ok since our
1546 	 * interest is only in the difference between the current lbolt
1547 	 * value and tcp->tcp_time_wait_expire. But the value should not
1548 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1549 	 * The corresponding comparison in tcp_time_wait_collector() uses
1550 	 * modular arithmetic.
1551 	 */
1552 	tcp->tcp_time_wait_expire +=
1553 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1554 	if (tcp->tcp_time_wait_expire == 0)
1555 		tcp->tcp_time_wait_expire = 1;
1556 
1557 	ASSERT(TCP_IS_DETACHED(tcp));
1558 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1559 	ASSERT(tcp->tcp_time_wait_next == NULL);
1560 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1561 	TCP_DBGSTAT(tcps, tcp_time_wait);
1562 
1563 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1564 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1565 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1566 		tcp_time_wait->tcp_time_wait_head = tcp;
1567 	} else {
1568 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1569 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1570 		    TCPS_TIME_WAIT);
1571 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1572 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1573 	}
1574 	tcp_time_wait->tcp_time_wait_tail = tcp;
1575 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1576 }
1577 
1578 /* ARGSUSED */
1579 void
1580 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1581 {
1582 	conn_t	*connp = (conn_t *)arg;
1583 	tcp_t	*tcp = connp->conn_tcp;
1584 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1585 
1586 	ASSERT(tcp != NULL);
1587 	if (tcp->tcp_state == TCPS_CLOSED) {
1588 		return;
1589 	}
1590 
1591 	ASSERT((tcp->tcp_family == AF_INET &&
1592 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1593 	    (tcp->tcp_family == AF_INET6 &&
1594 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1595 	    tcp->tcp_ipversion == IPV6_VERSION)));
1596 	ASSERT(!tcp->tcp_listener);
1597 
1598 	TCP_STAT(tcps, tcp_time_wait_reap);
1599 	ASSERT(TCP_IS_DETACHED(tcp));
1600 
1601 	/*
1602 	 * Because they have no upstream client to rebind or tcp_close()
1603 	 * them later, we axe the connection here and now.
1604 	 */
1605 	tcp_close_detached(tcp);
1606 }
1607 
1608 /*
1609  * Remove cached/latched IPsec references.
1610  */
1611 void
1612 tcp_ipsec_cleanup(tcp_t *tcp)
1613 {
1614 	conn_t		*connp = tcp->tcp_connp;
1615 
1616 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1617 
1618 	if (connp->conn_latch != NULL) {
1619 		IPLATCH_REFRELE(connp->conn_latch,
1620 		    connp->conn_netstack);
1621 		connp->conn_latch = NULL;
1622 	}
1623 	if (connp->conn_policy != NULL) {
1624 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1625 		connp->conn_policy = NULL;
1626 	}
1627 }
1628 
1629 /*
1630  * Cleaup before placing on free list.
1631  * Disassociate from the netstack/tcp_stack_t since the freelist
1632  * is per squeue and not per netstack.
1633  */
1634 void
1635 tcp_cleanup(tcp_t *tcp)
1636 {
1637 	mblk_t		*mp;
1638 	char		*tcp_iphc;
1639 	int		tcp_iphc_len;
1640 	int		tcp_hdr_grown;
1641 	tcp_sack_info_t	*tcp_sack_info;
1642 	conn_t		*connp = tcp->tcp_connp;
1643 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1644 	netstack_t	*ns = tcps->tcps_netstack;
1645 	mblk_t		*tcp_rsrv_mp;
1646 
1647 	tcp_bind_hash_remove(tcp);
1648 
1649 	/* Cleanup that which needs the netstack first */
1650 	tcp_ipsec_cleanup(tcp);
1651 
1652 	tcp_free(tcp);
1653 
1654 	/* Release any SSL context */
1655 	if (tcp->tcp_kssl_ent != NULL) {
1656 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1657 		tcp->tcp_kssl_ent = NULL;
1658 	}
1659 
1660 	if (tcp->tcp_kssl_ctx != NULL) {
1661 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1662 		tcp->tcp_kssl_ctx = NULL;
1663 	}
1664 	tcp->tcp_kssl_pending = B_FALSE;
1665 
1666 	conn_delete_ire(connp, NULL);
1667 
1668 	/*
1669 	 * Since we will bzero the entire structure, we need to
1670 	 * remove it and reinsert it in global hash list. We
1671 	 * know the walkers can't get to this conn because we
1672 	 * had set CONDEMNED flag earlier and checked reference
1673 	 * under conn_lock so walker won't pick it and when we
1674 	 * go the ipcl_globalhash_remove() below, no walker
1675 	 * can get to it.
1676 	 */
1677 	ipcl_globalhash_remove(connp);
1678 
1679 	/*
1680 	 * Now it is safe to decrement the reference counts.
1681 	 * This might be the last reference on the netstack and TCPS
1682 	 * in which case it will cause the tcp_g_q_close and
1683 	 * the freeing of the IP Instance.
1684 	 */
1685 	connp->conn_netstack = NULL;
1686 	netstack_rele(ns);
1687 	ASSERT(tcps != NULL);
1688 	tcp->tcp_tcps = NULL;
1689 	TCPS_REFRELE(tcps);
1690 
1691 	/* Save some state */
1692 	mp = tcp->tcp_timercache;
1693 
1694 	tcp_sack_info = tcp->tcp_sack_info;
1695 	tcp_iphc = tcp->tcp_iphc;
1696 	tcp_iphc_len = tcp->tcp_iphc_len;
1697 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1698 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1699 
1700 	if (connp->conn_cred != NULL) {
1701 		crfree(connp->conn_cred);
1702 		connp->conn_cred = NULL;
1703 	}
1704 	if (connp->conn_peercred != NULL) {
1705 		crfree(connp->conn_peercred);
1706 		connp->conn_peercred = NULL;
1707 	}
1708 	ipcl_conn_cleanup(connp);
1709 	connp->conn_flags = IPCL_TCPCONN;
1710 	bzero(tcp, sizeof (tcp_t));
1711 
1712 	/* restore the state */
1713 	tcp->tcp_timercache = mp;
1714 
1715 	tcp->tcp_sack_info = tcp_sack_info;
1716 	tcp->tcp_iphc = tcp_iphc;
1717 	tcp->tcp_iphc_len = tcp_iphc_len;
1718 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1719 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1720 
1721 	tcp->tcp_connp = connp;
1722 
1723 	ASSERT(connp->conn_tcp == tcp);
1724 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1725 	connp->conn_state_flags = CONN_INCIPIENT;
1726 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1727 	ASSERT(connp->conn_ref == 1);
1728 }
1729 
1730 /*
1731  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1732  * is done forwards from the head.
1733  * This walks all stack instances since
1734  * tcp_time_wait remains global across all stacks.
1735  */
1736 /* ARGSUSED */
1737 void
1738 tcp_time_wait_collector(void *arg)
1739 {
1740 	tcp_t *tcp;
1741 	clock_t now;
1742 	mblk_t *mp;
1743 	conn_t *connp;
1744 	kmutex_t *lock;
1745 	boolean_t removed;
1746 
1747 	squeue_t *sqp = (squeue_t *)arg;
1748 	tcp_squeue_priv_t *tcp_time_wait =
1749 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1750 
1751 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1752 	tcp_time_wait->tcp_time_wait_tid = 0;
1753 
1754 	if (tcp_time_wait->tcp_free_list != NULL &&
1755 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1756 		TCP_G_STAT(tcp_freelist_cleanup);
1757 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1758 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1759 			tcp->tcp_time_wait_next = NULL;
1760 			tcp_time_wait->tcp_free_list_cnt--;
1761 			ASSERT(tcp->tcp_tcps == NULL);
1762 			CONN_DEC_REF(tcp->tcp_connp);
1763 		}
1764 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1765 	}
1766 
1767 	/*
1768 	 * In order to reap time waits reliably, we should use a
1769 	 * source of time that is not adjustable by the user -- hence
1770 	 * the call to ddi_get_lbolt().
1771 	 */
1772 	now = ddi_get_lbolt();
1773 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1774 		/*
1775 		 * Compare times using modular arithmetic, since
1776 		 * lbolt can wrapover.
1777 		 */
1778 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1779 			break;
1780 		}
1781 
1782 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1783 		ASSERT(removed);
1784 
1785 		connp = tcp->tcp_connp;
1786 		ASSERT(connp->conn_fanout != NULL);
1787 		lock = &connp->conn_fanout->connf_lock;
1788 		/*
1789 		 * This is essentially a TW reclaim fast path optimization for
1790 		 * performance where the timewait collector checks under the
1791 		 * fanout lock (so that no one else can get access to the
1792 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1793 		 * the classifier hash list. If ref count is indeed 2, we can
1794 		 * just remove the conn under the fanout lock and avoid
1795 		 * cleaning up the conn under the squeue, provided that
1796 		 * clustering callbacks are not enabled. If clustering is
1797 		 * enabled, we need to make the clustering callback before
1798 		 * setting the CONDEMNED flag and after dropping all locks and
1799 		 * so we forego this optimization and fall back to the slow
1800 		 * path. Also please see the comments in tcp_closei_local
1801 		 * regarding the refcnt logic.
1802 		 *
1803 		 * Since we are holding the tcp_time_wait_lock, its better
1804 		 * not to block on the fanout_lock because other connections
1805 		 * can't add themselves to time_wait list. So we do a
1806 		 * tryenter instead of mutex_enter.
1807 		 */
1808 		if (mutex_tryenter(lock)) {
1809 			mutex_enter(&connp->conn_lock);
1810 			if ((connp->conn_ref == 2) &&
1811 			    (cl_inet_disconnect == NULL)) {
1812 				ipcl_hash_remove_locked(connp,
1813 				    connp->conn_fanout);
1814 				/*
1815 				 * Set the CONDEMNED flag now itself so that
1816 				 * the refcnt cannot increase due to any
1817 				 * walker. But we have still not cleaned up
1818 				 * conn_ire_cache. This is still ok since
1819 				 * we are going to clean it up in tcp_cleanup
1820 				 * immediately and any interface unplumb
1821 				 * thread will wait till the ire is blown away
1822 				 */
1823 				connp->conn_state_flags |= CONN_CONDEMNED;
1824 				mutex_exit(lock);
1825 				mutex_exit(&connp->conn_lock);
1826 				if (tcp_time_wait->tcp_free_list_cnt <
1827 				    tcp_free_list_max_cnt) {
1828 					/* Add to head of tcp_free_list */
1829 					mutex_exit(
1830 					    &tcp_time_wait->tcp_time_wait_lock);
1831 					tcp_cleanup(tcp);
1832 					ASSERT(connp->conn_latch == NULL);
1833 					ASSERT(connp->conn_policy == NULL);
1834 					ASSERT(tcp->tcp_tcps == NULL);
1835 					ASSERT(connp->conn_netstack == NULL);
1836 
1837 					mutex_enter(
1838 					    &tcp_time_wait->tcp_time_wait_lock);
1839 					tcp->tcp_time_wait_next =
1840 					    tcp_time_wait->tcp_free_list;
1841 					tcp_time_wait->tcp_free_list = tcp;
1842 					tcp_time_wait->tcp_free_list_cnt++;
1843 					continue;
1844 				} else {
1845 					/* Do not add to tcp_free_list */
1846 					mutex_exit(
1847 					    &tcp_time_wait->tcp_time_wait_lock);
1848 					tcp_bind_hash_remove(tcp);
1849 					conn_delete_ire(tcp->tcp_connp, NULL);
1850 					tcp_ipsec_cleanup(tcp);
1851 					CONN_DEC_REF(tcp->tcp_connp);
1852 				}
1853 			} else {
1854 				CONN_INC_REF_LOCKED(connp);
1855 				mutex_exit(lock);
1856 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1857 				mutex_exit(&connp->conn_lock);
1858 				/*
1859 				 * We can reuse the closemp here since conn has
1860 				 * detached (otherwise we wouldn't even be in
1861 				 * time_wait list). tcp_closemp_used can safely
1862 				 * be changed without taking a lock as no other
1863 				 * thread can concurrently access it at this
1864 				 * point in the connection lifecycle.
1865 				 */
1866 
1867 				if (tcp->tcp_closemp.b_prev == NULL)
1868 					tcp->tcp_closemp_used = B_TRUE;
1869 				else
1870 					cmn_err(CE_PANIC,
1871 					    "tcp_timewait_collector: "
1872 					    "concurrent use of tcp_closemp: "
1873 					    "connp %p tcp %p\n", (void *)connp,
1874 					    (void *)tcp);
1875 
1876 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1877 				mp = &tcp->tcp_closemp;
1878 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1879 				    tcp_timewait_output, connp,
1880 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1881 			}
1882 		} else {
1883 			mutex_enter(&connp->conn_lock);
1884 			CONN_INC_REF_LOCKED(connp);
1885 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1886 			mutex_exit(&connp->conn_lock);
1887 			/*
1888 			 * We can reuse the closemp here since conn has
1889 			 * detached (otherwise we wouldn't even be in
1890 			 * time_wait list). tcp_closemp_used can safely
1891 			 * be changed without taking a lock as no other
1892 			 * thread can concurrently access it at this
1893 			 * point in the connection lifecycle.
1894 			 */
1895 
1896 			if (tcp->tcp_closemp.b_prev == NULL)
1897 				tcp->tcp_closemp_used = B_TRUE;
1898 			else
1899 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1900 				    "concurrent use of tcp_closemp: "
1901 				    "connp %p tcp %p\n", (void *)connp,
1902 				    (void *)tcp);
1903 
1904 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1905 			mp = &tcp->tcp_closemp;
1906 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1907 			    tcp_timewait_output, connp,
1908 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1909 		}
1910 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1911 	}
1912 
1913 	if (tcp_time_wait->tcp_free_list != NULL)
1914 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1915 
1916 	tcp_time_wait->tcp_time_wait_tid =
1917 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1918 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1919 	    CALLOUT_FLAG_ROUNDUP);
1920 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1921 }
1922 
1923 /*
1924  * Reply to a clients T_CONN_RES TPI message. This function
1925  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1926  * on the acceptor STREAM and processed in tcp_wput_accept().
1927  * Read the block comment on top of tcp_conn_request().
1928  */
1929 static void
1930 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1931 {
1932 	tcp_t	*acceptor;
1933 	tcp_t	*eager;
1934 	tcp_t   *tcp;
1935 	struct T_conn_res	*tcr;
1936 	t_uscalar_t	acceptor_id;
1937 	t_scalar_t	seqnum;
1938 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1939 	struct tcp_options *tcpopt;
1940 	mblk_t	*ok_mp;
1941 	mblk_t	*mp1;
1942 	tcp_stack_t	*tcps = listener->tcp_tcps;
1943 
1944 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1945 		tcp_err_ack(listener, mp, TPROTO, 0);
1946 		return;
1947 	}
1948 	tcr = (struct T_conn_res *)mp->b_rptr;
1949 
1950 	/*
1951 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1952 	 * read side queue of the streams device underneath us i.e. the
1953 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1954 	 * look it up in the queue_hash.  Under LP64 it sends down the
1955 	 * minor_t of the accepting endpoint.
1956 	 *
1957 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1958 	 * fanout hash lock is held.
1959 	 * This prevents any thread from entering the acceptor queue from
1960 	 * below (since it has not been hard bound yet i.e. any inbound
1961 	 * packets will arrive on the listener or default tcp queue and
1962 	 * go through tcp_lookup).
1963 	 * The CONN_INC_REF will prevent the acceptor from closing.
1964 	 *
1965 	 * XXX It is still possible for a tli application to send down data
1966 	 * on the accepting stream while another thread calls t_accept.
1967 	 * This should not be a problem for well-behaved applications since
1968 	 * the T_OK_ACK is sent after the queue swapping is completed.
1969 	 *
1970 	 * If the accepting fd is the same as the listening fd, avoid
1971 	 * queue hash lookup since that will return an eager listener in a
1972 	 * already established state.
1973 	 */
1974 	acceptor_id = tcr->ACCEPTOR_id;
1975 	mutex_enter(&listener->tcp_eager_lock);
1976 	if (listener->tcp_acceptor_id == acceptor_id) {
1977 		eager = listener->tcp_eager_next_q;
1978 		/* only count how many T_CONN_INDs so don't count q0 */
1979 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1980 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1981 			mutex_exit(&listener->tcp_eager_lock);
1982 			tcp_err_ack(listener, mp, TBADF, 0);
1983 			return;
1984 		}
1985 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1986 			/* Throw away all the eagers on q0. */
1987 			tcp_eager_cleanup(listener, 1);
1988 		}
1989 		if (listener->tcp_syn_defense) {
1990 			listener->tcp_syn_defense = B_FALSE;
1991 			if (listener->tcp_ip_addr_cache != NULL) {
1992 				kmem_free(listener->tcp_ip_addr_cache,
1993 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1994 				listener->tcp_ip_addr_cache = NULL;
1995 			}
1996 		}
1997 		/*
1998 		 * Transfer tcp_conn_req_max to the eager so that when
1999 		 * a disconnect occurs we can revert the endpoint to the
2000 		 * listen state.
2001 		 */
2002 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2003 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2004 		/*
2005 		 * Get a reference on the acceptor just like the
2006 		 * tcp_acceptor_hash_lookup below.
2007 		 */
2008 		acceptor = listener;
2009 		CONN_INC_REF(acceptor->tcp_connp);
2010 	} else {
2011 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
2012 		if (acceptor == NULL) {
2013 			if (listener->tcp_debug) {
2014 				(void) strlog(TCP_MOD_ID, 0, 1,
2015 				    SL_ERROR|SL_TRACE,
2016 				    "tcp_accept: did not find acceptor 0x%x\n",
2017 				    acceptor_id);
2018 			}
2019 			mutex_exit(&listener->tcp_eager_lock);
2020 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2021 			return;
2022 		}
2023 		/*
2024 		 * Verify acceptor state. The acceptable states for an acceptor
2025 		 * include TCPS_IDLE and TCPS_BOUND.
2026 		 */
2027 		switch (acceptor->tcp_state) {
2028 		case TCPS_IDLE:
2029 			/* FALLTHRU */
2030 		case TCPS_BOUND:
2031 			break;
2032 		default:
2033 			CONN_DEC_REF(acceptor->tcp_connp);
2034 			mutex_exit(&listener->tcp_eager_lock);
2035 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2036 			return;
2037 		}
2038 	}
2039 
2040 	/* The listener must be in TCPS_LISTEN */
2041 	if (listener->tcp_state != TCPS_LISTEN) {
2042 		CONN_DEC_REF(acceptor->tcp_connp);
2043 		mutex_exit(&listener->tcp_eager_lock);
2044 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2045 		return;
2046 	}
2047 
2048 	/*
2049 	 * Rendezvous with an eager connection request packet hanging off
2050 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2051 	 * tcp structure when the connection packet arrived in
2052 	 * tcp_conn_request().
2053 	 */
2054 	seqnum = tcr->SEQ_number;
2055 	eager = listener;
2056 	do {
2057 		eager = eager->tcp_eager_next_q;
2058 		if (eager == NULL) {
2059 			CONN_DEC_REF(acceptor->tcp_connp);
2060 			mutex_exit(&listener->tcp_eager_lock);
2061 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2062 			return;
2063 		}
2064 	} while (eager->tcp_conn_req_seqnum != seqnum);
2065 	mutex_exit(&listener->tcp_eager_lock);
2066 
2067 	/*
2068 	 * At this point, both acceptor and listener have 2 ref
2069 	 * that they begin with. Acceptor has one additional ref
2070 	 * we placed in lookup while listener has 3 additional
2071 	 * ref for being behind the squeue (tcp_accept() is
2072 	 * done on listener's squeue); being in classifier hash;
2073 	 * and eager's ref on listener.
2074 	 */
2075 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2076 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2077 
2078 	/*
2079 	 * The eager at this point is set in its own squeue and
2080 	 * could easily have been killed (tcp_accept_finish will
2081 	 * deal with that) because of a TH_RST so we can only
2082 	 * ASSERT for a single ref.
2083 	 */
2084 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2085 
2086 	/* Pre allocate the stroptions mblk also */
2087 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2088 	    sizeof (struct T_conn_res)), BPRI_HI);
2089 	if (opt_mp == NULL) {
2090 		CONN_DEC_REF(acceptor->tcp_connp);
2091 		CONN_DEC_REF(eager->tcp_connp);
2092 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2093 		return;
2094 	}
2095 	DB_TYPE(opt_mp) = M_SETOPTS;
2096 	opt_mp->b_wptr += sizeof (struct tcp_options);
2097 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2098 	tcpopt->to_flags = 0;
2099 
2100 	/*
2101 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2102 	 * from listener to acceptor.
2103 	 */
2104 	if (listener->tcp_bound_if != 0) {
2105 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2106 		tcpopt->to_boundif = listener->tcp_bound_if;
2107 	}
2108 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2109 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2110 	}
2111 
2112 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2113 	if ((mp1 = copymsg(mp)) == NULL) {
2114 		CONN_DEC_REF(acceptor->tcp_connp);
2115 		CONN_DEC_REF(eager->tcp_connp);
2116 		freemsg(opt_mp);
2117 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2118 		return;
2119 	}
2120 
2121 	tcr = (struct T_conn_res *)mp1->b_rptr;
2122 
2123 	/*
2124 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2125 	 * which allocates a larger mblk and appends the new
2126 	 * local address to the ok_ack.  The address is copied by
2127 	 * soaccept() for getsockname().
2128 	 */
2129 	{
2130 		int extra;
2131 
2132 		extra = (eager->tcp_family == AF_INET) ?
2133 		    sizeof (sin_t) : sizeof (sin6_t);
2134 
2135 		/*
2136 		 * Try to re-use mp, if possible.  Otherwise, allocate
2137 		 * an mblk and return it as ok_mp.  In any case, mp
2138 		 * is no longer usable upon return.
2139 		 */
2140 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2141 			CONN_DEC_REF(acceptor->tcp_connp);
2142 			CONN_DEC_REF(eager->tcp_connp);
2143 			freemsg(opt_mp);
2144 			/* Original mp has been freed by now, so use mp1 */
2145 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2146 			return;
2147 		}
2148 
2149 		mp = NULL;	/* We should never use mp after this point */
2150 
2151 		switch (extra) {
2152 		case sizeof (sin_t): {
2153 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2154 
2155 				ok_mp->b_wptr += extra;
2156 				sin->sin_family = AF_INET;
2157 				sin->sin_port = eager->tcp_lport;
2158 				sin->sin_addr.s_addr =
2159 				    eager->tcp_ipha->ipha_src;
2160 				break;
2161 			}
2162 		case sizeof (sin6_t): {
2163 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2164 
2165 				ok_mp->b_wptr += extra;
2166 				sin6->sin6_family = AF_INET6;
2167 				sin6->sin6_port = eager->tcp_lport;
2168 				if (eager->tcp_ipversion == IPV4_VERSION) {
2169 					sin6->sin6_flowinfo = 0;
2170 					IN6_IPADDR_TO_V4MAPPED(
2171 					    eager->tcp_ipha->ipha_src,
2172 					    &sin6->sin6_addr);
2173 				} else {
2174 					ASSERT(eager->tcp_ip6h != NULL);
2175 					sin6->sin6_flowinfo =
2176 					    eager->tcp_ip6h->ip6_vcf &
2177 					    ~IPV6_VERS_AND_FLOW_MASK;
2178 					sin6->sin6_addr =
2179 					    eager->tcp_ip6h->ip6_src;
2180 				}
2181 				sin6->sin6_scope_id = 0;
2182 				sin6->__sin6_src_id = 0;
2183 				break;
2184 			}
2185 		default:
2186 			break;
2187 		}
2188 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2189 	}
2190 
2191 	/*
2192 	 * If there are no options we know that the T_CONN_RES will
2193 	 * succeed. However, we can't send the T_OK_ACK upstream until
2194 	 * the tcp_accept_swap is done since it would be dangerous to
2195 	 * let the application start using the new fd prior to the swap.
2196 	 */
2197 	tcp_accept_swap(listener, acceptor, eager);
2198 
2199 	/*
2200 	 * tcp_accept_swap unlinks eager from listener but does not drop
2201 	 * the eager's reference on the listener.
2202 	 */
2203 	ASSERT(eager->tcp_listener == NULL);
2204 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2205 
2206 	/*
2207 	 * The eager is now associated with its own queue. Insert in
2208 	 * the hash so that the connection can be reused for a future
2209 	 * T_CONN_RES.
2210 	 */
2211 	tcp_acceptor_hash_insert(acceptor_id, eager);
2212 
2213 	/*
2214 	 * We now do the processing of options with T_CONN_RES.
2215 	 * We delay till now since we wanted to have queue to pass to
2216 	 * option processing routines that points back to the right
2217 	 * instance structure which does not happen until after
2218 	 * tcp_accept_swap().
2219 	 *
2220 	 * Note:
2221 	 * The sanity of the logic here assumes that whatever options
2222 	 * are appropriate to inherit from listner=>eager are done
2223 	 * before this point, and whatever were to be overridden (or not)
2224 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2225 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2226 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2227 	 * This may not be true at this point in time but can be fixed
2228 	 * independently. This option processing code starts with
2229 	 * the instantiated acceptor instance and the final queue at
2230 	 * this point.
2231 	 */
2232 
2233 	if (tcr->OPT_length != 0) {
2234 		/* Options to process */
2235 		int t_error = 0;
2236 		int sys_error = 0;
2237 		int do_disconnect = 0;
2238 
2239 		if (tcp_conprim_opt_process(eager, mp1,
2240 		    &do_disconnect, &t_error, &sys_error) < 0) {
2241 			eager->tcp_accept_error = 1;
2242 			if (do_disconnect) {
2243 				/*
2244 				 * An option failed which does not allow
2245 				 * connection to be accepted.
2246 				 *
2247 				 * We allow T_CONN_RES to succeed and
2248 				 * put a T_DISCON_IND on the eager queue.
2249 				 */
2250 				ASSERT(t_error == 0 && sys_error == 0);
2251 				eager->tcp_send_discon_ind = 1;
2252 			} else {
2253 				ASSERT(t_error != 0);
2254 				freemsg(ok_mp);
2255 				/*
2256 				 * Original mp was either freed or set
2257 				 * to ok_mp above, so use mp1 instead.
2258 				 */
2259 				tcp_err_ack(listener, mp1, t_error, sys_error);
2260 				goto finish;
2261 			}
2262 		}
2263 		/*
2264 		 * Most likely success in setting options (except if
2265 		 * eager->tcp_send_discon_ind set).
2266 		 * mp1 option buffer represented by OPT_length/offset
2267 		 * potentially modified and contains results of setting
2268 		 * options at this point
2269 		 */
2270 	}
2271 
2272 	/* We no longer need mp1, since all options processing has passed */
2273 	freemsg(mp1);
2274 
2275 	putnext(listener->tcp_rq, ok_mp);
2276 
2277 	mutex_enter(&listener->tcp_eager_lock);
2278 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2279 		tcp_t	*tail;
2280 		mblk_t	*conn_ind;
2281 
2282 		/*
2283 		 * This path should not be executed if listener and
2284 		 * acceptor streams are the same.
2285 		 */
2286 		ASSERT(listener != acceptor);
2287 
2288 		tcp = listener->tcp_eager_prev_q0;
2289 		/*
2290 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2291 		 * deferred T_conn_ind queue. We need to get to the head of
2292 		 * the queue in order to send up T_conn_ind the same order as
2293 		 * how the 3WHS is completed.
2294 		 */
2295 		while (tcp != listener) {
2296 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2297 				break;
2298 			else
2299 				tcp = tcp->tcp_eager_prev_q0;
2300 		}
2301 		ASSERT(tcp != listener);
2302 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2303 		ASSERT(conn_ind != NULL);
2304 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2305 
2306 		/* Move from q0 to q */
2307 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2308 		listener->tcp_conn_req_cnt_q0--;
2309 		listener->tcp_conn_req_cnt_q++;
2310 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2311 		    tcp->tcp_eager_prev_q0;
2312 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2313 		    tcp->tcp_eager_next_q0;
2314 		tcp->tcp_eager_prev_q0 = NULL;
2315 		tcp->tcp_eager_next_q0 = NULL;
2316 		tcp->tcp_conn_def_q0 = B_FALSE;
2317 
2318 		/* Make sure the tcp isn't in the list of droppables */
2319 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2320 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2321 
2322 		/*
2323 		 * Insert at end of the queue because sockfs sends
2324 		 * down T_CONN_RES in chronological order. Leaving
2325 		 * the older conn indications at front of the queue
2326 		 * helps reducing search time.
2327 		 */
2328 		tail = listener->tcp_eager_last_q;
2329 		if (tail != NULL)
2330 			tail->tcp_eager_next_q = tcp;
2331 		else
2332 			listener->tcp_eager_next_q = tcp;
2333 		listener->tcp_eager_last_q = tcp;
2334 		tcp->tcp_eager_next_q = NULL;
2335 		mutex_exit(&listener->tcp_eager_lock);
2336 		putnext(tcp->tcp_rq, conn_ind);
2337 	} else {
2338 		mutex_exit(&listener->tcp_eager_lock);
2339 	}
2340 
2341 	/*
2342 	 * Done with the acceptor - free it
2343 	 *
2344 	 * Note: from this point on, no access to listener should be made
2345 	 * as listener can be equal to acceptor.
2346 	 */
2347 finish:
2348 	ASSERT(acceptor->tcp_detached);
2349 	ASSERT(tcps->tcps_g_q != NULL);
2350 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2351 	acceptor->tcp_rq = tcps->tcps_g_q;
2352 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2353 	(void) tcp_clean_death(acceptor, 0, 2);
2354 	CONN_DEC_REF(acceptor->tcp_connp);
2355 
2356 	/*
2357 	 * In case we already received a FIN we have to make tcp_rput send
2358 	 * the ordrel_ind. This will also send up a window update if the window
2359 	 * has opened up.
2360 	 *
2361 	 * In the normal case of a successful connection acceptance
2362 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2363 	 * indication that this was just accepted. This tells tcp_rput to
2364 	 * pass up any data queued in tcp_rcv_list.
2365 	 *
2366 	 * In the fringe case where options sent with T_CONN_RES failed and
2367 	 * we required, we would be indicating a T_DISCON_IND to blow
2368 	 * away this connection.
2369 	 */
2370 
2371 	/*
2372 	 * XXX: we currently have a problem if XTI application closes the
2373 	 * acceptor stream in between. This problem exists in on10-gate also
2374 	 * and is well know but nothing can be done short of major rewrite
2375 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2376 	 * eager same squeue as listener (we can distinguish non socket
2377 	 * listeners at the time of handling a SYN in tcp_conn_request)
2378 	 * and do most of the work that tcp_accept_finish does here itself
2379 	 * and then get behind the acceptor squeue to access the acceptor
2380 	 * queue.
2381 	 */
2382 	/*
2383 	 * We already have a ref on tcp so no need to do one before squeue_enter
2384 	 */
2385 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2386 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2387 }
2388 
2389 /*
2390  * Swap information between the eager and acceptor for a TLI/XTI client.
2391  * The sockfs accept is done on the acceptor stream and control goes
2392  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2393  * called. In either case, both the eager and listener are in their own
2394  * perimeter (squeue) and the code has to deal with potential race.
2395  *
2396  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2397  */
2398 static void
2399 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2400 {
2401 	conn_t	*econnp, *aconnp;
2402 
2403 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2404 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2405 	ASSERT(!eager->tcp_hard_bound);
2406 	ASSERT(!TCP_IS_SOCKET(acceptor));
2407 	ASSERT(!TCP_IS_SOCKET(eager));
2408 	ASSERT(!TCP_IS_SOCKET(listener));
2409 
2410 	acceptor->tcp_detached = B_TRUE;
2411 	/*
2412 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2413 	 * the acceptor id.
2414 	 */
2415 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2416 
2417 	/* remove eager from listen list... */
2418 	mutex_enter(&listener->tcp_eager_lock);
2419 	tcp_eager_unlink(eager);
2420 	ASSERT(eager->tcp_eager_next_q == NULL &&
2421 	    eager->tcp_eager_last_q == NULL);
2422 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2423 	    eager->tcp_eager_prev_q0 == NULL);
2424 	mutex_exit(&listener->tcp_eager_lock);
2425 	eager->tcp_rq = acceptor->tcp_rq;
2426 	eager->tcp_wq = acceptor->tcp_wq;
2427 
2428 	econnp = eager->tcp_connp;
2429 	aconnp = acceptor->tcp_connp;
2430 
2431 	eager->tcp_rq->q_ptr = econnp;
2432 	eager->tcp_wq->q_ptr = econnp;
2433 
2434 	/*
2435 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2436 	 * which might be a different squeue from our peer TCP instance.
2437 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2438 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2439 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2440 	 * above reach global visibility prior to the clearing of tcp_detached.
2441 	 */
2442 	membar_producer();
2443 	eager->tcp_detached = B_FALSE;
2444 
2445 	ASSERT(eager->tcp_ack_tid == 0);
2446 
2447 	econnp->conn_dev = aconnp->conn_dev;
2448 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2449 	ASSERT(econnp->conn_minor_arena != NULL);
2450 	if (eager->tcp_cred != NULL)
2451 		crfree(eager->tcp_cred);
2452 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2453 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2454 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2455 
2456 	aconnp->conn_cred = NULL;
2457 
2458 	econnp->conn_zoneid = aconnp->conn_zoneid;
2459 	econnp->conn_allzones = aconnp->conn_allzones;
2460 
2461 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2462 	aconnp->conn_mac_exempt = B_FALSE;
2463 
2464 	ASSERT(aconnp->conn_peercred == NULL);
2465 
2466 	/* Do the IPC initialization */
2467 	CONN_INC_REF(econnp);
2468 
2469 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2470 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2471 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2472 
2473 	/* Done with old IPC. Drop its ref on its connp */
2474 	CONN_DEC_REF(aconnp);
2475 }
2476 
2477 
2478 /*
2479  * Adapt to the information, such as rtt and rtt_sd, provided from the
2480  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2481  *
2482  * Checks for multicast and broadcast destination address.
2483  * Returns zero on failure; non-zero if ok.
2484  *
2485  * Note that the MSS calculation here is based on the info given in
2486  * the IRE.  We do not do any calculation based on TCP options.  They
2487  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2488  * knows which options to use.
2489  *
2490  * Note on how TCP gets its parameters for a connection.
2491  *
2492  * When a tcp_t structure is allocated, it gets all the default parameters.
2493  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2494  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2495  * default.
2496  *
2497  * An incoming SYN with a multicast or broadcast destination address, is dropped
2498  * in 1 of 2 places.
2499  *
2500  * 1. If the packet was received over the wire it is dropped in
2501  * ip_rput_process_broadcast()
2502  *
2503  * 2. If the packet was received through internal IP loopback, i.e. the packet
2504  * was generated and received on the same machine, it is dropped in
2505  * ip_wput_local()
2506  *
2507  * An incoming SYN with a multicast or broadcast source address is always
2508  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2509  * reject an attempt to connect to a broadcast or multicast (destination)
2510  * address.
2511  */
2512 static int
2513 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2514 {
2515 	ire_t		*ire;
2516 	ire_t		*sire = NULL;
2517 	iulp_t		*ire_uinfo = NULL;
2518 	uint32_t	mss_max;
2519 	uint32_t	mss;
2520 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2521 	conn_t		*connp = tcp->tcp_connp;
2522 	boolean_t	ire_cacheable = B_FALSE;
2523 	zoneid_t	zoneid = connp->conn_zoneid;
2524 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2525 	    MATCH_IRE_SECATTR;
2526 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2527 	ill_t		*ill = NULL;
2528 	boolean_t	incoming = (ire_mp == NULL);
2529 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2530 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2531 
2532 	ASSERT(connp->conn_ire_cache == NULL);
2533 
2534 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2535 
2536 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2537 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2538 			return (0);
2539 		}
2540 		/*
2541 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2542 		 * for the destination with the nexthop as gateway.
2543 		 * ire_ctable_lookup() is used because this particular
2544 		 * ire, if it exists, will be marked private.
2545 		 * If that is not available, use the interface ire
2546 		 * for the nexthop.
2547 		 *
2548 		 * TSol: tcp_update_label will detect label mismatches based
2549 		 * only on the destination's label, but that would not
2550 		 * detect label mismatches based on the security attributes
2551 		 * of routes or next hop gateway. Hence we need to pass the
2552 		 * label to ire_ftable_lookup below in order to locate the
2553 		 * right prefix (and/or) ire cache. Similarly we also need
2554 		 * pass the label to the ire_cache_lookup below to locate
2555 		 * the right ire that also matches on the label.
2556 		 */
2557 		if (tcp->tcp_connp->conn_nexthop_set) {
2558 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2559 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2560 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2561 			    ipst);
2562 			if (ire == NULL) {
2563 				ire = ire_ftable_lookup(
2564 				    tcp->tcp_connp->conn_nexthop_v4,
2565 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2566 				    tsl, match_flags, ipst);
2567 				if (ire == NULL)
2568 					return (0);
2569 			} else {
2570 				ire_uinfo = &ire->ire_uinfo;
2571 			}
2572 		} else {
2573 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2574 			    zoneid, tsl, ipst);
2575 			if (ire != NULL) {
2576 				ire_cacheable = B_TRUE;
2577 				ire_uinfo = (ire_mp != NULL) ?
2578 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2579 				    &ire->ire_uinfo;
2580 
2581 			} else {
2582 				if (ire_mp == NULL) {
2583 					ire = ire_ftable_lookup(
2584 					    tcp->tcp_connp->conn_rem,
2585 					    0, 0, 0, NULL, &sire, zoneid, 0,
2586 					    tsl, (MATCH_IRE_RECURSIVE |
2587 					    MATCH_IRE_DEFAULT), ipst);
2588 					if (ire == NULL)
2589 						return (0);
2590 					ire_uinfo = (sire != NULL) ?
2591 					    &sire->ire_uinfo :
2592 					    &ire->ire_uinfo;
2593 				} else {
2594 					ire = (ire_t *)ire_mp->b_rptr;
2595 					ire_uinfo =
2596 					    &((ire_t *)
2597 					    ire_mp->b_rptr)->ire_uinfo;
2598 				}
2599 			}
2600 		}
2601 		ASSERT(ire != NULL);
2602 
2603 		if ((ire->ire_src_addr == INADDR_ANY) ||
2604 		    (ire->ire_type & IRE_BROADCAST)) {
2605 			/*
2606 			 * ire->ire_mp is non null when ire_mp passed in is used
2607 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2608 			 */
2609 			if (ire->ire_mp == NULL)
2610 				ire_refrele(ire);
2611 			if (sire != NULL)
2612 				ire_refrele(sire);
2613 			return (0);
2614 		}
2615 
2616 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2617 			ipaddr_t src_addr;
2618 
2619 			/*
2620 			 * ip_bind_connected() has stored the correct source
2621 			 * address in conn_src.
2622 			 */
2623 			src_addr = tcp->tcp_connp->conn_src;
2624 			tcp->tcp_ipha->ipha_src = src_addr;
2625 			/*
2626 			 * Copy of the src addr. in tcp_t is needed
2627 			 * for the lookup funcs.
2628 			 */
2629 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2630 		}
2631 		/*
2632 		 * Set the fragment bit so that IP will tell us if the MTU
2633 		 * should change. IP tells us the latest setting of
2634 		 * ip_path_mtu_discovery through ire_frag_flag.
2635 		 */
2636 		if (ipst->ips_ip_path_mtu_discovery) {
2637 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2638 			    htons(IPH_DF);
2639 		}
2640 		/*
2641 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2642 		 * for IP_NEXTHOP. No cache ire has been found for the
2643 		 * destination and we are working with the nexthop's
2644 		 * interface ire. Since we need to forward all packets
2645 		 * to the nexthop first, we "blindly" set tcp_localnet
2646 		 * to false, eventhough the destination may also be
2647 		 * onlink.
2648 		 */
2649 		if (ire_uinfo == NULL)
2650 			tcp->tcp_localnet = 0;
2651 		else
2652 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2653 	} else {
2654 		/*
2655 		 * For incoming connection ire_mp = NULL
2656 		 * For outgoing connection ire_mp != NULL
2657 		 * Technically we should check conn_incoming_ill
2658 		 * when ire_mp is NULL and conn_outgoing_ill when
2659 		 * ire_mp is non-NULL. But this is performance
2660 		 * critical path and for IPV*_BOUND_IF, outgoing
2661 		 * and incoming ill are always set to the same value.
2662 		 */
2663 		ill_t	*dst_ill = NULL;
2664 		ipif_t  *dst_ipif = NULL;
2665 
2666 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2667 
2668 		if (connp->conn_outgoing_ill != NULL) {
2669 			/* Outgoing or incoming path */
2670 			int   err;
2671 
2672 			dst_ill = conn_get_held_ill(connp,
2673 			    &connp->conn_outgoing_ill, &err);
2674 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2675 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2676 				return (0);
2677 			}
2678 			match_flags |= MATCH_IRE_ILL;
2679 			dst_ipif = dst_ill->ill_ipif;
2680 		}
2681 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2682 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2683 
2684 		if (ire != NULL) {
2685 			ire_cacheable = B_TRUE;
2686 			ire_uinfo = (ire_mp != NULL) ?
2687 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2688 			    &ire->ire_uinfo;
2689 		} else {
2690 			if (ire_mp == NULL) {
2691 				ire = ire_ftable_lookup_v6(
2692 				    &tcp->tcp_connp->conn_remv6,
2693 				    0, 0, 0, dst_ipif, &sire, zoneid,
2694 				    0, tsl, match_flags, ipst);
2695 				if (ire == NULL) {
2696 					if (dst_ill != NULL)
2697 						ill_refrele(dst_ill);
2698 					return (0);
2699 				}
2700 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2701 				    &ire->ire_uinfo;
2702 			} else {
2703 				ire = (ire_t *)ire_mp->b_rptr;
2704 				ire_uinfo =
2705 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2706 			}
2707 		}
2708 		if (dst_ill != NULL)
2709 			ill_refrele(dst_ill);
2710 
2711 		ASSERT(ire != NULL);
2712 		ASSERT(ire_uinfo != NULL);
2713 
2714 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2715 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2716 			/*
2717 			 * ire->ire_mp is non null when ire_mp passed in is used
2718 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2719 			 */
2720 			if (ire->ire_mp == NULL)
2721 				ire_refrele(ire);
2722 			if (sire != NULL)
2723 				ire_refrele(sire);
2724 			return (0);
2725 		}
2726 
2727 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2728 			in6_addr_t	src_addr;
2729 
2730 			/*
2731 			 * ip_bind_connected_v6() has stored the correct source
2732 			 * address per IPv6 addr. selection policy in
2733 			 * conn_src_v6.
2734 			 */
2735 			src_addr = tcp->tcp_connp->conn_srcv6;
2736 
2737 			tcp->tcp_ip6h->ip6_src = src_addr;
2738 			/*
2739 			 * Copy of the src addr. in tcp_t is needed
2740 			 * for the lookup funcs.
2741 			 */
2742 			tcp->tcp_ip_src_v6 = src_addr;
2743 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2744 			    &connp->conn_srcv6));
2745 		}
2746 		tcp->tcp_localnet =
2747 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2748 	}
2749 
2750 	/*
2751 	 * This allows applications to fail quickly when connections are made
2752 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2753 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2754 	 */
2755 	if ((ire->ire_flags & RTF_REJECT) &&
2756 	    (ire->ire_flags & RTF_PRIVATE))
2757 		goto error;
2758 
2759 	/*
2760 	 * Make use of the cached rtt and rtt_sd values to calculate the
2761 	 * initial RTO.  Note that they are already initialized in
2762 	 * tcp_init_values().
2763 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2764 	 * IP_NEXTHOP, but instead are using the interface ire for the
2765 	 * nexthop, then we do not use the ire_uinfo from that ire to
2766 	 * do any initializations.
2767 	 */
2768 	if (ire_uinfo != NULL) {
2769 		if (ire_uinfo->iulp_rtt != 0) {
2770 			clock_t	rto;
2771 
2772 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2773 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2774 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2775 			    tcps->tcps_rexmit_interval_extra +
2776 			    (tcp->tcp_rtt_sa >> 5);
2777 
2778 			if (rto > tcps->tcps_rexmit_interval_max) {
2779 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2780 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2781 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2782 			} else {
2783 				tcp->tcp_rto = rto;
2784 			}
2785 		}
2786 		if (ire_uinfo->iulp_ssthresh != 0)
2787 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2788 		else
2789 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2790 		if (ire_uinfo->iulp_spipe > 0) {
2791 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2792 			    tcps->tcps_max_buf);
2793 			if (tcps->tcps_snd_lowat_fraction != 0)
2794 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2795 				    tcps->tcps_snd_lowat_fraction;
2796 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2797 		}
2798 		/*
2799 		 * Note that up till now, acceptor always inherits receive
2800 		 * window from the listener.  But if there is a metrics
2801 		 * associated with a host, we should use that instead of
2802 		 * inheriting it from listener. Thus we need to pass this
2803 		 * info back to the caller.
2804 		 */
2805 		if (ire_uinfo->iulp_rpipe > 0) {
2806 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2807 			    tcps->tcps_max_buf);
2808 		}
2809 
2810 		if (ire_uinfo->iulp_rtomax > 0) {
2811 			tcp->tcp_second_timer_threshold =
2812 			    ire_uinfo->iulp_rtomax;
2813 		}
2814 
2815 		/*
2816 		 * Use the metric option settings, iulp_tstamp_ok and
2817 		 * iulp_wscale_ok, only for active open. What this means
2818 		 * is that if the other side uses timestamp or window
2819 		 * scale option, TCP will also use those options. That
2820 		 * is for passive open.  If the application sets a
2821 		 * large window, window scale is enabled regardless of
2822 		 * the value in iulp_wscale_ok.  This is the behavior
2823 		 * since 2.6.  So we keep it.
2824 		 * The only case left in passive open processing is the
2825 		 * check for SACK.
2826 		 * For ECN, it should probably be like SACK.  But the
2827 		 * current value is binary, so we treat it like the other
2828 		 * cases.  The metric only controls active open.For passive
2829 		 * open, the ndd param, tcp_ecn_permitted, controls the
2830 		 * behavior.
2831 		 */
2832 		if (!tcp_detached) {
2833 			/*
2834 			 * The if check means that the following can only
2835 			 * be turned on by the metrics only IRE, but not off.
2836 			 */
2837 			if (ire_uinfo->iulp_tstamp_ok)
2838 				tcp->tcp_snd_ts_ok = B_TRUE;
2839 			if (ire_uinfo->iulp_wscale_ok)
2840 				tcp->tcp_snd_ws_ok = B_TRUE;
2841 			if (ire_uinfo->iulp_sack == 2)
2842 				tcp->tcp_snd_sack_ok = B_TRUE;
2843 			if (ire_uinfo->iulp_ecn_ok)
2844 				tcp->tcp_ecn_ok = B_TRUE;
2845 		} else {
2846 			/*
2847 			 * Passive open.
2848 			 *
2849 			 * As above, the if check means that SACK can only be
2850 			 * turned on by the metric only IRE.
2851 			 */
2852 			if (ire_uinfo->iulp_sack > 0) {
2853 				tcp->tcp_snd_sack_ok = B_TRUE;
2854 			}
2855 		}
2856 	}
2857 
2858 
2859 	/*
2860 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2861 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2862 	 * length of all those options exceeds 28 bytes.  But because
2863 	 * of the tcp_mss_min check below, we may not have a problem if
2864 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2865 	 * the negative problem still exists.  And the check defeats PMTUd.
2866 	 * In fact, if PMTUd finds that the MSS should be smaller than
2867 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2868 	 * value.
2869 	 *
2870 	 * We do not deal with that now.  All those problems related to
2871 	 * PMTUd will be fixed later.
2872 	 */
2873 	ASSERT(ire->ire_max_frag != 0);
2874 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2875 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2876 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2877 			mss = MIN(mss, IPV6_MIN_MTU);
2878 		}
2879 	}
2880 
2881 	/* Sanity check for MSS value. */
2882 	if (tcp->tcp_ipversion == IPV4_VERSION)
2883 		mss_max = tcps->tcps_mss_max_ipv4;
2884 	else
2885 		mss_max = tcps->tcps_mss_max_ipv6;
2886 
2887 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2888 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2889 		/*
2890 		 * After receiving an ICMPv6 "packet too big" message with a
2891 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2892 		 * will insert a 8-byte fragment header in every packet; we
2893 		 * reduce the MSS by that amount here.
2894 		 */
2895 		mss -= sizeof (ip6_frag_t);
2896 	}
2897 
2898 	if (tcp->tcp_ipsec_overhead == 0)
2899 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2900 
2901 	mss -= tcp->tcp_ipsec_overhead;
2902 
2903 	if (mss < tcps->tcps_mss_min)
2904 		mss = tcps->tcps_mss_min;
2905 	if (mss > mss_max)
2906 		mss = mss_max;
2907 
2908 	/* Note that this is the maximum MSS, excluding all options. */
2909 	tcp->tcp_mss = mss;
2910 
2911 	/*
2912 	 * Initialize the ISS here now that we have the full connection ID.
2913 	 * The RFC 1948 method of initial sequence number generation requires
2914 	 * knowledge of the full connection ID before setting the ISS.
2915 	 */
2916 
2917 	tcp_iss_init(tcp);
2918 
2919 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2920 		tcp->tcp_loopback = B_TRUE;
2921 
2922 	if (sire != NULL)
2923 		IRE_REFRELE(sire);
2924 
2925 	/*
2926 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2927 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2928 	 */
2929 	if (tcp->tcp_loopback ||
2930 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2931 		/*
2932 		 * For incoming, see if this tcp may be MDT-capable.  For
2933 		 * outgoing, this process has been taken care of through
2934 		 * tcp_rput_other.
2935 		 */
2936 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2937 		tcp->tcp_ire_ill_check_done = B_TRUE;
2938 	}
2939 
2940 	mutex_enter(&connp->conn_lock);
2941 	/*
2942 	 * Make sure that conn is not marked incipient
2943 	 * for incoming connections. A blind
2944 	 * removal of incipient flag is cheaper than
2945 	 * check and removal.
2946 	 */
2947 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2948 
2949 	/*
2950 	 * Must not cache forwarding table routes
2951 	 * or recache an IRE after the conn_t has
2952 	 * had conn_ire_cache cleared and is flagged
2953 	 * unusable, (see the CONN_CACHE_IRE() macro).
2954 	 */
2955 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2956 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2957 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2958 			connp->conn_ire_cache = ire;
2959 			IRE_UNTRACE_REF(ire);
2960 			rw_exit(&ire->ire_bucket->irb_lock);
2961 			mutex_exit(&connp->conn_lock);
2962 			return (1);
2963 		}
2964 		rw_exit(&ire->ire_bucket->irb_lock);
2965 	}
2966 	mutex_exit(&connp->conn_lock);
2967 
2968 	if (ire->ire_mp == NULL)
2969 		ire_refrele(ire);
2970 	return (1);
2971 
2972 error:
2973 	if (ire->ire_mp == NULL)
2974 		ire_refrele(ire);
2975 	if (sire != NULL)
2976 		ire_refrele(sire);
2977 	return (0);
2978 }
2979 
2980 static void
2981 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2982 {
2983 	int	error;
2984 	conn_t	*connp = tcp->tcp_connp;
2985 	struct sockaddr	*sa;
2986 	mblk_t  *mp1;
2987 	struct T_bind_req *tbr;
2988 	int	backlog;
2989 	socklen_t	len;
2990 	sin_t	*sin;
2991 	sin6_t	*sin6;
2992 	cred_t		*cr;
2993 
2994 	/*
2995 	 * All Solaris components should pass a db_credp
2996 	 * for this TPI message, hence we ASSERT.
2997 	 * But in case there is some other M_PROTO that looks
2998 	 * like a TPI message sent by some other kernel
2999 	 * component, we check and return an error.
3000 	 */
3001 	cr = msg_getcred(mp, NULL);
3002 	ASSERT(cr != NULL);
3003 	if (cr == NULL) {
3004 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3005 		return;
3006 	}
3007 
3008 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3009 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3010 		if (tcp->tcp_debug) {
3011 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3012 			    "tcp_tpi_bind: bad req, len %u",
3013 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3014 		}
3015 		tcp_err_ack(tcp, mp, TPROTO, 0);
3016 		return;
3017 	}
3018 	/* Make sure the largest address fits */
3019 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3020 	if (mp1 == NULL) {
3021 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3022 		return;
3023 	}
3024 	mp = mp1;
3025 	tbr = (struct T_bind_req *)mp->b_rptr;
3026 
3027 	backlog = tbr->CONIND_number;
3028 	len = tbr->ADDR_length;
3029 
3030 	switch (len) {
3031 	case 0:		/* request for a generic port */
3032 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3033 		if (tcp->tcp_family == AF_INET) {
3034 			tbr->ADDR_length = sizeof (sin_t);
3035 			sin = (sin_t *)&tbr[1];
3036 			*sin = sin_null;
3037 			sin->sin_family = AF_INET;
3038 			sa = (struct sockaddr *)sin;
3039 			len = sizeof (sin_t);
3040 			mp->b_wptr = (uchar_t *)&sin[1];
3041 		} else {
3042 			ASSERT(tcp->tcp_family == AF_INET6);
3043 			tbr->ADDR_length = sizeof (sin6_t);
3044 			sin6 = (sin6_t *)&tbr[1];
3045 			*sin6 = sin6_null;
3046 			sin6->sin6_family = AF_INET6;
3047 			sa = (struct sockaddr *)sin6;
3048 			len = sizeof (sin6_t);
3049 			mp->b_wptr = (uchar_t *)&sin6[1];
3050 		}
3051 		break;
3052 
3053 	case sizeof (sin_t):    /* Complete IPv4 address */
3054 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3055 		    sizeof (sin_t));
3056 		break;
3057 
3058 	case sizeof (sin6_t): /* Complete IPv6 address */
3059 		sa = (struct sockaddr *)mi_offset_param(mp,
3060 		    tbr->ADDR_offset, sizeof (sin6_t));
3061 		break;
3062 
3063 	default:
3064 		if (tcp->tcp_debug) {
3065 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3066 			    "tcp_tpi_bind: bad address length, %d",
3067 			    tbr->ADDR_length);
3068 		}
3069 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3070 		return;
3071 	}
3072 
3073 	if (backlog > 0) {
3074 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
3075 		    tbr->PRIM_type != O_T_BIND_REQ);
3076 	} else {
3077 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
3078 		    tbr->PRIM_type != O_T_BIND_REQ);
3079 	}
3080 done:
3081 	if (error > 0) {
3082 		tcp_err_ack(tcp, mp, TSYSERR, error);
3083 	} else if (error < 0) {
3084 		tcp_err_ack(tcp, mp, -error, 0);
3085 	} else {
3086 		/*
3087 		 * Update port information as sockfs/tpi needs it for checking
3088 		 */
3089 		if (tcp->tcp_family == AF_INET) {
3090 			sin = (sin_t *)sa;
3091 			sin->sin_port = tcp->tcp_lport;
3092 		} else {
3093 			sin6 = (sin6_t *)sa;
3094 			sin6->sin6_port = tcp->tcp_lport;
3095 		}
3096 		mp->b_datap->db_type = M_PCPROTO;
3097 		tbr->PRIM_type = T_BIND_ACK;
3098 		putnext(tcp->tcp_rq, mp);
3099 	}
3100 }
3101 
3102 /*
3103  * If the "bind_to_req_port_only" parameter is set, if the requested port
3104  * number is available, return it, If not return 0
3105  *
3106  * If "bind_to_req_port_only" parameter is not set and
3107  * If the requested port number is available, return it.  If not, return
3108  * the first anonymous port we happen across.  If no anonymous ports are
3109  * available, return 0. addr is the requested local address, if any.
3110  *
3111  * In either case, when succeeding update the tcp_t to record the port number
3112  * and insert it in the bind hash table.
3113  *
3114  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3115  * without setting SO_REUSEADDR. This is needed so that they
3116  * can be viewed as two independent transport protocols.
3117  */
3118 static in_port_t
3119 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3120     int reuseaddr, boolean_t quick_connect,
3121     boolean_t bind_to_req_port_only, boolean_t user_specified)
3122 {
3123 	/* number of times we have run around the loop */
3124 	int count = 0;
3125 	/* maximum number of times to run around the loop */
3126 	int loopmax;
3127 	conn_t *connp = tcp->tcp_connp;
3128 	zoneid_t zoneid = connp->conn_zoneid;
3129 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3130 
3131 	/*
3132 	 * Lookup for free addresses is done in a loop and "loopmax"
3133 	 * influences how long we spin in the loop
3134 	 */
3135 	if (bind_to_req_port_only) {
3136 		/*
3137 		 * If the requested port is busy, don't bother to look
3138 		 * for a new one. Setting loop maximum count to 1 has
3139 		 * that effect.
3140 		 */
3141 		loopmax = 1;
3142 	} else {
3143 		/*
3144 		 * If the requested port is busy, look for a free one
3145 		 * in the anonymous port range.
3146 		 * Set loopmax appropriately so that one does not look
3147 		 * forever in the case all of the anonymous ports are in use.
3148 		 */
3149 		if (tcp->tcp_anon_priv_bind) {
3150 			/*
3151 			 * loopmax =
3152 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3153 			 */
3154 			loopmax = IPPORT_RESERVED -
3155 			    tcps->tcps_min_anonpriv_port;
3156 		} else {
3157 			loopmax = (tcps->tcps_largest_anon_port -
3158 			    tcps->tcps_smallest_anon_port + 1);
3159 		}
3160 	}
3161 	do {
3162 		uint16_t	lport;
3163 		tf_t		*tbf;
3164 		tcp_t		*ltcp;
3165 		conn_t		*lconnp;
3166 
3167 		lport = htons(port);
3168 
3169 		/*
3170 		 * Ensure that the tcp_t is not currently in the bind hash.
3171 		 * Hold the lock on the hash bucket to ensure that
3172 		 * the duplicate check plus the insertion is an atomic
3173 		 * operation.
3174 		 *
3175 		 * This function does an inline lookup on the bind hash list
3176 		 * Make sure that we access only members of tcp_t
3177 		 * and that we don't look at tcp_tcp, since we are not
3178 		 * doing a CONN_INC_REF.
3179 		 */
3180 		tcp_bind_hash_remove(tcp);
3181 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3182 		mutex_enter(&tbf->tf_lock);
3183 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3184 		    ltcp = ltcp->tcp_bind_hash) {
3185 			if (lport == ltcp->tcp_lport)
3186 				break;
3187 		}
3188 
3189 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3190 			boolean_t not_socket;
3191 			boolean_t exclbind;
3192 
3193 			lconnp = ltcp->tcp_connp;
3194 
3195 			/*
3196 			 * On a labeled system, we must treat bindings to ports
3197 			 * on shared IP addresses by sockets with MAC exemption
3198 			 * privilege as being in all zones, as there's
3199 			 * otherwise no way to identify the right receiver.
3200 			 */
3201 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3202 			    IPCL_ZONE_MATCH(connp,
3203 			    ltcp->tcp_connp->conn_zoneid)) &&
3204 			    !lconnp->conn_mac_exempt &&
3205 			    !connp->conn_mac_exempt)
3206 				continue;
3207 
3208 			/*
3209 			 * If TCP_EXCLBIND is set for either the bound or
3210 			 * binding endpoint, the semantics of bind
3211 			 * is changed according to the following.
3212 			 *
3213 			 * spec = specified address (v4 or v6)
3214 			 * unspec = unspecified address (v4 or v6)
3215 			 * A = specified addresses are different for endpoints
3216 			 *
3217 			 * bound	bind to		allowed
3218 			 * -------------------------------------
3219 			 * unspec	unspec		no
3220 			 * unspec	spec		no
3221 			 * spec		unspec		no
3222 			 * spec		spec		yes if A
3223 			 *
3224 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3225 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3226 			 *
3227 			 * Note:
3228 			 *
3229 			 * 1. Because of TLI semantics, an endpoint can go
3230 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3231 			 * TCPS_BOUND, depending on whether it is originally
3232 			 * a listener or not.  That is why we need to check
3233 			 * for states greater than or equal to TCPS_BOUND
3234 			 * here.
3235 			 *
3236 			 * 2. Ideally, we should only check for state equals
3237 			 * to TCPS_LISTEN. And the following check should be
3238 			 * added.
3239 			 *
3240 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3241 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3242 			 *		...
3243 			 * }
3244 			 *
3245 			 * The semantics will be changed to this.  If the
3246 			 * endpoint on the list is in state not equal to
3247 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3248 			 * set, let the bind succeed.
3249 			 *
3250 			 * Because of (1), we cannot do that for TLI
3251 			 * endpoints.  But we can do that for socket endpoints.
3252 			 * If in future, we can change this going back
3253 			 * semantics, we can use the above check for TLI also.
3254 			 */
3255 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3256 			    TCP_IS_SOCKET(tcp));
3257 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3258 
3259 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3260 			    (exclbind && (not_socket ||
3261 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3262 				if (V6_OR_V4_INADDR_ANY(
3263 				    ltcp->tcp_bound_source_v6) ||
3264 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3265 				    IN6_ARE_ADDR_EQUAL(laddr,
3266 				    &ltcp->tcp_bound_source_v6)) {
3267 					break;
3268 				}
3269 				continue;
3270 			}
3271 
3272 			/*
3273 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3274 			 * have disjoint port number spaces, if *_EXCLBIND
3275 			 * is not set and only if the application binds to a
3276 			 * specific port. We use the same autoassigned port
3277 			 * number space for IPv4 and IPv6 sockets.
3278 			 */
3279 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3280 			    bind_to_req_port_only)
3281 				continue;
3282 
3283 			/*
3284 			 * Ideally, we should make sure that the source
3285 			 * address, remote address, and remote port in the
3286 			 * four tuple for this tcp-connection is unique.
3287 			 * However, trying to find out the local source
3288 			 * address would require too much code duplication
3289 			 * with IP, since IP needs needs to have that code
3290 			 * to support userland TCP implementations.
3291 			 */
3292 			if (quick_connect &&
3293 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3294 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3295 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3296 			    &ltcp->tcp_remote_v6)))
3297 				continue;
3298 
3299 			if (!reuseaddr) {
3300 				/*
3301 				 * No socket option SO_REUSEADDR.
3302 				 * If existing port is bound to
3303 				 * a non-wildcard IP address
3304 				 * and the requesting stream is
3305 				 * bound to a distinct
3306 				 * different IP addresses
3307 				 * (non-wildcard, also), keep
3308 				 * going.
3309 				 */
3310 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3311 				    !V6_OR_V4_INADDR_ANY(
3312 				    ltcp->tcp_bound_source_v6) &&
3313 				    !IN6_ARE_ADDR_EQUAL(laddr,
3314 				    &ltcp->tcp_bound_source_v6))
3315 					continue;
3316 				if (ltcp->tcp_state >= TCPS_BOUND) {
3317 					/*
3318 					 * This port is being used and
3319 					 * its state is >= TCPS_BOUND,
3320 					 * so we can't bind to it.
3321 					 */
3322 					break;
3323 				}
3324 			} else {
3325 				/*
3326 				 * socket option SO_REUSEADDR is set on the
3327 				 * binding tcp_t.
3328 				 *
3329 				 * If two streams are bound to
3330 				 * same IP address or both addr
3331 				 * and bound source are wildcards
3332 				 * (INADDR_ANY), we want to stop
3333 				 * searching.
3334 				 * We have found a match of IP source
3335 				 * address and source port, which is
3336 				 * refused regardless of the
3337 				 * SO_REUSEADDR setting, so we break.
3338 				 */
3339 				if (IN6_ARE_ADDR_EQUAL(laddr,
3340 				    &ltcp->tcp_bound_source_v6) &&
3341 				    (ltcp->tcp_state == TCPS_LISTEN ||
3342 				    ltcp->tcp_state == TCPS_BOUND))
3343 					break;
3344 			}
3345 		}
3346 		if (ltcp != NULL) {
3347 			/* The port number is busy */
3348 			mutex_exit(&tbf->tf_lock);
3349 		} else {
3350 			/*
3351 			 * This port is ours. Insert in fanout and mark as
3352 			 * bound to prevent others from getting the port
3353 			 * number.
3354 			 */
3355 			tcp->tcp_state = TCPS_BOUND;
3356 			tcp->tcp_lport = htons(port);
3357 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3358 
3359 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3360 			    tcp->tcp_lport)] == tbf);
3361 			tcp_bind_hash_insert(tbf, tcp, 1);
3362 
3363 			mutex_exit(&tbf->tf_lock);
3364 
3365 			/*
3366 			 * We don't want tcp_next_port_to_try to "inherit"
3367 			 * a port number supplied by the user in a bind.
3368 			 */
3369 			if (user_specified)
3370 				return (port);
3371 
3372 			/*
3373 			 * This is the only place where tcp_next_port_to_try
3374 			 * is updated. After the update, it may or may not
3375 			 * be in the valid range.
3376 			 */
3377 			if (!tcp->tcp_anon_priv_bind)
3378 				tcps->tcps_next_port_to_try = port + 1;
3379 			return (port);
3380 		}
3381 
3382 		if (tcp->tcp_anon_priv_bind) {
3383 			port = tcp_get_next_priv_port(tcp);
3384 		} else {
3385 			if (count == 0 && user_specified) {
3386 				/*
3387 				 * We may have to return an anonymous port. So
3388 				 * get one to start with.
3389 				 */
3390 				port =
3391 				    tcp_update_next_port(
3392 				    tcps->tcps_next_port_to_try,
3393 				    tcp, B_TRUE);
3394 				user_specified = B_FALSE;
3395 			} else {
3396 				port = tcp_update_next_port(port + 1, tcp,
3397 				    B_FALSE);
3398 			}
3399 		}
3400 		if (port == 0)
3401 			break;
3402 
3403 		/*
3404 		 * Don't let this loop run forever in the case where
3405 		 * all of the anonymous ports are in use.
3406 		 */
3407 	} while (++count < loopmax);
3408 	return (0);
3409 }
3410 
3411 /*
3412  * tcp_clean_death / tcp_close_detached must not be called more than once
3413  * on a tcp. Thus every function that potentially calls tcp_clean_death
3414  * must check for the tcp state before calling tcp_clean_death.
3415  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3416  * tcp_timer_handler, all check for the tcp state.
3417  */
3418 /* ARGSUSED */
3419 void
3420 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3421 {
3422 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3423 
3424 	freemsg(mp);
3425 	if (tcp->tcp_state > TCPS_BOUND)
3426 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3427 		    ETIMEDOUT, 5);
3428 }
3429 
3430 /*
3431  * We are dying for some reason.  Try to do it gracefully.  (May be called
3432  * as writer.)
3433  *
3434  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3435  * done by a service procedure).
3436  * TBD - Should the return value distinguish between the tcp_t being
3437  * freed and it being reinitialized?
3438  */
3439 static int
3440 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3441 {
3442 	mblk_t	*mp;
3443 	queue_t	*q;
3444 	conn_t	*connp = tcp->tcp_connp;
3445 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3446 	sodirect_t	*sodp;
3447 
3448 	TCP_CLD_STAT(tag);
3449 
3450 #if TCP_TAG_CLEAN_DEATH
3451 	tcp->tcp_cleandeathtag = tag;
3452 #endif
3453 
3454 	if (tcp->tcp_fused)
3455 		tcp_unfuse(tcp);
3456 
3457 	if (tcp->tcp_linger_tid != 0 &&
3458 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3459 		tcp_stop_lingering(tcp);
3460 	}
3461 
3462 	ASSERT(tcp != NULL);
3463 	ASSERT((tcp->tcp_family == AF_INET &&
3464 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3465 	    (tcp->tcp_family == AF_INET6 &&
3466 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3467 	    tcp->tcp_ipversion == IPV6_VERSION)));
3468 
3469 	if (TCP_IS_DETACHED(tcp)) {
3470 		if (tcp->tcp_hard_binding) {
3471 			/*
3472 			 * Its an eager that we are dealing with. We close the
3473 			 * eager but in case a conn_ind has already gone to the
3474 			 * listener, let tcp_accept_finish() send a discon_ind
3475 			 * to the listener and drop the last reference. If the
3476 			 * listener doesn't even know about the eager i.e. the
3477 			 * conn_ind hasn't gone up, blow away the eager and drop
3478 			 * the last reference as well. If the conn_ind has gone
3479 			 * up, state should be BOUND. tcp_accept_finish
3480 			 * will figure out that the connection has received a
3481 			 * RST and will send a DISCON_IND to the application.
3482 			 */
3483 			tcp_closei_local(tcp);
3484 			if (!tcp->tcp_tconnind_started) {
3485 				CONN_DEC_REF(connp);
3486 			} else {
3487 				tcp->tcp_state = TCPS_BOUND;
3488 			}
3489 		} else {
3490 			tcp_close_detached(tcp);
3491 		}
3492 		return (0);
3493 	}
3494 
3495 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3496 
3497 	/* If sodirect, not anymore */
3498 	SOD_PTR_ENTER(tcp, sodp);
3499 	if (sodp != NULL) {
3500 		tcp->tcp_sodirect = NULL;
3501 		mutex_exit(sodp->sod_lockp);
3502 	}
3503 
3504 	q = tcp->tcp_rq;
3505 
3506 	/* Trash all inbound data */
3507 	if (!IPCL_IS_NONSTR(connp)) {
3508 		ASSERT(q != NULL);
3509 		flushq(q, FLUSHALL);
3510 	}
3511 
3512 	/*
3513 	 * If we are at least part way open and there is error
3514 	 * (err==0 implies no error)
3515 	 * notify our client by a T_DISCON_IND.
3516 	 */
3517 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3518 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3519 		    !TCP_IS_SOCKET(tcp)) {
3520 			/*
3521 			 * Send M_FLUSH according to TPI. Because sockets will
3522 			 * (and must) ignore FLUSHR we do that only for TPI
3523 			 * endpoints and sockets in STREAMS mode.
3524 			 */
3525 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3526 		}
3527 		if (tcp->tcp_debug) {
3528 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3529 			    "tcp_clean_death: discon err %d", err);
3530 		}
3531 		if (IPCL_IS_NONSTR(connp)) {
3532 			/* Direct socket, use upcall */
3533 			(*connp->conn_upcalls->su_disconnected)(
3534 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3535 		} else {
3536 			mp = mi_tpi_discon_ind(NULL, err, 0);
3537 			if (mp != NULL) {
3538 				putnext(q, mp);
3539 			} else {
3540 				if (tcp->tcp_debug) {
3541 					(void) strlog(TCP_MOD_ID, 0, 1,
3542 					    SL_ERROR|SL_TRACE,
3543 					    "tcp_clean_death, sending M_ERROR");
3544 				}
3545 				(void) putnextctl1(q, M_ERROR, EPROTO);
3546 			}
3547 		}
3548 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3549 			/* SYN_SENT or SYN_RCVD */
3550 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3551 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3552 			/* ESTABLISHED or CLOSE_WAIT */
3553 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3554 		}
3555 	}
3556 
3557 	tcp_reinit(tcp);
3558 	if (IPCL_IS_NONSTR(connp))
3559 		(void) tcp_do_unbind(connp);
3560 
3561 	return (-1);
3562 }
3563 
3564 /*
3565  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3566  * to expire, stop the wait and finish the close.
3567  */
3568 static void
3569 tcp_stop_lingering(tcp_t *tcp)
3570 {
3571 	clock_t	delta = 0;
3572 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3573 
3574 	tcp->tcp_linger_tid = 0;
3575 	if (tcp->tcp_state > TCPS_LISTEN) {
3576 		tcp_acceptor_hash_remove(tcp);
3577 		mutex_enter(&tcp->tcp_non_sq_lock);
3578 		if (tcp->tcp_flow_stopped) {
3579 			tcp_clrqfull(tcp);
3580 		}
3581 		mutex_exit(&tcp->tcp_non_sq_lock);
3582 
3583 		if (tcp->tcp_timer_tid != 0) {
3584 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3585 			tcp->tcp_timer_tid = 0;
3586 		}
3587 		/*
3588 		 * Need to cancel those timers which will not be used when
3589 		 * TCP is detached.  This has to be done before the tcp_wq
3590 		 * is set to the global queue.
3591 		 */
3592 		tcp_timers_stop(tcp);
3593 
3594 		tcp->tcp_detached = B_TRUE;
3595 		ASSERT(tcps->tcps_g_q != NULL);
3596 		tcp->tcp_rq = tcps->tcps_g_q;
3597 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3598 
3599 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3600 			tcp_time_wait_append(tcp);
3601 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3602 			goto finish;
3603 		}
3604 
3605 		/*
3606 		 * If delta is zero the timer event wasn't executed and was
3607 		 * successfully canceled. In this case we need to restart it
3608 		 * with the minimal delta possible.
3609 		 */
3610 		if (delta >= 0) {
3611 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3612 			    delta ? delta : 1);
3613 		}
3614 	} else {
3615 		tcp_closei_local(tcp);
3616 		CONN_DEC_REF(tcp->tcp_connp);
3617 	}
3618 finish:
3619 	/* Signal closing thread that it can complete close */
3620 	mutex_enter(&tcp->tcp_closelock);
3621 	tcp->tcp_detached = B_TRUE;
3622 	ASSERT(tcps->tcps_g_q != NULL);
3623 
3624 	tcp->tcp_rq = tcps->tcps_g_q;
3625 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3626 
3627 	tcp->tcp_closed = 1;
3628 	cv_signal(&tcp->tcp_closecv);
3629 	mutex_exit(&tcp->tcp_closelock);
3630 }
3631 
3632 /*
3633  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3634  * expires.
3635  */
3636 static void
3637 tcp_close_linger_timeout(void *arg)
3638 {
3639 	conn_t	*connp = (conn_t *)arg;
3640 	tcp_t 	*tcp = connp->conn_tcp;
3641 
3642 	tcp->tcp_client_errno = ETIMEDOUT;
3643 	tcp_stop_lingering(tcp);
3644 }
3645 
3646 static void
3647 tcp_close_common(conn_t *connp, int flags)
3648 {
3649 	tcp_t		*tcp = connp->conn_tcp;
3650 	mblk_t 		*mp = &tcp->tcp_closemp;
3651 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3652 	mblk_t		*bp;
3653 
3654 	ASSERT(connp->conn_ref >= 2);
3655 
3656 	/*
3657 	 * Mark the conn as closing. ill_pending_mp_add will not
3658 	 * add any mp to the pending mp list, after this conn has
3659 	 * started closing. Same for sq_pending_mp_add
3660 	 */
3661 	mutex_enter(&connp->conn_lock);
3662 	connp->conn_state_flags |= CONN_CLOSING;
3663 	if (connp->conn_oper_pending_ill != NULL)
3664 		conn_ioctl_cleanup_reqd = B_TRUE;
3665 	CONN_INC_REF_LOCKED(connp);
3666 	mutex_exit(&connp->conn_lock);
3667 	tcp->tcp_closeflags = (uint8_t)flags;
3668 	ASSERT(connp->conn_ref >= 3);
3669 
3670 	/*
3671 	 * tcp_closemp_used is used below without any protection of a lock
3672 	 * as we don't expect any one else to use it concurrently at this
3673 	 * point otherwise it would be a major defect.
3674 	 */
3675 
3676 	if (mp->b_prev == NULL)
3677 		tcp->tcp_closemp_used = B_TRUE;
3678 	else
3679 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3680 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3681 
3682 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3683 
3684 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3685 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3686 
3687 	mutex_enter(&tcp->tcp_closelock);
3688 	while (!tcp->tcp_closed) {
3689 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3690 			/*
3691 			 * The cv_wait_sig() was interrupted. We now do the
3692 			 * following:
3693 			 *
3694 			 * 1) If the endpoint was lingering, we allow this
3695 			 * to be interrupted by cancelling the linger timeout
3696 			 * and closing normally.
3697 			 *
3698 			 * 2) Revert to calling cv_wait()
3699 			 *
3700 			 * We revert to using cv_wait() to avoid an
3701 			 * infinite loop which can occur if the calling
3702 			 * thread is higher priority than the squeue worker
3703 			 * thread and is bound to the same cpu.
3704 			 */
3705 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3706 				mutex_exit(&tcp->tcp_closelock);
3707 				/* Entering squeue, bump ref count. */
3708 				CONN_INC_REF(connp);
3709 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3710 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3711 				    tcp_linger_interrupted, connp,
3712 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3713 				mutex_enter(&tcp->tcp_closelock);
3714 			}
3715 			break;
3716 		}
3717 	}
3718 	while (!tcp->tcp_closed)
3719 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3720 	mutex_exit(&tcp->tcp_closelock);
3721 
3722 	/*
3723 	 * In the case of listener streams that have eagers in the q or q0
3724 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3725 	 * tcp_wq of the eagers point to our queues. By waiting for the
3726 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3727 	 * up their queue pointers and also dropped their references to us.
3728 	 */
3729 	if (tcp->tcp_wait_for_eagers) {
3730 		mutex_enter(&connp->conn_lock);
3731 		while (connp->conn_ref != 1) {
3732 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3733 		}
3734 		mutex_exit(&connp->conn_lock);
3735 	}
3736 	/*
3737 	 * ioctl cleanup. The mp is queued in the
3738 	 * ill_pending_mp or in the sq_pending_mp.
3739 	 */
3740 	if (conn_ioctl_cleanup_reqd)
3741 		conn_ioctl_cleanup(connp);
3742 
3743 	tcp->tcp_cpid = -1;
3744 }
3745 
3746 static int
3747 tcp_tpi_close(queue_t *q, int flags)
3748 {
3749 	conn_t		*connp;
3750 
3751 	ASSERT(WR(q)->q_next == NULL);
3752 
3753 	if (flags & SO_FALLBACK) {
3754 		/*
3755 		 * stream is being closed while in fallback
3756 		 * simply free the resources that were allocated
3757 		 */
3758 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3759 		qprocsoff(q);
3760 		goto done;
3761 	}
3762 
3763 	connp = Q_TO_CONN(q);
3764 	/*
3765 	 * We are being closed as /dev/tcp or /dev/tcp6.
3766 	 */
3767 	tcp_close_common(connp, flags);
3768 
3769 	qprocsoff(q);
3770 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3771 
3772 	/*
3773 	 * Drop IP's reference on the conn. This is the last reference
3774 	 * on the connp if the state was less than established. If the
3775 	 * connection has gone into timewait state, then we will have
3776 	 * one ref for the TCP and one more ref (total of two) for the
3777 	 * classifier connected hash list (a timewait connections stays
3778 	 * in connected hash till closed).
3779 	 *
3780 	 * We can't assert the references because there might be other
3781 	 * transient reference places because of some walkers or queued
3782 	 * packets in squeue for the timewait state.
3783 	 */
3784 	CONN_DEC_REF(connp);
3785 done:
3786 	q->q_ptr = WR(q)->q_ptr = NULL;
3787 	return (0);
3788 }
3789 
3790 static int
3791 tcp_tpi_close_accept(queue_t *q)
3792 {
3793 	vmem_t	*minor_arena;
3794 	dev_t	conn_dev;
3795 
3796 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3797 
3798 	/*
3799 	 * We had opened an acceptor STREAM for sockfs which is
3800 	 * now being closed due to some error.
3801 	 */
3802 	qprocsoff(q);
3803 
3804 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3805 	conn_dev = (dev_t)RD(q)->q_ptr;
3806 	ASSERT(minor_arena != NULL);
3807 	ASSERT(conn_dev != 0);
3808 	inet_minor_free(minor_arena, conn_dev);
3809 	q->q_ptr = WR(q)->q_ptr = NULL;
3810 	return (0);
3811 }
3812 
3813 /*
3814  * Called by tcp_close() routine via squeue when lingering is
3815  * interrupted by a signal.
3816  */
3817 
3818 /* ARGSUSED */
3819 static void
3820 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3821 {
3822 	conn_t	*connp = (conn_t *)arg;
3823 	tcp_t	*tcp = connp->conn_tcp;
3824 
3825 	freeb(mp);
3826 	if (tcp->tcp_linger_tid != 0 &&
3827 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3828 		tcp_stop_lingering(tcp);
3829 		tcp->tcp_client_errno = EINTR;
3830 	}
3831 }
3832 
3833 /*
3834  * Called by streams close routine via squeues when our client blows off her
3835  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3836  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3837  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3838  * acked.
3839  *
3840  * NOTE: tcp_close potentially returns error when lingering.
3841  * However, the stream head currently does not pass these errors
3842  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3843  * errors to the application (from tsleep()) and not errors
3844  * like ECONNRESET caused by receiving a reset packet.
3845  */
3846 
3847 /* ARGSUSED */
3848 static void
3849 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3850 {
3851 	char	*msg;
3852 	conn_t	*connp = (conn_t *)arg;
3853 	tcp_t	*tcp = connp->conn_tcp;
3854 	clock_t	delta = 0;
3855 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3856 
3857 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3858 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3859 
3860 	mutex_enter(&tcp->tcp_eager_lock);
3861 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3862 		/* Cleanup for listener */
3863 		tcp_eager_cleanup(tcp, 0);
3864 		tcp->tcp_wait_for_eagers = 1;
3865 	}
3866 	mutex_exit(&tcp->tcp_eager_lock);
3867 
3868 	connp->conn_mdt_ok = B_FALSE;
3869 	tcp->tcp_mdt = B_FALSE;
3870 
3871 	connp->conn_lso_ok = B_FALSE;
3872 	tcp->tcp_lso = B_FALSE;
3873 
3874 	msg = NULL;
3875 	switch (tcp->tcp_state) {
3876 	case TCPS_CLOSED:
3877 	case TCPS_IDLE:
3878 	case TCPS_BOUND:
3879 	case TCPS_LISTEN:
3880 		break;
3881 	case TCPS_SYN_SENT:
3882 		msg = "tcp_close, during connect";
3883 		break;
3884 	case TCPS_SYN_RCVD:
3885 		/*
3886 		 * Close during the connect 3-way handshake
3887 		 * but here there may or may not be pending data
3888 		 * already on queue. Process almost same as in
3889 		 * the ESTABLISHED state.
3890 		 */
3891 		/* FALLTHRU */
3892 	default:
3893 		if (tcp->tcp_sodirect != NULL) {
3894 			/* Ok, no more sodirect */
3895 			tcp->tcp_sodirect = NULL;
3896 		}
3897 
3898 		if (tcp->tcp_fused)
3899 			tcp_unfuse(tcp);
3900 
3901 		/*
3902 		 * If SO_LINGER has set a zero linger time, abort the
3903 		 * connection with a reset.
3904 		 */
3905 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3906 			msg = "tcp_close, zero lingertime";
3907 			break;
3908 		}
3909 
3910 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3911 		/*
3912 		 * Abort connection if there is unread data queued.
3913 		 */
3914 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3915 			msg = "tcp_close, unread data";
3916 			break;
3917 		}
3918 		/*
3919 		 * tcp_hard_bound is now cleared thus all packets go through
3920 		 * tcp_lookup. This fact is used by tcp_detach below.
3921 		 *
3922 		 * We have done a qwait() above which could have possibly
3923 		 * drained more messages in turn causing transition to a
3924 		 * different state. Check whether we have to do the rest
3925 		 * of the processing or not.
3926 		 */
3927 		if (tcp->tcp_state <= TCPS_LISTEN)
3928 			break;
3929 
3930 		/*
3931 		 * Transmit the FIN before detaching the tcp_t.
3932 		 * After tcp_detach returns this queue/perimeter
3933 		 * no longer owns the tcp_t thus others can modify it.
3934 		 */
3935 		(void) tcp_xmit_end(tcp);
3936 
3937 		/*
3938 		 * If lingering on close then wait until the fin is acked,
3939 		 * the SO_LINGER time passes, or a reset is sent/received.
3940 		 */
3941 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3942 		    !(tcp->tcp_fin_acked) &&
3943 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3944 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3945 				tcp->tcp_client_errno = EWOULDBLOCK;
3946 			} else if (tcp->tcp_client_errno == 0) {
3947 
3948 				ASSERT(tcp->tcp_linger_tid == 0);
3949 
3950 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3951 				    tcp_close_linger_timeout,
3952 				    tcp->tcp_lingertime * hz);
3953 
3954 				/* tcp_close_linger_timeout will finish close */
3955 				if (tcp->tcp_linger_tid == 0)
3956 					tcp->tcp_client_errno = ENOSR;
3957 				else
3958 					return;
3959 			}
3960 
3961 			/*
3962 			 * Check if we need to detach or just close
3963 			 * the instance.
3964 			 */
3965 			if (tcp->tcp_state <= TCPS_LISTEN)
3966 				break;
3967 		}
3968 
3969 		/*
3970 		 * Make sure that no other thread will access the tcp_rq of
3971 		 * this instance (through lookups etc.) as tcp_rq will go
3972 		 * away shortly.
3973 		 */
3974 		tcp_acceptor_hash_remove(tcp);
3975 
3976 		mutex_enter(&tcp->tcp_non_sq_lock);
3977 		if (tcp->tcp_flow_stopped) {
3978 			tcp_clrqfull(tcp);
3979 		}
3980 		mutex_exit(&tcp->tcp_non_sq_lock);
3981 
3982 		if (tcp->tcp_timer_tid != 0) {
3983 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3984 			tcp->tcp_timer_tid = 0;
3985 		}
3986 		/*
3987 		 * Need to cancel those timers which will not be used when
3988 		 * TCP is detached.  This has to be done before the tcp_wq
3989 		 * is set to the global queue.
3990 		 */
3991 		tcp_timers_stop(tcp);
3992 
3993 		tcp->tcp_detached = B_TRUE;
3994 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3995 			tcp_time_wait_append(tcp);
3996 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3997 			ASSERT(connp->conn_ref >= 3);
3998 			goto finish;
3999 		}
4000 
4001 		/*
4002 		 * If delta is zero the timer event wasn't executed and was
4003 		 * successfully canceled. In this case we need to restart it
4004 		 * with the minimal delta possible.
4005 		 */
4006 		if (delta >= 0)
4007 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4008 			    delta ? delta : 1);
4009 
4010 		ASSERT(connp->conn_ref >= 3);
4011 		goto finish;
4012 	}
4013 
4014 	/* Detach did not complete. Still need to remove q from stream. */
4015 	if (msg) {
4016 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4017 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4018 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4019 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4020 		    tcp->tcp_state == TCPS_SYN_RCVD)
4021 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4022 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4023 	}
4024 
4025 	tcp_closei_local(tcp);
4026 	CONN_DEC_REF(connp);
4027 	ASSERT(connp->conn_ref >= 2);
4028 
4029 finish:
4030 	/*
4031 	 * Although packets are always processed on the correct
4032 	 * tcp's perimeter and access is serialized via squeue's,
4033 	 * IP still needs a queue when sending packets in time_wait
4034 	 * state so use WR(tcps_g_q) till ip_output() can be
4035 	 * changed to deal with just connp. For read side, we
4036 	 * could have set tcp_rq to NULL but there are some cases
4037 	 * in tcp_rput_data() from early days of this code which
4038 	 * do a putnext without checking if tcp is closed. Those
4039 	 * need to be identified before both tcp_rq and tcp_wq
4040 	 * can be set to NULL and tcps_g_q can disappear forever.
4041 	 */
4042 	mutex_enter(&tcp->tcp_closelock);
4043 	/*
4044 	 * Don't change the queues in the case of a listener that has
4045 	 * eagers in its q or q0. It could surprise the eagers.
4046 	 * Instead wait for the eagers outside the squeue.
4047 	 */
4048 	if (!tcp->tcp_wait_for_eagers) {
4049 		tcp->tcp_detached = B_TRUE;
4050 		/*
4051 		 * When default queue is closing we set tcps_g_q to NULL
4052 		 * after the close is done.
4053 		 */
4054 		ASSERT(tcps->tcps_g_q != NULL);
4055 		tcp->tcp_rq = tcps->tcps_g_q;
4056 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4057 	}
4058 
4059 	/* Signal tcp_close() to finish closing. */
4060 	tcp->tcp_closed = 1;
4061 	cv_signal(&tcp->tcp_closecv);
4062 	mutex_exit(&tcp->tcp_closelock);
4063 }
4064 
4065 /*
4066  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4067  * Some stream heads get upset if they see these later on as anything but NULL.
4068  */
4069 static void
4070 tcp_close_mpp(mblk_t **mpp)
4071 {
4072 	mblk_t	*mp;
4073 
4074 	if ((mp = *mpp) != NULL) {
4075 		do {
4076 			mp->b_next = NULL;
4077 			mp->b_prev = NULL;
4078 		} while ((mp = mp->b_cont) != NULL);
4079 
4080 		mp = *mpp;
4081 		*mpp = NULL;
4082 		freemsg(mp);
4083 	}
4084 }
4085 
4086 /* Do detached close. */
4087 static void
4088 tcp_close_detached(tcp_t *tcp)
4089 {
4090 	if (tcp->tcp_fused)
4091 		tcp_unfuse(tcp);
4092 
4093 	/*
4094 	 * Clustering code serializes TCP disconnect callbacks and
4095 	 * cluster tcp list walks by blocking a TCP disconnect callback
4096 	 * if a cluster tcp list walk is in progress. This ensures
4097 	 * accurate accounting of TCPs in the cluster code even though
4098 	 * the TCP list walk itself is not atomic.
4099 	 */
4100 	tcp_closei_local(tcp);
4101 	CONN_DEC_REF(tcp->tcp_connp);
4102 }
4103 
4104 /*
4105  * Stop all TCP timers, and free the timer mblks if requested.
4106  */
4107 void
4108 tcp_timers_stop(tcp_t *tcp)
4109 {
4110 	if (tcp->tcp_timer_tid != 0) {
4111 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4112 		tcp->tcp_timer_tid = 0;
4113 	}
4114 	if (tcp->tcp_ka_tid != 0) {
4115 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4116 		tcp->tcp_ka_tid = 0;
4117 	}
4118 	if (tcp->tcp_ack_tid != 0) {
4119 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4120 		tcp->tcp_ack_tid = 0;
4121 	}
4122 	if (tcp->tcp_push_tid != 0) {
4123 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4124 		tcp->tcp_push_tid = 0;
4125 	}
4126 }
4127 
4128 /*
4129  * The tcp_t is going away. Remove it from all lists and set it
4130  * to TCPS_CLOSED. The freeing up of memory is deferred until
4131  * tcp_inactive. This is needed since a thread in tcp_rput might have
4132  * done a CONN_INC_REF on this structure before it was removed from the
4133  * hashes.
4134  */
4135 static void
4136 tcp_closei_local(tcp_t *tcp)
4137 {
4138 	ire_t 	*ire;
4139 	conn_t	*connp = tcp->tcp_connp;
4140 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4141 
4142 	if (!TCP_IS_SOCKET(tcp))
4143 		tcp_acceptor_hash_remove(tcp);
4144 
4145 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4146 	tcp->tcp_ibsegs = 0;
4147 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4148 	tcp->tcp_obsegs = 0;
4149 
4150 	/*
4151 	 * If we are an eager connection hanging off a listener that
4152 	 * hasn't formally accepted the connection yet, get off his
4153 	 * list and blow off any data that we have accumulated.
4154 	 */
4155 	if (tcp->tcp_listener != NULL) {
4156 		tcp_t	*listener = tcp->tcp_listener;
4157 		mutex_enter(&listener->tcp_eager_lock);
4158 		/*
4159 		 * tcp_tconnind_started == B_TRUE means that the
4160 		 * conn_ind has already gone to listener. At
4161 		 * this point, eager will be closed but we
4162 		 * leave it in listeners eager list so that
4163 		 * if listener decides to close without doing
4164 		 * accept, we can clean this up. In tcp_wput_accept
4165 		 * we take care of the case of accept on closed
4166 		 * eager.
4167 		 */
4168 		if (!tcp->tcp_tconnind_started) {
4169 			tcp_eager_unlink(tcp);
4170 			mutex_exit(&listener->tcp_eager_lock);
4171 			/*
4172 			 * We don't want to have any pointers to the
4173 			 * listener queue, after we have released our
4174 			 * reference on the listener
4175 			 */
4176 			ASSERT(tcps->tcps_g_q != NULL);
4177 			tcp->tcp_rq = tcps->tcps_g_q;
4178 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4179 			CONN_DEC_REF(listener->tcp_connp);
4180 		} else {
4181 			mutex_exit(&listener->tcp_eager_lock);
4182 		}
4183 	}
4184 
4185 	/* Stop all the timers */
4186 	tcp_timers_stop(tcp);
4187 
4188 	if (tcp->tcp_state == TCPS_LISTEN) {
4189 		if (tcp->tcp_ip_addr_cache) {
4190 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4191 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4192 			tcp->tcp_ip_addr_cache = NULL;
4193 		}
4194 	}
4195 	mutex_enter(&tcp->tcp_non_sq_lock);
4196 	if (tcp->tcp_flow_stopped)
4197 		tcp_clrqfull(tcp);
4198 	mutex_exit(&tcp->tcp_non_sq_lock);
4199 
4200 	tcp_bind_hash_remove(tcp);
4201 	/*
4202 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4203 	 * is trying to remove this tcp from the time wait list, we will
4204 	 * block in tcp_time_wait_remove while trying to acquire the
4205 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4206 	 * requires the ipcl_hash_remove to be ordered after the
4207 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4208 	 */
4209 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4210 		(void) tcp_time_wait_remove(tcp, NULL);
4211 	CL_INET_DISCONNECT(connp, tcp);
4212 	ipcl_hash_remove(connp);
4213 
4214 	/*
4215 	 * Delete the cached ire in conn_ire_cache and also mark
4216 	 * the conn as CONDEMNED
4217 	 */
4218 	mutex_enter(&connp->conn_lock);
4219 	connp->conn_state_flags |= CONN_CONDEMNED;
4220 	ire = connp->conn_ire_cache;
4221 	connp->conn_ire_cache = NULL;
4222 	mutex_exit(&connp->conn_lock);
4223 	if (ire != NULL)
4224 		IRE_REFRELE_NOTR(ire);
4225 
4226 	/* Need to cleanup any pending ioctls */
4227 	ASSERT(tcp->tcp_time_wait_next == NULL);
4228 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4229 	ASSERT(tcp->tcp_time_wait_expire == 0);
4230 	tcp->tcp_state = TCPS_CLOSED;
4231 
4232 	/* Release any SSL context */
4233 	if (tcp->tcp_kssl_ent != NULL) {
4234 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4235 		tcp->tcp_kssl_ent = NULL;
4236 	}
4237 	if (tcp->tcp_kssl_ctx != NULL) {
4238 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4239 		tcp->tcp_kssl_ctx = NULL;
4240 	}
4241 	tcp->tcp_kssl_pending = B_FALSE;
4242 
4243 	tcp_ipsec_cleanup(tcp);
4244 }
4245 
4246 /*
4247  * tcp is dying (called from ipcl_conn_destroy and error cases).
4248  * Free the tcp_t in either case.
4249  */
4250 void
4251 tcp_free(tcp_t *tcp)
4252 {
4253 	mblk_t	*mp;
4254 	ip6_pkt_t	*ipp;
4255 
4256 	ASSERT(tcp != NULL);
4257 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4258 
4259 	tcp->tcp_rq = NULL;
4260 	tcp->tcp_wq = NULL;
4261 
4262 	tcp_close_mpp(&tcp->tcp_xmit_head);
4263 	tcp_close_mpp(&tcp->tcp_reass_head);
4264 	if (tcp->tcp_rcv_list != NULL) {
4265 		/* Free b_next chain */
4266 		tcp_close_mpp(&tcp->tcp_rcv_list);
4267 	}
4268 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4269 		freemsg(mp);
4270 	}
4271 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4272 		freemsg(mp);
4273 	}
4274 
4275 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4276 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4277 		freeb(tcp->tcp_fused_sigurg_mp);
4278 		tcp->tcp_fused_sigurg_mp = NULL;
4279 	}
4280 
4281 	if (tcp->tcp_ordrel_mp != NULL) {
4282 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4283 		freeb(tcp->tcp_ordrel_mp);
4284 		tcp->tcp_ordrel_mp = NULL;
4285 	}
4286 
4287 	if (tcp->tcp_sack_info != NULL) {
4288 		if (tcp->tcp_notsack_list != NULL) {
4289 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4290 		}
4291 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4292 	}
4293 
4294 	if (tcp->tcp_hopopts != NULL) {
4295 		mi_free(tcp->tcp_hopopts);
4296 		tcp->tcp_hopopts = NULL;
4297 		tcp->tcp_hopoptslen = 0;
4298 	}
4299 	ASSERT(tcp->tcp_hopoptslen == 0);
4300 	if (tcp->tcp_dstopts != NULL) {
4301 		mi_free(tcp->tcp_dstopts);
4302 		tcp->tcp_dstopts = NULL;
4303 		tcp->tcp_dstoptslen = 0;
4304 	}
4305 	ASSERT(tcp->tcp_dstoptslen == 0);
4306 	if (tcp->tcp_rtdstopts != NULL) {
4307 		mi_free(tcp->tcp_rtdstopts);
4308 		tcp->tcp_rtdstopts = NULL;
4309 		tcp->tcp_rtdstoptslen = 0;
4310 	}
4311 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4312 	if (tcp->tcp_rthdr != NULL) {
4313 		mi_free(tcp->tcp_rthdr);
4314 		tcp->tcp_rthdr = NULL;
4315 		tcp->tcp_rthdrlen = 0;
4316 	}
4317 	ASSERT(tcp->tcp_rthdrlen == 0);
4318 
4319 	ipp = &tcp->tcp_sticky_ipp;
4320 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4321 	    IPPF_RTHDR))
4322 		ip6_pkt_free(ipp);
4323 
4324 	/*
4325 	 * Free memory associated with the tcp/ip header template.
4326 	 */
4327 
4328 	if (tcp->tcp_iphc != NULL)
4329 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4330 
4331 	/*
4332 	 * Following is really a blowing away a union.
4333 	 * It happens to have exactly two members of identical size
4334 	 * the following code is enough.
4335 	 */
4336 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4337 }
4338 
4339 
4340 /*
4341  * Put a connection confirmation message upstream built from the
4342  * address information within 'iph' and 'tcph'.  Report our success or failure.
4343  */
4344 static boolean_t
4345 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4346     mblk_t **defermp)
4347 {
4348 	sin_t	sin;
4349 	sin6_t	sin6;
4350 	mblk_t	*mp;
4351 	char	*optp = NULL;
4352 	int	optlen = 0;
4353 
4354 	if (defermp != NULL)
4355 		*defermp = NULL;
4356 
4357 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4358 		/*
4359 		 * Return in T_CONN_CON results of option negotiation through
4360 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4361 		 * negotiation, then what is received from remote end needs
4362 		 * to be taken into account but there is no such thing (yet?)
4363 		 * in our TCP/IP.
4364 		 * Note: We do not use mi_offset_param() here as
4365 		 * tcp_opts_conn_req contents do not directly come from
4366 		 * an application and are either generated in kernel or
4367 		 * from user input that was already verified.
4368 		 */
4369 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4370 		optp = (char *)(mp->b_rptr +
4371 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4372 		optlen = (int)
4373 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4374 	}
4375 
4376 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4377 		ipha_t *ipha = (ipha_t *)iphdr;
4378 
4379 		/* packet is IPv4 */
4380 		if (tcp->tcp_family == AF_INET) {
4381 			sin = sin_null;
4382 			sin.sin_addr.s_addr = ipha->ipha_src;
4383 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4384 			sin.sin_family = AF_INET;
4385 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4386 			    (int)sizeof (sin_t), optp, optlen);
4387 		} else {
4388 			sin6 = sin6_null;
4389 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4390 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4391 			sin6.sin6_family = AF_INET6;
4392 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4393 			    (int)sizeof (sin6_t), optp, optlen);
4394 
4395 		}
4396 	} else {
4397 		ip6_t	*ip6h = (ip6_t *)iphdr;
4398 
4399 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4400 		ASSERT(tcp->tcp_family == AF_INET6);
4401 		sin6 = sin6_null;
4402 		sin6.sin6_addr = ip6h->ip6_src;
4403 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4404 		sin6.sin6_family = AF_INET6;
4405 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4406 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4407 		    (int)sizeof (sin6_t), optp, optlen);
4408 	}
4409 
4410 	if (!mp)
4411 		return (B_FALSE);
4412 
4413 	mblk_copycred(mp, idmp);
4414 
4415 	if (defermp == NULL) {
4416 		conn_t *connp = tcp->tcp_connp;
4417 		if (IPCL_IS_NONSTR(connp)) {
4418 			cred_t *cr;
4419 			pid_t cpid;
4420 
4421 			cr = msg_getcred(mp, &cpid);
4422 			(*connp->conn_upcalls->su_connected)
4423 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4424 			    cpid);
4425 			freemsg(mp);
4426 		} else {
4427 			putnext(tcp->tcp_rq, mp);
4428 		}
4429 	} else {
4430 		*defermp = mp;
4431 	}
4432 
4433 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4434 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4435 	return (B_TRUE);
4436 }
4437 
4438 /*
4439  * Defense for the SYN attack -
4440  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4441  *    one from the list of droppable eagers. This list is a subset of q0.
4442  *    see comments before the definition of MAKE_DROPPABLE().
4443  * 2. Don't drop a SYN request before its first timeout. This gives every
4444  *    request at least til the first timeout to complete its 3-way handshake.
4445  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4446  *    requests currently on the queue that has timed out. This will be used
4447  *    as an indicator of whether an attack is under way, so that appropriate
4448  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4449  *    either when eager goes into ESTABLISHED, or gets freed up.)
4450  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4451  *    # of timeout drops back to <= q0len/32 => SYN alert off
4452  */
4453 static boolean_t
4454 tcp_drop_q0(tcp_t *tcp)
4455 {
4456 	tcp_t	*eager;
4457 	mblk_t	*mp;
4458 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4459 
4460 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4461 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4462 
4463 	/* Pick oldest eager from the list of droppable eagers */
4464 	eager = tcp->tcp_eager_prev_drop_q0;
4465 
4466 	/* If list is empty. return B_FALSE */
4467 	if (eager == tcp) {
4468 		return (B_FALSE);
4469 	}
4470 
4471 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4472 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4473 		return (B_FALSE);
4474 
4475 	/*
4476 	 * Take this eager out from the list of droppable eagers since we are
4477 	 * going to drop it.
4478 	 */
4479 	MAKE_UNDROPPABLE(eager);
4480 
4481 	if (tcp->tcp_debug) {
4482 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4483 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4484 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4485 		    tcp->tcp_conn_req_cnt_q0,
4486 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4487 	}
4488 
4489 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4490 
4491 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4492 	CONN_INC_REF(eager->tcp_connp);
4493 
4494 	/* Mark the IRE created for this SYN request temporary */
4495 	tcp_ip_ire_mark_advice(eager);
4496 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4497 	    tcp_clean_death_wrapper, eager->tcp_connp,
4498 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4499 
4500 	return (B_TRUE);
4501 }
4502 
4503 int
4504 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4505     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4506 {
4507 	tcp_t 		*ltcp = lconnp->conn_tcp;
4508 	tcp_t		*tcp = connp->conn_tcp;
4509 	mblk_t		*tpi_mp;
4510 	ipha_t		*ipha;
4511 	ip6_t		*ip6h;
4512 	sin6_t 		sin6;
4513 	in6_addr_t 	v6dst;
4514 	int		err;
4515 	int		ifindex = 0;
4516 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4517 
4518 	if (ipvers == IPV4_VERSION) {
4519 		ipha = (ipha_t *)mp->b_rptr;
4520 
4521 		connp->conn_send = ip_output;
4522 		connp->conn_recv = tcp_input;
4523 
4524 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4525 		    &connp->conn_bound_source_v6);
4526 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4527 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4528 
4529 		sin6 = sin6_null;
4530 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4531 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4532 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4533 		sin6.sin6_family = AF_INET6;
4534 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4535 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4536 		if (tcp->tcp_recvdstaddr) {
4537 			sin6_t	sin6d;
4538 
4539 			sin6d = sin6_null;
4540 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4541 			    &sin6d.sin6_addr);
4542 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4543 			sin6d.sin6_family = AF_INET;
4544 			tpi_mp = mi_tpi_extconn_ind(NULL,
4545 			    (char *)&sin6d, sizeof (sin6_t),
4546 			    (char *)&tcp,
4547 			    (t_scalar_t)sizeof (intptr_t),
4548 			    (char *)&sin6d, sizeof (sin6_t),
4549 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4550 		} else {
4551 			tpi_mp = mi_tpi_conn_ind(NULL,
4552 			    (char *)&sin6, sizeof (sin6_t),
4553 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4554 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4555 		}
4556 	} else {
4557 		ip6h = (ip6_t *)mp->b_rptr;
4558 
4559 		connp->conn_send = ip_output_v6;
4560 		connp->conn_recv = tcp_input;
4561 
4562 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4563 		connp->conn_srcv6 = ip6h->ip6_dst;
4564 		connp->conn_remv6 = ip6h->ip6_src;
4565 
4566 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4567 		ifindex = (int)DB_CKSUMSTUFF(mp);
4568 		DB_CKSUMSTUFF(mp) = 0;
4569 
4570 		sin6 = sin6_null;
4571 		sin6.sin6_addr = ip6h->ip6_src;
4572 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4573 		sin6.sin6_family = AF_INET6;
4574 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4575 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4576 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4577 
4578 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4579 			/* Pass up the scope_id of remote addr */
4580 			sin6.sin6_scope_id = ifindex;
4581 		} else {
4582 			sin6.sin6_scope_id = 0;
4583 		}
4584 		if (tcp->tcp_recvdstaddr) {
4585 			sin6_t	sin6d;
4586 
4587 			sin6d = sin6_null;
4588 			sin6.sin6_addr = ip6h->ip6_dst;
4589 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4590 			sin6d.sin6_family = AF_INET;
4591 			tpi_mp = mi_tpi_extconn_ind(NULL,
4592 			    (char *)&sin6d, sizeof (sin6_t),
4593 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4594 			    (char *)&sin6d, sizeof (sin6_t),
4595 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4596 		} else {
4597 			tpi_mp = mi_tpi_conn_ind(NULL,
4598 			    (char *)&sin6, sizeof (sin6_t),
4599 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4600 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4601 		}
4602 	}
4603 
4604 	if (tpi_mp == NULL)
4605 		return (ENOMEM);
4606 
4607 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4608 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4609 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4610 	connp->conn_fully_bound = B_FALSE;
4611 
4612 	/* Inherit information from the "parent" */
4613 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4614 	tcp->tcp_family = ltcp->tcp_family;
4615 
4616 	tcp->tcp_wq = ltcp->tcp_wq;
4617 	tcp->tcp_rq = ltcp->tcp_rq;
4618 
4619 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4620 	tcp->tcp_detached = B_TRUE;
4621 	SOCK_CONNID_INIT(tcp->tcp_connid);
4622 	if ((err = tcp_init_values(tcp)) != 0) {
4623 		freemsg(tpi_mp);
4624 		return (err);
4625 	}
4626 
4627 	if (ipvers == IPV4_VERSION) {
4628 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4629 			freemsg(tpi_mp);
4630 			return (err);
4631 		}
4632 		ASSERT(tcp->tcp_ipha != NULL);
4633 	} else {
4634 		/* ifindex must be already set */
4635 		ASSERT(ifindex != 0);
4636 
4637 		if (ltcp->tcp_bound_if != 0)
4638 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4639 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4640 			tcp->tcp_bound_if = ifindex;
4641 
4642 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4643 		tcp->tcp_recvifindex = 0;
4644 		tcp->tcp_recvhops = 0xffffffffU;
4645 		ASSERT(tcp->tcp_ip6h != NULL);
4646 	}
4647 
4648 	tcp->tcp_lport = ltcp->tcp_lport;
4649 
4650 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4651 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4652 			/*
4653 			 * Listener had options of some sort; eager inherits.
4654 			 * Free up the eager template and allocate one
4655 			 * of the right size.
4656 			 */
4657 			if (tcp->tcp_hdr_grown) {
4658 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4659 			} else {
4660 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4661 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4662 			}
4663 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4664 			    KM_NOSLEEP);
4665 			if (tcp->tcp_iphc == NULL) {
4666 				tcp->tcp_iphc_len = 0;
4667 				freemsg(tpi_mp);
4668 				return (ENOMEM);
4669 			}
4670 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4671 			tcp->tcp_hdr_grown = B_TRUE;
4672 		}
4673 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4674 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4675 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4676 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4677 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4678 
4679 		/*
4680 		 * Copy the IP+TCP header template from listener to eager
4681 		 */
4682 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4683 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4684 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4685 			    IPPROTO_RAW) {
4686 				tcp->tcp_ip6h =
4687 				    (ip6_t *)(tcp->tcp_iphc +
4688 				    sizeof (ip6i_t));
4689 			} else {
4690 				tcp->tcp_ip6h =
4691 				    (ip6_t *)(tcp->tcp_iphc);
4692 			}
4693 			tcp->tcp_ipha = NULL;
4694 		} else {
4695 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4696 			tcp->tcp_ip6h = NULL;
4697 		}
4698 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4699 		    tcp->tcp_ip_hdr_len);
4700 	} else {
4701 		/*
4702 		 * only valid case when ipversion of listener and
4703 		 * eager differ is when listener is IPv6 and
4704 		 * eager is IPv4.
4705 		 * Eager header template has been initialized to the
4706 		 * maximum v4 header sizes, which includes space for
4707 		 * TCP and IP options.
4708 		 */
4709 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4710 		    (tcp->tcp_ipversion == IPV4_VERSION));
4711 		ASSERT(tcp->tcp_iphc_len >=
4712 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4713 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4714 		/* copy IP header fields individually */
4715 		tcp->tcp_ipha->ipha_ttl =
4716 		    ltcp->tcp_ip6h->ip6_hops;
4717 		bcopy(ltcp->tcp_tcph->th_lport,
4718 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4719 	}
4720 
4721 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4722 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4723 	    sizeof (in_port_t));
4724 
4725 	if (ltcp->tcp_lport == 0) {
4726 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4727 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4728 		    sizeof (in_port_t));
4729 	}
4730 
4731 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4732 		ASSERT(ipha != NULL);
4733 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4734 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4735 
4736 		/* Source routing option copyover (reverse it) */
4737 		if (tcps->tcps_rev_src_routes)
4738 			tcp_opt_reverse(tcp, ipha);
4739 	} else {
4740 		ASSERT(ip6h != NULL);
4741 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4742 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4743 	}
4744 
4745 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4746 	ASSERT(!tcp->tcp_tconnind_started);
4747 	/*
4748 	 * If the SYN contains a credential, it's a loopback packet; attach
4749 	 * the credential to the TPI message.
4750 	 */
4751 	mblk_copycred(tpi_mp, idmp);
4752 
4753 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4754 
4755 	/* Inherit the listener's SSL protection state */
4756 
4757 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4758 		kssl_hold_ent(tcp->tcp_kssl_ent);
4759 		tcp->tcp_kssl_pending = B_TRUE;
4760 	}
4761 
4762 	/* Inherit the listener's non-STREAMS flag */
4763 	if (IPCL_IS_NONSTR(lconnp)) {
4764 		connp->conn_flags |= IPCL_NONSTR;
4765 	}
4766 
4767 	return (0);
4768 }
4769 
4770 
4771 int
4772 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4773     tcph_t *tcph, mblk_t *idmp)
4774 {
4775 	tcp_t 		*ltcp = lconnp->conn_tcp;
4776 	tcp_t		*tcp = connp->conn_tcp;
4777 	sin_t		sin;
4778 	mblk_t		*tpi_mp = NULL;
4779 	int		err;
4780 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4781 
4782 	sin = sin_null;
4783 	sin.sin_addr.s_addr = ipha->ipha_src;
4784 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4785 	sin.sin_family = AF_INET;
4786 	if (ltcp->tcp_recvdstaddr) {
4787 		sin_t	sind;
4788 
4789 		sind = sin_null;
4790 		sind.sin_addr.s_addr = ipha->ipha_dst;
4791 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4792 		sind.sin_family = AF_INET;
4793 		tpi_mp = mi_tpi_extconn_ind(NULL,
4794 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4795 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4796 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4797 	} else {
4798 		tpi_mp = mi_tpi_conn_ind(NULL,
4799 		    (char *)&sin, sizeof (sin_t),
4800 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4801 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4802 	}
4803 
4804 	if (tpi_mp == NULL) {
4805 		return (ENOMEM);
4806 	}
4807 
4808 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4809 	connp->conn_send = ip_output;
4810 	connp->conn_recv = tcp_input;
4811 	connp->conn_fully_bound = B_FALSE;
4812 
4813 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4814 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4815 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4816 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4817 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4818 
4819 	/* Inherit information from the "parent" */
4820 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4821 	tcp->tcp_family = ltcp->tcp_family;
4822 	tcp->tcp_wq = ltcp->tcp_wq;
4823 	tcp->tcp_rq = ltcp->tcp_rq;
4824 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4825 	tcp->tcp_detached = B_TRUE;
4826 	SOCK_CONNID_INIT(tcp->tcp_connid);
4827 	if ((err = tcp_init_values(tcp)) != 0) {
4828 		freemsg(tpi_mp);
4829 		return (err);
4830 	}
4831 
4832 	/*
4833 	 * Let's make sure that eager tcp template has enough space to
4834 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4835 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4836 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4837 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4838 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4839 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4840 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4841 	 */
4842 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4843 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4844 
4845 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4846 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4847 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4848 	tcp->tcp_ttl = ltcp->tcp_ttl;
4849 	tcp->tcp_tos = ltcp->tcp_tos;
4850 
4851 	/* Copy the IP+TCP header template from listener to eager */
4852 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4853 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4854 	tcp->tcp_ip6h = NULL;
4855 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4856 	    tcp->tcp_ip_hdr_len);
4857 
4858 	/* Initialize the IP addresses and Ports */
4859 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4860 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4861 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4862 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4863 
4864 	/* Source routing option copyover (reverse it) */
4865 	if (tcps->tcps_rev_src_routes)
4866 		tcp_opt_reverse(tcp, ipha);
4867 
4868 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4869 	ASSERT(!tcp->tcp_tconnind_started);
4870 
4871 	/*
4872 	 * If the SYN contains a credential, it's a loopback packet; attach
4873 	 * the credential to the TPI message.
4874 	 */
4875 	mblk_copycred(tpi_mp, idmp);
4876 
4877 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4878 
4879 	/* Inherit the listener's SSL protection state */
4880 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4881 		kssl_hold_ent(tcp->tcp_kssl_ent);
4882 		tcp->tcp_kssl_pending = B_TRUE;
4883 	}
4884 
4885 	/* Inherit the listener's non-STREAMS flag */
4886 	if (IPCL_IS_NONSTR(lconnp)) {
4887 		connp->conn_flags |= IPCL_NONSTR;
4888 	}
4889 
4890 	return (0);
4891 }
4892 
4893 /*
4894  * sets up conn for ipsec.
4895  * if the first mblk is M_CTL it is consumed and mpp is updated.
4896  * in case of error mpp is freed.
4897  */
4898 conn_t *
4899 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp,
4900     boolean_t is_streams)
4901 {
4902 	conn_t 		*connp = tcp->tcp_connp;
4903 	conn_t 		*econnp;
4904 	squeue_t 	*new_sqp;
4905 	mblk_t 		*first_mp = *mpp;
4906 	mblk_t		*mp = *mpp;
4907 	boolean_t	mctl_present = B_FALSE;
4908 	uint_t		ipvers;
4909 
4910 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps, is_streams);
4911 	if (econnp == NULL) {
4912 		freemsg(first_mp);
4913 		return (NULL);
4914 	}
4915 	if (DB_TYPE(mp) == M_CTL) {
4916 		if (mp->b_cont == NULL ||
4917 		    mp->b_cont->b_datap->db_type != M_DATA) {
4918 			freemsg(first_mp);
4919 			return (NULL);
4920 		}
4921 		mp = mp->b_cont;
4922 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4923 			freemsg(first_mp);
4924 			return (NULL);
4925 		}
4926 
4927 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4928 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4929 		mctl_present = B_TRUE;
4930 	} else {
4931 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4932 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4933 	}
4934 
4935 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4936 	DB_CKSUMSTART(mp) = 0;
4937 
4938 	ASSERT(OK_32PTR(mp->b_rptr));
4939 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4940 	if (ipvers == IPV4_VERSION) {
4941 		uint16_t  	*up;
4942 		uint32_t	ports;
4943 		ipha_t		*ipha;
4944 
4945 		ipha = (ipha_t *)mp->b_rptr;
4946 		up = (uint16_t *)((uchar_t *)ipha +
4947 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
4948 		ports = *(uint32_t *)up;
4949 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
4950 		    ipha->ipha_dst, ipha->ipha_src, ports);
4951 	} else {
4952 		uint16_t  	*up;
4953 		uint32_t	ports;
4954 		uint16_t	ip_hdr_len;
4955 		uint8_t		*nexthdrp;
4956 		ip6_t 		*ip6h;
4957 		tcph_t		*tcph;
4958 
4959 		ip6h = (ip6_t *)mp->b_rptr;
4960 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
4961 			ip_hdr_len = IPV6_HDR_LEN;
4962 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
4963 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
4964 			CONN_DEC_REF(econnp);
4965 			freemsg(first_mp);
4966 			return (NULL);
4967 		}
4968 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
4969 		up = (uint16_t *)tcph->th_lport;
4970 		ports = *(uint32_t *)up;
4971 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
4972 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
4973 	}
4974 
4975 	/*
4976 	 * The caller already ensured that there is a sqp present.
4977 	 */
4978 	econnp->conn_sqp = new_sqp;
4979 	econnp->conn_initial_sqp = new_sqp;
4980 
4981 	if (connp->conn_policy != NULL) {
4982 		ipsec_in_t *ii;
4983 		ii = (ipsec_in_t *)(first_mp->b_rptr);
4984 		ASSERT(ii->ipsec_in_policy == NULL);
4985 		IPPH_REFHOLD(connp->conn_policy);
4986 		ii->ipsec_in_policy = connp->conn_policy;
4987 
4988 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
4989 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
4990 			CONN_DEC_REF(econnp);
4991 			freemsg(first_mp);
4992 			return (NULL);
4993 		}
4994 	}
4995 
4996 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
4997 		CONN_DEC_REF(econnp);
4998 		freemsg(first_mp);
4999 		return (NULL);
5000 	}
5001 
5002 	/*
5003 	 * If we know we have some policy, pass the "IPSEC"
5004 	 * options size TCP uses this adjust the MSS.
5005 	 */
5006 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5007 	if (mctl_present) {
5008 		freeb(first_mp);
5009 		*mpp = mp;
5010 	}
5011 
5012 	return (econnp);
5013 }
5014 
5015 /*
5016  * tcp_get_conn/tcp_free_conn
5017  *
5018  * tcp_get_conn is used to get a clean tcp connection structure.
5019  * It tries to reuse the connections put on the freelist by the
5020  * time_wait_collector failing which it goes to kmem_cache. This
5021  * way has two benefits compared to just allocating from and
5022  * freeing to kmem_cache.
5023  * 1) The time_wait_collector can free (which includes the cleanup)
5024  * outside the squeue. So when the interrupt comes, we have a clean
5025  * connection sitting in the freelist. Obviously, this buys us
5026  * performance.
5027  *
5028  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5029  * has multiple disadvantages - tying up the squeue during alloc, and the
5030  * fact that IPSec policy initialization has to happen here which
5031  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5032  * But allocating the conn/tcp in IP land is also not the best since
5033  * we can't check the 'q' and 'q0' which are protected by squeue and
5034  * blindly allocate memory which might have to be freed here if we are
5035  * not allowed to accept the connection. By using the freelist and
5036  * putting the conn/tcp back in freelist, we don't pay a penalty for
5037  * allocating memory without checking 'q/q0' and freeing it if we can't
5038  * accept the connection.
5039  *
5040  * Care should be taken to put the conn back in the same squeue's freelist
5041  * from which it was allocated. Best results are obtained if conn is
5042  * allocated from listener's squeue and freed to the same. Time wait
5043  * collector will free up the freelist is the connection ends up sitting
5044  * there for too long.
5045  */
5046 void *
5047 tcp_get_conn(void *arg, tcp_stack_t *tcps, boolean_t is_streams)
5048 {
5049 	tcp_t			*tcp = NULL;
5050 	conn_t			*connp = NULL;
5051 	squeue_t		*sqp = (squeue_t *)arg;
5052 	tcp_squeue_priv_t 	*tcp_time_wait;
5053 	netstack_t		*ns;
5054 	mblk_t			*tcp_rsrv_mp = NULL;
5055 
5056 	tcp_time_wait =
5057 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5058 
5059 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5060 	tcp = tcp_time_wait->tcp_free_list;
5061 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5062 	if (tcp != NULL) {
5063 		if (is_streams && tcp->tcp_rsrv_mp == NULL) {
5064 			/*
5065 			 * Pre-allocate the tcp_rsrv_mp if neccessary.
5066 			 * This mblk will not be freed until this conn_t/tcp_t
5067 			 * is freed at ipcl_conn_destroy().
5068 			 */
5069 			if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5070 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5071 				return (NULL);
5072 			}
5073 			mutex_init(&tcp->tcp_rsrv_mp_lock,
5074 			    NULL, MUTEX_DEFAULT, NULL);
5075 		}
5076 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5077 		tcp_time_wait->tcp_free_list_cnt--;
5078 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5079 		tcp->tcp_time_wait_next = NULL;
5080 		connp = tcp->tcp_connp;
5081 		connp->conn_flags |= IPCL_REUSED;
5082 
5083 		ASSERT(tcp->tcp_tcps == NULL);
5084 		ASSERT(connp->conn_netstack == NULL);
5085 		ASSERT(!is_streams || tcp->tcp_rsrv_mp != NULL);
5086 		ns = tcps->tcps_netstack;
5087 		netstack_hold(ns);
5088 		connp->conn_netstack = ns;
5089 		tcp->tcp_tcps = tcps;
5090 		TCPS_REFHOLD(tcps);
5091 		ipcl_globalhash_insert(connp);
5092 		return ((void *)connp);
5093 	}
5094 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5095 	if (is_streams) {
5096 		/*
5097 		 * Pre-allocate the tcp_rsrv_mp if neccessary.
5098 		 * This mblk will not be freed until this conn_t/tcp_t
5099 		 * is freed at ipcl_conn_destroy().
5100 		 */
5101 		tcp_rsrv_mp = allocb(0, BPRI_HI);
5102 		if (tcp_rsrv_mp == NULL)
5103 			return (NULL);
5104 	}
5105 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5106 	    tcps->tcps_netstack)) == NULL) {
5107 		if (is_streams) {
5108 			ASSERT(tcp_rsrv_mp != NULL);
5109 			freeb(tcp_rsrv_mp);
5110 		}
5111 		return (NULL);
5112 	}
5113 
5114 	tcp = connp->conn_tcp;
5115 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
5116 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5117 
5118 	tcp->tcp_tcps = tcps;
5119 	TCPS_REFHOLD(tcps);
5120 
5121 	return ((void *)connp);
5122 }
5123 
5124 /*
5125  * Update the cached label for the given tcp_t.  This should be called once per
5126  * connection, and before any packets are sent or tcp_process_options is
5127  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5128  */
5129 static boolean_t
5130 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5131 {
5132 	conn_t *connp = tcp->tcp_connp;
5133 
5134 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5135 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5136 		int added;
5137 
5138 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5139 		    connp->conn_mac_exempt,
5140 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5141 			return (B_FALSE);
5142 
5143 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5144 		if (added == -1)
5145 			return (B_FALSE);
5146 		tcp->tcp_hdr_len += added;
5147 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5148 		tcp->tcp_ip_hdr_len += added;
5149 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5150 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5151 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5152 			    tcp->tcp_hdr_len);
5153 			if (added == -1)
5154 				return (B_FALSE);
5155 			tcp->tcp_hdr_len += added;
5156 			tcp->tcp_tcph = (tcph_t *)
5157 			    ((uchar_t *)tcp->tcp_tcph + added);
5158 			tcp->tcp_ip_hdr_len += added;
5159 		}
5160 	} else {
5161 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5162 
5163 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5164 		    connp->conn_mac_exempt,
5165 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5166 			return (B_FALSE);
5167 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5168 		    &tcp->tcp_label_len, optbuf) != 0)
5169 			return (B_FALSE);
5170 		if (tcp_build_hdrs(tcp) != 0)
5171 			return (B_FALSE);
5172 	}
5173 
5174 	connp->conn_ulp_labeled = 1;
5175 
5176 	return (B_TRUE);
5177 }
5178 
5179 /* BEGIN CSTYLED */
5180 /*
5181  *
5182  * The sockfs ACCEPT path:
5183  * =======================
5184  *
5185  * The eager is now established in its own perimeter as soon as SYN is
5186  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5187  * completes the accept processing on the acceptor STREAM. The sending
5188  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5189  * listener but a TLI/XTI listener completes the accept processing
5190  * on the listener perimeter.
5191  *
5192  * Common control flow for 3 way handshake:
5193  * ----------------------------------------
5194  *
5195  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5196  *					-> tcp_conn_request()
5197  *
5198  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5199  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5200  *
5201  * Sockfs ACCEPT Path:
5202  * -------------------
5203  *
5204  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5205  * as STREAM entry point)
5206  *
5207  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5208  *
5209  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5210  * association (we are not behind eager's squeue but sockfs is protecting us
5211  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5212  * is changed to point at tcp_wput().
5213  *
5214  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5215  * listener (done on listener's perimeter).
5216  *
5217  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5218  * accept.
5219  *
5220  * TLI/XTI client ACCEPT path:
5221  * ---------------------------
5222  *
5223  * soaccept() sends T_CONN_RES on the listener STREAM.
5224  *
5225  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5226  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5227  *
5228  * Locks:
5229  * ======
5230  *
5231  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5232  * and listeners->tcp_eager_next_q.
5233  *
5234  * Referencing:
5235  * ============
5236  *
5237  * 1) We start out in tcp_conn_request by eager placing a ref on
5238  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5239  *
5240  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5241  * doing so we place a ref on the eager. This ref is finally dropped at the
5242  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5243  * reference is dropped by the squeue framework.
5244  *
5245  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5246  *
5247  * The reference must be released by the same entity that added the reference
5248  * In the above scheme, the eager is the entity that adds and releases the
5249  * references. Note that tcp_accept_finish executes in the squeue of the eager
5250  * (albeit after it is attached to the acceptor stream). Though 1. executes
5251  * in the listener's squeue, the eager is nascent at this point and the
5252  * reference can be considered to have been added on behalf of the eager.
5253  *
5254  * Eager getting a Reset or listener closing:
5255  * ==========================================
5256  *
5257  * Once the listener and eager are linked, the listener never does the unlink.
5258  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5259  * a message on all eager perimeter. The eager then does the unlink, clears
5260  * any pointers to the listener's queue and drops the reference to the
5261  * listener. The listener waits in tcp_close outside the squeue until its
5262  * refcount has dropped to 1. This ensures that the listener has waited for
5263  * all eagers to clear their association with the listener.
5264  *
5265  * Similarly, if eager decides to go away, it can unlink itself and close.
5266  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5267  * the reference to eager is still valid because of the extra ref we put
5268  * in tcp_send_conn_ind.
5269  *
5270  * Listener can always locate the eager under the protection
5271  * of the listener->tcp_eager_lock, and then do a refhold
5272  * on the eager during the accept processing.
5273  *
5274  * The acceptor stream accesses the eager in the accept processing
5275  * based on the ref placed on eager before sending T_conn_ind.
5276  * The only entity that can negate this refhold is a listener close
5277  * which is mutually exclusive with an active acceptor stream.
5278  *
5279  * Eager's reference on the listener
5280  * ===================================
5281  *
5282  * If the accept happens (even on a closed eager) the eager drops its
5283  * reference on the listener at the start of tcp_accept_finish. If the
5284  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5285  * the reference is dropped in tcp_closei_local. If the listener closes,
5286  * the reference is dropped in tcp_eager_kill. In all cases the reference
5287  * is dropped while executing in the eager's context (squeue).
5288  */
5289 /* END CSTYLED */
5290 
5291 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5292 
5293 /*
5294  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5295  * tcp_rput_data will not see any SYN packets.
5296  */
5297 /* ARGSUSED */
5298 void
5299 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5300 {
5301 	tcph_t		*tcph;
5302 	uint32_t	seg_seq;
5303 	tcp_t		*eager;
5304 	uint_t		ipvers;
5305 	ipha_t		*ipha;
5306 	ip6_t		*ip6h;
5307 	int		err;
5308 	conn_t		*econnp = NULL;
5309 	squeue_t	*new_sqp;
5310 	mblk_t		*mp1;
5311 	uint_t 		ip_hdr_len;
5312 	conn_t		*connp = (conn_t *)arg;
5313 	tcp_t		*tcp = connp->conn_tcp;
5314 	cred_t		*credp;
5315 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5316 	ip_stack_t	*ipst;
5317 
5318 	if (tcp->tcp_state != TCPS_LISTEN)
5319 		goto error2;
5320 
5321 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5322 
5323 	mutex_enter(&tcp->tcp_eager_lock);
5324 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5325 		mutex_exit(&tcp->tcp_eager_lock);
5326 		TCP_STAT(tcps, tcp_listendrop);
5327 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5328 		if (tcp->tcp_debug) {
5329 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5330 			    "tcp_conn_request: listen backlog (max=%d) "
5331 			    "overflow (%d pending) on %s",
5332 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5333 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5334 		}
5335 		goto error2;
5336 	}
5337 
5338 	if (tcp->tcp_conn_req_cnt_q0 >=
5339 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5340 		/*
5341 		 * Q0 is full. Drop a pending half-open req from the queue
5342 		 * to make room for the new SYN req. Also mark the time we
5343 		 * drop a SYN.
5344 		 *
5345 		 * A more aggressive defense against SYN attack will
5346 		 * be to set the "tcp_syn_defense" flag now.
5347 		 */
5348 		TCP_STAT(tcps, tcp_listendropq0);
5349 		tcp->tcp_last_rcv_lbolt = lbolt64;
5350 		if (!tcp_drop_q0(tcp)) {
5351 			mutex_exit(&tcp->tcp_eager_lock);
5352 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5353 			if (tcp->tcp_debug) {
5354 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5355 				    "tcp_conn_request: listen half-open queue "
5356 				    "(max=%d) full (%d pending) on %s",
5357 				    tcps->tcps_conn_req_max_q0,
5358 				    tcp->tcp_conn_req_cnt_q0,
5359 				    tcp_display(tcp, NULL,
5360 				    DISP_PORT_ONLY));
5361 			}
5362 			goto error2;
5363 		}
5364 	}
5365 	mutex_exit(&tcp->tcp_eager_lock);
5366 
5367 	/*
5368 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5369 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5370 	 * link local address.  If IPSec is enabled, db_struioflag has
5371 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5372 	 * otherwise an error case if neither of them is set.
5373 	 */
5374 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5375 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5376 		DB_CKSUMSTART(mp) = 0;
5377 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5378 		econnp = (conn_t *)tcp_get_conn(arg2, tcps,
5379 		    !IPCL_IS_NONSTR(connp));
5380 		if (econnp == NULL)
5381 			goto error2;
5382 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5383 		econnp->conn_sqp = new_sqp;
5384 		econnp->conn_initial_sqp = new_sqp;
5385 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5386 		/*
5387 		 * mp is updated in tcp_get_ipsec_conn().
5388 		 */
5389 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp,
5390 		    !IPCL_IS_NONSTR(connp));
5391 		if (econnp == NULL) {
5392 			/*
5393 			 * mp freed by tcp_get_ipsec_conn.
5394 			 */
5395 			return;
5396 		}
5397 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5398 	} else {
5399 		goto error2;
5400 	}
5401 
5402 	ASSERT(DB_TYPE(mp) == M_DATA);
5403 
5404 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5405 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5406 	ASSERT(OK_32PTR(mp->b_rptr));
5407 	if (ipvers == IPV4_VERSION) {
5408 		ipha = (ipha_t *)mp->b_rptr;
5409 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5410 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5411 	} else {
5412 		ip6h = (ip6_t *)mp->b_rptr;
5413 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5414 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5415 	}
5416 
5417 	if (tcp->tcp_family == AF_INET) {
5418 		ASSERT(ipvers == IPV4_VERSION);
5419 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5420 	} else {
5421 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5422 	}
5423 
5424 	if (err)
5425 		goto error3;
5426 
5427 	eager = econnp->conn_tcp;
5428 	ASSERT(eager->tcp_ordrel_mp == NULL);
5429 
5430 	if (!IPCL_IS_NONSTR(econnp)) {
5431 		/*
5432 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
5433 		 * at close time, we will always have that to send up.
5434 		 * Otherwise, we need to do special handling in case the
5435 		 * allocation fails at that time.
5436 		 */
5437 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5438 			goto error3;
5439 	}
5440 	/* Inherit various TCP parameters from the listener */
5441 	eager->tcp_naglim = tcp->tcp_naglim;
5442 	eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold;
5443 	eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold;
5444 
5445 	eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold;
5446 	eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold;
5447 
5448 	/*
5449 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5450 	 * If it does not, the eager's receive window will be set to the
5451 	 * listener's receive window later in this function.
5452 	 */
5453 	eager->tcp_rwnd = 0;
5454 
5455 	/*
5456 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5457 	 * calling tcp_process_options() where tcp_mss_set() is called
5458 	 * to set the initial cwnd.
5459 	 */
5460 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5461 
5462 	/*
5463 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5464 	 * zone id before the accept is completed in tcp_wput_accept().
5465 	 */
5466 	econnp->conn_zoneid = connp->conn_zoneid;
5467 	econnp->conn_allzones = connp->conn_allzones;
5468 
5469 	/* Copy nexthop information from listener to eager */
5470 	if (connp->conn_nexthop_set) {
5471 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5472 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5473 	}
5474 
5475 	/*
5476 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5477 	 * eager is accepted
5478 	 */
5479 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5480 	crhold(credp);
5481 
5482 	/*
5483 	 * If the caller has the process-wide flag set, then default to MAC
5484 	 * exempt mode.  This allows read-down to unlabeled hosts.
5485 	 */
5486 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5487 		econnp->conn_mac_exempt = B_TRUE;
5488 
5489 	if (is_system_labeled()) {
5490 		cred_t *cr;
5491 
5492 		if (connp->conn_mlp_type != mlptSingle) {
5493 			cr = econnp->conn_peercred = msg_getcred(mp, NULL);
5494 			if (cr != NULL)
5495 				crhold(cr);
5496 			else
5497 				cr = econnp->conn_cred;
5498 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5499 			    econnp, cred_t *, cr)
5500 		} else {
5501 			cr = econnp->conn_cred;
5502 			DTRACE_PROBE2(syn_accept, conn_t *,
5503 			    econnp, cred_t *, cr)
5504 		}
5505 
5506 		if (!tcp_update_label(eager, cr)) {
5507 			DTRACE_PROBE3(
5508 			    tx__ip__log__error__connrequest__tcp,
5509 			    char *, "eager connp(1) label on SYN mp(2) failed",
5510 			    conn_t *, econnp, mblk_t *, mp);
5511 			goto error3;
5512 		}
5513 	}
5514 
5515 	eager->tcp_hard_binding = B_TRUE;
5516 
5517 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5518 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5519 
5520 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5521 	if (err != 0) {
5522 		tcp_bind_hash_remove(eager);
5523 		goto error3;
5524 	}
5525 
5526 	/*
5527 	 * No need to check for multicast destination since ip will only pass
5528 	 * up multicasts to those that have expressed interest
5529 	 * TODO: what about rejecting broadcasts?
5530 	 * Also check that source is not a multicast or broadcast address.
5531 	 */
5532 	eager->tcp_state = TCPS_SYN_RCVD;
5533 
5534 
5535 	/*
5536 	 * There should be no ire in the mp as we are being called after
5537 	 * receiving the SYN.
5538 	 */
5539 	ASSERT(tcp_ire_mp(&mp) == NULL);
5540 
5541 	/*
5542 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5543 	 */
5544 
5545 	if (tcp_adapt_ire(eager, NULL) == 0) {
5546 		/* Undo the bind_hash_insert */
5547 		tcp_bind_hash_remove(eager);
5548 		goto error3;
5549 	}
5550 
5551 	/* Process all TCP options. */
5552 	tcp_process_options(eager, tcph);
5553 
5554 	/* Is the other end ECN capable? */
5555 	if (tcps->tcps_ecn_permitted >= 1 &&
5556 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5557 		eager->tcp_ecn_ok = B_TRUE;
5558 	}
5559 
5560 	/*
5561 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5562 	 * window size changed via SO_RCVBUF option.  First round up the
5563 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5564 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5565 	 * setting.
5566 	 *
5567 	 * Note if there is a rpipe metric associated with the remote host,
5568 	 * we should not inherit receive window size from listener.
5569 	 */
5570 	eager->tcp_rwnd = MSS_ROUNDUP(
5571 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5572 	    eager->tcp_rwnd), eager->tcp_mss);
5573 	if (eager->tcp_snd_ws_ok)
5574 		tcp_set_ws_value(eager);
5575 	/*
5576 	 * Note that this is the only place tcp_rwnd_set() is called for
5577 	 * accepting a connection.  We need to call it here instead of
5578 	 * after the 3-way handshake because we need to tell the other
5579 	 * side our rwnd in the SYN-ACK segment.
5580 	 */
5581 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5582 
5583 	/*
5584 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5585 	 * via soaccept()->soinheritoptions() which essentially applies
5586 	 * all the listener options to the new STREAM. The options that we
5587 	 * need to take care of are:
5588 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5589 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5590 	 * SO_SNDBUF, SO_RCVBUF.
5591 	 *
5592 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5593 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5594 	 *		tcp_maxpsz_set() gets called later from
5595 	 *		tcp_accept_finish(), the option takes effect.
5596 	 *
5597 	 */
5598 	/* Set the TCP options */
5599 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5600 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5601 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5602 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5603 	eager->tcp_oobinline = tcp->tcp_oobinline;
5604 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5605 	eager->tcp_broadcast = tcp->tcp_broadcast;
5606 	eager->tcp_useloopback = tcp->tcp_useloopback;
5607 	eager->tcp_dontroute = tcp->tcp_dontroute;
5608 	eager->tcp_debug = tcp->tcp_debug;
5609 	eager->tcp_linger = tcp->tcp_linger;
5610 	eager->tcp_lingertime = tcp->tcp_lingertime;
5611 	if (tcp->tcp_ka_enabled)
5612 		eager->tcp_ka_enabled = 1;
5613 
5614 	/* Set the IP options */
5615 	econnp->conn_broadcast = connp->conn_broadcast;
5616 	econnp->conn_loopback = connp->conn_loopback;
5617 	econnp->conn_dontroute = connp->conn_dontroute;
5618 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5619 
5620 	/* Put a ref on the listener for the eager. */
5621 	CONN_INC_REF(connp);
5622 	mutex_enter(&tcp->tcp_eager_lock);
5623 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5624 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5625 	tcp->tcp_eager_next_q0 = eager;
5626 	eager->tcp_eager_prev_q0 = tcp;
5627 
5628 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5629 	eager->tcp_listener = tcp;
5630 	eager->tcp_saved_listener = tcp;
5631 
5632 	/*
5633 	 * Tag this detached tcp vector for later retrieval
5634 	 * by our listener client in tcp_accept().
5635 	 */
5636 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5637 	tcp->tcp_conn_req_cnt_q0++;
5638 	if (++tcp->tcp_conn_req_seqnum == -1) {
5639 		/*
5640 		 * -1 is "special" and defined in TPI as something
5641 		 * that should never be used in T_CONN_IND
5642 		 */
5643 		++tcp->tcp_conn_req_seqnum;
5644 	}
5645 	mutex_exit(&tcp->tcp_eager_lock);
5646 
5647 	if (tcp->tcp_syn_defense) {
5648 		/* Don't drop the SYN that comes from a good IP source */
5649 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5650 		if (addr_cache != NULL && eager->tcp_remote ==
5651 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5652 			eager->tcp_dontdrop = B_TRUE;
5653 		}
5654 	}
5655 
5656 	/*
5657 	 * We need to insert the eager in its own perimeter but as soon
5658 	 * as we do that, we expose the eager to the classifier and
5659 	 * should not touch any field outside the eager's perimeter.
5660 	 * So do all the work necessary before inserting the eager
5661 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5662 	 * will succeed but undo everything if it fails.
5663 	 */
5664 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5665 	eager->tcp_irs = seg_seq;
5666 	eager->tcp_rack = seg_seq;
5667 	eager->tcp_rnxt = seg_seq + 1;
5668 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5669 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5670 	eager->tcp_state = TCPS_SYN_RCVD;
5671 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5672 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5673 	if (mp1 == NULL) {
5674 		/*
5675 		 * Increment the ref count as we are going to
5676 		 * enqueueing an mp in squeue
5677 		 */
5678 		CONN_INC_REF(econnp);
5679 		goto error;
5680 	}
5681 
5682 	/*
5683 	 * Note that in theory this should use the current pid
5684 	 * so that getpeerucred on the client returns the actual listener
5685 	 * that does accept. But accept() hasn't been called yet. We could use
5686 	 * the pid of the process that did bind/listen on the server.
5687 	 * However, with common usage like inetd() the bind/listen can be done
5688 	 * by a different process than the accept().
5689 	 * Hence we do the simple thing of using the open pid here.
5690 	 * Note that db_credp is set later in tcp_send_data().
5691 	 */
5692 	mblk_setcred(mp1, credp, tcp->tcp_cpid);
5693 	eager->tcp_cpid = tcp->tcp_cpid;
5694 	eager->tcp_open_time = lbolt64;
5695 
5696 	/*
5697 	 * We need to start the rto timer. In normal case, we start
5698 	 * the timer after sending the packet on the wire (or at
5699 	 * least believing that packet was sent by waiting for
5700 	 * CALL_IP_WPUT() to return). Since this is the first packet
5701 	 * being sent on the wire for the eager, our initial tcp_rto
5702 	 * is at least tcp_rexmit_interval_min which is a fairly
5703 	 * large value to allow the algorithm to adjust slowly to large
5704 	 * fluctuations of RTT during first few transmissions.
5705 	 *
5706 	 * Starting the timer first and then sending the packet in this
5707 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5708 	 * is of the order of several 100ms and starting the timer
5709 	 * first and then sending the packet will result in difference
5710 	 * of few micro seconds.
5711 	 *
5712 	 * Without this optimization, we are forced to hold the fanout
5713 	 * lock across the ipcl_bind_insert() and sending the packet
5714 	 * so that we don't race against an incoming packet (maybe RST)
5715 	 * for this eager.
5716 	 *
5717 	 * It is necessary to acquire an extra reference on the eager
5718 	 * at this point and hold it until after tcp_send_data() to
5719 	 * ensure against an eager close race.
5720 	 */
5721 
5722 	CONN_INC_REF(eager->tcp_connp);
5723 
5724 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5725 
5726 	/*
5727 	 * Insert the eager in its own perimeter now. We are ready to deal
5728 	 * with any packets on eager.
5729 	 */
5730 	if (eager->tcp_ipversion == IPV4_VERSION) {
5731 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5732 			goto error;
5733 		}
5734 	} else {
5735 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5736 			goto error;
5737 		}
5738 	}
5739 
5740 	/* mark conn as fully-bound */
5741 	econnp->conn_fully_bound = B_TRUE;
5742 
5743 	/* Send the SYN-ACK */
5744 	tcp_send_data(eager, eager->tcp_wq, mp1);
5745 	CONN_DEC_REF(eager->tcp_connp);
5746 	freemsg(mp);
5747 
5748 	return;
5749 error:
5750 	freemsg(mp1);
5751 	eager->tcp_closemp_used = B_TRUE;
5752 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5753 	mp1 = &eager->tcp_closemp;
5754 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5755 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5756 
5757 	/*
5758 	 * If a connection already exists, send the mp to that connections so
5759 	 * that it can be appropriately dealt with.
5760 	 */
5761 	ipst = tcps->tcps_netstack->netstack_ip;
5762 
5763 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5764 		if (!IPCL_IS_CONNECTED(econnp)) {
5765 			/*
5766 			 * Something bad happened. ipcl_conn_insert()
5767 			 * failed because a connection already existed
5768 			 * in connected hash but we can't find it
5769 			 * anymore (someone blew it away). Just
5770 			 * free this message and hopefully remote
5771 			 * will retransmit at which time the SYN can be
5772 			 * treated as a new connection or dealth with
5773 			 * a TH_RST if a connection already exists.
5774 			 */
5775 			CONN_DEC_REF(econnp);
5776 			freemsg(mp);
5777 		} else {
5778 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5779 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5780 		}
5781 	} else {
5782 		/* Nobody wants this packet */
5783 		freemsg(mp);
5784 	}
5785 	return;
5786 error3:
5787 	CONN_DEC_REF(econnp);
5788 error2:
5789 	freemsg(mp);
5790 }
5791 
5792 /*
5793  * In an ideal case of vertical partition in NUMA architecture, its
5794  * beneficial to have the listener and all the incoming connections
5795  * tied to the same squeue. The other constraint is that incoming
5796  * connections should be tied to the squeue attached to interrupted
5797  * CPU for obvious locality reason so this leaves the listener to
5798  * be tied to the same squeue. Our only problem is that when listener
5799  * is binding, the CPU that will get interrupted by the NIC whose
5800  * IP address the listener is binding to is not even known. So
5801  * the code below allows us to change that binding at the time the
5802  * CPU is interrupted by virtue of incoming connection's squeue.
5803  *
5804  * This is usefull only in case of a listener bound to a specific IP
5805  * address. For other kind of listeners, they get bound the
5806  * very first time and there is no attempt to rebind them.
5807  */
5808 void
5809 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5810 {
5811 	conn_t		*connp = (conn_t *)arg;
5812 	squeue_t	*sqp = (squeue_t *)arg2;
5813 	squeue_t	*new_sqp;
5814 	uint32_t	conn_flags;
5815 
5816 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5817 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5818 	} else {
5819 		goto done;
5820 	}
5821 
5822 	if (connp->conn_fanout == NULL)
5823 		goto done;
5824 
5825 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5826 		mutex_enter(&connp->conn_fanout->connf_lock);
5827 		mutex_enter(&connp->conn_lock);
5828 		/*
5829 		 * No one from read or write side can access us now
5830 		 * except for already queued packets on this squeue.
5831 		 * But since we haven't changed the squeue yet, they
5832 		 * can't execute. If they are processed after we have
5833 		 * changed the squeue, they are sent back to the
5834 		 * correct squeue down below.
5835 		 * But a listner close can race with processing of
5836 		 * incoming SYN. If incoming SYN processing changes
5837 		 * the squeue then the listener close which is waiting
5838 		 * to enter the squeue would operate on the wrong
5839 		 * squeue. Hence we don't change the squeue here unless
5840 		 * the refcount is exactly the minimum refcount. The
5841 		 * minimum refcount of 4 is counted as - 1 each for
5842 		 * TCP and IP, 1 for being in the classifier hash, and
5843 		 * 1 for the mblk being processed.
5844 		 */
5845 
5846 		if (connp->conn_ref != 4 ||
5847 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5848 			mutex_exit(&connp->conn_lock);
5849 			mutex_exit(&connp->conn_fanout->connf_lock);
5850 			goto done;
5851 		}
5852 		if (connp->conn_sqp != new_sqp) {
5853 			while (connp->conn_sqp != new_sqp)
5854 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5855 		}
5856 
5857 		do {
5858 			conn_flags = connp->conn_flags;
5859 			conn_flags |= IPCL_FULLY_BOUND;
5860 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5861 			    conn_flags);
5862 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5863 
5864 		mutex_exit(&connp->conn_fanout->connf_lock);
5865 		mutex_exit(&connp->conn_lock);
5866 	}
5867 
5868 done:
5869 	if (connp->conn_sqp != sqp) {
5870 		CONN_INC_REF(connp);
5871 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5872 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5873 	} else {
5874 		tcp_conn_request(connp, mp, sqp);
5875 	}
5876 }
5877 
5878 /*
5879  * Successful connect request processing begins when our client passes
5880  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5881  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5882  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5883  *   upstream <- tcp_rput()		<- IP
5884  * After various error checks are completed, tcp_tpi_connect() lays
5885  * the target address and port into the composite header template,
5886  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5887  * request followed by an IRE request, and passes the three mblk message
5888  * down to IP looking like this:
5889  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5890  * Processing continues in tcp_rput() when we receive the following message:
5891  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5892  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5893  * to fire off the connection request, and then passes the T_OK_ACK mblk
5894  * upstream that we filled in below.  There are, of course, numerous
5895  * error conditions along the way which truncate the processing described
5896  * above.
5897  */
5898 static void
5899 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5900 {
5901 	sin_t		*sin;
5902 	queue_t		*q = tcp->tcp_wq;
5903 	struct T_conn_req	*tcr;
5904 	struct sockaddr	*sa;
5905 	socklen_t	len;
5906 	int		error;
5907 	cred_t		*cr;
5908 	pid_t		cpid;
5909 
5910 	/*
5911 	 * All Solaris components should pass a db_credp
5912 	 * for this TPI message, hence we ASSERT.
5913 	 * But in case there is some other M_PROTO that looks
5914 	 * like a TPI message sent by some other kernel
5915 	 * component, we check and return an error.
5916 	 */
5917 	cr = msg_getcred(mp, &cpid);
5918 	ASSERT(cr != NULL);
5919 	if (cr == NULL) {
5920 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5921 		return;
5922 	}
5923 
5924 	tcr = (struct T_conn_req *)mp->b_rptr;
5925 
5926 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5927 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5928 		tcp_err_ack(tcp, mp, TPROTO, 0);
5929 		return;
5930 	}
5931 
5932 	/*
5933 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5934 	 * will always have that to send up.  Otherwise, we need to do
5935 	 * special handling in case the allocation fails at that time.
5936 	 * If the end point is TPI, the tcp_t can be reused and the
5937 	 * tcp_ordrel_mp may be allocated already.
5938 	 */
5939 	if (tcp->tcp_ordrel_mp == NULL) {
5940 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5941 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5942 			return;
5943 		}
5944 	}
5945 
5946 	/*
5947 	 * Determine packet type based on type of address passed in
5948 	 * the request should contain an IPv4 or IPv6 address.
5949 	 * Make sure that address family matches the type of
5950 	 * family of the the address passed down
5951 	 */
5952 	switch (tcr->DEST_length) {
5953 	default:
5954 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5955 		return;
5956 
5957 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5958 		/*
5959 		 * XXX: The check for valid DEST_length was not there
5960 		 * in earlier releases and some buggy
5961 		 * TLI apps (e.g Sybase) got away with not feeding
5962 		 * in sin_zero part of address.
5963 		 * We allow that bug to keep those buggy apps humming.
5964 		 * Test suites require the check on DEST_length.
5965 		 * We construct a new mblk with valid DEST_length
5966 		 * free the original so the rest of the code does
5967 		 * not have to keep track of this special shorter
5968 		 * length address case.
5969 		 */
5970 		mblk_t *nmp;
5971 		struct T_conn_req *ntcr;
5972 		sin_t *nsin;
5973 
5974 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5975 		    tcr->OPT_length, BPRI_HI);
5976 		if (nmp == NULL) {
5977 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5978 			return;
5979 		}
5980 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5981 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5982 		ntcr->PRIM_type = T_CONN_REQ;
5983 		ntcr->DEST_length = sizeof (sin_t);
5984 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5985 
5986 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5987 		*nsin = sin_null;
5988 		/* Get pointer to shorter address to copy from original mp */
5989 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5990 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5991 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5992 			freemsg(nmp);
5993 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5994 			return;
5995 		}
5996 		nsin->sin_family = sin->sin_family;
5997 		nsin->sin_port = sin->sin_port;
5998 		nsin->sin_addr = sin->sin_addr;
5999 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6000 		nmp->b_wptr = (uchar_t *)&nsin[1];
6001 		if (tcr->OPT_length != 0) {
6002 			ntcr->OPT_length = tcr->OPT_length;
6003 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6004 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6005 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6006 			    tcr->OPT_length);
6007 			nmp->b_wptr += tcr->OPT_length;
6008 		}
6009 		freemsg(mp);	/* original mp freed */
6010 		mp = nmp;	/* re-initialize original variables */
6011 		tcr = ntcr;
6012 	}
6013 	/* FALLTHRU */
6014 
6015 	case sizeof (sin_t):
6016 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6017 		    sizeof (sin_t));
6018 		len = sizeof (sin_t);
6019 		break;
6020 
6021 	case sizeof (sin6_t):
6022 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6023 		    sizeof (sin6_t));
6024 		len = sizeof (sin6_t);
6025 		break;
6026 	}
6027 
6028 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
6029 	if (error != 0) {
6030 		tcp_err_ack(tcp, mp, TSYSERR, error);
6031 		return;
6032 	}
6033 
6034 	/*
6035 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6036 	 * should key on their sequence number and cut them loose.
6037 	 */
6038 
6039 	/*
6040 	 * If options passed in, feed it for verification and handling
6041 	 */
6042 	if (tcr->OPT_length != 0) {
6043 		mblk_t	*ok_mp;
6044 		mblk_t	*discon_mp;
6045 		mblk_t  *conn_opts_mp;
6046 		int t_error, sys_error, do_disconnect;
6047 
6048 		conn_opts_mp = NULL;
6049 
6050 		if (tcp_conprim_opt_process(tcp, mp,
6051 		    &do_disconnect, &t_error, &sys_error) < 0) {
6052 			if (do_disconnect) {
6053 				ASSERT(t_error == 0 && sys_error == 0);
6054 				discon_mp = mi_tpi_discon_ind(NULL,
6055 				    ECONNREFUSED, 0);
6056 				if (!discon_mp) {
6057 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6058 					    TSYSERR, ENOMEM);
6059 					return;
6060 				}
6061 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6062 				if (!ok_mp) {
6063 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6064 					    TSYSERR, ENOMEM);
6065 					return;
6066 				}
6067 				qreply(q, ok_mp);
6068 				qreply(q, discon_mp); /* no flush! */
6069 			} else {
6070 				ASSERT(t_error != 0);
6071 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6072 				    sys_error);
6073 			}
6074 			return;
6075 		}
6076 		/*
6077 		 * Success in setting options, the mp option buffer represented
6078 		 * by OPT_length/offset has been potentially modified and
6079 		 * contains results of option processing. We copy it in
6080 		 * another mp to save it for potentially influencing returning
6081 		 * it in T_CONN_CONN.
6082 		 */
6083 		if (tcr->OPT_length != 0) { /* there are resulting options */
6084 			conn_opts_mp = copyb(mp);
6085 			if (!conn_opts_mp) {
6086 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6087 				    TSYSERR, ENOMEM);
6088 				return;
6089 			}
6090 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6091 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6092 			/*
6093 			 * Note:
6094 			 * These resulting option negotiation can include any
6095 			 * end-to-end negotiation options but there no such
6096 			 * thing (yet?) in our TCP/IP.
6097 			 */
6098 		}
6099 	}
6100 
6101 	/* call the non-TPI version */
6102 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
6103 	if (error < 0) {
6104 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6105 	} else if (error > 0) {
6106 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6107 	} else {
6108 		mp = mi_tpi_ok_ack_alloc(mp);
6109 	}
6110 
6111 	/*
6112 	 * Note: Code below is the "failure" case
6113 	 */
6114 	/* return error ack and blow away saved option results if any */
6115 connect_failed:
6116 	if (mp != NULL)
6117 		putnext(tcp->tcp_rq, mp);
6118 	else {
6119 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6120 		    TSYSERR, ENOMEM);
6121 	}
6122 }
6123 
6124 /*
6125  * Handle connect to IPv4 destinations, including connections for AF_INET6
6126  * sockets connecting to IPv4 mapped IPv6 destinations.
6127  */
6128 static int
6129 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6130     uint_t srcid, cred_t *cr, pid_t pid)
6131 {
6132 	tcph_t	*tcph;
6133 	mblk_t	*mp;
6134 	ipaddr_t dstaddr = *dstaddrp;
6135 	int32_t	oldstate;
6136 	uint16_t lport;
6137 	int	error = 0;
6138 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6139 
6140 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6141 
6142 	/* Check for attempt to connect to INADDR_ANY */
6143 	if (dstaddr == INADDR_ANY)  {
6144 		/*
6145 		 * SunOS 4.x and 4.3 BSD allow an application
6146 		 * to connect a TCP socket to INADDR_ANY.
6147 		 * When they do this, the kernel picks the
6148 		 * address of one interface and uses it
6149 		 * instead.  The kernel usually ends up
6150 		 * picking the address of the loopback
6151 		 * interface.  This is an undocumented feature.
6152 		 * However, we provide the same thing here
6153 		 * in order to have source and binary
6154 		 * compatibility with SunOS 4.x.
6155 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6156 		 * generate the T_CONN_CON.
6157 		 */
6158 		dstaddr = htonl(INADDR_LOOPBACK);
6159 		*dstaddrp = dstaddr;
6160 	}
6161 
6162 	/* Handle __sin6_src_id if socket not bound to an IP address */
6163 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6164 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6165 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6166 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6167 		    tcp->tcp_ipha->ipha_src);
6168 	}
6169 
6170 	/*
6171 	 * Don't let an endpoint connect to itself.  Note that
6172 	 * the test here does not catch the case where the
6173 	 * source IP addr was left unspecified by the user. In
6174 	 * this case, the source addr is set in tcp_adapt_ire()
6175 	 * using the reply to the T_BIND message that we send
6176 	 * down to IP here and the check is repeated in tcp_rput_other.
6177 	 */
6178 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6179 	    dstport == tcp->tcp_lport) {
6180 		error = -TBADADDR;
6181 		goto failed;
6182 	}
6183 
6184 	tcp->tcp_ipha->ipha_dst = dstaddr;
6185 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6186 
6187 	/*
6188 	 * Massage a source route if any putting the first hop
6189 	 * in iph_dst. Compute a starting value for the checksum which
6190 	 * takes into account that the original iph_dst should be
6191 	 * included in the checksum but that ip will include the
6192 	 * first hop in the source route in the tcp checksum.
6193 	 */
6194 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6195 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6196 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6197 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6198 	if ((int)tcp->tcp_sum < 0)
6199 		tcp->tcp_sum--;
6200 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6201 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6202 	    (tcp->tcp_sum >> 16));
6203 	tcph = tcp->tcp_tcph;
6204 	*(uint16_t *)tcph->th_fport = dstport;
6205 	tcp->tcp_fport = dstport;
6206 
6207 	oldstate = tcp->tcp_state;
6208 	/*
6209 	 * At this point the remote destination address and remote port fields
6210 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6211 	 * have to see which state tcp was in so we can take apropriate action.
6212 	 */
6213 	if (oldstate == TCPS_IDLE) {
6214 		/*
6215 		 * We support a quick connect capability here, allowing
6216 		 * clients to transition directly from IDLE to SYN_SENT
6217 		 * tcp_bindi will pick an unused port, insert the connection
6218 		 * in the bind hash and transition to BOUND state.
6219 		 */
6220 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6221 		    tcp, B_TRUE);
6222 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6223 		    B_FALSE, B_FALSE);
6224 		if (lport == 0) {
6225 			error = -TNOADDR;
6226 			goto failed;
6227 		}
6228 	}
6229 	tcp->tcp_state = TCPS_SYN_SENT;
6230 
6231 	mp = allocb(sizeof (ire_t), BPRI_HI);
6232 	if (mp == NULL) {
6233 		tcp->tcp_state = oldstate;
6234 		error = ENOMEM;
6235 		goto failed;
6236 	}
6237 
6238 	mp->b_wptr += sizeof (ire_t);
6239 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6240 	tcp->tcp_hard_binding = 1;
6241 
6242 	/*
6243 	 * We need to make sure that the conn_recv is set to a non-null
6244 	 * value before we insert the conn_t into the classifier table.
6245 	 * This is to avoid a race with an incoming packet which does
6246 	 * an ipcl_classify().
6247 	 */
6248 	tcp->tcp_connp->conn_recv = tcp_input;
6249 
6250 	if (tcp->tcp_family == AF_INET) {
6251 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6252 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6253 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6254 	} else {
6255 		in6_addr_t v6src;
6256 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6257 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6258 		} else {
6259 			v6src = tcp->tcp_ip6h->ip6_src;
6260 		}
6261 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6262 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6263 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6264 	}
6265 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6266 	tcp->tcp_active_open = 1;
6267 
6268 
6269 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6270 failed:
6271 	/* return error ack and blow away saved option results if any */
6272 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6273 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6274 	return (error);
6275 }
6276 
6277 /*
6278  * Handle connect to IPv6 destinations.
6279  */
6280 static int
6281 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6282     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6283 {
6284 	tcph_t	*tcph;
6285 	mblk_t	*mp;
6286 	ip6_rthdr_t *rth;
6287 	int32_t  oldstate;
6288 	uint16_t lport;
6289 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6290 	int	error = 0;
6291 	conn_t	*connp = tcp->tcp_connp;
6292 
6293 	ASSERT(tcp->tcp_family == AF_INET6);
6294 
6295 	/*
6296 	 * If we're here, it means that the destination address is a native
6297 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6298 	 * reason why it might not be IPv6 is if the socket was bound to an
6299 	 * IPv4-mapped IPv6 address.
6300 	 */
6301 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6302 		return (-TBADADDR);
6303 	}
6304 
6305 	/*
6306 	 * Interpret a zero destination to mean loopback.
6307 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6308 	 * generate the T_CONN_CON.
6309 	 */
6310 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6311 		*dstaddrp = ipv6_loopback;
6312 	}
6313 
6314 	/* Handle __sin6_src_id if socket not bound to an IP address */
6315 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6316 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6317 		    connp->conn_zoneid, tcps->tcps_netstack);
6318 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6319 	}
6320 
6321 	/*
6322 	 * Take care of the scope_id now and add ip6i_t
6323 	 * if ip6i_t is not already allocated through TCP
6324 	 * sticky options. At this point tcp_ip6h does not
6325 	 * have dst info, thus use dstaddrp.
6326 	 */
6327 	if (scope_id != 0 &&
6328 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6329 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6330 		ip6i_t  *ip6i;
6331 
6332 		ipp->ipp_ifindex = scope_id;
6333 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6334 
6335 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6336 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6337 			/* Already allocated */
6338 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6339 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6340 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6341 		} else {
6342 			int reterr;
6343 
6344 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6345 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6346 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6347 			reterr = tcp_build_hdrs(tcp);
6348 			if (reterr != 0)
6349 				goto failed;
6350 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6351 		}
6352 	}
6353 
6354 	/*
6355 	 * Don't let an endpoint connect to itself.  Note that
6356 	 * the test here does not catch the case where the
6357 	 * source IP addr was left unspecified by the user. In
6358 	 * this case, the source addr is set in tcp_adapt_ire()
6359 	 * using the reply to the T_BIND message that we send
6360 	 * down to IP here and the check is repeated in tcp_rput_other.
6361 	 */
6362 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6363 	    (dstport == tcp->tcp_lport)) {
6364 		error = -TBADADDR;
6365 		goto failed;
6366 	}
6367 
6368 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6369 	tcp->tcp_remote_v6 = *dstaddrp;
6370 	tcp->tcp_ip6h->ip6_vcf =
6371 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6372 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6373 
6374 	/*
6375 	 * Massage a routing header (if present) putting the first hop
6376 	 * in ip6_dst. Compute a starting value for the checksum which
6377 	 * takes into account that the original ip6_dst should be
6378 	 * included in the checksum but that ip will include the
6379 	 * first hop in the source route in the tcp checksum.
6380 	 */
6381 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6382 	if (rth != NULL) {
6383 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6384 		    tcps->tcps_netstack);
6385 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6386 		    (tcp->tcp_sum >> 16));
6387 	} else {
6388 		tcp->tcp_sum = 0;
6389 	}
6390 
6391 	tcph = tcp->tcp_tcph;
6392 	*(uint16_t *)tcph->th_fport = dstport;
6393 	tcp->tcp_fport = dstport;
6394 
6395 	oldstate = tcp->tcp_state;
6396 	/*
6397 	 * At this point the remote destination address and remote port fields
6398 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6399 	 * have to see which state tcp was in so we can take apropriate action.
6400 	 */
6401 	if (oldstate == TCPS_IDLE) {
6402 		/*
6403 		 * We support a quick connect capability here, allowing
6404 		 * clients to transition directly from IDLE to SYN_SENT
6405 		 * tcp_bindi will pick an unused port, insert the connection
6406 		 * in the bind hash and transition to BOUND state.
6407 		 */
6408 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6409 		    tcp, B_TRUE);
6410 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6411 		    B_FALSE, B_FALSE);
6412 		if (lport == 0) {
6413 			error = -TNOADDR;
6414 			goto failed;
6415 		}
6416 	}
6417 	tcp->tcp_state = TCPS_SYN_SENT;
6418 
6419 	mp = allocb(sizeof (ire_t), BPRI_HI);
6420 	if (mp != NULL) {
6421 		in6_addr_t v6src;
6422 
6423 		mp->b_wptr += sizeof (ire_t);
6424 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6425 
6426 		tcp->tcp_hard_binding = 1;
6427 
6428 		/*
6429 		 * We need to make sure that the conn_recv is set to a non-null
6430 		 * value before we insert the conn_t into the classifier table.
6431 		 * This is to avoid a race with an incoming packet which does
6432 		 * an ipcl_classify().
6433 		 */
6434 		tcp->tcp_connp->conn_recv = tcp_input;
6435 
6436 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6437 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6438 		} else {
6439 			v6src = tcp->tcp_ip6h->ip6_src;
6440 		}
6441 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6442 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6443 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6444 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6445 		tcp->tcp_active_open = 1;
6446 
6447 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6448 	}
6449 	/* Error case */
6450 	tcp->tcp_state = oldstate;
6451 	error = ENOMEM;
6452 
6453 failed:
6454 	/* return error ack and blow away saved option results if any */
6455 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6456 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6457 	return (error);
6458 }
6459 
6460 /*
6461  * We need a stream q for detached closing tcp connections
6462  * to use.  Our client hereby indicates that this q is the
6463  * one to use.
6464  */
6465 static void
6466 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6467 {
6468 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6469 	queue_t	*q = tcp->tcp_wq;
6470 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6471 
6472 #ifdef NS_DEBUG
6473 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6474 	    tcps->tcps_netstack->netstack_stackid);
6475 #endif
6476 	mp->b_datap->db_type = M_IOCACK;
6477 	iocp->ioc_count = 0;
6478 	mutex_enter(&tcps->tcps_g_q_lock);
6479 	if (tcps->tcps_g_q != NULL) {
6480 		mutex_exit(&tcps->tcps_g_q_lock);
6481 		iocp->ioc_error = EALREADY;
6482 	} else {
6483 		int error = 0;
6484 		conn_t *connp = tcp->tcp_connp;
6485 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6486 
6487 		tcps->tcps_g_q = tcp->tcp_rq;
6488 		mutex_exit(&tcps->tcps_g_q_lock);
6489 		iocp->ioc_error = 0;
6490 		iocp->ioc_rval = 0;
6491 		/*
6492 		 * We are passing tcp_sticky_ipp as NULL
6493 		 * as it is not useful for tcp_default queue
6494 		 *
6495 		 * Set conn_recv just in case.
6496 		 */
6497 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6498 
6499 		ASSERT(connp->conn_af_isv6);
6500 		connp->conn_ulp = IPPROTO_TCP;
6501 
6502 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6503 		    NULL || connp->conn_mac_exempt) {
6504 			error = -TBADADDR;
6505 		} else {
6506 			connp->conn_srcv6 = ipv6_all_zeros;
6507 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6508 		}
6509 
6510 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6511 	}
6512 	qreply(q, mp);
6513 }
6514 
6515 static int
6516 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6517 {
6518 	tcp_t	*ltcp = NULL;
6519 	conn_t	*connp;
6520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6521 
6522 	/*
6523 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6524 	 * when the stream is in BOUND state. Do not send a reset,
6525 	 * since the destination IP address is not valid, and it can
6526 	 * be the initialized value of all zeros (broadcast address).
6527 	 *
6528 	 * XXX There won't be any pending bind request to IP.
6529 	 */
6530 	if (tcp->tcp_state <= TCPS_BOUND) {
6531 		if (tcp->tcp_debug) {
6532 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6533 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6534 		}
6535 		return (TOUTSTATE);
6536 	}
6537 
6538 
6539 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6540 
6541 		/*
6542 		 * According to TPI, for non-listeners, ignore seqnum
6543 		 * and disconnect.
6544 		 * Following interpretation of -1 seqnum is historical
6545 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6546 		 * a valid seqnum should not be -1).
6547 		 *
6548 		 *	-1 means disconnect everything
6549 		 *	regardless even on a listener.
6550 		 */
6551 
6552 		int old_state = tcp->tcp_state;
6553 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6554 
6555 		/*
6556 		 * The connection can't be on the tcp_time_wait_head list
6557 		 * since it is not detached.
6558 		 */
6559 		ASSERT(tcp->tcp_time_wait_next == NULL);
6560 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6561 		ASSERT(tcp->tcp_time_wait_expire == 0);
6562 		ltcp = NULL;
6563 		/*
6564 		 * If it used to be a listener, check to make sure no one else
6565 		 * has taken the port before switching back to LISTEN state.
6566 		 */
6567 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6568 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6569 			    tcp->tcp_ipha->ipha_src,
6570 			    tcp->tcp_connp->conn_zoneid, ipst);
6571 			if (connp != NULL)
6572 				ltcp = connp->conn_tcp;
6573 		} else {
6574 			/* Allow tcp_bound_if listeners? */
6575 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6576 			    &tcp->tcp_ip6h->ip6_src, 0,
6577 			    tcp->tcp_connp->conn_zoneid, ipst);
6578 			if (connp != NULL)
6579 				ltcp = connp->conn_tcp;
6580 		}
6581 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6582 			tcp->tcp_state = TCPS_LISTEN;
6583 		} else if (old_state > TCPS_BOUND) {
6584 			tcp->tcp_conn_req_max = 0;
6585 			tcp->tcp_state = TCPS_BOUND;
6586 		}
6587 		if (ltcp != NULL)
6588 			CONN_DEC_REF(ltcp->tcp_connp);
6589 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6590 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6591 		} else if (old_state == TCPS_ESTABLISHED ||
6592 		    old_state == TCPS_CLOSE_WAIT) {
6593 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6594 		}
6595 
6596 		if (tcp->tcp_fused)
6597 			tcp_unfuse(tcp);
6598 
6599 		mutex_enter(&tcp->tcp_eager_lock);
6600 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6601 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6602 			tcp_eager_cleanup(tcp, 0);
6603 		}
6604 		mutex_exit(&tcp->tcp_eager_lock);
6605 
6606 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6607 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6608 
6609 		tcp_reinit(tcp);
6610 
6611 		return (0);
6612 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6613 		return (TBADSEQ);
6614 	}
6615 	return (0);
6616 }
6617 
6618 /*
6619  * Our client hereby directs us to reject the connection request
6620  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6621  * of sending the appropriate RST, not an ICMP error.
6622  */
6623 static void
6624 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6625 {
6626 	t_scalar_t seqnum;
6627 	int	error;
6628 
6629 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6630 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6631 		tcp_err_ack(tcp, mp, TPROTO, 0);
6632 		return;
6633 	}
6634 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6635 	error = tcp_disconnect_common(tcp, seqnum);
6636 	if (error != 0)
6637 		tcp_err_ack(tcp, mp, error, 0);
6638 	else {
6639 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6640 			/* Send M_FLUSH according to TPI */
6641 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6642 		}
6643 		mp = mi_tpi_ok_ack_alloc(mp);
6644 		if (mp)
6645 			putnext(tcp->tcp_rq, mp);
6646 	}
6647 }
6648 
6649 /*
6650  * Diagnostic routine used to return a string associated with the tcp state.
6651  * Note that if the caller does not supply a buffer, it will use an internal
6652  * static string.  This means that if multiple threads call this function at
6653  * the same time, output can be corrupted...  Note also that this function
6654  * does not check the size of the supplied buffer.  The caller has to make
6655  * sure that it is big enough.
6656  */
6657 static char *
6658 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6659 {
6660 	char		buf1[30];
6661 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6662 	char		*buf;
6663 	char		*cp;
6664 	in6_addr_t	local, remote;
6665 	char		local_addrbuf[INET6_ADDRSTRLEN];
6666 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6667 
6668 	if (sup_buf != NULL)
6669 		buf = sup_buf;
6670 	else
6671 		buf = priv_buf;
6672 
6673 	if (tcp == NULL)
6674 		return ("NULL_TCP");
6675 	switch (tcp->tcp_state) {
6676 	case TCPS_CLOSED:
6677 		cp = "TCP_CLOSED";
6678 		break;
6679 	case TCPS_IDLE:
6680 		cp = "TCP_IDLE";
6681 		break;
6682 	case TCPS_BOUND:
6683 		cp = "TCP_BOUND";
6684 		break;
6685 	case TCPS_LISTEN:
6686 		cp = "TCP_LISTEN";
6687 		break;
6688 	case TCPS_SYN_SENT:
6689 		cp = "TCP_SYN_SENT";
6690 		break;
6691 	case TCPS_SYN_RCVD:
6692 		cp = "TCP_SYN_RCVD";
6693 		break;
6694 	case TCPS_ESTABLISHED:
6695 		cp = "TCP_ESTABLISHED";
6696 		break;
6697 	case TCPS_CLOSE_WAIT:
6698 		cp = "TCP_CLOSE_WAIT";
6699 		break;
6700 	case TCPS_FIN_WAIT_1:
6701 		cp = "TCP_FIN_WAIT_1";
6702 		break;
6703 	case TCPS_CLOSING:
6704 		cp = "TCP_CLOSING";
6705 		break;
6706 	case TCPS_LAST_ACK:
6707 		cp = "TCP_LAST_ACK";
6708 		break;
6709 	case TCPS_FIN_WAIT_2:
6710 		cp = "TCP_FIN_WAIT_2";
6711 		break;
6712 	case TCPS_TIME_WAIT:
6713 		cp = "TCP_TIME_WAIT";
6714 		break;
6715 	default:
6716 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6717 		cp = buf1;
6718 		break;
6719 	}
6720 	switch (format) {
6721 	case DISP_ADDR_AND_PORT:
6722 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6723 			/*
6724 			 * Note that we use the remote address in the tcp_b
6725 			 * structure.  This means that it will print out
6726 			 * the real destination address, not the next hop's
6727 			 * address if source routing is used.
6728 			 */
6729 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6730 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6731 
6732 		} else {
6733 			local = tcp->tcp_ip_src_v6;
6734 			remote = tcp->tcp_remote_v6;
6735 		}
6736 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6737 		    sizeof (local_addrbuf));
6738 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6739 		    sizeof (remote_addrbuf));
6740 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6741 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6742 		    ntohs(tcp->tcp_fport), cp);
6743 		break;
6744 	case DISP_PORT_ONLY:
6745 	default:
6746 		(void) mi_sprintf(buf, "[%u, %u] %s",
6747 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6748 		break;
6749 	}
6750 
6751 	return (buf);
6752 }
6753 
6754 /*
6755  * Called via squeue to get on to eager's perimeter. It sends a
6756  * TH_RST if eager is in the fanout table. The listener wants the
6757  * eager to disappear either by means of tcp_eager_blowoff() or
6758  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6759  * called (via squeue) if the eager cannot be inserted in the
6760  * fanout table in tcp_conn_request().
6761  */
6762 /* ARGSUSED */
6763 void
6764 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6765 {
6766 	conn_t	*econnp = (conn_t *)arg;
6767 	tcp_t	*eager = econnp->conn_tcp;
6768 	tcp_t	*listener = eager->tcp_listener;
6769 	tcp_stack_t	*tcps = eager->tcp_tcps;
6770 
6771 	/*
6772 	 * We could be called because listener is closing. Since
6773 	 * the eager is using listener's queue's, its not safe.
6774 	 * Better use the default queue just to send the TH_RST
6775 	 * out.
6776 	 */
6777 	ASSERT(tcps->tcps_g_q != NULL);
6778 	eager->tcp_rq = tcps->tcps_g_q;
6779 	eager->tcp_wq = WR(tcps->tcps_g_q);
6780 
6781 	/*
6782 	 * An eager's conn_fanout will be NULL if it's a duplicate
6783 	 * for an existing 4-tuples in the conn fanout table.
6784 	 * We don't want to send an RST out in such case.
6785 	 */
6786 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6787 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6788 		    eager, eager->tcp_snxt, 0, TH_RST);
6789 	}
6790 
6791 	/* We are here because listener wants this eager gone */
6792 	if (listener != NULL) {
6793 		mutex_enter(&listener->tcp_eager_lock);
6794 		tcp_eager_unlink(eager);
6795 		if (eager->tcp_tconnind_started) {
6796 			/*
6797 			 * The eager has sent a conn_ind up to the
6798 			 * listener but listener decides to close
6799 			 * instead. We need to drop the extra ref
6800 			 * placed on eager in tcp_rput_data() before
6801 			 * sending the conn_ind to listener.
6802 			 */
6803 			CONN_DEC_REF(econnp);
6804 		}
6805 		mutex_exit(&listener->tcp_eager_lock);
6806 		CONN_DEC_REF(listener->tcp_connp);
6807 	}
6808 
6809 	if (eager->tcp_state > TCPS_BOUND)
6810 		tcp_close_detached(eager);
6811 }
6812 
6813 /*
6814  * Reset any eager connection hanging off this listener marked
6815  * with 'seqnum' and then reclaim it's resources.
6816  */
6817 static boolean_t
6818 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6819 {
6820 	tcp_t	*eager;
6821 	mblk_t 	*mp;
6822 	tcp_stack_t	*tcps = listener->tcp_tcps;
6823 
6824 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6825 	eager = listener;
6826 	mutex_enter(&listener->tcp_eager_lock);
6827 	do {
6828 		eager = eager->tcp_eager_next_q;
6829 		if (eager == NULL) {
6830 			mutex_exit(&listener->tcp_eager_lock);
6831 			return (B_FALSE);
6832 		}
6833 	} while (eager->tcp_conn_req_seqnum != seqnum);
6834 
6835 	if (eager->tcp_closemp_used) {
6836 		mutex_exit(&listener->tcp_eager_lock);
6837 		return (B_TRUE);
6838 	}
6839 	eager->tcp_closemp_used = B_TRUE;
6840 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6841 	CONN_INC_REF(eager->tcp_connp);
6842 	mutex_exit(&listener->tcp_eager_lock);
6843 	mp = &eager->tcp_closemp;
6844 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6845 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6846 	return (B_TRUE);
6847 }
6848 
6849 /*
6850  * Reset any eager connection hanging off this listener
6851  * and then reclaim it's resources.
6852  */
6853 static void
6854 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6855 {
6856 	tcp_t	*eager;
6857 	mblk_t	*mp;
6858 	tcp_stack_t	*tcps = listener->tcp_tcps;
6859 
6860 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6861 
6862 	if (!q0_only) {
6863 		/* First cleanup q */
6864 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6865 		eager = listener->tcp_eager_next_q;
6866 		while (eager != NULL) {
6867 			if (!eager->tcp_closemp_used) {
6868 				eager->tcp_closemp_used = B_TRUE;
6869 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6870 				CONN_INC_REF(eager->tcp_connp);
6871 				mp = &eager->tcp_closemp;
6872 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6873 				    tcp_eager_kill, eager->tcp_connp,
6874 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6875 			}
6876 			eager = eager->tcp_eager_next_q;
6877 		}
6878 	}
6879 	/* Then cleanup q0 */
6880 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6881 	eager = listener->tcp_eager_next_q0;
6882 	while (eager != listener) {
6883 		if (!eager->tcp_closemp_used) {
6884 			eager->tcp_closemp_used = B_TRUE;
6885 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6886 			CONN_INC_REF(eager->tcp_connp);
6887 			mp = &eager->tcp_closemp;
6888 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6889 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6890 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6891 		}
6892 		eager = eager->tcp_eager_next_q0;
6893 	}
6894 }
6895 
6896 /*
6897  * If we are an eager connection hanging off a listener that hasn't
6898  * formally accepted the connection yet, get off his list and blow off
6899  * any data that we have accumulated.
6900  */
6901 static void
6902 tcp_eager_unlink(tcp_t *tcp)
6903 {
6904 	tcp_t	*listener = tcp->tcp_listener;
6905 
6906 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6907 	ASSERT(listener != NULL);
6908 	if (tcp->tcp_eager_next_q0 != NULL) {
6909 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6910 
6911 		/* Remove the eager tcp from q0 */
6912 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6913 		    tcp->tcp_eager_prev_q0;
6914 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6915 		    tcp->tcp_eager_next_q0;
6916 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6917 		listener->tcp_conn_req_cnt_q0--;
6918 
6919 		tcp->tcp_eager_next_q0 = NULL;
6920 		tcp->tcp_eager_prev_q0 = NULL;
6921 
6922 		/*
6923 		 * Take the eager out, if it is in the list of droppable
6924 		 * eagers.
6925 		 */
6926 		MAKE_UNDROPPABLE(tcp);
6927 
6928 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6929 			/* we have timed out before */
6930 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6931 			listener->tcp_syn_rcvd_timeout--;
6932 		}
6933 	} else {
6934 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6935 		tcp_t	*prev = NULL;
6936 
6937 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6938 			if (tcpp[0] == tcp) {
6939 				if (listener->tcp_eager_last_q == tcp) {
6940 					/*
6941 					 * If we are unlinking the last
6942 					 * element on the list, adjust
6943 					 * tail pointer. Set tail pointer
6944 					 * to nil when list is empty.
6945 					 */
6946 					ASSERT(tcp->tcp_eager_next_q == NULL);
6947 					if (listener->tcp_eager_last_q ==
6948 					    listener->tcp_eager_next_q) {
6949 						listener->tcp_eager_last_q =
6950 						    NULL;
6951 					} else {
6952 						/*
6953 						 * We won't get here if there
6954 						 * is only one eager in the
6955 						 * list.
6956 						 */
6957 						ASSERT(prev != NULL);
6958 						listener->tcp_eager_last_q =
6959 						    prev;
6960 					}
6961 				}
6962 				tcpp[0] = tcp->tcp_eager_next_q;
6963 				tcp->tcp_eager_next_q = NULL;
6964 				tcp->tcp_eager_last_q = NULL;
6965 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6966 				listener->tcp_conn_req_cnt_q--;
6967 				break;
6968 			}
6969 			prev = tcpp[0];
6970 		}
6971 	}
6972 	tcp->tcp_listener = NULL;
6973 }
6974 
6975 /* Shorthand to generate and send TPI error acks to our client */
6976 static void
6977 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
6978 {
6979 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
6980 		putnext(tcp->tcp_rq, mp);
6981 }
6982 
6983 /* Shorthand to generate and send TPI error acks to our client */
6984 static void
6985 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
6986     int t_error, int sys_error)
6987 {
6988 	struct T_error_ack	*teackp;
6989 
6990 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
6991 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
6992 		teackp = (struct T_error_ack *)mp->b_rptr;
6993 		teackp->ERROR_prim = primitive;
6994 		teackp->TLI_error = t_error;
6995 		teackp->UNIX_error = sys_error;
6996 		putnext(tcp->tcp_rq, mp);
6997 	}
6998 }
6999 
7000 /*
7001  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7002  * but instead the code relies on:
7003  * - the fact that the address of the array and its size never changes
7004  * - the atomic assignment of the elements of the array
7005  */
7006 /* ARGSUSED */
7007 static int
7008 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7009 {
7010 	int i;
7011 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7012 
7013 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7014 		if (tcps->tcps_g_epriv_ports[i] != 0)
7015 			(void) mi_mpprintf(mp, "%d ",
7016 			    tcps->tcps_g_epriv_ports[i]);
7017 	}
7018 	return (0);
7019 }
7020 
7021 /*
7022  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7023  * threads from changing it at the same time.
7024  */
7025 /* ARGSUSED */
7026 static int
7027 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7028     cred_t *cr)
7029 {
7030 	long	new_value;
7031 	int	i;
7032 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7033 
7034 	/*
7035 	 * Fail the request if the new value does not lie within the
7036 	 * port number limits.
7037 	 */
7038 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7039 	    new_value <= 0 || new_value >= 65536) {
7040 		return (EINVAL);
7041 	}
7042 
7043 	mutex_enter(&tcps->tcps_epriv_port_lock);
7044 	/* Check if the value is already in the list */
7045 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7046 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7047 			mutex_exit(&tcps->tcps_epriv_port_lock);
7048 			return (EEXIST);
7049 		}
7050 	}
7051 	/* Find an empty slot */
7052 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7053 		if (tcps->tcps_g_epriv_ports[i] == 0)
7054 			break;
7055 	}
7056 	if (i == tcps->tcps_g_num_epriv_ports) {
7057 		mutex_exit(&tcps->tcps_epriv_port_lock);
7058 		return (EOVERFLOW);
7059 	}
7060 	/* Set the new value */
7061 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7062 	mutex_exit(&tcps->tcps_epriv_port_lock);
7063 	return (0);
7064 }
7065 
7066 /*
7067  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7068  * threads from changing it at the same time.
7069  */
7070 /* ARGSUSED */
7071 static int
7072 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7073     cred_t *cr)
7074 {
7075 	long	new_value;
7076 	int	i;
7077 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7078 
7079 	/*
7080 	 * Fail the request if the new value does not lie within the
7081 	 * port number limits.
7082 	 */
7083 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7084 	    new_value >= 65536) {
7085 		return (EINVAL);
7086 	}
7087 
7088 	mutex_enter(&tcps->tcps_epriv_port_lock);
7089 	/* Check that the value is already in the list */
7090 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7091 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7092 			break;
7093 	}
7094 	if (i == tcps->tcps_g_num_epriv_ports) {
7095 		mutex_exit(&tcps->tcps_epriv_port_lock);
7096 		return (ESRCH);
7097 	}
7098 	/* Clear the value */
7099 	tcps->tcps_g_epriv_ports[i] = 0;
7100 	mutex_exit(&tcps->tcps_epriv_port_lock);
7101 	return (0);
7102 }
7103 
7104 /* Return the TPI/TLI equivalent of our current tcp_state */
7105 static int
7106 tcp_tpistate(tcp_t *tcp)
7107 {
7108 	switch (tcp->tcp_state) {
7109 	case TCPS_IDLE:
7110 		return (TS_UNBND);
7111 	case TCPS_LISTEN:
7112 		/*
7113 		 * Return whether there are outstanding T_CONN_IND waiting
7114 		 * for the matching T_CONN_RES. Therefore don't count q0.
7115 		 */
7116 		if (tcp->tcp_conn_req_cnt_q > 0)
7117 			return (TS_WRES_CIND);
7118 		else
7119 			return (TS_IDLE);
7120 	case TCPS_BOUND:
7121 		return (TS_IDLE);
7122 	case TCPS_SYN_SENT:
7123 		return (TS_WCON_CREQ);
7124 	case TCPS_SYN_RCVD:
7125 		/*
7126 		 * Note: assumption: this has to the active open SYN_RCVD.
7127 		 * The passive instance is detached in SYN_RCVD stage of
7128 		 * incoming connection processing so we cannot get request
7129 		 * for T_info_ack on it.
7130 		 */
7131 		return (TS_WACK_CRES);
7132 	case TCPS_ESTABLISHED:
7133 		return (TS_DATA_XFER);
7134 	case TCPS_CLOSE_WAIT:
7135 		return (TS_WREQ_ORDREL);
7136 	case TCPS_FIN_WAIT_1:
7137 		return (TS_WIND_ORDREL);
7138 	case TCPS_FIN_WAIT_2:
7139 		return (TS_WIND_ORDREL);
7140 
7141 	case TCPS_CLOSING:
7142 	case TCPS_LAST_ACK:
7143 	case TCPS_TIME_WAIT:
7144 	case TCPS_CLOSED:
7145 		/*
7146 		 * Following TS_WACK_DREQ7 is a rendition of "not
7147 		 * yet TS_IDLE" TPI state. There is no best match to any
7148 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7149 		 * choose a value chosen that will map to TLI/XTI level
7150 		 * state of TSTATECHNG (state is process of changing) which
7151 		 * captures what this dummy state represents.
7152 		 */
7153 		return (TS_WACK_DREQ7);
7154 	default:
7155 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7156 		    tcp->tcp_state, tcp_display(tcp, NULL,
7157 		    DISP_PORT_ONLY));
7158 		return (TS_UNBND);
7159 	}
7160 }
7161 
7162 static void
7163 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7164 {
7165 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7166 
7167 	if (tcp->tcp_family == AF_INET6)
7168 		*tia = tcp_g_t_info_ack_v6;
7169 	else
7170 		*tia = tcp_g_t_info_ack;
7171 	tia->CURRENT_state = tcp_tpistate(tcp);
7172 	tia->OPT_size = tcp_max_optsize;
7173 	if (tcp->tcp_mss == 0) {
7174 		/* Not yet set - tcp_open does not set mss */
7175 		if (tcp->tcp_ipversion == IPV4_VERSION)
7176 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7177 		else
7178 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7179 	} else {
7180 		tia->TIDU_size = tcp->tcp_mss;
7181 	}
7182 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7183 }
7184 
7185 static void
7186 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7187     t_uscalar_t cap_bits1)
7188 {
7189 	tcap->CAP_bits1 = 0;
7190 
7191 	if (cap_bits1 & TC1_INFO) {
7192 		tcp_copy_info(&tcap->INFO_ack, tcp);
7193 		tcap->CAP_bits1 |= TC1_INFO;
7194 	}
7195 
7196 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7197 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7198 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7199 	}
7200 
7201 }
7202 
7203 /*
7204  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7205  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7206  * tcp_g_t_info_ack.  The current state of the stream is copied from
7207  * tcp_state.
7208  */
7209 static void
7210 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7211 {
7212 	t_uscalar_t		cap_bits1;
7213 	struct T_capability_ack	*tcap;
7214 
7215 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7216 		freemsg(mp);
7217 		return;
7218 	}
7219 
7220 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7221 
7222 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7223 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7224 	if (mp == NULL)
7225 		return;
7226 
7227 	tcap = (struct T_capability_ack *)mp->b_rptr;
7228 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7229 
7230 	putnext(tcp->tcp_rq, mp);
7231 }
7232 
7233 /*
7234  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7235  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7236  * The current state of the stream is copied from tcp_state.
7237  */
7238 static void
7239 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7240 {
7241 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7242 	    T_INFO_ACK);
7243 	if (!mp) {
7244 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7245 		return;
7246 	}
7247 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7248 	putnext(tcp->tcp_rq, mp);
7249 }
7250 
7251 /* Respond to the TPI addr request */
7252 static void
7253 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7254 {
7255 	sin_t	*sin;
7256 	mblk_t	*ackmp;
7257 	struct T_addr_ack *taa;
7258 
7259 	/* Make it large enough for worst case */
7260 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7261 	    2 * sizeof (sin6_t), 1);
7262 	if (ackmp == NULL) {
7263 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7264 		return;
7265 	}
7266 
7267 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7268 		tcp_addr_req_ipv6(tcp, ackmp);
7269 		return;
7270 	}
7271 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7272 
7273 	bzero(taa, sizeof (struct T_addr_ack));
7274 	ackmp->b_wptr = (uchar_t *)&taa[1];
7275 
7276 	taa->PRIM_type = T_ADDR_ACK;
7277 	ackmp->b_datap->db_type = M_PCPROTO;
7278 
7279 	/*
7280 	 * Note: Following code assumes 32 bit alignment of basic
7281 	 * data structures like sin_t and struct T_addr_ack.
7282 	 */
7283 	if (tcp->tcp_state >= TCPS_BOUND) {
7284 		/*
7285 		 * Fill in local address
7286 		 */
7287 		taa->LOCADDR_length = sizeof (sin_t);
7288 		taa->LOCADDR_offset = sizeof (*taa);
7289 
7290 		sin = (sin_t *)&taa[1];
7291 
7292 		/* Fill zeroes and then intialize non-zero fields */
7293 		*sin = sin_null;
7294 
7295 		sin->sin_family = AF_INET;
7296 
7297 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7298 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7299 
7300 		ackmp->b_wptr = (uchar_t *)&sin[1];
7301 
7302 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7303 			/*
7304 			 * Fill in Remote address
7305 			 */
7306 			taa->REMADDR_length = sizeof (sin_t);
7307 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7308 			    taa->LOCADDR_length);
7309 
7310 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7311 			*sin = sin_null;
7312 			sin->sin_family = AF_INET;
7313 			sin->sin_addr.s_addr = tcp->tcp_remote;
7314 			sin->sin_port = tcp->tcp_fport;
7315 
7316 			ackmp->b_wptr = (uchar_t *)&sin[1];
7317 		}
7318 	}
7319 	putnext(tcp->tcp_rq, ackmp);
7320 }
7321 
7322 /* Assumes that tcp_addr_req gets enough space and alignment */
7323 static void
7324 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7325 {
7326 	sin6_t	*sin6;
7327 	struct T_addr_ack *taa;
7328 
7329 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7330 	ASSERT(OK_32PTR(ackmp->b_rptr));
7331 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7332 	    2 * sizeof (sin6_t));
7333 
7334 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7335 
7336 	bzero(taa, sizeof (struct T_addr_ack));
7337 	ackmp->b_wptr = (uchar_t *)&taa[1];
7338 
7339 	taa->PRIM_type = T_ADDR_ACK;
7340 	ackmp->b_datap->db_type = M_PCPROTO;
7341 
7342 	/*
7343 	 * Note: Following code assumes 32 bit alignment of basic
7344 	 * data structures like sin6_t and struct T_addr_ack.
7345 	 */
7346 	if (tcp->tcp_state >= TCPS_BOUND) {
7347 		/*
7348 		 * Fill in local address
7349 		 */
7350 		taa->LOCADDR_length = sizeof (sin6_t);
7351 		taa->LOCADDR_offset = sizeof (*taa);
7352 
7353 		sin6 = (sin6_t *)&taa[1];
7354 		*sin6 = sin6_null;
7355 
7356 		sin6->sin6_family = AF_INET6;
7357 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7358 		sin6->sin6_port = tcp->tcp_lport;
7359 
7360 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7361 
7362 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7363 			/*
7364 			 * Fill in Remote address
7365 			 */
7366 			taa->REMADDR_length = sizeof (sin6_t);
7367 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7368 			    taa->LOCADDR_length);
7369 
7370 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7371 			*sin6 = sin6_null;
7372 			sin6->sin6_family = AF_INET6;
7373 			sin6->sin6_flowinfo =
7374 			    tcp->tcp_ip6h->ip6_vcf &
7375 			    ~IPV6_VERS_AND_FLOW_MASK;
7376 			sin6->sin6_addr = tcp->tcp_remote_v6;
7377 			sin6->sin6_port = tcp->tcp_fport;
7378 
7379 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7380 		}
7381 	}
7382 	putnext(tcp->tcp_rq, ackmp);
7383 }
7384 
7385 /*
7386  * Handle reinitialization of a tcp structure.
7387  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7388  */
7389 static void
7390 tcp_reinit(tcp_t *tcp)
7391 {
7392 	mblk_t	*mp;
7393 	int 	err;
7394 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7395 
7396 	TCP_STAT(tcps, tcp_reinit_calls);
7397 
7398 	/* tcp_reinit should never be called for detached tcp_t's */
7399 	ASSERT(tcp->tcp_listener == NULL);
7400 	ASSERT((tcp->tcp_family == AF_INET &&
7401 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7402 	    (tcp->tcp_family == AF_INET6 &&
7403 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7404 	    tcp->tcp_ipversion == IPV6_VERSION)));
7405 
7406 	/* Cancel outstanding timers */
7407 	tcp_timers_stop(tcp);
7408 
7409 	/*
7410 	 * Reset everything in the state vector, after updating global
7411 	 * MIB data from instance counters.
7412 	 */
7413 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7414 	tcp->tcp_ibsegs = 0;
7415 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7416 	tcp->tcp_obsegs = 0;
7417 
7418 	tcp_close_mpp(&tcp->tcp_xmit_head);
7419 	if (tcp->tcp_snd_zcopy_aware)
7420 		tcp_zcopy_notify(tcp);
7421 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7422 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7423 	mutex_enter(&tcp->tcp_non_sq_lock);
7424 	if (tcp->tcp_flow_stopped &&
7425 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7426 		tcp_clrqfull(tcp);
7427 	}
7428 	mutex_exit(&tcp->tcp_non_sq_lock);
7429 	tcp_close_mpp(&tcp->tcp_reass_head);
7430 	tcp->tcp_reass_tail = NULL;
7431 	if (tcp->tcp_rcv_list != NULL) {
7432 		/* Free b_next chain */
7433 		tcp_close_mpp(&tcp->tcp_rcv_list);
7434 		tcp->tcp_rcv_last_head = NULL;
7435 		tcp->tcp_rcv_last_tail = NULL;
7436 		tcp->tcp_rcv_cnt = 0;
7437 	}
7438 	tcp->tcp_rcv_last_tail = NULL;
7439 
7440 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7441 		freemsg(mp);
7442 		tcp->tcp_urp_mp = NULL;
7443 	}
7444 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7445 		freemsg(mp);
7446 		tcp->tcp_urp_mark_mp = NULL;
7447 	}
7448 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7449 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7450 		freeb(tcp->tcp_fused_sigurg_mp);
7451 		tcp->tcp_fused_sigurg_mp = NULL;
7452 	}
7453 	if (tcp->tcp_ordrel_mp != NULL) {
7454 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7455 		freeb(tcp->tcp_ordrel_mp);
7456 		tcp->tcp_ordrel_mp = NULL;
7457 	}
7458 
7459 	/*
7460 	 * Following is a union with two members which are
7461 	 * identical types and size so the following cleanup
7462 	 * is enough.
7463 	 */
7464 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7465 
7466 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7467 
7468 	/*
7469 	 * The connection can't be on the tcp_time_wait_head list
7470 	 * since it is not detached.
7471 	 */
7472 	ASSERT(tcp->tcp_time_wait_next == NULL);
7473 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7474 	ASSERT(tcp->tcp_time_wait_expire == 0);
7475 
7476 	if (tcp->tcp_kssl_pending) {
7477 		tcp->tcp_kssl_pending = B_FALSE;
7478 
7479 		/* Don't reset if the initialized by bind. */
7480 		if (tcp->tcp_kssl_ent != NULL) {
7481 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7482 			    KSSL_NO_PROXY);
7483 		}
7484 	}
7485 	if (tcp->tcp_kssl_ctx != NULL) {
7486 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7487 		tcp->tcp_kssl_ctx = NULL;
7488 	}
7489 
7490 	/*
7491 	 * Reset/preserve other values
7492 	 */
7493 	tcp_reinit_values(tcp);
7494 	ipcl_hash_remove(tcp->tcp_connp);
7495 	conn_delete_ire(tcp->tcp_connp, NULL);
7496 	tcp_ipsec_cleanup(tcp);
7497 
7498 	if (tcp->tcp_conn_req_max != 0) {
7499 		/*
7500 		 * This is the case when a TLI program uses the same
7501 		 * transport end point to accept a connection.  This
7502 		 * makes the TCP both a listener and acceptor.  When
7503 		 * this connection is closed, we need to set the state
7504 		 * back to TCPS_LISTEN.  Make sure that the eager list
7505 		 * is reinitialized.
7506 		 *
7507 		 * Note that this stream is still bound to the four
7508 		 * tuples of the previous connection in IP.  If a new
7509 		 * SYN with different foreign address comes in, IP will
7510 		 * not find it and will send it to the global queue.  In
7511 		 * the global queue, TCP will do a tcp_lookup_listener()
7512 		 * to find this stream.  This works because this stream
7513 		 * is only removed from connected hash.
7514 		 *
7515 		 */
7516 		tcp->tcp_state = TCPS_LISTEN;
7517 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7518 		tcp->tcp_eager_next_drop_q0 = tcp;
7519 		tcp->tcp_eager_prev_drop_q0 = tcp;
7520 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7521 		if (tcp->tcp_family == AF_INET6) {
7522 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7523 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7524 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7525 		} else {
7526 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7527 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7528 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7529 		}
7530 	} else {
7531 		tcp->tcp_state = TCPS_BOUND;
7532 	}
7533 
7534 	/*
7535 	 * Initialize to default values
7536 	 * Can't fail since enough header template space already allocated
7537 	 * at open().
7538 	 */
7539 	err = tcp_init_values(tcp);
7540 	ASSERT(err == 0);
7541 	/* Restore state in tcp_tcph */
7542 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7543 	if (tcp->tcp_ipversion == IPV4_VERSION)
7544 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7545 	else
7546 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7547 	/*
7548 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7549 	 * since the lookup funcs can only lookup on tcp_t
7550 	 */
7551 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7552 
7553 	ASSERT(tcp->tcp_ptpbhn != NULL);
7554 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7555 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7556 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7557 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7558 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7559 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7560 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7561 }
7562 
7563 /*
7564  * Force values to zero that need be zero.
7565  * Do not touch values asociated with the BOUND or LISTEN state
7566  * since the connection will end up in that state after the reinit.
7567  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7568  * structure!
7569  */
7570 static void
7571 tcp_reinit_values(tcp)
7572 	tcp_t *tcp;
7573 {
7574 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7575 
7576 #ifndef	lint
7577 #define	DONTCARE(x)
7578 #define	PRESERVE(x)
7579 #else
7580 #define	DONTCARE(x)	((x) = (x))
7581 #define	PRESERVE(x)	((x) = (x))
7582 #endif	/* lint */
7583 
7584 	PRESERVE(tcp->tcp_bind_hash_port);
7585 	PRESERVE(tcp->tcp_bind_hash);
7586 	PRESERVE(tcp->tcp_ptpbhn);
7587 	PRESERVE(tcp->tcp_acceptor_hash);
7588 	PRESERVE(tcp->tcp_ptpahn);
7589 
7590 	/* Should be ASSERT NULL on these with new code! */
7591 	ASSERT(tcp->tcp_time_wait_next == NULL);
7592 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7593 	ASSERT(tcp->tcp_time_wait_expire == 0);
7594 	PRESERVE(tcp->tcp_state);
7595 	PRESERVE(tcp->tcp_rq);
7596 	PRESERVE(tcp->tcp_wq);
7597 
7598 	ASSERT(tcp->tcp_xmit_head == NULL);
7599 	ASSERT(tcp->tcp_xmit_last == NULL);
7600 	ASSERT(tcp->tcp_unsent == 0);
7601 	ASSERT(tcp->tcp_xmit_tail == NULL);
7602 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7603 
7604 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7605 	tcp->tcp_suna = 0;			/* Displayed in mib */
7606 	tcp->tcp_swnd = 0;
7607 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7608 
7609 	ASSERT(tcp->tcp_ibsegs == 0);
7610 	ASSERT(tcp->tcp_obsegs == 0);
7611 
7612 	if (tcp->tcp_iphc != NULL) {
7613 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7614 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7615 	}
7616 
7617 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7618 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7619 	DONTCARE(tcp->tcp_ipha);
7620 	DONTCARE(tcp->tcp_ip6h);
7621 	DONTCARE(tcp->tcp_ip_hdr_len);
7622 	DONTCARE(tcp->tcp_tcph);
7623 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7624 	tcp->tcp_valid_bits = 0;
7625 
7626 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7627 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7628 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7629 	tcp->tcp_last_rcv_lbolt = 0;
7630 
7631 	tcp->tcp_init_cwnd = 0;
7632 
7633 	tcp->tcp_urp_last_valid = 0;
7634 	tcp->tcp_hard_binding = 0;
7635 	tcp->tcp_hard_bound = 0;
7636 	PRESERVE(tcp->tcp_cred);
7637 	PRESERVE(tcp->tcp_cpid);
7638 	PRESERVE(tcp->tcp_open_time);
7639 	PRESERVE(tcp->tcp_exclbind);
7640 
7641 	tcp->tcp_fin_acked = 0;
7642 	tcp->tcp_fin_rcvd = 0;
7643 	tcp->tcp_fin_sent = 0;
7644 	tcp->tcp_ordrel_done = 0;
7645 
7646 	tcp->tcp_debug = 0;
7647 	tcp->tcp_dontroute = 0;
7648 	tcp->tcp_broadcast = 0;
7649 
7650 	tcp->tcp_useloopback = 0;
7651 	tcp->tcp_reuseaddr = 0;
7652 	tcp->tcp_oobinline = 0;
7653 	tcp->tcp_dgram_errind = 0;
7654 
7655 	tcp->tcp_detached = 0;
7656 	tcp->tcp_bind_pending = 0;
7657 	tcp->tcp_unbind_pending = 0;
7658 
7659 	tcp->tcp_snd_ws_ok = B_FALSE;
7660 	tcp->tcp_snd_ts_ok = B_FALSE;
7661 	tcp->tcp_linger = 0;
7662 	tcp->tcp_ka_enabled = 0;
7663 	tcp->tcp_zero_win_probe = 0;
7664 
7665 	tcp->tcp_loopback = 0;
7666 	tcp->tcp_refuse = 0;
7667 	tcp->tcp_localnet = 0;
7668 	tcp->tcp_syn_defense = 0;
7669 	tcp->tcp_set_timer = 0;
7670 
7671 	tcp->tcp_active_open = 0;
7672 	tcp->tcp_rexmit = B_FALSE;
7673 	tcp->tcp_xmit_zc_clean = B_FALSE;
7674 
7675 	tcp->tcp_snd_sack_ok = B_FALSE;
7676 	PRESERVE(tcp->tcp_recvdstaddr);
7677 	tcp->tcp_hwcksum = B_FALSE;
7678 
7679 	tcp->tcp_ire_ill_check_done = B_FALSE;
7680 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7681 
7682 	tcp->tcp_mdt = B_FALSE;
7683 	tcp->tcp_mdt_hdr_head = 0;
7684 	tcp->tcp_mdt_hdr_tail = 0;
7685 
7686 	tcp->tcp_conn_def_q0 = 0;
7687 	tcp->tcp_ip_forward_progress = B_FALSE;
7688 	tcp->tcp_anon_priv_bind = 0;
7689 	tcp->tcp_ecn_ok = B_FALSE;
7690 
7691 	tcp->tcp_cwr = B_FALSE;
7692 	tcp->tcp_ecn_echo_on = B_FALSE;
7693 
7694 	if (tcp->tcp_sack_info != NULL) {
7695 		if (tcp->tcp_notsack_list != NULL) {
7696 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7697 		}
7698 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7699 		tcp->tcp_sack_info = NULL;
7700 	}
7701 
7702 	tcp->tcp_rcv_ws = 0;
7703 	tcp->tcp_snd_ws = 0;
7704 	tcp->tcp_ts_recent = 0;
7705 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7706 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7707 	tcp->tcp_if_mtu = 0;
7708 
7709 	ASSERT(tcp->tcp_reass_head == NULL);
7710 	ASSERT(tcp->tcp_reass_tail == NULL);
7711 
7712 	tcp->tcp_cwnd_cnt = 0;
7713 
7714 	ASSERT(tcp->tcp_rcv_list == NULL);
7715 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7716 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7717 	ASSERT(tcp->tcp_rcv_cnt == 0);
7718 
7719 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7720 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7721 	tcp->tcp_csuna = 0;
7722 
7723 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7724 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7725 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7726 	tcp->tcp_rtt_update = 0;
7727 
7728 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7729 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7730 
7731 	tcp->tcp_rack = 0;			/* Displayed in mib */
7732 	tcp->tcp_rack_cnt = 0;
7733 	tcp->tcp_rack_cur_max = 0;
7734 	tcp->tcp_rack_abs_max = 0;
7735 
7736 	tcp->tcp_max_swnd = 0;
7737 
7738 	ASSERT(tcp->tcp_listener == NULL);
7739 
7740 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7741 
7742 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7743 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7744 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7745 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7746 
7747 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7748 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7749 	PRESERVE(tcp->tcp_conn_req_max);
7750 	PRESERVE(tcp->tcp_conn_req_seqnum);
7751 
7752 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7753 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7754 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7755 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7756 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7757 
7758 	tcp->tcp_lingertime = 0;
7759 
7760 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7761 	ASSERT(tcp->tcp_urp_mp == NULL);
7762 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7763 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7764 
7765 	ASSERT(tcp->tcp_eager_next_q == NULL);
7766 	ASSERT(tcp->tcp_eager_last_q == NULL);
7767 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7768 	    tcp->tcp_eager_prev_q0 == NULL) ||
7769 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7770 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7771 
7772 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7773 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7774 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7775 
7776 	tcp->tcp_client_errno = 0;
7777 
7778 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7779 
7780 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7781 
7782 	PRESERVE(tcp->tcp_bound_source_v6);
7783 	tcp->tcp_last_sent_len = 0;
7784 	tcp->tcp_dupack_cnt = 0;
7785 
7786 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7787 	PRESERVE(tcp->tcp_lport);
7788 
7789 	PRESERVE(tcp->tcp_acceptor_lockp);
7790 
7791 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7792 	PRESERVE(tcp->tcp_acceptor_id);
7793 	DONTCARE(tcp->tcp_ipsec_overhead);
7794 
7795 	PRESERVE(tcp->tcp_family);
7796 	if (tcp->tcp_family == AF_INET6) {
7797 		tcp->tcp_ipversion = IPV6_VERSION;
7798 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7799 	} else {
7800 		tcp->tcp_ipversion = IPV4_VERSION;
7801 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7802 	}
7803 
7804 	tcp->tcp_bound_if = 0;
7805 	tcp->tcp_ipv6_recvancillary = 0;
7806 	tcp->tcp_recvifindex = 0;
7807 	tcp->tcp_recvhops = 0;
7808 	tcp->tcp_closed = 0;
7809 	tcp->tcp_cleandeathtag = 0;
7810 	if (tcp->tcp_hopopts != NULL) {
7811 		mi_free(tcp->tcp_hopopts);
7812 		tcp->tcp_hopopts = NULL;
7813 		tcp->tcp_hopoptslen = 0;
7814 	}
7815 	ASSERT(tcp->tcp_hopoptslen == 0);
7816 	if (tcp->tcp_dstopts != NULL) {
7817 		mi_free(tcp->tcp_dstopts);
7818 		tcp->tcp_dstopts = NULL;
7819 		tcp->tcp_dstoptslen = 0;
7820 	}
7821 	ASSERT(tcp->tcp_dstoptslen == 0);
7822 	if (tcp->tcp_rtdstopts != NULL) {
7823 		mi_free(tcp->tcp_rtdstopts);
7824 		tcp->tcp_rtdstopts = NULL;
7825 		tcp->tcp_rtdstoptslen = 0;
7826 	}
7827 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7828 	if (tcp->tcp_rthdr != NULL) {
7829 		mi_free(tcp->tcp_rthdr);
7830 		tcp->tcp_rthdr = NULL;
7831 		tcp->tcp_rthdrlen = 0;
7832 	}
7833 	ASSERT(tcp->tcp_rthdrlen == 0);
7834 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7835 
7836 	/* Reset fusion-related fields */
7837 	tcp->tcp_fused = B_FALSE;
7838 	tcp->tcp_unfusable = B_FALSE;
7839 	tcp->tcp_fused_sigurg = B_FALSE;
7840 	tcp->tcp_direct_sockfs = B_FALSE;
7841 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7842 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7843 	tcp->tcp_loopback_peer = NULL;
7844 	tcp->tcp_fuse_rcv_hiwater = 0;
7845 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7846 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7847 
7848 	tcp->tcp_lso = B_FALSE;
7849 
7850 	tcp->tcp_in_ack_unsent = 0;
7851 	tcp->tcp_cork = B_FALSE;
7852 	tcp->tcp_tconnind_started = B_FALSE;
7853 
7854 	PRESERVE(tcp->tcp_squeue_bytes);
7855 
7856 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7857 	ASSERT(!tcp->tcp_kssl_pending);
7858 	PRESERVE(tcp->tcp_kssl_ent);
7859 
7860 	/* Sodirect */
7861 	tcp->tcp_sodirect = NULL;
7862 
7863 	tcp->tcp_closemp_used = B_FALSE;
7864 
7865 	PRESERVE(tcp->tcp_rsrv_mp);
7866 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7867 
7868 #ifdef DEBUG
7869 	DONTCARE(tcp->tcmp_stk[0]);
7870 #endif
7871 
7872 	PRESERVE(tcp->tcp_connid);
7873 
7874 
7875 #undef	DONTCARE
7876 #undef	PRESERVE
7877 }
7878 
7879 /*
7880  * Allocate necessary resources and initialize state vector.
7881  * Guaranteed not to fail so that when an error is returned,
7882  * the caller doesn't need to do any additional cleanup.
7883  */
7884 int
7885 tcp_init(tcp_t *tcp, queue_t *q)
7886 {
7887 	int	err;
7888 
7889 	tcp->tcp_rq = q;
7890 	tcp->tcp_wq = WR(q);
7891 	tcp->tcp_state = TCPS_IDLE;
7892 	if ((err = tcp_init_values(tcp)) != 0)
7893 		tcp_timers_stop(tcp);
7894 	return (err);
7895 }
7896 
7897 static int
7898 tcp_init_values(tcp_t *tcp)
7899 {
7900 	int	err;
7901 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7902 
7903 	ASSERT((tcp->tcp_family == AF_INET &&
7904 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7905 	    (tcp->tcp_family == AF_INET6 &&
7906 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7907 	    tcp->tcp_ipversion == IPV6_VERSION)));
7908 
7909 	/*
7910 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7911 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7912 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7913 	 * during first few transmissions of a connection as seen in slow
7914 	 * links.
7915 	 */
7916 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7917 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7918 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7919 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7920 	    tcps->tcps_conn_grace_period;
7921 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7922 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7923 	tcp->tcp_timer_backoff = 0;
7924 	tcp->tcp_ms_we_have_waited = 0;
7925 	tcp->tcp_last_recv_time = lbolt;
7926 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7927 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7928 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7929 
7930 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7931 
7932 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7933 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7934 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7935 	/*
7936 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7937 	 * passive open.
7938 	 */
7939 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7940 
7941 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7942 
7943 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7944 
7945 	tcp->tcp_mdt_hdr_head = 0;
7946 	tcp->tcp_mdt_hdr_tail = 0;
7947 
7948 	/* Reset fusion-related fields */
7949 	tcp->tcp_fused = B_FALSE;
7950 	tcp->tcp_unfusable = B_FALSE;
7951 	tcp->tcp_fused_sigurg = B_FALSE;
7952 	tcp->tcp_direct_sockfs = B_FALSE;
7953 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7954 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7955 	tcp->tcp_loopback_peer = NULL;
7956 	tcp->tcp_fuse_rcv_hiwater = 0;
7957 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7958 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7959 
7960 	/* Sodirect */
7961 	tcp->tcp_sodirect = NULL;
7962 
7963 	/* Initialize the header template */
7964 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7965 		err = tcp_header_init_ipv4(tcp);
7966 	} else {
7967 		err = tcp_header_init_ipv6(tcp);
7968 	}
7969 	if (err)
7970 		return (err);
7971 
7972 	/*
7973 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7974 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7975 	 */
7976 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7977 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
7978 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
7979 
7980 	tcp->tcp_cork = B_FALSE;
7981 	/*
7982 	 * Init the tcp_debug option.  This value determines whether TCP
7983 	 * calls strlog() to print out debug messages.  Doing this
7984 	 * initialization here means that this value is not inherited thru
7985 	 * tcp_reinit().
7986 	 */
7987 	tcp->tcp_debug = tcps->tcps_dbg;
7988 
7989 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
7990 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
7991 
7992 	return (0);
7993 }
7994 
7995 /*
7996  * Initialize the IPv4 header. Loses any record of any IP options.
7997  */
7998 static int
7999 tcp_header_init_ipv4(tcp_t *tcp)
8000 {
8001 	tcph_t		*tcph;
8002 	uint32_t	sum;
8003 	conn_t		*connp;
8004 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8005 
8006 	/*
8007 	 * This is a simple initialization. If there's
8008 	 * already a template, it should never be too small,
8009 	 * so reuse it.  Otherwise, allocate space for the new one.
8010 	 */
8011 	if (tcp->tcp_iphc == NULL) {
8012 		ASSERT(tcp->tcp_iphc_len == 0);
8013 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8014 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8015 		if (tcp->tcp_iphc == NULL) {
8016 			tcp->tcp_iphc_len = 0;
8017 			return (ENOMEM);
8018 		}
8019 	}
8020 
8021 	/* options are gone; may need a new label */
8022 	connp = tcp->tcp_connp;
8023 	connp->conn_mlp_type = mlptSingle;
8024 	connp->conn_ulp_labeled = !is_system_labeled();
8025 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8026 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8027 	tcp->tcp_ip6h = NULL;
8028 	tcp->tcp_ipversion = IPV4_VERSION;
8029 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8030 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8031 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8032 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8033 	tcp->tcp_ipha->ipha_version_and_hdr_length
8034 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8035 	tcp->tcp_ipha->ipha_ident = 0;
8036 
8037 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8038 	tcp->tcp_tos = 0;
8039 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8040 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8041 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8042 
8043 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8044 	tcp->tcp_tcph = tcph;
8045 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8046 	/*
8047 	 * IP wants our header length in the checksum field to
8048 	 * allow it to perform a single pseudo-header+checksum
8049 	 * calculation on behalf of TCP.
8050 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8051 	 */
8052 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8053 	sum = (sum >> 16) + (sum & 0xFFFF);
8054 	U16_TO_ABE16(sum, tcph->th_sum);
8055 	return (0);
8056 }
8057 
8058 /*
8059  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8060  */
8061 static int
8062 tcp_header_init_ipv6(tcp_t *tcp)
8063 {
8064 	tcph_t	*tcph;
8065 	uint32_t	sum;
8066 	conn_t	*connp;
8067 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8068 
8069 	/*
8070 	 * This is a simple initialization. If there's
8071 	 * already a template, it should never be too small,
8072 	 * so reuse it. Otherwise, allocate space for the new one.
8073 	 * Ensure that there is enough space to "downgrade" the tcp_t
8074 	 * to an IPv4 tcp_t. This requires having space for a full load
8075 	 * of IPv4 options, as well as a full load of TCP options
8076 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8077 	 * than a v6 header and a TCP header with a full load of TCP options
8078 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8079 	 * We want to avoid reallocation in the "downgraded" case when
8080 	 * processing outbound IPv4 options.
8081 	 */
8082 	if (tcp->tcp_iphc == NULL) {
8083 		ASSERT(tcp->tcp_iphc_len == 0);
8084 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8085 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8086 		if (tcp->tcp_iphc == NULL) {
8087 			tcp->tcp_iphc_len = 0;
8088 			return (ENOMEM);
8089 		}
8090 	}
8091 
8092 	/* options are gone; may need a new label */
8093 	connp = tcp->tcp_connp;
8094 	connp->conn_mlp_type = mlptSingle;
8095 	connp->conn_ulp_labeled = !is_system_labeled();
8096 
8097 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8098 	tcp->tcp_ipversion = IPV6_VERSION;
8099 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8100 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8101 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8102 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8103 	tcp->tcp_ipha = NULL;
8104 
8105 	/* Initialize the header template */
8106 
8107 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8108 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8109 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8110 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8111 
8112 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8113 	tcp->tcp_tcph = tcph;
8114 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8115 	/*
8116 	 * IP wants our header length in the checksum field to
8117 	 * allow it to perform a single psuedo-header+checksum
8118 	 * calculation on behalf of TCP.
8119 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8120 	 */
8121 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8122 	sum = (sum >> 16) + (sum & 0xFFFF);
8123 	U16_TO_ABE16(sum, tcph->th_sum);
8124 	return (0);
8125 }
8126 
8127 /* At minimum we need 8 bytes in the TCP header for the lookup */
8128 #define	ICMP_MIN_TCP_HDR	8
8129 
8130 /*
8131  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8132  * passed up by IP. The message is always received on the correct tcp_t.
8133  * Assumes that IP has pulled up everything up to and including the ICMP header.
8134  */
8135 void
8136 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8137 {
8138 	icmph_t *icmph;
8139 	ipha_t	*ipha;
8140 	int	iph_hdr_length;
8141 	tcph_t	*tcph;
8142 	boolean_t ipsec_mctl = B_FALSE;
8143 	boolean_t secure;
8144 	mblk_t *first_mp = mp;
8145 	int32_t new_mss;
8146 	uint32_t ratio;
8147 	size_t mp_size = MBLKL(mp);
8148 	uint32_t seg_seq;
8149 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8150 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8151 
8152 	/* Assume IP provides aligned packets - otherwise toss */
8153 	if (!OK_32PTR(mp->b_rptr)) {
8154 		freemsg(mp);
8155 		return;
8156 	}
8157 
8158 	/*
8159 	 * Since ICMP errors are normal data marked with M_CTL when sent
8160 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8161 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8162 	 */
8163 	if ((mp_size == sizeof (ipsec_info_t)) &&
8164 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8165 		ASSERT(mp->b_cont != NULL);
8166 		mp = mp->b_cont;
8167 		/* IP should have done this */
8168 		ASSERT(OK_32PTR(mp->b_rptr));
8169 		mp_size = MBLKL(mp);
8170 		ipsec_mctl = B_TRUE;
8171 	}
8172 
8173 	/*
8174 	 * Verify that we have a complete outer IP header. If not, drop it.
8175 	 */
8176 	if (mp_size < sizeof (ipha_t)) {
8177 noticmpv4:
8178 		freemsg(first_mp);
8179 		return;
8180 	}
8181 
8182 	ipha = (ipha_t *)mp->b_rptr;
8183 	/*
8184 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8185 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8186 	 */
8187 	switch (IPH_HDR_VERSION(ipha)) {
8188 	case IPV6_VERSION:
8189 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8190 		return;
8191 	case IPV4_VERSION:
8192 		break;
8193 	default:
8194 		goto noticmpv4;
8195 	}
8196 
8197 	/* Skip past the outer IP and ICMP headers */
8198 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8199 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8200 	/*
8201 	 * If we don't have the correct outer IP header length or if the ULP
8202 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8203 	 * send it upstream.
8204 	 */
8205 	if (iph_hdr_length < sizeof (ipha_t) ||
8206 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8207 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8208 		goto noticmpv4;
8209 	}
8210 	ipha = (ipha_t *)&icmph[1];
8211 
8212 	/* Skip past the inner IP and find the ULP header */
8213 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8214 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8215 	/*
8216 	 * If we don't have the correct inner IP header length or if the ULP
8217 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8218 	 * bytes of TCP header, drop it.
8219 	 */
8220 	if (iph_hdr_length < sizeof (ipha_t) ||
8221 	    ipha->ipha_protocol != IPPROTO_TCP ||
8222 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8223 		goto noticmpv4;
8224 	}
8225 
8226 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8227 		if (ipsec_mctl) {
8228 			secure = ipsec_in_is_secure(first_mp);
8229 		} else {
8230 			secure = B_FALSE;
8231 		}
8232 		if (secure) {
8233 			/*
8234 			 * If we are willing to accept this in clear
8235 			 * we don't have to verify policy.
8236 			 */
8237 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8238 				if (!tcp_check_policy(tcp, first_mp,
8239 				    ipha, NULL, secure, ipsec_mctl)) {
8240 					/*
8241 					 * tcp_check_policy called
8242 					 * ip_drop_packet() on failure.
8243 					 */
8244 					return;
8245 				}
8246 			}
8247 		}
8248 	} else if (ipsec_mctl) {
8249 		/*
8250 		 * This is a hard_bound connection. IP has already
8251 		 * verified policy. We don't have to do it again.
8252 		 */
8253 		freeb(first_mp);
8254 		first_mp = mp;
8255 		ipsec_mctl = B_FALSE;
8256 	}
8257 
8258 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8259 	/*
8260 	 * TCP SHOULD check that the TCP sequence number contained in
8261 	 * payload of the ICMP error message is within the range
8262 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8263 	 */
8264 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8265 		/*
8266 		 * The ICMP message is bogus, just drop it.  But if this is
8267 		 * an ICMP too big message, IP has already changed
8268 		 * the ire_max_frag to the bogus value.  We need to change
8269 		 * it back.
8270 		 */
8271 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8272 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8273 			conn_t *connp = tcp->tcp_connp;
8274 			ire_t *ire;
8275 			int flag;
8276 
8277 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8278 				flag = tcp->tcp_ipha->
8279 				    ipha_fragment_offset_and_flags;
8280 			} else {
8281 				flag = 0;
8282 			}
8283 			mutex_enter(&connp->conn_lock);
8284 			if ((ire = connp->conn_ire_cache) != NULL) {
8285 				mutex_enter(&ire->ire_lock);
8286 				mutex_exit(&connp->conn_lock);
8287 				ire->ire_max_frag = tcp->tcp_if_mtu;
8288 				ire->ire_frag_flag |= flag;
8289 				mutex_exit(&ire->ire_lock);
8290 			} else {
8291 				mutex_exit(&connp->conn_lock);
8292 			}
8293 		}
8294 		goto noticmpv4;
8295 	}
8296 
8297 	switch (icmph->icmph_type) {
8298 	case ICMP_DEST_UNREACHABLE:
8299 		switch (icmph->icmph_code) {
8300 		case ICMP_FRAGMENTATION_NEEDED:
8301 			/*
8302 			 * Reduce the MSS based on the new MTU.  This will
8303 			 * eliminate any fragmentation locally.
8304 			 * N.B.  There may well be some funny side-effects on
8305 			 * the local send policy and the remote receive policy.
8306 			 * Pending further research, we provide
8307 			 * tcp_ignore_path_mtu just in case this proves
8308 			 * disastrous somewhere.
8309 			 *
8310 			 * After updating the MSS, retransmit part of the
8311 			 * dropped segment using the new mss by calling
8312 			 * tcp_wput_data().  Need to adjust all those
8313 			 * params to make sure tcp_wput_data() work properly.
8314 			 */
8315 			if (tcps->tcps_ignore_path_mtu ||
8316 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8317 				break;
8318 
8319 			/*
8320 			 * Decrease the MSS by time stamp options
8321 			 * IP options and IPSEC options. tcp_hdr_len
8322 			 * includes time stamp option and IP option
8323 			 * length.  Note that new_mss may be negative
8324 			 * if tcp_ipsec_overhead is large and the
8325 			 * icmph_du_mtu is the minimum value, which is 68.
8326 			 */
8327 			new_mss = ntohs(icmph->icmph_du_mtu) -
8328 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8329 
8330 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8331 			    new_mss);
8332 
8333 			/*
8334 			 * Only update the MSS if the new one is
8335 			 * smaller than the previous one.  This is
8336 			 * to avoid problems when getting multiple
8337 			 * ICMP errors for the same MTU.
8338 			 */
8339 			if (new_mss >= tcp->tcp_mss)
8340 				break;
8341 
8342 			/*
8343 			 * Note that we are using the template header's DF
8344 			 * bit in the fast path sending.  So we need to compare
8345 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8346 			 * And stop doing IPv4 PMTUd if new_mss is less than
8347 			 * MAX(tcps_mss_min, ip_pmtu_min).
8348 			 */
8349 			if (new_mss < tcps->tcps_mss_min ||
8350 			    new_mss < ipst->ips_ip_pmtu_min) {
8351 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8352 				    0;
8353 			}
8354 
8355 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8356 			ASSERT(ratio >= 1);
8357 			tcp_mss_set(tcp, new_mss, B_TRUE);
8358 
8359 			/*
8360 			 * Make sure we have something to
8361 			 * send.
8362 			 */
8363 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8364 			    (tcp->tcp_xmit_head != NULL)) {
8365 				/*
8366 				 * Shrink tcp_cwnd in
8367 				 * proportion to the old MSS/new MSS.
8368 				 */
8369 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8370 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8371 				    (tcp->tcp_unsent == 0)) {
8372 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8373 				} else {
8374 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8375 				}
8376 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8377 				tcp->tcp_rexmit = B_TRUE;
8378 				tcp->tcp_dupack_cnt = 0;
8379 				tcp->tcp_snd_burst = TCP_CWND_SS;
8380 				tcp_ss_rexmit(tcp);
8381 			}
8382 			break;
8383 		case ICMP_PORT_UNREACHABLE:
8384 		case ICMP_PROTOCOL_UNREACHABLE:
8385 			switch (tcp->tcp_state) {
8386 			case TCPS_SYN_SENT:
8387 			case TCPS_SYN_RCVD:
8388 				/*
8389 				 * ICMP can snipe away incipient
8390 				 * TCP connections as long as
8391 				 * seq number is same as initial
8392 				 * send seq number.
8393 				 */
8394 				if (seg_seq == tcp->tcp_iss) {
8395 					(void) tcp_clean_death(tcp,
8396 					    ECONNREFUSED, 6);
8397 				}
8398 				break;
8399 			}
8400 			break;
8401 		case ICMP_HOST_UNREACHABLE:
8402 		case ICMP_NET_UNREACHABLE:
8403 			/* Record the error in case we finally time out. */
8404 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8405 				tcp->tcp_client_errno = EHOSTUNREACH;
8406 			else
8407 				tcp->tcp_client_errno = ENETUNREACH;
8408 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8409 				if (tcp->tcp_listener != NULL &&
8410 				    tcp->tcp_listener->tcp_syn_defense) {
8411 					/*
8412 					 * Ditch the half-open connection if we
8413 					 * suspect a SYN attack is under way.
8414 					 */
8415 					tcp_ip_ire_mark_advice(tcp);
8416 					(void) tcp_clean_death(tcp,
8417 					    tcp->tcp_client_errno, 7);
8418 				}
8419 			}
8420 			break;
8421 		default:
8422 			break;
8423 		}
8424 		break;
8425 	case ICMP_SOURCE_QUENCH: {
8426 		/*
8427 		 * use a global boolean to control
8428 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8429 		 * The default is false.
8430 		 */
8431 		if (tcp_icmp_source_quench) {
8432 			/*
8433 			 * Reduce the sending rate as if we got a
8434 			 * retransmit timeout
8435 			 */
8436 			uint32_t npkt;
8437 
8438 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8439 			    tcp->tcp_mss;
8440 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8441 			tcp->tcp_cwnd = tcp->tcp_mss;
8442 			tcp->tcp_cwnd_cnt = 0;
8443 		}
8444 		break;
8445 	}
8446 	}
8447 	freemsg(first_mp);
8448 }
8449 
8450 /*
8451  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8452  * error messages passed up by IP.
8453  * Assumes that IP has pulled up all the extension headers as well
8454  * as the ICMPv6 header.
8455  */
8456 static void
8457 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8458 {
8459 	icmp6_t *icmp6;
8460 	ip6_t	*ip6h;
8461 	uint16_t	iph_hdr_length;
8462 	tcpha_t	*tcpha;
8463 	uint8_t	*nexthdrp;
8464 	uint32_t new_mss;
8465 	uint32_t ratio;
8466 	boolean_t secure;
8467 	mblk_t *first_mp = mp;
8468 	size_t mp_size;
8469 	uint32_t seg_seq;
8470 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8471 
8472 	/*
8473 	 * The caller has determined if this is an IPSEC_IN packet and
8474 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8475 	 */
8476 	if (ipsec_mctl)
8477 		mp = mp->b_cont;
8478 
8479 	mp_size = MBLKL(mp);
8480 
8481 	/*
8482 	 * Verify that we have a complete IP header. If not, send it upstream.
8483 	 */
8484 	if (mp_size < sizeof (ip6_t)) {
8485 noticmpv6:
8486 		freemsg(first_mp);
8487 		return;
8488 	}
8489 
8490 	/*
8491 	 * Verify this is an ICMPV6 packet, else send it upstream.
8492 	 */
8493 	ip6h = (ip6_t *)mp->b_rptr;
8494 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8495 		iph_hdr_length = IPV6_HDR_LEN;
8496 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8497 	    &nexthdrp) ||
8498 	    *nexthdrp != IPPROTO_ICMPV6) {
8499 		goto noticmpv6;
8500 	}
8501 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8502 	ip6h = (ip6_t *)&icmp6[1];
8503 	/*
8504 	 * Verify if we have a complete ICMP and inner IP header.
8505 	 */
8506 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8507 		goto noticmpv6;
8508 
8509 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8510 		goto noticmpv6;
8511 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8512 	/*
8513 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8514 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8515 	 * packet.
8516 	 */
8517 	if ((*nexthdrp != IPPROTO_TCP) ||
8518 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8519 		goto noticmpv6;
8520 	}
8521 
8522 	/*
8523 	 * ICMP errors come on the right queue or come on
8524 	 * listener/global queue for detached connections and
8525 	 * get switched to the right queue. If it comes on the
8526 	 * right queue, policy check has already been done by IP
8527 	 * and thus free the first_mp without verifying the policy.
8528 	 * If it has come for a non-hard bound connection, we need
8529 	 * to verify policy as IP may not have done it.
8530 	 */
8531 	if (!tcp->tcp_hard_bound) {
8532 		if (ipsec_mctl) {
8533 			secure = ipsec_in_is_secure(first_mp);
8534 		} else {
8535 			secure = B_FALSE;
8536 		}
8537 		if (secure) {
8538 			/*
8539 			 * If we are willing to accept this in clear
8540 			 * we don't have to verify policy.
8541 			 */
8542 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8543 				if (!tcp_check_policy(tcp, first_mp,
8544 				    NULL, ip6h, secure, ipsec_mctl)) {
8545 					/*
8546 					 * tcp_check_policy called
8547 					 * ip_drop_packet() on failure.
8548 					 */
8549 					return;
8550 				}
8551 			}
8552 		}
8553 	} else if (ipsec_mctl) {
8554 		/*
8555 		 * This is a hard_bound connection. IP has already
8556 		 * verified policy. We don't have to do it again.
8557 		 */
8558 		freeb(first_mp);
8559 		first_mp = mp;
8560 		ipsec_mctl = B_FALSE;
8561 	}
8562 
8563 	seg_seq = ntohl(tcpha->tha_seq);
8564 	/*
8565 	 * TCP SHOULD check that the TCP sequence number contained in
8566 	 * payload of the ICMP error message is within the range
8567 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8568 	 */
8569 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8570 		/*
8571 		 * If the ICMP message is bogus, should we kill the
8572 		 * connection, or should we just drop the bogus ICMP
8573 		 * message? It would probably make more sense to just
8574 		 * drop the message so that if this one managed to get
8575 		 * in, the real connection should not suffer.
8576 		 */
8577 		goto noticmpv6;
8578 	}
8579 
8580 	switch (icmp6->icmp6_type) {
8581 	case ICMP6_PACKET_TOO_BIG:
8582 		/*
8583 		 * Reduce the MSS based on the new MTU.  This will
8584 		 * eliminate any fragmentation locally.
8585 		 * N.B.  There may well be some funny side-effects on
8586 		 * the local send policy and the remote receive policy.
8587 		 * Pending further research, we provide
8588 		 * tcp_ignore_path_mtu just in case this proves
8589 		 * disastrous somewhere.
8590 		 *
8591 		 * After updating the MSS, retransmit part of the
8592 		 * dropped segment using the new mss by calling
8593 		 * tcp_wput_data().  Need to adjust all those
8594 		 * params to make sure tcp_wput_data() work properly.
8595 		 */
8596 		if (tcps->tcps_ignore_path_mtu)
8597 			break;
8598 
8599 		/*
8600 		 * Decrease the MSS by time stamp options
8601 		 * IP options and IPSEC options. tcp_hdr_len
8602 		 * includes time stamp option and IP option
8603 		 * length.
8604 		 */
8605 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8606 		    tcp->tcp_ipsec_overhead;
8607 
8608 		/*
8609 		 * Only update the MSS if the new one is
8610 		 * smaller than the previous one.  This is
8611 		 * to avoid problems when getting multiple
8612 		 * ICMP errors for the same MTU.
8613 		 */
8614 		if (new_mss >= tcp->tcp_mss)
8615 			break;
8616 
8617 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8618 		ASSERT(ratio >= 1);
8619 		tcp_mss_set(tcp, new_mss, B_TRUE);
8620 
8621 		/*
8622 		 * Make sure we have something to
8623 		 * send.
8624 		 */
8625 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8626 		    (tcp->tcp_xmit_head != NULL)) {
8627 			/*
8628 			 * Shrink tcp_cwnd in
8629 			 * proportion to the old MSS/new MSS.
8630 			 */
8631 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8632 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8633 			    (tcp->tcp_unsent == 0)) {
8634 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8635 			} else {
8636 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8637 			}
8638 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8639 			tcp->tcp_rexmit = B_TRUE;
8640 			tcp->tcp_dupack_cnt = 0;
8641 			tcp->tcp_snd_burst = TCP_CWND_SS;
8642 			tcp_ss_rexmit(tcp);
8643 		}
8644 		break;
8645 
8646 	case ICMP6_DST_UNREACH:
8647 		switch (icmp6->icmp6_code) {
8648 		case ICMP6_DST_UNREACH_NOPORT:
8649 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8650 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8651 			    (seg_seq == tcp->tcp_iss)) {
8652 				(void) tcp_clean_death(tcp,
8653 				    ECONNREFUSED, 8);
8654 			}
8655 			break;
8656 
8657 		case ICMP6_DST_UNREACH_ADMIN:
8658 		case ICMP6_DST_UNREACH_NOROUTE:
8659 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8660 		case ICMP6_DST_UNREACH_ADDR:
8661 			/* Record the error in case we finally time out. */
8662 			tcp->tcp_client_errno = EHOSTUNREACH;
8663 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8664 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8665 			    (seg_seq == tcp->tcp_iss)) {
8666 				if (tcp->tcp_listener != NULL &&
8667 				    tcp->tcp_listener->tcp_syn_defense) {
8668 					/*
8669 					 * Ditch the half-open connection if we
8670 					 * suspect a SYN attack is under way.
8671 					 */
8672 					tcp_ip_ire_mark_advice(tcp);
8673 					(void) tcp_clean_death(tcp,
8674 					    tcp->tcp_client_errno, 9);
8675 				}
8676 			}
8677 
8678 
8679 			break;
8680 		default:
8681 			break;
8682 		}
8683 		break;
8684 
8685 	case ICMP6_PARAM_PROB:
8686 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8687 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8688 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8689 		    (uchar_t *)nexthdrp) {
8690 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8691 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8692 				(void) tcp_clean_death(tcp,
8693 				    ECONNREFUSED, 10);
8694 			}
8695 			break;
8696 		}
8697 		break;
8698 
8699 	case ICMP6_TIME_EXCEEDED:
8700 	default:
8701 		break;
8702 	}
8703 	freemsg(first_mp);
8704 }
8705 
8706 /*
8707  * Notify IP that we are having trouble with this connection.  IP should
8708  * blow the IRE away and start over.
8709  */
8710 static void
8711 tcp_ip_notify(tcp_t *tcp)
8712 {
8713 	struct iocblk	*iocp;
8714 	ipid_t	*ipid;
8715 	mblk_t	*mp;
8716 
8717 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8718 	if (tcp->tcp_ipversion == IPV6_VERSION)
8719 		return;
8720 
8721 	mp = mkiocb(IP_IOCTL);
8722 	if (mp == NULL)
8723 		return;
8724 
8725 	iocp = (struct iocblk *)mp->b_rptr;
8726 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8727 
8728 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8729 	if (!mp->b_cont) {
8730 		freeb(mp);
8731 		return;
8732 	}
8733 
8734 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8735 	mp->b_cont->b_wptr += iocp->ioc_count;
8736 	bzero(ipid, sizeof (*ipid));
8737 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8738 	ipid->ipid_ire_type = IRE_CACHE;
8739 	ipid->ipid_addr_offset = sizeof (ipid_t);
8740 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8741 	/*
8742 	 * Note: in the case of source routing we want to blow away the
8743 	 * route to the first source route hop.
8744 	 */
8745 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8746 	    sizeof (tcp->tcp_ipha->ipha_dst));
8747 
8748 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8749 }
8750 
8751 /* Unlink and return any mblk that looks like it contains an ire */
8752 static mblk_t *
8753 tcp_ire_mp(mblk_t **mpp)
8754 {
8755 	mblk_t 	*mp = *mpp;
8756 	mblk_t	*prev_mp = NULL;
8757 
8758 	for (;;) {
8759 		switch (DB_TYPE(mp)) {
8760 		case IRE_DB_TYPE:
8761 		case IRE_DB_REQ_TYPE:
8762 			if (mp == *mpp) {
8763 				*mpp = mp->b_cont;
8764 			} else {
8765 				prev_mp->b_cont = mp->b_cont;
8766 			}
8767 			mp->b_cont = NULL;
8768 			return (mp);
8769 		default:
8770 			break;
8771 		}
8772 		prev_mp = mp;
8773 		mp = mp->b_cont;
8774 		if (mp == NULL)
8775 			break;
8776 	}
8777 	return (mp);
8778 }
8779 
8780 /*
8781  * Timer callback routine for keepalive probe.  We do a fake resend of
8782  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8783  * check to see if we have heard anything from the other end for the last
8784  * RTO period.  If we have, set the timer to expire for another
8785  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8786  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8787  * the timeout if we have not heard from the other side.  If for more than
8788  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8789  * kill the connection unless the keepalive abort threshold is 0.  In
8790  * that case, we will probe "forever."
8791  */
8792 static void
8793 tcp_keepalive_killer(void *arg)
8794 {
8795 	mblk_t	*mp;
8796 	conn_t	*connp = (conn_t *)arg;
8797 	tcp_t  	*tcp = connp->conn_tcp;
8798 	int32_t	firetime;
8799 	int32_t	idletime;
8800 	int32_t	ka_intrvl;
8801 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8802 
8803 	tcp->tcp_ka_tid = 0;
8804 
8805 	if (tcp->tcp_fused)
8806 		return;
8807 
8808 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8809 	ka_intrvl = tcp->tcp_ka_interval;
8810 
8811 	/*
8812 	 * Keepalive probe should only be sent if the application has not
8813 	 * done a close on the connection.
8814 	 */
8815 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8816 		return;
8817 	}
8818 	/* Timer fired too early, restart it. */
8819 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8820 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8821 		    MSEC_TO_TICK(ka_intrvl));
8822 		return;
8823 	}
8824 
8825 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8826 	/*
8827 	 * If we have not heard from the other side for a long
8828 	 * time, kill the connection unless the keepalive abort
8829 	 * threshold is 0.  In that case, we will probe "forever."
8830 	 */
8831 	if (tcp->tcp_ka_abort_thres != 0 &&
8832 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8833 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8834 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8835 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8836 		return;
8837 	}
8838 
8839 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8840 	    idletime >= ka_intrvl) {
8841 		/* Fake resend of last ACKed byte. */
8842 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8843 
8844 		if (mp1 != NULL) {
8845 			*mp1->b_wptr++ = '\0';
8846 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8847 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8848 			freeb(mp1);
8849 			/*
8850 			 * if allocation failed, fall through to start the
8851 			 * timer back.
8852 			 */
8853 			if (mp != NULL) {
8854 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8855 				BUMP_MIB(&tcps->tcps_mib,
8856 				    tcpTimKeepaliveProbe);
8857 				if (tcp->tcp_ka_last_intrvl != 0) {
8858 					int max;
8859 					/*
8860 					 * We should probe again at least
8861 					 * in ka_intrvl, but not more than
8862 					 * tcp_rexmit_interval_max.
8863 					 */
8864 					max = tcps->tcps_rexmit_interval_max;
8865 					firetime = MIN(ka_intrvl - 1,
8866 					    tcp->tcp_ka_last_intrvl << 1);
8867 					if (firetime > max)
8868 						firetime = max;
8869 				} else {
8870 					firetime = tcp->tcp_rto;
8871 				}
8872 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8873 				    tcp_keepalive_killer,
8874 				    MSEC_TO_TICK(firetime));
8875 				tcp->tcp_ka_last_intrvl = firetime;
8876 				return;
8877 			}
8878 		}
8879 	} else {
8880 		tcp->tcp_ka_last_intrvl = 0;
8881 	}
8882 
8883 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8884 	if ((firetime = ka_intrvl - idletime) < 0) {
8885 		firetime = ka_intrvl;
8886 	}
8887 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8888 	    MSEC_TO_TICK(firetime));
8889 }
8890 
8891 int
8892 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8893 {
8894 	queue_t	*q = tcp->tcp_rq;
8895 	int32_t	mss = tcp->tcp_mss;
8896 	int	maxpsz;
8897 	conn_t	*connp = tcp->tcp_connp;
8898 
8899 	if (TCP_IS_DETACHED(tcp))
8900 		return (mss);
8901 	if (tcp->tcp_fused) {
8902 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8903 		mss = INFPSZ;
8904 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8905 		/*
8906 		 * Set the sd_qn_maxpsz according to the socket send buffer
8907 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8908 		 * instruct the stream head to copyin user data into contiguous
8909 		 * kernel-allocated buffers without breaking it up into smaller
8910 		 * chunks.  We round up the buffer size to the nearest SMSS.
8911 		 */
8912 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8913 		if (tcp->tcp_kssl_ctx == NULL)
8914 			mss = INFPSZ;
8915 		else
8916 			mss = SSL3_MAX_RECORD_LEN;
8917 	} else {
8918 		/*
8919 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8920 		 * (and a multiple of the mss).  This instructs the stream
8921 		 * head to break down larger than SMSS writes into SMSS-
8922 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8923 		 */
8924 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8925 		maxpsz = tcp->tcp_maxpsz * mss;
8926 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8927 			maxpsz = tcp->tcp_xmit_hiwater/2;
8928 			/* Round up to nearest mss */
8929 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8930 		}
8931 	}
8932 
8933 	(void) proto_set_maxpsz(q, connp, maxpsz);
8934 	if (!(IPCL_IS_NONSTR(connp))) {
8935 		/* XXX do it in set_maxpsz()? */
8936 		tcp->tcp_wq->q_maxpsz = maxpsz;
8937 	}
8938 
8939 	if (set_maxblk)
8940 		(void) proto_set_tx_maxblk(q, connp, mss);
8941 	return (mss);
8942 }
8943 
8944 /*
8945  * Extract option values from a tcp header.  We put any found values into the
8946  * tcpopt struct and return a bitmask saying which options were found.
8947  */
8948 static int
8949 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8950 {
8951 	uchar_t		*endp;
8952 	int		len;
8953 	uint32_t	mss;
8954 	uchar_t		*up = (uchar_t *)tcph;
8955 	int		found = 0;
8956 	int32_t		sack_len;
8957 	tcp_seq		sack_begin, sack_end;
8958 	tcp_t		*tcp;
8959 
8960 	endp = up + TCP_HDR_LENGTH(tcph);
8961 	up += TCP_MIN_HEADER_LENGTH;
8962 	while (up < endp) {
8963 		len = endp - up;
8964 		switch (*up) {
8965 		case TCPOPT_EOL:
8966 			break;
8967 
8968 		case TCPOPT_NOP:
8969 			up++;
8970 			continue;
8971 
8972 		case TCPOPT_MAXSEG:
8973 			if (len < TCPOPT_MAXSEG_LEN ||
8974 			    up[1] != TCPOPT_MAXSEG_LEN)
8975 				break;
8976 
8977 			mss = BE16_TO_U16(up+2);
8978 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
8979 			tcpopt->tcp_opt_mss = mss;
8980 			found |= TCP_OPT_MSS_PRESENT;
8981 
8982 			up += TCPOPT_MAXSEG_LEN;
8983 			continue;
8984 
8985 		case TCPOPT_WSCALE:
8986 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
8987 				break;
8988 
8989 			if (up[2] > TCP_MAX_WINSHIFT)
8990 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
8991 			else
8992 				tcpopt->tcp_opt_wscale = up[2];
8993 			found |= TCP_OPT_WSCALE_PRESENT;
8994 
8995 			up += TCPOPT_WS_LEN;
8996 			continue;
8997 
8998 		case TCPOPT_SACK_PERMITTED:
8999 			if (len < TCPOPT_SACK_OK_LEN ||
9000 			    up[1] != TCPOPT_SACK_OK_LEN)
9001 				break;
9002 			found |= TCP_OPT_SACK_OK_PRESENT;
9003 			up += TCPOPT_SACK_OK_LEN;
9004 			continue;
9005 
9006 		case TCPOPT_SACK:
9007 			if (len <= 2 || up[1] <= 2 || len < up[1])
9008 				break;
9009 
9010 			/* If TCP is not interested in SACK blks... */
9011 			if ((tcp = tcpopt->tcp) == NULL) {
9012 				up += up[1];
9013 				continue;
9014 			}
9015 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9016 			up += TCPOPT_HEADER_LEN;
9017 
9018 			/*
9019 			 * If the list is empty, allocate one and assume
9020 			 * nothing is sack'ed.
9021 			 */
9022 			ASSERT(tcp->tcp_sack_info != NULL);
9023 			if (tcp->tcp_notsack_list == NULL) {
9024 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9025 				    tcp->tcp_suna, tcp->tcp_snxt,
9026 				    &(tcp->tcp_num_notsack_blk),
9027 				    &(tcp->tcp_cnt_notsack_list));
9028 
9029 				/*
9030 				 * Make sure tcp_notsack_list is not NULL.
9031 				 * This happens when kmem_alloc(KM_NOSLEEP)
9032 				 * returns NULL.
9033 				 */
9034 				if (tcp->tcp_notsack_list == NULL) {
9035 					up += sack_len;
9036 					continue;
9037 				}
9038 				tcp->tcp_fack = tcp->tcp_suna;
9039 			}
9040 
9041 			while (sack_len > 0) {
9042 				if (up + 8 > endp) {
9043 					up = endp;
9044 					break;
9045 				}
9046 				sack_begin = BE32_TO_U32(up);
9047 				up += 4;
9048 				sack_end = BE32_TO_U32(up);
9049 				up += 4;
9050 				sack_len -= 8;
9051 				/*
9052 				 * Bounds checking.  Make sure the SACK
9053 				 * info is within tcp_suna and tcp_snxt.
9054 				 * If this SACK blk is out of bound, ignore
9055 				 * it but continue to parse the following
9056 				 * blks.
9057 				 */
9058 				if (SEQ_LEQ(sack_end, sack_begin) ||
9059 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9060 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9061 					continue;
9062 				}
9063 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9064 				    sack_begin, sack_end,
9065 				    &(tcp->tcp_num_notsack_blk),
9066 				    &(tcp->tcp_cnt_notsack_list));
9067 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9068 					tcp->tcp_fack = sack_end;
9069 				}
9070 			}
9071 			found |= TCP_OPT_SACK_PRESENT;
9072 			continue;
9073 
9074 		case TCPOPT_TSTAMP:
9075 			if (len < TCPOPT_TSTAMP_LEN ||
9076 			    up[1] != TCPOPT_TSTAMP_LEN)
9077 				break;
9078 
9079 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9080 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9081 
9082 			found |= TCP_OPT_TSTAMP_PRESENT;
9083 
9084 			up += TCPOPT_TSTAMP_LEN;
9085 			continue;
9086 
9087 		default:
9088 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9089 				break;
9090 			up += up[1];
9091 			continue;
9092 		}
9093 		break;
9094 	}
9095 	return (found);
9096 }
9097 
9098 /*
9099  * Set the mss associated with a particular tcp based on its current value,
9100  * and a new one passed in. Observe minimums and maximums, and reset
9101  * other state variables that we want to view as multiples of mss.
9102  *
9103  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9104  * highwater marks etc. need to be initialized or adjusted.
9105  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9106  *    packet arrives.
9107  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9108  *    ICMP6_PACKET_TOO_BIG arrives.
9109  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9110  *    to increase the MSS to use the extra bytes available.
9111  *
9112  * Callers except tcp_paws_check() ensure that they only reduce mss.
9113  */
9114 static void
9115 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9116 {
9117 	uint32_t	mss_max;
9118 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9119 
9120 	if (tcp->tcp_ipversion == IPV4_VERSION)
9121 		mss_max = tcps->tcps_mss_max_ipv4;
9122 	else
9123 		mss_max = tcps->tcps_mss_max_ipv6;
9124 
9125 	if (mss < tcps->tcps_mss_min)
9126 		mss = tcps->tcps_mss_min;
9127 	if (mss > mss_max)
9128 		mss = mss_max;
9129 	/*
9130 	 * Unless naglim has been set by our client to
9131 	 * a non-mss value, force naglim to track mss.
9132 	 * This can help to aggregate small writes.
9133 	 */
9134 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9135 		tcp->tcp_naglim = mss;
9136 	/*
9137 	 * TCP should be able to buffer at least 4 MSS data for obvious
9138 	 * performance reason.
9139 	 */
9140 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9141 		tcp->tcp_xmit_hiwater = mss << 2;
9142 
9143 	if (do_ss) {
9144 		/*
9145 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9146 		 * changing due to a reduction in MTU, presumably as a
9147 		 * result of a new path component, reset cwnd to its
9148 		 * "initial" value, as a multiple of the new mss.
9149 		 */
9150 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9151 	} else {
9152 		/*
9153 		 * Called by tcp_paws_check(), the mss increased
9154 		 * marginally to allow use of space previously taken
9155 		 * by the timestamp option. It would be inappropriate
9156 		 * to apply slow start or tcp_init_cwnd values to
9157 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9158 		 */
9159 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9160 		tcp->tcp_cwnd_cnt = 0;
9161 	}
9162 	tcp->tcp_mss = mss;
9163 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9164 }
9165 
9166 /* For /dev/tcp aka AF_INET open */
9167 static int
9168 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9169 {
9170 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9171 }
9172 
9173 /* For /dev/tcp6 aka AF_INET6 open */
9174 static int
9175 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9176 {
9177 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9178 }
9179 
9180 static conn_t *
9181 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9182     boolean_t issocket, int *errorp)
9183 {
9184 	tcp_t		*tcp = NULL;
9185 	conn_t		*connp;
9186 	int		err;
9187 	zoneid_t	zoneid;
9188 	tcp_stack_t	*tcps;
9189 	squeue_t	*sqp;
9190 
9191 	ASSERT(errorp != NULL);
9192 	/*
9193 	 * Find the proper zoneid and netstack.
9194 	 */
9195 	/*
9196 	 * Special case for install: miniroot needs to be able to
9197 	 * access files via NFS as though it were always in the
9198 	 * global zone.
9199 	 */
9200 	if (credp == kcred && nfs_global_client_only != 0) {
9201 		zoneid = GLOBAL_ZONEID;
9202 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9203 		    netstack_tcp;
9204 		ASSERT(tcps != NULL);
9205 	} else {
9206 		netstack_t *ns;
9207 
9208 		ns = netstack_find_by_cred(credp);
9209 		ASSERT(ns != NULL);
9210 		tcps = ns->netstack_tcp;
9211 		ASSERT(tcps != NULL);
9212 
9213 		/*
9214 		 * For exclusive stacks we set the zoneid to zero
9215 		 * to make TCP operate as if in the global zone.
9216 		 */
9217 		if (tcps->tcps_netstack->netstack_stackid !=
9218 		    GLOBAL_NETSTACKID)
9219 			zoneid = GLOBAL_ZONEID;
9220 		else
9221 			zoneid = crgetzoneid(credp);
9222 	}
9223 	/*
9224 	 * For stackid zero this is done from strplumb.c, but
9225 	 * non-zero stackids are handled here.
9226 	 */
9227 	if (tcps->tcps_g_q == NULL &&
9228 	    tcps->tcps_netstack->netstack_stackid !=
9229 	    GLOBAL_NETSTACKID) {
9230 		tcp_g_q_setup(tcps);
9231 	}
9232 
9233 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9234 	connp = (conn_t *)tcp_get_conn(sqp, tcps, q != NULL ? B_TRUE : B_FALSE);
9235 	/*
9236 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9237 	 * so we drop it by one.
9238 	 */
9239 	netstack_rele(tcps->tcps_netstack);
9240 	if (connp == NULL) {
9241 		*errorp = ENOSR;
9242 		return (NULL);
9243 	}
9244 	connp->conn_sqp = sqp;
9245 	connp->conn_initial_sqp = connp->conn_sqp;
9246 	tcp = connp->conn_tcp;
9247 
9248 	if (isv6) {
9249 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9250 		connp->conn_send = ip_output_v6;
9251 		connp->conn_af_isv6 = B_TRUE;
9252 		connp->conn_pkt_isv6 = B_TRUE;
9253 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9254 		tcp->tcp_ipversion = IPV6_VERSION;
9255 		tcp->tcp_family = AF_INET6;
9256 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9257 	} else {
9258 		connp->conn_flags |= IPCL_TCP4;
9259 		connp->conn_send = ip_output;
9260 		connp->conn_af_isv6 = B_FALSE;
9261 		connp->conn_pkt_isv6 = B_FALSE;
9262 		tcp->tcp_ipversion = IPV4_VERSION;
9263 		tcp->tcp_family = AF_INET;
9264 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9265 	}
9266 
9267 	/*
9268 	 * TCP keeps a copy of cred for cache locality reasons but
9269 	 * we put a reference only once. If connp->conn_cred
9270 	 * becomes invalid, tcp_cred should also be set to NULL.
9271 	 */
9272 	tcp->tcp_cred = connp->conn_cred = credp;
9273 	crhold(connp->conn_cred);
9274 	tcp->tcp_cpid = curproc->p_pid;
9275 	tcp->tcp_open_time = lbolt64;
9276 	connp->conn_zoneid = zoneid;
9277 	connp->conn_mlp_type = mlptSingle;
9278 	connp->conn_ulp_labeled = !is_system_labeled();
9279 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9280 	ASSERT(tcp->tcp_tcps == tcps);
9281 
9282 	/*
9283 	 * If the caller has the process-wide flag set, then default to MAC
9284 	 * exempt mode.  This allows read-down to unlabeled hosts.
9285 	 */
9286 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9287 		connp->conn_mac_exempt = B_TRUE;
9288 
9289 	connp->conn_dev = NULL;
9290 	if (issocket) {
9291 		connp->conn_flags |= IPCL_SOCKET;
9292 		tcp->tcp_issocket = 1;
9293 	}
9294 
9295 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9296 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9297 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9298 
9299 	/* Non-zero default values */
9300 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9301 
9302 	if (q == NULL) {
9303 		/*
9304 		 * Create a helper stream for non-STREAMS socket.
9305 		 */
9306 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9307 		if (err != 0) {
9308 			ip1dbg(("tcp_create_common: create of IP helper stream "
9309 			    "failed\n"));
9310 			CONN_DEC_REF(connp);
9311 			*errorp = err;
9312 			return (NULL);
9313 		}
9314 		q = connp->conn_rq;
9315 	} else {
9316 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9317 	}
9318 
9319 	SOCK_CONNID_INIT(tcp->tcp_connid);
9320 	err = tcp_init(tcp, q);
9321 	if (err != 0) {
9322 		CONN_DEC_REF(connp);
9323 		*errorp = err;
9324 		return (NULL);
9325 	}
9326 
9327 	return (connp);
9328 }
9329 
9330 static int
9331 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9332     boolean_t isv6)
9333 {
9334 	tcp_t		*tcp = NULL;
9335 	conn_t		*connp = NULL;
9336 	int		err;
9337 	vmem_t		*minor_arena = NULL;
9338 	dev_t		conn_dev;
9339 	boolean_t	issocket;
9340 
9341 	if (q->q_ptr != NULL)
9342 		return (0);
9343 
9344 	if (sflag == MODOPEN)
9345 		return (EINVAL);
9346 
9347 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9348 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9349 		minor_arena = ip_minor_arena_la;
9350 	} else {
9351 		/*
9352 		 * Either minor numbers in the large arena were exhausted
9353 		 * or a non socket application is doing the open.
9354 		 * Try to allocate from the small arena.
9355 		 */
9356 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9357 			return (EBUSY);
9358 		}
9359 		minor_arena = ip_minor_arena_sa;
9360 	}
9361 
9362 	ASSERT(minor_arena != NULL);
9363 
9364 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9365 
9366 	if (flag & SO_FALLBACK) {
9367 		/*
9368 		 * Non streams socket needs a stream to fallback to
9369 		 */
9370 		RD(q)->q_ptr = (void *)conn_dev;
9371 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9372 		WR(q)->q_ptr = (void *)minor_arena;
9373 		qprocson(q);
9374 		return (0);
9375 	} else if (flag & SO_ACCEPTOR) {
9376 		q->q_qinfo = &tcp_acceptor_rinit;
9377 		/*
9378 		 * the conn_dev and minor_arena will be subsequently used by
9379 		 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out
9380 		 * the minor device number for this connection from the q_ptr.
9381 		 */
9382 		RD(q)->q_ptr = (void *)conn_dev;
9383 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9384 		WR(q)->q_ptr = (void *)minor_arena;
9385 		qprocson(q);
9386 		return (0);
9387 	}
9388 
9389 	issocket = flag & SO_SOCKSTR;
9390 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9391 
9392 	if (connp == NULL) {
9393 		inet_minor_free(minor_arena, conn_dev);
9394 		q->q_ptr = WR(q)->q_ptr = NULL;
9395 		return (err);
9396 	}
9397 
9398 	q->q_ptr = WR(q)->q_ptr = connp;
9399 
9400 	connp->conn_dev = conn_dev;
9401 	connp->conn_minor_arena = minor_arena;
9402 
9403 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9404 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9405 
9406 	tcp = connp->conn_tcp;
9407 
9408 	if (issocket) {
9409 		WR(q)->q_qinfo = &tcp_sock_winit;
9410 	} else {
9411 #ifdef  _ILP32
9412 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9413 #else
9414 		tcp->tcp_acceptor_id = conn_dev;
9415 #endif  /* _ILP32 */
9416 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9417 	}
9418 
9419 	/*
9420 	 * Put the ref for TCP. Ref for IP was already put
9421 	 * by ipcl_conn_create. Also Make the conn_t globally
9422 	 * visible to walkers
9423 	 */
9424 	mutex_enter(&connp->conn_lock);
9425 	CONN_INC_REF_LOCKED(connp);
9426 	ASSERT(connp->conn_ref == 2);
9427 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9428 	mutex_exit(&connp->conn_lock);
9429 
9430 	qprocson(q);
9431 	return (0);
9432 }
9433 
9434 /*
9435  * Some TCP options can be "set" by requesting them in the option
9436  * buffer. This is needed for XTI feature test though we do not
9437  * allow it in general. We interpret that this mechanism is more
9438  * applicable to OSI protocols and need not be allowed in general.
9439  * This routine filters out options for which it is not allowed (most)
9440  * and lets through those (few) for which it is. [ The XTI interface
9441  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9442  * ever implemented will have to be allowed here ].
9443  */
9444 static boolean_t
9445 tcp_allow_connopt_set(int level, int name)
9446 {
9447 
9448 	switch (level) {
9449 	case IPPROTO_TCP:
9450 		switch (name) {
9451 		case TCP_NODELAY:
9452 			return (B_TRUE);
9453 		default:
9454 			return (B_FALSE);
9455 		}
9456 		/*NOTREACHED*/
9457 	default:
9458 		return (B_FALSE);
9459 	}
9460 	/*NOTREACHED*/
9461 }
9462 
9463 /*
9464  * this routine gets default values of certain options whose default
9465  * values are maintained by protocol specific code
9466  */
9467 /* ARGSUSED */
9468 int
9469 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9470 {
9471 	int32_t	*i1 = (int32_t *)ptr;
9472 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9473 
9474 	switch (level) {
9475 	case IPPROTO_TCP:
9476 		switch (name) {
9477 		case TCP_NOTIFY_THRESHOLD:
9478 			*i1 = tcps->tcps_ip_notify_interval;
9479 			break;
9480 		case TCP_ABORT_THRESHOLD:
9481 			*i1 = tcps->tcps_ip_abort_interval;
9482 			break;
9483 		case TCP_CONN_NOTIFY_THRESHOLD:
9484 			*i1 = tcps->tcps_ip_notify_cinterval;
9485 			break;
9486 		case TCP_CONN_ABORT_THRESHOLD:
9487 			*i1 = tcps->tcps_ip_abort_cinterval;
9488 			break;
9489 		default:
9490 			return (-1);
9491 		}
9492 		break;
9493 	case IPPROTO_IP:
9494 		switch (name) {
9495 		case IP_TTL:
9496 			*i1 = tcps->tcps_ipv4_ttl;
9497 			break;
9498 		default:
9499 			return (-1);
9500 		}
9501 		break;
9502 	case IPPROTO_IPV6:
9503 		switch (name) {
9504 		case IPV6_UNICAST_HOPS:
9505 			*i1 = tcps->tcps_ipv6_hoplimit;
9506 			break;
9507 		default:
9508 			return (-1);
9509 		}
9510 		break;
9511 	default:
9512 		return (-1);
9513 	}
9514 	return (sizeof (int));
9515 }
9516 
9517 static int
9518 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9519 {
9520 	int		*i1 = (int *)ptr;
9521 	tcp_t		*tcp = connp->conn_tcp;
9522 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9523 
9524 	switch (level) {
9525 	case SOL_SOCKET:
9526 		switch (name) {
9527 		case SO_LINGER:	{
9528 			struct linger *lgr = (struct linger *)ptr;
9529 
9530 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9531 			lgr->l_linger = tcp->tcp_lingertime;
9532 			}
9533 			return (sizeof (struct linger));
9534 		case SO_DEBUG:
9535 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9536 			break;
9537 		case SO_KEEPALIVE:
9538 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9539 			break;
9540 		case SO_DONTROUTE:
9541 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9542 			break;
9543 		case SO_USELOOPBACK:
9544 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9545 			break;
9546 		case SO_BROADCAST:
9547 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9548 			break;
9549 		case SO_REUSEADDR:
9550 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9551 			break;
9552 		case SO_OOBINLINE:
9553 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9554 			break;
9555 		case SO_DGRAM_ERRIND:
9556 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9557 			break;
9558 		case SO_TYPE:
9559 			*i1 = SOCK_STREAM;
9560 			break;
9561 		case SO_SNDBUF:
9562 			*i1 = tcp->tcp_xmit_hiwater;
9563 			break;
9564 		case SO_RCVBUF:
9565 			*i1 = tcp->tcp_recv_hiwater;
9566 			break;
9567 		case SO_SND_COPYAVOID:
9568 			*i1 = tcp->tcp_snd_zcopy_on ?
9569 			    SO_SND_COPYAVOID : 0;
9570 			break;
9571 		case SO_ALLZONES:
9572 			*i1 = connp->conn_allzones ? 1 : 0;
9573 			break;
9574 		case SO_ANON_MLP:
9575 			*i1 = connp->conn_anon_mlp;
9576 			break;
9577 		case SO_MAC_EXEMPT:
9578 			*i1 = connp->conn_mac_exempt;
9579 			break;
9580 		case SO_EXCLBIND:
9581 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9582 			break;
9583 		case SO_PROTOTYPE:
9584 			*i1 = IPPROTO_TCP;
9585 			break;
9586 		case SO_DOMAIN:
9587 			*i1 = tcp->tcp_family;
9588 			break;
9589 		case SO_ACCEPTCONN:
9590 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9591 		default:
9592 			return (-1);
9593 		}
9594 		break;
9595 	case IPPROTO_TCP:
9596 		switch (name) {
9597 		case TCP_NODELAY:
9598 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9599 			break;
9600 		case TCP_MAXSEG:
9601 			*i1 = tcp->tcp_mss;
9602 			break;
9603 		case TCP_NOTIFY_THRESHOLD:
9604 			*i1 = (int)tcp->tcp_first_timer_threshold;
9605 			break;
9606 		case TCP_ABORT_THRESHOLD:
9607 			*i1 = tcp->tcp_second_timer_threshold;
9608 			break;
9609 		case TCP_CONN_NOTIFY_THRESHOLD:
9610 			*i1 = tcp->tcp_first_ctimer_threshold;
9611 			break;
9612 		case TCP_CONN_ABORT_THRESHOLD:
9613 			*i1 = tcp->tcp_second_ctimer_threshold;
9614 			break;
9615 		case TCP_RECVDSTADDR:
9616 			*i1 = tcp->tcp_recvdstaddr;
9617 			break;
9618 		case TCP_ANONPRIVBIND:
9619 			*i1 = tcp->tcp_anon_priv_bind;
9620 			break;
9621 		case TCP_EXCLBIND:
9622 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9623 			break;
9624 		case TCP_INIT_CWND:
9625 			*i1 = tcp->tcp_init_cwnd;
9626 			break;
9627 		case TCP_KEEPALIVE_THRESHOLD:
9628 			*i1 = tcp->tcp_ka_interval;
9629 			break;
9630 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9631 			*i1 = tcp->tcp_ka_abort_thres;
9632 			break;
9633 		case TCP_CORK:
9634 			*i1 = tcp->tcp_cork;
9635 			break;
9636 		default:
9637 			return (-1);
9638 		}
9639 		break;
9640 	case IPPROTO_IP:
9641 		if (tcp->tcp_family != AF_INET)
9642 			return (-1);
9643 		switch (name) {
9644 		case IP_OPTIONS:
9645 		case T_IP_OPTIONS: {
9646 			/*
9647 			 * This is compatible with BSD in that in only return
9648 			 * the reverse source route with the final destination
9649 			 * as the last entry. The first 4 bytes of the option
9650 			 * will contain the final destination.
9651 			 */
9652 			int	opt_len;
9653 
9654 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9655 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9656 			ASSERT(opt_len >= 0);
9657 			/* Caller ensures enough space */
9658 			if (opt_len > 0) {
9659 				/*
9660 				 * TODO: Do we have to handle getsockopt on an
9661 				 * initiator as well?
9662 				 */
9663 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9664 			}
9665 			return (0);
9666 			}
9667 		case IP_TOS:
9668 		case T_IP_TOS:
9669 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9670 			break;
9671 		case IP_TTL:
9672 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9673 			break;
9674 		case IP_NEXTHOP:
9675 			/* Handled at IP level */
9676 			return (-EINVAL);
9677 		default:
9678 			return (-1);
9679 		}
9680 		break;
9681 	case IPPROTO_IPV6:
9682 		/*
9683 		 * IPPROTO_IPV6 options are only supported for sockets
9684 		 * that are using IPv6 on the wire.
9685 		 */
9686 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9687 			return (-1);
9688 		}
9689 		switch (name) {
9690 		case IPV6_UNICAST_HOPS:
9691 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9692 			break;	/* goto sizeof (int) option return */
9693 		case IPV6_BOUND_IF:
9694 			/* Zero if not set */
9695 			*i1 = tcp->tcp_bound_if;
9696 			break;	/* goto sizeof (int) option return */
9697 		case IPV6_RECVPKTINFO:
9698 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9699 				*i1 = 1;
9700 			else
9701 				*i1 = 0;
9702 			break;	/* goto sizeof (int) option return */
9703 		case IPV6_RECVTCLASS:
9704 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9705 				*i1 = 1;
9706 			else
9707 				*i1 = 0;
9708 			break;	/* goto sizeof (int) option return */
9709 		case IPV6_RECVHOPLIMIT:
9710 			if (tcp->tcp_ipv6_recvancillary &
9711 			    TCP_IPV6_RECVHOPLIMIT)
9712 				*i1 = 1;
9713 			else
9714 				*i1 = 0;
9715 			break;	/* goto sizeof (int) option return */
9716 		case IPV6_RECVHOPOPTS:
9717 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9718 				*i1 = 1;
9719 			else
9720 				*i1 = 0;
9721 			break;	/* goto sizeof (int) option return */
9722 		case IPV6_RECVDSTOPTS:
9723 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9724 				*i1 = 1;
9725 			else
9726 				*i1 = 0;
9727 			break;	/* goto sizeof (int) option return */
9728 		case _OLD_IPV6_RECVDSTOPTS:
9729 			if (tcp->tcp_ipv6_recvancillary &
9730 			    TCP_OLD_IPV6_RECVDSTOPTS)
9731 				*i1 = 1;
9732 			else
9733 				*i1 = 0;
9734 			break;	/* goto sizeof (int) option return */
9735 		case IPV6_RECVRTHDR:
9736 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9737 				*i1 = 1;
9738 			else
9739 				*i1 = 0;
9740 			break;	/* goto sizeof (int) option return */
9741 		case IPV6_RECVRTHDRDSTOPTS:
9742 			if (tcp->tcp_ipv6_recvancillary &
9743 			    TCP_IPV6_RECVRTDSTOPTS)
9744 				*i1 = 1;
9745 			else
9746 				*i1 = 0;
9747 			break;	/* goto sizeof (int) option return */
9748 		case IPV6_PKTINFO: {
9749 			/* XXX assumes that caller has room for max size! */
9750 			struct in6_pktinfo *pkti;
9751 
9752 			pkti = (struct in6_pktinfo *)ptr;
9753 			if (ipp->ipp_fields & IPPF_IFINDEX)
9754 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9755 			else
9756 				pkti->ipi6_ifindex = 0;
9757 			if (ipp->ipp_fields & IPPF_ADDR)
9758 				pkti->ipi6_addr = ipp->ipp_addr;
9759 			else
9760 				pkti->ipi6_addr = ipv6_all_zeros;
9761 			return (sizeof (struct in6_pktinfo));
9762 		}
9763 		case IPV6_TCLASS:
9764 			if (ipp->ipp_fields & IPPF_TCLASS)
9765 				*i1 = ipp->ipp_tclass;
9766 			else
9767 				*i1 = IPV6_FLOW_TCLASS(
9768 				    IPV6_DEFAULT_VERS_AND_FLOW);
9769 			break;	/* goto sizeof (int) option return */
9770 		case IPV6_NEXTHOP: {
9771 			sin6_t *sin6 = (sin6_t *)ptr;
9772 
9773 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9774 				return (0);
9775 			*sin6 = sin6_null;
9776 			sin6->sin6_family = AF_INET6;
9777 			sin6->sin6_addr = ipp->ipp_nexthop;
9778 			return (sizeof (sin6_t));
9779 		}
9780 		case IPV6_HOPOPTS:
9781 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9782 				return (0);
9783 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9784 				return (0);
9785 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9786 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9787 			if (tcp->tcp_label_len > 0) {
9788 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9789 				ptr[1] = (ipp->ipp_hopoptslen -
9790 				    tcp->tcp_label_len + 7) / 8 - 1;
9791 			}
9792 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9793 		case IPV6_RTHDRDSTOPTS:
9794 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9795 				return (0);
9796 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9797 			return (ipp->ipp_rtdstoptslen);
9798 		case IPV6_RTHDR:
9799 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9800 				return (0);
9801 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9802 			return (ipp->ipp_rthdrlen);
9803 		case IPV6_DSTOPTS:
9804 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9805 				return (0);
9806 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9807 			return (ipp->ipp_dstoptslen);
9808 		case IPV6_SRC_PREFERENCES:
9809 			return (ip6_get_src_preferences(connp,
9810 			    (uint32_t *)ptr));
9811 		case IPV6_PATHMTU: {
9812 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9813 
9814 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9815 				return (-1);
9816 
9817 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9818 			    connp->conn_fport, mtuinfo,
9819 			    connp->conn_netstack));
9820 		}
9821 		default:
9822 			return (-1);
9823 		}
9824 		break;
9825 	default:
9826 		return (-1);
9827 	}
9828 	return (sizeof (int));
9829 }
9830 
9831 /*
9832  * TCP routine to get the values of options.
9833  */
9834 int
9835 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9836 {
9837 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9838 }
9839 
9840 /* returns UNIX error, the optlen is a value-result arg */
9841 int
9842 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9843     void *optvalp, socklen_t *optlen, cred_t *cr)
9844 {
9845 	conn_t		*connp = (conn_t *)proto_handle;
9846 	squeue_t	*sqp = connp->conn_sqp;
9847 	int		error;
9848 	t_uscalar_t	max_optbuf_len;
9849 	void		*optvalp_buf;
9850 	int		len;
9851 
9852 	ASSERT(connp->conn_upper_handle != NULL);
9853 
9854 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9855 	    tcp_opt_obj.odb_opt_des_arr,
9856 	    tcp_opt_obj.odb_opt_arr_cnt,
9857 	    tcp_opt_obj.odb_topmost_tpiprovider,
9858 	    B_FALSE, B_TRUE, cr);
9859 	if (error != 0) {
9860 		if (error < 0) {
9861 			error = proto_tlitosyserr(-error);
9862 		}
9863 		return (error);
9864 	}
9865 
9866 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9867 
9868 	error = squeue_synch_enter(sqp, connp, 0);
9869 	if (error == ENOMEM) {
9870 		return (ENOMEM);
9871 	}
9872 
9873 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9874 	squeue_synch_exit(sqp, connp);
9875 
9876 	if (len < 0) {
9877 		/*
9878 		 * Pass on to IP
9879 		 */
9880 		kmem_free(optvalp_buf, max_optbuf_len);
9881 		return (ip_get_options(connp, level, option_name,
9882 		    optvalp, optlen, cr));
9883 	} else {
9884 		/*
9885 		 * update optlen and copy option value
9886 		 */
9887 		t_uscalar_t size = MIN(len, *optlen);
9888 		bcopy(optvalp_buf, optvalp, size);
9889 		bcopy(&size, optlen, sizeof (size));
9890 
9891 		kmem_free(optvalp_buf, max_optbuf_len);
9892 		return (0);
9893 	}
9894 }
9895 
9896 /*
9897  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9898  * Parameters are assumed to be verified by the caller.
9899  */
9900 /* ARGSUSED */
9901 int
9902 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9903     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9904     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9905 {
9906 	tcp_t	*tcp = connp->conn_tcp;
9907 	int	*i1 = (int *)invalp;
9908 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9909 	boolean_t checkonly;
9910 	int	reterr;
9911 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9912 
9913 	switch (optset_context) {
9914 	case SETFN_OPTCOM_CHECKONLY:
9915 		checkonly = B_TRUE;
9916 		/*
9917 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9918 		 * inlen != 0 implies value supplied and
9919 		 * 	we have to "pretend" to set it.
9920 		 * inlen == 0 implies that there is no
9921 		 * 	value part in T_CHECK request and just validation
9922 		 * done elsewhere should be enough, we just return here.
9923 		 */
9924 		if (inlen == 0) {
9925 			*outlenp = 0;
9926 			return (0);
9927 		}
9928 		break;
9929 	case SETFN_OPTCOM_NEGOTIATE:
9930 		checkonly = B_FALSE;
9931 		break;
9932 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9933 	case SETFN_CONN_NEGOTIATE:
9934 		checkonly = B_FALSE;
9935 		/*
9936 		 * Negotiating local and "association-related" options
9937 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9938 		 * primitives is allowed by XTI, but we choose
9939 		 * to not implement this style negotiation for Internet
9940 		 * protocols (We interpret it is a must for OSI world but
9941 		 * optional for Internet protocols) for all options.
9942 		 * [ Will do only for the few options that enable test
9943 		 * suites that our XTI implementation of this feature
9944 		 * works for transports that do allow it ]
9945 		 */
9946 		if (!tcp_allow_connopt_set(level, name)) {
9947 			*outlenp = 0;
9948 			return (EINVAL);
9949 		}
9950 		break;
9951 	default:
9952 		/*
9953 		 * We should never get here
9954 		 */
9955 		*outlenp = 0;
9956 		return (EINVAL);
9957 	}
9958 
9959 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9960 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9961 
9962 	/*
9963 	 * For TCP, we should have no ancillary data sent down
9964 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9965 	 * has to be zero.
9966 	 */
9967 	ASSERT(thisdg_attrs == NULL);
9968 
9969 	/*
9970 	 * For fixed length options, no sanity check
9971 	 * of passed in length is done. It is assumed *_optcom_req()
9972 	 * routines do the right thing.
9973 	 */
9974 	switch (level) {
9975 	case SOL_SOCKET:
9976 		switch (name) {
9977 		case SO_LINGER: {
9978 			struct linger *lgr = (struct linger *)invalp;
9979 
9980 			if (!checkonly) {
9981 				if (lgr->l_onoff) {
9982 					tcp->tcp_linger = 1;
9983 					tcp->tcp_lingertime = lgr->l_linger;
9984 				} else {
9985 					tcp->tcp_linger = 0;
9986 					tcp->tcp_lingertime = 0;
9987 				}
9988 				/* struct copy */
9989 				*(struct linger *)outvalp = *lgr;
9990 			} else {
9991 				if (!lgr->l_onoff) {
9992 					((struct linger *)
9993 					    outvalp)->l_onoff = 0;
9994 					((struct linger *)
9995 					    outvalp)->l_linger = 0;
9996 				} else {
9997 					/* struct copy */
9998 					*(struct linger *)outvalp = *lgr;
9999 				}
10000 			}
10001 			*outlenp = sizeof (struct linger);
10002 			return (0);
10003 		}
10004 		case SO_DEBUG:
10005 			if (!checkonly)
10006 				tcp->tcp_debug = onoff;
10007 			break;
10008 		case SO_KEEPALIVE:
10009 			if (checkonly) {
10010 				/* check only case */
10011 				break;
10012 			}
10013 
10014 			if (!onoff) {
10015 				if (tcp->tcp_ka_enabled) {
10016 					if (tcp->tcp_ka_tid != 0) {
10017 						(void) TCP_TIMER_CANCEL(tcp,
10018 						    tcp->tcp_ka_tid);
10019 						tcp->tcp_ka_tid = 0;
10020 					}
10021 					tcp->tcp_ka_enabled = 0;
10022 				}
10023 				break;
10024 			}
10025 			if (!tcp->tcp_ka_enabled) {
10026 				/* Crank up the keepalive timer */
10027 				tcp->tcp_ka_last_intrvl = 0;
10028 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10029 				    tcp_keepalive_killer,
10030 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10031 				tcp->tcp_ka_enabled = 1;
10032 			}
10033 			break;
10034 		case SO_DONTROUTE:
10035 			/*
10036 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10037 			 * only of interest to IP.  We track them here only so
10038 			 * that we can report their current value.
10039 			 */
10040 			if (!checkonly) {
10041 				tcp->tcp_dontroute = onoff;
10042 				tcp->tcp_connp->conn_dontroute = onoff;
10043 			}
10044 			break;
10045 		case SO_USELOOPBACK:
10046 			if (!checkonly) {
10047 				tcp->tcp_useloopback = onoff;
10048 				tcp->tcp_connp->conn_loopback = onoff;
10049 			}
10050 			break;
10051 		case SO_BROADCAST:
10052 			if (!checkonly) {
10053 				tcp->tcp_broadcast = onoff;
10054 				tcp->tcp_connp->conn_broadcast = onoff;
10055 			}
10056 			break;
10057 		case SO_REUSEADDR:
10058 			if (!checkonly) {
10059 				tcp->tcp_reuseaddr = onoff;
10060 				tcp->tcp_connp->conn_reuseaddr = onoff;
10061 			}
10062 			break;
10063 		case SO_OOBINLINE:
10064 			if (!checkonly) {
10065 				tcp->tcp_oobinline = onoff;
10066 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
10067 					proto_set_rx_oob_opt(connp, onoff);
10068 			}
10069 			break;
10070 		case SO_DGRAM_ERRIND:
10071 			if (!checkonly)
10072 				tcp->tcp_dgram_errind = onoff;
10073 			break;
10074 		case SO_SNDBUF: {
10075 			if (*i1 > tcps->tcps_max_buf) {
10076 				*outlenp = 0;
10077 				return (ENOBUFS);
10078 			}
10079 			if (checkonly)
10080 				break;
10081 
10082 			tcp->tcp_xmit_hiwater = *i1;
10083 			if (tcps->tcps_snd_lowat_fraction != 0)
10084 				tcp->tcp_xmit_lowater =
10085 				    tcp->tcp_xmit_hiwater /
10086 				    tcps->tcps_snd_lowat_fraction;
10087 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10088 			/*
10089 			 * If we are flow-controlled, recheck the condition.
10090 			 * There are apps that increase SO_SNDBUF size when
10091 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10092 			 * control condition to be lifted right away.
10093 			 */
10094 			mutex_enter(&tcp->tcp_non_sq_lock);
10095 			if (tcp->tcp_flow_stopped &&
10096 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10097 				tcp_clrqfull(tcp);
10098 			}
10099 			mutex_exit(&tcp->tcp_non_sq_lock);
10100 			break;
10101 		}
10102 		case SO_RCVBUF:
10103 			if (*i1 > tcps->tcps_max_buf) {
10104 				*outlenp = 0;
10105 				return (ENOBUFS);
10106 			}
10107 			/* Silently ignore zero */
10108 			if (!checkonly && *i1 != 0) {
10109 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10110 				(void) tcp_rwnd_set(tcp, *i1);
10111 			}
10112 			/*
10113 			 * XXX should we return the rwnd here
10114 			 * and tcp_opt_get ?
10115 			 */
10116 			break;
10117 		case SO_SND_COPYAVOID:
10118 			if (!checkonly) {
10119 				/* we only allow enable at most once for now */
10120 				if (tcp->tcp_loopback ||
10121 				    (tcp->tcp_kssl_ctx != NULL) ||
10122 				    (!tcp->tcp_snd_zcopy_aware &&
10123 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10124 					*outlenp = 0;
10125 					return (EOPNOTSUPP);
10126 				}
10127 				tcp->tcp_snd_zcopy_aware = 1;
10128 			}
10129 			break;
10130 		case SO_RCVTIMEO:
10131 		case SO_SNDTIMEO:
10132 			/*
10133 			 * Pass these two options in order for third part
10134 			 * protocol usage. Here just return directly.
10135 			 */
10136 			return (0);
10137 		case SO_ALLZONES:
10138 			/* Pass option along to IP level for handling */
10139 			return (-EINVAL);
10140 		case SO_ANON_MLP:
10141 			/* Pass option along to IP level for handling */
10142 			return (-EINVAL);
10143 		case SO_MAC_EXEMPT:
10144 			/* Pass option along to IP level for handling */
10145 			return (-EINVAL);
10146 		case SO_EXCLBIND:
10147 			if (!checkonly)
10148 				tcp->tcp_exclbind = onoff;
10149 			break;
10150 		default:
10151 			*outlenp = 0;
10152 			return (EINVAL);
10153 		}
10154 		break;
10155 	case IPPROTO_TCP:
10156 		switch (name) {
10157 		case TCP_NODELAY:
10158 			if (!checkonly)
10159 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10160 			break;
10161 		case TCP_NOTIFY_THRESHOLD:
10162 			if (!checkonly)
10163 				tcp->tcp_first_timer_threshold = *i1;
10164 			break;
10165 		case TCP_ABORT_THRESHOLD:
10166 			if (!checkonly)
10167 				tcp->tcp_second_timer_threshold = *i1;
10168 			break;
10169 		case TCP_CONN_NOTIFY_THRESHOLD:
10170 			if (!checkonly)
10171 				tcp->tcp_first_ctimer_threshold = *i1;
10172 			break;
10173 		case TCP_CONN_ABORT_THRESHOLD:
10174 			if (!checkonly)
10175 				tcp->tcp_second_ctimer_threshold = *i1;
10176 			break;
10177 		case TCP_RECVDSTADDR:
10178 			if (tcp->tcp_state > TCPS_LISTEN)
10179 				return (EOPNOTSUPP);
10180 			if (!checkonly)
10181 				tcp->tcp_recvdstaddr = onoff;
10182 			break;
10183 		case TCP_ANONPRIVBIND:
10184 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10185 			    IPPROTO_TCP)) != 0) {
10186 				*outlenp = 0;
10187 				return (reterr);
10188 			}
10189 			if (!checkonly) {
10190 				tcp->tcp_anon_priv_bind = onoff;
10191 			}
10192 			break;
10193 		case TCP_EXCLBIND:
10194 			if (!checkonly)
10195 				tcp->tcp_exclbind = onoff;
10196 			break;	/* goto sizeof (int) option return */
10197 		case TCP_INIT_CWND: {
10198 			uint32_t init_cwnd = *((uint32_t *)invalp);
10199 
10200 			if (checkonly)
10201 				break;
10202 
10203 			/*
10204 			 * Only allow socket with network configuration
10205 			 * privilege to set the initial cwnd to be larger
10206 			 * than allowed by RFC 3390.
10207 			 */
10208 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10209 				tcp->tcp_init_cwnd = init_cwnd;
10210 				break;
10211 			}
10212 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10213 				*outlenp = 0;
10214 				return (reterr);
10215 			}
10216 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10217 				*outlenp = 0;
10218 				return (EINVAL);
10219 			}
10220 			tcp->tcp_init_cwnd = init_cwnd;
10221 			break;
10222 		}
10223 		case TCP_KEEPALIVE_THRESHOLD:
10224 			if (checkonly)
10225 				break;
10226 
10227 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10228 			    *i1 > tcps->tcps_keepalive_interval_high) {
10229 				*outlenp = 0;
10230 				return (EINVAL);
10231 			}
10232 			if (*i1 != tcp->tcp_ka_interval) {
10233 				tcp->tcp_ka_interval = *i1;
10234 				/*
10235 				 * Check if we need to restart the
10236 				 * keepalive timer.
10237 				 */
10238 				if (tcp->tcp_ka_tid != 0) {
10239 					ASSERT(tcp->tcp_ka_enabled);
10240 					(void) TCP_TIMER_CANCEL(tcp,
10241 					    tcp->tcp_ka_tid);
10242 					tcp->tcp_ka_last_intrvl = 0;
10243 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10244 					    tcp_keepalive_killer,
10245 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10246 				}
10247 			}
10248 			break;
10249 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10250 			if (!checkonly) {
10251 				if (*i1 <
10252 				    tcps->tcps_keepalive_abort_interval_low ||
10253 				    *i1 >
10254 				    tcps->tcps_keepalive_abort_interval_high) {
10255 					*outlenp = 0;
10256 					return (EINVAL);
10257 				}
10258 				tcp->tcp_ka_abort_thres = *i1;
10259 			}
10260 			break;
10261 		case TCP_CORK:
10262 			if (!checkonly) {
10263 				/*
10264 				 * if tcp->tcp_cork was set and is now
10265 				 * being unset, we have to make sure that
10266 				 * the remaining data gets sent out. Also
10267 				 * unset tcp->tcp_cork so that tcp_wput_data()
10268 				 * can send data even if it is less than mss
10269 				 */
10270 				if (tcp->tcp_cork && onoff == 0 &&
10271 				    tcp->tcp_unsent > 0) {
10272 					tcp->tcp_cork = B_FALSE;
10273 					tcp_wput_data(tcp, NULL, B_FALSE);
10274 				}
10275 				tcp->tcp_cork = onoff;
10276 			}
10277 			break;
10278 		default:
10279 			*outlenp = 0;
10280 			return (EINVAL);
10281 		}
10282 		break;
10283 	case IPPROTO_IP:
10284 		if (tcp->tcp_family != AF_INET) {
10285 			*outlenp = 0;
10286 			return (ENOPROTOOPT);
10287 		}
10288 		switch (name) {
10289 		case IP_OPTIONS:
10290 		case T_IP_OPTIONS:
10291 			reterr = tcp_opt_set_header(tcp, checkonly,
10292 			    invalp, inlen);
10293 			if (reterr) {
10294 				*outlenp = 0;
10295 				return (reterr);
10296 			}
10297 			/* OK return - copy input buffer into output buffer */
10298 			if (invalp != outvalp) {
10299 				/* don't trust bcopy for identical src/dst */
10300 				bcopy(invalp, outvalp, inlen);
10301 			}
10302 			*outlenp = inlen;
10303 			return (0);
10304 		case IP_TOS:
10305 		case T_IP_TOS:
10306 			if (!checkonly) {
10307 				tcp->tcp_ipha->ipha_type_of_service =
10308 				    (uchar_t)*i1;
10309 				tcp->tcp_tos = (uchar_t)*i1;
10310 			}
10311 			break;
10312 		case IP_TTL:
10313 			if (!checkonly) {
10314 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10315 				tcp->tcp_ttl = (uchar_t)*i1;
10316 			}
10317 			break;
10318 		case IP_BOUND_IF:
10319 		case IP_NEXTHOP:
10320 			/* Handled at the IP level */
10321 			return (-EINVAL);
10322 		case IP_SEC_OPT:
10323 			/*
10324 			 * We should not allow policy setting after
10325 			 * we start listening for connections.
10326 			 */
10327 			if (tcp->tcp_state == TCPS_LISTEN) {
10328 				return (EINVAL);
10329 			} else {
10330 				/* Handled at the IP level */
10331 				return (-EINVAL);
10332 			}
10333 		default:
10334 			*outlenp = 0;
10335 			return (EINVAL);
10336 		}
10337 		break;
10338 	case IPPROTO_IPV6: {
10339 		ip6_pkt_t		*ipp;
10340 
10341 		/*
10342 		 * IPPROTO_IPV6 options are only supported for sockets
10343 		 * that are using IPv6 on the wire.
10344 		 */
10345 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10346 			*outlenp = 0;
10347 			return (ENOPROTOOPT);
10348 		}
10349 		/*
10350 		 * Only sticky options; no ancillary data
10351 		 */
10352 		ipp = &tcp->tcp_sticky_ipp;
10353 
10354 		switch (name) {
10355 		case IPV6_UNICAST_HOPS:
10356 			/* -1 means use default */
10357 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10358 				*outlenp = 0;
10359 				return (EINVAL);
10360 			}
10361 			if (!checkonly) {
10362 				if (*i1 == -1) {
10363 					tcp->tcp_ip6h->ip6_hops =
10364 					    ipp->ipp_unicast_hops =
10365 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10366 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10367 					/* Pass modified value to IP. */
10368 					*i1 = tcp->tcp_ip6h->ip6_hops;
10369 				} else {
10370 					tcp->tcp_ip6h->ip6_hops =
10371 					    ipp->ipp_unicast_hops =
10372 					    (uint8_t)*i1;
10373 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10374 				}
10375 				reterr = tcp_build_hdrs(tcp);
10376 				if (reterr != 0)
10377 					return (reterr);
10378 			}
10379 			break;
10380 		case IPV6_BOUND_IF:
10381 			if (!checkonly) {
10382 				tcp->tcp_bound_if = *i1;
10383 				PASS_OPT_TO_IP(connp);
10384 			}
10385 			break;
10386 		/*
10387 		 * Set boolean switches for ancillary data delivery
10388 		 */
10389 		case IPV6_RECVPKTINFO:
10390 			if (!checkonly) {
10391 				if (onoff)
10392 					tcp->tcp_ipv6_recvancillary |=
10393 					    TCP_IPV6_RECVPKTINFO;
10394 				else
10395 					tcp->tcp_ipv6_recvancillary &=
10396 					    ~TCP_IPV6_RECVPKTINFO;
10397 				/* Force it to be sent up with the next msg */
10398 				tcp->tcp_recvifindex = 0;
10399 				PASS_OPT_TO_IP(connp);
10400 			}
10401 			break;
10402 		case IPV6_RECVTCLASS:
10403 			if (!checkonly) {
10404 				if (onoff)
10405 					tcp->tcp_ipv6_recvancillary |=
10406 					    TCP_IPV6_RECVTCLASS;
10407 				else
10408 					tcp->tcp_ipv6_recvancillary &=
10409 					    ~TCP_IPV6_RECVTCLASS;
10410 				PASS_OPT_TO_IP(connp);
10411 			}
10412 			break;
10413 		case IPV6_RECVHOPLIMIT:
10414 			if (!checkonly) {
10415 				if (onoff)
10416 					tcp->tcp_ipv6_recvancillary |=
10417 					    TCP_IPV6_RECVHOPLIMIT;
10418 				else
10419 					tcp->tcp_ipv6_recvancillary &=
10420 					    ~TCP_IPV6_RECVHOPLIMIT;
10421 				/* Force it to be sent up with the next msg */
10422 				tcp->tcp_recvhops = 0xffffffffU;
10423 				PASS_OPT_TO_IP(connp);
10424 			}
10425 			break;
10426 		case IPV6_RECVHOPOPTS:
10427 			if (!checkonly) {
10428 				if (onoff)
10429 					tcp->tcp_ipv6_recvancillary |=
10430 					    TCP_IPV6_RECVHOPOPTS;
10431 				else
10432 					tcp->tcp_ipv6_recvancillary &=
10433 					    ~TCP_IPV6_RECVHOPOPTS;
10434 				PASS_OPT_TO_IP(connp);
10435 			}
10436 			break;
10437 		case IPV6_RECVDSTOPTS:
10438 			if (!checkonly) {
10439 				if (onoff)
10440 					tcp->tcp_ipv6_recvancillary |=
10441 					    TCP_IPV6_RECVDSTOPTS;
10442 				else
10443 					tcp->tcp_ipv6_recvancillary &=
10444 					    ~TCP_IPV6_RECVDSTOPTS;
10445 				PASS_OPT_TO_IP(connp);
10446 			}
10447 			break;
10448 		case _OLD_IPV6_RECVDSTOPTS:
10449 			if (!checkonly) {
10450 				if (onoff)
10451 					tcp->tcp_ipv6_recvancillary |=
10452 					    TCP_OLD_IPV6_RECVDSTOPTS;
10453 				else
10454 					tcp->tcp_ipv6_recvancillary &=
10455 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10456 			}
10457 			break;
10458 		case IPV6_RECVRTHDR:
10459 			if (!checkonly) {
10460 				if (onoff)
10461 					tcp->tcp_ipv6_recvancillary |=
10462 					    TCP_IPV6_RECVRTHDR;
10463 				else
10464 					tcp->tcp_ipv6_recvancillary &=
10465 					    ~TCP_IPV6_RECVRTHDR;
10466 				PASS_OPT_TO_IP(connp);
10467 			}
10468 			break;
10469 		case IPV6_RECVRTHDRDSTOPTS:
10470 			if (!checkonly) {
10471 				if (onoff)
10472 					tcp->tcp_ipv6_recvancillary |=
10473 					    TCP_IPV6_RECVRTDSTOPTS;
10474 				else
10475 					tcp->tcp_ipv6_recvancillary &=
10476 					    ~TCP_IPV6_RECVRTDSTOPTS;
10477 				PASS_OPT_TO_IP(connp);
10478 			}
10479 			break;
10480 		case IPV6_PKTINFO:
10481 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10482 				return (EINVAL);
10483 			if (checkonly)
10484 				break;
10485 
10486 			if (inlen == 0) {
10487 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10488 			} else {
10489 				struct in6_pktinfo *pkti;
10490 
10491 				pkti = (struct in6_pktinfo *)invalp;
10492 				/*
10493 				 * RFC 3542 states that ipi6_addr must be
10494 				 * the unspecified address when setting the
10495 				 * IPV6_PKTINFO sticky socket option on a
10496 				 * TCP socket.
10497 				 */
10498 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10499 					return (EINVAL);
10500 				/*
10501 				 * IP will validate the source address and
10502 				 * interface index.
10503 				 */
10504 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10505 					reterr = ip_set_options(tcp->tcp_connp,
10506 					    level, name, invalp, inlen, cr);
10507 				} else {
10508 					reterr = ip6_set_pktinfo(cr,
10509 					    tcp->tcp_connp, pkti);
10510 				}
10511 				if (reterr != 0)
10512 					return (reterr);
10513 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10514 				ipp->ipp_addr = pkti->ipi6_addr;
10515 				if (ipp->ipp_ifindex != 0)
10516 					ipp->ipp_fields |= IPPF_IFINDEX;
10517 				else
10518 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10519 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10520 					ipp->ipp_fields |= IPPF_ADDR;
10521 				else
10522 					ipp->ipp_fields &= ~IPPF_ADDR;
10523 			}
10524 			reterr = tcp_build_hdrs(tcp);
10525 			if (reterr != 0)
10526 				return (reterr);
10527 			break;
10528 		case IPV6_TCLASS:
10529 			if (inlen != 0 && inlen != sizeof (int))
10530 				return (EINVAL);
10531 			if (checkonly)
10532 				break;
10533 
10534 			if (inlen == 0) {
10535 				ipp->ipp_fields &= ~IPPF_TCLASS;
10536 			} else {
10537 				if (*i1 > 255 || *i1 < -1)
10538 					return (EINVAL);
10539 				if (*i1 == -1) {
10540 					ipp->ipp_tclass = 0;
10541 					*i1 = 0;
10542 				} else {
10543 					ipp->ipp_tclass = *i1;
10544 				}
10545 				ipp->ipp_fields |= IPPF_TCLASS;
10546 			}
10547 			reterr = tcp_build_hdrs(tcp);
10548 			if (reterr != 0)
10549 				return (reterr);
10550 			break;
10551 		case IPV6_NEXTHOP:
10552 			/*
10553 			 * IP will verify that the nexthop is reachable
10554 			 * and fail for sticky options.
10555 			 */
10556 			if (inlen != 0 && inlen != sizeof (sin6_t))
10557 				return (EINVAL);
10558 			if (checkonly)
10559 				break;
10560 
10561 			if (inlen == 0) {
10562 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10563 			} else {
10564 				sin6_t *sin6 = (sin6_t *)invalp;
10565 
10566 				if (sin6->sin6_family != AF_INET6)
10567 					return (EAFNOSUPPORT);
10568 				if (IN6_IS_ADDR_V4MAPPED(
10569 				    &sin6->sin6_addr))
10570 					return (EADDRNOTAVAIL);
10571 				ipp->ipp_nexthop = sin6->sin6_addr;
10572 				if (!IN6_IS_ADDR_UNSPECIFIED(
10573 				    &ipp->ipp_nexthop))
10574 					ipp->ipp_fields |= IPPF_NEXTHOP;
10575 				else
10576 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10577 			}
10578 			reterr = tcp_build_hdrs(tcp);
10579 			if (reterr != 0)
10580 				return (reterr);
10581 			PASS_OPT_TO_IP(connp);
10582 			break;
10583 		case IPV6_HOPOPTS: {
10584 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10585 
10586 			/*
10587 			 * Sanity checks - minimum size, size a multiple of
10588 			 * eight bytes, and matching size passed in.
10589 			 */
10590 			if (inlen != 0 &&
10591 			    inlen != (8 * (hopts->ip6h_len + 1)))
10592 				return (EINVAL);
10593 
10594 			if (checkonly)
10595 				break;
10596 
10597 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10598 			    (uchar_t **)&ipp->ipp_hopopts,
10599 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10600 			if (reterr != 0)
10601 				return (reterr);
10602 			if (ipp->ipp_hopoptslen == 0)
10603 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10604 			else
10605 				ipp->ipp_fields |= IPPF_HOPOPTS;
10606 			reterr = tcp_build_hdrs(tcp);
10607 			if (reterr != 0)
10608 				return (reterr);
10609 			break;
10610 		}
10611 		case IPV6_RTHDRDSTOPTS: {
10612 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10613 
10614 			/*
10615 			 * Sanity checks - minimum size, size a multiple of
10616 			 * eight bytes, and matching size passed in.
10617 			 */
10618 			if (inlen != 0 &&
10619 			    inlen != (8 * (dopts->ip6d_len + 1)))
10620 				return (EINVAL);
10621 
10622 			if (checkonly)
10623 				break;
10624 
10625 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10626 			    (uchar_t **)&ipp->ipp_rtdstopts,
10627 			    &ipp->ipp_rtdstoptslen, 0);
10628 			if (reterr != 0)
10629 				return (reterr);
10630 			if (ipp->ipp_rtdstoptslen == 0)
10631 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10632 			else
10633 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10634 			reterr = tcp_build_hdrs(tcp);
10635 			if (reterr != 0)
10636 				return (reterr);
10637 			break;
10638 		}
10639 		case IPV6_DSTOPTS: {
10640 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10641 
10642 			/*
10643 			 * Sanity checks - minimum size, size a multiple of
10644 			 * eight bytes, and matching size passed in.
10645 			 */
10646 			if (inlen != 0 &&
10647 			    inlen != (8 * (dopts->ip6d_len + 1)))
10648 				return (EINVAL);
10649 
10650 			if (checkonly)
10651 				break;
10652 
10653 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10654 			    (uchar_t **)&ipp->ipp_dstopts,
10655 			    &ipp->ipp_dstoptslen, 0);
10656 			if (reterr != 0)
10657 				return (reterr);
10658 			if (ipp->ipp_dstoptslen == 0)
10659 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10660 			else
10661 				ipp->ipp_fields |= IPPF_DSTOPTS;
10662 			reterr = tcp_build_hdrs(tcp);
10663 			if (reterr != 0)
10664 				return (reterr);
10665 			break;
10666 		}
10667 		case IPV6_RTHDR: {
10668 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10669 
10670 			/*
10671 			 * Sanity checks - minimum size, size a multiple of
10672 			 * eight bytes, and matching size passed in.
10673 			 */
10674 			if (inlen != 0 &&
10675 			    inlen != (8 * (rt->ip6r_len + 1)))
10676 				return (EINVAL);
10677 
10678 			if (checkonly)
10679 				break;
10680 
10681 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10682 			    (uchar_t **)&ipp->ipp_rthdr,
10683 			    &ipp->ipp_rthdrlen, 0);
10684 			if (reterr != 0)
10685 				return (reterr);
10686 			if (ipp->ipp_rthdrlen == 0)
10687 				ipp->ipp_fields &= ~IPPF_RTHDR;
10688 			else
10689 				ipp->ipp_fields |= IPPF_RTHDR;
10690 			reterr = tcp_build_hdrs(tcp);
10691 			if (reterr != 0)
10692 				return (reterr);
10693 			break;
10694 		}
10695 		case IPV6_V6ONLY:
10696 			if (!checkonly) {
10697 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10698 			}
10699 			break;
10700 		case IPV6_USE_MIN_MTU:
10701 			if (inlen != sizeof (int))
10702 				return (EINVAL);
10703 
10704 			if (*i1 < -1 || *i1 > 1)
10705 				return (EINVAL);
10706 
10707 			if (checkonly)
10708 				break;
10709 
10710 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10711 			ipp->ipp_use_min_mtu = *i1;
10712 			break;
10713 		case IPV6_SEC_OPT:
10714 			/*
10715 			 * We should not allow policy setting after
10716 			 * we start listening for connections.
10717 			 */
10718 			if (tcp->tcp_state == TCPS_LISTEN) {
10719 				return (EINVAL);
10720 			} else {
10721 				/* Handled at the IP level */
10722 				return (-EINVAL);
10723 			}
10724 		case IPV6_SRC_PREFERENCES:
10725 			if (inlen != sizeof (uint32_t))
10726 				return (EINVAL);
10727 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10728 			    *(uint32_t *)invalp);
10729 			if (reterr != 0) {
10730 				*outlenp = 0;
10731 				return (reterr);
10732 			}
10733 			break;
10734 		default:
10735 			*outlenp = 0;
10736 			return (EINVAL);
10737 		}
10738 		break;
10739 	}		/* end IPPROTO_IPV6 */
10740 	default:
10741 		*outlenp = 0;
10742 		return (EINVAL);
10743 	}
10744 	/*
10745 	 * Common case of OK return with outval same as inval
10746 	 */
10747 	if (invalp != outvalp) {
10748 		/* don't trust bcopy for identical src/dst */
10749 		(void) bcopy(invalp, outvalp, inlen);
10750 	}
10751 	*outlenp = inlen;
10752 	return (0);
10753 }
10754 
10755 /* ARGSUSED */
10756 int
10757 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10758     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10759     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10760 {
10761 	conn_t	*connp =  Q_TO_CONN(q);
10762 
10763 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10764 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10765 }
10766 
10767 int
10768 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10769     const void *optvalp, socklen_t optlen, cred_t *cr)
10770 {
10771 	conn_t		*connp = (conn_t *)proto_handle;
10772 	squeue_t	*sqp = connp->conn_sqp;
10773 	int		error;
10774 
10775 	ASSERT(connp->conn_upper_handle != NULL);
10776 	/*
10777 	 * Entering the squeue synchronously can result in a context switch,
10778 	 * which can cause a rather sever performance degradation. So we try to
10779 	 * handle whatever options we can without entering the squeue.
10780 	 */
10781 	if (level == IPPROTO_TCP) {
10782 		switch (option_name) {
10783 		case TCP_NODELAY:
10784 			if (optlen != sizeof (int32_t))
10785 				return (EINVAL);
10786 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10787 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10788 			    connp->conn_tcp->tcp_mss;
10789 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10790 			return (0);
10791 		default:
10792 			break;
10793 		}
10794 	}
10795 
10796 	error = squeue_synch_enter(sqp, connp, 0);
10797 	if (error == ENOMEM) {
10798 		return (ENOMEM);
10799 	}
10800 
10801 	error = proto_opt_check(level, option_name, optlen, NULL,
10802 	    tcp_opt_obj.odb_opt_des_arr,
10803 	    tcp_opt_obj.odb_opt_arr_cnt,
10804 	    tcp_opt_obj.odb_topmost_tpiprovider,
10805 	    B_TRUE, B_FALSE, cr);
10806 
10807 	if (error != 0) {
10808 		if (error < 0) {
10809 			error = proto_tlitosyserr(-error);
10810 		}
10811 		squeue_synch_exit(sqp, connp);
10812 		return (error);
10813 	}
10814 
10815 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10816 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10817 	    NULL, cr, NULL);
10818 	squeue_synch_exit(sqp, connp);
10819 
10820 	if (error < 0) {
10821 		/*
10822 		 * Pass on to ip
10823 		 */
10824 		error = ip_set_options(connp, level, option_name, optvalp,
10825 		    optlen, cr);
10826 	}
10827 	return (error);
10828 }
10829 
10830 /*
10831  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10832  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10833  * headers, and the maximum size tcp header (to avoid reallocation
10834  * on the fly for additional tcp options).
10835  * Returns failure if can't allocate memory.
10836  */
10837 static int
10838 tcp_build_hdrs(tcp_t *tcp)
10839 {
10840 	char	*hdrs;
10841 	uint_t	hdrs_len;
10842 	ip6i_t	*ip6i;
10843 	char	buf[TCP_MAX_HDR_LENGTH];
10844 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10845 	in6_addr_t src, dst;
10846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10847 	conn_t *connp = tcp->tcp_connp;
10848 
10849 	/*
10850 	 * save the existing tcp header and source/dest IP addresses
10851 	 */
10852 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10853 	src = tcp->tcp_ip6h->ip6_src;
10854 	dst = tcp->tcp_ip6h->ip6_dst;
10855 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10856 	ASSERT(hdrs_len != 0);
10857 	if (hdrs_len > tcp->tcp_iphc_len) {
10858 		/* Need to reallocate */
10859 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10860 		if (hdrs == NULL)
10861 			return (ENOMEM);
10862 		if (tcp->tcp_iphc != NULL) {
10863 			if (tcp->tcp_hdr_grown) {
10864 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10865 			} else {
10866 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10867 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10868 			}
10869 			tcp->tcp_iphc_len = 0;
10870 		}
10871 		ASSERT(tcp->tcp_iphc_len == 0);
10872 		tcp->tcp_iphc = hdrs;
10873 		tcp->tcp_iphc_len = hdrs_len;
10874 		tcp->tcp_hdr_grown = B_TRUE;
10875 	}
10876 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10877 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10878 
10879 	/* Set header fields not in ipp */
10880 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10881 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10882 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10883 	} else {
10884 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10885 	}
10886 	/*
10887 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10888 	 *
10889 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10890 	 */
10891 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10892 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10893 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10894 
10895 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10896 
10897 	tcp->tcp_ip6h->ip6_src = src;
10898 	tcp->tcp_ip6h->ip6_dst = dst;
10899 
10900 	/*
10901 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10902 	 * the default value for TCP.
10903 	 */
10904 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10905 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10906 
10907 	/*
10908 	 * If we're setting extension headers after a connection
10909 	 * has been established, and if we have a routing header
10910 	 * among the extension headers, call ip_massage_options_v6 to
10911 	 * manipulate the routing header/ip6_dst set the checksum
10912 	 * difference in the tcp header template.
10913 	 * (This happens in tcp_connect_ipv6 if the routing header
10914 	 * is set prior to the connect.)
10915 	 * Set the tcp_sum to zero first in case we've cleared a
10916 	 * routing header or don't have one at all.
10917 	 */
10918 	tcp->tcp_sum = 0;
10919 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10920 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10921 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10922 		    (uint8_t *)tcp->tcp_tcph);
10923 		if (rth != NULL) {
10924 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10925 			    rth, tcps->tcps_netstack);
10926 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10927 			    (tcp->tcp_sum >> 16));
10928 		}
10929 	}
10930 
10931 	/* Try to get everything in a single mblk */
10932 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10933 	    hdrs_len + tcps->tcps_wroff_xtra);
10934 	return (0);
10935 }
10936 
10937 /*
10938  * Transfer any source route option from ipha to buf/dst in reversed form.
10939  */
10940 static int
10941 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10942 {
10943 	ipoptp_t	opts;
10944 	uchar_t		*opt;
10945 	uint8_t		optval;
10946 	uint8_t		optlen;
10947 	uint32_t	len = 0;
10948 
10949 	for (optval = ipoptp_first(&opts, ipha);
10950 	    optval != IPOPT_EOL;
10951 	    optval = ipoptp_next(&opts)) {
10952 		opt = opts.ipoptp_cur;
10953 		optlen = opts.ipoptp_len;
10954 		switch (optval) {
10955 			int	off1, off2;
10956 		case IPOPT_SSRR:
10957 		case IPOPT_LSRR:
10958 
10959 			/* Reverse source route */
10960 			/*
10961 			 * First entry should be the next to last one in the
10962 			 * current source route (the last entry is our
10963 			 * address.)
10964 			 * The last entry should be the final destination.
10965 			 */
10966 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10967 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10968 			off1 = IPOPT_MINOFF_SR - 1;
10969 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10970 			if (off2 < 0) {
10971 				/* No entries in source route */
10972 				break;
10973 			}
10974 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10975 			/*
10976 			 * Note: use src since ipha has not had its src
10977 			 * and dst reversed (it is in the state it was
10978 			 * received.
10979 			 */
10980 			bcopy(&ipha->ipha_src, buf + off2,
10981 			    IP_ADDR_LEN);
10982 			off2 -= IP_ADDR_LEN;
10983 
10984 			while (off2 > 0) {
10985 				bcopy(opt + off2, buf + off1,
10986 				    IP_ADDR_LEN);
10987 				off1 += IP_ADDR_LEN;
10988 				off2 -= IP_ADDR_LEN;
10989 			}
10990 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10991 			buf += optlen;
10992 			len += optlen;
10993 			break;
10994 		}
10995 	}
10996 done:
10997 	/* Pad the resulting options */
10998 	while (len & 0x3) {
10999 		*buf++ = IPOPT_EOL;
11000 		len++;
11001 	}
11002 	return (len);
11003 }
11004 
11005 
11006 /*
11007  * Extract and revert a source route from ipha (if any)
11008  * and then update the relevant fields in both tcp_t and the standard header.
11009  */
11010 static void
11011 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11012 {
11013 	char	buf[TCP_MAX_HDR_LENGTH];
11014 	uint_t	tcph_len;
11015 	int	len;
11016 
11017 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11018 	len = IPH_HDR_LENGTH(ipha);
11019 	if (len == IP_SIMPLE_HDR_LENGTH)
11020 		/* Nothing to do */
11021 		return;
11022 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11023 	    (len & 0x3))
11024 		return;
11025 
11026 	tcph_len = tcp->tcp_tcp_hdr_len;
11027 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11028 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11029 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11030 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11031 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11032 	len += IP_SIMPLE_HDR_LENGTH;
11033 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11034 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11035 	if ((int)tcp->tcp_sum < 0)
11036 		tcp->tcp_sum--;
11037 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11038 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11039 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11040 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11041 	tcp->tcp_ip_hdr_len = len;
11042 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11043 	    (IP_VERSION << 4) | (len >> 2);
11044 	len += tcph_len;
11045 	tcp->tcp_hdr_len = len;
11046 }
11047 
11048 /*
11049  * Copy the standard header into its new location,
11050  * lay in the new options and then update the relevant
11051  * fields in both tcp_t and the standard header.
11052  */
11053 static int
11054 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11055 {
11056 	uint_t	tcph_len;
11057 	uint8_t	*ip_optp;
11058 	tcph_t	*new_tcph;
11059 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11060 	conn_t	*connp = tcp->tcp_connp;
11061 
11062 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11063 		return (EINVAL);
11064 
11065 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11066 		return (EINVAL);
11067 
11068 	if (checkonly) {
11069 		/*
11070 		 * do not really set, just pretend to - T_CHECK
11071 		 */
11072 		return (0);
11073 	}
11074 
11075 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11076 	if (tcp->tcp_label_len > 0) {
11077 		int padlen;
11078 		uint8_t opt;
11079 
11080 		/* convert list termination to no-ops */
11081 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11082 		ip_optp += ip_optp[IPOPT_OLEN];
11083 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11084 		while (--padlen >= 0)
11085 			*ip_optp++ = opt;
11086 	}
11087 	tcph_len = tcp->tcp_tcp_hdr_len;
11088 	new_tcph = (tcph_t *)(ip_optp + len);
11089 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11090 	tcp->tcp_tcph = new_tcph;
11091 	bcopy(ptr, ip_optp, len);
11092 
11093 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11094 
11095 	tcp->tcp_ip_hdr_len = len;
11096 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11097 	    (IP_VERSION << 4) | (len >> 2);
11098 	tcp->tcp_hdr_len = len + tcph_len;
11099 	if (!TCP_IS_DETACHED(tcp)) {
11100 		/* Always allocate room for all options. */
11101 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11102 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11103 	}
11104 	return (0);
11105 }
11106 
11107 /* Get callback routine passed to nd_load by tcp_param_register */
11108 /* ARGSUSED */
11109 static int
11110 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11111 {
11112 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11113 
11114 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11115 	return (0);
11116 }
11117 
11118 /*
11119  * Walk through the param array specified registering each element with the
11120  * named dispatch handler.
11121  */
11122 static boolean_t
11123 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11124 {
11125 	for (; cnt-- > 0; tcppa++) {
11126 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11127 			if (!nd_load(ndp, tcppa->tcp_param_name,
11128 			    tcp_param_get, tcp_param_set,
11129 			    (caddr_t)tcppa)) {
11130 				nd_free(ndp);
11131 				return (B_FALSE);
11132 			}
11133 		}
11134 	}
11135 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11136 	    KM_SLEEP);
11137 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11138 	    sizeof (tcpparam_t));
11139 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11140 	    tcp_param_get, tcp_param_set_aligned,
11141 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11142 		nd_free(ndp);
11143 		return (B_FALSE);
11144 	}
11145 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11146 	    KM_SLEEP);
11147 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11148 	    sizeof (tcpparam_t));
11149 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11150 	    tcp_param_get, tcp_param_set_aligned,
11151 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11152 		nd_free(ndp);
11153 		return (B_FALSE);
11154 	}
11155 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11156 	    KM_SLEEP);
11157 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11158 	    sizeof (tcpparam_t));
11159 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11160 	    tcp_param_get, tcp_param_set_aligned,
11161 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11162 		nd_free(ndp);
11163 		return (B_FALSE);
11164 	}
11165 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11166 	    KM_SLEEP);
11167 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11168 	    sizeof (tcpparam_t));
11169 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11170 	    tcp_param_get, tcp_param_set_aligned,
11171 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11172 		nd_free(ndp);
11173 		return (B_FALSE);
11174 	}
11175 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11176 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11177 		nd_free(ndp);
11178 		return (B_FALSE);
11179 	}
11180 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11181 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11182 		nd_free(ndp);
11183 		return (B_FALSE);
11184 	}
11185 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11186 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11187 		nd_free(ndp);
11188 		return (B_FALSE);
11189 	}
11190 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11191 	    tcp_1948_phrase_set, NULL)) {
11192 		nd_free(ndp);
11193 		return (B_FALSE);
11194 	}
11195 	/*
11196 	 * Dummy ndd variables - only to convey obsolescence information
11197 	 * through printing of their name (no get or set routines)
11198 	 * XXX Remove in future releases ?
11199 	 */
11200 	if (!nd_load(ndp,
11201 	    "tcp_close_wait_interval(obsoleted - "
11202 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11203 		nd_free(ndp);
11204 		return (B_FALSE);
11205 	}
11206 	return (B_TRUE);
11207 }
11208 
11209 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11210 /* ARGSUSED */
11211 static int
11212 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11213     cred_t *cr)
11214 {
11215 	long new_value;
11216 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11217 
11218 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11219 	    new_value < tcppa->tcp_param_min ||
11220 	    new_value > tcppa->tcp_param_max) {
11221 		return (EINVAL);
11222 	}
11223 	/*
11224 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11225 	 * round it up.  For future 64 bit requirement, we actually make it
11226 	 * a multiple of 8.
11227 	 */
11228 	if (new_value & 0x7) {
11229 		new_value = (new_value & ~0x7) + 0x8;
11230 	}
11231 	tcppa->tcp_param_val = new_value;
11232 	return (0);
11233 }
11234 
11235 /* Set callback routine passed to nd_load by tcp_param_register */
11236 /* ARGSUSED */
11237 static int
11238 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11239 {
11240 	long	new_value;
11241 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11242 
11243 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11244 	    new_value < tcppa->tcp_param_min ||
11245 	    new_value > tcppa->tcp_param_max) {
11246 		return (EINVAL);
11247 	}
11248 	tcppa->tcp_param_val = new_value;
11249 	return (0);
11250 }
11251 
11252 /*
11253  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11254  * is filled, return as much as we can.  The message passed in may be
11255  * multi-part, chained using b_cont.  "start" is the starting sequence
11256  * number for this piece.
11257  */
11258 static mblk_t *
11259 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11260 {
11261 	uint32_t	end;
11262 	mblk_t		*mp1;
11263 	mblk_t		*mp2;
11264 	mblk_t		*next_mp;
11265 	uint32_t	u1;
11266 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11267 
11268 	/* Walk through all the new pieces. */
11269 	do {
11270 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11271 		    (uintptr_t)INT_MAX);
11272 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11273 		next_mp = mp->b_cont;
11274 		if (start == end) {
11275 			/* Empty.  Blast it. */
11276 			freeb(mp);
11277 			continue;
11278 		}
11279 		mp->b_cont = NULL;
11280 		TCP_REASS_SET_SEQ(mp, start);
11281 		TCP_REASS_SET_END(mp, end);
11282 		mp1 = tcp->tcp_reass_tail;
11283 		if (!mp1) {
11284 			tcp->tcp_reass_tail = mp;
11285 			tcp->tcp_reass_head = mp;
11286 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11287 			UPDATE_MIB(&tcps->tcps_mib,
11288 			    tcpInDataUnorderBytes, end - start);
11289 			continue;
11290 		}
11291 		/* New stuff completely beyond tail? */
11292 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11293 			/* Link it on end. */
11294 			mp1->b_cont = mp;
11295 			tcp->tcp_reass_tail = mp;
11296 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11297 			UPDATE_MIB(&tcps->tcps_mib,
11298 			    tcpInDataUnorderBytes, end - start);
11299 			continue;
11300 		}
11301 		mp1 = tcp->tcp_reass_head;
11302 		u1 = TCP_REASS_SEQ(mp1);
11303 		/* New stuff at the front? */
11304 		if (SEQ_LT(start, u1)) {
11305 			/* Yes... Check for overlap. */
11306 			mp->b_cont = mp1;
11307 			tcp->tcp_reass_head = mp;
11308 			tcp_reass_elim_overlap(tcp, mp);
11309 			continue;
11310 		}
11311 		/*
11312 		 * The new piece fits somewhere between the head and tail.
11313 		 * We find our slot, where mp1 precedes us and mp2 trails.
11314 		 */
11315 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11316 			u1 = TCP_REASS_SEQ(mp2);
11317 			if (SEQ_LEQ(start, u1))
11318 				break;
11319 		}
11320 		/* Link ourselves in */
11321 		mp->b_cont = mp2;
11322 		mp1->b_cont = mp;
11323 
11324 		/* Trim overlap with following mblk(s) first */
11325 		tcp_reass_elim_overlap(tcp, mp);
11326 
11327 		/* Trim overlap with preceding mblk */
11328 		tcp_reass_elim_overlap(tcp, mp1);
11329 
11330 	} while (start = end, mp = next_mp);
11331 	mp1 = tcp->tcp_reass_head;
11332 	/* Anything ready to go? */
11333 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11334 		return (NULL);
11335 	/* Eat what we can off the queue */
11336 	for (;;) {
11337 		mp = mp1->b_cont;
11338 		end = TCP_REASS_END(mp1);
11339 		TCP_REASS_SET_SEQ(mp1, 0);
11340 		TCP_REASS_SET_END(mp1, 0);
11341 		if (!mp) {
11342 			tcp->tcp_reass_tail = NULL;
11343 			break;
11344 		}
11345 		if (end != TCP_REASS_SEQ(mp)) {
11346 			mp1->b_cont = NULL;
11347 			break;
11348 		}
11349 		mp1 = mp;
11350 	}
11351 	mp1 = tcp->tcp_reass_head;
11352 	tcp->tcp_reass_head = mp;
11353 	return (mp1);
11354 }
11355 
11356 /* Eliminate any overlap that mp may have over later mblks */
11357 static void
11358 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11359 {
11360 	uint32_t	end;
11361 	mblk_t		*mp1;
11362 	uint32_t	u1;
11363 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11364 
11365 	end = TCP_REASS_END(mp);
11366 	while ((mp1 = mp->b_cont) != NULL) {
11367 		u1 = TCP_REASS_SEQ(mp1);
11368 		if (!SEQ_GT(end, u1))
11369 			break;
11370 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11371 			mp->b_wptr -= end - u1;
11372 			TCP_REASS_SET_END(mp, u1);
11373 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11374 			UPDATE_MIB(&tcps->tcps_mib,
11375 			    tcpInDataPartDupBytes, end - u1);
11376 			break;
11377 		}
11378 		mp->b_cont = mp1->b_cont;
11379 		TCP_REASS_SET_SEQ(mp1, 0);
11380 		TCP_REASS_SET_END(mp1, 0);
11381 		freeb(mp1);
11382 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11383 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11384 	}
11385 	if (!mp1)
11386 		tcp->tcp_reass_tail = mp;
11387 }
11388 
11389 static uint_t
11390 tcp_rwnd_reopen(tcp_t *tcp)
11391 {
11392 	uint_t ret = 0;
11393 	uint_t thwin;
11394 
11395 	/* Learn the latest rwnd information that we sent to the other side. */
11396 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11397 	    << tcp->tcp_rcv_ws;
11398 	/* This is peer's calculated send window (our receive window). */
11399 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11400 	/*
11401 	 * Increase the receive window to max.  But we need to do receiver
11402 	 * SWS avoidance.  This means that we need to check the increase of
11403 	 * of receive window is at least 1 MSS.
11404 	 */
11405 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11406 		/*
11407 		 * If the window that the other side knows is less than max
11408 		 * deferred acks segments, send an update immediately.
11409 		 */
11410 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11411 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11412 			ret = TH_ACK_NEEDED;
11413 		}
11414 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11415 	}
11416 	return (ret);
11417 }
11418 
11419 /*
11420  * Send up all messages queued on tcp_rcv_list.
11421  */
11422 static uint_t
11423 tcp_rcv_drain(tcp_t *tcp)
11424 {
11425 	mblk_t *mp;
11426 	uint_t ret = 0;
11427 #ifdef DEBUG
11428 	uint_t cnt = 0;
11429 #endif
11430 	queue_t	*q = tcp->tcp_rq;
11431 
11432 	/* Can't drain on an eager connection */
11433 	if (tcp->tcp_listener != NULL)
11434 		return (ret);
11435 
11436 	/* Can't be a non-STREAMS connection or sodirect enabled */
11437 	ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp));
11438 
11439 	/* No need for the push timer now. */
11440 	if (tcp->tcp_push_tid != 0) {
11441 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11442 		tcp->tcp_push_tid = 0;
11443 	}
11444 
11445 	/*
11446 	 * Handle two cases here: we are currently fused or we were
11447 	 * previously fused and have some urgent data to be delivered
11448 	 * upstream.  The latter happens because we either ran out of
11449 	 * memory or were detached and therefore sending the SIGURG was
11450 	 * deferred until this point.  In either case we pass control
11451 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11452 	 * some work.
11453 	 */
11454 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11455 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11456 		    tcp->tcp_fused_sigurg_mp != NULL);
11457 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11458 		    &tcp->tcp_fused_sigurg_mp))
11459 			return (ret);
11460 	}
11461 
11462 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11463 		tcp->tcp_rcv_list = mp->b_next;
11464 		mp->b_next = NULL;
11465 #ifdef DEBUG
11466 		cnt += msgdsize(mp);
11467 #endif
11468 		/* Does this need SSL processing first? */
11469 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11470 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11471 			    mblk_t *, mp);
11472 			tcp_kssl_input(tcp, mp);
11473 			continue;
11474 		}
11475 		putnext(q, mp);
11476 	}
11477 #ifdef DEBUG
11478 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11479 #endif
11480 	tcp->tcp_rcv_last_head = NULL;
11481 	tcp->tcp_rcv_last_tail = NULL;
11482 	tcp->tcp_rcv_cnt = 0;
11483 
11484 	if (canputnext(q))
11485 		return (tcp_rwnd_reopen(tcp));
11486 
11487 	return (ret);
11488 }
11489 
11490 /*
11491  * Queue data on tcp_rcv_list which is a b_next chain.
11492  * tcp_rcv_last_head/tail is the last element of this chain.
11493  * Each element of the chain is a b_cont chain.
11494  *
11495  * M_DATA messages are added to the current element.
11496  * Other messages are added as new (b_next) elements.
11497  */
11498 void
11499 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11500 {
11501 	ASSERT(seg_len == msgdsize(mp));
11502 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11503 
11504 	if (tcp->tcp_rcv_list == NULL) {
11505 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11506 		tcp->tcp_rcv_list = mp;
11507 		tcp->tcp_rcv_last_head = mp;
11508 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11509 		tcp->tcp_rcv_last_tail->b_cont = mp;
11510 	} else {
11511 		tcp->tcp_rcv_last_head->b_next = mp;
11512 		tcp->tcp_rcv_last_head = mp;
11513 	}
11514 
11515 	while (mp->b_cont)
11516 		mp = mp->b_cont;
11517 
11518 	tcp->tcp_rcv_last_tail = mp;
11519 	tcp->tcp_rcv_cnt += seg_len;
11520 	tcp->tcp_rwnd -= seg_len;
11521 }
11522 
11523 /*
11524  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11525  * above, in addition when uioa is enabled schedule an asynchronous uio
11526  * prior to enqueuing. They implement the combinhed semantics of the
11527  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11528  * canputnext(), i.e. flow-control with backenable.
11529  *
11530  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11531  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11532  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11533  *
11534  * Must be called with sodp->sod_lockp held and will return with the lock
11535  * released.
11536  */
11537 static uint_t
11538 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11539 {
11540 	queue_t		*q = tcp->tcp_rq;
11541 	uint_t		thwin;
11542 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11543 	uint_t		ret = 0;
11544 
11545 	/* Can't be an eager connection */
11546 	ASSERT(tcp->tcp_listener == NULL);
11547 
11548 	/* Caller must have lock held */
11549 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11550 
11551 	/* Sodirect mode so must not be a tcp_rcv_list */
11552 	ASSERT(tcp->tcp_rcv_list == NULL);
11553 
11554 	if (SOD_QFULL(sodp)) {
11555 		/* Q is full, mark Q for need backenable */
11556 		SOD_QSETBE(sodp);
11557 	}
11558 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11559 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11560 	    << tcp->tcp_rcv_ws;
11561 	/* This is peer's calculated send window (our available rwnd). */
11562 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11563 	/*
11564 	 * Increase the receive window to max.  But we need to do receiver
11565 	 * SWS avoidance.  This means that we need to check the increase of
11566 	 * of receive window is at least 1 MSS.
11567 	 */
11568 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11569 		/*
11570 		 * If the window that the other side knows is less than max
11571 		 * deferred acks segments, send an update immediately.
11572 		 */
11573 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11574 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11575 			ret = TH_ACK_NEEDED;
11576 		}
11577 		tcp->tcp_rwnd = q->q_hiwat;
11578 	}
11579 
11580 	if (!SOD_QEMPTY(sodp)) {
11581 		/* Wakeup to socket */
11582 		sodp->sod_state &= SOD_WAKE_CLR;
11583 		sodp->sod_state |= SOD_WAKE_DONE;
11584 		(sodp->sod_wakeup)(sodp);
11585 		/* wakeup() does the mutex_ext() */
11586 	} else {
11587 		/* Q is empty, no need to wake */
11588 		sodp->sod_state &= SOD_WAKE_CLR;
11589 		sodp->sod_state |= SOD_WAKE_NOT;
11590 		mutex_exit(sodp->sod_lockp);
11591 	}
11592 
11593 	/* No need for the push timer now. */
11594 	if (tcp->tcp_push_tid != 0) {
11595 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11596 		tcp->tcp_push_tid = 0;
11597 	}
11598 
11599 	return (ret);
11600 }
11601 
11602 /*
11603  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11604  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11605  * to the user-land buffer and flag the mblk_t as such.
11606  *
11607  * Also, handle tcp_rwnd.
11608  */
11609 uint_t
11610 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11611 {
11612 	uioa_t		*uioap = &sodp->sod_uioa;
11613 	boolean_t	qfull;
11614 	uint_t		thwin;
11615 
11616 	/* Can't be an eager connection */
11617 	ASSERT(tcp->tcp_listener == NULL);
11618 
11619 	/* Caller must have lock held */
11620 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11621 
11622 	/* Sodirect mode so must not be a tcp_rcv_list */
11623 	ASSERT(tcp->tcp_rcv_list == NULL);
11624 
11625 	/* Passed in segment length must be equal to mblk_t chain data size */
11626 	ASSERT(seg_len == msgdsize(mp));
11627 
11628 	if (DB_TYPE(mp) != M_DATA) {
11629 		/* Only process M_DATA mblk_t's */
11630 		goto enq;
11631 	}
11632 	if (uioap->uioa_state & UIOA_ENABLED) {
11633 		/* Uioa is enabled */
11634 		mblk_t		*mp1 = mp;
11635 		mblk_t		*lmp = NULL;
11636 
11637 		if (seg_len > uioap->uio_resid) {
11638 			/*
11639 			 * There isn't enough uio space for the mblk_t chain
11640 			 * so disable uioa such that this and any additional
11641 			 * mblk_t data is handled by the socket and schedule
11642 			 * the socket for wakeup to finish this uioa.
11643 			 */
11644 			uioap->uioa_state &= UIOA_CLR;
11645 			uioap->uioa_state |= UIOA_FINI;
11646 			if (sodp->sod_state & SOD_WAKE_NOT) {
11647 				sodp->sod_state &= SOD_WAKE_CLR;
11648 				sodp->sod_state |= SOD_WAKE_NEED;
11649 			}
11650 			goto enq;
11651 		}
11652 		do {
11653 			uint32_t	len = MBLKL(mp1);
11654 
11655 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11656 				/* Scheduled, mark dblk_t as such */
11657 				DB_FLAGS(mp1) |= DBLK_UIOA;
11658 			} else {
11659 				/* Error, turn off async processing */
11660 				uioap->uioa_state &= UIOA_CLR;
11661 				uioap->uioa_state |= UIOA_FINI;
11662 				break;
11663 			}
11664 			lmp = mp1;
11665 		} while ((mp1 = mp1->b_cont) != NULL);
11666 
11667 		if (mp1 != NULL || uioap->uio_resid == 0) {
11668 			/*
11669 			 * Not all mblk_t(s) uioamoved (error) or all uio
11670 			 * space has been consumed so schedule the socket
11671 			 * for wakeup to finish this uio.
11672 			 */
11673 			sodp->sod_state &= SOD_WAKE_CLR;
11674 			sodp->sod_state |= SOD_WAKE_NEED;
11675 
11676 			/* Break the mblk chain if neccessary. */
11677 			if (mp1 != NULL && lmp != NULL) {
11678 				mp->b_next = mp1;
11679 				lmp->b_cont = NULL;
11680 			}
11681 		}
11682 	} else if (uioap->uioa_state & UIOA_FINI) {
11683 		/*
11684 		 * Post UIO_ENABLED waiting for socket to finish processing
11685 		 * so just enqueue and update tcp_rwnd.
11686 		 */
11687 		if (SOD_QFULL(sodp))
11688 			tcp->tcp_rwnd -= seg_len;
11689 	} else if (sodp->sod_want > 0) {
11690 		/*
11691 		 * Uioa isn't enabled but sodirect has a pending read().
11692 		 */
11693 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11694 			if (sodp->sod_state & SOD_WAKE_NOT) {
11695 				/* Schedule socket for wakeup */
11696 				sodp->sod_state &= SOD_WAKE_CLR;
11697 				sodp->sod_state |= SOD_WAKE_NEED;
11698 			}
11699 			tcp->tcp_rwnd -= seg_len;
11700 		}
11701 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11702 		/*
11703 		 * No pending sodirect read() so used the default
11704 		 * TCP push logic to guess that a push is needed.
11705 		 */
11706 		if (sodp->sod_state & SOD_WAKE_NOT) {
11707 			/* Schedule socket for wakeup */
11708 			sodp->sod_state &= SOD_WAKE_CLR;
11709 			sodp->sod_state |= SOD_WAKE_NEED;
11710 		}
11711 		tcp->tcp_rwnd -= seg_len;
11712 	} else {
11713 		/* Just update tcp_rwnd */
11714 		tcp->tcp_rwnd -= seg_len;
11715 	}
11716 enq:
11717 	qfull = SOD_QFULL(sodp);
11718 
11719 	(sodp->sod_enqueue)(sodp, mp);
11720 
11721 	if (! qfull && SOD_QFULL(sodp)) {
11722 		/* Wasn't QFULL, now QFULL, need back-enable */
11723 		SOD_QSETBE(sodp);
11724 	}
11725 
11726 	/*
11727 	 * Check to see if remote avail swnd < mss due to delayed ACK,
11728 	 * first get advertised rwnd.
11729 	 */
11730 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
11731 	/* Minus delayed ACK count */
11732 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11733 	if (thwin < tcp->tcp_mss) {
11734 		/* Remote avail swnd < mss, need ACK now */
11735 		return (TH_ACK_NEEDED);
11736 	}
11737 
11738 	return (0);
11739 }
11740 
11741 /*
11742  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11743  *
11744  * This is the default entry function into TCP on the read side. TCP is
11745  * always entered via squeue i.e. using squeue's for mutual exclusion.
11746  * When classifier does a lookup to find the tcp, it also puts a reference
11747  * on the conn structure associated so the tcp is guaranteed to exist
11748  * when we come here. We still need to check the state because it might
11749  * as well has been closed. The squeue processing function i.e. squeue_enter,
11750  * is responsible for doing the CONN_DEC_REF.
11751  *
11752  * Apart from the default entry point, IP also sends packets directly to
11753  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11754  * connections.
11755  */
11756 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11757 void
11758 tcp_input(void *arg, mblk_t *mp, void *arg2)
11759 {
11760 	conn_t	*connp = (conn_t *)arg;
11761 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11762 
11763 	/* arg2 is the sqp */
11764 	ASSERT(arg2 != NULL);
11765 	ASSERT(mp != NULL);
11766 
11767 	/*
11768 	 * Don't accept any input on a closed tcp as this TCP logically does
11769 	 * not exist on the system. Don't proceed further with this TCP.
11770 	 * For eg. this packet could trigger another close of this tcp
11771 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11772 	 * tcp_clean_death / tcp_closei_local must be called at most once
11773 	 * on a TCP. In this case we need to refeed the packet into the
11774 	 * classifier and figure out where the packet should go. Need to
11775 	 * preserve the recv_ill somehow. Until we figure that out, for
11776 	 * now just drop the packet if we can't classify the packet.
11777 	 */
11778 	if (tcp->tcp_state == TCPS_CLOSED ||
11779 	    tcp->tcp_state == TCPS_BOUND) {
11780 		conn_t	*new_connp;
11781 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11782 
11783 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11784 		if (new_connp != NULL) {
11785 			tcp_reinput(new_connp, mp, arg2);
11786 			return;
11787 		}
11788 		/* We failed to classify. For now just drop the packet */
11789 		freemsg(mp);
11790 		return;
11791 	}
11792 
11793 	if (DB_TYPE(mp) != M_DATA) {
11794 		tcp_rput_common(tcp, mp);
11795 		return;
11796 	}
11797 
11798 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11799 		squeue_t	*final_sqp;
11800 
11801 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11802 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11803 		DB_CKSUMSTART(mp) = 0;
11804 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11805 		    connp->conn_final_sqp == NULL &&
11806 		    tcp_outbound_squeue_switch) {
11807 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11808 			connp->conn_final_sqp = final_sqp;
11809 			if (connp->conn_final_sqp != connp->conn_sqp) {
11810 				CONN_INC_REF(connp);
11811 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11812 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11813 				    tcp_rput_data, connp, ip_squeue_flag,
11814 				    SQTAG_CONNECT_FINISH);
11815 				return;
11816 			}
11817 		}
11818 	}
11819 	tcp_rput_data(connp, mp, arg2);
11820 }
11821 
11822 /*
11823  * The read side put procedure.
11824  * The packets passed up by ip are assume to be aligned according to
11825  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11826  */
11827 static void
11828 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11829 {
11830 	/*
11831 	 * tcp_rput_data() does not expect M_CTL except for the case
11832 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11833 	 * type. Need to make sure that any other M_CTLs don't make
11834 	 * it to tcp_rput_data since it is not expecting any and doesn't
11835 	 * check for it.
11836 	 */
11837 	if (DB_TYPE(mp) == M_CTL) {
11838 		switch (*(uint32_t *)(mp->b_rptr)) {
11839 		case TCP_IOC_ABORT_CONN:
11840 			/*
11841 			 * Handle connection abort request.
11842 			 */
11843 			tcp_ioctl_abort_handler(tcp, mp);
11844 			return;
11845 		case IPSEC_IN:
11846 			/*
11847 			 * Only secure icmp arrive in TCP and they
11848 			 * don't go through data path.
11849 			 */
11850 			tcp_icmp_error(tcp, mp);
11851 			return;
11852 		case IN_PKTINFO:
11853 			/*
11854 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11855 			 * sockets that are receiving IPv4 traffic. tcp
11856 			 */
11857 			ASSERT(tcp->tcp_family == AF_INET6);
11858 			ASSERT(tcp->tcp_ipv6_recvancillary &
11859 			    TCP_IPV6_RECVPKTINFO);
11860 			tcp_rput_data(tcp->tcp_connp, mp,
11861 			    tcp->tcp_connp->conn_sqp);
11862 			return;
11863 		case MDT_IOC_INFO_UPDATE:
11864 			/*
11865 			 * Handle Multidata information update; the
11866 			 * following routine will free the message.
11867 			 */
11868 			if (tcp->tcp_connp->conn_mdt_ok) {
11869 				tcp_mdt_update(tcp,
11870 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11871 				    B_FALSE);
11872 			}
11873 			freemsg(mp);
11874 			return;
11875 		case LSO_IOC_INFO_UPDATE:
11876 			/*
11877 			 * Handle LSO information update; the following
11878 			 * routine will free the message.
11879 			 */
11880 			if (tcp->tcp_connp->conn_lso_ok) {
11881 				tcp_lso_update(tcp,
11882 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11883 			}
11884 			freemsg(mp);
11885 			return;
11886 		default:
11887 			/*
11888 			 * tcp_icmp_err() will process the M_CTL packets.
11889 			 * Non-ICMP packets, if any, will be discarded in
11890 			 * tcp_icmp_err(). We will process the ICMP packet
11891 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11892 			 * incoming ICMP packet may result in changing
11893 			 * the tcp_mss, which we would need if we have
11894 			 * packets to retransmit.
11895 			 */
11896 			tcp_icmp_error(tcp, mp);
11897 			return;
11898 		}
11899 	}
11900 
11901 	/* No point processing the message if tcp is already closed */
11902 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11903 		freemsg(mp);
11904 		return;
11905 	}
11906 
11907 	tcp_rput_other(tcp, mp);
11908 }
11909 
11910 
11911 /* The minimum of smoothed mean deviation in RTO calculation. */
11912 #define	TCP_SD_MIN	400
11913 
11914 /*
11915  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11916  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11917  * are the same as those in Appendix A.2 of that paper.
11918  *
11919  * m = new measurement
11920  * sa = smoothed RTT average (8 * average estimates).
11921  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11922  */
11923 static void
11924 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11925 {
11926 	long m = TICK_TO_MSEC(rtt);
11927 	clock_t sa = tcp->tcp_rtt_sa;
11928 	clock_t sv = tcp->tcp_rtt_sd;
11929 	clock_t rto;
11930 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11931 
11932 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11933 	tcp->tcp_rtt_update++;
11934 
11935 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11936 	if (sa != 0) {
11937 		/*
11938 		 * Update average estimator:
11939 		 *	new rtt = 7/8 old rtt + 1/8 Error
11940 		 */
11941 
11942 		/* m is now Error in estimate. */
11943 		m -= sa >> 3;
11944 		if ((sa += m) <= 0) {
11945 			/*
11946 			 * Don't allow the smoothed average to be negative.
11947 			 * We use 0 to denote reinitialization of the
11948 			 * variables.
11949 			 */
11950 			sa = 1;
11951 		}
11952 
11953 		/*
11954 		 * Update deviation estimator:
11955 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11956 		 */
11957 		if (m < 0)
11958 			m = -m;
11959 		m -= sv >> 2;
11960 		sv += m;
11961 	} else {
11962 		/*
11963 		 * This follows BSD's implementation.  So the reinitialized
11964 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11965 		 * link is bandwidth dominated, doubling the window size
11966 		 * during slow start means doubling the RTT.  We want to be
11967 		 * more conservative when we reinitialize our estimates.  3
11968 		 * is just a convenient number.
11969 		 */
11970 		sa = m << 3;
11971 		sv = m << 1;
11972 	}
11973 	if (sv < TCP_SD_MIN) {
11974 		/*
11975 		 * We do not know that if sa captures the delay ACK
11976 		 * effect as in a long train of segments, a receiver
11977 		 * does not delay its ACKs.  So set the minimum of sv
11978 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11979 		 * of BSD DATO.  That means the minimum of mean
11980 		 * deviation is 100 ms.
11981 		 *
11982 		 */
11983 		sv = TCP_SD_MIN;
11984 	}
11985 	tcp->tcp_rtt_sa = sa;
11986 	tcp->tcp_rtt_sd = sv;
11987 	/*
11988 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11989 	 *
11990 	 * Add tcp_rexmit_interval extra in case of extreme environment
11991 	 * where the algorithm fails to work.  The default value of
11992 	 * tcp_rexmit_interval_extra should be 0.
11993 	 *
11994 	 * As we use a finer grained clock than BSD and update
11995 	 * RTO for every ACKs, add in another .25 of RTT to the
11996 	 * deviation of RTO to accomodate burstiness of 1/4 of
11997 	 * window size.
11998 	 */
11999 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12000 
12001 	if (rto > tcps->tcps_rexmit_interval_max) {
12002 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12003 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12004 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12005 	} else {
12006 		tcp->tcp_rto = rto;
12007 	}
12008 
12009 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12010 	tcp->tcp_timer_backoff = 0;
12011 }
12012 
12013 /*
12014  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12015  * send queue which starts at the given seq. no.
12016  *
12017  * Parameters:
12018  *	tcp_t *tcp: the tcp instance pointer.
12019  *	uint32_t seq: the starting seq. no of the requested segment.
12020  *	int32_t *off: after the execution, *off will be the offset to
12021  *		the returned mblk which points to the requested seq no.
12022  *		It is the caller's responsibility to send in a non-null off.
12023  *
12024  * Return:
12025  *	A mblk_t pointer pointing to the requested segment in send queue.
12026  */
12027 static mblk_t *
12028 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12029 {
12030 	int32_t	cnt;
12031 	mblk_t	*mp;
12032 
12033 	/* Defensive coding.  Make sure we don't send incorrect data. */
12034 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12035 		return (NULL);
12036 
12037 	cnt = seq - tcp->tcp_suna;
12038 	mp = tcp->tcp_xmit_head;
12039 	while (cnt > 0 && mp != NULL) {
12040 		cnt -= mp->b_wptr - mp->b_rptr;
12041 		if (cnt < 0) {
12042 			cnt += mp->b_wptr - mp->b_rptr;
12043 			break;
12044 		}
12045 		mp = mp->b_cont;
12046 	}
12047 	ASSERT(mp != NULL);
12048 	*off = cnt;
12049 	return (mp);
12050 }
12051 
12052 /*
12053  * This function handles all retransmissions if SACK is enabled for this
12054  * connection.  First it calculates how many segments can be retransmitted
12055  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12056  * segments.  A segment is eligible if sack_cnt for that segment is greater
12057  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12058  * all eligible segments, it checks to see if TCP can send some new segments
12059  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12060  *
12061  * Parameters:
12062  *	tcp_t *tcp: the tcp structure of the connection.
12063  *	uint_t *flags: in return, appropriate value will be set for
12064  *	tcp_rput_data().
12065  */
12066 static void
12067 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12068 {
12069 	notsack_blk_t	*notsack_blk;
12070 	int32_t		usable_swnd;
12071 	int32_t		mss;
12072 	uint32_t	seg_len;
12073 	mblk_t		*xmit_mp;
12074 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12075 
12076 	ASSERT(tcp->tcp_sack_info != NULL);
12077 	ASSERT(tcp->tcp_notsack_list != NULL);
12078 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12079 
12080 	/* Defensive coding in case there is a bug... */
12081 	if (tcp->tcp_notsack_list == NULL) {
12082 		return;
12083 	}
12084 	notsack_blk = tcp->tcp_notsack_list;
12085 	mss = tcp->tcp_mss;
12086 
12087 	/*
12088 	 * Limit the num of outstanding data in the network to be
12089 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12090 	 */
12091 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12092 
12093 	/* At least retransmit 1 MSS of data. */
12094 	if (usable_swnd <= 0) {
12095 		usable_swnd = mss;
12096 	}
12097 
12098 	/* Make sure no new RTT samples will be taken. */
12099 	tcp->tcp_csuna = tcp->tcp_snxt;
12100 
12101 	notsack_blk = tcp->tcp_notsack_list;
12102 	while (usable_swnd > 0) {
12103 		mblk_t		*snxt_mp, *tmp_mp;
12104 		tcp_seq		begin = tcp->tcp_sack_snxt;
12105 		tcp_seq		end;
12106 		int32_t		off;
12107 
12108 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12109 			if (SEQ_GT(notsack_blk->end, begin) &&
12110 			    (notsack_blk->sack_cnt >=
12111 			    tcps->tcps_dupack_fast_retransmit)) {
12112 				end = notsack_blk->end;
12113 				if (SEQ_LT(begin, notsack_blk->begin)) {
12114 					begin = notsack_blk->begin;
12115 				}
12116 				break;
12117 			}
12118 		}
12119 		/*
12120 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12121 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12122 		 * set to tcp_cwnd_ssthresh.
12123 		 */
12124 		if (notsack_blk == NULL) {
12125 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12126 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12127 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12128 				ASSERT(tcp->tcp_cwnd > 0);
12129 				return;
12130 			} else {
12131 				usable_swnd = usable_swnd / mss;
12132 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12133 				    MAX(usable_swnd * mss, mss);
12134 				*flags |= TH_XMIT_NEEDED;
12135 				return;
12136 			}
12137 		}
12138 
12139 		/*
12140 		 * Note that we may send more than usable_swnd allows here
12141 		 * because of round off, but no more than 1 MSS of data.
12142 		 */
12143 		seg_len = end - begin;
12144 		if (seg_len > mss)
12145 			seg_len = mss;
12146 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12147 		ASSERT(snxt_mp != NULL);
12148 		/* This should not happen.  Defensive coding again... */
12149 		if (snxt_mp == NULL) {
12150 			return;
12151 		}
12152 
12153 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12154 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12155 		if (xmit_mp == NULL)
12156 			return;
12157 
12158 		usable_swnd -= seg_len;
12159 		tcp->tcp_pipe += seg_len;
12160 		tcp->tcp_sack_snxt = begin + seg_len;
12161 
12162 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12163 
12164 		/*
12165 		 * Update the send timestamp to avoid false retransmission.
12166 		 */
12167 		snxt_mp->b_prev = (mblk_t *)lbolt;
12168 
12169 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12170 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12171 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12172 		/*
12173 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12174 		 * This happens when new data sent during fast recovery is
12175 		 * also lost.  If TCP retransmits those new data, it needs
12176 		 * to extend SACK recover phase to avoid starting another
12177 		 * fast retransmit/recovery unnecessarily.
12178 		 */
12179 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12180 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12181 		}
12182 	}
12183 }
12184 
12185 /*
12186  * This function handles policy checking at TCP level for non-hard_bound/
12187  * detached connections.
12188  */
12189 static boolean_t
12190 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12191     boolean_t secure, boolean_t mctl_present)
12192 {
12193 	ipsec_latch_t *ipl = NULL;
12194 	ipsec_action_t *act = NULL;
12195 	mblk_t *data_mp;
12196 	ipsec_in_t *ii;
12197 	const char *reason;
12198 	kstat_named_t *counter;
12199 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12200 	ipsec_stack_t	*ipss;
12201 	ip_stack_t	*ipst;
12202 
12203 	ASSERT(mctl_present || !secure);
12204 
12205 	ASSERT((ipha == NULL && ip6h != NULL) ||
12206 	    (ip6h == NULL && ipha != NULL));
12207 
12208 	/*
12209 	 * We don't necessarily have an ipsec_in_act action to verify
12210 	 * policy because of assymetrical policy where we have only
12211 	 * outbound policy and no inbound policy (possible with global
12212 	 * policy).
12213 	 */
12214 	if (!secure) {
12215 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12216 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12217 			return (B_TRUE);
12218 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12219 		    "tcp_check_policy", ipha, ip6h, secure,
12220 		    tcps->tcps_netstack);
12221 		ipss = tcps->tcps_netstack->netstack_ipsec;
12222 
12223 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12224 		    DROPPER(ipss, ipds_tcp_clear),
12225 		    &tcps->tcps_dropper);
12226 		return (B_FALSE);
12227 	}
12228 
12229 	/*
12230 	 * We have a secure packet.
12231 	 */
12232 	if (act == NULL) {
12233 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12234 		    "tcp_check_policy", ipha, ip6h, secure,
12235 		    tcps->tcps_netstack);
12236 		ipss = tcps->tcps_netstack->netstack_ipsec;
12237 
12238 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12239 		    DROPPER(ipss, ipds_tcp_secure),
12240 		    &tcps->tcps_dropper);
12241 		return (B_FALSE);
12242 	}
12243 
12244 	/*
12245 	 * XXX This whole routine is currently incorrect.  ipl should
12246 	 * be set to the latch pointer, but is currently not set, so
12247 	 * we initialize it to NULL to avoid picking up random garbage.
12248 	 */
12249 	if (ipl == NULL)
12250 		return (B_TRUE);
12251 
12252 	data_mp = first_mp->b_cont;
12253 
12254 	ii = (ipsec_in_t *)first_mp->b_rptr;
12255 
12256 	ipst = tcps->tcps_netstack->netstack_ip;
12257 
12258 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12259 	    &counter, tcp->tcp_connp)) {
12260 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12261 		return (B_TRUE);
12262 	}
12263 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12264 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12265 	    reason);
12266 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12267 
12268 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12269 	    &tcps->tcps_dropper);
12270 	return (B_FALSE);
12271 }
12272 
12273 /*
12274  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12275  * retransmission after a timeout.
12276  *
12277  * To limit the number of duplicate segments, we limit the number of segment
12278  * to be sent in one time to tcp_snd_burst, the burst variable.
12279  */
12280 static void
12281 tcp_ss_rexmit(tcp_t *tcp)
12282 {
12283 	uint32_t	snxt;
12284 	uint32_t	smax;
12285 	int32_t		win;
12286 	int32_t		mss;
12287 	int32_t		off;
12288 	int32_t		burst = tcp->tcp_snd_burst;
12289 	mblk_t		*snxt_mp;
12290 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12291 
12292 	/*
12293 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12294 	 * all unack'ed segments.
12295 	 */
12296 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12297 		smax = tcp->tcp_rexmit_max;
12298 		snxt = tcp->tcp_rexmit_nxt;
12299 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12300 			snxt = tcp->tcp_suna;
12301 		}
12302 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12303 		win -= snxt - tcp->tcp_suna;
12304 		mss = tcp->tcp_mss;
12305 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12306 
12307 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12308 		    (burst > 0) && (snxt_mp != NULL)) {
12309 			mblk_t	*xmit_mp;
12310 			mblk_t	*old_snxt_mp = snxt_mp;
12311 			uint32_t cnt = mss;
12312 
12313 			if (win < cnt) {
12314 				cnt = win;
12315 			}
12316 			if (SEQ_GT(snxt + cnt, smax)) {
12317 				cnt = smax - snxt;
12318 			}
12319 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12320 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12321 			if (xmit_mp == NULL)
12322 				return;
12323 
12324 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12325 
12326 			snxt += cnt;
12327 			win -= cnt;
12328 			/*
12329 			 * Update the send timestamp to avoid false
12330 			 * retransmission.
12331 			 */
12332 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12333 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12334 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12335 
12336 			tcp->tcp_rexmit_nxt = snxt;
12337 			burst--;
12338 		}
12339 		/*
12340 		 * If we have transmitted all we have at the time
12341 		 * we started the retranmission, we can leave
12342 		 * the rest of the job to tcp_wput_data().  But we
12343 		 * need to check the send window first.  If the
12344 		 * win is not 0, go on with tcp_wput_data().
12345 		 */
12346 		if (SEQ_LT(snxt, smax) || win == 0) {
12347 			return;
12348 		}
12349 	}
12350 	/* Only call tcp_wput_data() if there is data to be sent. */
12351 	if (tcp->tcp_unsent) {
12352 		tcp_wput_data(tcp, NULL, B_FALSE);
12353 	}
12354 }
12355 
12356 /*
12357  * Process all TCP option in SYN segment.  Note that this function should
12358  * be called after tcp_adapt_ire() is called so that the necessary info
12359  * from IRE is already set in the tcp structure.
12360  *
12361  * This function sets up the correct tcp_mss value according to the
12362  * MSS option value and our header size.  It also sets up the window scale
12363  * and timestamp values, and initialize SACK info blocks.  But it does not
12364  * change receive window size after setting the tcp_mss value.  The caller
12365  * should do the appropriate change.
12366  */
12367 void
12368 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12369 {
12370 	int options;
12371 	tcp_opt_t tcpopt;
12372 	uint32_t mss_max;
12373 	char *tmp_tcph;
12374 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12375 
12376 	tcpopt.tcp = NULL;
12377 	options = tcp_parse_options(tcph, &tcpopt);
12378 
12379 	/*
12380 	 * Process MSS option.  Note that MSS option value does not account
12381 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12382 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12383 	 * IPv6.
12384 	 */
12385 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12386 		if (tcp->tcp_ipversion == IPV4_VERSION)
12387 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12388 		else
12389 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12390 	} else {
12391 		if (tcp->tcp_ipversion == IPV4_VERSION)
12392 			mss_max = tcps->tcps_mss_max_ipv4;
12393 		else
12394 			mss_max = tcps->tcps_mss_max_ipv6;
12395 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12396 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12397 		else if (tcpopt.tcp_opt_mss > mss_max)
12398 			tcpopt.tcp_opt_mss = mss_max;
12399 	}
12400 
12401 	/* Process Window Scale option. */
12402 	if (options & TCP_OPT_WSCALE_PRESENT) {
12403 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12404 		tcp->tcp_snd_ws_ok = B_TRUE;
12405 	} else {
12406 		tcp->tcp_snd_ws = B_FALSE;
12407 		tcp->tcp_snd_ws_ok = B_FALSE;
12408 		tcp->tcp_rcv_ws = B_FALSE;
12409 	}
12410 
12411 	/* Process Timestamp option. */
12412 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12413 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12414 		tmp_tcph = (char *)tcp->tcp_tcph;
12415 
12416 		tcp->tcp_snd_ts_ok = B_TRUE;
12417 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12418 		tcp->tcp_last_rcv_lbolt = lbolt64;
12419 		ASSERT(OK_32PTR(tmp_tcph));
12420 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12421 
12422 		/* Fill in our template header with basic timestamp option. */
12423 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12424 		tmp_tcph[0] = TCPOPT_NOP;
12425 		tmp_tcph[1] = TCPOPT_NOP;
12426 		tmp_tcph[2] = TCPOPT_TSTAMP;
12427 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12428 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12429 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12430 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12431 	} else {
12432 		tcp->tcp_snd_ts_ok = B_FALSE;
12433 	}
12434 
12435 	/*
12436 	 * Process SACK options.  If SACK is enabled for this connection,
12437 	 * then allocate the SACK info structure.  Note the following ways
12438 	 * when tcp_snd_sack_ok is set to true.
12439 	 *
12440 	 * For active connection: in tcp_adapt_ire() called in
12441 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12442 	 * is checked.
12443 	 *
12444 	 * For passive connection: in tcp_adapt_ire() called in
12445 	 * tcp_accept_comm().
12446 	 *
12447 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12448 	 * That check makes sure that if we did not send a SACK OK option,
12449 	 * we will not enable SACK for this connection even though the other
12450 	 * side sends us SACK OK option.  For active connection, the SACK
12451 	 * info structure has already been allocated.  So we need to free
12452 	 * it if SACK is disabled.
12453 	 */
12454 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12455 	    (tcp->tcp_snd_sack_ok ||
12456 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12457 		/* This should be true only in the passive case. */
12458 		if (tcp->tcp_sack_info == NULL) {
12459 			ASSERT(TCP_IS_DETACHED(tcp));
12460 			tcp->tcp_sack_info =
12461 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12462 		}
12463 		if (tcp->tcp_sack_info == NULL) {
12464 			tcp->tcp_snd_sack_ok = B_FALSE;
12465 		} else {
12466 			tcp->tcp_snd_sack_ok = B_TRUE;
12467 			if (tcp->tcp_snd_ts_ok) {
12468 				tcp->tcp_max_sack_blk = 3;
12469 			} else {
12470 				tcp->tcp_max_sack_blk = 4;
12471 			}
12472 		}
12473 	} else {
12474 		/*
12475 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12476 		 * no SACK info will be used for this
12477 		 * connection.  This assumes that SACK usage
12478 		 * permission is negotiated.  This may need
12479 		 * to be changed once this is clarified.
12480 		 */
12481 		if (tcp->tcp_sack_info != NULL) {
12482 			ASSERT(tcp->tcp_notsack_list == NULL);
12483 			kmem_cache_free(tcp_sack_info_cache,
12484 			    tcp->tcp_sack_info);
12485 			tcp->tcp_sack_info = NULL;
12486 		}
12487 		tcp->tcp_snd_sack_ok = B_FALSE;
12488 	}
12489 
12490 	/*
12491 	 * Now we know the exact TCP/IP header length, subtract
12492 	 * that from tcp_mss to get our side's MSS.
12493 	 */
12494 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12495 	/*
12496 	 * Here we assume that the other side's header size will be equal to
12497 	 * our header size.  We calculate the real MSS accordingly.  Need to
12498 	 * take into additional stuffs IPsec puts in.
12499 	 *
12500 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12501 	 */
12502 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12503 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12504 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12505 
12506 	/*
12507 	 * Set MSS to the smaller one of both ends of the connection.
12508 	 * We should not have called tcp_mss_set() before, but our
12509 	 * side of the MSS should have been set to a proper value
12510 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12511 	 * STREAM head parameters properly.
12512 	 *
12513 	 * If we have a larger-than-16-bit window but the other side
12514 	 * didn't want to do window scale, tcp_rwnd_set() will take
12515 	 * care of that.
12516 	 */
12517 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12518 }
12519 
12520 /*
12521  * Sends the T_CONN_IND to the listener. The caller calls this
12522  * functions via squeue to get inside the listener's perimeter
12523  * once the 3 way hand shake is done a T_CONN_IND needs to be
12524  * sent. As an optimization, the caller can call this directly
12525  * if listener's perimeter is same as eager's.
12526  */
12527 /* ARGSUSED */
12528 void
12529 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12530 {
12531 	conn_t			*lconnp = (conn_t *)arg;
12532 	tcp_t			*listener = lconnp->conn_tcp;
12533 	tcp_t			*tcp;
12534 	struct T_conn_ind	*conn_ind;
12535 	ipaddr_t 		*addr_cache;
12536 	boolean_t		need_send_conn_ind = B_FALSE;
12537 	tcp_stack_t		*tcps = listener->tcp_tcps;
12538 
12539 	/* retrieve the eager */
12540 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12541 	ASSERT(conn_ind->OPT_offset != 0 &&
12542 	    conn_ind->OPT_length == sizeof (intptr_t));
12543 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12544 	    conn_ind->OPT_length);
12545 
12546 	/*
12547 	 * TLI/XTI applications will get confused by
12548 	 * sending eager as an option since it violates
12549 	 * the option semantics. So remove the eager as
12550 	 * option since TLI/XTI app doesn't need it anyway.
12551 	 */
12552 	if (!TCP_IS_SOCKET(listener)) {
12553 		conn_ind->OPT_length = 0;
12554 		conn_ind->OPT_offset = 0;
12555 	}
12556 	if (listener->tcp_state == TCPS_CLOSED ||
12557 	    TCP_IS_DETACHED(listener)) {
12558 		/*
12559 		 * If listener has closed, it would have caused a
12560 		 * a cleanup/blowoff to happen for the eager. We
12561 		 * just need to return.
12562 		 */
12563 		freemsg(mp);
12564 		return;
12565 	}
12566 
12567 
12568 	/*
12569 	 * if the conn_req_q is full defer passing up the
12570 	 * T_CONN_IND until space is availabe after t_accept()
12571 	 * processing
12572 	 */
12573 	mutex_enter(&listener->tcp_eager_lock);
12574 
12575 	/*
12576 	 * Take the eager out, if it is in the list of droppable eagers
12577 	 * as we are here because the 3W handshake is over.
12578 	 */
12579 	MAKE_UNDROPPABLE(tcp);
12580 
12581 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12582 		tcp_t *tail;
12583 
12584 		/*
12585 		 * The eager already has an extra ref put in tcp_rput_data
12586 		 * so that it stays till accept comes back even though it
12587 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12588 		 */
12589 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12590 		listener->tcp_conn_req_cnt_q0--;
12591 		listener->tcp_conn_req_cnt_q++;
12592 
12593 		/* Move from SYN_RCVD to ESTABLISHED list  */
12594 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12595 		    tcp->tcp_eager_prev_q0;
12596 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12597 		    tcp->tcp_eager_next_q0;
12598 		tcp->tcp_eager_prev_q0 = NULL;
12599 		tcp->tcp_eager_next_q0 = NULL;
12600 
12601 		/*
12602 		 * Insert at end of the queue because sockfs
12603 		 * sends down T_CONN_RES in chronological
12604 		 * order. Leaving the older conn indications
12605 		 * at front of the queue helps reducing search
12606 		 * time.
12607 		 */
12608 		tail = listener->tcp_eager_last_q;
12609 		if (tail != NULL)
12610 			tail->tcp_eager_next_q = tcp;
12611 		else
12612 			listener->tcp_eager_next_q = tcp;
12613 		listener->tcp_eager_last_q = tcp;
12614 		tcp->tcp_eager_next_q = NULL;
12615 		/*
12616 		 * Delay sending up the T_conn_ind until we are
12617 		 * done with the eager. Once we have have sent up
12618 		 * the T_conn_ind, the accept can potentially complete
12619 		 * any time and release the refhold we have on the eager.
12620 		 */
12621 		need_send_conn_ind = B_TRUE;
12622 	} else {
12623 		/*
12624 		 * Defer connection on q0 and set deferred
12625 		 * connection bit true
12626 		 */
12627 		tcp->tcp_conn_def_q0 = B_TRUE;
12628 
12629 		/* take tcp out of q0 ... */
12630 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12631 		    tcp->tcp_eager_next_q0;
12632 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12633 		    tcp->tcp_eager_prev_q0;
12634 
12635 		/* ... and place it at the end of q0 */
12636 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12637 		tcp->tcp_eager_next_q0 = listener;
12638 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12639 		listener->tcp_eager_prev_q0 = tcp;
12640 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12641 	}
12642 
12643 	/* we have timed out before */
12644 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12645 		tcp->tcp_syn_rcvd_timeout = 0;
12646 		listener->tcp_syn_rcvd_timeout--;
12647 		if (listener->tcp_syn_defense &&
12648 		    listener->tcp_syn_rcvd_timeout <=
12649 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12650 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12651 		    listener->tcp_last_rcv_lbolt)) {
12652 			/*
12653 			 * Turn off the defense mode if we
12654 			 * believe the SYN attack is over.
12655 			 */
12656 			listener->tcp_syn_defense = B_FALSE;
12657 			if (listener->tcp_ip_addr_cache) {
12658 				kmem_free((void *)listener->tcp_ip_addr_cache,
12659 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12660 				listener->tcp_ip_addr_cache = NULL;
12661 			}
12662 		}
12663 	}
12664 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12665 	if (addr_cache != NULL) {
12666 		/*
12667 		 * We have finished a 3-way handshake with this
12668 		 * remote host. This proves the IP addr is good.
12669 		 * Cache it!
12670 		 */
12671 		addr_cache[IP_ADDR_CACHE_HASH(
12672 		    tcp->tcp_remote)] = tcp->tcp_remote;
12673 	}
12674 	mutex_exit(&listener->tcp_eager_lock);
12675 	if (need_send_conn_ind)
12676 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
12677 }
12678 
12679 /*
12680  * Send the newconn notification to ulp. The eager is blown off if the
12681  * notification fails.
12682  */
12683 static void
12684 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
12685 {
12686 	if (IPCL_IS_NONSTR(lconnp)) {
12687 		cred_t	*cr;
12688 		pid_t	cpid;
12689 
12690 		cr = msg_getcred(mp, &cpid);
12691 
12692 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
12693 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
12694 		    lconnp->conn_tcp);
12695 
12696 		/* Keep the message around in case of a fallback to TPI */
12697 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
12698 
12699 		/*
12700 		 * Notify the ULP about the newconn. It is guaranteed that no
12701 		 * tcp_accept() call will be made for the eager if the
12702 		 * notification fails, so it's safe to blow it off in that
12703 		 * case.
12704 		 *
12705 		 * The upper handle will be assigned when tcp_accept() is
12706 		 * called.
12707 		 */
12708 		if ((*lconnp->conn_upcalls->su_newconn)
12709 		    (lconnp->conn_upper_handle,
12710 		    (sock_lower_handle_t)econnp,
12711 		    &sock_tcp_downcalls, cr, cpid,
12712 		    &econnp->conn_upcalls) == NULL) {
12713 			/* Failed to allocate a socket */
12714 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
12715 			    tcpEstabResets);
12716 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
12717 			    econnp->conn_tcp->tcp_conn_req_seqnum);
12718 		}
12719 	} else {
12720 		putnext(lconnp->conn_tcp->tcp_rq, mp);
12721 	}
12722 }
12723 
12724 mblk_t *
12725 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12726     uint_t *ifindexp, ip6_pkt_t *ippp)
12727 {
12728 	ip_pktinfo_t	*pinfo;
12729 	ip6_t		*ip6h;
12730 	uchar_t		*rptr;
12731 	mblk_t		*first_mp = mp;
12732 	boolean_t	mctl_present = B_FALSE;
12733 	uint_t 		ifindex = 0;
12734 	ip6_pkt_t	ipp;
12735 	uint_t		ipvers;
12736 	uint_t		ip_hdr_len;
12737 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12738 
12739 	rptr = mp->b_rptr;
12740 	ASSERT(OK_32PTR(rptr));
12741 	ASSERT(tcp != NULL);
12742 	ipp.ipp_fields = 0;
12743 
12744 	switch DB_TYPE(mp) {
12745 	case M_CTL:
12746 		mp = mp->b_cont;
12747 		if (mp == NULL) {
12748 			freemsg(first_mp);
12749 			return (NULL);
12750 		}
12751 		if (DB_TYPE(mp) != M_DATA) {
12752 			freemsg(first_mp);
12753 			return (NULL);
12754 		}
12755 		mctl_present = B_TRUE;
12756 		break;
12757 	case M_DATA:
12758 		break;
12759 	default:
12760 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12761 		freemsg(mp);
12762 		return (NULL);
12763 	}
12764 	ipvers = IPH_HDR_VERSION(rptr);
12765 	if (ipvers == IPV4_VERSION) {
12766 		if (tcp == NULL) {
12767 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12768 			goto done;
12769 		}
12770 
12771 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12772 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12773 
12774 		/*
12775 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12776 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12777 		 */
12778 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12779 		    mctl_present) {
12780 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12781 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12782 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12783 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12784 				ipp.ipp_fields |= IPPF_IFINDEX;
12785 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12786 				ifindex = pinfo->ip_pkt_ifindex;
12787 			}
12788 			freeb(first_mp);
12789 			mctl_present = B_FALSE;
12790 		}
12791 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12792 	} else {
12793 		ip6h = (ip6_t *)rptr;
12794 
12795 		ASSERT(ipvers == IPV6_VERSION);
12796 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12797 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12798 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12799 
12800 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12801 			uint8_t	nexthdrp;
12802 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12803 
12804 			/* Look for ifindex information */
12805 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12806 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12807 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12808 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12809 					freemsg(first_mp);
12810 					return (NULL);
12811 				}
12812 
12813 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12814 					ASSERT(ip6i->ip6i_ifindex != 0);
12815 					ipp.ipp_fields |= IPPF_IFINDEX;
12816 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12817 					ifindex = ip6i->ip6i_ifindex;
12818 				}
12819 				rptr = (uchar_t *)&ip6i[1];
12820 				mp->b_rptr = rptr;
12821 				if (rptr == mp->b_wptr) {
12822 					mblk_t *mp1;
12823 					mp1 = mp->b_cont;
12824 					freeb(mp);
12825 					mp = mp1;
12826 					rptr = mp->b_rptr;
12827 				}
12828 				if (MBLKL(mp) < IPV6_HDR_LEN +
12829 				    sizeof (tcph_t)) {
12830 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12831 					freemsg(first_mp);
12832 					return (NULL);
12833 				}
12834 				ip6h = (ip6_t *)rptr;
12835 			}
12836 
12837 			/*
12838 			 * Find any potentially interesting extension headers
12839 			 * as well as the length of the IPv6 + extension
12840 			 * headers.
12841 			 */
12842 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12843 			/* Verify if this is a TCP packet */
12844 			if (nexthdrp != IPPROTO_TCP) {
12845 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12846 				freemsg(first_mp);
12847 				return (NULL);
12848 			}
12849 		} else {
12850 			ip_hdr_len = IPV6_HDR_LEN;
12851 		}
12852 	}
12853 
12854 done:
12855 	if (ipversp != NULL)
12856 		*ipversp = ipvers;
12857 	if (ip_hdr_lenp != NULL)
12858 		*ip_hdr_lenp = ip_hdr_len;
12859 	if (ippp != NULL)
12860 		*ippp = ipp;
12861 	if (ifindexp != NULL)
12862 		*ifindexp = ifindex;
12863 	if (mctl_present) {
12864 		freeb(first_mp);
12865 	}
12866 	return (mp);
12867 }
12868 
12869 /*
12870  * Handle M_DATA messages from IP. Its called directly from IP via
12871  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12872  * in this path.
12873  *
12874  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12875  * v4 and v6), we are called through tcp_input() and a M_CTL can
12876  * be present for options but tcp_find_pktinfo() deals with it. We
12877  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12878  *
12879  * The first argument is always the connp/tcp to which the mp belongs.
12880  * There are no exceptions to this rule. The caller has already put
12881  * a reference on this connp/tcp and once tcp_rput_data() returns,
12882  * the squeue will do the refrele.
12883  *
12884  * The TH_SYN for the listener directly go to tcp_conn_request via
12885  * squeue.
12886  *
12887  * sqp: NULL = recursive, sqp != NULL means called from squeue
12888  */
12889 void
12890 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12891 {
12892 	int32_t		bytes_acked;
12893 	int32_t		gap;
12894 	mblk_t		*mp1;
12895 	uint_t		flags;
12896 	uint32_t	new_swnd = 0;
12897 	uchar_t		*iphdr;
12898 	uchar_t		*rptr;
12899 	int32_t		rgap;
12900 	uint32_t	seg_ack;
12901 	int		seg_len;
12902 	uint_t		ip_hdr_len;
12903 	uint32_t	seg_seq;
12904 	tcph_t		*tcph;
12905 	int		urp;
12906 	tcp_opt_t	tcpopt;
12907 	uint_t		ipvers;
12908 	ip6_pkt_t	ipp;
12909 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12910 	uint32_t	cwnd;
12911 	uint32_t	add;
12912 	int		npkt;
12913 	int		mss;
12914 	conn_t		*connp = (conn_t *)arg;
12915 	squeue_t	*sqp = (squeue_t *)arg2;
12916 	tcp_t		*tcp = connp->conn_tcp;
12917 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12918 
12919 	/*
12920 	 * RST from fused tcp loopback peer should trigger an unfuse.
12921 	 */
12922 	if (tcp->tcp_fused) {
12923 		TCP_STAT(tcps, tcp_fusion_aborted);
12924 		tcp_unfuse(tcp);
12925 	}
12926 
12927 	iphdr = mp->b_rptr;
12928 	rptr = mp->b_rptr;
12929 	ASSERT(OK_32PTR(rptr));
12930 
12931 	/*
12932 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12933 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12934 	 * necessary information.
12935 	 */
12936 	if (IPCL_IS_TCP4(connp)) {
12937 		ipvers = IPV4_VERSION;
12938 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12939 	} else {
12940 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12941 		    NULL, &ipp);
12942 		if (mp == NULL) {
12943 			TCP_STAT(tcps, tcp_rput_v6_error);
12944 			return;
12945 		}
12946 		iphdr = mp->b_rptr;
12947 		rptr = mp->b_rptr;
12948 	}
12949 	ASSERT(DB_TYPE(mp) == M_DATA);
12950 	ASSERT(mp->b_next == NULL);
12951 
12952 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12953 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12954 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12955 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12956 	seg_len = (int)(mp->b_wptr - rptr) -
12957 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12958 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12959 		do {
12960 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12961 			    (uintptr_t)INT_MAX);
12962 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12963 		} while ((mp1 = mp1->b_cont) != NULL &&
12964 		    mp1->b_datap->db_type == M_DATA);
12965 	}
12966 
12967 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12968 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12969 		    seg_len, tcph);
12970 		return;
12971 	}
12972 
12973 	if (sqp != NULL) {
12974 		/*
12975 		 * This is the correct place to update tcp_last_recv_time. Note
12976 		 * that it is also updated for tcp structure that belongs to
12977 		 * global and listener queues which do not really need updating.
12978 		 * But that should not cause any harm.  And it is updated for
12979 		 * all kinds of incoming segments, not only for data segments.
12980 		 */
12981 		tcp->tcp_last_recv_time = lbolt;
12982 	}
12983 
12984 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12985 
12986 	BUMP_LOCAL(tcp->tcp_ibsegs);
12987 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
12988 
12989 	if ((flags & TH_URG) && sqp != NULL) {
12990 		/*
12991 		 * TCP can't handle urgent pointers that arrive before
12992 		 * the connection has been accept()ed since it can't
12993 		 * buffer OOB data.  Discard segment if this happens.
12994 		 *
12995 		 * We can't just rely on a non-null tcp_listener to indicate
12996 		 * that the accept() has completed since unlinking of the
12997 		 * eager and completion of the accept are not atomic.
12998 		 * tcp_detached, when it is not set (B_FALSE) indicates
12999 		 * that the accept() has completed.
13000 		 *
13001 		 * Nor can it reassemble urgent pointers, so discard
13002 		 * if it's not the next segment expected.
13003 		 *
13004 		 * Otherwise, collapse chain into one mblk (discard if
13005 		 * that fails).  This makes sure the headers, retransmitted
13006 		 * data, and new data all are in the same mblk.
13007 		 */
13008 		ASSERT(mp != NULL);
13009 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13010 			freemsg(mp);
13011 			return;
13012 		}
13013 		/* Update pointers into message */
13014 		iphdr = rptr = mp->b_rptr;
13015 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13016 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13017 			/*
13018 			 * Since we can't handle any data with this urgent
13019 			 * pointer that is out of sequence, we expunge
13020 			 * the data.  This allows us to still register
13021 			 * the urgent mark and generate the M_PCSIG,
13022 			 * which we can do.
13023 			 */
13024 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13025 			seg_len = 0;
13026 		}
13027 	}
13028 
13029 	switch (tcp->tcp_state) {
13030 	case TCPS_SYN_SENT:
13031 		if (flags & TH_ACK) {
13032 			/*
13033 			 * Note that our stack cannot send data before a
13034 			 * connection is established, therefore the
13035 			 * following check is valid.  Otherwise, it has
13036 			 * to be changed.
13037 			 */
13038 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13039 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13040 				freemsg(mp);
13041 				if (flags & TH_RST)
13042 					return;
13043 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13044 				    tcp, seg_ack, 0, TH_RST);
13045 				return;
13046 			}
13047 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13048 		}
13049 		if (flags & TH_RST) {
13050 			freemsg(mp);
13051 			if (flags & TH_ACK)
13052 				(void) tcp_clean_death(tcp,
13053 				    ECONNREFUSED, 13);
13054 			return;
13055 		}
13056 		if (!(flags & TH_SYN)) {
13057 			freemsg(mp);
13058 			return;
13059 		}
13060 
13061 		/* Process all TCP options. */
13062 		tcp_process_options(tcp, tcph);
13063 		/*
13064 		 * The following changes our rwnd to be a multiple of the
13065 		 * MIN(peer MSS, our MSS) for performance reason.
13066 		 */
13067 		(void) tcp_rwnd_set(tcp,
13068 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
13069 
13070 		/* Is the other end ECN capable? */
13071 		if (tcp->tcp_ecn_ok) {
13072 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13073 				tcp->tcp_ecn_ok = B_FALSE;
13074 			}
13075 		}
13076 		/*
13077 		 * Clear ECN flags because it may interfere with later
13078 		 * processing.
13079 		 */
13080 		flags &= ~(TH_ECE|TH_CWR);
13081 
13082 		tcp->tcp_irs = seg_seq;
13083 		tcp->tcp_rack = seg_seq;
13084 		tcp->tcp_rnxt = seg_seq + 1;
13085 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13086 		if (!TCP_IS_DETACHED(tcp)) {
13087 			/* Allocate room for SACK options if needed. */
13088 			if (tcp->tcp_snd_sack_ok) {
13089 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13090 				    tcp->tcp_hdr_len +
13091 				    TCPOPT_MAX_SACK_LEN +
13092 				    (tcp->tcp_loopback ? 0 :
13093 				    tcps->tcps_wroff_xtra));
13094 			} else {
13095 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13096 				    tcp->tcp_hdr_len +
13097 				    (tcp->tcp_loopback ? 0 :
13098 				    tcps->tcps_wroff_xtra));
13099 			}
13100 		}
13101 		if (flags & TH_ACK) {
13102 			/*
13103 			 * If we can't get the confirmation upstream, pretend
13104 			 * we didn't even see this one.
13105 			 *
13106 			 * XXX: how can we pretend we didn't see it if we
13107 			 * have updated rnxt et. al.
13108 			 *
13109 			 * For loopback we defer sending up the T_CONN_CON
13110 			 * until after some checks below.
13111 			 */
13112 			mp1 = NULL;
13113 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13114 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13115 				freemsg(mp);
13116 				return;
13117 			}
13118 			/* SYN was acked - making progress */
13119 			if (tcp->tcp_ipversion == IPV6_VERSION)
13120 				tcp->tcp_ip_forward_progress = B_TRUE;
13121 
13122 			/* One for the SYN */
13123 			tcp->tcp_suna = tcp->tcp_iss + 1;
13124 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13125 			tcp->tcp_state = TCPS_ESTABLISHED;
13126 
13127 			/*
13128 			 * If SYN was retransmitted, need to reset all
13129 			 * retransmission info.  This is because this
13130 			 * segment will be treated as a dup ACK.
13131 			 */
13132 			if (tcp->tcp_rexmit) {
13133 				tcp->tcp_rexmit = B_FALSE;
13134 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13135 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13136 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13137 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13138 				tcp->tcp_ms_we_have_waited = 0;
13139 
13140 				/*
13141 				 * Set tcp_cwnd back to 1 MSS, per
13142 				 * recommendation from
13143 				 * draft-floyd-incr-init-win-01.txt,
13144 				 * Increasing TCP's Initial Window.
13145 				 */
13146 				tcp->tcp_cwnd = tcp->tcp_mss;
13147 			}
13148 
13149 			tcp->tcp_swl1 = seg_seq;
13150 			tcp->tcp_swl2 = seg_ack;
13151 
13152 			new_swnd = BE16_TO_U16(tcph->th_win);
13153 			tcp->tcp_swnd = new_swnd;
13154 			if (new_swnd > tcp->tcp_max_swnd)
13155 				tcp->tcp_max_swnd = new_swnd;
13156 
13157 			/*
13158 			 * Always send the three-way handshake ack immediately
13159 			 * in order to make the connection complete as soon as
13160 			 * possible on the accepting host.
13161 			 */
13162 			flags |= TH_ACK_NEEDED;
13163 
13164 			/*
13165 			 * Special case for loopback.  At this point we have
13166 			 * received SYN-ACK from the remote endpoint.  In
13167 			 * order to ensure that both endpoints reach the
13168 			 * fused state prior to any data exchange, the final
13169 			 * ACK needs to be sent before we indicate T_CONN_CON
13170 			 * to the module upstream.
13171 			 */
13172 			if (tcp->tcp_loopback) {
13173 				mblk_t *ack_mp;
13174 
13175 				ASSERT(!tcp->tcp_unfusable);
13176 				ASSERT(mp1 != NULL);
13177 				/*
13178 				 * For loopback, we always get a pure SYN-ACK
13179 				 * and only need to send back the final ACK
13180 				 * with no data (this is because the other
13181 				 * tcp is ours and we don't do T/TCP).  This
13182 				 * final ACK triggers the passive side to
13183 				 * perform fusion in ESTABLISHED state.
13184 				 */
13185 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13186 					if (tcp->tcp_ack_tid != 0) {
13187 						(void) TCP_TIMER_CANCEL(tcp,
13188 						    tcp->tcp_ack_tid);
13189 						tcp->tcp_ack_tid = 0;
13190 					}
13191 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13192 					BUMP_LOCAL(tcp->tcp_obsegs);
13193 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13194 
13195 					if (!IPCL_IS_NONSTR(connp)) {
13196 						/* Send up T_CONN_CON */
13197 						putnext(tcp->tcp_rq, mp1);
13198 					} else {
13199 						cred_t	*cr;
13200 						pid_t	cpid;
13201 
13202 						cr = msg_getcred(mp1, &cpid);
13203 						(*connp->conn_upcalls->
13204 						    su_connected)
13205 						    (connp->conn_upper_handle,
13206 						    tcp->tcp_connid, cr, cpid);
13207 						freemsg(mp1);
13208 					}
13209 
13210 					freemsg(mp);
13211 					return;
13212 				}
13213 				/*
13214 				 * Forget fusion; we need to handle more
13215 				 * complex cases below.  Send the deferred
13216 				 * T_CONN_CON message upstream and proceed
13217 				 * as usual.  Mark this tcp as not capable
13218 				 * of fusion.
13219 				 */
13220 				TCP_STAT(tcps, tcp_fusion_unfusable);
13221 				tcp->tcp_unfusable = B_TRUE;
13222 				if (!IPCL_IS_NONSTR(connp)) {
13223 					putnext(tcp->tcp_rq, mp1);
13224 				} else {
13225 					cred_t	*cr;
13226 					pid_t	cpid;
13227 
13228 					cr = msg_getcred(mp1, &cpid);
13229 					(*connp->conn_upcalls->su_connected)
13230 					    (connp->conn_upper_handle,
13231 					    tcp->tcp_connid, cr, cpid);
13232 					freemsg(mp1);
13233 				}
13234 			}
13235 
13236 			/*
13237 			 * Check to see if there is data to be sent.  If
13238 			 * yes, set the transmit flag.  Then check to see
13239 			 * if received data processing needs to be done.
13240 			 * If not, go straight to xmit_check.  This short
13241 			 * cut is OK as we don't support T/TCP.
13242 			 */
13243 			if (tcp->tcp_unsent)
13244 				flags |= TH_XMIT_NEEDED;
13245 
13246 			if (seg_len == 0 && !(flags & TH_URG)) {
13247 				freemsg(mp);
13248 				goto xmit_check;
13249 			}
13250 
13251 			flags &= ~TH_SYN;
13252 			seg_seq++;
13253 			break;
13254 		}
13255 		tcp->tcp_state = TCPS_SYN_RCVD;
13256 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13257 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13258 		if (mp1) {
13259 			/*
13260 			 * See comment in tcp_conn_request() for why we use
13261 			 * the open() time pid here.
13262 			 */
13263 			DB_CPID(mp1) = tcp->tcp_cpid;
13264 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13265 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13266 		}
13267 		freemsg(mp);
13268 		return;
13269 	case TCPS_SYN_RCVD:
13270 		if (flags & TH_ACK) {
13271 			/*
13272 			 * In this state, a SYN|ACK packet is either bogus
13273 			 * because the other side must be ACKing our SYN which
13274 			 * indicates it has seen the ACK for their SYN and
13275 			 * shouldn't retransmit it or we're crossing SYNs
13276 			 * on active open.
13277 			 */
13278 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13279 				freemsg(mp);
13280 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13281 				    tcp, seg_ack, 0, TH_RST);
13282 				return;
13283 			}
13284 			/*
13285 			 * NOTE: RFC 793 pg. 72 says this should be
13286 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13287 			 * but that would mean we have an ack that ignored
13288 			 * our SYN.
13289 			 */
13290 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13291 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13292 				freemsg(mp);
13293 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13294 				    tcp, seg_ack, 0, TH_RST);
13295 				return;
13296 			}
13297 		}
13298 		break;
13299 	case TCPS_LISTEN:
13300 		/*
13301 		 * Only a TLI listener can come through this path when a
13302 		 * acceptor is going back to be a listener and a packet
13303 		 * for the acceptor hits the classifier. For a socket
13304 		 * listener, this can never happen because a listener
13305 		 * can never accept connection on itself and hence a
13306 		 * socket acceptor can not go back to being a listener.
13307 		 */
13308 		ASSERT(!TCP_IS_SOCKET(tcp));
13309 		/*FALLTHRU*/
13310 	case TCPS_CLOSED:
13311 	case TCPS_BOUND: {
13312 		conn_t	*new_connp;
13313 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13314 
13315 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13316 		if (new_connp != NULL) {
13317 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13318 			return;
13319 		}
13320 		/* We failed to classify. For now just drop the packet */
13321 		freemsg(mp);
13322 		return;
13323 	}
13324 	case TCPS_IDLE:
13325 		/*
13326 		 * Handle the case where the tcp_clean_death() has happened
13327 		 * on a connection (application hasn't closed yet) but a packet
13328 		 * was already queued on squeue before tcp_clean_death()
13329 		 * was processed. Calling tcp_clean_death() twice on same
13330 		 * connection can result in weird behaviour.
13331 		 */
13332 		freemsg(mp);
13333 		return;
13334 	default:
13335 		break;
13336 	}
13337 
13338 	/*
13339 	 * Already on the correct queue/perimeter.
13340 	 * If this is a detached connection and not an eager
13341 	 * connection hanging off a listener then new data
13342 	 * (past the FIN) will cause a reset.
13343 	 * We do a special check here where it
13344 	 * is out of the main line, rather than check
13345 	 * if we are detached every time we see new
13346 	 * data down below.
13347 	 */
13348 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13349 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13350 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13351 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13352 
13353 		freemsg(mp);
13354 		/*
13355 		 * This could be an SSL closure alert. We're detached so just
13356 		 * acknowledge it this last time.
13357 		 */
13358 		if (tcp->tcp_kssl_ctx != NULL) {
13359 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13360 			tcp->tcp_kssl_ctx = NULL;
13361 
13362 			tcp->tcp_rnxt += seg_len;
13363 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13364 			flags |= TH_ACK_NEEDED;
13365 			goto ack_check;
13366 		}
13367 
13368 		tcp_xmit_ctl("new data when detached", tcp,
13369 		    tcp->tcp_snxt, 0, TH_RST);
13370 		(void) tcp_clean_death(tcp, EPROTO, 12);
13371 		return;
13372 	}
13373 
13374 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13375 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13376 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13377 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13378 
13379 	if (tcp->tcp_snd_ts_ok) {
13380 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13381 			/*
13382 			 * This segment is not acceptable.
13383 			 * Drop it and send back an ACK.
13384 			 */
13385 			freemsg(mp);
13386 			flags |= TH_ACK_NEEDED;
13387 			goto ack_check;
13388 		}
13389 	} else if (tcp->tcp_snd_sack_ok) {
13390 		ASSERT(tcp->tcp_sack_info != NULL);
13391 		tcpopt.tcp = tcp;
13392 		/*
13393 		 * SACK info in already updated in tcp_parse_options.  Ignore
13394 		 * all other TCP options...
13395 		 */
13396 		(void) tcp_parse_options(tcph, &tcpopt);
13397 	}
13398 try_again:;
13399 	mss = tcp->tcp_mss;
13400 	gap = seg_seq - tcp->tcp_rnxt;
13401 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13402 	/*
13403 	 * gap is the amount of sequence space between what we expect to see
13404 	 * and what we got for seg_seq.  A positive value for gap means
13405 	 * something got lost.  A negative value means we got some old stuff.
13406 	 */
13407 	if (gap < 0) {
13408 		/* Old stuff present.  Is the SYN in there? */
13409 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13410 		    (seg_len != 0)) {
13411 			flags &= ~TH_SYN;
13412 			seg_seq++;
13413 			urp--;
13414 			/* Recompute the gaps after noting the SYN. */
13415 			goto try_again;
13416 		}
13417 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13418 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13419 		    (seg_len > -gap ? -gap : seg_len));
13420 		/* Remove the old stuff from seg_len. */
13421 		seg_len += gap;
13422 		/*
13423 		 * Anything left?
13424 		 * Make sure to check for unack'd FIN when rest of data
13425 		 * has been previously ack'd.
13426 		 */
13427 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13428 			/*
13429 			 * Resets are only valid if they lie within our offered
13430 			 * window.  If the RST bit is set, we just ignore this
13431 			 * segment.
13432 			 */
13433 			if (flags & TH_RST) {
13434 				freemsg(mp);
13435 				return;
13436 			}
13437 
13438 			/*
13439 			 * The arriving of dup data packets indicate that we
13440 			 * may have postponed an ack for too long, or the other
13441 			 * side's RTT estimate is out of shape. Start acking
13442 			 * more often.
13443 			 */
13444 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13445 			    tcp->tcp_rack_cnt >= 1 &&
13446 			    tcp->tcp_rack_abs_max > 2) {
13447 				tcp->tcp_rack_abs_max--;
13448 			}
13449 			tcp->tcp_rack_cur_max = 1;
13450 
13451 			/*
13452 			 * This segment is "unacceptable".  None of its
13453 			 * sequence space lies within our advertized window.
13454 			 *
13455 			 * Adjust seg_len to the original value for tracing.
13456 			 */
13457 			seg_len -= gap;
13458 			if (tcp->tcp_debug) {
13459 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13460 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13461 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13462 				    "seg_len %d, rnxt %u, snxt %u, %s",
13463 				    gap, rgap, flags, seg_seq, seg_ack,
13464 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13465 				    tcp_display(tcp, NULL,
13466 				    DISP_ADDR_AND_PORT));
13467 			}
13468 
13469 			/*
13470 			 * Arrange to send an ACK in response to the
13471 			 * unacceptable segment per RFC 793 page 69. There
13472 			 * is only one small difference between ours and the
13473 			 * acceptability test in the RFC - we accept ACK-only
13474 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13475 			 * will be generated.
13476 			 *
13477 			 * Note that we have to ACK an ACK-only packet at least
13478 			 * for stacks that send 0-length keep-alives with
13479 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13480 			 * section 4.2.3.6. As long as we don't ever generate
13481 			 * an unacceptable packet in response to an incoming
13482 			 * packet that is unacceptable, it should not cause
13483 			 * "ACK wars".
13484 			 */
13485 			flags |=  TH_ACK_NEEDED;
13486 
13487 			/*
13488 			 * Continue processing this segment in order to use the
13489 			 * ACK information it contains, but skip all other
13490 			 * sequence-number processing.	Processing the ACK
13491 			 * information is necessary in order to
13492 			 * re-synchronize connections that may have lost
13493 			 * synchronization.
13494 			 *
13495 			 * We clear seg_len and flag fields related to
13496 			 * sequence number processing as they are not
13497 			 * to be trusted for an unacceptable segment.
13498 			 */
13499 			seg_len = 0;
13500 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13501 			goto process_ack;
13502 		}
13503 
13504 		/* Fix seg_seq, and chew the gap off the front. */
13505 		seg_seq = tcp->tcp_rnxt;
13506 		urp += gap;
13507 		do {
13508 			mblk_t	*mp2;
13509 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13510 			    (uintptr_t)UINT_MAX);
13511 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13512 			if (gap > 0) {
13513 				mp->b_rptr = mp->b_wptr - gap;
13514 				break;
13515 			}
13516 			mp2 = mp;
13517 			mp = mp->b_cont;
13518 			freeb(mp2);
13519 		} while (gap < 0);
13520 		/*
13521 		 * If the urgent data has already been acknowledged, we
13522 		 * should ignore TH_URG below
13523 		 */
13524 		if (urp < 0)
13525 			flags &= ~TH_URG;
13526 	}
13527 	/*
13528 	 * rgap is the amount of stuff received out of window.  A negative
13529 	 * value is the amount out of window.
13530 	 */
13531 	if (rgap < 0) {
13532 		mblk_t	*mp2;
13533 
13534 		if (tcp->tcp_rwnd == 0) {
13535 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13536 		} else {
13537 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13538 			UPDATE_MIB(&tcps->tcps_mib,
13539 			    tcpInDataPastWinBytes, -rgap);
13540 		}
13541 
13542 		/*
13543 		 * seg_len does not include the FIN, so if more than
13544 		 * just the FIN is out of window, we act like we don't
13545 		 * see it.  (If just the FIN is out of window, rgap
13546 		 * will be zero and we will go ahead and acknowledge
13547 		 * the FIN.)
13548 		 */
13549 		flags &= ~TH_FIN;
13550 
13551 		/* Fix seg_len and make sure there is something left. */
13552 		seg_len += rgap;
13553 		if (seg_len <= 0) {
13554 			/*
13555 			 * Resets are only valid if they lie within our offered
13556 			 * window.  If the RST bit is set, we just ignore this
13557 			 * segment.
13558 			 */
13559 			if (flags & TH_RST) {
13560 				freemsg(mp);
13561 				return;
13562 			}
13563 
13564 			/* Per RFC 793, we need to send back an ACK. */
13565 			flags |= TH_ACK_NEEDED;
13566 
13567 			/*
13568 			 * Send SIGURG as soon as possible i.e. even
13569 			 * if the TH_URG was delivered in a window probe
13570 			 * packet (which will be unacceptable).
13571 			 *
13572 			 * We generate a signal if none has been generated
13573 			 * for this connection or if this is a new urgent
13574 			 * byte. Also send a zero-length "unmarked" message
13575 			 * to inform SIOCATMARK that this is not the mark.
13576 			 *
13577 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13578 			 * is sent up. This plus the check for old data
13579 			 * (gap >= 0) handles the wraparound of the sequence
13580 			 * number space without having to always track the
13581 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13582 			 * this max in its rcv_up variable).
13583 			 *
13584 			 * This prevents duplicate SIGURGS due to a "late"
13585 			 * zero-window probe when the T_EXDATA_IND has already
13586 			 * been sent up.
13587 			 */
13588 			if ((flags & TH_URG) &&
13589 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13590 			    tcp->tcp_urp_last))) {
13591 				if (IPCL_IS_NONSTR(connp)) {
13592 					if (!TCP_IS_DETACHED(tcp)) {
13593 						(*connp->conn_upcalls->
13594 						    su_signal_oob)
13595 						    (connp->conn_upper_handle,
13596 						    urp);
13597 					}
13598 				} else {
13599 					mp1 = allocb(0, BPRI_MED);
13600 					if (mp1 == NULL) {
13601 						freemsg(mp);
13602 						return;
13603 					}
13604 					if (!TCP_IS_DETACHED(tcp) &&
13605 					    !putnextctl1(tcp->tcp_rq,
13606 					    M_PCSIG, SIGURG)) {
13607 						/* Try again on the rexmit. */
13608 						freemsg(mp1);
13609 						freemsg(mp);
13610 						return;
13611 					}
13612 					/*
13613 					 * If the next byte would be the mark
13614 					 * then mark with MARKNEXT else mark
13615 					 * with NOTMARKNEXT.
13616 					 */
13617 					if (gap == 0 && urp == 0)
13618 						mp1->b_flag |= MSGMARKNEXT;
13619 					else
13620 						mp1->b_flag |= MSGNOTMARKNEXT;
13621 					freemsg(tcp->tcp_urp_mark_mp);
13622 					tcp->tcp_urp_mark_mp = mp1;
13623 					flags |= TH_SEND_URP_MARK;
13624 				}
13625 				tcp->tcp_urp_last_valid = B_TRUE;
13626 				tcp->tcp_urp_last = urp + seg_seq;
13627 			}
13628 			/*
13629 			 * If this is a zero window probe, continue to
13630 			 * process the ACK part.  But we need to set seg_len
13631 			 * to 0 to avoid data processing.  Otherwise just
13632 			 * drop the segment and send back an ACK.
13633 			 */
13634 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13635 				flags &= ~(TH_SYN | TH_URG);
13636 				seg_len = 0;
13637 				goto process_ack;
13638 			} else {
13639 				freemsg(mp);
13640 				goto ack_check;
13641 			}
13642 		}
13643 		/* Pitch out of window stuff off the end. */
13644 		rgap = seg_len;
13645 		mp2 = mp;
13646 		do {
13647 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13648 			    (uintptr_t)INT_MAX);
13649 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13650 			if (rgap < 0) {
13651 				mp2->b_wptr += rgap;
13652 				if ((mp1 = mp2->b_cont) != NULL) {
13653 					mp2->b_cont = NULL;
13654 					freemsg(mp1);
13655 				}
13656 				break;
13657 			}
13658 		} while ((mp2 = mp2->b_cont) != NULL);
13659 	}
13660 ok:;
13661 	/*
13662 	 * TCP should check ECN info for segments inside the window only.
13663 	 * Therefore the check should be done here.
13664 	 */
13665 	if (tcp->tcp_ecn_ok) {
13666 		if (flags & TH_CWR) {
13667 			tcp->tcp_ecn_echo_on = B_FALSE;
13668 		}
13669 		/*
13670 		 * Note that both ECN_CE and CWR can be set in the
13671 		 * same segment.  In this case, we once again turn
13672 		 * on ECN_ECHO.
13673 		 */
13674 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13675 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13676 
13677 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13678 				tcp->tcp_ecn_echo_on = B_TRUE;
13679 			}
13680 		} else {
13681 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13682 
13683 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13684 			    htonl(IPH_ECN_CE << 20)) {
13685 				tcp->tcp_ecn_echo_on = B_TRUE;
13686 			}
13687 		}
13688 	}
13689 
13690 	/*
13691 	 * Check whether we can update tcp_ts_recent.  This test is
13692 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13693 	 * Extensions for High Performance: An Update", Internet Draft.
13694 	 */
13695 	if (tcp->tcp_snd_ts_ok &&
13696 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13697 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13698 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13699 		tcp->tcp_last_rcv_lbolt = lbolt64;
13700 	}
13701 
13702 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13703 		/*
13704 		 * FIN in an out of order segment.  We record this in
13705 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13706 		 * Clear the FIN so that any check on FIN flag will fail.
13707 		 * Remember that FIN also counts in the sequence number
13708 		 * space.  So we need to ack out of order FIN only segments.
13709 		 */
13710 		if (flags & TH_FIN) {
13711 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13712 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13713 			flags &= ~TH_FIN;
13714 			flags |= TH_ACK_NEEDED;
13715 		}
13716 		if (seg_len > 0) {
13717 			/* Fill in the SACK blk list. */
13718 			if (tcp->tcp_snd_sack_ok) {
13719 				ASSERT(tcp->tcp_sack_info != NULL);
13720 				tcp_sack_insert(tcp->tcp_sack_list,
13721 				    seg_seq, seg_seq + seg_len,
13722 				    &(tcp->tcp_num_sack_blk));
13723 			}
13724 
13725 			/*
13726 			 * Attempt reassembly and see if we have something
13727 			 * ready to go.
13728 			 */
13729 			mp = tcp_reass(tcp, mp, seg_seq);
13730 			/* Always ack out of order packets */
13731 			flags |= TH_ACK_NEEDED | TH_PUSH;
13732 			if (mp) {
13733 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13734 				    (uintptr_t)INT_MAX);
13735 				seg_len = mp->b_cont ? msgdsize(mp) :
13736 				    (int)(mp->b_wptr - mp->b_rptr);
13737 				seg_seq = tcp->tcp_rnxt;
13738 				/*
13739 				 * A gap is filled and the seq num and len
13740 				 * of the gap match that of a previously
13741 				 * received FIN, put the FIN flag back in.
13742 				 */
13743 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13744 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13745 					flags |= TH_FIN;
13746 					tcp->tcp_valid_bits &=
13747 					    ~TCP_OFO_FIN_VALID;
13748 				}
13749 			} else {
13750 				/*
13751 				 * Keep going even with NULL mp.
13752 				 * There may be a useful ACK or something else
13753 				 * we don't want to miss.
13754 				 *
13755 				 * But TCP should not perform fast retransmit
13756 				 * because of the ack number.  TCP uses
13757 				 * seg_len == 0 to determine if it is a pure
13758 				 * ACK.  And this is not a pure ACK.
13759 				 */
13760 				seg_len = 0;
13761 				ofo_seg = B_TRUE;
13762 			}
13763 		}
13764 	} else if (seg_len > 0) {
13765 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13766 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13767 		/*
13768 		 * If an out of order FIN was received before, and the seq
13769 		 * num and len of the new segment match that of the FIN,
13770 		 * put the FIN flag back in.
13771 		 */
13772 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13773 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13774 			flags |= TH_FIN;
13775 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13776 		}
13777 	}
13778 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13779 	if (flags & TH_RST) {
13780 		freemsg(mp);
13781 		switch (tcp->tcp_state) {
13782 		case TCPS_SYN_RCVD:
13783 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13784 			break;
13785 		case TCPS_ESTABLISHED:
13786 		case TCPS_FIN_WAIT_1:
13787 		case TCPS_FIN_WAIT_2:
13788 		case TCPS_CLOSE_WAIT:
13789 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13790 			break;
13791 		case TCPS_CLOSING:
13792 		case TCPS_LAST_ACK:
13793 			(void) tcp_clean_death(tcp, 0, 16);
13794 			break;
13795 		default:
13796 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13797 			(void) tcp_clean_death(tcp, ENXIO, 17);
13798 			break;
13799 		}
13800 		return;
13801 	}
13802 	if (flags & TH_SYN) {
13803 		/*
13804 		 * See RFC 793, Page 71
13805 		 *
13806 		 * The seq number must be in the window as it should
13807 		 * be "fixed" above.  If it is outside window, it should
13808 		 * be already rejected.  Note that we allow seg_seq to be
13809 		 * rnxt + rwnd because we want to accept 0 window probe.
13810 		 */
13811 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13812 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13813 		freemsg(mp);
13814 		/*
13815 		 * If the ACK flag is not set, just use our snxt as the
13816 		 * seq number of the RST segment.
13817 		 */
13818 		if (!(flags & TH_ACK)) {
13819 			seg_ack = tcp->tcp_snxt;
13820 		}
13821 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13822 		    TH_RST|TH_ACK);
13823 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13824 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13825 		return;
13826 	}
13827 	/*
13828 	 * urp could be -1 when the urp field in the packet is 0
13829 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13830 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13831 	 */
13832 	if (flags & TH_URG && urp >= 0) {
13833 		if (!tcp->tcp_urp_last_valid ||
13834 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13835 			if (IPCL_IS_NONSTR(connp)) {
13836 				if (!TCP_IS_DETACHED(tcp)) {
13837 					(*connp->conn_upcalls->su_signal_oob)
13838 					    (connp->conn_upper_handle, urp);
13839 				}
13840 			} else {
13841 				/*
13842 				 * If we haven't generated the signal yet for
13843 				 * this urgent pointer value, do it now.  Also,
13844 				 * send up a zero-length M_DATA indicating
13845 				 * whether or not this is the mark. The latter
13846 				 * is not needed when a T_EXDATA_IND is sent up.
13847 				 * However, if there are allocation failures
13848 				 * this code relies on the sender retransmitting
13849 				 * and the socket code for determining the mark
13850 				 * should not block waiting for the peer to
13851 				 * transmit. Thus, for simplicity we always
13852 				 * send up the mark indication.
13853 				 */
13854 				mp1 = allocb(0, BPRI_MED);
13855 				if (mp1 == NULL) {
13856 					freemsg(mp);
13857 					return;
13858 				}
13859 				if (!TCP_IS_DETACHED(tcp) &&
13860 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13861 				    SIGURG)) {
13862 					/* Try again on the rexmit. */
13863 					freemsg(mp1);
13864 					freemsg(mp);
13865 					return;
13866 				}
13867 				/*
13868 				 * Mark with NOTMARKNEXT for now.
13869 				 * The code below will change this to MARKNEXT
13870 				 * if we are at the mark.
13871 				 *
13872 				 * If there are allocation failures (e.g. in
13873 				 * dupmsg below) the next time tcp_rput_data
13874 				 * sees the urgent segment it will send up the
13875 				 * MSGMARKNEXT message.
13876 				 */
13877 				mp1->b_flag |= MSGNOTMARKNEXT;
13878 				freemsg(tcp->tcp_urp_mark_mp);
13879 				tcp->tcp_urp_mark_mp = mp1;
13880 				flags |= TH_SEND_URP_MARK;
13881 #ifdef DEBUG
13882 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13883 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13884 				    "last %x, %s",
13885 				    seg_seq, urp, tcp->tcp_urp_last,
13886 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13887 #endif /* DEBUG */
13888 			}
13889 			tcp->tcp_urp_last_valid = B_TRUE;
13890 			tcp->tcp_urp_last = urp + seg_seq;
13891 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13892 			/*
13893 			 * An allocation failure prevented the previous
13894 			 * tcp_rput_data from sending up the allocated
13895 			 * MSG*MARKNEXT message - send it up this time
13896 			 * around.
13897 			 */
13898 			flags |= TH_SEND_URP_MARK;
13899 		}
13900 
13901 		/*
13902 		 * If the urgent byte is in this segment, make sure that it is
13903 		 * all by itself.  This makes it much easier to deal with the
13904 		 * possibility of an allocation failure on the T_exdata_ind.
13905 		 * Note that seg_len is the number of bytes in the segment, and
13906 		 * urp is the offset into the segment of the urgent byte.
13907 		 * urp < seg_len means that the urgent byte is in this segment.
13908 		 */
13909 		if (urp < seg_len) {
13910 			if (seg_len != 1) {
13911 				uint32_t  tmp_rnxt;
13912 				/*
13913 				 * Break it up and feed it back in.
13914 				 * Re-attach the IP header.
13915 				 */
13916 				mp->b_rptr = iphdr;
13917 				if (urp > 0) {
13918 					/*
13919 					 * There is stuff before the urgent
13920 					 * byte.
13921 					 */
13922 					mp1 = dupmsg(mp);
13923 					if (!mp1) {
13924 						/*
13925 						 * Trim from urgent byte on.
13926 						 * The rest will come back.
13927 						 */
13928 						(void) adjmsg(mp,
13929 						    urp - seg_len);
13930 						tcp_rput_data(connp,
13931 						    mp, NULL);
13932 						return;
13933 					}
13934 					(void) adjmsg(mp1, urp - seg_len);
13935 					/* Feed this piece back in. */
13936 					tmp_rnxt = tcp->tcp_rnxt;
13937 					tcp_rput_data(connp, mp1, NULL);
13938 					/*
13939 					 * If the data passed back in was not
13940 					 * processed (ie: bad ACK) sending
13941 					 * the remainder back in will cause a
13942 					 * loop. In this case, drop the
13943 					 * packet and let the sender try
13944 					 * sending a good packet.
13945 					 */
13946 					if (tmp_rnxt == tcp->tcp_rnxt) {
13947 						freemsg(mp);
13948 						return;
13949 					}
13950 				}
13951 				if (urp != seg_len - 1) {
13952 					uint32_t  tmp_rnxt;
13953 					/*
13954 					 * There is stuff after the urgent
13955 					 * byte.
13956 					 */
13957 					mp1 = dupmsg(mp);
13958 					if (!mp1) {
13959 						/*
13960 						 * Trim everything beyond the
13961 						 * urgent byte.  The rest will
13962 						 * come back.
13963 						 */
13964 						(void) adjmsg(mp,
13965 						    urp + 1 - seg_len);
13966 						tcp_rput_data(connp,
13967 						    mp, NULL);
13968 						return;
13969 					}
13970 					(void) adjmsg(mp1, urp + 1 - seg_len);
13971 					tmp_rnxt = tcp->tcp_rnxt;
13972 					tcp_rput_data(connp, mp1, NULL);
13973 					/*
13974 					 * If the data passed back in was not
13975 					 * processed (ie: bad ACK) sending
13976 					 * the remainder back in will cause a
13977 					 * loop. In this case, drop the
13978 					 * packet and let the sender try
13979 					 * sending a good packet.
13980 					 */
13981 					if (tmp_rnxt == tcp->tcp_rnxt) {
13982 						freemsg(mp);
13983 						return;
13984 					}
13985 				}
13986 				tcp_rput_data(connp, mp, NULL);
13987 				return;
13988 			}
13989 			/*
13990 			 * This segment contains only the urgent byte.  We
13991 			 * have to allocate the T_exdata_ind, if we can.
13992 			 */
13993 			if (IPCL_IS_NONSTR(connp)) {
13994 				int error;
13995 
13996 				(*connp->conn_upcalls->su_recv)
13997 				    (connp->conn_upper_handle, mp, seg_len,
13998 				    MSG_OOB, &error, NULL);
13999 				/*
14000 				 * We should never be in middle of a
14001 				 * fallback, the squeue guarantees that.
14002 				 */
14003 				ASSERT(error != EOPNOTSUPP);
14004 				mp = NULL;
14005 				goto update_ack;
14006 			} else if (!tcp->tcp_urp_mp) {
14007 				struct T_exdata_ind *tei;
14008 				mp1 = allocb(sizeof (struct T_exdata_ind),
14009 				    BPRI_MED);
14010 				if (!mp1) {
14011 					/*
14012 					 * Sigh... It'll be back.
14013 					 * Generate any MSG*MARK message now.
14014 					 */
14015 					freemsg(mp);
14016 					seg_len = 0;
14017 					if (flags & TH_SEND_URP_MARK) {
14018 
14019 
14020 						ASSERT(tcp->tcp_urp_mark_mp);
14021 						tcp->tcp_urp_mark_mp->b_flag &=
14022 						    ~MSGNOTMARKNEXT;
14023 						tcp->tcp_urp_mark_mp->b_flag |=
14024 						    MSGMARKNEXT;
14025 					}
14026 					goto ack_check;
14027 				}
14028 				mp1->b_datap->db_type = M_PROTO;
14029 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14030 				tei->PRIM_type = T_EXDATA_IND;
14031 				tei->MORE_flag = 0;
14032 				mp1->b_wptr = (uchar_t *)&tei[1];
14033 				tcp->tcp_urp_mp = mp1;
14034 #ifdef DEBUG
14035 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14036 				    "tcp_rput: allocated exdata_ind %s",
14037 				    tcp_display(tcp, NULL,
14038 				    DISP_PORT_ONLY));
14039 #endif /* DEBUG */
14040 				/*
14041 				 * There is no need to send a separate MSG*MARK
14042 				 * message since the T_EXDATA_IND will be sent
14043 				 * now.
14044 				 */
14045 				flags &= ~TH_SEND_URP_MARK;
14046 				freemsg(tcp->tcp_urp_mark_mp);
14047 				tcp->tcp_urp_mark_mp = NULL;
14048 			}
14049 			/*
14050 			 * Now we are all set.  On the next putnext upstream,
14051 			 * tcp_urp_mp will be non-NULL and will get prepended
14052 			 * to what has to be this piece containing the urgent
14053 			 * byte.  If for any reason we abort this segment below,
14054 			 * if it comes back, we will have this ready, or it
14055 			 * will get blown off in close.
14056 			 */
14057 		} else if (urp == seg_len) {
14058 			/*
14059 			 * The urgent byte is the next byte after this sequence
14060 			 * number. If there is data it is marked with
14061 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14062 			 * since it is not needed. Otherwise, if the code
14063 			 * above just allocated a zero-length tcp_urp_mark_mp
14064 			 * message, that message is tagged with MSGMARKNEXT.
14065 			 * Sending up these MSGMARKNEXT messages makes
14066 			 * SIOCATMARK work correctly even though
14067 			 * the T_EXDATA_IND will not be sent up until the
14068 			 * urgent byte arrives.
14069 			 */
14070 			if (seg_len != 0) {
14071 				flags |= TH_MARKNEXT_NEEDED;
14072 				freemsg(tcp->tcp_urp_mark_mp);
14073 				tcp->tcp_urp_mark_mp = NULL;
14074 				flags &= ~TH_SEND_URP_MARK;
14075 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14076 				flags |= TH_SEND_URP_MARK;
14077 				tcp->tcp_urp_mark_mp->b_flag &=
14078 				    ~MSGNOTMARKNEXT;
14079 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14080 			}
14081 #ifdef DEBUG
14082 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14083 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14084 			    seg_len, flags,
14085 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14086 #endif /* DEBUG */
14087 		}
14088 #ifdef DEBUG
14089 		else {
14090 			/* Data left until we hit mark */
14091 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14092 			    "tcp_rput: URP %d bytes left, %s",
14093 			    urp - seg_len, tcp_display(tcp, NULL,
14094 			    DISP_PORT_ONLY));
14095 		}
14096 #endif /* DEBUG */
14097 	}
14098 
14099 process_ack:
14100 	if (!(flags & TH_ACK)) {
14101 		freemsg(mp);
14102 		goto xmit_check;
14103 	}
14104 	}
14105 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14106 
14107 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14108 		tcp->tcp_ip_forward_progress = B_TRUE;
14109 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14110 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14111 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14112 			/* 3-way handshake complete - pass up the T_CONN_IND */
14113 			tcp_t	*listener = tcp->tcp_listener;
14114 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14115 
14116 			tcp->tcp_tconnind_started = B_TRUE;
14117 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14118 			/*
14119 			 * We are here means eager is fine but it can
14120 			 * get a TH_RST at any point between now and till
14121 			 * accept completes and disappear. We need to
14122 			 * ensure that reference to eager is valid after
14123 			 * we get out of eager's perimeter. So we do
14124 			 * an extra refhold.
14125 			 */
14126 			CONN_INC_REF(connp);
14127 
14128 			/*
14129 			 * The listener also exists because of the refhold
14130 			 * done in tcp_conn_request. Its possible that it
14131 			 * might have closed. We will check that once we
14132 			 * get inside listeners context.
14133 			 */
14134 			CONN_INC_REF(listener->tcp_connp);
14135 			if (listener->tcp_connp->conn_sqp ==
14136 			    connp->conn_sqp) {
14137 				/*
14138 				 * We optimize by not calling an SQUEUE_ENTER
14139 				 * on the listener since we know that the
14140 				 * listener and eager squeues are the same.
14141 				 * We are able to make this check safely only
14142 				 * because neither the eager nor the listener
14143 				 * can change its squeue. Only an active connect
14144 				 * can change its squeue
14145 				 */
14146 				tcp_send_conn_ind(listener->tcp_connp, mp,
14147 				    listener->tcp_connp->conn_sqp);
14148 				CONN_DEC_REF(listener->tcp_connp);
14149 			} else if (!tcp->tcp_loopback) {
14150 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14151 				    mp, tcp_send_conn_ind,
14152 				    listener->tcp_connp, SQ_FILL,
14153 				    SQTAG_TCP_CONN_IND);
14154 			} else {
14155 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14156 				    mp, tcp_send_conn_ind,
14157 				    listener->tcp_connp, SQ_PROCESS,
14158 				    SQTAG_TCP_CONN_IND);
14159 			}
14160 		}
14161 
14162 		if (tcp->tcp_active_open) {
14163 			/*
14164 			 * We are seeing the final ack in the three way
14165 			 * hand shake of a active open'ed connection
14166 			 * so we must send up a T_CONN_CON
14167 			 */
14168 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14169 				freemsg(mp);
14170 				return;
14171 			}
14172 			/*
14173 			 * Don't fuse the loopback endpoints for
14174 			 * simultaneous active opens.
14175 			 */
14176 			if (tcp->tcp_loopback) {
14177 				TCP_STAT(tcps, tcp_fusion_unfusable);
14178 				tcp->tcp_unfusable = B_TRUE;
14179 			}
14180 		}
14181 
14182 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14183 		bytes_acked--;
14184 		/* SYN was acked - making progress */
14185 		if (tcp->tcp_ipversion == IPV6_VERSION)
14186 			tcp->tcp_ip_forward_progress = B_TRUE;
14187 
14188 		/*
14189 		 * If SYN was retransmitted, need to reset all
14190 		 * retransmission info as this segment will be
14191 		 * treated as a dup ACK.
14192 		 */
14193 		if (tcp->tcp_rexmit) {
14194 			tcp->tcp_rexmit = B_FALSE;
14195 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14196 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14197 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14198 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14199 			tcp->tcp_ms_we_have_waited = 0;
14200 			tcp->tcp_cwnd = mss;
14201 		}
14202 
14203 		/*
14204 		 * We set the send window to zero here.
14205 		 * This is needed if there is data to be
14206 		 * processed already on the queue.
14207 		 * Later (at swnd_update label), the
14208 		 * "new_swnd > tcp_swnd" condition is satisfied
14209 		 * the XMIT_NEEDED flag is set in the current
14210 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14211 		 * called if there is already data on queue in
14212 		 * this state.
14213 		 */
14214 		tcp->tcp_swnd = 0;
14215 
14216 		if (new_swnd > tcp->tcp_max_swnd)
14217 			tcp->tcp_max_swnd = new_swnd;
14218 		tcp->tcp_swl1 = seg_seq;
14219 		tcp->tcp_swl2 = seg_ack;
14220 		tcp->tcp_state = TCPS_ESTABLISHED;
14221 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14222 
14223 		/* Fuse when both sides are in ESTABLISHED state */
14224 		if (tcp->tcp_loopback && do_tcp_fusion)
14225 			tcp_fuse(tcp, iphdr, tcph);
14226 
14227 	}
14228 	/* This code follows 4.4BSD-Lite2 mostly. */
14229 	if (bytes_acked < 0)
14230 		goto est;
14231 
14232 	/*
14233 	 * If TCP is ECN capable and the congestion experience bit is
14234 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14235 	 * done once per window (or more loosely, per RTT).
14236 	 */
14237 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14238 		tcp->tcp_cwr = B_FALSE;
14239 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14240 		if (!tcp->tcp_cwr) {
14241 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14242 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14243 			tcp->tcp_cwnd = npkt * mss;
14244 			/*
14245 			 * If the cwnd is 0, use the timer to clock out
14246 			 * new segments.  This is required by the ECN spec.
14247 			 */
14248 			if (npkt == 0) {
14249 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14250 				/*
14251 				 * This makes sure that when the ACK comes
14252 				 * back, we will increase tcp_cwnd by 1 MSS.
14253 				 */
14254 				tcp->tcp_cwnd_cnt = 0;
14255 			}
14256 			tcp->tcp_cwr = B_TRUE;
14257 			/*
14258 			 * This marks the end of the current window of in
14259 			 * flight data.  That is why we don't use
14260 			 * tcp_suna + tcp_swnd.  Only data in flight can
14261 			 * provide ECN info.
14262 			 */
14263 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14264 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14265 		}
14266 	}
14267 
14268 	mp1 = tcp->tcp_xmit_head;
14269 	if (bytes_acked == 0) {
14270 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14271 			int dupack_cnt;
14272 
14273 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14274 			/*
14275 			 * Fast retransmit.  When we have seen exactly three
14276 			 * identical ACKs while we have unacked data
14277 			 * outstanding we take it as a hint that our peer
14278 			 * dropped something.
14279 			 *
14280 			 * If TCP is retransmitting, don't do fast retransmit.
14281 			 */
14282 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14283 			    ! tcp->tcp_rexmit) {
14284 				/* Do Limited Transmit */
14285 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14286 				    tcps->tcps_dupack_fast_retransmit) {
14287 					/*
14288 					 * RFC 3042
14289 					 *
14290 					 * What we need to do is temporarily
14291 					 * increase tcp_cwnd so that new
14292 					 * data can be sent if it is allowed
14293 					 * by the receive window (tcp_rwnd).
14294 					 * tcp_wput_data() will take care of
14295 					 * the rest.
14296 					 *
14297 					 * If the connection is SACK capable,
14298 					 * only do limited xmit when there
14299 					 * is SACK info.
14300 					 *
14301 					 * Note how tcp_cwnd is incremented.
14302 					 * The first dup ACK will increase
14303 					 * it by 1 MSS.  The second dup ACK
14304 					 * will increase it by 2 MSS.  This
14305 					 * means that only 1 new segment will
14306 					 * be sent for each dup ACK.
14307 					 */
14308 					if (tcp->tcp_unsent > 0 &&
14309 					    (!tcp->tcp_snd_sack_ok ||
14310 					    (tcp->tcp_snd_sack_ok &&
14311 					    tcp->tcp_notsack_list != NULL))) {
14312 						tcp->tcp_cwnd += mss <<
14313 						    (tcp->tcp_dupack_cnt - 1);
14314 						flags |= TH_LIMIT_XMIT;
14315 					}
14316 				} else if (dupack_cnt ==
14317 				    tcps->tcps_dupack_fast_retransmit) {
14318 
14319 				/*
14320 				 * If we have reduced tcp_ssthresh
14321 				 * because of ECN, do not reduce it again
14322 				 * unless it is already one window of data
14323 				 * away.  After one window of data, tcp_cwr
14324 				 * should then be cleared.  Note that
14325 				 * for non ECN capable connection, tcp_cwr
14326 				 * should always be false.
14327 				 *
14328 				 * Adjust cwnd since the duplicate
14329 				 * ack indicates that a packet was
14330 				 * dropped (due to congestion.)
14331 				 */
14332 				if (!tcp->tcp_cwr) {
14333 					npkt = ((tcp->tcp_snxt -
14334 					    tcp->tcp_suna) >> 1) / mss;
14335 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14336 					    mss;
14337 					tcp->tcp_cwnd = (npkt +
14338 					    tcp->tcp_dupack_cnt) * mss;
14339 				}
14340 				if (tcp->tcp_ecn_ok) {
14341 					tcp->tcp_cwr = B_TRUE;
14342 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14343 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14344 				}
14345 
14346 				/*
14347 				 * We do Hoe's algorithm.  Refer to her
14348 				 * paper "Improving the Start-up Behavior
14349 				 * of a Congestion Control Scheme for TCP,"
14350 				 * appeared in SIGCOMM'96.
14351 				 *
14352 				 * Save highest seq no we have sent so far.
14353 				 * Be careful about the invisible FIN byte.
14354 				 */
14355 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14356 				    (tcp->tcp_unsent == 0)) {
14357 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14358 				} else {
14359 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14360 				}
14361 
14362 				/*
14363 				 * Do not allow bursty traffic during.
14364 				 * fast recovery.  Refer to Fall and Floyd's
14365 				 * paper "Simulation-based Comparisons of
14366 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14367 				 * This is a best current practise.
14368 				 */
14369 				tcp->tcp_snd_burst = TCP_CWND_SS;
14370 
14371 				/*
14372 				 * For SACK:
14373 				 * Calculate tcp_pipe, which is the
14374 				 * estimated number of bytes in
14375 				 * network.
14376 				 *
14377 				 * tcp_fack is the highest sack'ed seq num
14378 				 * TCP has received.
14379 				 *
14380 				 * tcp_pipe is explained in the above quoted
14381 				 * Fall and Floyd's paper.  tcp_fack is
14382 				 * explained in Mathis and Mahdavi's
14383 				 * "Forward Acknowledgment: Refining TCP
14384 				 * Congestion Control" in SIGCOMM '96.
14385 				 */
14386 				if (tcp->tcp_snd_sack_ok) {
14387 					ASSERT(tcp->tcp_sack_info != NULL);
14388 					if (tcp->tcp_notsack_list != NULL) {
14389 						tcp->tcp_pipe = tcp->tcp_snxt -
14390 						    tcp->tcp_fack;
14391 						tcp->tcp_sack_snxt = seg_ack;
14392 						flags |= TH_NEED_SACK_REXMIT;
14393 					} else {
14394 						/*
14395 						 * Always initialize tcp_pipe
14396 						 * even though we don't have
14397 						 * any SACK info.  If later
14398 						 * we get SACK info and
14399 						 * tcp_pipe is not initialized,
14400 						 * funny things will happen.
14401 						 */
14402 						tcp->tcp_pipe =
14403 						    tcp->tcp_cwnd_ssthresh;
14404 					}
14405 				} else {
14406 					flags |= TH_REXMIT_NEEDED;
14407 				} /* tcp_snd_sack_ok */
14408 
14409 				} else {
14410 					/*
14411 					 * Here we perform congestion
14412 					 * avoidance, but NOT slow start.
14413 					 * This is known as the Fast
14414 					 * Recovery Algorithm.
14415 					 */
14416 					if (tcp->tcp_snd_sack_ok &&
14417 					    tcp->tcp_notsack_list != NULL) {
14418 						flags |= TH_NEED_SACK_REXMIT;
14419 						tcp->tcp_pipe -= mss;
14420 						if (tcp->tcp_pipe < 0)
14421 							tcp->tcp_pipe = 0;
14422 					} else {
14423 					/*
14424 					 * We know that one more packet has
14425 					 * left the pipe thus we can update
14426 					 * cwnd.
14427 					 */
14428 					cwnd = tcp->tcp_cwnd + mss;
14429 					if (cwnd > tcp->tcp_cwnd_max)
14430 						cwnd = tcp->tcp_cwnd_max;
14431 					tcp->tcp_cwnd = cwnd;
14432 					if (tcp->tcp_unsent > 0)
14433 						flags |= TH_XMIT_NEEDED;
14434 					}
14435 				}
14436 			}
14437 		} else if (tcp->tcp_zero_win_probe) {
14438 			/*
14439 			 * If the window has opened, need to arrange
14440 			 * to send additional data.
14441 			 */
14442 			if (new_swnd != 0) {
14443 				/* tcp_suna != tcp_snxt */
14444 				/* Packet contains a window update */
14445 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14446 				tcp->tcp_zero_win_probe = 0;
14447 				tcp->tcp_timer_backoff = 0;
14448 				tcp->tcp_ms_we_have_waited = 0;
14449 
14450 				/*
14451 				 * Transmit starting with tcp_suna since
14452 				 * the one byte probe is not ack'ed.
14453 				 * If TCP has sent more than one identical
14454 				 * probe, tcp_rexmit will be set.  That means
14455 				 * tcp_ss_rexmit() will send out the one
14456 				 * byte along with new data.  Otherwise,
14457 				 * fake the retransmission.
14458 				 */
14459 				flags |= TH_XMIT_NEEDED;
14460 				if (!tcp->tcp_rexmit) {
14461 					tcp->tcp_rexmit = B_TRUE;
14462 					tcp->tcp_dupack_cnt = 0;
14463 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14464 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14465 				}
14466 			}
14467 		}
14468 		goto swnd_update;
14469 	}
14470 
14471 	/*
14472 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14473 	 * If the ACK value acks something that we have not yet sent, it might
14474 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14475 	 * other side.
14476 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14477 	 * state is handled above, so we can always just drop the segment and
14478 	 * send an ACK here.
14479 	 *
14480 	 * Should we send ACKs in response to ACK only segments?
14481 	 */
14482 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14483 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14484 		/* drop the received segment */
14485 		freemsg(mp);
14486 
14487 		/*
14488 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14489 		 * greater than 0, check if the number of such
14490 		 * bogus ACks is greater than that count.  If yes,
14491 		 * don't send back any ACK.  This prevents TCP from
14492 		 * getting into an ACK storm if somehow an attacker
14493 		 * successfully spoofs an acceptable segment to our
14494 		 * peer.
14495 		 */
14496 		if (tcp_drop_ack_unsent_cnt > 0 &&
14497 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14498 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14499 			return;
14500 		}
14501 		mp = tcp_ack_mp(tcp);
14502 		if (mp != NULL) {
14503 			BUMP_LOCAL(tcp->tcp_obsegs);
14504 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14505 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14506 		}
14507 		return;
14508 	}
14509 
14510 	/*
14511 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14512 	 * blocks that are covered by this ACK.
14513 	 */
14514 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14515 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14516 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14517 	}
14518 
14519 	/*
14520 	 * If we got an ACK after fast retransmit, check to see
14521 	 * if it is a partial ACK.  If it is not and the congestion
14522 	 * window was inflated to account for the other side's
14523 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14524 	 */
14525 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14526 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14527 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14528 			tcp->tcp_dupack_cnt = 0;
14529 			/*
14530 			 * Restore the orig tcp_cwnd_ssthresh after
14531 			 * fast retransmit phase.
14532 			 */
14533 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14534 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14535 			}
14536 			tcp->tcp_rexmit_max = seg_ack;
14537 			tcp->tcp_cwnd_cnt = 0;
14538 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14539 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14540 
14541 			/*
14542 			 * Remove all notsack info to avoid confusion with
14543 			 * the next fast retrasnmit/recovery phase.
14544 			 */
14545 			if (tcp->tcp_snd_sack_ok &&
14546 			    tcp->tcp_notsack_list != NULL) {
14547 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14548 			}
14549 		} else {
14550 			if (tcp->tcp_snd_sack_ok &&
14551 			    tcp->tcp_notsack_list != NULL) {
14552 				flags |= TH_NEED_SACK_REXMIT;
14553 				tcp->tcp_pipe -= mss;
14554 				if (tcp->tcp_pipe < 0)
14555 					tcp->tcp_pipe = 0;
14556 			} else {
14557 				/*
14558 				 * Hoe's algorithm:
14559 				 *
14560 				 * Retransmit the unack'ed segment and
14561 				 * restart fast recovery.  Note that we
14562 				 * need to scale back tcp_cwnd to the
14563 				 * original value when we started fast
14564 				 * recovery.  This is to prevent overly
14565 				 * aggressive behaviour in sending new
14566 				 * segments.
14567 				 */
14568 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14569 				    tcps->tcps_dupack_fast_retransmit * mss;
14570 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14571 				flags |= TH_REXMIT_NEEDED;
14572 			}
14573 		}
14574 	} else {
14575 		tcp->tcp_dupack_cnt = 0;
14576 		if (tcp->tcp_rexmit) {
14577 			/*
14578 			 * TCP is retranmitting.  If the ACK ack's all
14579 			 * outstanding data, update tcp_rexmit_max and
14580 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14581 			 * to the correct value.
14582 			 *
14583 			 * Note that SEQ_LEQ() is used.  This is to avoid
14584 			 * unnecessary fast retransmit caused by dup ACKs
14585 			 * received when TCP does slow start retransmission
14586 			 * after a time out.  During this phase, TCP may
14587 			 * send out segments which are already received.
14588 			 * This causes dup ACKs to be sent back.
14589 			 */
14590 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14591 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14592 					tcp->tcp_rexmit_nxt = seg_ack;
14593 				}
14594 				if (seg_ack != tcp->tcp_rexmit_max) {
14595 					flags |= TH_XMIT_NEEDED;
14596 				}
14597 			} else {
14598 				tcp->tcp_rexmit = B_FALSE;
14599 				tcp->tcp_xmit_zc_clean = B_FALSE;
14600 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14601 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14602 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14603 			}
14604 			tcp->tcp_ms_we_have_waited = 0;
14605 		}
14606 	}
14607 
14608 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14609 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14610 	tcp->tcp_suna = seg_ack;
14611 	if (tcp->tcp_zero_win_probe != 0) {
14612 		tcp->tcp_zero_win_probe = 0;
14613 		tcp->tcp_timer_backoff = 0;
14614 	}
14615 
14616 	/*
14617 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14618 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14619 	 * will not reach here.
14620 	 */
14621 	if (mp1 == NULL) {
14622 		goto fin_acked;
14623 	}
14624 
14625 	/*
14626 	 * Update the congestion window.
14627 	 *
14628 	 * If TCP is not ECN capable or TCP is ECN capable but the
14629 	 * congestion experience bit is not set, increase the tcp_cwnd as
14630 	 * usual.
14631 	 */
14632 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14633 		cwnd = tcp->tcp_cwnd;
14634 		add = mss;
14635 
14636 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14637 			/*
14638 			 * This is to prevent an increase of less than 1 MSS of
14639 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14640 			 * may send out tinygrams in order to preserve mblk
14641 			 * boundaries.
14642 			 *
14643 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14644 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14645 			 * increased by 1 MSS for every RTTs.
14646 			 */
14647 			if (tcp->tcp_cwnd_cnt <= 0) {
14648 				tcp->tcp_cwnd_cnt = cwnd + add;
14649 			} else {
14650 				tcp->tcp_cwnd_cnt -= add;
14651 				add = 0;
14652 			}
14653 		}
14654 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14655 	}
14656 
14657 	/* See if the latest urgent data has been acknowledged */
14658 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14659 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14660 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14661 
14662 	/* Can we update the RTT estimates? */
14663 	if (tcp->tcp_snd_ts_ok) {
14664 		/* Ignore zero timestamp echo-reply. */
14665 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14666 			tcp_set_rto(tcp, (int32_t)lbolt -
14667 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14668 		}
14669 
14670 		/* If needed, restart the timer. */
14671 		if (tcp->tcp_set_timer == 1) {
14672 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14673 			tcp->tcp_set_timer = 0;
14674 		}
14675 		/*
14676 		 * Update tcp_csuna in case the other side stops sending
14677 		 * us timestamps.
14678 		 */
14679 		tcp->tcp_csuna = tcp->tcp_snxt;
14680 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14681 		/*
14682 		 * An ACK sequence we haven't seen before, so get the RTT
14683 		 * and update the RTO. But first check if the timestamp is
14684 		 * valid to use.
14685 		 */
14686 		if ((mp1->b_next != NULL) &&
14687 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14688 			tcp_set_rto(tcp, (int32_t)lbolt -
14689 			    (int32_t)(intptr_t)mp1->b_prev);
14690 		else
14691 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14692 
14693 		/* Remeber the last sequence to be ACKed */
14694 		tcp->tcp_csuna = seg_ack;
14695 		if (tcp->tcp_set_timer == 1) {
14696 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14697 			tcp->tcp_set_timer = 0;
14698 		}
14699 	} else {
14700 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14701 	}
14702 
14703 	/* Eat acknowledged bytes off the xmit queue. */
14704 	for (;;) {
14705 		mblk_t	*mp2;
14706 		uchar_t	*wptr;
14707 
14708 		wptr = mp1->b_wptr;
14709 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14710 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14711 		if (bytes_acked < 0) {
14712 			mp1->b_rptr = wptr + bytes_acked;
14713 			/*
14714 			 * Set a new timestamp if all the bytes timed by the
14715 			 * old timestamp have been ack'ed.
14716 			 */
14717 			if (SEQ_GT(seg_ack,
14718 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14719 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14720 				mp1->b_next = NULL;
14721 			}
14722 			break;
14723 		}
14724 		mp1->b_next = NULL;
14725 		mp1->b_prev = NULL;
14726 		mp2 = mp1;
14727 		mp1 = mp1->b_cont;
14728 
14729 		/*
14730 		 * This notification is required for some zero-copy
14731 		 * clients to maintain a copy semantic. After the data
14732 		 * is ack'ed, client is safe to modify or reuse the buffer.
14733 		 */
14734 		if (tcp->tcp_snd_zcopy_aware &&
14735 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14736 			tcp_zcopy_notify(tcp);
14737 		freeb(mp2);
14738 		if (bytes_acked == 0) {
14739 			if (mp1 == NULL) {
14740 				/* Everything is ack'ed, clear the tail. */
14741 				tcp->tcp_xmit_tail = NULL;
14742 				/*
14743 				 * Cancel the timer unless we are still
14744 				 * waiting for an ACK for the FIN packet.
14745 				 */
14746 				if (tcp->tcp_timer_tid != 0 &&
14747 				    tcp->tcp_snxt == tcp->tcp_suna) {
14748 					(void) TCP_TIMER_CANCEL(tcp,
14749 					    tcp->tcp_timer_tid);
14750 					tcp->tcp_timer_tid = 0;
14751 				}
14752 				goto pre_swnd_update;
14753 			}
14754 			if (mp2 != tcp->tcp_xmit_tail)
14755 				break;
14756 			tcp->tcp_xmit_tail = mp1;
14757 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14758 			    (uintptr_t)INT_MAX);
14759 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14760 			    mp1->b_rptr);
14761 			break;
14762 		}
14763 		if (mp1 == NULL) {
14764 			/*
14765 			 * More was acked but there is nothing more
14766 			 * outstanding.  This means that the FIN was
14767 			 * just acked or that we're talking to a clown.
14768 			 */
14769 fin_acked:
14770 			ASSERT(tcp->tcp_fin_sent);
14771 			tcp->tcp_xmit_tail = NULL;
14772 			if (tcp->tcp_fin_sent) {
14773 				/* FIN was acked - making progress */
14774 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14775 				    !tcp->tcp_fin_acked)
14776 					tcp->tcp_ip_forward_progress = B_TRUE;
14777 				tcp->tcp_fin_acked = B_TRUE;
14778 				if (tcp->tcp_linger_tid != 0 &&
14779 				    TCP_TIMER_CANCEL(tcp,
14780 				    tcp->tcp_linger_tid) >= 0) {
14781 					tcp_stop_lingering(tcp);
14782 					freemsg(mp);
14783 					mp = NULL;
14784 				}
14785 			} else {
14786 				/*
14787 				 * We should never get here because
14788 				 * we have already checked that the
14789 				 * number of bytes ack'ed should be
14790 				 * smaller than or equal to what we
14791 				 * have sent so far (it is the
14792 				 * acceptability check of the ACK).
14793 				 * We can only get here if the send
14794 				 * queue is corrupted.
14795 				 *
14796 				 * Terminate the connection and
14797 				 * panic the system.  It is better
14798 				 * for us to panic instead of
14799 				 * continuing to avoid other disaster.
14800 				 */
14801 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14802 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14803 				panic("Memory corruption "
14804 				    "detected for connection %s.",
14805 				    tcp_display(tcp, NULL,
14806 				    DISP_ADDR_AND_PORT));
14807 				/*NOTREACHED*/
14808 			}
14809 			goto pre_swnd_update;
14810 		}
14811 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14812 	}
14813 	if (tcp->tcp_unsent) {
14814 		flags |= TH_XMIT_NEEDED;
14815 	}
14816 pre_swnd_update:
14817 	tcp->tcp_xmit_head = mp1;
14818 swnd_update:
14819 	/*
14820 	 * The following check is different from most other implementations.
14821 	 * For bi-directional transfer, when segments are dropped, the
14822 	 * "normal" check will not accept a window update in those
14823 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14824 	 * segments which are outside receiver's window.  As TCP accepts
14825 	 * the ack in those retransmitted segments, if the window update in
14826 	 * the same segment is not accepted, TCP will incorrectly calculates
14827 	 * that it can send more segments.  This can create a deadlock
14828 	 * with the receiver if its window becomes zero.
14829 	 */
14830 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14831 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14832 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14833 		/*
14834 		 * The criteria for update is:
14835 		 *
14836 		 * 1. the segment acknowledges some data.  Or
14837 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14838 		 * 3. the segment is not old and the advertised window is
14839 		 * larger than the previous advertised window.
14840 		 */
14841 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14842 			flags |= TH_XMIT_NEEDED;
14843 		tcp->tcp_swnd = new_swnd;
14844 		if (new_swnd > tcp->tcp_max_swnd)
14845 			tcp->tcp_max_swnd = new_swnd;
14846 		tcp->tcp_swl1 = seg_seq;
14847 		tcp->tcp_swl2 = seg_ack;
14848 	}
14849 est:
14850 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14851 
14852 		switch (tcp->tcp_state) {
14853 		case TCPS_FIN_WAIT_1:
14854 			if (tcp->tcp_fin_acked) {
14855 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14856 				/*
14857 				 * We implement the non-standard BSD/SunOS
14858 				 * FIN_WAIT_2 flushing algorithm.
14859 				 * If there is no user attached to this
14860 				 * TCP endpoint, then this TCP struct
14861 				 * could hang around forever in FIN_WAIT_2
14862 				 * state if the peer forgets to send us
14863 				 * a FIN.  To prevent this, we wait only
14864 				 * 2*MSL (a convenient time value) for
14865 				 * the FIN to arrive.  If it doesn't show up,
14866 				 * we flush the TCP endpoint.  This algorithm,
14867 				 * though a violation of RFC-793, has worked
14868 				 * for over 10 years in BSD systems.
14869 				 * Note: SunOS 4.x waits 675 seconds before
14870 				 * flushing the FIN_WAIT_2 connection.
14871 				 */
14872 				TCP_TIMER_RESTART(tcp,
14873 				    tcps->tcps_fin_wait_2_flush_interval);
14874 			}
14875 			break;
14876 		case TCPS_FIN_WAIT_2:
14877 			break;	/* Shutdown hook? */
14878 		case TCPS_LAST_ACK:
14879 			freemsg(mp);
14880 			if (tcp->tcp_fin_acked) {
14881 				(void) tcp_clean_death(tcp, 0, 19);
14882 				return;
14883 			}
14884 			goto xmit_check;
14885 		case TCPS_CLOSING:
14886 			if (tcp->tcp_fin_acked) {
14887 				tcp->tcp_state = TCPS_TIME_WAIT;
14888 				/*
14889 				 * Unconditionally clear the exclusive binding
14890 				 * bit so this TIME-WAIT connection won't
14891 				 * interfere with new ones.
14892 				 */
14893 				tcp->tcp_exclbind = 0;
14894 				if (!TCP_IS_DETACHED(tcp)) {
14895 					TCP_TIMER_RESTART(tcp,
14896 					    tcps->tcps_time_wait_interval);
14897 				} else {
14898 					tcp_time_wait_append(tcp);
14899 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14900 				}
14901 			}
14902 			/*FALLTHRU*/
14903 		case TCPS_CLOSE_WAIT:
14904 			freemsg(mp);
14905 			goto xmit_check;
14906 		default:
14907 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14908 			break;
14909 		}
14910 	}
14911 	if (flags & TH_FIN) {
14912 		/* Make sure we ack the fin */
14913 		flags |= TH_ACK_NEEDED;
14914 		if (!tcp->tcp_fin_rcvd) {
14915 			tcp->tcp_fin_rcvd = B_TRUE;
14916 			tcp->tcp_rnxt++;
14917 			tcph = tcp->tcp_tcph;
14918 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14919 
14920 			/*
14921 			 * Generate the ordrel_ind at the end unless we
14922 			 * are an eager guy.
14923 			 * In the eager case tcp_rsrv will do this when run
14924 			 * after tcp_accept is done.
14925 			 */
14926 			if (tcp->tcp_listener == NULL &&
14927 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14928 				flags |= TH_ORDREL_NEEDED;
14929 			switch (tcp->tcp_state) {
14930 			case TCPS_SYN_RCVD:
14931 			case TCPS_ESTABLISHED:
14932 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14933 				/* Keepalive? */
14934 				break;
14935 			case TCPS_FIN_WAIT_1:
14936 				if (!tcp->tcp_fin_acked) {
14937 					tcp->tcp_state = TCPS_CLOSING;
14938 					break;
14939 				}
14940 				/* FALLTHRU */
14941 			case TCPS_FIN_WAIT_2:
14942 				tcp->tcp_state = TCPS_TIME_WAIT;
14943 				/*
14944 				 * Unconditionally clear the exclusive binding
14945 				 * bit so this TIME-WAIT connection won't
14946 				 * interfere with new ones.
14947 				 */
14948 				tcp->tcp_exclbind = 0;
14949 				if (!TCP_IS_DETACHED(tcp)) {
14950 					TCP_TIMER_RESTART(tcp,
14951 					    tcps->tcps_time_wait_interval);
14952 				} else {
14953 					tcp_time_wait_append(tcp);
14954 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14955 				}
14956 				if (seg_len) {
14957 					/*
14958 					 * implies data piggybacked on FIN.
14959 					 * break to handle data.
14960 					 */
14961 					break;
14962 				}
14963 				freemsg(mp);
14964 				goto ack_check;
14965 			}
14966 		}
14967 	}
14968 	if (mp == NULL)
14969 		goto xmit_check;
14970 	if (seg_len == 0) {
14971 		freemsg(mp);
14972 		goto xmit_check;
14973 	}
14974 	if (mp->b_rptr == mp->b_wptr) {
14975 		/*
14976 		 * The header has been consumed, so we remove the
14977 		 * zero-length mblk here.
14978 		 */
14979 		mp1 = mp;
14980 		mp = mp->b_cont;
14981 		freeb(mp1);
14982 	}
14983 update_ack:
14984 	tcph = tcp->tcp_tcph;
14985 	tcp->tcp_rack_cnt++;
14986 	{
14987 		uint32_t cur_max;
14988 
14989 		cur_max = tcp->tcp_rack_cur_max;
14990 		if (tcp->tcp_rack_cnt >= cur_max) {
14991 			/*
14992 			 * We have more unacked data than we should - send
14993 			 * an ACK now.
14994 			 */
14995 			flags |= TH_ACK_NEEDED;
14996 			cur_max++;
14997 			if (cur_max > tcp->tcp_rack_abs_max)
14998 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14999 			else
15000 				tcp->tcp_rack_cur_max = cur_max;
15001 		} else if (TCP_IS_DETACHED(tcp)) {
15002 			/* We don't have an ACK timer for detached TCP. */
15003 			flags |= TH_ACK_NEEDED;
15004 		} else if (seg_len < mss) {
15005 			/*
15006 			 * If we get a segment that is less than an mss, and we
15007 			 * already have unacknowledged data, and the amount
15008 			 * unacknowledged is not a multiple of mss, then we
15009 			 * better generate an ACK now.  Otherwise, this may be
15010 			 * the tail piece of a transaction, and we would rather
15011 			 * wait for the response.
15012 			 */
15013 			uint32_t udif;
15014 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15015 			    (uintptr_t)INT_MAX);
15016 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15017 			if (udif && (udif % mss))
15018 				flags |= TH_ACK_NEEDED;
15019 			else
15020 				flags |= TH_ACK_TIMER_NEEDED;
15021 		} else {
15022 			/* Start delayed ack timer */
15023 			flags |= TH_ACK_TIMER_NEEDED;
15024 		}
15025 	}
15026 	tcp->tcp_rnxt += seg_len;
15027 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15028 
15029 	if (mp == NULL)
15030 		goto xmit_check;
15031 
15032 	/* Update SACK list */
15033 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15034 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15035 		    &(tcp->tcp_num_sack_blk));
15036 	}
15037 
15038 	if (tcp->tcp_urp_mp) {
15039 		tcp->tcp_urp_mp->b_cont = mp;
15040 		mp = tcp->tcp_urp_mp;
15041 		tcp->tcp_urp_mp = NULL;
15042 		/* Ready for a new signal. */
15043 		tcp->tcp_urp_last_valid = B_FALSE;
15044 #ifdef DEBUG
15045 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15046 		    "tcp_rput: sending exdata_ind %s",
15047 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15048 #endif /* DEBUG */
15049 	}
15050 
15051 	/*
15052 	 * Check for ancillary data changes compared to last segment.
15053 	 */
15054 	if (tcp->tcp_ipv6_recvancillary != 0) {
15055 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15056 		ASSERT(mp != NULL);
15057 	}
15058 
15059 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15060 		/*
15061 		 * Side queue inbound data until the accept happens.
15062 		 * tcp_accept/tcp_rput drains this when the accept happens.
15063 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15064 		 * T_EXDATA_IND) it is queued on b_next.
15065 		 * XXX Make urgent data use this. Requires:
15066 		 *	Removing tcp_listener check for TH_URG
15067 		 *	Making M_PCPROTO and MARK messages skip the eager case
15068 		 */
15069 
15070 		if (tcp->tcp_kssl_pending) {
15071 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15072 			    mblk_t *, mp);
15073 			tcp_kssl_input(tcp, mp);
15074 		} else {
15075 			tcp_rcv_enqueue(tcp, mp, seg_len);
15076 		}
15077 	} else {
15078 		sodirect_t	*sodp = tcp->tcp_sodirect;
15079 
15080 		/*
15081 		 * If an sodirect connection and an enabled sodirect_t then
15082 		 * sodp will be set to point to the tcp_t/sonode_t shared
15083 		 * sodirect_t and the sodirect_t's lock will be held.
15084 		 */
15085 		if (sodp != NULL) {
15086 			mutex_enter(sodp->sod_lockp);
15087 			if (!(sodp->sod_state & SOD_ENABLED) ||
15088 			    (tcp->tcp_kssl_ctx != NULL &&
15089 			    DB_TYPE(mp) == M_DATA)) {
15090 				mutex_exit(sodp->sod_lockp);
15091 				sodp = NULL;
15092 			} else {
15093 				mutex_exit(sodp->sod_lockp);
15094 			}
15095 		}
15096 		if (mp->b_datap->db_type != M_DATA ||
15097 		    (flags & TH_MARKNEXT_NEEDED)) {
15098 			if (IPCL_IS_NONSTR(connp)) {
15099 				int error;
15100 
15101 				if ((*connp->conn_upcalls->su_recv)
15102 				    (connp->conn_upper_handle, mp,
15103 				    seg_len, 0, &error, NULL) <= 0) {
15104 					/*
15105 					 * We should never be in middle of a
15106 					 * fallback, the squeue guarantees that.
15107 					 */
15108 					ASSERT(error != EOPNOTSUPP);
15109 					if (error == ENOSPC)
15110 						tcp->tcp_rwnd -= seg_len;
15111 				}
15112 			} else if (sodp != NULL) {
15113 				mutex_enter(sodp->sod_lockp);
15114 				SOD_UIOAFINI(sodp);
15115 				if (!SOD_QEMPTY(sodp) &&
15116 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15117 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15118 					/* sod_wakeup() did the mutex_exit() */
15119 				} else {
15120 					mutex_exit(sodp->sod_lockp);
15121 				}
15122 			} else if (tcp->tcp_rcv_list != NULL) {
15123 				flags |= tcp_rcv_drain(tcp);
15124 			}
15125 			ASSERT(tcp->tcp_rcv_list == NULL ||
15126 			    tcp->tcp_fused_sigurg);
15127 
15128 			if (flags & TH_MARKNEXT_NEEDED) {
15129 #ifdef DEBUG
15130 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15131 				    "tcp_rput: sending MSGMARKNEXT %s",
15132 				    tcp_display(tcp, NULL,
15133 				    DISP_PORT_ONLY));
15134 #endif /* DEBUG */
15135 				mp->b_flag |= MSGMARKNEXT;
15136 				flags &= ~TH_MARKNEXT_NEEDED;
15137 			}
15138 
15139 			/* Does this need SSL processing first? */
15140 			if ((tcp->tcp_kssl_ctx != NULL) &&
15141 			    (DB_TYPE(mp) == M_DATA)) {
15142 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15143 				    mblk_t *, mp);
15144 				tcp_kssl_input(tcp, mp);
15145 			} else if (!IPCL_IS_NONSTR(connp)) {
15146 				/* Already handled non-STREAMS case. */
15147 				putnext(tcp->tcp_rq, mp);
15148 				if (!canputnext(tcp->tcp_rq))
15149 					tcp->tcp_rwnd -= seg_len;
15150 			}
15151 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15152 		    (DB_TYPE(mp) == M_DATA)) {
15153 			/* Does this need SSL processing first? */
15154 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
15155 			tcp_kssl_input(tcp, mp);
15156 		} else if (IPCL_IS_NONSTR(connp)) {
15157 			/* Non-STREAMS socket */
15158 			boolean_t push = flags & (TH_PUSH|TH_FIN);
15159 			int	error;
15160 
15161 			if ((*connp->conn_upcalls->su_recv)(
15162 			    connp->conn_upper_handle,
15163 			    mp, seg_len, 0, &error, &push) <= 0) {
15164 				/*
15165 				 * We should never be in middle of a
15166 				 * fallback, the squeue guarantees that.
15167 				 */
15168 				ASSERT(error != EOPNOTSUPP);
15169 				if (error == ENOSPC)
15170 					tcp->tcp_rwnd -= seg_len;
15171 			} else if (push) {
15172 				/*
15173 				 * PUSH bit set and sockfs is not
15174 				 * flow controlled
15175 				 */
15176 				flags |= tcp_rwnd_reopen(tcp);
15177 			}
15178 		} else if (sodp != NULL) {
15179 			/*
15180 			 * Sodirect so all mblk_t's are queued on the
15181 			 * socket directly, check for wakeup of blocked
15182 			 * reader (if any), and last if flow-controled.
15183 			 */
15184 			mutex_enter(sodp->sod_lockp);
15185 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15186 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15187 			    (flags & (TH_PUSH|TH_FIN))) {
15188 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15189 				/* sod_wakeup() did the mutex_exit() */
15190 			} else {
15191 				if (SOD_QFULL(sodp)) {
15192 					/* Q is full, need backenable */
15193 					SOD_QSETBE(sodp);
15194 				}
15195 				mutex_exit(sodp->sod_lockp);
15196 			}
15197 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15198 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
15199 			if (tcp->tcp_rcv_list != NULL) {
15200 				/*
15201 				 * Enqueue the new segment first and then
15202 				 * call tcp_rcv_drain() to send all data
15203 				 * up.  The other way to do this is to
15204 				 * send all queued data up and then call
15205 				 * putnext() to send the new segment up.
15206 				 * This way can remove the else part later
15207 				 * on.
15208 				 *
15209 				 * We don't do this to avoid one more call to
15210 				 * canputnext() as tcp_rcv_drain() needs to
15211 				 * call canputnext().
15212 				 */
15213 				tcp_rcv_enqueue(tcp, mp, seg_len);
15214 				flags |= tcp_rcv_drain(tcp);
15215 			} else {
15216 				putnext(tcp->tcp_rq, mp);
15217 				if (!canputnext(tcp->tcp_rq))
15218 					tcp->tcp_rwnd -= seg_len;
15219 			}
15220 		} else {
15221 			/*
15222 			 * Enqueue all packets when processing an mblk
15223 			 * from the co queue and also enqueue normal packets.
15224 			 * For packets which belong to SSL stream do SSL
15225 			 * processing first.
15226 			 */
15227 			tcp_rcv_enqueue(tcp, mp, seg_len);
15228 		}
15229 		/*
15230 		 * Make sure the timer is running if we have data waiting
15231 		 * for a push bit. This provides resiliency against
15232 		 * implementations that do not correctly generate push bits.
15233 		 *
15234 		 * Note, for sodirect if Q isn't empty and there's not a
15235 		 * pending wakeup then we need a timer. Also note that sodp
15236 		 * is assumed to be still valid after exit()ing the sod_lockp
15237 		 * above and while the SOD state can change it can only change
15238 		 * such that the Q is empty now even though data was added
15239 		 * above.
15240 		 */
15241 		if (!IPCL_IS_NONSTR(connp) &&
15242 		    ((sodp != NULL && !SOD_QEMPTY(sodp) &&
15243 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15244 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15245 		    tcp->tcp_push_tid == 0) {
15246 			/*
15247 			 * The connection may be closed at this point, so don't
15248 			 * do anything for a detached tcp.
15249 			 */
15250 			if (!TCP_IS_DETACHED(tcp))
15251 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15252 				    tcp_push_timer,
15253 				    MSEC_TO_TICK(
15254 				    tcps->tcps_push_timer_interval));
15255 		}
15256 	}
15257 
15258 xmit_check:
15259 	/* Is there anything left to do? */
15260 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15261 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15262 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15263 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15264 		goto done;
15265 
15266 	/* Any transmit work to do and a non-zero window? */
15267 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15268 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15269 		if (flags & TH_REXMIT_NEEDED) {
15270 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15271 
15272 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15273 			if (snd_size > mss)
15274 				snd_size = mss;
15275 			if (snd_size > tcp->tcp_swnd)
15276 				snd_size = tcp->tcp_swnd;
15277 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15278 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15279 			    B_TRUE);
15280 
15281 			if (mp1 != NULL) {
15282 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15283 				tcp->tcp_csuna = tcp->tcp_snxt;
15284 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15285 				UPDATE_MIB(&tcps->tcps_mib,
15286 				    tcpRetransBytes, snd_size);
15287 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15288 			}
15289 		}
15290 		if (flags & TH_NEED_SACK_REXMIT) {
15291 			tcp_sack_rxmit(tcp, &flags);
15292 		}
15293 		/*
15294 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15295 		 * out new segment.  Note that tcp_rexmit should not be
15296 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15297 		 */
15298 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15299 			if (!tcp->tcp_rexmit) {
15300 				tcp_wput_data(tcp, NULL, B_FALSE);
15301 			} else {
15302 				tcp_ss_rexmit(tcp);
15303 			}
15304 		}
15305 		/*
15306 		 * Adjust tcp_cwnd back to normal value after sending
15307 		 * new data segments.
15308 		 */
15309 		if (flags & TH_LIMIT_XMIT) {
15310 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15311 			/*
15312 			 * This will restart the timer.  Restarting the
15313 			 * timer is used to avoid a timeout before the
15314 			 * limited transmitted segment's ACK gets back.
15315 			 */
15316 			if (tcp->tcp_xmit_head != NULL)
15317 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15318 		}
15319 
15320 		/* Anything more to do? */
15321 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15322 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15323 			goto done;
15324 	}
15325 ack_check:
15326 	if (flags & TH_SEND_URP_MARK) {
15327 		ASSERT(tcp->tcp_urp_mark_mp);
15328 		ASSERT(!IPCL_IS_NONSTR(connp));
15329 		/*
15330 		 * Send up any queued data and then send the mark message
15331 		 */
15332 		sodirect_t *sodp;
15333 
15334 		SOD_PTR_ENTER(tcp, sodp);
15335 
15336 		mp1 = tcp->tcp_urp_mark_mp;
15337 		tcp->tcp_urp_mark_mp = NULL;
15338 		if (sodp != NULL) {
15339 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15340 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15341 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15342 			}
15343 			ASSERT(tcp->tcp_rcv_list == NULL);
15344 
15345 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15346 			/* sod_wakeup() does the mutex_exit() */
15347 		} else if (tcp->tcp_rcv_list != NULL) {
15348 			flags |= tcp_rcv_drain(tcp);
15349 
15350 			ASSERT(tcp->tcp_rcv_list == NULL ||
15351 			    tcp->tcp_fused_sigurg);
15352 
15353 		}
15354 		putnext(tcp->tcp_rq, mp1);
15355 #ifdef DEBUG
15356 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15357 		    "tcp_rput: sending zero-length %s %s",
15358 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15359 		    "MSGNOTMARKNEXT"),
15360 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15361 #endif /* DEBUG */
15362 		flags &= ~TH_SEND_URP_MARK;
15363 	}
15364 	if (flags & TH_ACK_NEEDED) {
15365 		/*
15366 		 * Time to send an ack for some reason.
15367 		 */
15368 		mp1 = tcp_ack_mp(tcp);
15369 
15370 		if (mp1 != NULL) {
15371 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15372 			BUMP_LOCAL(tcp->tcp_obsegs);
15373 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15374 		}
15375 		if (tcp->tcp_ack_tid != 0) {
15376 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15377 			tcp->tcp_ack_tid = 0;
15378 		}
15379 	}
15380 	if (flags & TH_ACK_TIMER_NEEDED) {
15381 		/*
15382 		 * Arrange for deferred ACK or push wait timeout.
15383 		 * Start timer if it is not already running.
15384 		 */
15385 		if (tcp->tcp_ack_tid == 0) {
15386 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15387 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15388 			    (clock_t)tcps->tcps_local_dack_interval :
15389 			    (clock_t)tcps->tcps_deferred_ack_interval));
15390 		}
15391 	}
15392 	if (flags & TH_ORDREL_NEEDED) {
15393 		/*
15394 		 * Send up the ordrel_ind unless we are an eager guy.
15395 		 * In the eager case tcp_rsrv will do this when run
15396 		 * after tcp_accept is done.
15397 		 */
15398 		sodirect_t *sodp;
15399 
15400 		ASSERT(tcp->tcp_listener == NULL);
15401 
15402 		if (IPCL_IS_NONSTR(connp)) {
15403 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15404 			tcp->tcp_ordrel_done = B_TRUE;
15405 			(*connp->conn_upcalls->su_opctl)
15406 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15407 			goto done;
15408 		}
15409 
15410 		SOD_PTR_ENTER(tcp, sodp);
15411 		if (sodp != NULL) {
15412 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15413 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15414 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15415 			}
15416 			/* No more sodirect */
15417 			tcp->tcp_sodirect = NULL;
15418 			if (!SOD_QEMPTY(sodp)) {
15419 				/* Mblk(s) to process, notify */
15420 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15421 				/* sod_wakeup() does the mutex_exit() */
15422 			} else {
15423 				/* Nothing to process */
15424 				mutex_exit(sodp->sod_lockp);
15425 			}
15426 		} else if (tcp->tcp_rcv_list != NULL) {
15427 			/*
15428 			 * Push any mblk(s) enqueued from co processing.
15429 			 */
15430 			flags |= tcp_rcv_drain(tcp);
15431 
15432 			ASSERT(tcp->tcp_rcv_list == NULL ||
15433 			    tcp->tcp_fused_sigurg);
15434 		}
15435 
15436 		mp1 = tcp->tcp_ordrel_mp;
15437 		tcp->tcp_ordrel_mp = NULL;
15438 		tcp->tcp_ordrel_done = B_TRUE;
15439 		putnext(tcp->tcp_rq, mp1);
15440 	}
15441 done:
15442 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15443 }
15444 
15445 /*
15446  * This function does PAWS protection check. Returns B_TRUE if the
15447  * segment passes the PAWS test, else returns B_FALSE.
15448  */
15449 boolean_t
15450 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15451 {
15452 	uint8_t	flags;
15453 	int	options;
15454 	uint8_t *up;
15455 
15456 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15457 	/*
15458 	 * If timestamp option is aligned nicely, get values inline,
15459 	 * otherwise call general routine to parse.  Only do that
15460 	 * if timestamp is the only option.
15461 	 */
15462 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15463 	    TCPOPT_REAL_TS_LEN &&
15464 	    OK_32PTR((up = ((uint8_t *)tcph) +
15465 	    TCP_MIN_HEADER_LENGTH)) &&
15466 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15467 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15468 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15469 
15470 		options = TCP_OPT_TSTAMP_PRESENT;
15471 	} else {
15472 		if (tcp->tcp_snd_sack_ok) {
15473 			tcpoptp->tcp = tcp;
15474 		} else {
15475 			tcpoptp->tcp = NULL;
15476 		}
15477 		options = tcp_parse_options(tcph, tcpoptp);
15478 	}
15479 
15480 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15481 		/*
15482 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15483 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15484 		 */
15485 		if ((flags & TH_RST) == 0 &&
15486 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15487 		    tcp->tcp_ts_recent)) {
15488 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15489 			    PAWS_TIMEOUT)) {
15490 				/* This segment is not acceptable. */
15491 				return (B_FALSE);
15492 			} else {
15493 				/*
15494 				 * Connection has been idle for
15495 				 * too long.  Reset the timestamp
15496 				 * and assume the segment is valid.
15497 				 */
15498 				tcp->tcp_ts_recent =
15499 				    tcpoptp->tcp_opt_ts_val;
15500 			}
15501 		}
15502 	} else {
15503 		/*
15504 		 * If we don't get a timestamp on every packet, we
15505 		 * figure we can't really trust 'em, so we stop sending
15506 		 * and parsing them.
15507 		 */
15508 		tcp->tcp_snd_ts_ok = B_FALSE;
15509 
15510 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15511 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15512 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15513 		/*
15514 		 * Adjust the tcp_mss accordingly. We also need to
15515 		 * adjust tcp_cwnd here in accordance with the new mss.
15516 		 * But we avoid doing a slow start here so as to not
15517 		 * to lose on the transfer rate built up so far.
15518 		 */
15519 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15520 		if (tcp->tcp_snd_sack_ok) {
15521 			ASSERT(tcp->tcp_sack_info != NULL);
15522 			tcp->tcp_max_sack_blk = 4;
15523 		}
15524 	}
15525 	return (B_TRUE);
15526 }
15527 
15528 /*
15529  * Attach ancillary data to a received TCP segments for the
15530  * ancillary pieces requested by the application that are
15531  * different than they were in the previous data segment.
15532  *
15533  * Save the "current" values once memory allocation is ok so that
15534  * when memory allocation fails we can just wait for the next data segment.
15535  */
15536 static mblk_t *
15537 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15538 {
15539 	struct T_optdata_ind *todi;
15540 	int optlen;
15541 	uchar_t *optptr;
15542 	struct T_opthdr *toh;
15543 	uint_t addflag;	/* Which pieces to add */
15544 	mblk_t *mp1;
15545 
15546 	optlen = 0;
15547 	addflag = 0;
15548 	/* If app asked for pktinfo and the index has changed ... */
15549 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15550 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15551 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15552 		optlen += sizeof (struct T_opthdr) +
15553 		    sizeof (struct in6_pktinfo);
15554 		addflag |= TCP_IPV6_RECVPKTINFO;
15555 	}
15556 	/* If app asked for hoplimit and it has changed ... */
15557 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15558 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15559 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15560 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15561 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15562 	}
15563 	/* If app asked for tclass and it has changed ... */
15564 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15565 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15566 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15567 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15568 		addflag |= TCP_IPV6_RECVTCLASS;
15569 	}
15570 	/*
15571 	 * If app asked for hopbyhop headers and it has changed ...
15572 	 * For security labels, note that (1) security labels can't change on
15573 	 * a connected socket at all, (2) we're connected to at most one peer,
15574 	 * (3) if anything changes, then it must be some other extra option.
15575 	 */
15576 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15577 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15578 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15579 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15580 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15581 		    tcp->tcp_label_len;
15582 		addflag |= TCP_IPV6_RECVHOPOPTS;
15583 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15584 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15585 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15586 			return (mp);
15587 	}
15588 	/* If app asked for dst headers before routing headers ... */
15589 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15590 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15591 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15592 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15593 		optlen += sizeof (struct T_opthdr) +
15594 		    ipp->ipp_rtdstoptslen;
15595 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15596 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15597 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15598 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15599 			return (mp);
15600 	}
15601 	/* If app asked for routing headers and it has changed ... */
15602 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15603 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15604 	    (ipp->ipp_fields & IPPF_RTHDR),
15605 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15606 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15607 		addflag |= TCP_IPV6_RECVRTHDR;
15608 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15609 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15610 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15611 			return (mp);
15612 	}
15613 	/* If app asked for dest headers and it has changed ... */
15614 	if ((tcp->tcp_ipv6_recvancillary &
15615 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15616 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15617 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15618 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15619 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15620 		addflag |= TCP_IPV6_RECVDSTOPTS;
15621 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15622 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15623 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15624 			return (mp);
15625 	}
15626 
15627 	if (optlen == 0) {
15628 		/* Nothing to add */
15629 		return (mp);
15630 	}
15631 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15632 	if (mp1 == NULL) {
15633 		/*
15634 		 * Defer sending ancillary data until the next TCP segment
15635 		 * arrives.
15636 		 */
15637 		return (mp);
15638 	}
15639 	mp1->b_cont = mp;
15640 	mp = mp1;
15641 	mp->b_wptr += sizeof (*todi) + optlen;
15642 	mp->b_datap->db_type = M_PROTO;
15643 	todi = (struct T_optdata_ind *)mp->b_rptr;
15644 	todi->PRIM_type = T_OPTDATA_IND;
15645 	todi->DATA_flag = 1;	/* MORE data */
15646 	todi->OPT_length = optlen;
15647 	todi->OPT_offset = sizeof (*todi);
15648 	optptr = (uchar_t *)&todi[1];
15649 	/*
15650 	 * If app asked for pktinfo and the index has changed ...
15651 	 * Note that the local address never changes for the connection.
15652 	 */
15653 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15654 		struct in6_pktinfo *pkti;
15655 
15656 		toh = (struct T_opthdr *)optptr;
15657 		toh->level = IPPROTO_IPV6;
15658 		toh->name = IPV6_PKTINFO;
15659 		toh->len = sizeof (*toh) + sizeof (*pkti);
15660 		toh->status = 0;
15661 		optptr += sizeof (*toh);
15662 		pkti = (struct in6_pktinfo *)optptr;
15663 		if (tcp->tcp_ipversion == IPV6_VERSION)
15664 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15665 		else
15666 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15667 			    &pkti->ipi6_addr);
15668 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15669 		optptr += sizeof (*pkti);
15670 		ASSERT(OK_32PTR(optptr));
15671 		/* Save as "last" value */
15672 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15673 	}
15674 	/* If app asked for hoplimit and it has changed ... */
15675 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15676 		toh = (struct T_opthdr *)optptr;
15677 		toh->level = IPPROTO_IPV6;
15678 		toh->name = IPV6_HOPLIMIT;
15679 		toh->len = sizeof (*toh) + sizeof (uint_t);
15680 		toh->status = 0;
15681 		optptr += sizeof (*toh);
15682 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15683 		optptr += sizeof (uint_t);
15684 		ASSERT(OK_32PTR(optptr));
15685 		/* Save as "last" value */
15686 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15687 	}
15688 	/* If app asked for tclass and it has changed ... */
15689 	if (addflag & TCP_IPV6_RECVTCLASS) {
15690 		toh = (struct T_opthdr *)optptr;
15691 		toh->level = IPPROTO_IPV6;
15692 		toh->name = IPV6_TCLASS;
15693 		toh->len = sizeof (*toh) + sizeof (uint_t);
15694 		toh->status = 0;
15695 		optptr += sizeof (*toh);
15696 		*(uint_t *)optptr = ipp->ipp_tclass;
15697 		optptr += sizeof (uint_t);
15698 		ASSERT(OK_32PTR(optptr));
15699 		/* Save as "last" value */
15700 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15701 	}
15702 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15703 		toh = (struct T_opthdr *)optptr;
15704 		toh->level = IPPROTO_IPV6;
15705 		toh->name = IPV6_HOPOPTS;
15706 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15707 		    tcp->tcp_label_len;
15708 		toh->status = 0;
15709 		optptr += sizeof (*toh);
15710 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15711 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15712 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15713 		ASSERT(OK_32PTR(optptr));
15714 		/* Save as last value */
15715 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15716 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15717 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15718 	}
15719 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15720 		toh = (struct T_opthdr *)optptr;
15721 		toh->level = IPPROTO_IPV6;
15722 		toh->name = IPV6_RTHDRDSTOPTS;
15723 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15724 		toh->status = 0;
15725 		optptr += sizeof (*toh);
15726 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15727 		optptr += ipp->ipp_rtdstoptslen;
15728 		ASSERT(OK_32PTR(optptr));
15729 		/* Save as last value */
15730 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15731 		    &tcp->tcp_rtdstoptslen,
15732 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15733 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15734 	}
15735 	if (addflag & TCP_IPV6_RECVRTHDR) {
15736 		toh = (struct T_opthdr *)optptr;
15737 		toh->level = IPPROTO_IPV6;
15738 		toh->name = IPV6_RTHDR;
15739 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15740 		toh->status = 0;
15741 		optptr += sizeof (*toh);
15742 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15743 		optptr += ipp->ipp_rthdrlen;
15744 		ASSERT(OK_32PTR(optptr));
15745 		/* Save as last value */
15746 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15747 		    (ipp->ipp_fields & IPPF_RTHDR),
15748 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15749 	}
15750 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15751 		toh = (struct T_opthdr *)optptr;
15752 		toh->level = IPPROTO_IPV6;
15753 		toh->name = IPV6_DSTOPTS;
15754 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15755 		toh->status = 0;
15756 		optptr += sizeof (*toh);
15757 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15758 		optptr += ipp->ipp_dstoptslen;
15759 		ASSERT(OK_32PTR(optptr));
15760 		/* Save as last value */
15761 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15762 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15763 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15764 	}
15765 	ASSERT(optptr == mp->b_wptr);
15766 	return (mp);
15767 }
15768 
15769 /*
15770  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15771  * messages.
15772  */
15773 void
15774 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15775 {
15776 	uchar_t	*rptr = mp->b_rptr;
15777 	queue_t	*q = tcp->tcp_rq;
15778 	struct T_error_ack *tea;
15779 
15780 	switch (mp->b_datap->db_type) {
15781 	case M_PROTO:
15782 	case M_PCPROTO:
15783 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15784 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15785 			break;
15786 		tea = (struct T_error_ack *)rptr;
15787 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15788 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15789 		    tea->ERROR_prim != T_BIND_REQ);
15790 		switch (tea->PRIM_type) {
15791 		case T_ERROR_ACK:
15792 			if (tcp->tcp_debug) {
15793 				(void) strlog(TCP_MOD_ID, 0, 1,
15794 				    SL_TRACE|SL_ERROR,
15795 				    "tcp_rput_other: case T_ERROR_ACK, "
15796 				    "ERROR_prim == %d",
15797 				    tea->ERROR_prim);
15798 			}
15799 			switch (tea->ERROR_prim) {
15800 			case T_SVR4_OPTMGMT_REQ:
15801 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15802 					/* T_OPTMGMT_REQ generated by TCP */
15803 					printf("T_SVR4_OPTMGMT_REQ failed "
15804 					    "%d/%d - dropped (cnt %d)\n",
15805 					    tea->TLI_error, tea->UNIX_error,
15806 					    tcp->tcp_drop_opt_ack_cnt);
15807 					freemsg(mp);
15808 					tcp->tcp_drop_opt_ack_cnt--;
15809 					return;
15810 				}
15811 				break;
15812 			}
15813 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15814 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15815 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15816 				    "- dropped (cnt %d)\n",
15817 				    tea->TLI_error, tea->UNIX_error,
15818 				    tcp->tcp_drop_opt_ack_cnt);
15819 				freemsg(mp);
15820 				tcp->tcp_drop_opt_ack_cnt--;
15821 				return;
15822 			}
15823 			break;
15824 		case T_OPTMGMT_ACK:
15825 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15826 				/* T_OPTMGMT_REQ generated by TCP */
15827 				freemsg(mp);
15828 				tcp->tcp_drop_opt_ack_cnt--;
15829 				return;
15830 			}
15831 			break;
15832 		default:
15833 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15834 			break;
15835 		}
15836 		break;
15837 	case M_FLUSH:
15838 		if (*rptr & FLUSHR)
15839 			flushq(q, FLUSHDATA);
15840 		break;
15841 	default:
15842 		/* M_CTL will be directly sent to tcp_icmp_error() */
15843 		ASSERT(DB_TYPE(mp) != M_CTL);
15844 		break;
15845 	}
15846 	/*
15847 	 * Make sure we set this bit before sending the ACK for
15848 	 * bind. Otherwise accept could possibly run and free
15849 	 * this tcp struct.
15850 	 */
15851 	ASSERT(q != NULL);
15852 	putnext(q, mp);
15853 }
15854 
15855 /* ARGSUSED */
15856 static void
15857 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15858 {
15859 	conn_t	*connp = (conn_t *)arg;
15860 	tcp_t	*tcp = connp->conn_tcp;
15861 	queue_t	*q = tcp->tcp_rq;
15862 	uint_t	thwin;
15863 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15864 	sodirect_t	*sodp;
15865 	boolean_t	fc;
15866 
15867 	ASSERT(!IPCL_IS_NONSTR(connp));
15868 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15869 	tcp->tcp_rsrv_mp = mp;
15870 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15871 
15872 	TCP_STAT(tcps, tcp_rsrv_calls);
15873 
15874 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15875 		return;
15876 	}
15877 
15878 	if (tcp->tcp_fused) {
15879 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15880 
15881 		ASSERT(tcp->tcp_fused);
15882 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15883 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15884 		ASSERT(!TCP_IS_DETACHED(tcp));
15885 		ASSERT(tcp->tcp_connp->conn_sqp ==
15886 		    peer_tcp->tcp_connp->conn_sqp);
15887 
15888 		/*
15889 		 * Normally we would not get backenabled in synchronous
15890 		 * streams mode, but in case this happens, we need to plug
15891 		 * synchronous streams during our drain to prevent a race
15892 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15893 		 */
15894 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15895 		if (tcp->tcp_rcv_list != NULL)
15896 			(void) tcp_rcv_drain(tcp);
15897 
15898 		if (peer_tcp > tcp) {
15899 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15900 			mutex_enter(&tcp->tcp_non_sq_lock);
15901 		} else {
15902 			mutex_enter(&tcp->tcp_non_sq_lock);
15903 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15904 		}
15905 
15906 		if (peer_tcp->tcp_flow_stopped &&
15907 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15908 		    peer_tcp->tcp_xmit_lowater)) {
15909 			tcp_clrqfull(peer_tcp);
15910 		}
15911 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15912 		mutex_exit(&tcp->tcp_non_sq_lock);
15913 
15914 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15915 		TCP_STAT(tcps, tcp_fusion_backenabled);
15916 		return;
15917 	}
15918 
15919 	SOD_PTR_ENTER(tcp, sodp);
15920 	if (sodp != NULL) {
15921 		/* An sodirect connection */
15922 		if (SOD_QFULL(sodp)) {
15923 			/* Flow-controlled, need another back-enable */
15924 			fc = B_TRUE;
15925 			SOD_QSETBE(sodp);
15926 		} else {
15927 			/* Not flow-controlled */
15928 			fc = B_FALSE;
15929 		}
15930 		mutex_exit(sodp->sod_lockp);
15931 	} else if (canputnext(q)) {
15932 		/* STREAMS, not flow-controlled */
15933 		fc = B_FALSE;
15934 	} else {
15935 		/* STREAMS, flow-controlled */
15936 		fc = B_TRUE;
15937 	}
15938 	if (!fc) {
15939 		/* Not flow-controlled, open rwnd */
15940 		tcp->tcp_rwnd = q->q_hiwat;
15941 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15942 		    << tcp->tcp_rcv_ws;
15943 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15944 		/*
15945 		 * Send back a window update immediately if TCP is above
15946 		 * ESTABLISHED state and the increase of the rcv window
15947 		 * that the other side knows is at least 1 MSS after flow
15948 		 * control is lifted.
15949 		 */
15950 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15951 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15952 			tcp_xmit_ctl(NULL, tcp,
15953 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15954 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15955 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15956 		}
15957 	}
15958 }
15959 
15960 /*
15961  * The read side service routine is called mostly when we get back-enabled as a
15962  * result of flow control relief.  Since we don't actually queue anything in
15963  * TCP, we have no data to send out of here.  What we do is clear the receive
15964  * window, and send out a window update.
15965  */
15966 static void
15967 tcp_rsrv(queue_t *q)
15968 {
15969 	conn_t		*connp = Q_TO_CONN(q);
15970 	tcp_t		*tcp = connp->conn_tcp;
15971 	mblk_t		*mp;
15972 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15973 
15974 	/* No code does a putq on the read side */
15975 	ASSERT(q->q_first == NULL);
15976 
15977 	/* Nothing to do for the default queue */
15978 	if (q == tcps->tcps_g_q) {
15979 		return;
15980 	}
15981 
15982 	/*
15983 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
15984 	 * been run.  So just return.
15985 	 */
15986 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15987 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
15988 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
15989 		return;
15990 	}
15991 	tcp->tcp_rsrv_mp = NULL;
15992 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15993 
15994 	CONN_INC_REF(connp);
15995 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15996 	    SQ_PROCESS, SQTAG_TCP_RSRV);
15997 }
15998 
15999 /*
16000  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16001  * We do not allow the receive window to shrink.  After setting rwnd,
16002  * set the flow control hiwat of the stream.
16003  *
16004  * This function is called in 2 cases:
16005  *
16006  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16007  *    connection (passive open) and in tcp_rput_data() for active connect.
16008  *    This is called after tcp_mss_set() when the desired MSS value is known.
16009  *    This makes sure that our window size is a mutiple of the other side's
16010  *    MSS.
16011  * 2) Handling SO_RCVBUF option.
16012  *
16013  * It is ASSUMED that the requested size is a multiple of the current MSS.
16014  *
16015  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16016  * user requests so.
16017  */
16018 static int
16019 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16020 {
16021 	uint32_t	mss = tcp->tcp_mss;
16022 	uint32_t	old_max_rwnd;
16023 	uint32_t	max_transmittable_rwnd;
16024 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16025 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16026 
16027 	if (tcp->tcp_fused) {
16028 		size_t sth_hiwat;
16029 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16030 
16031 		ASSERT(peer_tcp != NULL);
16032 		/*
16033 		 * Record the stream head's high water mark for
16034 		 * this endpoint; this is used for flow-control
16035 		 * purposes in tcp_fuse_output().
16036 		 */
16037 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16038 		if (!tcp_detached) {
16039 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16040 			    sth_hiwat);
16041 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
16042 				conn_t *connp = tcp->tcp_connp;
16043 				struct sock_proto_props sopp;
16044 
16045 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
16046 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
16047 
16048 				(*connp->conn_upcalls->su_set_proto_props)
16049 				    (connp->conn_upper_handle, &sopp);
16050 			}
16051 		}
16052 
16053 		/*
16054 		 * In the fusion case, the maxpsz stream head value of
16055 		 * our peer is set according to its send buffer size
16056 		 * and our receive buffer size; since the latter may
16057 		 * have changed we need to update the peer's maxpsz.
16058 		 */
16059 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16060 		return (rwnd);
16061 	}
16062 
16063 	if (tcp_detached) {
16064 		old_max_rwnd = tcp->tcp_rwnd;
16065 	} else {
16066 		old_max_rwnd = tcp->tcp_recv_hiwater;
16067 	}
16068 
16069 	/*
16070 	 * Insist on a receive window that is at least
16071 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16072 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16073 	 * and delayed acknowledgement.
16074 	 */
16075 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16076 
16077 	/*
16078 	 * If window size info has already been exchanged, TCP should not
16079 	 * shrink the window.  Shrinking window is doable if done carefully.
16080 	 * We may add that support later.  But so far there is not a real
16081 	 * need to do that.
16082 	 */
16083 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16084 		/* MSS may have changed, do a round up again. */
16085 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16086 	}
16087 
16088 	/*
16089 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16090 	 * can be applied even before the window scale option is decided.
16091 	 */
16092 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16093 	if (rwnd > max_transmittable_rwnd) {
16094 		rwnd = max_transmittable_rwnd -
16095 		    (max_transmittable_rwnd % mss);
16096 		if (rwnd < mss)
16097 			rwnd = max_transmittable_rwnd;
16098 		/*
16099 		 * If we're over the limit we may have to back down tcp_rwnd.
16100 		 * The increment below won't work for us. So we set all three
16101 		 * here and the increment below will have no effect.
16102 		 */
16103 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16104 	}
16105 	if (tcp->tcp_localnet) {
16106 		tcp->tcp_rack_abs_max =
16107 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16108 	} else {
16109 		/*
16110 		 * For a remote host on a different subnet (through a router),
16111 		 * we ack every other packet to be conforming to RFC1122.
16112 		 * tcp_deferred_acks_max is default to 2.
16113 		 */
16114 		tcp->tcp_rack_abs_max =
16115 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16116 	}
16117 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16118 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16119 	else
16120 		tcp->tcp_rack_cur_max = 0;
16121 	/*
16122 	 * Increment the current rwnd by the amount the maximum grew (we
16123 	 * can not overwrite it since we might be in the middle of a
16124 	 * connection.)
16125 	 */
16126 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16127 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16128 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16129 		tcp->tcp_cwnd_max = rwnd;
16130 
16131 	if (tcp_detached)
16132 		return (rwnd);
16133 	/*
16134 	 * We set the maximum receive window into rq->q_hiwat if it is
16135 	 * a STREAMS socket.
16136 	 * This is not actually used for flow control.
16137 	 */
16138 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
16139 		tcp->tcp_rq->q_hiwat = rwnd;
16140 	tcp->tcp_recv_hiwater = rwnd;
16141 	/*
16142 	 * Set the STREAM head high water mark. This doesn't have to be
16143 	 * here, since we are simply using default values, but we would
16144 	 * prefer to choose these values algorithmically, with a likely
16145 	 * relationship to rwnd.
16146 	 */
16147 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16148 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16149 	return (rwnd);
16150 }
16151 
16152 /*
16153  * Return SNMP stuff in buffer in mpdata.
16154  */
16155 mblk_t *
16156 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16157 {
16158 	mblk_t			*mpdata;
16159 	mblk_t			*mp_conn_ctl = NULL;
16160 	mblk_t			*mp_conn_tail;
16161 	mblk_t			*mp_attr_ctl = NULL;
16162 	mblk_t			*mp_attr_tail;
16163 	mblk_t			*mp6_conn_ctl = NULL;
16164 	mblk_t			*mp6_conn_tail;
16165 	mblk_t			*mp6_attr_ctl = NULL;
16166 	mblk_t			*mp6_attr_tail;
16167 	struct opthdr		*optp;
16168 	mib2_tcpConnEntry_t	tce;
16169 	mib2_tcp6ConnEntry_t	tce6;
16170 	mib2_transportMLPEntry_t mlp;
16171 	connf_t			*connfp;
16172 	int			i;
16173 	boolean_t 		ispriv;
16174 	zoneid_t 		zoneid;
16175 	int			v4_conn_idx;
16176 	int			v6_conn_idx;
16177 	conn_t			*connp = Q_TO_CONN(q);
16178 	tcp_stack_t		*tcps;
16179 	ip_stack_t		*ipst;
16180 	mblk_t			*mp2ctl;
16181 
16182 	/*
16183 	 * make a copy of the original message
16184 	 */
16185 	mp2ctl = copymsg(mpctl);
16186 
16187 	if (mpctl == NULL ||
16188 	    (mpdata = mpctl->b_cont) == NULL ||
16189 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16190 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16191 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16192 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16193 		freemsg(mp_conn_ctl);
16194 		freemsg(mp_attr_ctl);
16195 		freemsg(mp6_conn_ctl);
16196 		freemsg(mp6_attr_ctl);
16197 		freemsg(mpctl);
16198 		freemsg(mp2ctl);
16199 		return (NULL);
16200 	}
16201 
16202 	ipst = connp->conn_netstack->netstack_ip;
16203 	tcps = connp->conn_netstack->netstack_tcp;
16204 
16205 	/* build table of connections -- need count in fixed part */
16206 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16207 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16208 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16209 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16210 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16211 
16212 	ispriv =
16213 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16214 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16215 
16216 	v4_conn_idx = v6_conn_idx = 0;
16217 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16218 
16219 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16220 		ipst = tcps->tcps_netstack->netstack_ip;
16221 
16222 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16223 
16224 		connp = NULL;
16225 
16226 		while ((connp =
16227 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16228 			tcp_t *tcp;
16229 			boolean_t needattr;
16230 
16231 			if (connp->conn_zoneid != zoneid)
16232 				continue;	/* not in this zone */
16233 
16234 			tcp = connp->conn_tcp;
16235 			UPDATE_MIB(&tcps->tcps_mib,
16236 			    tcpHCInSegs, tcp->tcp_ibsegs);
16237 			tcp->tcp_ibsegs = 0;
16238 			UPDATE_MIB(&tcps->tcps_mib,
16239 			    tcpHCOutSegs, tcp->tcp_obsegs);
16240 			tcp->tcp_obsegs = 0;
16241 
16242 			tce6.tcp6ConnState = tce.tcpConnState =
16243 			    tcp_snmp_state(tcp);
16244 			if (tce.tcpConnState == MIB2_TCP_established ||
16245 			    tce.tcpConnState == MIB2_TCP_closeWait)
16246 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16247 
16248 			needattr = B_FALSE;
16249 			bzero(&mlp, sizeof (mlp));
16250 			if (connp->conn_mlp_type != mlptSingle) {
16251 				if (connp->conn_mlp_type == mlptShared ||
16252 				    connp->conn_mlp_type == mlptBoth)
16253 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16254 				if (connp->conn_mlp_type == mlptPrivate ||
16255 				    connp->conn_mlp_type == mlptBoth)
16256 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16257 				needattr = B_TRUE;
16258 			}
16259 			if (connp->conn_peercred != NULL) {
16260 				ts_label_t *tsl;
16261 
16262 				tsl = crgetlabel(connp->conn_peercred);
16263 				mlp.tme_doi = label2doi(tsl);
16264 				mlp.tme_label = *label2bslabel(tsl);
16265 				needattr = B_TRUE;
16266 			}
16267 
16268 			/* Create a message to report on IPv6 entries */
16269 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16270 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16271 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16272 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16273 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16274 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16275 			/* Don't want just anybody seeing these... */
16276 			if (ispriv) {
16277 				tce6.tcp6ConnEntryInfo.ce_snxt =
16278 				    tcp->tcp_snxt;
16279 				tce6.tcp6ConnEntryInfo.ce_suna =
16280 				    tcp->tcp_suna;
16281 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16282 				    tcp->tcp_rnxt;
16283 				tce6.tcp6ConnEntryInfo.ce_rack =
16284 				    tcp->tcp_rack;
16285 			} else {
16286 				/*
16287 				 * Netstat, unfortunately, uses this to
16288 				 * get send/receive queue sizes.  How to fix?
16289 				 * Why not compute the difference only?
16290 				 */
16291 				tce6.tcp6ConnEntryInfo.ce_snxt =
16292 				    tcp->tcp_snxt - tcp->tcp_suna;
16293 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16294 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16295 				    tcp->tcp_rnxt - tcp->tcp_rack;
16296 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16297 			}
16298 
16299 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16300 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16301 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16302 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16303 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16304 
16305 			tce6.tcp6ConnCreationProcess =
16306 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16307 			    tcp->tcp_cpid;
16308 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16309 
16310 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16311 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16312 
16313 			mlp.tme_connidx = v6_conn_idx++;
16314 			if (needattr)
16315 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16316 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16317 			}
16318 			/*
16319 			 * Create an IPv4 table entry for IPv4 entries and also
16320 			 * for IPv6 entries which are bound to in6addr_any
16321 			 * but don't have IPV6_V6ONLY set.
16322 			 * (i.e. anything an IPv4 peer could connect to)
16323 			 */
16324 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16325 			    (tcp->tcp_state <= TCPS_LISTEN &&
16326 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16327 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16328 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16329 					tce.tcpConnRemAddress = INADDR_ANY;
16330 					tce.tcpConnLocalAddress = INADDR_ANY;
16331 				} else {
16332 					tce.tcpConnRemAddress =
16333 					    tcp->tcp_remote;
16334 					tce.tcpConnLocalAddress =
16335 					    tcp->tcp_ip_src;
16336 				}
16337 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16338 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16339 				/* Don't want just anybody seeing these... */
16340 				if (ispriv) {
16341 					tce.tcpConnEntryInfo.ce_snxt =
16342 					    tcp->tcp_snxt;
16343 					tce.tcpConnEntryInfo.ce_suna =
16344 					    tcp->tcp_suna;
16345 					tce.tcpConnEntryInfo.ce_rnxt =
16346 					    tcp->tcp_rnxt;
16347 					tce.tcpConnEntryInfo.ce_rack =
16348 					    tcp->tcp_rack;
16349 				} else {
16350 					/*
16351 					 * Netstat, unfortunately, uses this to
16352 					 * get send/receive queue sizes.  How
16353 					 * to fix?
16354 					 * Why not compute the difference only?
16355 					 */
16356 					tce.tcpConnEntryInfo.ce_snxt =
16357 					    tcp->tcp_snxt - tcp->tcp_suna;
16358 					tce.tcpConnEntryInfo.ce_suna = 0;
16359 					tce.tcpConnEntryInfo.ce_rnxt =
16360 					    tcp->tcp_rnxt - tcp->tcp_rack;
16361 					tce.tcpConnEntryInfo.ce_rack = 0;
16362 				}
16363 
16364 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16365 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16366 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16367 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16368 				tce.tcpConnEntryInfo.ce_state =
16369 				    tcp->tcp_state;
16370 
16371 				tce.tcpConnCreationProcess =
16372 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16373 				    tcp->tcp_cpid;
16374 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16375 
16376 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16377 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16378 
16379 				mlp.tme_connidx = v4_conn_idx++;
16380 				if (needattr)
16381 					(void) snmp_append_data2(
16382 					    mp_attr_ctl->b_cont,
16383 					    &mp_attr_tail, (char *)&mlp,
16384 					    sizeof (mlp));
16385 			}
16386 		}
16387 	}
16388 
16389 	/* fixed length structure for IPv4 and IPv6 counters */
16390 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16391 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16392 	    sizeof (mib2_tcp6ConnEntry_t));
16393 	/* synchronize 32- and 64-bit counters */
16394 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16395 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16396 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16397 	optp->level = MIB2_TCP;
16398 	optp->name = 0;
16399 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16400 	    sizeof (tcps->tcps_mib));
16401 	optp->len = msgdsize(mpdata);
16402 	qreply(q, mpctl);
16403 
16404 	/* table of connections... */
16405 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16406 	    sizeof (struct T_optmgmt_ack)];
16407 	optp->level = MIB2_TCP;
16408 	optp->name = MIB2_TCP_CONN;
16409 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16410 	qreply(q, mp_conn_ctl);
16411 
16412 	/* table of MLP attributes... */
16413 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16414 	    sizeof (struct T_optmgmt_ack)];
16415 	optp->level = MIB2_TCP;
16416 	optp->name = EXPER_XPORT_MLP;
16417 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16418 	if (optp->len == 0)
16419 		freemsg(mp_attr_ctl);
16420 	else
16421 		qreply(q, mp_attr_ctl);
16422 
16423 	/* table of IPv6 connections... */
16424 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16425 	    sizeof (struct T_optmgmt_ack)];
16426 	optp->level = MIB2_TCP6;
16427 	optp->name = MIB2_TCP6_CONN;
16428 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16429 	qreply(q, mp6_conn_ctl);
16430 
16431 	/* table of IPv6 MLP attributes... */
16432 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16433 	    sizeof (struct T_optmgmt_ack)];
16434 	optp->level = MIB2_TCP6;
16435 	optp->name = EXPER_XPORT_MLP;
16436 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16437 	if (optp->len == 0)
16438 		freemsg(mp6_attr_ctl);
16439 	else
16440 		qreply(q, mp6_attr_ctl);
16441 	return (mp2ctl);
16442 }
16443 
16444 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16445 /* ARGSUSED */
16446 int
16447 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16448 {
16449 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16450 
16451 	switch (level) {
16452 	case MIB2_TCP:
16453 		switch (name) {
16454 		case 13:
16455 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16456 				return (0);
16457 			/* TODO: delete entry defined by tce */
16458 			return (1);
16459 		default:
16460 			return (0);
16461 		}
16462 	default:
16463 		return (1);
16464 	}
16465 }
16466 
16467 /* Translate TCP state to MIB2 TCP state. */
16468 static int
16469 tcp_snmp_state(tcp_t *tcp)
16470 {
16471 	if (tcp == NULL)
16472 		return (0);
16473 
16474 	switch (tcp->tcp_state) {
16475 	case TCPS_CLOSED:
16476 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16477 	case TCPS_BOUND:
16478 		return (MIB2_TCP_closed);
16479 	case TCPS_LISTEN:
16480 		return (MIB2_TCP_listen);
16481 	case TCPS_SYN_SENT:
16482 		return (MIB2_TCP_synSent);
16483 	case TCPS_SYN_RCVD:
16484 		return (MIB2_TCP_synReceived);
16485 	case TCPS_ESTABLISHED:
16486 		return (MIB2_TCP_established);
16487 	case TCPS_CLOSE_WAIT:
16488 		return (MIB2_TCP_closeWait);
16489 	case TCPS_FIN_WAIT_1:
16490 		return (MIB2_TCP_finWait1);
16491 	case TCPS_CLOSING:
16492 		return (MIB2_TCP_closing);
16493 	case TCPS_LAST_ACK:
16494 		return (MIB2_TCP_lastAck);
16495 	case TCPS_FIN_WAIT_2:
16496 		return (MIB2_TCP_finWait2);
16497 	case TCPS_TIME_WAIT:
16498 		return (MIB2_TCP_timeWait);
16499 	default:
16500 		return (0);
16501 	}
16502 }
16503 
16504 /*
16505  * tcp_timer is the timer service routine.  It handles the retransmission,
16506  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16507  * from the state of the tcp instance what kind of action needs to be done
16508  * at the time it is called.
16509  */
16510 static void
16511 tcp_timer(void *arg)
16512 {
16513 	mblk_t		*mp;
16514 	clock_t		first_threshold;
16515 	clock_t		second_threshold;
16516 	clock_t		ms;
16517 	uint32_t	mss;
16518 	conn_t		*connp = (conn_t *)arg;
16519 	tcp_t		*tcp = connp->conn_tcp;
16520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16521 
16522 	tcp->tcp_timer_tid = 0;
16523 
16524 	if (tcp->tcp_fused)
16525 		return;
16526 
16527 	first_threshold =  tcp->tcp_first_timer_threshold;
16528 	second_threshold = tcp->tcp_second_timer_threshold;
16529 	switch (tcp->tcp_state) {
16530 	case TCPS_IDLE:
16531 	case TCPS_BOUND:
16532 	case TCPS_LISTEN:
16533 		return;
16534 	case TCPS_SYN_RCVD: {
16535 		tcp_t	*listener = tcp->tcp_listener;
16536 
16537 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16538 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16539 			/* it's our first timeout */
16540 			tcp->tcp_syn_rcvd_timeout = 1;
16541 			mutex_enter(&listener->tcp_eager_lock);
16542 			listener->tcp_syn_rcvd_timeout++;
16543 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16544 				/*
16545 				 * Make this eager available for drop if we
16546 				 * need to drop one to accomodate a new
16547 				 * incoming SYN request.
16548 				 */
16549 				MAKE_DROPPABLE(listener, tcp);
16550 			}
16551 			if (!listener->tcp_syn_defense &&
16552 			    (listener->tcp_syn_rcvd_timeout >
16553 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16554 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16555 				/* We may be under attack. Put on a defense. */
16556 				listener->tcp_syn_defense = B_TRUE;
16557 				cmn_err(CE_WARN, "High TCP connect timeout "
16558 				    "rate! System (port %d) may be under a "
16559 				    "SYN flood attack!",
16560 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16561 
16562 				listener->tcp_ip_addr_cache = kmem_zalloc(
16563 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16564 				    KM_NOSLEEP);
16565 			}
16566 			mutex_exit(&listener->tcp_eager_lock);
16567 		} else if (listener != NULL) {
16568 			mutex_enter(&listener->tcp_eager_lock);
16569 			tcp->tcp_syn_rcvd_timeout++;
16570 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16571 			    !tcp->tcp_closemp_used) {
16572 				/*
16573 				 * This is our second timeout. Put the tcp in
16574 				 * the list of droppable eagers to allow it to
16575 				 * be dropped, if needed. We don't check
16576 				 * whether tcp_dontdrop is set or not to
16577 				 * protect ourselve from a SYN attack where a
16578 				 * remote host can spoof itself as one of the
16579 				 * good IP source and continue to hold
16580 				 * resources too long.
16581 				 */
16582 				MAKE_DROPPABLE(listener, tcp);
16583 			}
16584 			mutex_exit(&listener->tcp_eager_lock);
16585 		}
16586 	}
16587 		/* FALLTHRU */
16588 	case TCPS_SYN_SENT:
16589 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16590 		second_threshold = tcp->tcp_second_ctimer_threshold;
16591 		break;
16592 	case TCPS_ESTABLISHED:
16593 	case TCPS_FIN_WAIT_1:
16594 	case TCPS_CLOSING:
16595 	case TCPS_CLOSE_WAIT:
16596 	case TCPS_LAST_ACK:
16597 		/* If we have data to rexmit */
16598 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16599 			clock_t	time_to_wait;
16600 
16601 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16602 			if (!tcp->tcp_xmit_head)
16603 				break;
16604 			time_to_wait = lbolt -
16605 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16606 			time_to_wait = tcp->tcp_rto -
16607 			    TICK_TO_MSEC(time_to_wait);
16608 			/*
16609 			 * If the timer fires too early, 1 clock tick earlier,
16610 			 * restart the timer.
16611 			 */
16612 			if (time_to_wait > msec_per_tick) {
16613 				TCP_STAT(tcps, tcp_timer_fire_early);
16614 				TCP_TIMER_RESTART(tcp, time_to_wait);
16615 				return;
16616 			}
16617 			/*
16618 			 * When we probe zero windows, we force the swnd open.
16619 			 * If our peer acks with a closed window swnd will be
16620 			 * set to zero by tcp_rput(). As long as we are
16621 			 * receiving acks tcp_rput will
16622 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16623 			 * first and second interval actions.  NOTE: the timer
16624 			 * interval is allowed to continue its exponential
16625 			 * backoff.
16626 			 */
16627 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16628 				if (tcp->tcp_debug) {
16629 					(void) strlog(TCP_MOD_ID, 0, 1,
16630 					    SL_TRACE, "tcp_timer: zero win");
16631 				}
16632 			} else {
16633 				/*
16634 				 * After retransmission, we need to do
16635 				 * slow start.  Set the ssthresh to one
16636 				 * half of current effective window and
16637 				 * cwnd to one MSS.  Also reset
16638 				 * tcp_cwnd_cnt.
16639 				 *
16640 				 * Note that if tcp_ssthresh is reduced because
16641 				 * of ECN, do not reduce it again unless it is
16642 				 * already one window of data away (tcp_cwr
16643 				 * should then be cleared) or this is a
16644 				 * timeout for a retransmitted segment.
16645 				 */
16646 				uint32_t npkt;
16647 
16648 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16649 					npkt = ((tcp->tcp_timer_backoff ?
16650 					    tcp->tcp_cwnd_ssthresh :
16651 					    tcp->tcp_snxt -
16652 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16653 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16654 					    tcp->tcp_mss;
16655 				}
16656 				tcp->tcp_cwnd = tcp->tcp_mss;
16657 				tcp->tcp_cwnd_cnt = 0;
16658 				if (tcp->tcp_ecn_ok) {
16659 					tcp->tcp_cwr = B_TRUE;
16660 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16661 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16662 				}
16663 			}
16664 			break;
16665 		}
16666 		/*
16667 		 * We have something to send yet we cannot send.  The
16668 		 * reason can be:
16669 		 *
16670 		 * 1. Zero send window: we need to do zero window probe.
16671 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16672 		 * segments.
16673 		 * 3. SWS avoidance: receiver may have shrunk window,
16674 		 * reset our knowledge.
16675 		 *
16676 		 * Note that condition 2 can happen with either 1 or
16677 		 * 3.  But 1 and 3 are exclusive.
16678 		 */
16679 		if (tcp->tcp_unsent != 0) {
16680 			if (tcp->tcp_cwnd == 0) {
16681 				/*
16682 				 * Set tcp_cwnd to 1 MSS so that a
16683 				 * new segment can be sent out.  We
16684 				 * are "clocking out" new data when
16685 				 * the network is really congested.
16686 				 */
16687 				ASSERT(tcp->tcp_ecn_ok);
16688 				tcp->tcp_cwnd = tcp->tcp_mss;
16689 			}
16690 			if (tcp->tcp_swnd == 0) {
16691 				/* Extend window for zero window probe */
16692 				tcp->tcp_swnd++;
16693 				tcp->tcp_zero_win_probe = B_TRUE;
16694 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
16695 			} else {
16696 				/*
16697 				 * Handle timeout from sender SWS avoidance.
16698 				 * Reset our knowledge of the max send window
16699 				 * since the receiver might have reduced its
16700 				 * receive buffer.  Avoid setting tcp_max_swnd
16701 				 * to one since that will essentially disable
16702 				 * the SWS checks.
16703 				 *
16704 				 * Note that since we don't have a SWS
16705 				 * state variable, if the timeout is set
16706 				 * for ECN but not for SWS, this
16707 				 * code will also be executed.  This is
16708 				 * fine as tcp_max_swnd is updated
16709 				 * constantly and it will not affect
16710 				 * anything.
16711 				 */
16712 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16713 			}
16714 			tcp_wput_data(tcp, NULL, B_FALSE);
16715 			return;
16716 		}
16717 		/* Is there a FIN that needs to be to re retransmitted? */
16718 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16719 		    !tcp->tcp_fin_acked)
16720 			break;
16721 		/* Nothing to do, return without restarting timer. */
16722 		TCP_STAT(tcps, tcp_timer_fire_miss);
16723 		return;
16724 	case TCPS_FIN_WAIT_2:
16725 		/*
16726 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16727 		 * We waited some time for for peer's FIN, but it hasn't
16728 		 * arrived.  We flush the connection now to avoid
16729 		 * case where the peer has rebooted.
16730 		 */
16731 		if (TCP_IS_DETACHED(tcp)) {
16732 			(void) tcp_clean_death(tcp, 0, 23);
16733 		} else {
16734 			TCP_TIMER_RESTART(tcp,
16735 			    tcps->tcps_fin_wait_2_flush_interval);
16736 		}
16737 		return;
16738 	case TCPS_TIME_WAIT:
16739 		(void) tcp_clean_death(tcp, 0, 24);
16740 		return;
16741 	default:
16742 		if (tcp->tcp_debug) {
16743 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16744 			    "tcp_timer: strange state (%d) %s",
16745 			    tcp->tcp_state, tcp_display(tcp, NULL,
16746 			    DISP_PORT_ONLY));
16747 		}
16748 		return;
16749 	}
16750 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16751 		/*
16752 		 * For zero window probe, we need to send indefinitely,
16753 		 * unless we have not heard from the other side for some
16754 		 * time...
16755 		 */
16756 		if ((tcp->tcp_zero_win_probe == 0) ||
16757 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16758 		    second_threshold)) {
16759 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
16760 			/*
16761 			 * If TCP is in SYN_RCVD state, send back a
16762 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16763 			 * should be zero in TCPS_SYN_RCVD state.
16764 			 */
16765 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16766 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16767 				    "in SYN_RCVD",
16768 				    tcp, tcp->tcp_snxt,
16769 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16770 			}
16771 			(void) tcp_clean_death(tcp,
16772 			    tcp->tcp_client_errno ?
16773 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16774 			return;
16775 		} else {
16776 			/*
16777 			 * Set tcp_ms_we_have_waited to second_threshold
16778 			 * so that in next timeout, we will do the above
16779 			 * check (lbolt - tcp_last_recv_time).  This is
16780 			 * also to avoid overflow.
16781 			 *
16782 			 * We don't need to decrement tcp_timer_backoff
16783 			 * to avoid overflow because it will be decremented
16784 			 * later if new timeout value is greater than
16785 			 * tcp_rexmit_interval_max.  In the case when
16786 			 * tcp_rexmit_interval_max is greater than
16787 			 * second_threshold, it means that we will wait
16788 			 * longer than second_threshold to send the next
16789 			 * window probe.
16790 			 */
16791 			tcp->tcp_ms_we_have_waited = second_threshold;
16792 		}
16793 	} else if (ms > first_threshold) {
16794 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16795 		    tcp->tcp_xmit_head != NULL) {
16796 			tcp->tcp_xmit_head =
16797 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16798 		}
16799 		/*
16800 		 * We have been retransmitting for too long...  The RTT
16801 		 * we calculated is probably incorrect.  Reinitialize it.
16802 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16803 		 * tcp_rtt_update so that we won't accidentally cache a
16804 		 * bad value.  But only do this if this is not a zero
16805 		 * window probe.
16806 		 */
16807 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16808 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16809 			    (tcp->tcp_rtt_sa >> 5);
16810 			tcp->tcp_rtt_sa = 0;
16811 			tcp_ip_notify(tcp);
16812 			tcp->tcp_rtt_update = 0;
16813 		}
16814 	}
16815 	tcp->tcp_timer_backoff++;
16816 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16817 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16818 	    tcps->tcps_rexmit_interval_min) {
16819 		/*
16820 		 * This means the original RTO is tcp_rexmit_interval_min.
16821 		 * So we will use tcp_rexmit_interval_min as the RTO value
16822 		 * and do the backoff.
16823 		 */
16824 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
16825 	} else {
16826 		ms <<= tcp->tcp_timer_backoff;
16827 	}
16828 	if (ms > tcps->tcps_rexmit_interval_max) {
16829 		ms = tcps->tcps_rexmit_interval_max;
16830 		/*
16831 		 * ms is at max, decrement tcp_timer_backoff to avoid
16832 		 * overflow.
16833 		 */
16834 		tcp->tcp_timer_backoff--;
16835 	}
16836 	tcp->tcp_ms_we_have_waited += ms;
16837 	if (tcp->tcp_zero_win_probe == 0) {
16838 		tcp->tcp_rto = ms;
16839 	}
16840 	TCP_TIMER_RESTART(tcp, ms);
16841 	/*
16842 	 * This is after a timeout and tcp_rto is backed off.  Set
16843 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16844 	 * restart the timer with a correct value.
16845 	 */
16846 	tcp->tcp_set_timer = 1;
16847 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16848 	if (mss > tcp->tcp_mss)
16849 		mss = tcp->tcp_mss;
16850 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16851 		mss = tcp->tcp_swnd;
16852 
16853 	if ((mp = tcp->tcp_xmit_head) != NULL)
16854 		mp->b_prev = (mblk_t *)lbolt;
16855 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16856 	    B_TRUE);
16857 
16858 	/*
16859 	 * When slow start after retransmission begins, start with
16860 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16861 	 * start phase.  tcp_snd_burst controls how many segments
16862 	 * can be sent because of an ack.
16863 	 */
16864 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16865 	tcp->tcp_snd_burst = TCP_CWND_SS;
16866 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16867 	    (tcp->tcp_unsent == 0)) {
16868 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16869 	} else {
16870 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16871 	}
16872 	tcp->tcp_rexmit = B_TRUE;
16873 	tcp->tcp_dupack_cnt = 0;
16874 
16875 	/*
16876 	 * Remove all rexmit SACK blk to start from fresh.
16877 	 */
16878 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16879 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16880 		tcp->tcp_num_notsack_blk = 0;
16881 		tcp->tcp_cnt_notsack_list = 0;
16882 	}
16883 	if (mp == NULL) {
16884 		return;
16885 	}
16886 	/*
16887 	 * Attach credentials to retransmitted initial SYNs.
16888 	 * In theory we should use the credentials from the connect()
16889 	 * call to ensure that getpeerucred() on the peer will be correct.
16890 	 * But we assume that SYN's are not dropped for loopback connections.
16891 	 */
16892 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16893 		mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid);
16894 	}
16895 
16896 	tcp->tcp_csuna = tcp->tcp_snxt;
16897 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
16898 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
16899 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16900 
16901 }
16902 
16903 static int
16904 tcp_do_unbind(conn_t *connp)
16905 {
16906 	tcp_t *tcp = connp->conn_tcp;
16907 	int error = 0;
16908 
16909 	switch (tcp->tcp_state) {
16910 	case TCPS_BOUND:
16911 	case TCPS_LISTEN:
16912 		break;
16913 	default:
16914 		return (-TOUTSTATE);
16915 	}
16916 
16917 	/*
16918 	 * Need to clean up all the eagers since after the unbind, segments
16919 	 * will no longer be delivered to this listener stream.
16920 	 */
16921 	mutex_enter(&tcp->tcp_eager_lock);
16922 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16923 		tcp_eager_cleanup(tcp, 0);
16924 	}
16925 	mutex_exit(&tcp->tcp_eager_lock);
16926 
16927 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16928 		tcp->tcp_ipha->ipha_src = 0;
16929 	} else {
16930 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16931 	}
16932 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16933 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16934 	tcp_bind_hash_remove(tcp);
16935 	tcp->tcp_state = TCPS_IDLE;
16936 	tcp->tcp_mdt = B_FALSE;
16937 
16938 	connp = tcp->tcp_connp;
16939 	connp->conn_mdt_ok = B_FALSE;
16940 	ipcl_hash_remove(connp);
16941 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16942 
16943 	return (error);
16944 }
16945 
16946 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16947 static void
16948 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
16949 {
16950 	int error = tcp_do_unbind(tcp->tcp_connp);
16951 
16952 	if (error > 0) {
16953 		tcp_err_ack(tcp, mp, TSYSERR, error);
16954 	} else if (error < 0) {
16955 		tcp_err_ack(tcp, mp, -error, 0);
16956 	} else {
16957 		/* Send M_FLUSH according to TPI */
16958 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16959 
16960 		mp = mi_tpi_ok_ack_alloc(mp);
16961 		putnext(tcp->tcp_rq, mp);
16962 	}
16963 }
16964 
16965 /*
16966  * Don't let port fall into the privileged range.
16967  * Since the extra privileged ports can be arbitrary we also
16968  * ensure that we exclude those from consideration.
16969  * tcp_g_epriv_ports is not sorted thus we loop over it until
16970  * there are no changes.
16971  *
16972  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16973  * but instead the code relies on:
16974  * - the fact that the address of the array and its size never changes
16975  * - the atomic assignment of the elements of the array
16976  *
16977  * Returns 0 if there are no more ports available.
16978  *
16979  * TS note: skip multilevel ports.
16980  */
16981 static in_port_t
16982 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16983 {
16984 	int i;
16985 	boolean_t restart = B_FALSE;
16986 	tcp_stack_t *tcps = tcp->tcp_tcps;
16987 
16988 	if (random && tcp_random_anon_port != 0) {
16989 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16990 		    sizeof (in_port_t));
16991 		/*
16992 		 * Unless changed by a sys admin, the smallest anon port
16993 		 * is 32768 and the largest anon port is 65535.  It is
16994 		 * very likely (50%) for the random port to be smaller
16995 		 * than the smallest anon port.  When that happens,
16996 		 * add port % (anon port range) to the smallest anon
16997 		 * port to get the random port.  It should fall into the
16998 		 * valid anon port range.
16999 		 */
17000 		if (port < tcps->tcps_smallest_anon_port) {
17001 			port = tcps->tcps_smallest_anon_port +
17002 			    port % (tcps->tcps_largest_anon_port -
17003 			    tcps->tcps_smallest_anon_port);
17004 		}
17005 	}
17006 
17007 retry:
17008 	if (port < tcps->tcps_smallest_anon_port)
17009 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17010 
17011 	if (port > tcps->tcps_largest_anon_port) {
17012 		if (restart)
17013 			return (0);
17014 		restart = B_TRUE;
17015 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17016 	}
17017 
17018 	if (port < tcps->tcps_smallest_nonpriv_port)
17019 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17020 
17021 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17022 		if (port == tcps->tcps_g_epriv_ports[i]) {
17023 			port++;
17024 			/*
17025 			 * Make sure whether the port is in the
17026 			 * valid range.
17027 			 */
17028 			goto retry;
17029 		}
17030 	}
17031 	if (is_system_labeled() &&
17032 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17033 	    IPPROTO_TCP, B_TRUE)) != 0) {
17034 		port = i;
17035 		goto retry;
17036 	}
17037 	return (port);
17038 }
17039 
17040 /*
17041  * Return the next anonymous port in the privileged port range for
17042  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17043  * downwards.  This is the same behavior as documented in the userland
17044  * library call rresvport(3N).
17045  *
17046  * TS note: skip multilevel ports.
17047  */
17048 static in_port_t
17049 tcp_get_next_priv_port(const tcp_t *tcp)
17050 {
17051 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17052 	in_port_t nextport;
17053 	boolean_t restart = B_FALSE;
17054 	tcp_stack_t *tcps = tcp->tcp_tcps;
17055 retry:
17056 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17057 	    next_priv_port >= IPPORT_RESERVED) {
17058 		next_priv_port = IPPORT_RESERVED - 1;
17059 		if (restart)
17060 			return (0);
17061 		restart = B_TRUE;
17062 	}
17063 	if (is_system_labeled() &&
17064 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17065 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17066 		next_priv_port = nextport;
17067 		goto retry;
17068 	}
17069 	return (next_priv_port--);
17070 }
17071 
17072 /* The write side r/w procedure. */
17073 
17074 #if CCS_STATS
17075 struct {
17076 	struct {
17077 		int64_t count, bytes;
17078 	} tot, hit;
17079 } wrw_stats;
17080 #endif
17081 
17082 /*
17083  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17084  * messages.
17085  */
17086 /* ARGSUSED */
17087 static void
17088 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17089 {
17090 	conn_t	*connp = (conn_t *)arg;
17091 	tcp_t	*tcp = connp->conn_tcp;
17092 	queue_t	*q = tcp->tcp_wq;
17093 
17094 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17095 	/*
17096 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17097 	 * Once the close starts, streamhead and sockfs will not let any data
17098 	 * packets come down (close ensures that there are no threads using the
17099 	 * queue and no new threads will come down) but since qprocsoff()
17100 	 * hasn't happened yet, a M_FLUSH or some non data message might
17101 	 * get reflected back (in response to our own FLUSHRW) and get
17102 	 * processed after tcp_close() is done. The conn would still be valid
17103 	 * because a ref would have added but we need to check the state
17104 	 * before actually processing the packet.
17105 	 */
17106 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17107 		freemsg(mp);
17108 		return;
17109 	}
17110 
17111 	switch (DB_TYPE(mp)) {
17112 	case M_IOCDATA:
17113 		tcp_wput_iocdata(tcp, mp);
17114 		break;
17115 	case M_FLUSH:
17116 		tcp_wput_flush(tcp, mp);
17117 		break;
17118 	default:
17119 		CALL_IP_WPUT(connp, q, mp);
17120 		break;
17121 	}
17122 }
17123 
17124 /*
17125  * The TCP fast path write put procedure.
17126  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17127  */
17128 /* ARGSUSED */
17129 void
17130 tcp_output(void *arg, mblk_t *mp, void *arg2)
17131 {
17132 	int		len;
17133 	int		hdrlen;
17134 	int		plen;
17135 	mblk_t		*mp1;
17136 	uchar_t		*rptr;
17137 	uint32_t	snxt;
17138 	tcph_t		*tcph;
17139 	struct datab	*db;
17140 	uint32_t	suna;
17141 	uint32_t	mss;
17142 	ipaddr_t	*dst;
17143 	ipaddr_t	*src;
17144 	uint32_t	sum;
17145 	int		usable;
17146 	conn_t		*connp = (conn_t *)arg;
17147 	tcp_t		*tcp = connp->conn_tcp;
17148 	uint32_t	msize;
17149 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17150 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17151 
17152 	/*
17153 	 * Try and ASSERT the minimum possible references on the
17154 	 * conn early enough. Since we are executing on write side,
17155 	 * the connection is obviously not detached and that means
17156 	 * there is a ref each for TCP and IP. Since we are behind
17157 	 * the squeue, the minimum references needed are 3. If the
17158 	 * conn is in classifier hash list, there should be an
17159 	 * extra ref for that (we check both the possibilities).
17160 	 */
17161 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17162 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17163 
17164 	ASSERT(DB_TYPE(mp) == M_DATA);
17165 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17166 
17167 	mutex_enter(&tcp->tcp_non_sq_lock);
17168 	tcp->tcp_squeue_bytes -= msize;
17169 	mutex_exit(&tcp->tcp_non_sq_lock);
17170 
17171 	/* Check to see if this connection wants to be re-fused. */
17172 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17173 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17174 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17175 			    &tcp->tcp_saved_tcph);
17176 		} else {
17177 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17178 			    &tcp->tcp_saved_tcph);
17179 		}
17180 	}
17181 	/* Bypass tcp protocol for fused tcp loopback */
17182 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17183 		return;
17184 
17185 	mss = tcp->tcp_mss;
17186 	if (tcp->tcp_xmit_zc_clean)
17187 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17188 
17189 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17190 	len = (int)(mp->b_wptr - mp->b_rptr);
17191 
17192 	/*
17193 	 * Criteria for fast path:
17194 	 *
17195 	 *   1. no unsent data
17196 	 *   2. single mblk in request
17197 	 *   3. connection established
17198 	 *   4. data in mblk
17199 	 *   5. len <= mss
17200 	 *   6. no tcp_valid bits
17201 	 */
17202 	if ((tcp->tcp_unsent != 0) ||
17203 	    (tcp->tcp_cork) ||
17204 	    (mp->b_cont != NULL) ||
17205 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17206 	    (len == 0) ||
17207 	    (len > mss) ||
17208 	    (tcp->tcp_valid_bits != 0)) {
17209 		tcp_wput_data(tcp, mp, B_FALSE);
17210 		return;
17211 	}
17212 
17213 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17214 	ASSERT(tcp->tcp_fin_sent == 0);
17215 
17216 	/* queue new packet onto retransmission queue */
17217 	if (tcp->tcp_xmit_head == NULL) {
17218 		tcp->tcp_xmit_head = mp;
17219 	} else {
17220 		tcp->tcp_xmit_last->b_cont = mp;
17221 	}
17222 	tcp->tcp_xmit_last = mp;
17223 	tcp->tcp_xmit_tail = mp;
17224 
17225 	/* find out how much we can send */
17226 	/* BEGIN CSTYLED */
17227 	/*
17228 	 *    un-acked	   usable
17229 	 *  |--------------|-----------------|
17230 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
17231 	 */
17232 	/* END CSTYLED */
17233 
17234 	/* start sending from tcp_snxt */
17235 	snxt = tcp->tcp_snxt;
17236 
17237 	/*
17238 	 * Check to see if this connection has been idled for some
17239 	 * time and no ACK is expected.  If it is, we need to slow
17240 	 * start again to get back the connection's "self-clock" as
17241 	 * described in VJ's paper.
17242 	 *
17243 	 * Refer to the comment in tcp_mss_set() for the calculation
17244 	 * of tcp_cwnd after idle.
17245 	 */
17246 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17247 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17248 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17249 	}
17250 
17251 	usable = tcp->tcp_swnd;		/* tcp window size */
17252 	if (usable > tcp->tcp_cwnd)
17253 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17254 	usable -= snxt;		/* subtract stuff already sent */
17255 	suna = tcp->tcp_suna;
17256 	usable += suna;
17257 	/* usable can be < 0 if the congestion window is smaller */
17258 	if (len > usable) {
17259 		/* Can't send complete M_DATA in one shot */
17260 		goto slow;
17261 	}
17262 
17263 	mutex_enter(&tcp->tcp_non_sq_lock);
17264 	if (tcp->tcp_flow_stopped &&
17265 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17266 		tcp_clrqfull(tcp);
17267 	}
17268 	mutex_exit(&tcp->tcp_non_sq_lock);
17269 
17270 	/*
17271 	 * determine if anything to send (Nagle).
17272 	 *
17273 	 *   1. len < tcp_mss (i.e. small)
17274 	 *   2. unacknowledged data present
17275 	 *   3. len < nagle limit
17276 	 *   4. last packet sent < nagle limit (previous packet sent)
17277 	 */
17278 	if ((len < mss) && (snxt != suna) &&
17279 	    (len < (int)tcp->tcp_naglim) &&
17280 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17281 		/*
17282 		 * This was the first unsent packet and normally
17283 		 * mss < xmit_hiwater so there is no need to worry
17284 		 * about flow control. The next packet will go
17285 		 * through the flow control check in tcp_wput_data().
17286 		 */
17287 		/* leftover work from above */
17288 		tcp->tcp_unsent = len;
17289 		tcp->tcp_xmit_tail_unsent = len;
17290 
17291 		return;
17292 	}
17293 
17294 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17295 
17296 	if (snxt == suna) {
17297 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17298 	}
17299 
17300 	/* we have always sent something */
17301 	tcp->tcp_rack_cnt = 0;
17302 
17303 	tcp->tcp_snxt = snxt + len;
17304 	tcp->tcp_rack = tcp->tcp_rnxt;
17305 
17306 	if ((mp1 = dupb(mp)) == 0)
17307 		goto no_memory;
17308 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17309 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17310 
17311 	/* adjust tcp header information */
17312 	tcph = tcp->tcp_tcph;
17313 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17314 
17315 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17316 	sum = (sum >> 16) + (sum & 0xFFFF);
17317 	U16_TO_ABE16(sum, tcph->th_sum);
17318 
17319 	U32_TO_ABE32(snxt, tcph->th_seq);
17320 
17321 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17322 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17323 	BUMP_LOCAL(tcp->tcp_obsegs);
17324 
17325 	/* Update the latest receive window size in TCP header. */
17326 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17327 	    tcph->th_win);
17328 
17329 	tcp->tcp_last_sent_len = (ushort_t)len;
17330 
17331 	plen = len + tcp->tcp_hdr_len;
17332 
17333 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17334 		tcp->tcp_ipha->ipha_length = htons(plen);
17335 	} else {
17336 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17337 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17338 	}
17339 
17340 	/* see if we need to allocate a mblk for the headers */
17341 	hdrlen = tcp->tcp_hdr_len;
17342 	rptr = mp1->b_rptr - hdrlen;
17343 	db = mp1->b_datap;
17344 	if ((db->db_ref != 2) || rptr < db->db_base ||
17345 	    (!OK_32PTR(rptr))) {
17346 		/* NOTE: we assume allocb returns an OK_32PTR */
17347 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17348 		    tcps->tcps_wroff_xtra, BPRI_MED);
17349 		if (!mp) {
17350 			freemsg(mp1);
17351 			goto no_memory;
17352 		}
17353 		mp->b_cont = mp1;
17354 		mp1 = mp;
17355 		/* Leave room for Link Level header */
17356 		/* hdrlen = tcp->tcp_hdr_len; */
17357 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17358 		mp1->b_wptr = &rptr[hdrlen];
17359 	}
17360 	mp1->b_rptr = rptr;
17361 
17362 	/* Fill in the timestamp option. */
17363 	if (tcp->tcp_snd_ts_ok) {
17364 		U32_TO_BE32((uint32_t)lbolt,
17365 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17366 		U32_TO_BE32(tcp->tcp_ts_recent,
17367 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17368 	} else {
17369 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17370 	}
17371 
17372 	/* copy header into outgoing packet */
17373 	dst = (ipaddr_t *)rptr;
17374 	src = (ipaddr_t *)tcp->tcp_iphc;
17375 	dst[0] = src[0];
17376 	dst[1] = src[1];
17377 	dst[2] = src[2];
17378 	dst[3] = src[3];
17379 	dst[4] = src[4];
17380 	dst[5] = src[5];
17381 	dst[6] = src[6];
17382 	dst[7] = src[7];
17383 	dst[8] = src[8];
17384 	dst[9] = src[9];
17385 	if (hdrlen -= 40) {
17386 		hdrlen >>= 2;
17387 		dst += 10;
17388 		src += 10;
17389 		do {
17390 			*dst++ = *src++;
17391 		} while (--hdrlen);
17392 	}
17393 
17394 	/*
17395 	 * Set the ECN info in the TCP header.  Note that this
17396 	 * is not the template header.
17397 	 */
17398 	if (tcp->tcp_ecn_ok) {
17399 		SET_ECT(tcp, rptr);
17400 
17401 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17402 		if (tcp->tcp_ecn_echo_on)
17403 			tcph->th_flags[0] |= TH_ECE;
17404 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17405 			tcph->th_flags[0] |= TH_CWR;
17406 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17407 		}
17408 	}
17409 
17410 	if (tcp->tcp_ip_forward_progress) {
17411 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17412 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17413 		tcp->tcp_ip_forward_progress = B_FALSE;
17414 	}
17415 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17416 	return;
17417 
17418 	/*
17419 	 * If we ran out of memory, we pretend to have sent the packet
17420 	 * and that it was lost on the wire.
17421 	 */
17422 no_memory:
17423 	return;
17424 
17425 slow:
17426 	/* leftover work from above */
17427 	tcp->tcp_unsent = len;
17428 	tcp->tcp_xmit_tail_unsent = len;
17429 	tcp_wput_data(tcp, NULL, B_FALSE);
17430 }
17431 
17432 /* ARGSUSED */
17433 void
17434 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17435 {
17436 	conn_t			*connp = (conn_t *)arg;
17437 	tcp_t			*tcp = connp->conn_tcp;
17438 	queue_t			*q = tcp->tcp_rq;
17439 	struct tcp_options	*tcpopt;
17440 	tcp_stack_t		*tcps = tcp->tcp_tcps;
17441 
17442 	/* socket options */
17443 	uint_t 			sopp_flags;
17444 	ssize_t			sopp_rxhiwat;
17445 	ssize_t			sopp_maxblk;
17446 	ushort_t		sopp_wroff;
17447 	ushort_t		sopp_tail;
17448 	ushort_t		sopp_copyopt;
17449 
17450 	tcpopt = (struct tcp_options *)mp->b_rptr;
17451 
17452 	/*
17453 	 * Drop the eager's ref on the listener, that was placed when
17454 	 * this eager began life in tcp_conn_request.
17455 	 */
17456 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17457 	if (IPCL_IS_NONSTR(connp)) {
17458 		/* Safe to free conn_ind message */
17459 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17460 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17461 	}
17462 
17463 	tcp->tcp_detached = B_FALSE;
17464 
17465 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17466 		/*
17467 		 * Someone blewoff the eager before we could finish
17468 		 * the accept.
17469 		 *
17470 		 * The only reason eager exists it because we put in
17471 		 * a ref on it when conn ind went up. We need to send
17472 		 * a disconnect indication up while the last reference
17473 		 * on the eager will be dropped by the squeue when we
17474 		 * return.
17475 		 */
17476 		ASSERT(tcp->tcp_listener == NULL);
17477 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17478 			if (IPCL_IS_NONSTR(connp)) {
17479 				ASSERT(tcp->tcp_issocket);
17480 				(*connp->conn_upcalls->su_disconnected)(
17481 				    connp->conn_upper_handle, tcp->tcp_connid,
17482 				    ECONNREFUSED);
17483 				freemsg(mp);
17484 			} else {
17485 				struct	T_discon_ind	*tdi;
17486 
17487 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17488 				/*
17489 				 * Let us reuse the incoming mblk to avoid
17490 				 * memory allocation failure problems. We know
17491 				 * that the size of the incoming mblk i.e.
17492 				 * stroptions is greater than sizeof
17493 				 * T_discon_ind. So the reallocb below can't
17494 				 * fail.
17495 				 */
17496 				freemsg(mp->b_cont);
17497 				mp->b_cont = NULL;
17498 				ASSERT(DB_REF(mp) == 1);
17499 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17500 				    B_FALSE);
17501 				ASSERT(mp != NULL);
17502 				DB_TYPE(mp) = M_PROTO;
17503 				((union T_primitives *)mp->b_rptr)->type =
17504 				    T_DISCON_IND;
17505 				tdi = (struct T_discon_ind *)mp->b_rptr;
17506 				if (tcp->tcp_issocket) {
17507 					tdi->DISCON_reason = ECONNREFUSED;
17508 					tdi->SEQ_number = 0;
17509 				} else {
17510 					tdi->DISCON_reason = ENOPROTOOPT;
17511 					tdi->SEQ_number =
17512 					    tcp->tcp_conn_req_seqnum;
17513 				}
17514 				mp->b_wptr = mp->b_rptr +
17515 				    sizeof (struct T_discon_ind);
17516 				putnext(q, mp);
17517 				return;
17518 			}
17519 		}
17520 		if (tcp->tcp_hard_binding) {
17521 			tcp->tcp_hard_binding = B_FALSE;
17522 			tcp->tcp_hard_bound = B_TRUE;
17523 		}
17524 		return;
17525 	}
17526 
17527 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17528 		int boundif = tcpopt->to_boundif;
17529 		uint_t len = sizeof (int);
17530 
17531 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17532 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17533 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17534 	}
17535 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17536 		uint_t on = 1;
17537 		uint_t len = sizeof (uint_t);
17538 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17539 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17540 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17541 	}
17542 
17543 	/*
17544 	 * For a loopback connection with tcp_direct_sockfs on, note that
17545 	 * we don't have to protect tcp_rcv_list yet because synchronous
17546 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17547 	 * possibly race with us.
17548 	 */
17549 
17550 	/*
17551 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17552 	 * properly.  This is the first time we know of the acceptor'
17553 	 * queue.  So we do it here.
17554 	 *
17555 	 * XXX
17556 	 */
17557 	if (tcp->tcp_rcv_list == NULL) {
17558 		/*
17559 		 * Recv queue is empty, tcp_rwnd should not have changed.
17560 		 * That means it should be equal to the listener's tcp_rwnd.
17561 		 */
17562 		if (!IPCL_IS_NONSTR(connp))
17563 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17564 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
17565 	} else {
17566 #ifdef DEBUG
17567 		mblk_t *tmp;
17568 		mblk_t	*mp1;
17569 		uint_t	cnt = 0;
17570 
17571 		mp1 = tcp->tcp_rcv_list;
17572 		while ((tmp = mp1) != NULL) {
17573 			mp1 = tmp->b_next;
17574 			cnt += msgdsize(tmp);
17575 		}
17576 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17577 #endif
17578 		/* There is some data, add them back to get the max. */
17579 		if (!IPCL_IS_NONSTR(connp))
17580 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17581 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17582 	}
17583 	/*
17584 	 * This is the first time we run on the correct
17585 	 * queue after tcp_accept. So fix all the q parameters
17586 	 * here.
17587 	 */
17588 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
17589 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17590 
17591 	/*
17592 	 * Record the stream head's high water mark for this endpoint;
17593 	 * this is used for flow-control purposes.
17594 	 */
17595 	sopp_rxhiwat = tcp->tcp_fused ?
17596 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
17597 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
17598 
17599 	/*
17600 	 * Determine what write offset value to use depending on SACK and
17601 	 * whether the endpoint is fused or not.
17602 	 */
17603 	if (tcp->tcp_fused) {
17604 		ASSERT(tcp->tcp_loopback);
17605 		ASSERT(tcp->tcp_loopback_peer != NULL);
17606 		/*
17607 		 * For fused tcp loopback, set the stream head's write
17608 		 * offset value to zero since we won't be needing any room
17609 		 * for TCP/IP headers.  This would also improve performance
17610 		 * since it would reduce the amount of work done by kmem.
17611 		 * Non-fused tcp loopback case is handled separately below.
17612 		 */
17613 		sopp_wroff = 0;
17614 		/*
17615 		 * Update the peer's transmit parameters according to
17616 		 * our recently calculated high water mark value.
17617 		 */
17618 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17619 	} else if (tcp->tcp_snd_sack_ok) {
17620 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17621 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17622 	} else {
17623 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17624 		    tcps->tcps_wroff_xtra);
17625 	}
17626 
17627 	/*
17628 	 * If this is endpoint is handling SSL, then reserve extra
17629 	 * offset and space at the end.
17630 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17631 	 * overriding the previous setting. The extra cost of signing and
17632 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17633 	 * instead of a single contiguous one by the stream head
17634 	 * largely outweighs the statistical reduction of ACKs, when
17635 	 * applicable. The peer will also save on decryption and verification
17636 	 * costs.
17637 	 */
17638 	if (tcp->tcp_kssl_ctx != NULL) {
17639 		sopp_wroff += SSL3_WROFFSET;
17640 
17641 		sopp_flags |= SOCKOPT_TAIL;
17642 		sopp_tail = SSL3_MAX_TAIL_LEN;
17643 
17644 		sopp_flags |= SOCKOPT_ZCOPY;
17645 		sopp_copyopt = ZCVMUNSAFE;
17646 
17647 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
17648 	}
17649 
17650 	/* Send the options up */
17651 	if (IPCL_IS_NONSTR(connp)) {
17652 		struct sock_proto_props sopp;
17653 
17654 		sopp.sopp_flags = sopp_flags;
17655 		sopp.sopp_wroff = sopp_wroff;
17656 		sopp.sopp_maxblk = sopp_maxblk;
17657 		sopp.sopp_rxhiwat = sopp_rxhiwat;
17658 		if (sopp_flags & SOCKOPT_TAIL) {
17659 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17660 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
17661 			sopp.sopp_tail = sopp_tail;
17662 			sopp.sopp_zcopyflag = sopp_copyopt;
17663 		}
17664 		(*connp->conn_upcalls->su_set_proto_props)
17665 		    (connp->conn_upper_handle, &sopp);
17666 	} else {
17667 		struct stroptions *stropt;
17668 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17669 		if (stropt_mp == NULL) {
17670 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
17671 			return;
17672 		}
17673 		DB_TYPE(stropt_mp) = M_SETOPTS;
17674 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17675 		stropt_mp->b_wptr += sizeof (struct stroptions);
17676 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17677 		stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
17678 		stropt->so_hiwat = sopp_rxhiwat;
17679 		stropt->so_wroff = sopp_wroff;
17680 		stropt->so_maxblk = sopp_maxblk;
17681 
17682 		if (sopp_flags & SOCKOPT_TAIL) {
17683 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17684 
17685 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
17686 			stropt->so_tail = sopp_tail;
17687 			stropt->so_copyopt = sopp_copyopt;
17688 		}
17689 
17690 		/* Send the options up */
17691 		putnext(q, stropt_mp);
17692 	}
17693 
17694 	freemsg(mp);
17695 	/*
17696 	 * Pass up any data and/or a fin that has been received.
17697 	 *
17698 	 * Adjust receive window in case it had decreased
17699 	 * (because there is data <=> tcp_rcv_list != NULL)
17700 	 * while the connection was detached. Note that
17701 	 * in case the eager was flow-controlled, w/o this
17702 	 * code, the rwnd may never open up again!
17703 	 */
17704 	if (tcp->tcp_rcv_list != NULL) {
17705 		if (IPCL_IS_NONSTR(connp)) {
17706 			mblk_t *mp;
17707 			int space_left;
17708 			int error;
17709 			boolean_t push = B_TRUE;
17710 
17711 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
17712 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
17713 			    &push) >= 0) {
17714 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
17715 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17716 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17717 					tcp_xmit_ctl(NULL,
17718 					    tcp, (tcp->tcp_swnd == 0) ?
17719 					    tcp->tcp_suna : tcp->tcp_snxt,
17720 					    tcp->tcp_rnxt, TH_ACK);
17721 				}
17722 			}
17723 			while ((mp = tcp->tcp_rcv_list) != NULL) {
17724 				push = B_TRUE;
17725 				tcp->tcp_rcv_list = mp->b_next;
17726 				mp->b_next = NULL;
17727 				space_left = (*connp->conn_upcalls->su_recv)
17728 				    (connp->conn_upper_handle, mp, msgdsize(mp),
17729 				    0, &error, &push);
17730 				if (space_left < 0) {
17731 					/*
17732 					 * We should never be in middle of a
17733 					 * fallback, the squeue guarantees that.
17734 					 */
17735 					ASSERT(error != EOPNOTSUPP);
17736 				}
17737 			}
17738 			tcp->tcp_rcv_last_head = NULL;
17739 			tcp->tcp_rcv_last_tail = NULL;
17740 			tcp->tcp_rcv_cnt = 0;
17741 		} else {
17742 			/* We drain directly in case of fused tcp loopback */
17743 			sodirect_t *sodp;
17744 
17745 			if (!tcp->tcp_fused && canputnext(q)) {
17746 				tcp->tcp_rwnd = q->q_hiwat;
17747 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17748 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17749 					tcp_xmit_ctl(NULL,
17750 					    tcp, (tcp->tcp_swnd == 0) ?
17751 					    tcp->tcp_suna : tcp->tcp_snxt,
17752 					    tcp->tcp_rnxt, TH_ACK);
17753 				}
17754 			}
17755 
17756 			SOD_PTR_ENTER(tcp, sodp);
17757 			if (sodp != NULL) {
17758 				/* Sodirect, move from rcv_list */
17759 				ASSERT(!tcp->tcp_fused);
17760 				while ((mp = tcp->tcp_rcv_list) != NULL) {
17761 					tcp->tcp_rcv_list = mp->b_next;
17762 					mp->b_next = NULL;
17763 					(void) tcp_rcv_sod_enqueue(tcp, sodp,
17764 					    mp, msgdsize(mp));
17765 				}
17766 				tcp->tcp_rcv_last_head = NULL;
17767 				tcp->tcp_rcv_last_tail = NULL;
17768 				tcp->tcp_rcv_cnt = 0;
17769 				(void) tcp_rcv_sod_wakeup(tcp, sodp);
17770 				/* sod_wakeup() did the mutex_exit() */
17771 			} else {
17772 				/* Not sodirect, drain */
17773 				(void) tcp_rcv_drain(tcp);
17774 			}
17775 		}
17776 
17777 		/*
17778 		 * For fused tcp loopback, back-enable peer endpoint
17779 		 * if it's currently flow-controlled.
17780 		 */
17781 		if (tcp->tcp_fused) {
17782 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17783 
17784 			ASSERT(peer_tcp != NULL);
17785 			ASSERT(peer_tcp->tcp_fused);
17786 			/*
17787 			 * In order to change the peer's tcp_flow_stopped,
17788 			 * we need to take locks for both end points. The
17789 			 * highest address is taken first.
17790 			 */
17791 			if (peer_tcp > tcp) {
17792 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17793 				mutex_enter(&tcp->tcp_non_sq_lock);
17794 			} else {
17795 				mutex_enter(&tcp->tcp_non_sq_lock);
17796 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17797 			}
17798 			if (peer_tcp->tcp_flow_stopped) {
17799 				tcp_clrqfull(peer_tcp);
17800 				TCP_STAT(tcps, tcp_fusion_backenabled);
17801 			}
17802 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
17803 			mutex_exit(&tcp->tcp_non_sq_lock);
17804 		}
17805 	}
17806 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17807 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17808 		tcp->tcp_ordrel_done = B_TRUE;
17809 		if (IPCL_IS_NONSTR(connp)) {
17810 			ASSERT(tcp->tcp_ordrel_mp == NULL);
17811 			(*connp->conn_upcalls->su_opctl)(
17812 			    connp->conn_upper_handle,
17813 			    SOCK_OPCTL_SHUT_RECV, 0);
17814 		} else {
17815 			mp = tcp->tcp_ordrel_mp;
17816 			tcp->tcp_ordrel_mp = NULL;
17817 			putnext(q, mp);
17818 		}
17819 	}
17820 	if (tcp->tcp_hard_binding) {
17821 		tcp->tcp_hard_binding = B_FALSE;
17822 		tcp->tcp_hard_bound = B_TRUE;
17823 	}
17824 
17825 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
17826 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
17827 	    tcp->tcp_loopback_peer != NULL &&
17828 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
17829 		tcp_fuse_syncstr_enable_pair(tcp);
17830 	}
17831 
17832 	if (tcp->tcp_ka_enabled) {
17833 		tcp->tcp_ka_last_intrvl = 0;
17834 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17835 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17836 	}
17837 
17838 	/*
17839 	 * At this point, eager is fully established and will
17840 	 * have the following references -
17841 	 *
17842 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17843 	 * 1 reference for the squeue which will be dropped by the squeue as
17844 	 *	soon as this function returns.
17845 	 * There will be 1 additonal reference for being in classifier
17846 	 *	hash list provided something bad hasn't happened.
17847 	 */
17848 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17849 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17850 }
17851 
17852 /*
17853  * The function called through squeue to get behind listener's perimeter to
17854  * send a deffered conn_ind.
17855  */
17856 /* ARGSUSED */
17857 void
17858 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17859 {
17860 	conn_t	*connp = (conn_t *)arg;
17861 	tcp_t *listener = connp->conn_tcp;
17862 	struct T_conn_ind *conn_ind;
17863 	tcp_t *tcp;
17864 
17865 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
17866 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17867 	    conn_ind->OPT_length);
17868 
17869 	if (listener->tcp_state == TCPS_CLOSED ||
17870 	    TCP_IS_DETACHED(listener)) {
17871 		/*
17872 		 * If listener has closed, it would have caused a
17873 		 * a cleanup/blowoff to happen for the eager.
17874 		 *
17875 		 * We need to drop the ref on eager that was put
17876 		 * tcp_rput_data() before trying to send the conn_ind
17877 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17878 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17879 		 * listener is closed so we drop the ref.
17880 		 */
17881 		CONN_DEC_REF(tcp->tcp_connp);
17882 		freemsg(mp);
17883 		return;
17884 	}
17885 
17886 	tcp_ulp_newconn(connp, tcp->tcp_connp, mp);
17887 }
17888 
17889 /* ARGSUSED */
17890 static int
17891 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
17892 {
17893 	tcp_t *listener, *eager;
17894 	mblk_t *opt_mp;
17895 	struct tcp_options *tcpopt;
17896 
17897 	listener = lconnp->conn_tcp;
17898 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17899 	eager = econnp->conn_tcp;
17900 	ASSERT(eager->tcp_listener != NULL);
17901 
17902 	ASSERT(eager->tcp_rq != NULL);
17903 
17904 	/* If tcp_fused and sodirect enabled disable it */
17905 	if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
17906 		/* Fused, disable sodirect */
17907 		mutex_enter(eager->tcp_sodirect->sod_lockp);
17908 		SOD_DISABLE(eager->tcp_sodirect);
17909 		mutex_exit(eager->tcp_sodirect->sod_lockp);
17910 		eager->tcp_sodirect = NULL;
17911 	}
17912 
17913 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
17914 	if (opt_mp == NULL) {
17915 		return (-TPROTO);
17916 	}
17917 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
17918 	eager->tcp_issocket = B_TRUE;
17919 
17920 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17921 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17922 	ASSERT(econnp->conn_netstack ==
17923 	    listener->tcp_connp->conn_netstack);
17924 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
17925 
17926 	/* Put the ref for IP */
17927 	CONN_INC_REF(econnp);
17928 
17929 	/*
17930 	 * We should have minimum of 3 references on the conn
17931 	 * at this point. One each for TCP and IP and one for
17932 	 * the T_conn_ind that was sent up when the 3-way handshake
17933 	 * completed. In the normal case we would also have another
17934 	 * reference (making a total of 4) for the conn being in the
17935 	 * classifier hash list. However the eager could have received
17936 	 * an RST subsequently and tcp_closei_local could have removed
17937 	 * the eager from the classifier hash list, hence we can't
17938 	 * assert that reference.
17939 	 */
17940 	ASSERT(econnp->conn_ref >= 3);
17941 
17942 	opt_mp->b_datap->db_type = M_SETOPTS;
17943 	opt_mp->b_wptr += sizeof (struct tcp_options);
17944 
17945 	/*
17946 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17947 	 * from listener to acceptor.
17948 	 */
17949 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
17950 	tcpopt->to_flags = 0;
17951 
17952 	if (listener->tcp_bound_if != 0) {
17953 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
17954 		tcpopt->to_boundif = listener->tcp_bound_if;
17955 	}
17956 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17957 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
17958 	}
17959 
17960 	mutex_enter(&listener->tcp_eager_lock);
17961 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17962 
17963 		tcp_t *tail;
17964 		tcp_t *tcp;
17965 		mblk_t *mp1;
17966 
17967 		tcp = listener->tcp_eager_prev_q0;
17968 		/*
17969 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
17970 		 * deferred T_conn_ind queue. We need to get to the head
17971 		 * of the queue in order to send up T_conn_ind the same
17972 		 * order as how the 3WHS is completed.
17973 		 */
17974 		while (tcp != listener) {
17975 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17976 			    !tcp->tcp_kssl_pending)
17977 				break;
17978 			else
17979 				tcp = tcp->tcp_eager_prev_q0;
17980 		}
17981 		/* None of the pending eagers can be sent up now */
17982 		if (tcp == listener)
17983 			goto no_more_eagers;
17984 
17985 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17986 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17987 		/* Move from q0 to q */
17988 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17989 		listener->tcp_conn_req_cnt_q0--;
17990 		listener->tcp_conn_req_cnt_q++;
17991 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17992 		    tcp->tcp_eager_prev_q0;
17993 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17994 		    tcp->tcp_eager_next_q0;
17995 		tcp->tcp_eager_prev_q0 = NULL;
17996 		tcp->tcp_eager_next_q0 = NULL;
17997 		tcp->tcp_conn_def_q0 = B_FALSE;
17998 
17999 		/* Make sure the tcp isn't in the list of droppables */
18000 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18001 		    tcp->tcp_eager_prev_drop_q0 == NULL);
18002 
18003 		/*
18004 		 * Insert at end of the queue because sockfs sends
18005 		 * down T_CONN_RES in chronological order. Leaving
18006 		 * the older conn indications at front of the queue
18007 		 * helps reducing search time.
18008 		 */
18009 		tail = listener->tcp_eager_last_q;
18010 		if (tail != NULL) {
18011 			tail->tcp_eager_next_q = tcp;
18012 		} else {
18013 			listener->tcp_eager_next_q = tcp;
18014 		}
18015 		listener->tcp_eager_last_q = tcp;
18016 		tcp->tcp_eager_next_q = NULL;
18017 
18018 		/* Need to get inside the listener perimeter */
18019 		CONN_INC_REF(listener->tcp_connp);
18020 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
18021 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
18022 		    SQTAG_TCP_SEND_PENDING);
18023 	}
18024 no_more_eagers:
18025 	tcp_eager_unlink(eager);
18026 	mutex_exit(&listener->tcp_eager_lock);
18027 
18028 	/*
18029 	 * At this point, the eager is detached from the listener
18030 	 * but we still have an extra refs on eager (apart from the
18031 	 * usual tcp references). The ref was placed in tcp_rput_data
18032 	 * before sending the conn_ind in tcp_send_conn_ind.
18033 	 * The ref will be dropped in tcp_accept_finish().
18034 	 */
18035 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
18036 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
18037 	return (0);
18038 }
18039 
18040 int
18041 tcp_accept(sock_lower_handle_t lproto_handle,
18042     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
18043     cred_t *cr)
18044 {
18045 	conn_t *lconnp, *econnp;
18046 	tcp_t *listener, *eager;
18047 	tcp_stack_t	*tcps;
18048 
18049 	lconnp = (conn_t *)lproto_handle;
18050 	listener = lconnp->conn_tcp;
18051 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18052 	econnp = (conn_t *)eproto_handle;
18053 	eager = econnp->conn_tcp;
18054 	ASSERT(eager->tcp_listener != NULL);
18055 	tcps = eager->tcp_tcps;
18056 
18057 	/*
18058 	 * It is OK to manipulate these fields outside the eager's squeue
18059 	 * because they will not start being used until tcp_accept_finish
18060 	 * has been called.
18061 	 */
18062 	ASSERT(lconnp->conn_upper_handle != NULL);
18063 	ASSERT(econnp->conn_upper_handle == NULL);
18064 	econnp->conn_upper_handle = sock_handle;
18065 	econnp->conn_upcalls = lconnp->conn_upcalls;
18066 	ASSERT(IPCL_IS_NONSTR(econnp));
18067 	/*
18068 	 * Create helper stream if it is a non-TPI TCP connection.
18069 	 */
18070 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
18071 		ip1dbg(("tcp_accept: create of IP helper stream"
18072 		    " failed\n"));
18073 		return (EPROTO);
18074 	}
18075 	eager->tcp_rq = econnp->conn_rq;
18076 	eager->tcp_wq = econnp->conn_wq;
18077 
18078 	ASSERT(eager->tcp_rq != NULL);
18079 
18080 	eager->tcp_sodirect = SOD_SOTOSODP(sock_handle);
18081 	return (tcp_accept_common(lconnp, econnp, cr));
18082 }
18083 
18084 
18085 /*
18086  * This is the STREAMS entry point for T_CONN_RES coming down on
18087  * Acceptor STREAM when  sockfs listener does accept processing.
18088  * Read the block comment on top of tcp_conn_request().
18089  */
18090 void
18091 tcp_tpi_accept(queue_t *q, mblk_t *mp)
18092 {
18093 	queue_t *rq = RD(q);
18094 	struct T_conn_res *conn_res;
18095 	tcp_t *eager;
18096 	tcp_t *listener;
18097 	struct T_ok_ack *ok;
18098 	t_scalar_t PRIM_type;
18099 	conn_t *econnp;
18100 	cred_t *cr;
18101 
18102 	ASSERT(DB_TYPE(mp) == M_PROTO);
18103 
18104 	/*
18105 	 * All Solaris components should pass a db_credp
18106 	 * for this TPI message, hence we ASSERT.
18107 	 * But in case there is some other M_PROTO that looks
18108 	 * like a TPI message sent by some other kernel
18109 	 * component, we check and return an error.
18110 	 */
18111 	cr = msg_getcred(mp, NULL);
18112 	ASSERT(cr != NULL);
18113 	if (cr == NULL) {
18114 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
18115 		if (mp != NULL)
18116 			putnext(rq, mp);
18117 		return;
18118 	}
18119 	conn_res = (struct T_conn_res *)mp->b_rptr;
18120 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18121 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18122 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18123 		if (mp != NULL)
18124 			putnext(rq, mp);
18125 		return;
18126 	}
18127 	switch (conn_res->PRIM_type) {
18128 	case O_T_CONN_RES:
18129 	case T_CONN_RES:
18130 		/*
18131 		 * We pass up an err ack if allocb fails. This will
18132 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18133 		 * tcp_eager_blowoff to be called. sockfs will then call
18134 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18135 		 * we need to do the allocb up here because we have to
18136 		 * make sure rq->q_qinfo->qi_qclose still points to the
18137 		 * correct function (tcp_tpi_close_accept) in case allocb
18138 		 * fails.
18139 		 */
18140 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18141 		    &eager, conn_res->OPT_length);
18142 		PRIM_type = conn_res->PRIM_type;
18143 		mp->b_datap->db_type = M_PCPROTO;
18144 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18145 		ok = (struct T_ok_ack *)mp->b_rptr;
18146 		ok->PRIM_type = T_OK_ACK;
18147 		ok->CORRECT_prim = PRIM_type;
18148 		econnp = eager->tcp_connp;
18149 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18150 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18151 		eager->tcp_rq = rq;
18152 		eager->tcp_wq = q;
18153 		rq->q_ptr = econnp;
18154 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18155 		q->q_ptr = econnp;
18156 		q->q_qinfo = &tcp_winit;
18157 		listener = eager->tcp_listener;
18158 
18159 		/*
18160 		 * TCP is _D_SODIRECT and sockfs is directly above so
18161 		 * save shared sodirect_t pointer (if any).
18162 		 */
18163 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18164 		if (tcp_accept_common(listener->tcp_connp,
18165 		    econnp, cr) < 0) {
18166 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18167 			if (mp != NULL)
18168 				putnext(rq, mp);
18169 			return;
18170 		}
18171 
18172 		/*
18173 		 * Send the new local address also up to sockfs. There
18174 		 * should already be enough space in the mp that came
18175 		 * down from soaccept().
18176 		 */
18177 		if (eager->tcp_family == AF_INET) {
18178 			sin_t *sin;
18179 
18180 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18181 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18182 			sin = (sin_t *)mp->b_wptr;
18183 			mp->b_wptr += sizeof (sin_t);
18184 			sin->sin_family = AF_INET;
18185 			sin->sin_port = eager->tcp_lport;
18186 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18187 		} else {
18188 			sin6_t *sin6;
18189 
18190 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18191 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18192 			sin6 = (sin6_t *)mp->b_wptr;
18193 			mp->b_wptr += sizeof (sin6_t);
18194 			sin6->sin6_family = AF_INET6;
18195 			sin6->sin6_port = eager->tcp_lport;
18196 			if (eager->tcp_ipversion == IPV4_VERSION) {
18197 				sin6->sin6_flowinfo = 0;
18198 				IN6_IPADDR_TO_V4MAPPED(
18199 				    eager->tcp_ipha->ipha_src,
18200 				    &sin6->sin6_addr);
18201 			} else {
18202 				ASSERT(eager->tcp_ip6h != NULL);
18203 				sin6->sin6_flowinfo =
18204 				    eager->tcp_ip6h->ip6_vcf &
18205 				    ~IPV6_VERS_AND_FLOW_MASK;
18206 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18207 			}
18208 			sin6->sin6_scope_id = 0;
18209 			sin6->__sin6_src_id = 0;
18210 		}
18211 
18212 		putnext(rq, mp);
18213 		return;
18214 	default:
18215 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18216 		if (mp != NULL)
18217 			putnext(rq, mp);
18218 		return;
18219 	}
18220 }
18221 
18222 static int
18223 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18224 {
18225 	sin_t *sin = (sin_t *)sa;
18226 	sin6_t *sin6 = (sin6_t *)sa;
18227 
18228 	switch (tcp->tcp_family) {
18229 	case AF_INET:
18230 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18231 
18232 		if (*salenp < sizeof (sin_t))
18233 			return (EINVAL);
18234 
18235 		*sin = sin_null;
18236 		sin->sin_family = AF_INET;
18237 		if (tcp->tcp_state >= TCPS_BOUND) {
18238 			sin->sin_port = tcp->tcp_lport;
18239 			sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18240 		}
18241 		*salenp = sizeof (sin_t);
18242 		break;
18243 
18244 	case AF_INET6:
18245 		if (*salenp < sizeof (sin6_t))
18246 			return (EINVAL);
18247 
18248 		*sin6 = sin6_null;
18249 		sin6->sin6_family = AF_INET6;
18250 		if (tcp->tcp_state >= TCPS_BOUND) {
18251 			sin6->sin6_port = tcp->tcp_lport;
18252 			if (tcp->tcp_ipversion == IPV4_VERSION) {
18253 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18254 				    &sin6->sin6_addr);
18255 			} else {
18256 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18257 			}
18258 		}
18259 		*salenp = sizeof (sin6_t);
18260 		break;
18261 	}
18262 
18263 	return (0);
18264 }
18265 
18266 static int
18267 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18268 {
18269 	sin_t *sin = (sin_t *)sa;
18270 	sin6_t *sin6 = (sin6_t *)sa;
18271 
18272 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18273 		return (ENOTCONN);
18274 
18275 	switch (tcp->tcp_family) {
18276 	case AF_INET:
18277 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18278 
18279 		if (*salenp < sizeof (sin_t))
18280 			return (EINVAL);
18281 
18282 		*sin = sin_null;
18283 		sin->sin_family = AF_INET;
18284 		sin->sin_port = tcp->tcp_fport;
18285 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18286 		    sin->sin_addr.s_addr);
18287 		*salenp = sizeof (sin_t);
18288 		break;
18289 
18290 	case AF_INET6:
18291 		if (*salenp < sizeof (sin6_t))
18292 			return (EINVAL);
18293 
18294 		*sin6 = sin6_null;
18295 		sin6->sin6_family = AF_INET6;
18296 		sin6->sin6_port = tcp->tcp_fport;
18297 		sin6->sin6_addr = tcp->tcp_remote_v6;
18298 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18299 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18300 			    ~IPV6_VERS_AND_FLOW_MASK;
18301 		}
18302 		*salenp = sizeof (sin6_t);
18303 		break;
18304 	}
18305 
18306 	return (0);
18307 }
18308 
18309 /*
18310  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18311  */
18312 static void
18313 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18314 {
18315 	void	*data;
18316 	mblk_t	*datamp = mp->b_cont;
18317 	tcp_t	*tcp = Q_TO_TCP(q);
18318 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18319 
18320 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18321 		cmdp->cb_error = EPROTO;
18322 		qreply(q, mp);
18323 		return;
18324 	}
18325 
18326 	data = datamp->b_rptr;
18327 
18328 	switch (cmdp->cb_cmd) {
18329 	case TI_GETPEERNAME:
18330 		cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len);
18331 		break;
18332 	case TI_GETMYNAME:
18333 		cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len);
18334 		break;
18335 	default:
18336 		cmdp->cb_error = EINVAL;
18337 		break;
18338 	}
18339 
18340 	qreply(q, mp);
18341 }
18342 
18343 void
18344 tcp_wput(queue_t *q, mblk_t *mp)
18345 {
18346 	conn_t	*connp = Q_TO_CONN(q);
18347 	tcp_t	*tcp;
18348 	void (*output_proc)();
18349 	t_scalar_t type;
18350 	uchar_t *rptr;
18351 	struct iocblk	*iocp;
18352 	size_t size;
18353 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18354 
18355 	ASSERT(connp->conn_ref >= 2);
18356 
18357 	switch (DB_TYPE(mp)) {
18358 	case M_DATA:
18359 		tcp = connp->conn_tcp;
18360 		ASSERT(tcp != NULL);
18361 
18362 		size = msgdsize(mp);
18363 
18364 		mutex_enter(&tcp->tcp_non_sq_lock);
18365 		tcp->tcp_squeue_bytes += size;
18366 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18367 			tcp_setqfull(tcp);
18368 		}
18369 		mutex_exit(&tcp->tcp_non_sq_lock);
18370 
18371 		CONN_INC_REF(connp);
18372 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
18373 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
18374 		return;
18375 
18376 	case M_CMD:
18377 		tcp_wput_cmdblk(q, mp);
18378 		return;
18379 
18380 	case M_PROTO:
18381 	case M_PCPROTO:
18382 		/*
18383 		 * if it is a snmp message, don't get behind the squeue
18384 		 */
18385 		tcp = connp->conn_tcp;
18386 		rptr = mp->b_rptr;
18387 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18388 			type = ((union T_primitives *)rptr)->type;
18389 		} else {
18390 			if (tcp->tcp_debug) {
18391 				(void) strlog(TCP_MOD_ID, 0, 1,
18392 				    SL_ERROR|SL_TRACE,
18393 				    "tcp_wput_proto, dropping one...");
18394 			}
18395 			freemsg(mp);
18396 			return;
18397 		}
18398 		if (type == T_SVR4_OPTMGMT_REQ) {
18399 			/*
18400 			 * All Solaris components should pass a db_credp
18401 			 * for this TPI message, hence we ASSERT.
18402 			 * But in case there is some other M_PROTO that looks
18403 			 * like a TPI message sent by some other kernel
18404 			 * component, we check and return an error.
18405 			 */
18406 			cred_t	*cr = msg_getcred(mp, NULL);
18407 
18408 			ASSERT(cr != NULL);
18409 			if (cr == NULL) {
18410 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
18411 				return;
18412 			}
18413 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18414 			    cr)) {
18415 				/*
18416 				 * This was a SNMP request
18417 				 */
18418 				return;
18419 			} else {
18420 				output_proc = tcp_wput_proto;
18421 			}
18422 		} else {
18423 			output_proc = tcp_wput_proto;
18424 		}
18425 		break;
18426 	case M_IOCTL:
18427 		/*
18428 		 * Most ioctls can be processed right away without going via
18429 		 * squeues - process them right here. Those that do require
18430 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18431 		 * are processed by tcp_wput_ioctl().
18432 		 */
18433 		iocp = (struct iocblk *)mp->b_rptr;
18434 		tcp = connp->conn_tcp;
18435 
18436 		switch (iocp->ioc_cmd) {
18437 		case TCP_IOC_ABORT_CONN:
18438 			tcp_ioctl_abort_conn(q, mp);
18439 			return;
18440 		case TI_GETPEERNAME:
18441 		case TI_GETMYNAME:
18442 			mi_copyin(q, mp, NULL,
18443 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18444 			return;
18445 		case ND_SET:
18446 			/* nd_getset does the necessary checks */
18447 		case ND_GET:
18448 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18449 				CALL_IP_WPUT(connp, q, mp);
18450 				return;
18451 			}
18452 			qreply(q, mp);
18453 			return;
18454 		case TCP_IOC_DEFAULT_Q:
18455 			/*
18456 			 * Wants to be the default wq. Check the credentials
18457 			 * first, the rest is executed via squeue.
18458 			 */
18459 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18460 				iocp->ioc_error = EPERM;
18461 				iocp->ioc_count = 0;
18462 				mp->b_datap->db_type = M_IOCACK;
18463 				qreply(q, mp);
18464 				return;
18465 			}
18466 			output_proc = tcp_wput_ioctl;
18467 			break;
18468 		default:
18469 			output_proc = tcp_wput_ioctl;
18470 			break;
18471 		}
18472 		break;
18473 	default:
18474 		output_proc = tcp_wput_nondata;
18475 		break;
18476 	}
18477 
18478 	CONN_INC_REF(connp);
18479 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18480 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18481 }
18482 
18483 /*
18484  * Initial STREAMS write side put() procedure for sockets. It tries to
18485  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18486  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18487  * are handled by tcp_wput() as usual.
18488  *
18489  * All further messages will also be handled by tcp_wput() because we cannot
18490  * be sure that the above short cut is safe later.
18491  */
18492 static void
18493 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18494 {
18495 	conn_t			*connp = Q_TO_CONN(wq);
18496 	tcp_t			*tcp = connp->conn_tcp;
18497 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18498 
18499 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18500 	wq->q_qinfo = &tcp_winit;
18501 
18502 	ASSERT(IPCL_IS_TCP(connp));
18503 	ASSERT(TCP_IS_SOCKET(tcp));
18504 
18505 	if (DB_TYPE(mp) == M_PCPROTO &&
18506 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18507 	    car->PRIM_type == T_CAPABILITY_REQ) {
18508 		tcp_capability_req(tcp, mp);
18509 		return;
18510 	}
18511 
18512 	tcp_wput(wq, mp);
18513 }
18514 
18515 /* ARGSUSED */
18516 static void
18517 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18518 {
18519 #ifdef DEBUG
18520 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18521 #endif
18522 	freemsg(mp);
18523 }
18524 
18525 static boolean_t
18526 tcp_zcopy_check(tcp_t *tcp)
18527 {
18528 	conn_t	*connp = tcp->tcp_connp;
18529 	ire_t	*ire;
18530 	boolean_t	zc_enabled = B_FALSE;
18531 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18532 
18533 	if (do_tcpzcopy == 2)
18534 		zc_enabled = B_TRUE;
18535 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18536 	    IPCL_IS_CONNECTED(connp) &&
18537 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18538 	    connp->conn_dontroute == 0 &&
18539 	    !connp->conn_nexthop_set &&
18540 	    connp->conn_outgoing_ill == NULL &&
18541 	    do_tcpzcopy == 1) {
18542 		/*
18543 		 * the checks above  closely resemble the fast path checks
18544 		 * in tcp_send_data().
18545 		 */
18546 		mutex_enter(&connp->conn_lock);
18547 		ire = connp->conn_ire_cache;
18548 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18549 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18550 			IRE_REFHOLD(ire);
18551 			if (ire->ire_stq != NULL) {
18552 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18553 
18554 				zc_enabled = ill && (ill->ill_capabilities &
18555 				    ILL_CAPAB_ZEROCOPY) &&
18556 				    (ill->ill_zerocopy_capab->
18557 				    ill_zerocopy_flags != 0);
18558 			}
18559 			IRE_REFRELE(ire);
18560 		}
18561 		mutex_exit(&connp->conn_lock);
18562 	}
18563 	tcp->tcp_snd_zcopy_on = zc_enabled;
18564 	if (!TCP_IS_DETACHED(tcp)) {
18565 		if (zc_enabled) {
18566 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18567 			    ZCVMSAFE);
18568 			TCP_STAT(tcps, tcp_zcopy_on);
18569 		} else {
18570 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18571 			    ZCVMUNSAFE);
18572 			TCP_STAT(tcps, tcp_zcopy_off);
18573 		}
18574 	}
18575 	return (zc_enabled);
18576 }
18577 
18578 static mblk_t *
18579 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18580 {
18581 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18582 
18583 	if (do_tcpzcopy == 2)
18584 		return (bp);
18585 	else if (tcp->tcp_snd_zcopy_on) {
18586 		tcp->tcp_snd_zcopy_on = B_FALSE;
18587 		if (!TCP_IS_DETACHED(tcp)) {
18588 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
18589 			    ZCVMUNSAFE);
18590 			TCP_STAT(tcps, tcp_zcopy_disable);
18591 		}
18592 	}
18593 	return (tcp_zcopy_backoff(tcp, bp, 0));
18594 }
18595 
18596 /*
18597  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18598  * the original desballoca'ed segmapped mblk.
18599  */
18600 static mblk_t *
18601 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18602 {
18603 	mblk_t *head, *tail, *nbp;
18604 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18605 
18606 	if (IS_VMLOANED_MBLK(bp)) {
18607 		TCP_STAT(tcps, tcp_zcopy_backoff);
18608 		if ((head = copyb(bp)) == NULL) {
18609 			/* fail to backoff; leave it for the next backoff */
18610 			tcp->tcp_xmit_zc_clean = B_FALSE;
18611 			return (bp);
18612 		}
18613 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18614 			if (fix_xmitlist)
18615 				tcp_zcopy_notify(tcp);
18616 			else
18617 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18618 		}
18619 		nbp = bp->b_cont;
18620 		if (fix_xmitlist) {
18621 			head->b_prev = bp->b_prev;
18622 			head->b_next = bp->b_next;
18623 			if (tcp->tcp_xmit_tail == bp)
18624 				tcp->tcp_xmit_tail = head;
18625 		}
18626 		bp->b_next = NULL;
18627 		bp->b_prev = NULL;
18628 		freeb(bp);
18629 	} else {
18630 		head = bp;
18631 		nbp = bp->b_cont;
18632 	}
18633 	tail = head;
18634 	while (nbp) {
18635 		if (IS_VMLOANED_MBLK(nbp)) {
18636 			TCP_STAT(tcps, tcp_zcopy_backoff);
18637 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18638 				tcp->tcp_xmit_zc_clean = B_FALSE;
18639 				tail->b_cont = nbp;
18640 				return (head);
18641 			}
18642 			tail = tail->b_cont;
18643 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18644 				if (fix_xmitlist)
18645 					tcp_zcopy_notify(tcp);
18646 				else
18647 					tail->b_datap->db_struioflag |=
18648 					    STRUIO_ZCNOTIFY;
18649 			}
18650 			bp = nbp;
18651 			nbp = nbp->b_cont;
18652 			if (fix_xmitlist) {
18653 				tail->b_prev = bp->b_prev;
18654 				tail->b_next = bp->b_next;
18655 				if (tcp->tcp_xmit_tail == bp)
18656 					tcp->tcp_xmit_tail = tail;
18657 			}
18658 			bp->b_next = NULL;
18659 			bp->b_prev = NULL;
18660 			freeb(bp);
18661 		} else {
18662 			tail->b_cont = nbp;
18663 			tail = nbp;
18664 			nbp = nbp->b_cont;
18665 		}
18666 	}
18667 	if (fix_xmitlist) {
18668 		tcp->tcp_xmit_last = tail;
18669 		tcp->tcp_xmit_zc_clean = B_TRUE;
18670 	}
18671 	return (head);
18672 }
18673 
18674 static void
18675 tcp_zcopy_notify(tcp_t *tcp)
18676 {
18677 	struct stdata	*stp;
18678 	conn_t *connp;
18679 
18680 	if (tcp->tcp_detached)
18681 		return;
18682 	connp = tcp->tcp_connp;
18683 	if (IPCL_IS_NONSTR(connp)) {
18684 		(*connp->conn_upcalls->su_zcopy_notify)
18685 		    (connp->conn_upper_handle);
18686 		return;
18687 	}
18688 	stp = STREAM(tcp->tcp_rq);
18689 	mutex_enter(&stp->sd_lock);
18690 	stp->sd_flag |= STZCNOTIFY;
18691 	cv_broadcast(&stp->sd_zcopy_wait);
18692 	mutex_exit(&stp->sd_lock);
18693 }
18694 
18695 static boolean_t
18696 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18697 {
18698 	ire_t	*ire;
18699 	conn_t	*connp = tcp->tcp_connp;
18700 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18701 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18702 
18703 	mutex_enter(&connp->conn_lock);
18704 	ire = connp->conn_ire_cache;
18705 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18706 
18707 	if ((ire != NULL) &&
18708 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18709 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18710 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18711 		IRE_REFHOLD(ire);
18712 		mutex_exit(&connp->conn_lock);
18713 	} else {
18714 		boolean_t cached = B_FALSE;
18715 		ts_label_t *tsl;
18716 
18717 		/* force a recheck later on */
18718 		tcp->tcp_ire_ill_check_done = B_FALSE;
18719 
18720 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18721 		connp->conn_ire_cache = NULL;
18722 		mutex_exit(&connp->conn_lock);
18723 
18724 		if (ire != NULL)
18725 			IRE_REFRELE_NOTR(ire);
18726 
18727 		tsl = crgetlabel(CONN_CRED(connp));
18728 		ire = (dst ?
18729 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18730 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18731 		    connp->conn_zoneid, tsl, ipst));
18732 
18733 		if (ire == NULL) {
18734 			TCP_STAT(tcps, tcp_ire_null);
18735 			return (B_FALSE);
18736 		}
18737 
18738 		IRE_REFHOLD_NOTR(ire);
18739 
18740 		mutex_enter(&connp->conn_lock);
18741 		if (CONN_CACHE_IRE(connp)) {
18742 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18743 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18744 				TCP_CHECK_IREINFO(tcp, ire);
18745 				connp->conn_ire_cache = ire;
18746 				cached = B_TRUE;
18747 			}
18748 			rw_exit(&ire->ire_bucket->irb_lock);
18749 		}
18750 		mutex_exit(&connp->conn_lock);
18751 
18752 		/*
18753 		 * We can continue to use the ire but since it was
18754 		 * not cached, we should drop the extra reference.
18755 		 */
18756 		if (!cached)
18757 			IRE_REFRELE_NOTR(ire);
18758 
18759 		/*
18760 		 * Rampart note: no need to select a new label here, since
18761 		 * labels are not allowed to change during the life of a TCP
18762 		 * connection.
18763 		 */
18764 	}
18765 
18766 	*irep = ire;
18767 
18768 	return (B_TRUE);
18769 }
18770 
18771 /*
18772  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18773  *
18774  * 0 = success;
18775  * 1 = failed to find ire and ill.
18776  */
18777 static boolean_t
18778 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18779 {
18780 	ipha_t		*ipha;
18781 	ipaddr_t	dst;
18782 	ire_t		*ire;
18783 	ill_t		*ill;
18784 	mblk_t		*ire_fp_mp;
18785 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18786 
18787 	if (mp != NULL)
18788 		ipha = (ipha_t *)mp->b_rptr;
18789 	else
18790 		ipha = tcp->tcp_ipha;
18791 	dst = ipha->ipha_dst;
18792 
18793 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18794 		return (B_FALSE);
18795 
18796 	if ((ire->ire_flags & RTF_MULTIRT) ||
18797 	    (ire->ire_stq == NULL) ||
18798 	    (ire->ire_nce == NULL) ||
18799 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18800 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18801 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18802 		TCP_STAT(tcps, tcp_ip_ire_send);
18803 		IRE_REFRELE(ire);
18804 		return (B_FALSE);
18805 	}
18806 
18807 	ill = ire_to_ill(ire);
18808 	ASSERT(ill != NULL);
18809 
18810 	if (!tcp->tcp_ire_ill_check_done) {
18811 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18812 		tcp->tcp_ire_ill_check_done = B_TRUE;
18813 	}
18814 
18815 	*irep = ire;
18816 	*illp = ill;
18817 
18818 	return (B_TRUE);
18819 }
18820 
18821 static void
18822 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18823 {
18824 	ipha_t		*ipha;
18825 	ipaddr_t	src;
18826 	ipaddr_t	dst;
18827 	uint32_t	cksum;
18828 	ire_t		*ire;
18829 	uint16_t	*up;
18830 	ill_t		*ill;
18831 	conn_t		*connp = tcp->tcp_connp;
18832 	uint32_t	hcksum_txflags = 0;
18833 	mblk_t		*ire_fp_mp;
18834 	uint_t		ire_fp_mp_len;
18835 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18836 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18837 	cred_t		*cr;
18838 	pid_t		cpid;
18839 
18840 	ASSERT(DB_TYPE(mp) == M_DATA);
18841 
18842 	/*
18843 	 * Here we need to handle the overloading of the cred_t for
18844 	 * both getpeerucred and TX.
18845 	 * If this is a SYN then the caller already set db_credp so
18846 	 * that getpeerucred will work. But if TX is in use we might have
18847 	 * a conn_peercred which is different, and we need to use that cred
18848 	 * to make TX use the correct label and label dependent route.
18849 	 */
18850 	if (is_system_labeled()) {
18851 		cr = msg_getcred(mp, &cpid);
18852 		if (cr == NULL || connp->conn_peercred != NULL)
18853 			mblk_setcred(mp, CONN_CRED(connp), cpid);
18854 	}
18855 
18856 	ipha = (ipha_t *)mp->b_rptr;
18857 	src = ipha->ipha_src;
18858 	dst = ipha->ipha_dst;
18859 
18860 	ASSERT(q != NULL);
18861 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
18862 
18863 	/*
18864 	 * Drop off fast path for IPv6 and also if options are present or
18865 	 * we need to resolve a TS label.
18866 	 */
18867 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18868 	    !IPCL_IS_CONNECTED(connp) ||
18869 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18870 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18871 	    !connp->conn_ulp_labeled ||
18872 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18873 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18874 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18875 		if (tcp->tcp_snd_zcopy_aware)
18876 			mp = tcp_zcopy_disable(tcp, mp);
18877 		TCP_STAT(tcps, tcp_ip_send);
18878 		CALL_IP_WPUT(connp, q, mp);
18879 		return;
18880 	}
18881 
18882 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18883 		if (tcp->tcp_snd_zcopy_aware)
18884 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18885 		CALL_IP_WPUT(connp, q, mp);
18886 		return;
18887 	}
18888 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18889 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18890 
18891 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18892 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18893 #ifndef _BIG_ENDIAN
18894 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18895 #endif
18896 
18897 	/*
18898 	 * Check to see if we need to re-enable LSO/MDT for this connection
18899 	 * because it was previously disabled due to changes in the ill;
18900 	 * note that by doing it here, this re-enabling only applies when
18901 	 * the packet is not dispatched through CALL_IP_WPUT().
18902 	 *
18903 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18904 	 * case, since that's how we ended up here.  For IPv6, we do the
18905 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18906 	 */
18907 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18908 		/*
18909 		 * Restore LSO for this connection, so that next time around
18910 		 * it is eligible to go through tcp_lsosend() path again.
18911 		 */
18912 		TCP_STAT(tcps, tcp_lso_enabled);
18913 		tcp->tcp_lso = B_TRUE;
18914 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18915 		    "interface %s\n", (void *)connp, ill->ill_name));
18916 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18917 		/*
18918 		 * Restore MDT for this connection, so that next time around
18919 		 * it is eligible to go through tcp_multisend() path again.
18920 		 */
18921 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18922 		tcp->tcp_mdt = B_TRUE;
18923 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18924 		    "interface %s\n", (void *)connp, ill->ill_name));
18925 	}
18926 
18927 	if (tcp->tcp_snd_zcopy_aware) {
18928 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18929 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18930 			mp = tcp_zcopy_disable(tcp, mp);
18931 		/*
18932 		 * we shouldn't need to reset ipha as the mp containing
18933 		 * ipha should never be a zero-copy mp.
18934 		 */
18935 	}
18936 
18937 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18938 		ASSERT(ill->ill_hcksum_capab != NULL);
18939 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18940 	}
18941 
18942 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18943 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18944 
18945 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18946 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18947 
18948 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18949 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18950 
18951 	/* Software checksum? */
18952 	if (DB_CKSUMFLAGS(mp) == 0) {
18953 		TCP_STAT(tcps, tcp_out_sw_cksum);
18954 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18955 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18956 	}
18957 
18958 	/* Calculate IP header checksum if hardware isn't capable */
18959 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18960 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18961 		    ((uint16_t *)ipha)[4]);
18962 	}
18963 
18964 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18965 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18966 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18967 
18968 	UPDATE_OB_PKT_COUNT(ire);
18969 	ire->ire_last_used_time = lbolt;
18970 
18971 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18972 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18973 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18974 	    ntohs(ipha->ipha_length));
18975 
18976 	DTRACE_PROBE4(ip4__physical__out__start,
18977 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
18978 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
18979 	    ipst->ips_ipv4firewall_physical_out,
18980 	    NULL, ill, ipha, mp, mp, 0, ipst);
18981 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18982 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
18983 
18984 	if (mp != NULL) {
18985 		if (ipst->ips_ipobs_enabled) {
18986 			zoneid_t szone;
18987 
18988 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
18989 			    ipst, ALL_ZONES);
18990 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
18991 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
18992 		}
18993 
18994 		ILL_SEND_TX(ill, ire, connp, mp, 0, NULL);
18995 	}
18996 
18997 	IRE_REFRELE(ire);
18998 }
18999 
19000 /*
19001  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19002  * if the receiver shrinks the window, i.e. moves the right window to the
19003  * left, the we should not send new data, but should retransmit normally the
19004  * old unacked data between suna and suna + swnd. We might has sent data
19005  * that is now outside the new window, pretend that we didn't send  it.
19006  */
19007 static void
19008 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19009 {
19010 	uint32_t	snxt = tcp->tcp_snxt;
19011 	mblk_t		*xmit_tail;
19012 	int32_t		offset;
19013 
19014 	ASSERT(shrunk_count > 0);
19015 
19016 	/* Pretend we didn't send the data outside the window */
19017 	snxt -= shrunk_count;
19018 
19019 	/* Get the mblk and the offset in it per the shrunk window */
19020 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19021 
19022 	ASSERT(xmit_tail != NULL);
19023 
19024 	/* Reset all the values per the now shrunk window */
19025 	tcp->tcp_snxt = snxt;
19026 	tcp->tcp_xmit_tail = xmit_tail;
19027 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19028 	    offset;
19029 	tcp->tcp_unsent += shrunk_count;
19030 
19031 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19032 		/*
19033 		 * Make sure the timer is running so that we will probe a zero
19034 		 * window.
19035 		 */
19036 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19037 }
19038 
19039 
19040 /*
19041  * The TCP normal data output path.
19042  * NOTE: the logic of the fast path is duplicated from this function.
19043  */
19044 static void
19045 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19046 {
19047 	int		len;
19048 	mblk_t		*local_time;
19049 	mblk_t		*mp1;
19050 	uint32_t	snxt;
19051 	int		tail_unsent;
19052 	int		tcpstate;
19053 	int		usable = 0;
19054 	mblk_t		*xmit_tail;
19055 	queue_t		*q = tcp->tcp_wq;
19056 	int32_t		mss;
19057 	int32_t		num_sack_blk = 0;
19058 	int32_t		tcp_hdr_len;
19059 	int32_t		tcp_tcp_hdr_len;
19060 	int		mdt_thres;
19061 	int		rc;
19062 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19063 	ip_stack_t	*ipst;
19064 
19065 	tcpstate = tcp->tcp_state;
19066 	if (mp == NULL) {
19067 		/*
19068 		 * tcp_wput_data() with NULL mp should only be called when
19069 		 * there is unsent data.
19070 		 */
19071 		ASSERT(tcp->tcp_unsent > 0);
19072 		/* Really tacky... but we need this for detached closes. */
19073 		len = tcp->tcp_unsent;
19074 		goto data_null;
19075 	}
19076 
19077 #if CCS_STATS
19078 	wrw_stats.tot.count++;
19079 	wrw_stats.tot.bytes += msgdsize(mp);
19080 #endif
19081 	ASSERT(mp->b_datap->db_type == M_DATA);
19082 	/*
19083 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19084 	 * or before a connection attempt has begun.
19085 	 */
19086 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19087 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19088 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19089 #ifdef DEBUG
19090 			cmn_err(CE_WARN,
19091 			    "tcp_wput_data: data after ordrel, %s",
19092 			    tcp_display(tcp, NULL,
19093 			    DISP_ADDR_AND_PORT));
19094 #else
19095 			if (tcp->tcp_debug) {
19096 				(void) strlog(TCP_MOD_ID, 0, 1,
19097 				    SL_TRACE|SL_ERROR,
19098 				    "tcp_wput_data: data after ordrel, %s\n",
19099 				    tcp_display(tcp, NULL,
19100 				    DISP_ADDR_AND_PORT));
19101 			}
19102 #endif /* DEBUG */
19103 		}
19104 		if (tcp->tcp_snd_zcopy_aware &&
19105 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19106 			tcp_zcopy_notify(tcp);
19107 		freemsg(mp);
19108 		mutex_enter(&tcp->tcp_non_sq_lock);
19109 		if (tcp->tcp_flow_stopped &&
19110 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19111 			tcp_clrqfull(tcp);
19112 		}
19113 		mutex_exit(&tcp->tcp_non_sq_lock);
19114 		return;
19115 	}
19116 
19117 	/* Strip empties */
19118 	for (;;) {
19119 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19120 		    (uintptr_t)INT_MAX);
19121 		len = (int)(mp->b_wptr - mp->b_rptr);
19122 		if (len > 0)
19123 			break;
19124 		mp1 = mp;
19125 		mp = mp->b_cont;
19126 		freeb(mp1);
19127 		if (!mp) {
19128 			return;
19129 		}
19130 	}
19131 
19132 	/* If we are the first on the list ... */
19133 	if (tcp->tcp_xmit_head == NULL) {
19134 		tcp->tcp_xmit_head = mp;
19135 		tcp->tcp_xmit_tail = mp;
19136 		tcp->tcp_xmit_tail_unsent = len;
19137 	} else {
19138 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19139 		struct datab *dp;
19140 
19141 		mp1 = tcp->tcp_xmit_last;
19142 		if (len < tcp_tx_pull_len &&
19143 		    (dp = mp1->b_datap)->db_ref == 1 &&
19144 		    dp->db_lim - mp1->b_wptr >= len) {
19145 			ASSERT(len > 0);
19146 			ASSERT(!mp1->b_cont);
19147 			if (len == 1) {
19148 				*mp1->b_wptr++ = *mp->b_rptr;
19149 			} else {
19150 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19151 				mp1->b_wptr += len;
19152 			}
19153 			if (mp1 == tcp->tcp_xmit_tail)
19154 				tcp->tcp_xmit_tail_unsent += len;
19155 			mp1->b_cont = mp->b_cont;
19156 			if (tcp->tcp_snd_zcopy_aware &&
19157 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19158 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19159 			freeb(mp);
19160 			mp = mp1;
19161 		} else {
19162 			tcp->tcp_xmit_last->b_cont = mp;
19163 		}
19164 		len += tcp->tcp_unsent;
19165 	}
19166 
19167 	/* Tack on however many more positive length mblks we have */
19168 	if ((mp1 = mp->b_cont) != NULL) {
19169 		do {
19170 			int tlen;
19171 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19172 			    (uintptr_t)INT_MAX);
19173 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19174 			if (tlen <= 0) {
19175 				mp->b_cont = mp1->b_cont;
19176 				freeb(mp1);
19177 			} else {
19178 				len += tlen;
19179 				mp = mp1;
19180 			}
19181 		} while ((mp1 = mp->b_cont) != NULL);
19182 	}
19183 	tcp->tcp_xmit_last = mp;
19184 	tcp->tcp_unsent = len;
19185 
19186 	if (urgent)
19187 		usable = 1;
19188 
19189 data_null:
19190 	snxt = tcp->tcp_snxt;
19191 	xmit_tail = tcp->tcp_xmit_tail;
19192 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19193 
19194 	/*
19195 	 * Note that tcp_mss has been adjusted to take into account the
19196 	 * timestamp option if applicable.  Because SACK options do not
19197 	 * appear in every TCP segments and they are of variable lengths,
19198 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19199 	 * the actual segment length when we need to send a segment which
19200 	 * includes SACK options.
19201 	 */
19202 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19203 		int32_t	opt_len;
19204 
19205 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19206 		    tcp->tcp_num_sack_blk);
19207 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19208 		    2 + TCPOPT_HEADER_LEN;
19209 		mss = tcp->tcp_mss - opt_len;
19210 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19211 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19212 	} else {
19213 		mss = tcp->tcp_mss;
19214 		tcp_hdr_len = tcp->tcp_hdr_len;
19215 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19216 	}
19217 
19218 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19219 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19220 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19221 	}
19222 	if (tcpstate == TCPS_SYN_RCVD) {
19223 		/*
19224 		 * The three-way connection establishment handshake is not
19225 		 * complete yet. We want to queue the data for transmission
19226 		 * after entering ESTABLISHED state (RFC793). A jump to
19227 		 * "done" label effectively leaves data on the queue.
19228 		 */
19229 		goto done;
19230 	} else {
19231 		int usable_r;
19232 
19233 		/*
19234 		 * In the special case when cwnd is zero, which can only
19235 		 * happen if the connection is ECN capable, return now.
19236 		 * New segments is sent using tcp_timer().  The timer
19237 		 * is set in tcp_rput_data().
19238 		 */
19239 		if (tcp->tcp_cwnd == 0) {
19240 			/*
19241 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19242 			 * finished.
19243 			 */
19244 			ASSERT(tcp->tcp_ecn_ok ||
19245 			    tcp->tcp_state < TCPS_ESTABLISHED);
19246 			return;
19247 		}
19248 
19249 		/* NOTE: trouble if xmitting while SYN not acked? */
19250 		usable_r = snxt - tcp->tcp_suna;
19251 		usable_r = tcp->tcp_swnd - usable_r;
19252 
19253 		/*
19254 		 * Check if the receiver has shrunk the window.  If
19255 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19256 		 * cannot be set as there is unsent data, so FIN cannot
19257 		 * be sent out.  Otherwise, we need to take into account
19258 		 * of FIN as it consumes an "invisible" sequence number.
19259 		 */
19260 		ASSERT(tcp->tcp_fin_sent == 0);
19261 		if (usable_r < 0) {
19262 			/*
19263 			 * The receiver has shrunk the window and we have sent
19264 			 * -usable_r date beyond the window, re-adjust.
19265 			 *
19266 			 * If TCP window scaling is enabled, there can be
19267 			 * round down error as the advertised receive window
19268 			 * is actually right shifted n bits.  This means that
19269 			 * the lower n bits info is wiped out.  It will look
19270 			 * like the window is shrunk.  Do a check here to
19271 			 * see if the shrunk amount is actually within the
19272 			 * error in window calculation.  If it is, just
19273 			 * return.  Note that this check is inside the
19274 			 * shrunk window check.  This makes sure that even
19275 			 * though tcp_process_shrunk_swnd() is not called,
19276 			 * we will stop further processing.
19277 			 */
19278 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19279 				tcp_process_shrunk_swnd(tcp, -usable_r);
19280 			}
19281 			return;
19282 		}
19283 
19284 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19285 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19286 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19287 
19288 		/* usable = MIN(usable, unsent) */
19289 		if (usable_r > len)
19290 			usable_r = len;
19291 
19292 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19293 		if (usable_r > 0) {
19294 			usable = usable_r;
19295 		} else {
19296 			/* Bypass all other unnecessary processing. */
19297 			goto done;
19298 		}
19299 	}
19300 
19301 	local_time = (mblk_t *)lbolt;
19302 
19303 	/*
19304 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19305 	 * BSD.  This is more in line with the true intent of Nagle.
19306 	 *
19307 	 * The conditions are:
19308 	 * 1. The amount of unsent data (or amount of data which can be
19309 	 *    sent, whichever is smaller) is less than Nagle limit.
19310 	 * 2. The last sent size is also less than Nagle limit.
19311 	 * 3. There is unack'ed data.
19312 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19313 	 *    Nagle algorithm.  This reduces the probability that urgent
19314 	 *    bytes get "merged" together.
19315 	 * 5. The app has not closed the connection.  This eliminates the
19316 	 *    wait time of the receiving side waiting for the last piece of
19317 	 *    (small) data.
19318 	 *
19319 	 * If all are satisified, exit without sending anything.  Note
19320 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19321 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19322 	 * 4095).
19323 	 */
19324 	if (usable < (int)tcp->tcp_naglim &&
19325 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19326 	    snxt != tcp->tcp_suna &&
19327 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19328 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19329 		goto done;
19330 	}
19331 
19332 	if (tcp->tcp_cork) {
19333 		/*
19334 		 * if the tcp->tcp_cork option is set, then we have to force
19335 		 * TCP not to send partial segment (smaller than MSS bytes).
19336 		 * We are calculating the usable now based on full mss and
19337 		 * will save the rest of remaining data for later.
19338 		 */
19339 		if (usable < mss)
19340 			goto done;
19341 		usable = (usable / mss) * mss;
19342 	}
19343 
19344 	/* Update the latest receive window size in TCP header. */
19345 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19346 	    tcp->tcp_tcph->th_win);
19347 
19348 	/*
19349 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19350 	 *
19351 	 * 1. Simple TCP/IP{v4,v6} (no options).
19352 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19353 	 * 3. If the TCP connection is in ESTABLISHED state.
19354 	 * 4. The TCP is not detached.
19355 	 *
19356 	 * If any of the above conditions have changed during the
19357 	 * connection, stop using LSO/MDT and restore the stream head
19358 	 * parameters accordingly.
19359 	 */
19360 	ipst = tcps->tcps_netstack->netstack_ip;
19361 
19362 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19363 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19364 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19365 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19366 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19367 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19368 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19369 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19370 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19371 		if (tcp->tcp_lso) {
19372 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19373 			tcp->tcp_lso = B_FALSE;
19374 		} else {
19375 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19376 			tcp->tcp_mdt = B_FALSE;
19377 		}
19378 
19379 		/* Anything other than detached is considered pathological */
19380 		if (!TCP_IS_DETACHED(tcp)) {
19381 			if (tcp->tcp_lso)
19382 				TCP_STAT(tcps, tcp_lso_disabled);
19383 			else
19384 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19385 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19386 		}
19387 	}
19388 
19389 	/* Use MDT if sendable amount is greater than the threshold */
19390 	if (tcp->tcp_mdt &&
19391 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19392 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19393 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19394 	    (tcp->tcp_valid_bits == 0 ||
19395 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19396 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19397 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19398 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19399 		    local_time, mdt_thres);
19400 	} else {
19401 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19402 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19403 		    local_time, INT_MAX);
19404 	}
19405 
19406 	/* Pretend that all we were trying to send really got sent */
19407 	if (rc < 0 && tail_unsent < 0) {
19408 		do {
19409 			xmit_tail = xmit_tail->b_cont;
19410 			xmit_tail->b_prev = local_time;
19411 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19412 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19413 			tail_unsent += (int)(xmit_tail->b_wptr -
19414 			    xmit_tail->b_rptr);
19415 		} while (tail_unsent < 0);
19416 	}
19417 done:;
19418 	tcp->tcp_xmit_tail = xmit_tail;
19419 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19420 	len = tcp->tcp_snxt - snxt;
19421 	if (len) {
19422 		/*
19423 		 * If new data was sent, need to update the notsack
19424 		 * list, which is, afterall, data blocks that have
19425 		 * not been sack'ed by the receiver.  New data is
19426 		 * not sack'ed.
19427 		 */
19428 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19429 			/* len is a negative value. */
19430 			tcp->tcp_pipe -= len;
19431 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19432 			    tcp->tcp_snxt, snxt,
19433 			    &(tcp->tcp_num_notsack_blk),
19434 			    &(tcp->tcp_cnt_notsack_list));
19435 		}
19436 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19437 		tcp->tcp_rack = tcp->tcp_rnxt;
19438 		tcp->tcp_rack_cnt = 0;
19439 		if ((snxt + len) == tcp->tcp_suna) {
19440 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19441 		}
19442 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19443 		/*
19444 		 * Didn't send anything. Make sure the timer is running
19445 		 * so that we will probe a zero window.
19446 		 */
19447 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19448 	}
19449 	/* Note that len is the amount we just sent but with a negative sign */
19450 	tcp->tcp_unsent += len;
19451 	mutex_enter(&tcp->tcp_non_sq_lock);
19452 	if (tcp->tcp_flow_stopped) {
19453 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19454 			tcp_clrqfull(tcp);
19455 		}
19456 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19457 		tcp_setqfull(tcp);
19458 	}
19459 	mutex_exit(&tcp->tcp_non_sq_lock);
19460 }
19461 
19462 /*
19463  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19464  * outgoing TCP header with the template header, as well as other
19465  * options such as time-stamp, ECN and/or SACK.
19466  */
19467 static void
19468 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19469 {
19470 	tcph_t *tcp_tmpl, *tcp_h;
19471 	uint32_t *dst, *src;
19472 	int hdrlen;
19473 
19474 	ASSERT(OK_32PTR(rptr));
19475 
19476 	/* Template header */
19477 	tcp_tmpl = tcp->tcp_tcph;
19478 
19479 	/* Header of outgoing packet */
19480 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19481 
19482 	/* dst and src are opaque 32-bit fields, used for copying */
19483 	dst = (uint32_t *)rptr;
19484 	src = (uint32_t *)tcp->tcp_iphc;
19485 	hdrlen = tcp->tcp_hdr_len;
19486 
19487 	/* Fill time-stamp option if needed */
19488 	if (tcp->tcp_snd_ts_ok) {
19489 		U32_TO_BE32((uint32_t)now,
19490 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19491 		U32_TO_BE32(tcp->tcp_ts_recent,
19492 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19493 	} else {
19494 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19495 	}
19496 
19497 	/*
19498 	 * Copy the template header; is this really more efficient than
19499 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19500 	 * but perhaps not for other scenarios.
19501 	 */
19502 	dst[0] = src[0];
19503 	dst[1] = src[1];
19504 	dst[2] = src[2];
19505 	dst[3] = src[3];
19506 	dst[4] = src[4];
19507 	dst[5] = src[5];
19508 	dst[6] = src[6];
19509 	dst[7] = src[7];
19510 	dst[8] = src[8];
19511 	dst[9] = src[9];
19512 	if (hdrlen -= 40) {
19513 		hdrlen >>= 2;
19514 		dst += 10;
19515 		src += 10;
19516 		do {
19517 			*dst++ = *src++;
19518 		} while (--hdrlen);
19519 	}
19520 
19521 	/*
19522 	 * Set the ECN info in the TCP header if it is not a zero
19523 	 * window probe.  Zero window probe is only sent in
19524 	 * tcp_wput_data() and tcp_timer().
19525 	 */
19526 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19527 		SET_ECT(tcp, rptr);
19528 
19529 		if (tcp->tcp_ecn_echo_on)
19530 			tcp_h->th_flags[0] |= TH_ECE;
19531 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19532 			tcp_h->th_flags[0] |= TH_CWR;
19533 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19534 		}
19535 	}
19536 
19537 	/* Fill in SACK options */
19538 	if (num_sack_blk > 0) {
19539 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19540 		sack_blk_t *tmp;
19541 		int32_t	i;
19542 
19543 		wptr[0] = TCPOPT_NOP;
19544 		wptr[1] = TCPOPT_NOP;
19545 		wptr[2] = TCPOPT_SACK;
19546 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19547 		    sizeof (sack_blk_t);
19548 		wptr += TCPOPT_REAL_SACK_LEN;
19549 
19550 		tmp = tcp->tcp_sack_list;
19551 		for (i = 0; i < num_sack_blk; i++) {
19552 			U32_TO_BE32(tmp[i].begin, wptr);
19553 			wptr += sizeof (tcp_seq);
19554 			U32_TO_BE32(tmp[i].end, wptr);
19555 			wptr += sizeof (tcp_seq);
19556 		}
19557 		tcp_h->th_offset_and_rsrvd[0] +=
19558 		    ((num_sack_blk * 2 + 1) << 4);
19559 	}
19560 }
19561 
19562 /*
19563  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19564  * the destination address and SAP attribute, and if necessary, the
19565  * hardware checksum offload attribute to a Multidata message.
19566  */
19567 static int
19568 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19569     const uint32_t start, const uint32_t stuff, const uint32_t end,
19570     const uint32_t flags, tcp_stack_t *tcps)
19571 {
19572 	/* Add global destination address & SAP attribute */
19573 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19574 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19575 		    "destination address+SAP\n"));
19576 
19577 		if (dlmp != NULL)
19578 			TCP_STAT(tcps, tcp_mdt_allocfail);
19579 		return (-1);
19580 	}
19581 
19582 	/* Add global hwcksum attribute */
19583 	if (hwcksum &&
19584 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19585 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19586 		    "checksum attribute\n"));
19587 
19588 		TCP_STAT(tcps, tcp_mdt_allocfail);
19589 		return (-1);
19590 	}
19591 
19592 	return (0);
19593 }
19594 
19595 /*
19596  * Smaller and private version of pdescinfo_t used specifically for TCP,
19597  * which allows for only two payload spans per packet.
19598  */
19599 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19600 
19601 /*
19602  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19603  * scheme, and returns one the following:
19604  *
19605  * -1 = failed allocation.
19606  *  0 = success; burst count reached, or usable send window is too small,
19607  *      and that we'd rather wait until later before sending again.
19608  */
19609 static int
19610 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19611     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19612     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19613     const int mdt_thres)
19614 {
19615 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19616 	multidata_t	*mmd;
19617 	uint_t		obsegs, obbytes, hdr_frag_sz;
19618 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19619 	int		num_burst_seg, max_pld;
19620 	pdesc_t		*pkt;
19621 	tcp_pdescinfo_t	tcp_pkt_info;
19622 	pdescinfo_t	*pkt_info;
19623 	int		pbuf_idx, pbuf_idx_nxt;
19624 	int		seg_len, len, spill, af;
19625 	boolean_t	add_buffer, zcopy, clusterwide;
19626 	boolean_t	rconfirm = B_FALSE;
19627 	boolean_t	done = B_FALSE;
19628 	uint32_t	cksum;
19629 	uint32_t	hwcksum_flags;
19630 	ire_t		*ire = NULL;
19631 	ill_t		*ill;
19632 	ipha_t		*ipha;
19633 	ip6_t		*ip6h;
19634 	ipaddr_t	src, dst;
19635 	ill_zerocopy_capab_t *zc_cap = NULL;
19636 	uint16_t	*up;
19637 	int		err;
19638 	conn_t		*connp;
19639 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19640 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19641 	int		usable_mmd, tail_unsent_mmd;
19642 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
19643 	mblk_t		*xmit_tail_mmd;
19644 	netstackid_t	stack_id;
19645 
19646 #ifdef	_BIG_ENDIAN
19647 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19648 #else
19649 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19650 #endif
19651 
19652 #define	PREP_NEW_MULTIDATA() {			\
19653 	mmd = NULL;				\
19654 	md_mp = md_hbuf = NULL;			\
19655 	cur_hdr_off = 0;			\
19656 	max_pld = tcp->tcp_mdt_max_pld;		\
19657 	pbuf_idx = pbuf_idx_nxt = -1;		\
19658 	add_buffer = B_TRUE;			\
19659 	zcopy = B_FALSE;			\
19660 }
19661 
19662 #define	PREP_NEW_PBUF() {			\
19663 	md_pbuf = md_pbuf_nxt = NULL;		\
19664 	pbuf_idx = pbuf_idx_nxt = -1;		\
19665 	cur_pld_off = 0;			\
19666 	first_snxt = *snxt;			\
19667 	ASSERT(*tail_unsent > 0);		\
19668 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19669 }
19670 
19671 	ASSERT(mdt_thres >= mss);
19672 	ASSERT(*usable > 0 && *usable > mdt_thres);
19673 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19674 	ASSERT(!TCP_IS_DETACHED(tcp));
19675 	ASSERT(tcp->tcp_valid_bits == 0 ||
19676 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19677 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19678 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19679 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19680 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19681 
19682 	connp = tcp->tcp_connp;
19683 	ASSERT(connp != NULL);
19684 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19685 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19686 
19687 	stack_id = connp->conn_netstack->netstack_stackid;
19688 
19689 	usable_mmd = tail_unsent_mmd = 0;
19690 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
19691 	xmit_tail_mmd = NULL;
19692 	/*
19693 	 * Note that tcp will only declare at most 2 payload spans per
19694 	 * packet, which is much lower than the maximum allowable number
19695 	 * of packet spans per Multidata.  For this reason, we use the
19696 	 * privately declared and smaller descriptor info structure, in
19697 	 * order to save some stack space.
19698 	 */
19699 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19700 
19701 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19702 	if (af == AF_INET) {
19703 		dst = tcp->tcp_ipha->ipha_dst;
19704 		src = tcp->tcp_ipha->ipha_src;
19705 		ASSERT(!CLASSD(dst));
19706 	}
19707 	ASSERT(af == AF_INET ||
19708 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19709 
19710 	obsegs = obbytes = 0;
19711 	num_burst_seg = tcp->tcp_snd_burst;
19712 	md_mp_head = NULL;
19713 	PREP_NEW_MULTIDATA();
19714 
19715 	/*
19716 	 * Before we go on further, make sure there is an IRE that we can
19717 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19718 	 * in proceeding any further, and we should just hand everything
19719 	 * off to the legacy path.
19720 	 */
19721 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19722 		goto legacy_send_no_md;
19723 
19724 	ASSERT(ire != NULL);
19725 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19726 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19727 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19728 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19729 	/*
19730 	 * If we do support loopback for MDT (which requires modifications
19731 	 * to the receiving paths), the following assertions should go away,
19732 	 * and we would be sending the Multidata to loopback conn later on.
19733 	 */
19734 	ASSERT(!IRE_IS_LOCAL(ire));
19735 	ASSERT(ire->ire_stq != NULL);
19736 
19737 	ill = ire_to_ill(ire);
19738 	ASSERT(ill != NULL);
19739 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19740 
19741 	if (!tcp->tcp_ire_ill_check_done) {
19742 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19743 		tcp->tcp_ire_ill_check_done = B_TRUE;
19744 	}
19745 
19746 	/*
19747 	 * If the underlying interface conditions have changed, or if the
19748 	 * new interface does not support MDT, go back to legacy path.
19749 	 */
19750 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19751 		/* don't go through this path anymore for this connection */
19752 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19753 		tcp->tcp_mdt = B_FALSE;
19754 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19755 		    "interface %s\n", (void *)connp, ill->ill_name));
19756 		/* IRE will be released prior to returning */
19757 		goto legacy_send_no_md;
19758 	}
19759 
19760 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19761 		zc_cap = ill->ill_zerocopy_capab;
19762 
19763 	/*
19764 	 * Check if we can take tcp fast-path. Note that "incomplete"
19765 	 * ire's (where the link-layer for next hop is not resolved
19766 	 * or where the fast-path header in nce_fp_mp is not available
19767 	 * yet) are sent down the legacy (slow) path.
19768 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19769 	 */
19770 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19771 		/* IRE will be released prior to returning */
19772 		goto legacy_send_no_md;
19773 	}
19774 
19775 	/* go to legacy path if interface doesn't support zerocopy */
19776 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19777 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19778 		/* IRE will be released prior to returning */
19779 		goto legacy_send_no_md;
19780 	}
19781 
19782 	/* does the interface support hardware checksum offload? */
19783 	hwcksum_flags = 0;
19784 	if (ILL_HCKSUM_CAPABLE(ill) &&
19785 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19786 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19787 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19788 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19789 		    HCKSUM_IPHDRCKSUM)
19790 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19791 
19792 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19793 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19794 			hwcksum_flags |= HCK_FULLCKSUM;
19795 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19796 		    HCKSUM_INET_PARTIAL)
19797 			hwcksum_flags |= HCK_PARTIALCKSUM;
19798 	}
19799 
19800 	/*
19801 	 * Each header fragment consists of the leading extra space,
19802 	 * followed by the TCP/IP header, and the trailing extra space.
19803 	 * We make sure that each header fragment begins on a 32-bit
19804 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19805 	 * aligned in tcp_mdt_update).
19806 	 */
19807 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19808 	    tcp->tcp_mdt_hdr_tail), 4);
19809 
19810 	/* are we starting from the beginning of data block? */
19811 	if (*tail_unsent == 0) {
19812 		*xmit_tail = (*xmit_tail)->b_cont;
19813 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19814 		*tail_unsent = (int)MBLKL(*xmit_tail);
19815 	}
19816 
19817 	/*
19818 	 * Here we create one or more Multidata messages, each made up of
19819 	 * one header buffer and up to N payload buffers.  This entire
19820 	 * operation is done within two loops:
19821 	 *
19822 	 * The outer loop mostly deals with creating the Multidata message,
19823 	 * as well as the header buffer that gets added to it.  It also
19824 	 * links the Multidata messages together such that all of them can
19825 	 * be sent down to the lower layer in a single putnext call; this
19826 	 * linking behavior depends on the tcp_mdt_chain tunable.
19827 	 *
19828 	 * The inner loop takes an existing Multidata message, and adds
19829 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19830 	 * packetizes those buffers by filling up the corresponding header
19831 	 * buffer fragments with the proper IP and TCP headers, and by
19832 	 * describing the layout of each packet in the packet descriptors
19833 	 * that get added to the Multidata.
19834 	 */
19835 	do {
19836 		/*
19837 		 * If usable send window is too small, or data blocks in
19838 		 * transmit list are smaller than our threshold (i.e. app
19839 		 * performs large writes followed by small ones), we hand
19840 		 * off the control over to the legacy path.  Note that we'll
19841 		 * get back the control once it encounters a large block.
19842 		 */
19843 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19844 		    (*xmit_tail)->b_cont != NULL &&
19845 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19846 			/* send down what we've got so far */
19847 			if (md_mp_head != NULL) {
19848 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19849 				    obsegs, obbytes, &rconfirm);
19850 			}
19851 			/*
19852 			 * Pass control over to tcp_send(), but tell it to
19853 			 * return to us once a large-size transmission is
19854 			 * possible.
19855 			 */
19856 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19857 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19858 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19859 			    tail_unsent, xmit_tail, local_time,
19860 			    mdt_thres)) <= 0) {
19861 				/* burst count reached, or alloc failed */
19862 				IRE_REFRELE(ire);
19863 				return (err);
19864 			}
19865 
19866 			/* tcp_send() may have sent everything, so check */
19867 			if (*usable <= 0) {
19868 				IRE_REFRELE(ire);
19869 				return (0);
19870 			}
19871 
19872 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19873 			/*
19874 			 * We may have delivered the Multidata, so make sure
19875 			 * to re-initialize before the next round.
19876 			 */
19877 			md_mp_head = NULL;
19878 			obsegs = obbytes = 0;
19879 			num_burst_seg = tcp->tcp_snd_burst;
19880 			PREP_NEW_MULTIDATA();
19881 
19882 			/* are we starting from the beginning of data block? */
19883 			if (*tail_unsent == 0) {
19884 				*xmit_tail = (*xmit_tail)->b_cont;
19885 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19886 				    (uintptr_t)INT_MAX);
19887 				*tail_unsent = (int)MBLKL(*xmit_tail);
19888 			}
19889 		}
19890 		/*
19891 		 * Record current values for parameters we may need to pass
19892 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
19893 		 * each iteration of the outer loop (each multidata message
19894 		 * creation). If we have a failure in the inner loop, we send
19895 		 * any complete multidata messages we have before reverting
19896 		 * to using the traditional non-md path.
19897 		 */
19898 		snxt_mmd = *snxt;
19899 		usable_mmd = *usable;
19900 		xmit_tail_mmd = *xmit_tail;
19901 		tail_unsent_mmd = *tail_unsent;
19902 		obsegs_mmd = obsegs;
19903 		obbytes_mmd = obbytes;
19904 
19905 		/*
19906 		 * max_pld limits the number of mblks in tcp's transmit
19907 		 * queue that can be added to a Multidata message.  Once
19908 		 * this counter reaches zero, no more additional mblks
19909 		 * can be added to it.  What happens afterwards depends
19910 		 * on whether or not we are set to chain the Multidata
19911 		 * messages.  If we are to link them together, reset
19912 		 * max_pld to its original value (tcp_mdt_max_pld) and
19913 		 * prepare to create a new Multidata message which will
19914 		 * get linked to md_mp_head.  Else, leave it alone and
19915 		 * let the inner loop break on its own.
19916 		 */
19917 		if (tcp_mdt_chain && max_pld == 0)
19918 			PREP_NEW_MULTIDATA();
19919 
19920 		/* adding a payload buffer; re-initialize values */
19921 		if (add_buffer)
19922 			PREP_NEW_PBUF();
19923 
19924 		/*
19925 		 * If we don't have a Multidata, either because we just
19926 		 * (re)entered this outer loop, or after we branched off
19927 		 * to tcp_send above, setup the Multidata and header
19928 		 * buffer to be used.
19929 		 */
19930 		if (md_mp == NULL) {
19931 			int md_hbuflen;
19932 			uint32_t start, stuff;
19933 
19934 			/*
19935 			 * Calculate Multidata header buffer size large enough
19936 			 * to hold all of the headers that can possibly be
19937 			 * sent at this moment.  We'd rather over-estimate
19938 			 * the size than running out of space; this is okay
19939 			 * since this buffer is small anyway.
19940 			 */
19941 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19942 
19943 			/*
19944 			 * Start and stuff offset for partial hardware
19945 			 * checksum offload; these are currently for IPv4.
19946 			 * For full checksum offload, they are set to zero.
19947 			 */
19948 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19949 				if (af == AF_INET) {
19950 					start = IP_SIMPLE_HDR_LENGTH;
19951 					stuff = IP_SIMPLE_HDR_LENGTH +
19952 					    TCP_CHECKSUM_OFFSET;
19953 				} else {
19954 					start = IPV6_HDR_LEN;
19955 					stuff = IPV6_HDR_LEN +
19956 					    TCP_CHECKSUM_OFFSET;
19957 				}
19958 			} else {
19959 				start = stuff = 0;
19960 			}
19961 
19962 			/*
19963 			 * Create the header buffer, Multidata, as well as
19964 			 * any necessary attributes (destination address,
19965 			 * SAP and hardware checksum offload) that should
19966 			 * be associated with the Multidata message.
19967 			 */
19968 			ASSERT(cur_hdr_off == 0);
19969 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19970 			    ((md_hbuf->b_wptr += md_hbuflen),
19971 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19972 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19973 			    /* fastpath mblk */
19974 			    ire->ire_nce->nce_res_mp,
19975 			    /* hardware checksum enabled */
19976 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19977 			    /* hardware checksum offsets */
19978 			    start, stuff, 0,
19979 			    /* hardware checksum flag */
19980 			    hwcksum_flags, tcps) != 0)) {
19981 legacy_send:
19982 				/*
19983 				 * We arrive here from a failure within the
19984 				 * inner (packetizer) loop or we fail one of
19985 				 * the conditionals above. We restore the
19986 				 * previously checkpointed values for:
19987 				 *    xmit_tail
19988 				 *    usable
19989 				 *    tail_unsent
19990 				 *    snxt
19991 				 *    obbytes
19992 				 *    obsegs
19993 				 * We should then be able to dispatch any
19994 				 * complete multidata before reverting to the
19995 				 * traditional path with consistent parameters
19996 				 * (the inner loop updates these as it
19997 				 * iterates).
19998 				 */
19999 				*xmit_tail = xmit_tail_mmd;
20000 				*usable = usable_mmd;
20001 				*tail_unsent = tail_unsent_mmd;
20002 				*snxt = snxt_mmd;
20003 				obbytes = obbytes_mmd;
20004 				obsegs = obsegs_mmd;
20005 				if (md_mp != NULL) {
20006 					/* Unlink message from the chain */
20007 					if (md_mp_head != NULL) {
20008 						err = (intptr_t)rmvb(md_mp_head,
20009 						    md_mp);
20010 						/*
20011 						 * We can't assert that rmvb
20012 						 * did not return -1, since we
20013 						 * may get here before linkb
20014 						 * happens.  We do, however,
20015 						 * check if we just removed the
20016 						 * only element in the list.
20017 						 */
20018 						if (err == 0)
20019 							md_mp_head = NULL;
20020 					}
20021 					/* md_hbuf gets freed automatically */
20022 					TCP_STAT(tcps, tcp_mdt_discarded);
20023 					freeb(md_mp);
20024 				} else {
20025 					/* Either allocb or mmd_alloc failed */
20026 					TCP_STAT(tcps, tcp_mdt_allocfail);
20027 					if (md_hbuf != NULL)
20028 						freeb(md_hbuf);
20029 				}
20030 
20031 				/* send down what we've got so far */
20032 				if (md_mp_head != NULL) {
20033 					tcp_multisend_data(tcp, ire, ill,
20034 					    md_mp_head, obsegs, obbytes,
20035 					    &rconfirm);
20036 				}
20037 legacy_send_no_md:
20038 				if (ire != NULL)
20039 					IRE_REFRELE(ire);
20040 				/*
20041 				 * Too bad; let the legacy path handle this.
20042 				 * We specify INT_MAX for the threshold, since
20043 				 * we gave up with the Multidata processings
20044 				 * and let the old path have it all.
20045 				 */
20046 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20047 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20048 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20049 				    snxt, tail_unsent, xmit_tail, local_time,
20050 				    INT_MAX));
20051 			}
20052 
20053 			/* link to any existing ones, if applicable */
20054 			TCP_STAT(tcps, tcp_mdt_allocd);
20055 			if (md_mp_head == NULL) {
20056 				md_mp_head = md_mp;
20057 			} else if (tcp_mdt_chain) {
20058 				TCP_STAT(tcps, tcp_mdt_linked);
20059 				linkb(md_mp_head, md_mp);
20060 			}
20061 		}
20062 
20063 		ASSERT(md_mp_head != NULL);
20064 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20065 		ASSERT(md_mp != NULL && mmd != NULL);
20066 		ASSERT(md_hbuf != NULL);
20067 
20068 		/*
20069 		 * Packetize the transmittable portion of the data block;
20070 		 * each data block is essentially added to the Multidata
20071 		 * as a payload buffer.  We also deal with adding more
20072 		 * than one payload buffers, which happens when the remaining
20073 		 * packetized portion of the current payload buffer is less
20074 		 * than MSS, while the next data block in transmit queue
20075 		 * has enough data to make up for one.  This "spillover"
20076 		 * case essentially creates a split-packet, where portions
20077 		 * of the packet's payload fragments may span across two
20078 		 * virtually discontiguous address blocks.
20079 		 */
20080 		seg_len = mss;
20081 		do {
20082 			len = seg_len;
20083 
20084 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20085 			ipha = NULL;
20086 			ip6h = NULL;
20087 
20088 			ASSERT(len > 0);
20089 			ASSERT(max_pld >= 0);
20090 			ASSERT(!add_buffer || cur_pld_off == 0);
20091 
20092 			/*
20093 			 * First time around for this payload buffer; note
20094 			 * in the case of a spillover, the following has
20095 			 * been done prior to adding the split-packet
20096 			 * descriptor to Multidata, and we don't want to
20097 			 * repeat the process.
20098 			 */
20099 			if (add_buffer) {
20100 				ASSERT(mmd != NULL);
20101 				ASSERT(md_pbuf == NULL);
20102 				ASSERT(md_pbuf_nxt == NULL);
20103 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20104 
20105 				/*
20106 				 * Have we reached the limit?  We'd get to
20107 				 * this case when we're not chaining the
20108 				 * Multidata messages together, and since
20109 				 * we're done, terminate this loop.
20110 				 */
20111 				if (max_pld == 0)
20112 					break; /* done */
20113 
20114 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20115 					TCP_STAT(tcps, tcp_mdt_allocfail);
20116 					goto legacy_send; /* out_of_mem */
20117 				}
20118 
20119 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20120 				    zc_cap != NULL) {
20121 					if (!ip_md_zcopy_attr(mmd, NULL,
20122 					    zc_cap->ill_zerocopy_flags)) {
20123 						freeb(md_pbuf);
20124 						TCP_STAT(tcps,
20125 						    tcp_mdt_allocfail);
20126 						/* out_of_mem */
20127 						goto legacy_send;
20128 					}
20129 					zcopy = B_TRUE;
20130 				}
20131 
20132 				md_pbuf->b_rptr += base_pld_off;
20133 
20134 				/*
20135 				 * Add a payload buffer to the Multidata; this
20136 				 * operation must not fail, or otherwise our
20137 				 * logic in this routine is broken.  There
20138 				 * is no memory allocation done by the
20139 				 * routine, so any returned failure simply
20140 				 * tells us that we've done something wrong.
20141 				 *
20142 				 * A failure tells us that either we're adding
20143 				 * the same payload buffer more than once, or
20144 				 * we're trying to add more buffers than
20145 				 * allowed (max_pld calculation is wrong).
20146 				 * None of the above cases should happen, and
20147 				 * we panic because either there's horrible
20148 				 * heap corruption, and/or programming mistake.
20149 				 */
20150 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20151 				if (pbuf_idx < 0) {
20152 					cmn_err(CE_PANIC, "tcp_multisend: "
20153 					    "payload buffer logic error "
20154 					    "detected for tcp %p mmd %p "
20155 					    "pbuf %p (%d)\n",
20156 					    (void *)tcp, (void *)mmd,
20157 					    (void *)md_pbuf, pbuf_idx);
20158 				}
20159 
20160 				ASSERT(max_pld > 0);
20161 				--max_pld;
20162 				add_buffer = B_FALSE;
20163 			}
20164 
20165 			ASSERT(md_mp_head != NULL);
20166 			ASSERT(md_pbuf != NULL);
20167 			ASSERT(md_pbuf_nxt == NULL);
20168 			ASSERT(pbuf_idx != -1);
20169 			ASSERT(pbuf_idx_nxt == -1);
20170 			ASSERT(*usable > 0);
20171 
20172 			/*
20173 			 * We spillover to the next payload buffer only
20174 			 * if all of the following is true:
20175 			 *
20176 			 *   1. There is not enough data on the current
20177 			 *	payload buffer to make up `len',
20178 			 *   2. We are allowed to send `len',
20179 			 *   3. The next payload buffer length is large
20180 			 *	enough to accomodate `spill'.
20181 			 */
20182 			if ((spill = len - *tail_unsent) > 0 &&
20183 			    *usable >= len &&
20184 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20185 			    max_pld > 0) {
20186 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20187 				if (md_pbuf_nxt == NULL) {
20188 					TCP_STAT(tcps, tcp_mdt_allocfail);
20189 					goto legacy_send; /* out_of_mem */
20190 				}
20191 
20192 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20193 				    zc_cap != NULL) {
20194 					if (!ip_md_zcopy_attr(mmd, NULL,
20195 					    zc_cap->ill_zerocopy_flags)) {
20196 						freeb(md_pbuf_nxt);
20197 						TCP_STAT(tcps,
20198 						    tcp_mdt_allocfail);
20199 						/* out_of_mem */
20200 						goto legacy_send;
20201 					}
20202 					zcopy = B_TRUE;
20203 				}
20204 
20205 				/*
20206 				 * See comments above on the first call to
20207 				 * mmd_addpldbuf for explanation on the panic.
20208 				 */
20209 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20210 				if (pbuf_idx_nxt < 0) {
20211 					panic("tcp_multisend: "
20212 					    "next payload buffer logic error "
20213 					    "detected for tcp %p mmd %p "
20214 					    "pbuf %p (%d)\n",
20215 					    (void *)tcp, (void *)mmd,
20216 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20217 				}
20218 
20219 				ASSERT(max_pld > 0);
20220 				--max_pld;
20221 			} else if (spill > 0) {
20222 				/*
20223 				 * If there's a spillover, but the following
20224 				 * xmit_tail couldn't give us enough octets
20225 				 * to reach "len", then stop the current
20226 				 * Multidata creation and let the legacy
20227 				 * tcp_send() path take over.  We don't want
20228 				 * to send the tiny segment as part of this
20229 				 * Multidata for performance reasons; instead,
20230 				 * we let the legacy path deal with grouping
20231 				 * it with the subsequent small mblks.
20232 				 */
20233 				if (*usable >= len &&
20234 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20235 					max_pld = 0;
20236 					break;	/* done */
20237 				}
20238 
20239 				/*
20240 				 * We can't spillover, and we are near
20241 				 * the end of the current payload buffer,
20242 				 * so send what's left.
20243 				 */
20244 				ASSERT(*tail_unsent > 0);
20245 				len = *tail_unsent;
20246 			}
20247 
20248 			/* tail_unsent is negated if there is a spillover */
20249 			*tail_unsent -= len;
20250 			*usable -= len;
20251 			ASSERT(*usable >= 0);
20252 
20253 			if (*usable < mss)
20254 				seg_len = *usable;
20255 			/*
20256 			 * Sender SWS avoidance; see comments in tcp_send();
20257 			 * everything else is the same, except that we only
20258 			 * do this here if there is no more data to be sent
20259 			 * following the current xmit_tail.  We don't check
20260 			 * for 1-byte urgent data because we shouldn't get
20261 			 * here if TCP_URG_VALID is set.
20262 			 */
20263 			if (*usable > 0 && *usable < mss &&
20264 			    ((md_pbuf_nxt == NULL &&
20265 			    (*xmit_tail)->b_cont == NULL) ||
20266 			    (md_pbuf_nxt != NULL &&
20267 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20268 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20269 			    (tcp->tcp_unsent -
20270 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20271 			    !tcp->tcp_zero_win_probe) {
20272 				if ((*snxt + len) == tcp->tcp_snxt &&
20273 				    (*snxt + len) == tcp->tcp_suna) {
20274 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20275 				}
20276 				done = B_TRUE;
20277 			}
20278 
20279 			/*
20280 			 * Prime pump for IP's checksumming on our behalf;
20281 			 * include the adjustment for a source route if any.
20282 			 * Do this only for software/partial hardware checksum
20283 			 * offload, as this field gets zeroed out later for
20284 			 * the full hardware checksum offload case.
20285 			 */
20286 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20287 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20288 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20289 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20290 			}
20291 
20292 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20293 			*snxt += len;
20294 
20295 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20296 			/*
20297 			 * We set the PUSH bit only if TCP has no more buffered
20298 			 * data to be transmitted (or if sender SWS avoidance
20299 			 * takes place), as opposed to setting it for every
20300 			 * last packet in the burst.
20301 			 */
20302 			if (done ||
20303 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20304 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20305 
20306 			/*
20307 			 * Set FIN bit if this is our last segment; snxt
20308 			 * already includes its length, and it will not
20309 			 * be adjusted after this point.
20310 			 */
20311 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20312 			    *snxt == tcp->tcp_fss) {
20313 				if (!tcp->tcp_fin_acked) {
20314 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20315 					BUMP_MIB(&tcps->tcps_mib,
20316 					    tcpOutControl);
20317 				}
20318 				if (!tcp->tcp_fin_sent) {
20319 					tcp->tcp_fin_sent = B_TRUE;
20320 					/*
20321 					 * tcp state must be ESTABLISHED
20322 					 * in order for us to get here in
20323 					 * the first place.
20324 					 */
20325 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20326 
20327 					/*
20328 					 * Upon returning from this routine,
20329 					 * tcp_wput_data() will set tcp_snxt
20330 					 * to be equal to snxt + tcp_fin_sent.
20331 					 * This is essentially the same as
20332 					 * setting it to tcp_fss + 1.
20333 					 */
20334 				}
20335 			}
20336 
20337 			tcp->tcp_last_sent_len = (ushort_t)len;
20338 
20339 			len += tcp_hdr_len;
20340 			if (tcp->tcp_ipversion == IPV4_VERSION)
20341 				tcp->tcp_ipha->ipha_length = htons(len);
20342 			else
20343 				tcp->tcp_ip6h->ip6_plen = htons(len -
20344 				    ((char *)&tcp->tcp_ip6h[1] -
20345 				    tcp->tcp_iphc));
20346 
20347 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20348 
20349 			/* setup header fragment */
20350 			PDESC_HDR_ADD(pkt_info,
20351 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20352 			    tcp->tcp_mdt_hdr_head,		/* head room */
20353 			    tcp_hdr_len,			/* len */
20354 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20355 
20356 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20357 			    hdr_frag_sz);
20358 			ASSERT(MBLKIN(md_hbuf,
20359 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20360 			    PDESC_HDRSIZE(pkt_info)));
20361 
20362 			/* setup first payload fragment */
20363 			PDESC_PLD_INIT(pkt_info);
20364 			PDESC_PLD_SPAN_ADD(pkt_info,
20365 			    pbuf_idx,				/* index */
20366 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20367 			    tcp->tcp_last_sent_len);		/* len */
20368 
20369 			/* create a split-packet in case of a spillover */
20370 			if (md_pbuf_nxt != NULL) {
20371 				ASSERT(spill > 0);
20372 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20373 				ASSERT(!add_buffer);
20374 
20375 				md_pbuf = md_pbuf_nxt;
20376 				md_pbuf_nxt = NULL;
20377 				pbuf_idx = pbuf_idx_nxt;
20378 				pbuf_idx_nxt = -1;
20379 				cur_pld_off = spill;
20380 
20381 				/* trim out first payload fragment */
20382 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20383 
20384 				/* setup second payload fragment */
20385 				PDESC_PLD_SPAN_ADD(pkt_info,
20386 				    pbuf_idx,			/* index */
20387 				    md_pbuf->b_rptr,		/* start */
20388 				    spill);			/* len */
20389 
20390 				if ((*xmit_tail)->b_next == NULL) {
20391 					/*
20392 					 * Store the lbolt used for RTT
20393 					 * estimation. We can only record one
20394 					 * timestamp per mblk so we do it when
20395 					 * we reach the end of the payload
20396 					 * buffer.  Also we only take a new
20397 					 * timestamp sample when the previous
20398 					 * timed data from the same mblk has
20399 					 * been ack'ed.
20400 					 */
20401 					(*xmit_tail)->b_prev = local_time;
20402 					(*xmit_tail)->b_next =
20403 					    (mblk_t *)(uintptr_t)first_snxt;
20404 				}
20405 
20406 				first_snxt = *snxt - spill;
20407 
20408 				/*
20409 				 * Advance xmit_tail; usable could be 0 by
20410 				 * the time we got here, but we made sure
20411 				 * above that we would only spillover to
20412 				 * the next data block if usable includes
20413 				 * the spilled-over amount prior to the
20414 				 * subtraction.  Therefore, we are sure
20415 				 * that xmit_tail->b_cont can't be NULL.
20416 				 */
20417 				ASSERT((*xmit_tail)->b_cont != NULL);
20418 				*xmit_tail = (*xmit_tail)->b_cont;
20419 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20420 				    (uintptr_t)INT_MAX);
20421 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20422 			} else {
20423 				cur_pld_off += tcp->tcp_last_sent_len;
20424 			}
20425 
20426 			/*
20427 			 * Fill in the header using the template header, and
20428 			 * add options such as time-stamp, ECN and/or SACK,
20429 			 * as needed.
20430 			 */
20431 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20432 			    (clock_t)local_time, num_sack_blk);
20433 
20434 			/* take care of some IP header businesses */
20435 			if (af == AF_INET) {
20436 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20437 
20438 				ASSERT(OK_32PTR((uchar_t *)ipha));
20439 				ASSERT(PDESC_HDRL(pkt_info) >=
20440 				    IP_SIMPLE_HDR_LENGTH);
20441 				ASSERT(ipha->ipha_version_and_hdr_length ==
20442 				    IP_SIMPLE_HDR_VERSION);
20443 
20444 				/*
20445 				 * Assign ident value for current packet; see
20446 				 * related comments in ip_wput_ire() about the
20447 				 * contract private interface with clustering
20448 				 * group.
20449 				 */
20450 				clusterwide = B_FALSE;
20451 				if (cl_inet_ipident != NULL) {
20452 					ASSERT(cl_inet_isclusterwide != NULL);
20453 					if ((*cl_inet_isclusterwide)(stack_id,
20454 					    IPPROTO_IP, AF_INET,
20455 					    (uint8_t *)(uintptr_t)src, NULL)) {
20456 						ipha->ipha_ident =
20457 						    (*cl_inet_ipident)(stack_id,
20458 						    IPPROTO_IP, AF_INET,
20459 						    (uint8_t *)(uintptr_t)src,
20460 						    (uint8_t *)(uintptr_t)dst,
20461 						    NULL);
20462 						clusterwide = B_TRUE;
20463 					}
20464 				}
20465 
20466 				if (!clusterwide) {
20467 					ipha->ipha_ident = (uint16_t)
20468 					    atomic_add_32_nv(
20469 						&ire->ire_ident, 1);
20470 				}
20471 #ifndef _BIG_ENDIAN
20472 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20473 				    (ipha->ipha_ident >> 8);
20474 #endif
20475 			} else {
20476 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20477 
20478 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20479 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20480 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20481 				ASSERT(PDESC_HDRL(pkt_info) >=
20482 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20483 				    TCP_CHECKSUM_SIZE));
20484 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20485 
20486 				if (tcp->tcp_ip_forward_progress) {
20487 					rconfirm = B_TRUE;
20488 					tcp->tcp_ip_forward_progress = B_FALSE;
20489 				}
20490 			}
20491 
20492 			/* at least one payload span, and at most two */
20493 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20494 
20495 			/* add the packet descriptor to Multidata */
20496 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20497 			    KM_NOSLEEP)) == NULL) {
20498 				/*
20499 				 * Any failure other than ENOMEM indicates
20500 				 * that we have passed in invalid pkt_info
20501 				 * or parameters to mmd_addpdesc, which must
20502 				 * not happen.
20503 				 *
20504 				 * EINVAL is a result of failure on boundary
20505 				 * checks against the pkt_info contents.  It
20506 				 * should not happen, and we panic because
20507 				 * either there's horrible heap corruption,
20508 				 * and/or programming mistake.
20509 				 */
20510 				if (err != ENOMEM) {
20511 					cmn_err(CE_PANIC, "tcp_multisend: "
20512 					    "pdesc logic error detected for "
20513 					    "tcp %p mmd %p pinfo %p (%d)\n",
20514 					    (void *)tcp, (void *)mmd,
20515 					    (void *)pkt_info, err);
20516 				}
20517 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20518 				goto legacy_send; /* out_of_mem */
20519 			}
20520 			ASSERT(pkt != NULL);
20521 
20522 			/* calculate IP header and TCP checksums */
20523 			if (af == AF_INET) {
20524 				/* calculate pseudo-header checksum */
20525 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20526 				    (src >> 16) + (src & 0xFFFF);
20527 
20528 				/* offset for TCP header checksum */
20529 				up = IPH_TCPH_CHECKSUMP(ipha,
20530 				    IP_SIMPLE_HDR_LENGTH);
20531 			} else {
20532 				up = (uint16_t *)&ip6h->ip6_src;
20533 
20534 				/* calculate pseudo-header checksum */
20535 				cksum = up[0] + up[1] + up[2] + up[3] +
20536 				    up[4] + up[5] + up[6] + up[7] +
20537 				    up[8] + up[9] + up[10] + up[11] +
20538 				    up[12] + up[13] + up[14] + up[15];
20539 
20540 				/* Fold the initial sum */
20541 				cksum = (cksum & 0xffff) + (cksum >> 16);
20542 
20543 				up = (uint16_t *)(((uchar_t *)ip6h) +
20544 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20545 			}
20546 
20547 			if (hwcksum_flags & HCK_FULLCKSUM) {
20548 				/* clear checksum field for hardware */
20549 				*up = 0;
20550 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20551 				uint32_t sum;
20552 
20553 				/* pseudo-header checksumming */
20554 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20555 				sum = (sum & 0xFFFF) + (sum >> 16);
20556 				*up = (sum & 0xFFFF) + (sum >> 16);
20557 			} else {
20558 				/* software checksumming */
20559 				TCP_STAT(tcps, tcp_out_sw_cksum);
20560 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20561 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20562 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20563 				    cksum + IP_TCP_CSUM_COMP);
20564 				if (*up == 0)
20565 					*up = 0xFFFF;
20566 			}
20567 
20568 			/* IPv4 header checksum */
20569 			if (af == AF_INET) {
20570 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20571 					ipha->ipha_hdr_checksum = 0;
20572 				} else {
20573 					IP_HDR_CKSUM(ipha, cksum,
20574 					    ((uint32_t *)ipha)[0],
20575 					    ((uint16_t *)ipha)[4]);
20576 				}
20577 			}
20578 
20579 			if (af == AF_INET &&
20580 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20581 			    af == AF_INET6 &&
20582 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20583 				mblk_t	*mp, *mp1;
20584 				uchar_t	*hdr_rptr, *hdr_wptr;
20585 				uchar_t	*pld_rptr, *pld_wptr;
20586 
20587 				/*
20588 				 * We reconstruct a pseudo packet for the hooks
20589 				 * framework using mmd_transform_link().
20590 				 * If it is a split packet we pullup the
20591 				 * payload. FW_HOOKS expects a pkt comprising
20592 				 * of two mblks: a header and the payload.
20593 				 */
20594 				if ((mp = mmd_transform_link(pkt)) == NULL) {
20595 					TCP_STAT(tcps, tcp_mdt_allocfail);
20596 					goto legacy_send;
20597 				}
20598 
20599 				if (pkt_info->pld_cnt > 1) {
20600 					/* split payload, more than one pld */
20601 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
20602 					    NULL) {
20603 						freemsg(mp);
20604 						TCP_STAT(tcps,
20605 						    tcp_mdt_allocfail);
20606 						goto legacy_send;
20607 					}
20608 					freemsg(mp->b_cont);
20609 					mp->b_cont = mp1;
20610 				} else {
20611 					mp1 = mp->b_cont;
20612 				}
20613 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
20614 
20615 				/*
20616 				 * Remember the message offsets. This is so we
20617 				 * can detect changes when we return from the
20618 				 * FW_HOOKS callbacks.
20619 				 */
20620 				hdr_rptr = mp->b_rptr;
20621 				hdr_wptr = mp->b_wptr;
20622 				pld_rptr = mp->b_cont->b_rptr;
20623 				pld_wptr = mp->b_cont->b_wptr;
20624 
20625 				if (af == AF_INET) {
20626 					DTRACE_PROBE4(
20627 					    ip4__physical__out__start,
20628 					    ill_t *, NULL,
20629 					    ill_t *, ill,
20630 					    ipha_t *, ipha,
20631 					    mblk_t *, mp);
20632 					FW_HOOKS(
20633 					    ipst->ips_ip4_physical_out_event,
20634 					    ipst->ips_ipv4firewall_physical_out,
20635 					    NULL, ill, ipha, mp, mp, 0, ipst);
20636 					DTRACE_PROBE1(
20637 					    ip4__physical__out__end,
20638 					    mblk_t *, mp);
20639 				} else {
20640 					DTRACE_PROBE4(
20641 					    ip6__physical__out_start,
20642 					    ill_t *, NULL,
20643 					    ill_t *, ill,
20644 					    ip6_t *, ip6h,
20645 					    mblk_t *, mp);
20646 					FW_HOOKS6(
20647 					    ipst->ips_ip6_physical_out_event,
20648 					    ipst->ips_ipv6firewall_physical_out,
20649 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20650 					DTRACE_PROBE1(
20651 					    ip6__physical__out__end,
20652 					    mblk_t *, mp);
20653 				}
20654 
20655 				if (mp == NULL ||
20656 				    (mp1 = mp->b_cont) == NULL ||
20657 				    mp->b_rptr != hdr_rptr ||
20658 				    mp->b_wptr != hdr_wptr ||
20659 				    mp1->b_rptr != pld_rptr ||
20660 				    mp1->b_wptr != pld_wptr ||
20661 				    mp1->b_cont != NULL) {
20662 					/*
20663 					 * We abandon multidata processing and
20664 					 * return to the normal path, either
20665 					 * when a packet is blocked, or when
20666 					 * the boundaries of header buffer or
20667 					 * payload buffer have been changed by
20668 					 * FW_HOOKS[6].
20669 					 */
20670 					if (mp != NULL)
20671 						freemsg(mp);
20672 					goto legacy_send;
20673 				}
20674 				/* Finished with the pseudo packet */
20675 				freemsg(mp);
20676 			}
20677 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
20678 			    ill, ipha, ip6h);
20679 			/* advance header offset */
20680 			cur_hdr_off += hdr_frag_sz;
20681 
20682 			obbytes += tcp->tcp_last_sent_len;
20683 			++obsegs;
20684 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20685 		    *tail_unsent > 0);
20686 
20687 		if ((*xmit_tail)->b_next == NULL) {
20688 			/*
20689 			 * Store the lbolt used for RTT estimation. We can only
20690 			 * record one timestamp per mblk so we do it when we
20691 			 * reach the end of the payload buffer. Also we only
20692 			 * take a new timestamp sample when the previous timed
20693 			 * data from the same mblk has been ack'ed.
20694 			 */
20695 			(*xmit_tail)->b_prev = local_time;
20696 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20697 		}
20698 
20699 		ASSERT(*tail_unsent >= 0);
20700 		if (*tail_unsent > 0) {
20701 			/*
20702 			 * We got here because we broke out of the above
20703 			 * loop due to of one of the following cases:
20704 			 *
20705 			 *   1. len < adjusted MSS (i.e. small),
20706 			 *   2. Sender SWS avoidance,
20707 			 *   3. max_pld is zero.
20708 			 *
20709 			 * We are done for this Multidata, so trim our
20710 			 * last payload buffer (if any) accordingly.
20711 			 */
20712 			if (md_pbuf != NULL)
20713 				md_pbuf->b_wptr -= *tail_unsent;
20714 		} else if (*usable > 0) {
20715 			*xmit_tail = (*xmit_tail)->b_cont;
20716 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20717 			    (uintptr_t)INT_MAX);
20718 			*tail_unsent = (int)MBLKL(*xmit_tail);
20719 			add_buffer = B_TRUE;
20720 		}
20721 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20722 	    (tcp_mdt_chain || max_pld > 0));
20723 
20724 	if (md_mp_head != NULL) {
20725 		/* send everything down */
20726 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20727 		    &rconfirm);
20728 	}
20729 
20730 #undef PREP_NEW_MULTIDATA
20731 #undef PREP_NEW_PBUF
20732 #undef IPVER
20733 
20734 	IRE_REFRELE(ire);
20735 	return (0);
20736 }
20737 
20738 /*
20739  * A wrapper function for sending one or more Multidata messages down to
20740  * the module below ip; this routine does not release the reference of the
20741  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20742  */
20743 static void
20744 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20745     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20746 {
20747 	uint64_t delta;
20748 	nce_t *nce;
20749 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20750 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20751 
20752 	ASSERT(ire != NULL && ill != NULL);
20753 	ASSERT(ire->ire_stq != NULL);
20754 	ASSERT(md_mp_head != NULL);
20755 	ASSERT(rconfirm != NULL);
20756 
20757 	/* adjust MIBs and IRE timestamp */
20758 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
20759 	tcp->tcp_obsegs += obsegs;
20760 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20761 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20762 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20763 
20764 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20765 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20766 	} else {
20767 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20768 	}
20769 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20770 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20771 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20772 
20773 	ire->ire_ob_pkt_count += obsegs;
20774 	if (ire->ire_ipif != NULL)
20775 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20776 	ire->ire_last_used_time = lbolt;
20777 
20778 	if (ipst->ips_ipobs_enabled) {
20779 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
20780 		pdesc_t *dl_pkt;
20781 		pdescinfo_t pinfo;
20782 		mblk_t *nmp;
20783 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
20784 
20785 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
20786 		    (dl_pkt != NULL);
20787 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
20788 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
20789 				continue;
20790 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
20791 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
20792 			freemsg(nmp);
20793 		}
20794 	}
20795 
20796 	/* send it down */
20797 	putnext(ire->ire_stq, md_mp_head);
20798 
20799 	/* we're done for TCP/IPv4 */
20800 	if (tcp->tcp_ipversion == IPV4_VERSION)
20801 		return;
20802 
20803 	nce = ire->ire_nce;
20804 
20805 	ASSERT(nce != NULL);
20806 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20807 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20808 
20809 	/* reachability confirmation? */
20810 	if (*rconfirm) {
20811 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20812 		if (nce->nce_state != ND_REACHABLE) {
20813 			mutex_enter(&nce->nce_lock);
20814 			nce->nce_state = ND_REACHABLE;
20815 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20816 			mutex_exit(&nce->nce_lock);
20817 			(void) untimeout(nce->nce_timeout_id);
20818 			if (ip_debug > 2) {
20819 				/* ip1dbg */
20820 				pr_addr_dbg("tcp_multisend_data: state "
20821 				    "for %s changed to REACHABLE\n",
20822 				    AF_INET6, &ire->ire_addr_v6);
20823 			}
20824 		}
20825 		/* reset transport reachability confirmation */
20826 		*rconfirm = B_FALSE;
20827 	}
20828 
20829 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20830 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20831 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20832 
20833 	if (delta > (uint64_t)ill->ill_reachable_time) {
20834 		mutex_enter(&nce->nce_lock);
20835 		switch (nce->nce_state) {
20836 		case ND_REACHABLE:
20837 		case ND_STALE:
20838 			/*
20839 			 * ND_REACHABLE is identical to ND_STALE in this
20840 			 * specific case. If reachable time has expired for
20841 			 * this neighbor (delta is greater than reachable
20842 			 * time), conceptually, the neighbor cache is no
20843 			 * longer in REACHABLE state, but already in STALE
20844 			 * state.  So the correct transition here is to
20845 			 * ND_DELAY.
20846 			 */
20847 			nce->nce_state = ND_DELAY;
20848 			mutex_exit(&nce->nce_lock);
20849 			NDP_RESTART_TIMER(nce,
20850 			    ipst->ips_delay_first_probe_time);
20851 			if (ip_debug > 3) {
20852 				/* ip2dbg */
20853 				pr_addr_dbg("tcp_multisend_data: state "
20854 				    "for %s changed to DELAY\n",
20855 				    AF_INET6, &ire->ire_addr_v6);
20856 			}
20857 			break;
20858 		case ND_DELAY:
20859 		case ND_PROBE:
20860 			mutex_exit(&nce->nce_lock);
20861 			/* Timers have already started */
20862 			break;
20863 		case ND_UNREACHABLE:
20864 			/*
20865 			 * ndp timer has detected that this nce is
20866 			 * unreachable and initiated deleting this nce
20867 			 * and all its associated IREs. This is a race
20868 			 * where we found the ire before it was deleted
20869 			 * and have just sent out a packet using this
20870 			 * unreachable nce.
20871 			 */
20872 			mutex_exit(&nce->nce_lock);
20873 			break;
20874 		default:
20875 			ASSERT(0);
20876 		}
20877 	}
20878 }
20879 
20880 /*
20881  * Derived from tcp_send_data().
20882  */
20883 static void
20884 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20885     int num_lso_seg)
20886 {
20887 	ipha_t		*ipha;
20888 	mblk_t		*ire_fp_mp;
20889 	uint_t		ire_fp_mp_len;
20890 	uint32_t	hcksum_txflags = 0;
20891 	ipaddr_t	src;
20892 	ipaddr_t	dst;
20893 	uint32_t	cksum;
20894 	uint16_t	*up;
20895 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20896 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20897 
20898 	ASSERT(DB_TYPE(mp) == M_DATA);
20899 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20900 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20901 	ASSERT(tcp->tcp_connp != NULL);
20902 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20903 
20904 	ipha = (ipha_t *)mp->b_rptr;
20905 	src = ipha->ipha_src;
20906 	dst = ipha->ipha_dst;
20907 
20908 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
20909 
20910 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20911 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20912 	    num_lso_seg);
20913 #ifndef _BIG_ENDIAN
20914 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20915 #endif
20916 	if (tcp->tcp_snd_zcopy_aware) {
20917 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20918 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20919 			mp = tcp_zcopy_disable(tcp, mp);
20920 	}
20921 
20922 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20923 		ASSERT(ill->ill_hcksum_capab != NULL);
20924 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20925 	}
20926 
20927 	/*
20928 	 * Since the TCP checksum should be recalculated by h/w, we can just
20929 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20930 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20931 	 * The partial pseudo-header excludes TCP length, that was calculated
20932 	 * in tcp_send(), so to zero *up before further processing.
20933 	 */
20934 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20935 
20936 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20937 	*up = 0;
20938 
20939 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20940 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20941 
20942 	/*
20943 	 * Append LSO flags and mss to the mp.
20944 	 */
20945 	lso_info_set(mp, mss, HW_LSO);
20946 
20947 	ipha->ipha_fragment_offset_and_flags |=
20948 	    (uint32_t)htons(ire->ire_frag_flag);
20949 
20950 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20951 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20952 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20953 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20954 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20955 
20956 	UPDATE_OB_PKT_COUNT(ire);
20957 	ire->ire_last_used_time = lbolt;
20958 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20959 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20960 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20961 	    ntohs(ipha->ipha_length));
20962 
20963 	DTRACE_PROBE4(ip4__physical__out__start,
20964 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
20965 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
20966 	    ipst->ips_ipv4firewall_physical_out, NULL,
20967 	    ill, ipha, mp, mp, 0, ipst);
20968 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20969 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
20970 
20971 	if (mp != NULL) {
20972 		if (ipst->ips_ipobs_enabled) {
20973 			zoneid_t szone;
20974 
20975 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
20976 			    ipst, ALL_ZONES);
20977 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
20978 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
20979 		}
20980 
20981 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL);
20982 	}
20983 }
20984 
20985 /*
20986  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20987  * scheme, and returns one of the following:
20988  *
20989  * -1 = failed allocation.
20990  *  0 = success; burst count reached, or usable send window is too small,
20991  *      and that we'd rather wait until later before sending again.
20992  *  1 = success; we are called from tcp_multisend(), and both usable send
20993  *      window and tail_unsent are greater than the MDT threshold, and thus
20994  *      Multidata Transmit should be used instead.
20995  */
20996 static int
20997 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20998     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20999     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21000     const int mdt_thres)
21001 {
21002 	int num_burst_seg = tcp->tcp_snd_burst;
21003 	ire_t		*ire = NULL;
21004 	ill_t		*ill = NULL;
21005 	mblk_t		*ire_fp_mp = NULL;
21006 	uint_t		ire_fp_mp_len = 0;
21007 	int		num_lso_seg = 1;
21008 	uint_t		lso_usable;
21009 	boolean_t	do_lso_send = B_FALSE;
21010 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21011 
21012 	/*
21013 	 * Check LSO capability before any further work. And the similar check
21014 	 * need to be done in for(;;) loop.
21015 	 * LSO will be deployed when therer is more than one mss of available
21016 	 * data and a burst transmission is allowed.
21017 	 */
21018 	if (tcp->tcp_lso &&
21019 	    (tcp->tcp_valid_bits == 0 ||
21020 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21021 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21022 		/*
21023 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21024 		 * Double check LSO usability before going further, since the
21025 		 * underlying interface could have been changed. In case of any
21026 		 * change of LSO capability, set tcp_ire_ill_check_done to
21027 		 * B_FALSE to force to check the ILL with the next send.
21028 		 */
21029 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) &&
21030 		    tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
21031 			/*
21032 			 * Enable LSO with this transmission.
21033 			 * Since IRE has been hold in tcp_send_find_ire_ill(),
21034 			 * IRE_REFRELE(ire) should be called before return.
21035 			 */
21036 			do_lso_send = B_TRUE;
21037 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21038 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21039 			/* Round up to multiple of 4 */
21040 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21041 		} else {
21042 			tcp->tcp_lso = B_FALSE;
21043 			tcp->tcp_ire_ill_check_done = B_FALSE;
21044 			do_lso_send = B_FALSE;
21045 			ill = NULL;
21046 		}
21047 	}
21048 
21049 	for (;;) {
21050 		struct datab	*db;
21051 		tcph_t		*tcph;
21052 		uint32_t	sum;
21053 		mblk_t		*mp, *mp1;
21054 		uchar_t		*rptr;
21055 		int		len;
21056 
21057 		/*
21058 		 * If we're called by tcp_multisend(), and the amount of
21059 		 * sendable data as well as the size of current xmit_tail
21060 		 * is beyond the MDT threshold, return to the caller and
21061 		 * let the large data transmit be done using MDT.
21062 		 */
21063 		if (*usable > 0 && *usable > mdt_thres &&
21064 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21065 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21066 			ASSERT(tcp->tcp_mdt);
21067 			return (1);	/* success; do large send */
21068 		}
21069 
21070 		if (num_burst_seg == 0)
21071 			break;		/* success; burst count reached */
21072 
21073 		/*
21074 		 * Calculate the maximum payload length we can send in *one*
21075 		 * time.
21076 		 */
21077 		if (do_lso_send) {
21078 			/*
21079 			 * Check whether need to do LSO any more.
21080 			 */
21081 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21082 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21083 				lso_usable = MIN(lso_usable,
21084 				    num_burst_seg * mss);
21085 
21086 				num_lso_seg = lso_usable / mss;
21087 				if (lso_usable % mss) {
21088 					num_lso_seg++;
21089 					tcp->tcp_last_sent_len = (ushort_t)
21090 					    (lso_usable % mss);
21091 				} else {
21092 					tcp->tcp_last_sent_len = (ushort_t)mss;
21093 				}
21094 			} else {
21095 				do_lso_send = B_FALSE;
21096 				num_lso_seg = 1;
21097 				lso_usable = mss;
21098 			}
21099 		}
21100 
21101 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21102 
21103 		/*
21104 		 * Adjust num_burst_seg here.
21105 		 */
21106 		num_burst_seg -= num_lso_seg;
21107 
21108 		len = mss;
21109 		if (len > *usable) {
21110 			ASSERT(do_lso_send == B_FALSE);
21111 
21112 			len = *usable;
21113 			if (len <= 0) {
21114 				/* Terminate the loop */
21115 				break;	/* success; too small */
21116 			}
21117 			/*
21118 			 * Sender silly-window avoidance.
21119 			 * Ignore this if we are going to send a
21120 			 * zero window probe out.
21121 			 *
21122 			 * TODO: force data into microscopic window?
21123 			 *	==> (!pushed || (unsent > usable))
21124 			 */
21125 			if (len < (tcp->tcp_max_swnd >> 1) &&
21126 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21127 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21128 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21129 				/*
21130 				 * If the retransmit timer is not running
21131 				 * we start it so that we will retransmit
21132 				 * in the case when the the receiver has
21133 				 * decremented the window.
21134 				 */
21135 				if (*snxt == tcp->tcp_snxt &&
21136 				    *snxt == tcp->tcp_suna) {
21137 					/*
21138 					 * We are not supposed to send
21139 					 * anything.  So let's wait a little
21140 					 * bit longer before breaking SWS
21141 					 * avoidance.
21142 					 *
21143 					 * What should the value be?
21144 					 * Suggestion: MAX(init rexmit time,
21145 					 * tcp->tcp_rto)
21146 					 */
21147 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21148 				}
21149 				break;	/* success; too small */
21150 			}
21151 		}
21152 
21153 		tcph = tcp->tcp_tcph;
21154 
21155 		/*
21156 		 * The reason to adjust len here is that we need to set flags
21157 		 * and calculate checksum.
21158 		 */
21159 		if (do_lso_send)
21160 			len = lso_usable;
21161 
21162 		*usable -= len; /* Approximate - can be adjusted later */
21163 		if (*usable > 0)
21164 			tcph->th_flags[0] = TH_ACK;
21165 		else
21166 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21167 
21168 		/*
21169 		 * Prime pump for IP's checksumming on our behalf
21170 		 * Include the adjustment for a source route if any.
21171 		 */
21172 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21173 		sum = (sum >> 16) + (sum & 0xFFFF);
21174 		U16_TO_ABE16(sum, tcph->th_sum);
21175 
21176 		U32_TO_ABE32(*snxt, tcph->th_seq);
21177 
21178 		/*
21179 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21180 		 * set.  For the case when TCP_FSS_VALID is the only valid
21181 		 * bit (normal active close), branch off only when we think
21182 		 * that the FIN flag needs to be set.  Note for this case,
21183 		 * that (snxt + len) may not reflect the actual seg_len,
21184 		 * as len may be further reduced in tcp_xmit_mp().  If len
21185 		 * gets modified, we will end up here again.
21186 		 */
21187 		if (tcp->tcp_valid_bits != 0 &&
21188 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21189 		    ((*snxt + len) == tcp->tcp_fss))) {
21190 			uchar_t		*prev_rptr;
21191 			uint32_t	prev_snxt = tcp->tcp_snxt;
21192 
21193 			if (*tail_unsent == 0) {
21194 				ASSERT((*xmit_tail)->b_cont != NULL);
21195 				*xmit_tail = (*xmit_tail)->b_cont;
21196 				prev_rptr = (*xmit_tail)->b_rptr;
21197 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21198 				    (*xmit_tail)->b_rptr);
21199 			} else {
21200 				prev_rptr = (*xmit_tail)->b_rptr;
21201 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21202 				    *tail_unsent;
21203 			}
21204 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21205 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21206 			/* Restore tcp_snxt so we get amount sent right. */
21207 			tcp->tcp_snxt = prev_snxt;
21208 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21209 				/*
21210 				 * If the previous timestamp is still in use,
21211 				 * don't stomp on it.
21212 				 */
21213 				if ((*xmit_tail)->b_next == NULL) {
21214 					(*xmit_tail)->b_prev = local_time;
21215 					(*xmit_tail)->b_next =
21216 					    (mblk_t *)(uintptr_t)(*snxt);
21217 				}
21218 			} else
21219 				(*xmit_tail)->b_rptr = prev_rptr;
21220 
21221 			if (mp == NULL) {
21222 				if (ire != NULL)
21223 					IRE_REFRELE(ire);
21224 				return (-1);
21225 			}
21226 			mp1 = mp->b_cont;
21227 
21228 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21229 				tcp->tcp_last_sent_len = (ushort_t)len;
21230 			while (mp1->b_cont) {
21231 				*xmit_tail = (*xmit_tail)->b_cont;
21232 				(*xmit_tail)->b_prev = local_time;
21233 				(*xmit_tail)->b_next =
21234 				    (mblk_t *)(uintptr_t)(*snxt);
21235 				mp1 = mp1->b_cont;
21236 			}
21237 			*snxt += len;
21238 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21239 			BUMP_LOCAL(tcp->tcp_obsegs);
21240 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21241 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21242 			tcp_send_data(tcp, q, mp);
21243 			continue;
21244 		}
21245 
21246 		*snxt += len;	/* Adjust later if we don't send all of len */
21247 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21248 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21249 
21250 		if (*tail_unsent) {
21251 			/* Are the bytes above us in flight? */
21252 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21253 			if (rptr != (*xmit_tail)->b_rptr) {
21254 				*tail_unsent -= len;
21255 				if (len <= mss) /* LSO is unusable */
21256 					tcp->tcp_last_sent_len = (ushort_t)len;
21257 				len += tcp_hdr_len;
21258 				if (tcp->tcp_ipversion == IPV4_VERSION)
21259 					tcp->tcp_ipha->ipha_length = htons(len);
21260 				else
21261 					tcp->tcp_ip6h->ip6_plen =
21262 					    htons(len -
21263 					    ((char *)&tcp->tcp_ip6h[1] -
21264 					    tcp->tcp_iphc));
21265 				mp = dupb(*xmit_tail);
21266 				if (mp == NULL) {
21267 					if (ire != NULL)
21268 						IRE_REFRELE(ire);
21269 					return (-1);	/* out_of_mem */
21270 				}
21271 				mp->b_rptr = rptr;
21272 				/*
21273 				 * If the old timestamp is no longer in use,
21274 				 * sample a new timestamp now.
21275 				 */
21276 				if ((*xmit_tail)->b_next == NULL) {
21277 					(*xmit_tail)->b_prev = local_time;
21278 					(*xmit_tail)->b_next =
21279 					    (mblk_t *)(uintptr_t)(*snxt-len);
21280 				}
21281 				goto must_alloc;
21282 			}
21283 		} else {
21284 			*xmit_tail = (*xmit_tail)->b_cont;
21285 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21286 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21287 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21288 			    (*xmit_tail)->b_rptr);
21289 		}
21290 
21291 		(*xmit_tail)->b_prev = local_time;
21292 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21293 
21294 		*tail_unsent -= len;
21295 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21296 			tcp->tcp_last_sent_len = (ushort_t)len;
21297 
21298 		len += tcp_hdr_len;
21299 		if (tcp->tcp_ipversion == IPV4_VERSION)
21300 			tcp->tcp_ipha->ipha_length = htons(len);
21301 		else
21302 			tcp->tcp_ip6h->ip6_plen = htons(len -
21303 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21304 
21305 		mp = dupb(*xmit_tail);
21306 		if (mp == NULL) {
21307 			if (ire != NULL)
21308 				IRE_REFRELE(ire);
21309 			return (-1);	/* out_of_mem */
21310 		}
21311 
21312 		len = tcp_hdr_len;
21313 		/*
21314 		 * There are four reasons to allocate a new hdr mblk:
21315 		 *  1) The bytes above us are in use by another packet
21316 		 *  2) We don't have good alignment
21317 		 *  3) The mblk is being shared
21318 		 *  4) We don't have enough room for a header
21319 		 */
21320 		rptr = mp->b_rptr - len;
21321 		if (!OK_32PTR(rptr) ||
21322 		    ((db = mp->b_datap), db->db_ref != 2) ||
21323 		    rptr < db->db_base + ire_fp_mp_len) {
21324 			/* NOTE: we assume allocb returns an OK_32PTR */
21325 
21326 		must_alloc:;
21327 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21328 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21329 			if (mp1 == NULL) {
21330 				freemsg(mp);
21331 				if (ire != NULL)
21332 					IRE_REFRELE(ire);
21333 				return (-1);	/* out_of_mem */
21334 			}
21335 			mp1->b_cont = mp;
21336 			mp = mp1;
21337 			/* Leave room for Link Level header */
21338 			len = tcp_hdr_len;
21339 			rptr =
21340 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21341 			mp->b_wptr = &rptr[len];
21342 		}
21343 
21344 		/*
21345 		 * Fill in the header using the template header, and add
21346 		 * options such as time-stamp, ECN and/or SACK, as needed.
21347 		 */
21348 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21349 
21350 		mp->b_rptr = rptr;
21351 
21352 		if (*tail_unsent) {
21353 			int spill = *tail_unsent;
21354 
21355 			mp1 = mp->b_cont;
21356 			if (mp1 == NULL)
21357 				mp1 = mp;
21358 
21359 			/*
21360 			 * If we're a little short, tack on more mblks until
21361 			 * there is no more spillover.
21362 			 */
21363 			while (spill < 0) {
21364 				mblk_t *nmp;
21365 				int nmpsz;
21366 
21367 				nmp = (*xmit_tail)->b_cont;
21368 				nmpsz = MBLKL(nmp);
21369 
21370 				/*
21371 				 * Excess data in mblk; can we split it?
21372 				 * If MDT is enabled for the connection,
21373 				 * keep on splitting as this is a transient
21374 				 * send path.
21375 				 */
21376 				if (!do_lso_send && !tcp->tcp_mdt &&
21377 				    (spill + nmpsz > 0)) {
21378 					/*
21379 					 * Don't split if stream head was
21380 					 * told to break up larger writes
21381 					 * into smaller ones.
21382 					 */
21383 					if (tcp->tcp_maxpsz > 0)
21384 						break;
21385 
21386 					/*
21387 					 * Next mblk is less than SMSS/2
21388 					 * rounded up to nearest 64-byte;
21389 					 * let it get sent as part of the
21390 					 * next segment.
21391 					 */
21392 					if (tcp->tcp_localnet &&
21393 					    !tcp->tcp_cork &&
21394 					    (nmpsz < roundup((mss >> 1), 64)))
21395 						break;
21396 				}
21397 
21398 				*xmit_tail = nmp;
21399 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21400 				/* Stash for rtt use later */
21401 				(*xmit_tail)->b_prev = local_time;
21402 				(*xmit_tail)->b_next =
21403 				    (mblk_t *)(uintptr_t)(*snxt - len);
21404 				mp1->b_cont = dupb(*xmit_tail);
21405 				mp1 = mp1->b_cont;
21406 
21407 				spill += nmpsz;
21408 				if (mp1 == NULL) {
21409 					*tail_unsent = spill;
21410 					freemsg(mp);
21411 					if (ire != NULL)
21412 						IRE_REFRELE(ire);
21413 					return (-1);	/* out_of_mem */
21414 				}
21415 			}
21416 
21417 			/* Trim back any surplus on the last mblk */
21418 			if (spill >= 0) {
21419 				mp1->b_wptr -= spill;
21420 				*tail_unsent = spill;
21421 			} else {
21422 				/*
21423 				 * We did not send everything we could in
21424 				 * order to remain within the b_cont limit.
21425 				 */
21426 				*usable -= spill;
21427 				*snxt += spill;
21428 				tcp->tcp_last_sent_len += spill;
21429 				UPDATE_MIB(&tcps->tcps_mib,
21430 				    tcpOutDataBytes, spill);
21431 				/*
21432 				 * Adjust the checksum
21433 				 */
21434 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21435 				sum += spill;
21436 				sum = (sum >> 16) + (sum & 0xFFFF);
21437 				U16_TO_ABE16(sum, tcph->th_sum);
21438 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21439 					sum = ntohs(
21440 					    ((ipha_t *)rptr)->ipha_length) +
21441 					    spill;
21442 					((ipha_t *)rptr)->ipha_length =
21443 					    htons(sum);
21444 				} else {
21445 					sum = ntohs(
21446 					    ((ip6_t *)rptr)->ip6_plen) +
21447 					    spill;
21448 					((ip6_t *)rptr)->ip6_plen =
21449 					    htons(sum);
21450 				}
21451 				*tail_unsent = 0;
21452 			}
21453 		}
21454 		if (tcp->tcp_ip_forward_progress) {
21455 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21456 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21457 			tcp->tcp_ip_forward_progress = B_FALSE;
21458 		}
21459 
21460 		if (do_lso_send) {
21461 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21462 			    num_lso_seg);
21463 			tcp->tcp_obsegs += num_lso_seg;
21464 
21465 			TCP_STAT(tcps, tcp_lso_times);
21466 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21467 		} else {
21468 			tcp_send_data(tcp, q, mp);
21469 			BUMP_LOCAL(tcp->tcp_obsegs);
21470 		}
21471 	}
21472 
21473 	if (ire != NULL)
21474 		IRE_REFRELE(ire);
21475 	return (0);
21476 }
21477 
21478 /* Unlink and return any mblk that looks like it contains a MDT info */
21479 static mblk_t *
21480 tcp_mdt_info_mp(mblk_t *mp)
21481 {
21482 	mblk_t	*prev_mp;
21483 
21484 	for (;;) {
21485 		prev_mp = mp;
21486 		/* no more to process? */
21487 		if ((mp = mp->b_cont) == NULL)
21488 			break;
21489 
21490 		switch (DB_TYPE(mp)) {
21491 		case M_CTL:
21492 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21493 				continue;
21494 			ASSERT(prev_mp != NULL);
21495 			prev_mp->b_cont = mp->b_cont;
21496 			mp->b_cont = NULL;
21497 			return (mp);
21498 		default:
21499 			break;
21500 		}
21501 	}
21502 	return (mp);
21503 }
21504 
21505 /* MDT info update routine, called when IP notifies us about MDT */
21506 static void
21507 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21508 {
21509 	boolean_t prev_state;
21510 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21511 
21512 	/*
21513 	 * IP is telling us to abort MDT on this connection?  We know
21514 	 * this because the capability is only turned off when IP
21515 	 * encounters some pathological cases, e.g. link-layer change
21516 	 * where the new driver doesn't support MDT, or in situation
21517 	 * where MDT usage on the link-layer has been switched off.
21518 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21519 	 * if the link-layer doesn't support MDT, and if it does, it
21520 	 * will indicate that the feature is to be turned on.
21521 	 */
21522 	prev_state = tcp->tcp_mdt;
21523 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21524 	if (!tcp->tcp_mdt && !first) {
21525 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21526 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21527 		    (void *)tcp->tcp_connp));
21528 	}
21529 
21530 	/*
21531 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21532 	 * so disable MDT otherwise.  The checks are done here
21533 	 * and in tcp_wput_data().
21534 	 */
21535 	if (tcp->tcp_mdt &&
21536 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21537 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21538 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21539 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21540 		tcp->tcp_mdt = B_FALSE;
21541 
21542 	if (tcp->tcp_mdt) {
21543 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21544 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21545 			    "version (%d), expected version is %d",
21546 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21547 			tcp->tcp_mdt = B_FALSE;
21548 			return;
21549 		}
21550 
21551 		/*
21552 		 * We need the driver to be able to handle at least three
21553 		 * spans per packet in order for tcp MDT to be utilized.
21554 		 * The first is for the header portion, while the rest are
21555 		 * needed to handle a packet that straddles across two
21556 		 * virtually non-contiguous buffers; a typical tcp packet
21557 		 * therefore consists of only two spans.  Note that we take
21558 		 * a zero as "don't care".
21559 		 */
21560 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21561 		    mdt_capab->ill_mdt_span_limit < 3) {
21562 			tcp->tcp_mdt = B_FALSE;
21563 			return;
21564 		}
21565 
21566 		/* a zero means driver wants default value */
21567 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21568 		    tcps->tcps_mdt_max_pbufs);
21569 		if (tcp->tcp_mdt_max_pld == 0)
21570 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21571 
21572 		/* ensure 32-bit alignment */
21573 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21574 		    mdt_capab->ill_mdt_hdr_head), 4);
21575 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21576 		    mdt_capab->ill_mdt_hdr_tail), 4);
21577 
21578 		if (!first && !prev_state) {
21579 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21580 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21581 			    (void *)tcp->tcp_connp));
21582 		}
21583 	}
21584 }
21585 
21586 /* Unlink and return any mblk that looks like it contains a LSO info */
21587 static mblk_t *
21588 tcp_lso_info_mp(mblk_t *mp)
21589 {
21590 	mblk_t	*prev_mp;
21591 
21592 	for (;;) {
21593 		prev_mp = mp;
21594 		/* no more to process? */
21595 		if ((mp = mp->b_cont) == NULL)
21596 			break;
21597 
21598 		switch (DB_TYPE(mp)) {
21599 		case M_CTL:
21600 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21601 				continue;
21602 			ASSERT(prev_mp != NULL);
21603 			prev_mp->b_cont = mp->b_cont;
21604 			mp->b_cont = NULL;
21605 			return (mp);
21606 		default:
21607 			break;
21608 		}
21609 	}
21610 
21611 	return (mp);
21612 }
21613 
21614 /* LSO info update routine, called when IP notifies us about LSO */
21615 static void
21616 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21617 {
21618 	tcp_stack_t *tcps = tcp->tcp_tcps;
21619 
21620 	/*
21621 	 * IP is telling us to abort LSO on this connection?  We know
21622 	 * this because the capability is only turned off when IP
21623 	 * encounters some pathological cases, e.g. link-layer change
21624 	 * where the new NIC/driver doesn't support LSO, or in situation
21625 	 * where LSO usage on the link-layer has been switched off.
21626 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21627 	 * if the link-layer doesn't support LSO, and if it does, it
21628 	 * will indicate that the feature is to be turned on.
21629 	 */
21630 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21631 	TCP_STAT(tcps, tcp_lso_enabled);
21632 
21633 	/*
21634 	 * We currently only support LSO on simple TCP/IPv4,
21635 	 * so disable LSO otherwise.  The checks are done here
21636 	 * and in tcp_wput_data().
21637 	 */
21638 	if (tcp->tcp_lso &&
21639 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21640 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21641 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21642 		tcp->tcp_lso = B_FALSE;
21643 		TCP_STAT(tcps, tcp_lso_disabled);
21644 	} else {
21645 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21646 		    lso_capab->ill_lso_max);
21647 	}
21648 }
21649 
21650 static void
21651 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21652 {
21653 	conn_t *connp = tcp->tcp_connp;
21654 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21655 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21656 
21657 	ASSERT(ire != NULL);
21658 
21659 	/*
21660 	 * We may be in the fastpath here, and although we essentially do
21661 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21662 	 * we try to keep things as brief as possible.  After all, these
21663 	 * are only best-effort checks, and we do more thorough ones prior
21664 	 * to calling tcp_send()/tcp_multisend().
21665 	 */
21666 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21667 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21668 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21669 	    !(ire->ire_flags & RTF_MULTIRT) &&
21670 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21671 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21672 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21673 			/* Cache the result */
21674 			connp->conn_lso_ok = B_TRUE;
21675 
21676 			ASSERT(ill->ill_lso_capab != NULL);
21677 			if (!ill->ill_lso_capab->ill_lso_on) {
21678 				ill->ill_lso_capab->ill_lso_on = 1;
21679 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21680 				    "LSO for interface %s\n", (void *)connp,
21681 				    ill->ill_name));
21682 			}
21683 			tcp_lso_update(tcp, ill->ill_lso_capab);
21684 		} else if (ipst->ips_ip_multidata_outbound &&
21685 		    ILL_MDT_CAPABLE(ill)) {
21686 			/* Cache the result */
21687 			connp->conn_mdt_ok = B_TRUE;
21688 
21689 			ASSERT(ill->ill_mdt_capab != NULL);
21690 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21691 				ill->ill_mdt_capab->ill_mdt_on = 1;
21692 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21693 				    "MDT for interface %s\n", (void *)connp,
21694 				    ill->ill_name));
21695 			}
21696 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21697 		}
21698 	}
21699 
21700 	/*
21701 	 * The goal is to reduce the number of generated tcp segments by
21702 	 * setting the maxpsz multiplier to 0; this will have an affect on
21703 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21704 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21705 	 * of outbound segments and incoming ACKs, thus allowing for better
21706 	 * network and system performance.  In contrast the legacy behavior
21707 	 * may result in sending less than SMSS size, because the last mblk
21708 	 * for some packets may have more data than needed to make up SMSS,
21709 	 * and the legacy code refused to "split" it.
21710 	 *
21711 	 * We apply the new behavior on following situations:
21712 	 *
21713 	 *   1) Loopback connections,
21714 	 *   2) Connections in which the remote peer is not on local subnet,
21715 	 *   3) Local subnet connections over the bge interface (see below).
21716 	 *
21717 	 * Ideally, we would like this behavior to apply for interfaces other
21718 	 * than bge.  However, doing so would negatively impact drivers which
21719 	 * perform dynamic mapping and unmapping of DMA resources, which are
21720 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21721 	 * packet will be generated by tcp).  The bge driver does not suffer
21722 	 * from this, as it copies the mblks into pre-mapped buffers, and
21723 	 * therefore does not require more I/O resources than before.
21724 	 *
21725 	 * Otherwise, this behavior is present on all network interfaces when
21726 	 * the destination endpoint is non-local, since reducing the number
21727 	 * of packets in general is good for the network.
21728 	 *
21729 	 * TODO We need to remove this hard-coded conditional for bge once
21730 	 *	a better "self-tuning" mechanism, or a way to comprehend
21731 	 *	the driver transmit strategy is devised.  Until the solution
21732 	 *	is found and well understood, we live with this hack.
21733 	 */
21734 	if (!tcp_static_maxpsz &&
21735 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21736 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21737 		/* override the default value */
21738 		tcp->tcp_maxpsz = 0;
21739 
21740 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21741 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21742 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21743 	}
21744 
21745 	/* set the stream head parameters accordingly */
21746 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21747 }
21748 
21749 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21750 static void
21751 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21752 {
21753 	uchar_t	fval = *mp->b_rptr;
21754 	mblk_t	*tail;
21755 	queue_t	*q = tcp->tcp_wq;
21756 
21757 	/* TODO: How should flush interact with urgent data? */
21758 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21759 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21760 		/*
21761 		 * Flush only data that has not yet been put on the wire.  If
21762 		 * we flush data that we have already transmitted, life, as we
21763 		 * know it, may come to an end.
21764 		 */
21765 		tail = tcp->tcp_xmit_tail;
21766 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21767 		tcp->tcp_xmit_tail_unsent = 0;
21768 		tcp->tcp_unsent = 0;
21769 		if (tail->b_wptr != tail->b_rptr)
21770 			tail = tail->b_cont;
21771 		if (tail) {
21772 			mblk_t **excess = &tcp->tcp_xmit_head;
21773 			for (;;) {
21774 				mblk_t *mp1 = *excess;
21775 				if (mp1 == tail)
21776 					break;
21777 				tcp->tcp_xmit_tail = mp1;
21778 				tcp->tcp_xmit_last = mp1;
21779 				excess = &mp1->b_cont;
21780 			}
21781 			*excess = NULL;
21782 			tcp_close_mpp(&tail);
21783 			if (tcp->tcp_snd_zcopy_aware)
21784 				tcp_zcopy_notify(tcp);
21785 		}
21786 		/*
21787 		 * We have no unsent data, so unsent must be less than
21788 		 * tcp_xmit_lowater, so re-enable flow.
21789 		 */
21790 		mutex_enter(&tcp->tcp_non_sq_lock);
21791 		if (tcp->tcp_flow_stopped) {
21792 			tcp_clrqfull(tcp);
21793 		}
21794 		mutex_exit(&tcp->tcp_non_sq_lock);
21795 	}
21796 	/*
21797 	 * TODO: you can't just flush these, you have to increase rwnd for one
21798 	 * thing.  For another, how should urgent data interact?
21799 	 */
21800 	if (fval & FLUSHR) {
21801 		*mp->b_rptr = fval & ~FLUSHW;
21802 		/* XXX */
21803 		qreply(q, mp);
21804 		return;
21805 	}
21806 	freemsg(mp);
21807 }
21808 
21809 /*
21810  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21811  * messages.
21812  */
21813 static void
21814 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21815 {
21816 	mblk_t	*mp1;
21817 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
21818 	STRUCT_HANDLE(strbuf, sb);
21819 	queue_t *q = tcp->tcp_wq;
21820 	int	error;
21821 	uint_t	addrlen;
21822 
21823 	/* Make sure it is one of ours. */
21824 	switch (iocp->ioc_cmd) {
21825 	case TI_GETMYNAME:
21826 	case TI_GETPEERNAME:
21827 		break;
21828 	default:
21829 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21830 		return;
21831 	}
21832 	switch (mi_copy_state(q, mp, &mp1)) {
21833 	case -1:
21834 		return;
21835 	case MI_COPY_CASE(MI_COPY_IN, 1):
21836 		break;
21837 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21838 		/* Copy out the strbuf. */
21839 		mi_copyout(q, mp);
21840 		return;
21841 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21842 		/* All done. */
21843 		mi_copy_done(q, mp, 0);
21844 		return;
21845 	default:
21846 		mi_copy_done(q, mp, EPROTO);
21847 		return;
21848 	}
21849 	/* Check alignment of the strbuf */
21850 	if (!OK_32PTR(mp1->b_rptr)) {
21851 		mi_copy_done(q, mp, EINVAL);
21852 		return;
21853 	}
21854 
21855 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
21856 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21857 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21858 		mi_copy_done(q, mp, EINVAL);
21859 		return;
21860 	}
21861 
21862 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21863 	if (mp1 == NULL)
21864 		return;
21865 
21866 	switch (iocp->ioc_cmd) {
21867 	case TI_GETMYNAME:
21868 		error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen);
21869 		break;
21870 	case TI_GETPEERNAME:
21871 		error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
21872 		break;
21873 	}
21874 
21875 	if (error != 0) {
21876 		mi_copy_done(q, mp, error);
21877 	} else {
21878 		mp1->b_wptr += addrlen;
21879 		STRUCT_FSET(sb, len, addrlen);
21880 
21881 		/* Copy out the address */
21882 		mi_copyout(q, mp);
21883 	}
21884 }
21885 
21886 static void
21887 tcp_disable_direct_sockfs(tcp_t *tcp)
21888 {
21889 #ifdef	_ILP32
21890 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
21891 #else
21892 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21893 #endif
21894 	/*
21895 	 * Insert this socket into the acceptor hash.
21896 	 * We might need it for T_CONN_RES message
21897 	 */
21898 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21899 
21900 	if (tcp->tcp_fused) {
21901 		/*
21902 		 * This is a fused loopback tcp; disable
21903 		 * read-side synchronous streams interface
21904 		 * and drain any queued data.  It is okay
21905 		 * to do this for non-synchronous streams
21906 		 * fused tcp as well.
21907 		 */
21908 		tcp_fuse_disable_pair(tcp, B_FALSE);
21909 	}
21910 	tcp->tcp_issocket = B_FALSE;
21911 	tcp->tcp_sodirect = NULL;
21912 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
21913 }
21914 
21915 /*
21916  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21917  * messages.
21918  */
21919 /* ARGSUSED */
21920 static void
21921 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21922 {
21923 	conn_t 	*connp = (conn_t *)arg;
21924 	tcp_t	*tcp = connp->conn_tcp;
21925 	queue_t	*q = tcp->tcp_wq;
21926 	struct iocblk	*iocp;
21927 
21928 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21929 	/*
21930 	 * Try and ASSERT the minimum possible references on the
21931 	 * conn early enough. Since we are executing on write side,
21932 	 * the connection is obviously not detached and that means
21933 	 * there is a ref each for TCP and IP. Since we are behind
21934 	 * the squeue, the minimum references needed are 3. If the
21935 	 * conn is in classifier hash list, there should be an
21936 	 * extra ref for that (we check both the possibilities).
21937 	 */
21938 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21939 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21940 
21941 	iocp = (struct iocblk *)mp->b_rptr;
21942 	switch (iocp->ioc_cmd) {
21943 	case TCP_IOC_DEFAULT_Q:
21944 		/* Wants to be the default wq. */
21945 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21946 			iocp->ioc_error = EPERM;
21947 			iocp->ioc_count = 0;
21948 			mp->b_datap->db_type = M_IOCACK;
21949 			qreply(q, mp);
21950 			return;
21951 		}
21952 		tcp_def_q_set(tcp, mp);
21953 		return;
21954 	case _SIOCSOCKFALLBACK:
21955 		/*
21956 		 * Either sockmod is about to be popped and the socket
21957 		 * would now be treated as a plain stream, or a module
21958 		 * is about to be pushed so we could no longer use read-
21959 		 * side synchronous streams for fused loopback tcp.
21960 		 * Drain any queued data and disable direct sockfs
21961 		 * interface from now on.
21962 		 */
21963 		if (!tcp->tcp_issocket) {
21964 			DB_TYPE(mp) = M_IOCNAK;
21965 			iocp->ioc_error = EINVAL;
21966 		} else {
21967 			tcp_disable_direct_sockfs(tcp);
21968 			DB_TYPE(mp) = M_IOCACK;
21969 			iocp->ioc_error = 0;
21970 		}
21971 		iocp->ioc_count = 0;
21972 		iocp->ioc_rval = 0;
21973 		qreply(q, mp);
21974 		return;
21975 	}
21976 	CALL_IP_WPUT(connp, q, mp);
21977 }
21978 
21979 /*
21980  * This routine is called by tcp_wput() to handle all TPI requests.
21981  */
21982 /* ARGSUSED */
21983 static void
21984 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21985 {
21986 	conn_t 	*connp = (conn_t *)arg;
21987 	tcp_t	*tcp = connp->conn_tcp;
21988 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21989 	uchar_t *rptr;
21990 	t_scalar_t type;
21991 	cred_t *cr;
21992 
21993 	/*
21994 	 * Try and ASSERT the minimum possible references on the
21995 	 * conn early enough. Since we are executing on write side,
21996 	 * the connection is obviously not detached and that means
21997 	 * there is a ref each for TCP and IP. Since we are behind
21998 	 * the squeue, the minimum references needed are 3. If the
21999 	 * conn is in classifier hash list, there should be an
22000 	 * extra ref for that (we check both the possibilities).
22001 	 */
22002 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22003 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22004 
22005 	rptr = mp->b_rptr;
22006 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22007 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22008 		type = ((union T_primitives *)rptr)->type;
22009 		if (type == T_EXDATA_REQ) {
22010 			tcp_output_urgent(connp, mp->b_cont, arg2);
22011 			freeb(mp);
22012 		} else if (type != T_DATA_REQ) {
22013 			goto non_urgent_data;
22014 		} else {
22015 			/* TODO: options, flags, ... from user */
22016 			/* Set length to zero for reclamation below */
22017 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22018 			freeb(mp);
22019 		}
22020 		return;
22021 	} else {
22022 		if (tcp->tcp_debug) {
22023 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22024 			    "tcp_wput_proto, dropping one...");
22025 		}
22026 		freemsg(mp);
22027 		return;
22028 	}
22029 
22030 non_urgent_data:
22031 
22032 	switch ((int)tprim->type) {
22033 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22034 		/*
22035 		 * save the kssl_ent_t from the next block, and convert this
22036 		 * back to a normal bind_req.
22037 		 */
22038 		if (mp->b_cont != NULL) {
22039 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22040 
22041 			if (tcp->tcp_kssl_ent != NULL) {
22042 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22043 				    KSSL_NO_PROXY);
22044 				tcp->tcp_kssl_ent = NULL;
22045 			}
22046 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22047 			    sizeof (kssl_ent_t));
22048 			kssl_hold_ent(tcp->tcp_kssl_ent);
22049 			freemsg(mp->b_cont);
22050 			mp->b_cont = NULL;
22051 		}
22052 		tprim->type = T_BIND_REQ;
22053 
22054 	/* FALLTHROUGH */
22055 	case O_T_BIND_REQ:	/* bind request */
22056 	case T_BIND_REQ:	/* new semantics bind request */
22057 		tcp_tpi_bind(tcp, mp);
22058 		break;
22059 	case T_UNBIND_REQ:	/* unbind request */
22060 		tcp_tpi_unbind(tcp, mp);
22061 		break;
22062 	case O_T_CONN_RES:	/* old connection response XXX */
22063 	case T_CONN_RES:	/* connection response */
22064 		tcp_tli_accept(tcp, mp);
22065 		break;
22066 	case T_CONN_REQ:	/* connection request */
22067 		tcp_tpi_connect(tcp, mp);
22068 		break;
22069 	case T_DISCON_REQ:	/* disconnect request */
22070 		tcp_disconnect(tcp, mp);
22071 		break;
22072 	case T_CAPABILITY_REQ:
22073 		tcp_capability_req(tcp, mp);	/* capability request */
22074 		break;
22075 	case T_INFO_REQ:	/* information request */
22076 		tcp_info_req(tcp, mp);
22077 		break;
22078 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22079 	case T_OPTMGMT_REQ:
22080 		/*
22081 		 * Note:  no support for snmpcom_req() through new
22082 		 * T_OPTMGMT_REQ. See comments in ip.c
22083 		 */
22084 
22085 		/*
22086 		 * All Solaris components should pass a db_credp
22087 		 * for this TPI message, hence we ASSERT.
22088 		 * But in case there is some other M_PROTO that looks
22089 		 * like a TPI message sent by some other kernel
22090 		 * component, we check and return an error.
22091 		 */
22092 		cr = msg_getcred(mp, NULL);
22093 		ASSERT(cr != NULL);
22094 		if (cr == NULL) {
22095 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
22096 			return;
22097 		}
22098 		/*
22099 		 * If EINPROGRESS is returned, the request has been queued
22100 		 * for subsequent processing by ip_restart_optmgmt(), which
22101 		 * will do the CONN_DEC_REF().
22102 		 */
22103 		CONN_INC_REF(connp);
22104 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
22105 			if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22106 			    B_TRUE) != EINPROGRESS) {
22107 				CONN_DEC_REF(connp);
22108 			}
22109 		} else {
22110 			if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22111 			    B_TRUE) != EINPROGRESS) {
22112 				CONN_DEC_REF(connp);
22113 			}
22114 		}
22115 		break;
22116 
22117 	case T_UNITDATA_REQ:	/* unitdata request */
22118 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22119 		break;
22120 	case T_ORDREL_REQ:	/* orderly release req */
22121 		freemsg(mp);
22122 
22123 		if (tcp->tcp_fused)
22124 			tcp_unfuse(tcp);
22125 
22126 		if (tcp_xmit_end(tcp) != 0) {
22127 			/*
22128 			 * We were crossing FINs and got a reset from
22129 			 * the other side. Just ignore it.
22130 			 */
22131 			if (tcp->tcp_debug) {
22132 				(void) strlog(TCP_MOD_ID, 0, 1,
22133 				    SL_ERROR|SL_TRACE,
22134 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22135 				    "state %s",
22136 				    tcp_display(tcp, NULL,
22137 				    DISP_ADDR_AND_PORT));
22138 			}
22139 		}
22140 		break;
22141 	case T_ADDR_REQ:
22142 		tcp_addr_req(tcp, mp);
22143 		break;
22144 	default:
22145 		if (tcp->tcp_debug) {
22146 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22147 			    "tcp_wput_proto, bogus TPI msg, type %d",
22148 			    tprim->type);
22149 		}
22150 		/*
22151 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22152 		 * to recover.
22153 		 */
22154 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22155 		break;
22156 	}
22157 }
22158 
22159 /*
22160  * The TCP write service routine should never be called...
22161  */
22162 /* ARGSUSED */
22163 static void
22164 tcp_wsrv(queue_t *q)
22165 {
22166 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22167 
22168 	TCP_STAT(tcps, tcp_wsrv_called);
22169 }
22170 
22171 /* Non overlapping byte exchanger */
22172 static void
22173 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22174 {
22175 	uchar_t	uch;
22176 
22177 	while (len-- > 0) {
22178 		uch = a[len];
22179 		a[len] = b[len];
22180 		b[len] = uch;
22181 	}
22182 }
22183 
22184 /*
22185  * Send out a control packet on the tcp connection specified.  This routine
22186  * is typically called where we need a simple ACK or RST generated.
22187  */
22188 static void
22189 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22190 {
22191 	uchar_t		*rptr;
22192 	tcph_t		*tcph;
22193 	ipha_t		*ipha = NULL;
22194 	ip6_t		*ip6h = NULL;
22195 	uint32_t	sum;
22196 	int		tcp_hdr_len;
22197 	int		tcp_ip_hdr_len;
22198 	mblk_t		*mp;
22199 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22200 
22201 	/*
22202 	 * Save sum for use in source route later.
22203 	 */
22204 	ASSERT(tcp != NULL);
22205 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22206 	tcp_hdr_len = tcp->tcp_hdr_len;
22207 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22208 
22209 	/* If a text string is passed in with the request, pass it to strlog. */
22210 	if (str != NULL && tcp->tcp_debug) {
22211 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22212 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22213 		    str, seq, ack, ctl);
22214 	}
22215 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22216 	    BPRI_MED);
22217 	if (mp == NULL) {
22218 		return;
22219 	}
22220 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22221 	mp->b_rptr = rptr;
22222 	mp->b_wptr = &rptr[tcp_hdr_len];
22223 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22224 
22225 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22226 		ipha = (ipha_t *)rptr;
22227 		ipha->ipha_length = htons(tcp_hdr_len);
22228 	} else {
22229 		ip6h = (ip6_t *)rptr;
22230 		ASSERT(tcp != NULL);
22231 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22232 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22233 	}
22234 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22235 	tcph->th_flags[0] = (uint8_t)ctl;
22236 	if (ctl & TH_RST) {
22237 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22238 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22239 		/*
22240 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22241 		 */
22242 		if (tcp->tcp_snd_ts_ok &&
22243 		    tcp->tcp_state > TCPS_SYN_SENT) {
22244 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22245 			*(mp->b_wptr) = TCPOPT_EOL;
22246 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22247 				ipha->ipha_length = htons(tcp_hdr_len -
22248 				    TCPOPT_REAL_TS_LEN);
22249 			} else {
22250 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22251 				    TCPOPT_REAL_TS_LEN);
22252 			}
22253 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22254 			sum -= TCPOPT_REAL_TS_LEN;
22255 		}
22256 	}
22257 	if (ctl & TH_ACK) {
22258 		if (tcp->tcp_snd_ts_ok) {
22259 			U32_TO_BE32(lbolt,
22260 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22261 			U32_TO_BE32(tcp->tcp_ts_recent,
22262 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22263 		}
22264 
22265 		/* Update the latest receive window size in TCP header. */
22266 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22267 		    tcph->th_win);
22268 		tcp->tcp_rack = ack;
22269 		tcp->tcp_rack_cnt = 0;
22270 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22271 	}
22272 	BUMP_LOCAL(tcp->tcp_obsegs);
22273 	U32_TO_BE32(seq, tcph->th_seq);
22274 	U32_TO_BE32(ack, tcph->th_ack);
22275 	/*
22276 	 * Include the adjustment for a source route if any.
22277 	 */
22278 	sum = (sum >> 16) + (sum & 0xFFFF);
22279 	U16_TO_BE16(sum, tcph->th_sum);
22280 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22281 }
22282 
22283 /*
22284  * If this routine returns B_TRUE, TCP can generate a RST in response
22285  * to a segment.  If it returns B_FALSE, TCP should not respond.
22286  */
22287 static boolean_t
22288 tcp_send_rst_chk(tcp_stack_t *tcps)
22289 {
22290 	clock_t	now;
22291 
22292 	/*
22293 	 * TCP needs to protect itself from generating too many RSTs.
22294 	 * This can be a DoS attack by sending us random segments
22295 	 * soliciting RSTs.
22296 	 *
22297 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22298 	 * in each 1 second interval.  In this way, TCP still generate
22299 	 * RSTs in normal cases but when under attack, the impact is
22300 	 * limited.
22301 	 */
22302 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22303 		now = lbolt;
22304 		/* lbolt can wrap around. */
22305 		if ((tcps->tcps_last_rst_intrvl > now) ||
22306 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22307 		    1*SECONDS)) {
22308 			tcps->tcps_last_rst_intrvl = now;
22309 			tcps->tcps_rst_cnt = 1;
22310 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22311 			return (B_FALSE);
22312 		}
22313 	}
22314 	return (B_TRUE);
22315 }
22316 
22317 /*
22318  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22319  */
22320 static void
22321 tcp_ip_ire_mark_advice(tcp_t *tcp)
22322 {
22323 	mblk_t *mp;
22324 	ipic_t *ipic;
22325 
22326 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22327 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22328 		    &ipic);
22329 	} else {
22330 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22331 		    &ipic);
22332 	}
22333 	if (mp == NULL)
22334 		return;
22335 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22336 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22337 }
22338 
22339 /*
22340  * Return an IP advice ioctl mblk and set ipic to be the pointer
22341  * to the advice structure.
22342  */
22343 static mblk_t *
22344 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22345 {
22346 	struct iocblk *ioc;
22347 	mblk_t *mp, *mp1;
22348 
22349 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22350 	if (mp == NULL)
22351 		return (NULL);
22352 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22353 	*ipic = (ipic_t *)mp->b_rptr;
22354 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22355 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22356 
22357 	bcopy(addr, *ipic + 1, addr_len);
22358 
22359 	(*ipic)->ipic_addr_length = addr_len;
22360 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22361 
22362 	mp1 = mkiocb(IP_IOCTL);
22363 	if (mp1 == NULL) {
22364 		freemsg(mp);
22365 		return (NULL);
22366 	}
22367 	mp1->b_cont = mp;
22368 	ioc = (struct iocblk *)mp1->b_rptr;
22369 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22370 
22371 	return (mp1);
22372 }
22373 
22374 /*
22375  * Generate a reset based on an inbound packet, connp is set by caller
22376  * when RST is in response to an unexpected inbound packet for which
22377  * there is active tcp state in the system.
22378  *
22379  * IPSEC NOTE : Try to send the reply with the same protection as it came
22380  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22381  * the packet will go out at the same level of protection as it came in by
22382  * converting the IPSEC_IN to IPSEC_OUT.
22383  */
22384 static void
22385 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22386     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22387     tcp_stack_t *tcps, conn_t *connp)
22388 {
22389 	ipha_t		*ipha = NULL;
22390 	ip6_t		*ip6h = NULL;
22391 	ushort_t	len;
22392 	tcph_t		*tcph;
22393 	int		i;
22394 	mblk_t		*ipsec_mp;
22395 	boolean_t	mctl_present;
22396 	ipic_t		*ipic;
22397 	ipaddr_t	v4addr;
22398 	in6_addr_t	v6addr;
22399 	int		addr_len;
22400 	void		*addr;
22401 	queue_t		*q = tcps->tcps_g_q;
22402 	tcp_t		*tcp;
22403 	cred_t		*cr;
22404 	mblk_t		*nmp;
22405 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22406 
22407 	if (tcps->tcps_g_q == NULL) {
22408 		/*
22409 		 * For non-zero stackids the default queue isn't created
22410 		 * until the first open, thus there can be a need to send
22411 		 * a reset before then. But we can't do that, hence we just
22412 		 * drop the packet. Later during boot, when the default queue
22413 		 * has been setup, a retransmitted packet from the peer
22414 		 * will result in a reset.
22415 		 */
22416 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22417 		    GLOBAL_NETSTACKID);
22418 		freemsg(mp);
22419 		return;
22420 	}
22421 
22422 	if (connp != NULL)
22423 		tcp = connp->conn_tcp;
22424 	else
22425 		tcp = Q_TO_TCP(q);
22426 
22427 	if (!tcp_send_rst_chk(tcps)) {
22428 		tcps->tcps_rst_unsent++;
22429 		freemsg(mp);
22430 		return;
22431 	}
22432 
22433 	if (mp->b_datap->db_type == M_CTL) {
22434 		ipsec_mp = mp;
22435 		mp = mp->b_cont;
22436 		mctl_present = B_TRUE;
22437 	} else {
22438 		ipsec_mp = mp;
22439 		mctl_present = B_FALSE;
22440 	}
22441 
22442 	if (str && q && tcps->tcps_dbg) {
22443 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22444 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22445 		    "flags 0x%x",
22446 		    str, seq, ack, ctl);
22447 	}
22448 	if (mp->b_datap->db_ref != 1) {
22449 		mblk_t *mp1 = copyb(mp);
22450 		freemsg(mp);
22451 		mp = mp1;
22452 		if (!mp) {
22453 			if (mctl_present)
22454 				freeb(ipsec_mp);
22455 			return;
22456 		} else {
22457 			if (mctl_present) {
22458 				ipsec_mp->b_cont = mp;
22459 			} else {
22460 				ipsec_mp = mp;
22461 			}
22462 		}
22463 	} else if (mp->b_cont) {
22464 		freemsg(mp->b_cont);
22465 		mp->b_cont = NULL;
22466 	}
22467 	/*
22468 	 * We skip reversing source route here.
22469 	 * (for now we replace all IP options with EOL)
22470 	 */
22471 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22472 		ipha = (ipha_t *)mp->b_rptr;
22473 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22474 			mp->b_rptr[i] = IPOPT_EOL;
22475 		/*
22476 		 * Make sure that src address isn't flagrantly invalid.
22477 		 * Not all broadcast address checking for the src address
22478 		 * is possible, since we don't know the netmask of the src
22479 		 * addr.  No check for destination address is done, since
22480 		 * IP will not pass up a packet with a broadcast dest
22481 		 * address to TCP.  Similar checks are done below for IPv6.
22482 		 */
22483 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22484 		    CLASSD(ipha->ipha_src)) {
22485 			freemsg(ipsec_mp);
22486 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22487 			return;
22488 		}
22489 	} else {
22490 		ip6h = (ip6_t *)mp->b_rptr;
22491 
22492 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22493 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22494 			freemsg(ipsec_mp);
22495 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22496 			return;
22497 		}
22498 
22499 		/* Remove any extension headers assuming partial overlay */
22500 		if (ip_hdr_len > IPV6_HDR_LEN) {
22501 			uint8_t *to;
22502 
22503 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22504 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22505 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22506 			ip_hdr_len = IPV6_HDR_LEN;
22507 			ip6h = (ip6_t *)mp->b_rptr;
22508 			ip6h->ip6_nxt = IPPROTO_TCP;
22509 		}
22510 	}
22511 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22512 	if (tcph->th_flags[0] & TH_RST) {
22513 		freemsg(ipsec_mp);
22514 		return;
22515 	}
22516 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22517 	len = ip_hdr_len + sizeof (tcph_t);
22518 	mp->b_wptr = &mp->b_rptr[len];
22519 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22520 		ipha->ipha_length = htons(len);
22521 		/* Swap addresses */
22522 		v4addr = ipha->ipha_src;
22523 		ipha->ipha_src = ipha->ipha_dst;
22524 		ipha->ipha_dst = v4addr;
22525 		ipha->ipha_ident = 0;
22526 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22527 		addr_len = IP_ADDR_LEN;
22528 		addr = &v4addr;
22529 	} else {
22530 		/* No ip6i_t in this case */
22531 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22532 		/* Swap addresses */
22533 		v6addr = ip6h->ip6_src;
22534 		ip6h->ip6_src = ip6h->ip6_dst;
22535 		ip6h->ip6_dst = v6addr;
22536 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22537 		addr_len = IPV6_ADDR_LEN;
22538 		addr = &v6addr;
22539 	}
22540 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22541 	U32_TO_BE32(ack, tcph->th_ack);
22542 	U32_TO_BE32(seq, tcph->th_seq);
22543 	U16_TO_BE16(0, tcph->th_win);
22544 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22545 	tcph->th_flags[0] = (uint8_t)ctl;
22546 	if (ctl & TH_RST) {
22547 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22548 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22549 	}
22550 
22551 	/* IP trusts us to set up labels when required. */
22552 	if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL &&
22553 	    crgetlabel(cr) != NULL) {
22554 		int err;
22555 
22556 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22557 			err = tsol_check_label(cr, &mp,
22558 			    tcp->tcp_connp->conn_mac_exempt,
22559 			    tcps->tcps_netstack->netstack_ip);
22560 		else
22561 			err = tsol_check_label_v6(cr, &mp,
22562 			    tcp->tcp_connp->conn_mac_exempt,
22563 			    tcps->tcps_netstack->netstack_ip);
22564 		if (mctl_present)
22565 			ipsec_mp->b_cont = mp;
22566 		else
22567 			ipsec_mp = mp;
22568 		if (err != 0) {
22569 			freemsg(ipsec_mp);
22570 			return;
22571 		}
22572 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22573 			ipha = (ipha_t *)mp->b_rptr;
22574 		} else {
22575 			ip6h = (ip6_t *)mp->b_rptr;
22576 		}
22577 	}
22578 
22579 	if (mctl_present) {
22580 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22581 
22582 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22583 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22584 			return;
22585 		}
22586 	}
22587 	if (zoneid == ALL_ZONES)
22588 		zoneid = GLOBAL_ZONEID;
22589 
22590 	/* Add the zoneid so ip_output routes it properly */
22591 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22592 		freemsg(ipsec_mp);
22593 		return;
22594 	}
22595 	ipsec_mp = nmp;
22596 
22597 	/*
22598 	 * NOTE:  one might consider tracing a TCP packet here, but
22599 	 * this function has no active TCP state and no tcp structure
22600 	 * that has a trace buffer.  If we traced here, we would have
22601 	 * to keep a local trace buffer in tcp_record_trace().
22602 	 *
22603 	 * TSol note: The mblk that contains the incoming packet was
22604 	 * reused by tcp_xmit_listener_reset, so it already contains
22605 	 * the right credentials and we don't need to call mblk_setcred.
22606 	 * Also the conn's cred is not right since it is associated
22607 	 * with tcps_g_q.
22608 	 */
22609 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22610 
22611 	/*
22612 	 * Tell IP to mark the IRE used for this destination temporary.
22613 	 * This way, we can limit our exposure to DoS attack because IP
22614 	 * creates an IRE for each destination.  If there are too many,
22615 	 * the time to do any routing lookup will be extremely long.  And
22616 	 * the lookup can be in interrupt context.
22617 	 *
22618 	 * Note that in normal circumstances, this marking should not
22619 	 * affect anything.  It would be nice if only 1 message is
22620 	 * needed to inform IP that the IRE created for this RST should
22621 	 * not be added to the cache table.  But there is currently
22622 	 * not such communication mechanism between TCP and IP.  So
22623 	 * the best we can do now is to send the advice ioctl to IP
22624 	 * to mark the IRE temporary.
22625 	 */
22626 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22627 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22628 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22629 	}
22630 }
22631 
22632 /*
22633  * Initiate closedown sequence on an active connection.  (May be called as
22634  * writer.)  Return value zero for OK return, non-zero for error return.
22635  */
22636 static int
22637 tcp_xmit_end(tcp_t *tcp)
22638 {
22639 	ipic_t	*ipic;
22640 	mblk_t	*mp;
22641 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22642 
22643 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22644 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22645 		/*
22646 		 * Invalid state, only states TCPS_SYN_RCVD,
22647 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22648 		 */
22649 		return (-1);
22650 	}
22651 
22652 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22653 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22654 	/*
22655 	 * If there is nothing more unsent, send the FIN now.
22656 	 * Otherwise, it will go out with the last segment.
22657 	 */
22658 	if (tcp->tcp_unsent == 0) {
22659 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22660 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22661 
22662 		if (mp) {
22663 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22664 		} else {
22665 			/*
22666 			 * Couldn't allocate msg.  Pretend we got it out.
22667 			 * Wait for rexmit timeout.
22668 			 */
22669 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22670 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22671 		}
22672 
22673 		/*
22674 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22675 		 * changed.
22676 		 */
22677 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22678 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22679 		}
22680 	} else {
22681 		/*
22682 		 * If tcp->tcp_cork is set, then the data will not get sent,
22683 		 * so we have to check that and unset it first.
22684 		 */
22685 		if (tcp->tcp_cork)
22686 			tcp->tcp_cork = B_FALSE;
22687 		tcp_wput_data(tcp, NULL, B_FALSE);
22688 	}
22689 
22690 	/*
22691 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22692 	 * is 0, don't update the cache.
22693 	 */
22694 	if (tcps->tcps_rtt_updates == 0 ||
22695 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22696 		return (0);
22697 
22698 	/*
22699 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22700 	 * different from the destination.
22701 	 */
22702 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22703 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22704 			return (0);
22705 		}
22706 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22707 		    &ipic);
22708 	} else {
22709 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22710 		    &tcp->tcp_ip6h->ip6_dst))) {
22711 			return (0);
22712 		}
22713 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22714 		    &ipic);
22715 	}
22716 
22717 	/* Record route attributes in the IRE for use by future connections. */
22718 	if (mp == NULL)
22719 		return (0);
22720 
22721 	/*
22722 	 * We do not have a good algorithm to update ssthresh at this time.
22723 	 * So don't do any update.
22724 	 */
22725 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22726 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22727 
22728 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22729 
22730 	return (0);
22731 }
22732 
22733 /* ARGSUSED */
22734 void
22735 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2)
22736 {
22737 	conn_t *connp = (conn_t *)arg;
22738 	mblk_t *mp1;
22739 	tcp_t *tcp = connp->conn_tcp;
22740 	tcp_xmit_reset_event_t *eventp;
22741 
22742 	ASSERT(mp->b_datap->db_type == M_PROTO &&
22743 	    MBLKL(mp) == sizeof (tcp_xmit_reset_event_t));
22744 
22745 	if (tcp->tcp_state != TCPS_LISTEN) {
22746 		freemsg(mp);
22747 		return;
22748 	}
22749 
22750 	mp1 = mp->b_cont;
22751 	mp->b_cont = NULL;
22752 	eventp = (tcp_xmit_reset_event_t *)mp->b_rptr;
22753 	ASSERT(eventp->tcp_xre_tcps->tcps_netstack ==
22754 	    connp->conn_netstack);
22755 
22756 	tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen,
22757 	    eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp);
22758 	freemsg(mp);
22759 }
22760 
22761 /*
22762  * Generate a "no listener here" RST in response to an "unknown" segment.
22763  * connp is set by caller when RST is in response to an unexpected
22764  * inbound packet for which there is active tcp state in the system.
22765  * Note that we are reusing the incoming mp to construct the outgoing RST.
22766  */
22767 void
22768 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22769     tcp_stack_t *tcps, conn_t *connp)
22770 {
22771 	uchar_t		*rptr;
22772 	uint32_t	seg_len;
22773 	tcph_t		*tcph;
22774 	uint32_t	seg_seq;
22775 	uint32_t	seg_ack;
22776 	uint_t		flags;
22777 	mblk_t		*ipsec_mp;
22778 	ipha_t 		*ipha;
22779 	ip6_t 		*ip6h;
22780 	boolean_t	mctl_present = B_FALSE;
22781 	boolean_t	check = B_TRUE;
22782 	boolean_t	policy_present;
22783 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22784 
22785 	TCP_STAT(tcps, tcp_no_listener);
22786 
22787 	ipsec_mp = mp;
22788 
22789 	if (mp->b_datap->db_type == M_CTL) {
22790 		ipsec_in_t *ii;
22791 
22792 		mctl_present = B_TRUE;
22793 		mp = mp->b_cont;
22794 
22795 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22796 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22797 		if (ii->ipsec_in_dont_check) {
22798 			check = B_FALSE;
22799 			if (!ii->ipsec_in_secure) {
22800 				freeb(ipsec_mp);
22801 				mctl_present = B_FALSE;
22802 				ipsec_mp = mp;
22803 			}
22804 		}
22805 	}
22806 
22807 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22808 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22809 		ipha = (ipha_t *)mp->b_rptr;
22810 		ip6h = NULL;
22811 	} else {
22812 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22813 		ipha = NULL;
22814 		ip6h = (ip6_t *)mp->b_rptr;
22815 	}
22816 
22817 	if (check && policy_present) {
22818 		/*
22819 		 * The conn_t parameter is NULL because we already know
22820 		 * nobody's home.
22821 		 */
22822 		ipsec_mp = ipsec_check_global_policy(
22823 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22824 		    tcps->tcps_netstack);
22825 		if (ipsec_mp == NULL)
22826 			return;
22827 	}
22828 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22829 		DTRACE_PROBE2(
22830 		    tx__ip__log__error__nolistener__tcp,
22831 		    char *, "Could not reply with RST to mp(1)",
22832 		    mblk_t *, mp);
22833 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22834 		freemsg(ipsec_mp);
22835 		return;
22836 	}
22837 
22838 	rptr = mp->b_rptr;
22839 
22840 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22841 	seg_seq = BE32_TO_U32(tcph->th_seq);
22842 	seg_ack = BE32_TO_U32(tcph->th_ack);
22843 	flags = tcph->th_flags[0];
22844 
22845 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22846 	if (flags & TH_RST) {
22847 		freemsg(ipsec_mp);
22848 	} else if (flags & TH_ACK) {
22849 		tcp_xmit_early_reset("no tcp, reset",
22850 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22851 		    connp);
22852 	} else {
22853 		if (flags & TH_SYN) {
22854 			seg_len++;
22855 		} else {
22856 			/*
22857 			 * Here we violate the RFC.  Note that a normal
22858 			 * TCP will never send a segment without the ACK
22859 			 * flag, except for RST or SYN segment.  This
22860 			 * segment is neither.  Just drop it on the
22861 			 * floor.
22862 			 */
22863 			freemsg(ipsec_mp);
22864 			tcps->tcps_rst_unsent++;
22865 			return;
22866 		}
22867 
22868 		tcp_xmit_early_reset("no tcp, reset/ack",
22869 		    ipsec_mp, 0, seg_seq + seg_len,
22870 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22871 	}
22872 }
22873 
22874 /*
22875  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22876  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22877  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22878  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22879  * otherwise it will dup partial mblks.)
22880  * Otherwise, an appropriate ACK packet will be generated.  This
22881  * routine is not usually called to send new data for the first time.  It
22882  * is mostly called out of the timer for retransmits, and to generate ACKs.
22883  *
22884  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22885  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22886  * of the original mblk chain will be returned in *offset and *end_mp.
22887  */
22888 mblk_t *
22889 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22890     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22891     boolean_t rexmit)
22892 {
22893 	int	data_length;
22894 	int32_t	off = 0;
22895 	uint_t	flags;
22896 	mblk_t	*mp1;
22897 	mblk_t	*mp2;
22898 	uchar_t	*rptr;
22899 	tcph_t	*tcph;
22900 	int32_t	num_sack_blk = 0;
22901 	int32_t	sack_opt_len = 0;
22902 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22903 
22904 	/* Allocate for our maximum TCP header + link-level */
22905 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22906 	    tcps->tcps_wroff_xtra, BPRI_MED);
22907 	if (!mp1)
22908 		return (NULL);
22909 	data_length = 0;
22910 
22911 	/*
22912 	 * Note that tcp_mss has been adjusted to take into account the
22913 	 * timestamp option if applicable.  Because SACK options do not
22914 	 * appear in every TCP segments and they are of variable lengths,
22915 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22916 	 * the actual segment length when we need to send a segment which
22917 	 * includes SACK options.
22918 	 */
22919 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22920 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22921 		    tcp->tcp_num_sack_blk);
22922 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22923 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22924 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22925 			max_to_send -= sack_opt_len;
22926 	}
22927 
22928 	if (offset != NULL) {
22929 		off = *offset;
22930 		/* We use offset as an indicator that end_mp is not NULL. */
22931 		*end_mp = NULL;
22932 	}
22933 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22934 		/* This could be faster with cooperation from downstream */
22935 		if (mp2 != mp1 && !sendall &&
22936 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22937 		    max_to_send)
22938 			/*
22939 			 * Don't send the next mblk since the whole mblk
22940 			 * does not fit.
22941 			 */
22942 			break;
22943 		mp2->b_cont = dupb(mp);
22944 		mp2 = mp2->b_cont;
22945 		if (!mp2) {
22946 			freemsg(mp1);
22947 			return (NULL);
22948 		}
22949 		mp2->b_rptr += off;
22950 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22951 		    (uintptr_t)INT_MAX);
22952 
22953 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22954 		if (data_length > max_to_send) {
22955 			mp2->b_wptr -= data_length - max_to_send;
22956 			data_length = max_to_send;
22957 			off = mp2->b_wptr - mp->b_rptr;
22958 			break;
22959 		} else {
22960 			off = 0;
22961 		}
22962 	}
22963 	if (offset != NULL) {
22964 		*offset = off;
22965 		*end_mp = mp;
22966 	}
22967 	if (seg_len != NULL) {
22968 		*seg_len = data_length;
22969 	}
22970 
22971 	/* Update the latest receive window size in TCP header. */
22972 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22973 	    tcp->tcp_tcph->th_win);
22974 
22975 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22976 	mp1->b_rptr = rptr;
22977 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22978 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22979 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22980 	U32_TO_ABE32(seq, tcph->th_seq);
22981 
22982 	/*
22983 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22984 	 * that this function was called from tcp_wput_data. Thus, when called
22985 	 * to retransmit data the setting of the PUSH bit may appear some
22986 	 * what random in that it might get set when it should not. This
22987 	 * should not pose any performance issues.
22988 	 */
22989 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22990 	    tcp->tcp_unsent == data_length)) {
22991 		flags = TH_ACK | TH_PUSH;
22992 	} else {
22993 		flags = TH_ACK;
22994 	}
22995 
22996 	if (tcp->tcp_ecn_ok) {
22997 		if (tcp->tcp_ecn_echo_on)
22998 			flags |= TH_ECE;
22999 
23000 		/*
23001 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23002 		 * There is no TCP flow control for non-data segments, and
23003 		 * only data segment is transmitted reliably.
23004 		 */
23005 		if (data_length > 0 && !rexmit) {
23006 			SET_ECT(tcp, rptr);
23007 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23008 				flags |= TH_CWR;
23009 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23010 			}
23011 		}
23012 	}
23013 
23014 	if (tcp->tcp_valid_bits) {
23015 		uint32_t u1;
23016 
23017 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23018 		    seq == tcp->tcp_iss) {
23019 			uchar_t	*wptr;
23020 
23021 			/*
23022 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23023 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23024 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23025 			 * our SYN is not ack'ed but the app closes this
23026 			 * TCP connection.
23027 			 */
23028 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23029 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23030 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23031 
23032 			/*
23033 			 * Tack on the MSS option.  It is always needed
23034 			 * for both active and passive open.
23035 			 *
23036 			 * MSS option value should be interface MTU - MIN
23037 			 * TCP/IP header according to RFC 793 as it means
23038 			 * the maximum segment size TCP can receive.  But
23039 			 * to get around some broken middle boxes/end hosts
23040 			 * out there, we allow the option value to be the
23041 			 * same as the MSS option size on the peer side.
23042 			 * In this way, the other side will not send
23043 			 * anything larger than they can receive.
23044 			 *
23045 			 * Note that for SYN_SENT state, the ndd param
23046 			 * tcp_use_smss_as_mss_opt has no effect as we
23047 			 * don't know the peer's MSS option value. So
23048 			 * the only case we need to take care of is in
23049 			 * SYN_RCVD state, which is done later.
23050 			 */
23051 			wptr = mp1->b_wptr;
23052 			wptr[0] = TCPOPT_MAXSEG;
23053 			wptr[1] = TCPOPT_MAXSEG_LEN;
23054 			wptr += 2;
23055 			u1 = tcp->tcp_if_mtu -
23056 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23057 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23058 			    TCP_MIN_HEADER_LENGTH;
23059 			U16_TO_BE16(u1, wptr);
23060 			mp1->b_wptr = wptr + 2;
23061 			/* Update the offset to cover the additional word */
23062 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23063 
23064 			/*
23065 			 * Note that the following way of filling in
23066 			 * TCP options are not optimal.  Some NOPs can
23067 			 * be saved.  But there is no need at this time
23068 			 * to optimize it.  When it is needed, we will
23069 			 * do it.
23070 			 */
23071 			switch (tcp->tcp_state) {
23072 			case TCPS_SYN_SENT:
23073 				flags = TH_SYN;
23074 
23075 				if (tcp->tcp_snd_ts_ok) {
23076 					uint32_t llbolt = (uint32_t)lbolt;
23077 
23078 					wptr = mp1->b_wptr;
23079 					wptr[0] = TCPOPT_NOP;
23080 					wptr[1] = TCPOPT_NOP;
23081 					wptr[2] = TCPOPT_TSTAMP;
23082 					wptr[3] = TCPOPT_TSTAMP_LEN;
23083 					wptr += 4;
23084 					U32_TO_BE32(llbolt, wptr);
23085 					wptr += 4;
23086 					ASSERT(tcp->tcp_ts_recent == 0);
23087 					U32_TO_BE32(0L, wptr);
23088 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23089 					tcph->th_offset_and_rsrvd[0] +=
23090 					    (3 << 4);
23091 				}
23092 
23093 				/*
23094 				 * Set up all the bits to tell other side
23095 				 * we are ECN capable.
23096 				 */
23097 				if (tcp->tcp_ecn_ok) {
23098 					flags |= (TH_ECE | TH_CWR);
23099 				}
23100 				break;
23101 			case TCPS_SYN_RCVD:
23102 				flags |= TH_SYN;
23103 
23104 				/*
23105 				 * Reset the MSS option value to be SMSS
23106 				 * We should probably add back the bytes
23107 				 * for timestamp option and IPsec.  We
23108 				 * don't do that as this is a workaround
23109 				 * for broken middle boxes/end hosts, it
23110 				 * is better for us to be more cautious.
23111 				 * They may not take these things into
23112 				 * account in their SMSS calculation.  Thus
23113 				 * the peer's calculated SMSS may be smaller
23114 				 * than what it can be.  This should be OK.
23115 				 */
23116 				if (tcps->tcps_use_smss_as_mss_opt) {
23117 					u1 = tcp->tcp_mss;
23118 					U16_TO_BE16(u1, wptr);
23119 				}
23120 
23121 				/*
23122 				 * If the other side is ECN capable, reply
23123 				 * that we are also ECN capable.
23124 				 */
23125 				if (tcp->tcp_ecn_ok)
23126 					flags |= TH_ECE;
23127 				break;
23128 			default:
23129 				/*
23130 				 * The above ASSERT() makes sure that this
23131 				 * must be FIN-WAIT-1 state.  Our SYN has
23132 				 * not been ack'ed so retransmit it.
23133 				 */
23134 				flags |= TH_SYN;
23135 				break;
23136 			}
23137 
23138 			if (tcp->tcp_snd_ws_ok) {
23139 				wptr = mp1->b_wptr;
23140 				wptr[0] =  TCPOPT_NOP;
23141 				wptr[1] =  TCPOPT_WSCALE;
23142 				wptr[2] =  TCPOPT_WS_LEN;
23143 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23144 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23145 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23146 			}
23147 
23148 			if (tcp->tcp_snd_sack_ok) {
23149 				wptr = mp1->b_wptr;
23150 				wptr[0] = TCPOPT_NOP;
23151 				wptr[1] = TCPOPT_NOP;
23152 				wptr[2] = TCPOPT_SACK_PERMITTED;
23153 				wptr[3] = TCPOPT_SACK_OK_LEN;
23154 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23155 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23156 			}
23157 
23158 			/* allocb() of adequate mblk assures space */
23159 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23160 			    (uintptr_t)INT_MAX);
23161 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23162 			/*
23163 			 * Get IP set to checksum on our behalf
23164 			 * Include the adjustment for a source route if any.
23165 			 */
23166 			u1 += tcp->tcp_sum;
23167 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23168 			U16_TO_BE16(u1, tcph->th_sum);
23169 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23170 		}
23171 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23172 		    (seq + data_length) == tcp->tcp_fss) {
23173 			if (!tcp->tcp_fin_acked) {
23174 				flags |= TH_FIN;
23175 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23176 			}
23177 			if (!tcp->tcp_fin_sent) {
23178 				tcp->tcp_fin_sent = B_TRUE;
23179 				switch (tcp->tcp_state) {
23180 				case TCPS_SYN_RCVD:
23181 				case TCPS_ESTABLISHED:
23182 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23183 					break;
23184 				case TCPS_CLOSE_WAIT:
23185 					tcp->tcp_state = TCPS_LAST_ACK;
23186 					break;
23187 				}
23188 				if (tcp->tcp_suna == tcp->tcp_snxt)
23189 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23190 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23191 			}
23192 		}
23193 		/*
23194 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23195 		 * is smaller than seq, u1 will become a very huge value.
23196 		 * So the comparison will fail.  Also note that tcp_urp
23197 		 * should be positive, see RFC 793 page 17.
23198 		 */
23199 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23200 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23201 		    u1 < (uint32_t)(64 * 1024)) {
23202 			flags |= TH_URG;
23203 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23204 			U32_TO_ABE16(u1, tcph->th_urp);
23205 		}
23206 	}
23207 	tcph->th_flags[0] = (uchar_t)flags;
23208 	tcp->tcp_rack = tcp->tcp_rnxt;
23209 	tcp->tcp_rack_cnt = 0;
23210 
23211 	if (tcp->tcp_snd_ts_ok) {
23212 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23213 			uint32_t llbolt = (uint32_t)lbolt;
23214 
23215 			U32_TO_BE32(llbolt,
23216 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23217 			U32_TO_BE32(tcp->tcp_ts_recent,
23218 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23219 		}
23220 	}
23221 
23222 	if (num_sack_blk > 0) {
23223 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23224 		sack_blk_t *tmp;
23225 		int32_t	i;
23226 
23227 		wptr[0] = TCPOPT_NOP;
23228 		wptr[1] = TCPOPT_NOP;
23229 		wptr[2] = TCPOPT_SACK;
23230 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23231 		    sizeof (sack_blk_t);
23232 		wptr += TCPOPT_REAL_SACK_LEN;
23233 
23234 		tmp = tcp->tcp_sack_list;
23235 		for (i = 0; i < num_sack_blk; i++) {
23236 			U32_TO_BE32(tmp[i].begin, wptr);
23237 			wptr += sizeof (tcp_seq);
23238 			U32_TO_BE32(tmp[i].end, wptr);
23239 			wptr += sizeof (tcp_seq);
23240 		}
23241 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23242 	}
23243 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23244 	data_length += (int)(mp1->b_wptr - rptr);
23245 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23246 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23247 	} else {
23248 		ip6_t *ip6 = (ip6_t *)(rptr +
23249 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23250 		    sizeof (ip6i_t) : 0));
23251 
23252 		ip6->ip6_plen = htons(data_length -
23253 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23254 	}
23255 
23256 	/*
23257 	 * Prime pump for IP
23258 	 * Include the adjustment for a source route if any.
23259 	 */
23260 	data_length -= tcp->tcp_ip_hdr_len;
23261 	data_length += tcp->tcp_sum;
23262 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23263 	U16_TO_ABE16(data_length, tcph->th_sum);
23264 	if (tcp->tcp_ip_forward_progress) {
23265 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23266 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23267 		tcp->tcp_ip_forward_progress = B_FALSE;
23268 	}
23269 	return (mp1);
23270 }
23271 
23272 /* This function handles the push timeout. */
23273 void
23274 tcp_push_timer(void *arg)
23275 {
23276 	conn_t	*connp = (conn_t *)arg;
23277 	tcp_t *tcp = connp->conn_tcp;
23278 	uint_t		flags;
23279 	sodirect_t	*sodp;
23280 
23281 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
23282 
23283 	ASSERT(tcp->tcp_listener == NULL);
23284 
23285 	ASSERT(!IPCL_IS_NONSTR(connp));
23286 
23287 	/*
23288 	 * We need to plug synchronous streams during our drain to prevent
23289 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23290 	 */
23291 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23292 	tcp->tcp_push_tid = 0;
23293 
23294 	SOD_PTR_ENTER(tcp, sodp);
23295 	if (sodp != NULL) {
23296 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23297 		/* sod_wakeup() does the mutex_exit() */
23298 	} else if (tcp->tcp_rcv_list != NULL) {
23299 		flags = tcp_rcv_drain(tcp);
23300 	}
23301 	if (flags == TH_ACK_NEEDED)
23302 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23303 
23304 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23305 }
23306 
23307 /*
23308  * This function handles delayed ACK timeout.
23309  */
23310 static void
23311 tcp_ack_timer(void *arg)
23312 {
23313 	conn_t	*connp = (conn_t *)arg;
23314 	tcp_t *tcp = connp->conn_tcp;
23315 	mblk_t *mp;
23316 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23317 
23318 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23319 
23320 	tcp->tcp_ack_tid = 0;
23321 
23322 	if (tcp->tcp_fused)
23323 		return;
23324 
23325 	/*
23326 	 * Do not send ACK if there is no outstanding unack'ed data.
23327 	 */
23328 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23329 		return;
23330 	}
23331 
23332 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23333 		/*
23334 		 * Make sure we don't allow deferred ACKs to result in
23335 		 * timer-based ACKing.  If we have held off an ACK
23336 		 * when there was more than an mss here, and the timer
23337 		 * goes off, we have to worry about the possibility
23338 		 * that the sender isn't doing slow-start, or is out
23339 		 * of step with us for some other reason.  We fall
23340 		 * permanently back in the direction of
23341 		 * ACK-every-other-packet as suggested in RFC 1122.
23342 		 */
23343 		if (tcp->tcp_rack_abs_max > 2)
23344 			tcp->tcp_rack_abs_max--;
23345 		tcp->tcp_rack_cur_max = 2;
23346 	}
23347 	mp = tcp_ack_mp(tcp);
23348 
23349 	if (mp != NULL) {
23350 		BUMP_LOCAL(tcp->tcp_obsegs);
23351 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23352 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23353 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23354 	}
23355 }
23356 
23357 
23358 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23359 static mblk_t *
23360 tcp_ack_mp(tcp_t *tcp)
23361 {
23362 	uint32_t	seq_no;
23363 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23364 
23365 	/*
23366 	 * There are a few cases to be considered while setting the sequence no.
23367 	 * Essentially, we can come here while processing an unacceptable pkt
23368 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23369 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23370 	 * If we are here for a zero window probe, stick with suna. In all
23371 	 * other cases, we check if suna + swnd encompasses snxt and set
23372 	 * the sequence number to snxt, if so. If snxt falls outside the
23373 	 * window (the receiver probably shrunk its window), we will go with
23374 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23375 	 * receiver.
23376 	 */
23377 	if (tcp->tcp_zero_win_probe) {
23378 		seq_no = tcp->tcp_suna;
23379 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23380 		ASSERT(tcp->tcp_swnd == 0);
23381 		seq_no = tcp->tcp_snxt;
23382 	} else {
23383 		seq_no = SEQ_GT(tcp->tcp_snxt,
23384 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23385 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23386 	}
23387 
23388 	if (tcp->tcp_valid_bits) {
23389 		/*
23390 		 * For the complex case where we have to send some
23391 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23392 		 */
23393 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23394 		    NULL, B_FALSE));
23395 	} else {
23396 		/* Generate a simple ACK */
23397 		int	data_length;
23398 		uchar_t	*rptr;
23399 		tcph_t	*tcph;
23400 		mblk_t	*mp1;
23401 		int32_t	tcp_hdr_len;
23402 		int32_t	tcp_tcp_hdr_len;
23403 		int32_t	num_sack_blk = 0;
23404 		int32_t sack_opt_len;
23405 
23406 		/*
23407 		 * Allocate space for TCP + IP headers
23408 		 * and link-level header
23409 		 */
23410 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23411 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23412 			    tcp->tcp_num_sack_blk);
23413 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23414 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23415 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23416 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23417 		} else {
23418 			tcp_hdr_len = tcp->tcp_hdr_len;
23419 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23420 		}
23421 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23422 		if (!mp1)
23423 			return (NULL);
23424 
23425 		/* Update the latest receive window size in TCP header. */
23426 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23427 		    tcp->tcp_tcph->th_win);
23428 		/* copy in prototype TCP + IP header */
23429 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23430 		mp1->b_rptr = rptr;
23431 		mp1->b_wptr = rptr + tcp_hdr_len;
23432 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23433 
23434 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23435 
23436 		/* Set the TCP sequence number. */
23437 		U32_TO_ABE32(seq_no, tcph->th_seq);
23438 
23439 		/* Set up the TCP flag field. */
23440 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23441 		if (tcp->tcp_ecn_echo_on)
23442 			tcph->th_flags[0] |= TH_ECE;
23443 
23444 		tcp->tcp_rack = tcp->tcp_rnxt;
23445 		tcp->tcp_rack_cnt = 0;
23446 
23447 		/* fill in timestamp option if in use */
23448 		if (tcp->tcp_snd_ts_ok) {
23449 			uint32_t llbolt = (uint32_t)lbolt;
23450 
23451 			U32_TO_BE32(llbolt,
23452 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23453 			U32_TO_BE32(tcp->tcp_ts_recent,
23454 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23455 		}
23456 
23457 		/* Fill in SACK options */
23458 		if (num_sack_blk > 0) {
23459 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23460 			sack_blk_t *tmp;
23461 			int32_t	i;
23462 
23463 			wptr[0] = TCPOPT_NOP;
23464 			wptr[1] = TCPOPT_NOP;
23465 			wptr[2] = TCPOPT_SACK;
23466 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23467 			    sizeof (sack_blk_t);
23468 			wptr += TCPOPT_REAL_SACK_LEN;
23469 
23470 			tmp = tcp->tcp_sack_list;
23471 			for (i = 0; i < num_sack_blk; i++) {
23472 				U32_TO_BE32(tmp[i].begin, wptr);
23473 				wptr += sizeof (tcp_seq);
23474 				U32_TO_BE32(tmp[i].end, wptr);
23475 				wptr += sizeof (tcp_seq);
23476 			}
23477 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23478 			    << 4);
23479 		}
23480 
23481 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23482 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23483 		} else {
23484 			/* Check for ip6i_t header in sticky hdrs */
23485 			ip6_t *ip6 = (ip6_t *)(rptr +
23486 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23487 			    sizeof (ip6i_t) : 0));
23488 
23489 			ip6->ip6_plen = htons(tcp_hdr_len -
23490 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23491 		}
23492 
23493 		/*
23494 		 * Prime pump for checksum calculation in IP.  Include the
23495 		 * adjustment for a source route if any.
23496 		 */
23497 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23498 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23499 		U16_TO_ABE16(data_length, tcph->th_sum);
23500 
23501 		if (tcp->tcp_ip_forward_progress) {
23502 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23503 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23504 			tcp->tcp_ip_forward_progress = B_FALSE;
23505 		}
23506 		return (mp1);
23507 	}
23508 }
23509 
23510 /*
23511  * Hash list insertion routine for tcp_t structures. Each hash bucket
23512  * contains a list of tcp_t entries, and each entry is bound to a unique
23513  * port. If there are multiple tcp_t's that are bound to the same port, then
23514  * one of them will be linked into the hash bucket list, and the rest will
23515  * hang off of that one entry. For each port, entries bound to a specific IP
23516  * address will be inserted before those those bound to INADDR_ANY.
23517  */
23518 static void
23519 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23520 {
23521 	tcp_t	**tcpp;
23522 	tcp_t	*tcpnext;
23523 	tcp_t	*tcphash;
23524 
23525 	if (tcp->tcp_ptpbhn != NULL) {
23526 		ASSERT(!caller_holds_lock);
23527 		tcp_bind_hash_remove(tcp);
23528 	}
23529 	tcpp = &tbf->tf_tcp;
23530 	if (!caller_holds_lock) {
23531 		mutex_enter(&tbf->tf_lock);
23532 	} else {
23533 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23534 	}
23535 	tcphash = tcpp[0];
23536 	tcpnext = NULL;
23537 	if (tcphash != NULL) {
23538 		/* Look for an entry using the same port */
23539 		while ((tcphash = tcpp[0]) != NULL &&
23540 		    tcp->tcp_lport != tcphash->tcp_lport)
23541 			tcpp = &(tcphash->tcp_bind_hash);
23542 
23543 		/* The port was not found, just add to the end */
23544 		if (tcphash == NULL)
23545 			goto insert;
23546 
23547 		/*
23548 		 * OK, there already exists an entry bound to the
23549 		 * same port.
23550 		 *
23551 		 * If the new tcp bound to the INADDR_ANY address
23552 		 * and the first one in the list is not bound to
23553 		 * INADDR_ANY we skip all entries until we find the
23554 		 * first one bound to INADDR_ANY.
23555 		 * This makes sure that applications binding to a
23556 		 * specific address get preference over those binding to
23557 		 * INADDR_ANY.
23558 		 */
23559 		tcpnext = tcphash;
23560 		tcphash = NULL;
23561 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23562 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23563 			while ((tcpnext = tcpp[0]) != NULL &&
23564 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23565 				tcpp = &(tcpnext->tcp_bind_hash_port);
23566 
23567 			if (tcpnext) {
23568 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23569 				tcphash = tcpnext->tcp_bind_hash;
23570 				if (tcphash != NULL) {
23571 					tcphash->tcp_ptpbhn =
23572 					    &(tcp->tcp_bind_hash);
23573 					tcpnext->tcp_bind_hash = NULL;
23574 				}
23575 			}
23576 		} else {
23577 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23578 			tcphash = tcpnext->tcp_bind_hash;
23579 			if (tcphash != NULL) {
23580 				tcphash->tcp_ptpbhn =
23581 				    &(tcp->tcp_bind_hash);
23582 				tcpnext->tcp_bind_hash = NULL;
23583 			}
23584 		}
23585 	}
23586 insert:
23587 	tcp->tcp_bind_hash_port = tcpnext;
23588 	tcp->tcp_bind_hash = tcphash;
23589 	tcp->tcp_ptpbhn = tcpp;
23590 	tcpp[0] = tcp;
23591 	if (!caller_holds_lock)
23592 		mutex_exit(&tbf->tf_lock);
23593 }
23594 
23595 /*
23596  * Hash list removal routine for tcp_t structures.
23597  */
23598 static void
23599 tcp_bind_hash_remove(tcp_t *tcp)
23600 {
23601 	tcp_t	*tcpnext;
23602 	kmutex_t *lockp;
23603 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23604 
23605 	if (tcp->tcp_ptpbhn == NULL)
23606 		return;
23607 
23608 	/*
23609 	 * Extract the lock pointer in case there are concurrent
23610 	 * hash_remove's for this instance.
23611 	 */
23612 	ASSERT(tcp->tcp_lport != 0);
23613 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23614 
23615 	ASSERT(lockp != NULL);
23616 	mutex_enter(lockp);
23617 	if (tcp->tcp_ptpbhn) {
23618 		tcpnext = tcp->tcp_bind_hash_port;
23619 		if (tcpnext != NULL) {
23620 			tcp->tcp_bind_hash_port = NULL;
23621 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23622 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
23623 			if (tcpnext->tcp_bind_hash != NULL) {
23624 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
23625 				    &(tcpnext->tcp_bind_hash);
23626 				tcp->tcp_bind_hash = NULL;
23627 			}
23628 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
23629 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23630 			tcp->tcp_bind_hash = NULL;
23631 		}
23632 		*tcp->tcp_ptpbhn = tcpnext;
23633 		tcp->tcp_ptpbhn = NULL;
23634 	}
23635 	mutex_exit(lockp);
23636 }
23637 
23638 
23639 /*
23640  * Hash list lookup routine for tcp_t structures.
23641  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23642  */
23643 static tcp_t *
23644 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23645 {
23646 	tf_t	*tf;
23647 	tcp_t	*tcp;
23648 
23649 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23650 	mutex_enter(&tf->tf_lock);
23651 	for (tcp = tf->tf_tcp; tcp != NULL;
23652 	    tcp = tcp->tcp_acceptor_hash) {
23653 		if (tcp->tcp_acceptor_id == id) {
23654 			CONN_INC_REF(tcp->tcp_connp);
23655 			mutex_exit(&tf->tf_lock);
23656 			return (tcp);
23657 		}
23658 	}
23659 	mutex_exit(&tf->tf_lock);
23660 	return (NULL);
23661 }
23662 
23663 
23664 /*
23665  * Hash list insertion routine for tcp_t structures.
23666  */
23667 void
23668 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23669 {
23670 	tf_t	*tf;
23671 	tcp_t	**tcpp;
23672 	tcp_t	*tcpnext;
23673 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23674 
23675 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23676 
23677 	if (tcp->tcp_ptpahn != NULL)
23678 		tcp_acceptor_hash_remove(tcp);
23679 	tcpp = &tf->tf_tcp;
23680 	mutex_enter(&tf->tf_lock);
23681 	tcpnext = tcpp[0];
23682 	if (tcpnext)
23683 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23684 	tcp->tcp_acceptor_hash = tcpnext;
23685 	tcp->tcp_ptpahn = tcpp;
23686 	tcpp[0] = tcp;
23687 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23688 	mutex_exit(&tf->tf_lock);
23689 }
23690 
23691 /*
23692  * Hash list removal routine for tcp_t structures.
23693  */
23694 static void
23695 tcp_acceptor_hash_remove(tcp_t *tcp)
23696 {
23697 	tcp_t	*tcpnext;
23698 	kmutex_t *lockp;
23699 
23700 	/*
23701 	 * Extract the lock pointer in case there are concurrent
23702 	 * hash_remove's for this instance.
23703 	 */
23704 	lockp = tcp->tcp_acceptor_lockp;
23705 
23706 	if (tcp->tcp_ptpahn == NULL)
23707 		return;
23708 
23709 	ASSERT(lockp != NULL);
23710 	mutex_enter(lockp);
23711 	if (tcp->tcp_ptpahn) {
23712 		tcpnext = tcp->tcp_acceptor_hash;
23713 		if (tcpnext) {
23714 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23715 			tcp->tcp_acceptor_hash = NULL;
23716 		}
23717 		*tcp->tcp_ptpahn = tcpnext;
23718 		tcp->tcp_ptpahn = NULL;
23719 	}
23720 	mutex_exit(lockp);
23721 	tcp->tcp_acceptor_lockp = NULL;
23722 }
23723 
23724 /*
23725  * Type three generator adapted from the random() function in 4.4 BSD:
23726  */
23727 
23728 /*
23729  * Copyright (c) 1983, 1993
23730  *	The Regents of the University of California.  All rights reserved.
23731  *
23732  * Redistribution and use in source and binary forms, with or without
23733  * modification, are permitted provided that the following conditions
23734  * are met:
23735  * 1. Redistributions of source code must retain the above copyright
23736  *    notice, this list of conditions and the following disclaimer.
23737  * 2. Redistributions in binary form must reproduce the above copyright
23738  *    notice, this list of conditions and the following disclaimer in the
23739  *    documentation and/or other materials provided with the distribution.
23740  * 3. All advertising materials mentioning features or use of this software
23741  *    must display the following acknowledgement:
23742  *	This product includes software developed by the University of
23743  *	California, Berkeley and its contributors.
23744  * 4. Neither the name of the University nor the names of its contributors
23745  *    may be used to endorse or promote products derived from this software
23746  *    without specific prior written permission.
23747  *
23748  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23749  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23750  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23751  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23752  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23753  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23754  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23755  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23756  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23757  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23758  * SUCH DAMAGE.
23759  */
23760 
23761 /* Type 3 -- x**31 + x**3 + 1 */
23762 #define	DEG_3		31
23763 #define	SEP_3		3
23764 
23765 
23766 /* Protected by tcp_random_lock */
23767 static int tcp_randtbl[DEG_3 + 1];
23768 
23769 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23770 static int *tcp_random_rptr = &tcp_randtbl[1];
23771 
23772 static int *tcp_random_state = &tcp_randtbl[1];
23773 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23774 
23775 kmutex_t tcp_random_lock;
23776 
23777 void
23778 tcp_random_init(void)
23779 {
23780 	int i;
23781 	hrtime_t hrt;
23782 	time_t wallclock;
23783 	uint64_t result;
23784 
23785 	/*
23786 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23787 	 * a longlong, which may contain resolution down to nanoseconds.
23788 	 * The current time will either be a 32-bit or a 64-bit quantity.
23789 	 * XOR the two together in a 64-bit result variable.
23790 	 * Convert the result to a 32-bit value by multiplying the high-order
23791 	 * 32-bits by the low-order 32-bits.
23792 	 */
23793 
23794 	hrt = gethrtime();
23795 	(void) drv_getparm(TIME, &wallclock);
23796 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23797 	mutex_enter(&tcp_random_lock);
23798 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23799 	    (result & 0xffffffff);
23800 
23801 	for (i = 1; i < DEG_3; i++)
23802 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23803 		    + 12345;
23804 	tcp_random_fptr = &tcp_random_state[SEP_3];
23805 	tcp_random_rptr = &tcp_random_state[0];
23806 	mutex_exit(&tcp_random_lock);
23807 	for (i = 0; i < 10 * DEG_3; i++)
23808 		(void) tcp_random();
23809 }
23810 
23811 /*
23812  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23813  * This range is selected to be approximately centered on TCP_ISS / 2,
23814  * and easy to compute. We get this value by generating a 32-bit random
23815  * number, selecting out the high-order 17 bits, and then adding one so
23816  * that we never return zero.
23817  */
23818 int
23819 tcp_random(void)
23820 {
23821 	int i;
23822 
23823 	mutex_enter(&tcp_random_lock);
23824 	*tcp_random_fptr += *tcp_random_rptr;
23825 
23826 	/*
23827 	 * The high-order bits are more random than the low-order bits,
23828 	 * so we select out the high-order 17 bits and add one so that
23829 	 * we never return zero.
23830 	 */
23831 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23832 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23833 		tcp_random_fptr = tcp_random_state;
23834 		++tcp_random_rptr;
23835 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23836 		tcp_random_rptr = tcp_random_state;
23837 
23838 	mutex_exit(&tcp_random_lock);
23839 	return (i);
23840 }
23841 
23842 static int
23843 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23844     int *t_errorp, int *sys_errorp)
23845 {
23846 	int error;
23847 	int is_absreq_failure;
23848 	t_scalar_t *opt_lenp;
23849 	t_scalar_t opt_offset;
23850 	int prim_type;
23851 	struct T_conn_req *tcreqp;
23852 	struct T_conn_res *tcresp;
23853 	cred_t *cr;
23854 
23855 	/*
23856 	 * All Solaris components should pass a db_credp
23857 	 * for this TPI message, hence we ASSERT.
23858 	 * But in case there is some other M_PROTO that looks
23859 	 * like a TPI message sent by some other kernel
23860 	 * component, we check and return an error.
23861 	 */
23862 	cr = msg_getcred(mp, NULL);
23863 	ASSERT(cr != NULL);
23864 	if (cr == NULL)
23865 		return (-1);
23866 
23867 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23868 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23869 	    prim_type == T_CONN_RES);
23870 
23871 	switch (prim_type) {
23872 	case T_CONN_REQ:
23873 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23874 		opt_offset = tcreqp->OPT_offset;
23875 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23876 		break;
23877 	case O_T_CONN_RES:
23878 	case T_CONN_RES:
23879 		tcresp = (struct T_conn_res *)mp->b_rptr;
23880 		opt_offset = tcresp->OPT_offset;
23881 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23882 		break;
23883 	}
23884 
23885 	*t_errorp = 0;
23886 	*sys_errorp = 0;
23887 	*do_disconnectp = 0;
23888 
23889 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23890 	    opt_offset, cr, &tcp_opt_obj,
23891 	    NULL, &is_absreq_failure);
23892 
23893 	switch (error) {
23894 	case  0:		/* no error */
23895 		ASSERT(is_absreq_failure == 0);
23896 		return (0);
23897 	case ENOPROTOOPT:
23898 		*t_errorp = TBADOPT;
23899 		break;
23900 	case EACCES:
23901 		*t_errorp = TACCES;
23902 		break;
23903 	default:
23904 		*t_errorp = TSYSERR; *sys_errorp = error;
23905 		break;
23906 	}
23907 	if (is_absreq_failure != 0) {
23908 		/*
23909 		 * The connection request should get the local ack
23910 		 * T_OK_ACK and then a T_DISCON_IND.
23911 		 */
23912 		*do_disconnectp = 1;
23913 	}
23914 	return (-1);
23915 }
23916 
23917 /*
23918  * Split this function out so that if the secret changes, I'm okay.
23919  *
23920  * Initialize the tcp_iss_cookie and tcp_iss_key.
23921  */
23922 
23923 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23924 
23925 static void
23926 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
23927 {
23928 	struct {
23929 		int32_t current_time;
23930 		uint32_t randnum;
23931 		uint16_t pad;
23932 		uint8_t ether[6];
23933 		uint8_t passwd[PASSWD_SIZE];
23934 	} tcp_iss_cookie;
23935 	time_t t;
23936 
23937 	/*
23938 	 * Start with the current absolute time.
23939 	 */
23940 	(void) drv_getparm(TIME, &t);
23941 	tcp_iss_cookie.current_time = t;
23942 
23943 	/*
23944 	 * XXX - Need a more random number per RFC 1750, not this crap.
23945 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23946 	 */
23947 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23948 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23949 
23950 	/*
23951 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23952 	 * as a good template.
23953 	 */
23954 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23955 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23956 
23957 	/*
23958 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23959 	 */
23960 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23961 
23962 	/*
23963 	 * See 4010593 if this section becomes a problem again,
23964 	 * but the local ethernet address is useful here.
23965 	 */
23966 	(void) localetheraddr(NULL,
23967 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23968 
23969 	/*
23970 	 * Hash 'em all together.  The MD5Final is called per-connection.
23971 	 */
23972 	mutex_enter(&tcps->tcps_iss_key_lock);
23973 	MD5Init(&tcps->tcps_iss_key);
23974 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
23975 	    sizeof (tcp_iss_cookie));
23976 	mutex_exit(&tcps->tcps_iss_key_lock);
23977 }
23978 
23979 /*
23980  * Set the RFC 1948 pass phrase
23981  */
23982 /* ARGSUSED */
23983 static int
23984 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23985     cred_t *cr)
23986 {
23987 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23988 
23989 	/*
23990 	 * Basically, value contains a new pass phrase.  Pass it along!
23991 	 */
23992 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
23993 	return (0);
23994 }
23995 
23996 /* ARGSUSED */
23997 static int
23998 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23999 {
24000 	bzero(buf, sizeof (tcp_sack_info_t));
24001 	return (0);
24002 }
24003 
24004 /* ARGSUSED */
24005 static int
24006 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24007 {
24008 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24009 	return (0);
24010 }
24011 
24012 /*
24013  * Make sure we wait until the default queue is setup, yet allow
24014  * tcp_g_q_create() to open a TCP stream.
24015  * We need to allow tcp_g_q_create() do do an open
24016  * of tcp, hence we compare curhread.
24017  * All others have to wait until the tcps_g_q has been
24018  * setup.
24019  */
24020 void
24021 tcp_g_q_setup(tcp_stack_t *tcps)
24022 {
24023 	mutex_enter(&tcps->tcps_g_q_lock);
24024 	if (tcps->tcps_g_q != NULL) {
24025 		mutex_exit(&tcps->tcps_g_q_lock);
24026 		return;
24027 	}
24028 	if (tcps->tcps_g_q_creator == NULL) {
24029 		/* This thread will set it up */
24030 		tcps->tcps_g_q_creator = curthread;
24031 		mutex_exit(&tcps->tcps_g_q_lock);
24032 		tcp_g_q_create(tcps);
24033 		mutex_enter(&tcps->tcps_g_q_lock);
24034 		ASSERT(tcps->tcps_g_q_creator == curthread);
24035 		tcps->tcps_g_q_creator = NULL;
24036 		cv_signal(&tcps->tcps_g_q_cv);
24037 		ASSERT(tcps->tcps_g_q != NULL);
24038 		mutex_exit(&tcps->tcps_g_q_lock);
24039 		return;
24040 	}
24041 	/* Everybody but the creator has to wait */
24042 	if (tcps->tcps_g_q_creator != curthread) {
24043 		while (tcps->tcps_g_q == NULL)
24044 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24045 	}
24046 	mutex_exit(&tcps->tcps_g_q_lock);
24047 }
24048 
24049 #define	IP	"ip"
24050 
24051 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24052 
24053 /*
24054  * Create a default tcp queue here instead of in strplumb
24055  */
24056 void
24057 tcp_g_q_create(tcp_stack_t *tcps)
24058 {
24059 	int error;
24060 	ldi_handle_t	lh = NULL;
24061 	ldi_ident_t	li = NULL;
24062 	int		rval;
24063 	cred_t		*cr;
24064 	major_t IP_MAJ;
24065 
24066 #ifdef NS_DEBUG
24067 	(void) printf("tcp_g_q_create()\n");
24068 #endif
24069 
24070 	IP_MAJ = ddi_name_to_major(IP);
24071 
24072 	ASSERT(tcps->tcps_g_q_creator == curthread);
24073 
24074 	error = ldi_ident_from_major(IP_MAJ, &li);
24075 	if (error) {
24076 #ifdef DEBUG
24077 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24078 		    error);
24079 #endif
24080 		return;
24081 	}
24082 
24083 	cr = zone_get_kcred(netstackid_to_zoneid(
24084 	    tcps->tcps_netstack->netstack_stackid));
24085 	ASSERT(cr != NULL);
24086 	/*
24087 	 * We set the tcp default queue to IPv6 because IPv4 falls
24088 	 * back to IPv6 when it can't find a client, but
24089 	 * IPv6 does not fall back to IPv4.
24090 	 */
24091 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24092 	if (error) {
24093 #ifdef DEBUG
24094 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24095 		    error);
24096 #endif
24097 		goto out;
24098 	}
24099 
24100 	/*
24101 	 * This ioctl causes the tcp framework to cache a pointer to
24102 	 * this stream, so we don't want to close the stream after
24103 	 * this operation.
24104 	 * Use the kernel credentials that are for the zone we're in.
24105 	 */
24106 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24107 	    (intptr_t)0, FKIOCTL, cr, &rval);
24108 	if (error) {
24109 #ifdef DEBUG
24110 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24111 		    "error %d\n", error);
24112 #endif
24113 		goto out;
24114 	}
24115 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24116 	lh = NULL;
24117 out:
24118 	/* Close layered handles */
24119 	if (li)
24120 		ldi_ident_release(li);
24121 	/* Keep cred around until _inactive needs it */
24122 	tcps->tcps_g_q_cr = cr;
24123 }
24124 
24125 /*
24126  * We keep tcp_g_q set until all other tcp_t's in the zone
24127  * has gone away, and then when tcp_g_q_inactive() is called
24128  * we clear it.
24129  */
24130 void
24131 tcp_g_q_destroy(tcp_stack_t *tcps)
24132 {
24133 #ifdef NS_DEBUG
24134 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24135 	    tcps->tcps_netstack->netstack_stackid);
24136 #endif
24137 
24138 	if (tcps->tcps_g_q == NULL) {
24139 		return;	/* Nothing to cleanup */
24140 	}
24141 	/*
24142 	 * Drop reference corresponding to the default queue.
24143 	 * This reference was added from tcp_open when the default queue
24144 	 * was created, hence we compensate for this extra drop in
24145 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24146 	 * the default queue was the last one to be open, in which
24147 	 * case, then tcp_g_q_inactive will be
24148 	 * called as a result of the refrele.
24149 	 */
24150 	TCPS_REFRELE(tcps);
24151 }
24152 
24153 /*
24154  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24155  * Run by tcp_q_q_inactive using a taskq.
24156  */
24157 static void
24158 tcp_g_q_close(void *arg)
24159 {
24160 	tcp_stack_t *tcps = arg;
24161 	int error;
24162 	ldi_handle_t	lh = NULL;
24163 	ldi_ident_t	li = NULL;
24164 	cred_t		*cr;
24165 	major_t IP_MAJ;
24166 
24167 	IP_MAJ = ddi_name_to_major(IP);
24168 
24169 #ifdef NS_DEBUG
24170 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24171 	    tcps->tcps_netstack->netstack_stackid,
24172 	    tcps->tcps_netstack->netstack_refcnt);
24173 #endif
24174 	lh = tcps->tcps_g_q_lh;
24175 	if (lh == NULL)
24176 		return;	/* Nothing to cleanup */
24177 
24178 	ASSERT(tcps->tcps_refcnt == 1);
24179 	ASSERT(tcps->tcps_g_q != NULL);
24180 
24181 	error = ldi_ident_from_major(IP_MAJ, &li);
24182 	if (error) {
24183 #ifdef DEBUG
24184 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24185 		    error);
24186 #endif
24187 		return;
24188 	}
24189 
24190 	cr = tcps->tcps_g_q_cr;
24191 	tcps->tcps_g_q_cr = NULL;
24192 	ASSERT(cr != NULL);
24193 
24194 	/*
24195 	 * Make sure we can break the recursion when tcp_close decrements
24196 	 * the reference count causing g_q_inactive to be called again.
24197 	 */
24198 	tcps->tcps_g_q_lh = NULL;
24199 
24200 	/* close the default queue */
24201 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24202 	/*
24203 	 * At this point in time tcps and the rest of netstack_t might
24204 	 * have been deleted.
24205 	 */
24206 	tcps = NULL;
24207 
24208 	/* Close layered handles */
24209 	ldi_ident_release(li);
24210 	crfree(cr);
24211 }
24212 
24213 /*
24214  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24215  *
24216  * Have to ensure that the ldi routines are not used by an
24217  * interrupt thread by using a taskq.
24218  */
24219 void
24220 tcp_g_q_inactive(tcp_stack_t *tcps)
24221 {
24222 	if (tcps->tcps_g_q_lh == NULL)
24223 		return;	/* Nothing to cleanup */
24224 
24225 	ASSERT(tcps->tcps_refcnt == 0);
24226 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24227 
24228 	if (servicing_interrupt()) {
24229 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24230 		    (void *) tcps, TQ_SLEEP);
24231 	} else {
24232 		tcp_g_q_close(tcps);
24233 	}
24234 }
24235 
24236 /*
24237  * Called by IP when IP is loaded into the kernel
24238  */
24239 void
24240 tcp_ddi_g_init(void)
24241 {
24242 	tcp_timercache = kmem_cache_create("tcp_timercache",
24243 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24244 	    NULL, NULL, NULL, NULL, NULL, 0);
24245 
24246 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24247 	    sizeof (tcp_sack_info_t), 0,
24248 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24249 
24250 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24251 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24252 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24253 
24254 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24255 
24256 	/* Initialize the random number generator */
24257 	tcp_random_init();
24258 
24259 	/* A single callback independently of how many netstacks we have */
24260 	ip_squeue_init(tcp_squeue_add);
24261 
24262 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24263 
24264 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24265 	    TASKQ_PREPOPULATE);
24266 
24267 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
24268 
24269 	/*
24270 	 * We want to be informed each time a stack is created or
24271 	 * destroyed in the kernel, so we can maintain the
24272 	 * set of tcp_stack_t's.
24273 	 */
24274 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24275 	    tcp_stack_fini);
24276 }
24277 
24278 
24279 #define	INET_NAME	"ip"
24280 
24281 /*
24282  * Initialize the TCP stack instance.
24283  */
24284 static void *
24285 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24286 {
24287 	tcp_stack_t	*tcps;
24288 	tcpparam_t	*pa;
24289 	int		i;
24290 	int		error = 0;
24291 	major_t		major;
24292 
24293 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24294 	tcps->tcps_netstack = ns;
24295 
24296 	/* Initialize locks */
24297 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24298 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24299 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24300 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24301 
24302 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24303 	tcps->tcps_g_epriv_ports[0] = 2049;
24304 	tcps->tcps_g_epriv_ports[1] = 4045;
24305 	tcps->tcps_min_anonpriv_port = 512;
24306 
24307 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24308 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24309 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24310 	    TCP_FANOUT_SIZE, KM_SLEEP);
24311 
24312 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24313 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24314 		    MUTEX_DEFAULT, NULL);
24315 	}
24316 
24317 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24318 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24319 		    MUTEX_DEFAULT, NULL);
24320 	}
24321 
24322 	/* TCP's IPsec code calls the packet dropper. */
24323 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24324 
24325 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24326 	tcps->tcps_params = pa;
24327 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24328 
24329 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24330 	    A_CNT(lcl_tcp_param_arr), tcps);
24331 
24332 	/*
24333 	 * Note: To really walk the device tree you need the devinfo
24334 	 * pointer to your device which is only available after probe/attach.
24335 	 * The following is safe only because it uses ddi_root_node()
24336 	 */
24337 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24338 	    tcp_opt_obj.odb_opt_arr_cnt);
24339 
24340 	/*
24341 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24342 	 * by the boot scripts.
24343 	 *
24344 	 * Use NULL name, as the name is caught by the new lockstats.
24345 	 *
24346 	 * Initialize with some random, non-guessable string, like the global
24347 	 * T_INFO_ACK.
24348 	 */
24349 
24350 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24351 	    sizeof (tcp_g_t_info_ack), tcps);
24352 
24353 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24354 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24355 
24356 	major = mod_name_to_major(INET_NAME);
24357 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
24358 	ASSERT(error == 0);
24359 	return (tcps);
24360 }
24361 
24362 /*
24363  * Called when the IP module is about to be unloaded.
24364  */
24365 void
24366 tcp_ddi_g_destroy(void)
24367 {
24368 	tcp_g_kstat_fini(tcp_g_kstat);
24369 	tcp_g_kstat = NULL;
24370 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24371 
24372 	mutex_destroy(&tcp_random_lock);
24373 
24374 	kmem_cache_destroy(tcp_timercache);
24375 	kmem_cache_destroy(tcp_sack_info_cache);
24376 	kmem_cache_destroy(tcp_iphc_cache);
24377 
24378 	netstack_unregister(NS_TCP);
24379 	taskq_destroy(tcp_taskq);
24380 }
24381 
24382 /*
24383  * Shut down the TCP stack instance.
24384  */
24385 /* ARGSUSED */
24386 static void
24387 tcp_stack_shutdown(netstackid_t stackid, void *arg)
24388 {
24389 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24390 
24391 	tcp_g_q_destroy(tcps);
24392 }
24393 
24394 /*
24395  * Free the TCP stack instance.
24396  */
24397 static void
24398 tcp_stack_fini(netstackid_t stackid, void *arg)
24399 {
24400 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24401 	int i;
24402 
24403 	nd_free(&tcps->tcps_g_nd);
24404 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24405 	tcps->tcps_params = NULL;
24406 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
24407 	tcps->tcps_wroff_xtra_param = NULL;
24408 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
24409 	tcps->tcps_mdt_head_param = NULL;
24410 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
24411 	tcps->tcps_mdt_tail_param = NULL;
24412 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
24413 	tcps->tcps_mdt_max_pbufs_param = NULL;
24414 
24415 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24416 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
24417 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
24418 	}
24419 
24420 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24421 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
24422 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
24423 	}
24424 
24425 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
24426 	tcps->tcps_bind_fanout = NULL;
24427 
24428 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
24429 	tcps->tcps_acceptor_fanout = NULL;
24430 
24431 	mutex_destroy(&tcps->tcps_iss_key_lock);
24432 	mutex_destroy(&tcps->tcps_g_q_lock);
24433 	cv_destroy(&tcps->tcps_g_q_cv);
24434 	mutex_destroy(&tcps->tcps_epriv_port_lock);
24435 
24436 	ip_drop_unregister(&tcps->tcps_dropper);
24437 
24438 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
24439 	tcps->tcps_kstat = NULL;
24440 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
24441 
24442 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
24443 	tcps->tcps_mibkp = NULL;
24444 
24445 	ldi_ident_release(tcps->tcps_ldi_ident);
24446 	kmem_free(tcps, sizeof (*tcps));
24447 }
24448 
24449 /*
24450  * Generate ISS, taking into account NDD changes may happen halfway through.
24451  * (If the iss is not zero, set it.)
24452  */
24453 
24454 static void
24455 tcp_iss_init(tcp_t *tcp)
24456 {
24457 	MD5_CTX context;
24458 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24459 	uint32_t answer[4];
24460 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24461 
24462 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
24463 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
24464 	switch (tcps->tcps_strong_iss) {
24465 	case 2:
24466 		mutex_enter(&tcps->tcps_iss_key_lock);
24467 		context = tcps->tcps_iss_key;
24468 		mutex_exit(&tcps->tcps_iss_key_lock);
24469 		arg.ports = tcp->tcp_ports;
24470 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24471 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24472 			    &arg.src);
24473 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24474 			    &arg.dst);
24475 		} else {
24476 			arg.src = tcp->tcp_ip6h->ip6_src;
24477 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24478 		}
24479 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24480 		MD5Final((uchar_t *)answer, &context);
24481 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24482 		/*
24483 		 * Now that we've hashed into a unique per-connection sequence
24484 		 * space, add a random increment per strong_iss == 1.  So I
24485 		 * guess we'll have to...
24486 		 */
24487 		/* FALLTHRU */
24488 	case 1:
24489 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24490 		break;
24491 	default:
24492 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24493 		break;
24494 	}
24495 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24496 	tcp->tcp_fss = tcp->tcp_iss - 1;
24497 	tcp->tcp_suna = tcp->tcp_iss;
24498 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24499 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24500 	tcp->tcp_csuna = tcp->tcp_snxt;
24501 }
24502 
24503 /*
24504  * Exported routine for extracting active tcp connection status.
24505  *
24506  * This is used by the Solaris Cluster Networking software to
24507  * gather a list of connections that need to be forwarded to
24508  * specific nodes in the cluster when configuration changes occur.
24509  *
24510  * The callback is invoked for each tcp_t structure from all netstacks,
24511  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
24512  * from the netstack with the specified stack_id. Returning
24513  * non-zero from the callback routine terminates the search.
24514  */
24515 int
24516 cl_tcp_walk_list(netstackid_t stack_id,
24517     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
24518 {
24519 	netstack_handle_t nh;
24520 	netstack_t *ns;
24521 	int ret = 0;
24522 
24523 	if (stack_id >= 0) {
24524 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
24525 			return (EINVAL);
24526 
24527 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24528 		    ns->netstack_tcp);
24529 		netstack_rele(ns);
24530 		return (ret);
24531 	}
24532 
24533 	netstack_next_init(&nh);
24534 	while ((ns = netstack_next(&nh)) != NULL) {
24535 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24536 		    ns->netstack_tcp);
24537 		netstack_rele(ns);
24538 	}
24539 	netstack_next_fini(&nh);
24540 	return (ret);
24541 }
24542 
24543 static int
24544 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
24545     tcp_stack_t *tcps)
24546 {
24547 	tcp_t *tcp;
24548 	cl_tcp_info_t	cl_tcpi;
24549 	connf_t	*connfp;
24550 	conn_t	*connp;
24551 	int	i;
24552 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24553 
24554 	ASSERT(callback != NULL);
24555 
24556 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24557 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
24558 		connp = NULL;
24559 
24560 		while ((connp =
24561 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24562 
24563 			tcp = connp->conn_tcp;
24564 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24565 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24566 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24567 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24568 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24569 			/*
24570 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24571 			 * addresses. They are copied implicitly below as
24572 			 * mapped addresses.
24573 			 */
24574 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24575 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24576 				cl_tcpi.cl_tcpi_faddr =
24577 				    tcp->tcp_ipha->ipha_dst;
24578 			} else {
24579 				cl_tcpi.cl_tcpi_faddr_v6 =
24580 				    tcp->tcp_ip6h->ip6_dst;
24581 			}
24582 
24583 			/*
24584 			 * If the callback returns non-zero
24585 			 * we terminate the traversal.
24586 			 */
24587 			if ((*callback)(&cl_tcpi, arg) != 0) {
24588 				CONN_DEC_REF(tcp->tcp_connp);
24589 				return (1);
24590 			}
24591 		}
24592 	}
24593 
24594 	return (0);
24595 }
24596 
24597 /*
24598  * Macros used for accessing the different types of sockaddr
24599  * structures inside a tcp_ioc_abort_conn_t.
24600  */
24601 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24602 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24603 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24604 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24605 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24606 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24607 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24608 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24609 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24610 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24611 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24612 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24613 
24614 /*
24615  * Return the correct error code to mimic the behavior
24616  * of a connection reset.
24617  */
24618 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24619 		switch ((state)) {		\
24620 		case TCPS_SYN_SENT:		\
24621 		case TCPS_SYN_RCVD:		\
24622 			(err) = ECONNREFUSED;	\
24623 			break;			\
24624 		case TCPS_ESTABLISHED:		\
24625 		case TCPS_FIN_WAIT_1:		\
24626 		case TCPS_FIN_WAIT_2:		\
24627 		case TCPS_CLOSE_WAIT:		\
24628 			(err) = ECONNRESET;	\
24629 			break;			\
24630 		case TCPS_CLOSING:		\
24631 		case TCPS_LAST_ACK:		\
24632 		case TCPS_TIME_WAIT:		\
24633 			(err) = 0;		\
24634 			break;			\
24635 		default:			\
24636 			(err) = ENXIO;		\
24637 		}				\
24638 	}
24639 
24640 /*
24641  * Check if a tcp structure matches the info in acp.
24642  */
24643 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24644 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24645 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24646 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24647 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24648 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24649 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24650 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24651 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24652 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24653 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24654 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24655 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24656 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24657 	&(tcp)->tcp_ip_src_v6)) &&				\
24658 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24659 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24660 	&(tcp)->tcp_remote_v6)) &&				\
24661 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24662 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24663 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24664 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24665 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24666 	(acp)->ac_end >= (tcp)->tcp_state))
24667 
24668 #define	TCP_AC_MATCH(acp, tcp)					\
24669 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24670 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24671 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24672 
24673 /*
24674  * Build a message containing a tcp_ioc_abort_conn_t structure
24675  * which is filled in with information from acp and tp.
24676  */
24677 static mblk_t *
24678 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24679 {
24680 	mblk_t *mp;
24681 	tcp_ioc_abort_conn_t *tacp;
24682 
24683 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24684 	if (mp == NULL)
24685 		return (NULL);
24686 
24687 	mp->b_datap->db_type = M_CTL;
24688 
24689 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24690 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24691 	    sizeof (uint32_t));
24692 
24693 	tacp->ac_start = acp->ac_start;
24694 	tacp->ac_end = acp->ac_end;
24695 	tacp->ac_zoneid = acp->ac_zoneid;
24696 
24697 	if (acp->ac_local.ss_family == AF_INET) {
24698 		tacp->ac_local.ss_family = AF_INET;
24699 		tacp->ac_remote.ss_family = AF_INET;
24700 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24701 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24702 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24703 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24704 	} else {
24705 		tacp->ac_local.ss_family = AF_INET6;
24706 		tacp->ac_remote.ss_family = AF_INET6;
24707 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24708 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24709 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24710 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24711 	}
24712 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24713 	return (mp);
24714 }
24715 
24716 /*
24717  * Print a tcp_ioc_abort_conn_t structure.
24718  */
24719 static void
24720 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24721 {
24722 	char lbuf[128];
24723 	char rbuf[128];
24724 	sa_family_t af;
24725 	in_port_t lport, rport;
24726 	ushort_t logflags;
24727 
24728 	af = acp->ac_local.ss_family;
24729 
24730 	if (af == AF_INET) {
24731 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24732 		    lbuf, 128);
24733 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24734 		    rbuf, 128);
24735 		lport = ntohs(TCP_AC_V4LPORT(acp));
24736 		rport = ntohs(TCP_AC_V4RPORT(acp));
24737 	} else {
24738 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24739 		    lbuf, 128);
24740 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24741 		    rbuf, 128);
24742 		lport = ntohs(TCP_AC_V6LPORT(acp));
24743 		rport = ntohs(TCP_AC_V6RPORT(acp));
24744 	}
24745 
24746 	logflags = SL_TRACE | SL_NOTE;
24747 	/*
24748 	 * Don't print this message to the console if the operation was done
24749 	 * to a non-global zone.
24750 	 */
24751 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24752 		logflags |= SL_CONSOLE;
24753 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24754 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24755 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24756 	    acp->ac_start, acp->ac_end);
24757 }
24758 
24759 /*
24760  * Called inside tcp_rput when a message built using
24761  * tcp_ioctl_abort_build_msg is put into a queue.
24762  * Note that when we get here there is no wildcard in acp any more.
24763  */
24764 static void
24765 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24766 {
24767 	tcp_ioc_abort_conn_t *acp;
24768 
24769 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24770 	if (tcp->tcp_state <= acp->ac_end) {
24771 		/*
24772 		 * If we get here, we are already on the correct
24773 		 * squeue. This ioctl follows the following path
24774 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24775 		 * ->tcp_ioctl_abort->squeue_enter (if on a
24776 		 * different squeue)
24777 		 */
24778 		int errcode;
24779 
24780 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24781 		(void) tcp_clean_death(tcp, errcode, 26);
24782 	}
24783 	freemsg(mp);
24784 }
24785 
24786 /*
24787  * Abort all matching connections on a hash chain.
24788  */
24789 static int
24790 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24791     boolean_t exact, tcp_stack_t *tcps)
24792 {
24793 	int nmatch, err = 0;
24794 	tcp_t *tcp;
24795 	MBLKP mp, last, listhead = NULL;
24796 	conn_t	*tconnp;
24797 	connf_t	*connfp;
24798 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24799 
24800 	connfp = &ipst->ips_ipcl_conn_fanout[index];
24801 
24802 startover:
24803 	nmatch = 0;
24804 
24805 	mutex_enter(&connfp->connf_lock);
24806 	for (tconnp = connfp->connf_head; tconnp != NULL;
24807 	    tconnp = tconnp->conn_next) {
24808 		tcp = tconnp->conn_tcp;
24809 		if (TCP_AC_MATCH(acp, tcp)) {
24810 			CONN_INC_REF(tcp->tcp_connp);
24811 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24812 			if (mp == NULL) {
24813 				err = ENOMEM;
24814 				CONN_DEC_REF(tcp->tcp_connp);
24815 				break;
24816 			}
24817 			mp->b_prev = (mblk_t *)tcp;
24818 
24819 			if (listhead == NULL) {
24820 				listhead = mp;
24821 				last = mp;
24822 			} else {
24823 				last->b_next = mp;
24824 				last = mp;
24825 			}
24826 			nmatch++;
24827 			if (exact)
24828 				break;
24829 		}
24830 
24831 		/* Avoid holding lock for too long. */
24832 		if (nmatch >= 500)
24833 			break;
24834 	}
24835 	mutex_exit(&connfp->connf_lock);
24836 
24837 	/* Pass mp into the correct tcp */
24838 	while ((mp = listhead) != NULL) {
24839 		listhead = listhead->b_next;
24840 		tcp = (tcp_t *)mp->b_prev;
24841 		mp->b_next = mp->b_prev = NULL;
24842 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
24843 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
24844 	}
24845 
24846 	*count += nmatch;
24847 	if (nmatch >= 500 && err == 0)
24848 		goto startover;
24849 	return (err);
24850 }
24851 
24852 /*
24853  * Abort all connections that matches the attributes specified in acp.
24854  */
24855 static int
24856 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
24857 {
24858 	sa_family_t af;
24859 	uint32_t  ports;
24860 	uint16_t *pports;
24861 	int err = 0, count = 0;
24862 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24863 	int index = -1;
24864 	ushort_t logflags;
24865 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24866 
24867 	af = acp->ac_local.ss_family;
24868 
24869 	if (af == AF_INET) {
24870 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24871 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24872 			pports = (uint16_t *)&ports;
24873 			pports[1] = TCP_AC_V4LPORT(acp);
24874 			pports[0] = TCP_AC_V4RPORT(acp);
24875 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24876 		}
24877 	} else {
24878 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24879 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24880 			pports = (uint16_t *)&ports;
24881 			pports[1] = TCP_AC_V6LPORT(acp);
24882 			pports[0] = TCP_AC_V6RPORT(acp);
24883 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24884 		}
24885 	}
24886 
24887 	/*
24888 	 * For cases where remote addr, local port, and remote port are non-
24889 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24890 	 */
24891 	if (index != -1) {
24892 		err = tcp_ioctl_abort_bucket(acp, index,
24893 		    &count, exact, tcps);
24894 	} else {
24895 		/*
24896 		 * loop through all entries for wildcard case
24897 		 */
24898 		for (index = 0;
24899 		    index < ipst->ips_ipcl_conn_fanout_size;
24900 		    index++) {
24901 			err = tcp_ioctl_abort_bucket(acp, index,
24902 			    &count, exact, tcps);
24903 			if (err != 0)
24904 				break;
24905 		}
24906 	}
24907 
24908 	logflags = SL_TRACE | SL_NOTE;
24909 	/*
24910 	 * Don't print this message to the console if the operation was done
24911 	 * to a non-global zone.
24912 	 */
24913 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24914 		logflags |= SL_CONSOLE;
24915 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24916 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24917 	if (err == 0 && count == 0)
24918 		err = ENOENT;
24919 	return (err);
24920 }
24921 
24922 /*
24923  * Process the TCP_IOC_ABORT_CONN ioctl request.
24924  */
24925 static void
24926 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24927 {
24928 	int	err;
24929 	IOCP    iocp;
24930 	MBLKP   mp1;
24931 	sa_family_t laf, raf;
24932 	tcp_ioc_abort_conn_t *acp;
24933 	zone_t		*zptr;
24934 	conn_t		*connp = Q_TO_CONN(q);
24935 	zoneid_t	zoneid = connp->conn_zoneid;
24936 	tcp_t		*tcp = connp->conn_tcp;
24937 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24938 
24939 	iocp = (IOCP)mp->b_rptr;
24940 
24941 	if ((mp1 = mp->b_cont) == NULL ||
24942 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24943 		err = EINVAL;
24944 		goto out;
24945 	}
24946 
24947 	/* check permissions */
24948 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
24949 		err = EPERM;
24950 		goto out;
24951 	}
24952 
24953 	if (mp1->b_cont != NULL) {
24954 		freemsg(mp1->b_cont);
24955 		mp1->b_cont = NULL;
24956 	}
24957 
24958 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24959 	laf = acp->ac_local.ss_family;
24960 	raf = acp->ac_remote.ss_family;
24961 
24962 	/* check that a zone with the supplied zoneid exists */
24963 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24964 		zptr = zone_find_by_id(zoneid);
24965 		if (zptr != NULL) {
24966 			zone_rele(zptr);
24967 		} else {
24968 			err = EINVAL;
24969 			goto out;
24970 		}
24971 	}
24972 
24973 	/*
24974 	 * For exclusive stacks we set the zoneid to zero
24975 	 * to make TCP operate as if in the global zone.
24976 	 */
24977 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
24978 		acp->ac_zoneid = GLOBAL_ZONEID;
24979 
24980 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24981 	    acp->ac_start > acp->ac_end || laf != raf ||
24982 	    (laf != AF_INET && laf != AF_INET6)) {
24983 		err = EINVAL;
24984 		goto out;
24985 	}
24986 
24987 	tcp_ioctl_abort_dump(acp);
24988 	err = tcp_ioctl_abort(acp, tcps);
24989 
24990 out:
24991 	if (mp1 != NULL) {
24992 		freemsg(mp1);
24993 		mp->b_cont = NULL;
24994 	}
24995 
24996 	if (err != 0)
24997 		miocnak(q, mp, 0, err);
24998 	else
24999 		miocack(q, mp, 0, 0);
25000 }
25001 
25002 /*
25003  * tcp_time_wait_processing() handles processing of incoming packets when
25004  * the tcp is in the TIME_WAIT state.
25005  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25006  * on the time wait list.
25007  */
25008 void
25009 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25010     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25011 {
25012 	int32_t		bytes_acked;
25013 	int32_t		gap;
25014 	int32_t		rgap;
25015 	tcp_opt_t	tcpopt;
25016 	uint_t		flags;
25017 	uint32_t	new_swnd = 0;
25018 	conn_t		*connp;
25019 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25020 
25021 	BUMP_LOCAL(tcp->tcp_ibsegs);
25022 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25023 
25024 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25025 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25026 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25027 	if (tcp->tcp_snd_ts_ok) {
25028 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25029 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25030 			    tcp->tcp_rnxt, TH_ACK);
25031 			goto done;
25032 		}
25033 	}
25034 	gap = seg_seq - tcp->tcp_rnxt;
25035 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25036 	if (gap < 0) {
25037 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25038 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25039 		    (seg_len > -gap ? -gap : seg_len));
25040 		seg_len += gap;
25041 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25042 			if (flags & TH_RST) {
25043 				goto done;
25044 			}
25045 			if ((flags & TH_FIN) && seg_len == -1) {
25046 				/*
25047 				 * When TCP receives a duplicate FIN in
25048 				 * TIME_WAIT state, restart the 2 MSL timer.
25049 				 * See page 73 in RFC 793. Make sure this TCP
25050 				 * is already on the TIME_WAIT list. If not,
25051 				 * just restart the timer.
25052 				 */
25053 				if (TCP_IS_DETACHED(tcp)) {
25054 					if (tcp_time_wait_remove(tcp, NULL) ==
25055 					    B_TRUE) {
25056 						tcp_time_wait_append(tcp);
25057 						TCP_DBGSTAT(tcps,
25058 						    tcp_rput_time_wait);
25059 					}
25060 				} else {
25061 					ASSERT(tcp != NULL);
25062 					TCP_TIMER_RESTART(tcp,
25063 					    tcps->tcps_time_wait_interval);
25064 				}
25065 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25066 				    tcp->tcp_rnxt, TH_ACK);
25067 				goto done;
25068 			}
25069 			flags |=  TH_ACK_NEEDED;
25070 			seg_len = 0;
25071 			goto process_ack;
25072 		}
25073 
25074 		/* Fix seg_seq, and chew the gap off the front. */
25075 		seg_seq = tcp->tcp_rnxt;
25076 	}
25077 
25078 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25079 		/*
25080 		 * Make sure that when we accept the connection, pick
25081 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25082 		 * old connection.
25083 		 *
25084 		 * The next ISS generated is equal to tcp_iss_incr_extra
25085 		 * + ISS_INCR/2 + other components depending on the
25086 		 * value of tcp_strong_iss.  We pre-calculate the new
25087 		 * ISS here and compare with tcp_snxt to determine if
25088 		 * we need to make adjustment to tcp_iss_incr_extra.
25089 		 *
25090 		 * The above calculation is ugly and is a
25091 		 * waste of CPU cycles...
25092 		 */
25093 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25094 		int32_t adj;
25095 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25096 
25097 		switch (tcps->tcps_strong_iss) {
25098 		case 2: {
25099 			/* Add time and MD5 components. */
25100 			uint32_t answer[4];
25101 			struct {
25102 				uint32_t ports;
25103 				in6_addr_t src;
25104 				in6_addr_t dst;
25105 			} arg;
25106 			MD5_CTX context;
25107 
25108 			mutex_enter(&tcps->tcps_iss_key_lock);
25109 			context = tcps->tcps_iss_key;
25110 			mutex_exit(&tcps->tcps_iss_key_lock);
25111 			arg.ports = tcp->tcp_ports;
25112 			/* We use MAPPED addresses in tcp_iss_init */
25113 			arg.src = tcp->tcp_ip_src_v6;
25114 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25115 				IN6_IPADDR_TO_V4MAPPED(
25116 				    tcp->tcp_ipha->ipha_dst,
25117 				    &arg.dst);
25118 			} else {
25119 				arg.dst =
25120 				    tcp->tcp_ip6h->ip6_dst;
25121 			}
25122 			MD5Update(&context, (uchar_t *)&arg,
25123 			    sizeof (arg));
25124 			MD5Final((uchar_t *)answer, &context);
25125 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25126 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25127 			break;
25128 		}
25129 		case 1:
25130 			/* Add time component and min random (i.e. 1). */
25131 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25132 			break;
25133 		default:
25134 			/* Add only time component. */
25135 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25136 			break;
25137 		}
25138 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25139 			/*
25140 			 * New ISS not guaranteed to be ISS_INCR/2
25141 			 * ahead of the current tcp_snxt, so add the
25142 			 * difference to tcp_iss_incr_extra.
25143 			 */
25144 			tcps->tcps_iss_incr_extra += adj;
25145 		}
25146 		/*
25147 		 * If tcp_clean_death() can not perform the task now,
25148 		 * drop the SYN packet and let the other side re-xmit.
25149 		 * Otherwise pass the SYN packet back in, since the
25150 		 * old tcp state has been cleaned up or freed.
25151 		 */
25152 		if (tcp_clean_death(tcp, 0, 27) == -1)
25153 			goto done;
25154 		/*
25155 		 * We will come back to tcp_rput_data
25156 		 * on the global queue. Packets destined
25157 		 * for the global queue will be checked
25158 		 * with global policy. But the policy for
25159 		 * this packet has already been checked as
25160 		 * this was destined for the detached
25161 		 * connection. We need to bypass policy
25162 		 * check this time by attaching a dummy
25163 		 * ipsec_in with ipsec_in_dont_check set.
25164 		 */
25165 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25166 		if (connp != NULL) {
25167 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25168 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25169 			return;
25170 		}
25171 		goto done;
25172 	}
25173 
25174 	/*
25175 	 * rgap is the amount of stuff received out of window.  A negative
25176 	 * value is the amount out of window.
25177 	 */
25178 	if (rgap < 0) {
25179 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25180 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25181 		/* Fix seg_len and make sure there is something left. */
25182 		seg_len += rgap;
25183 		if (seg_len <= 0) {
25184 			if (flags & TH_RST) {
25185 				goto done;
25186 			}
25187 			flags |=  TH_ACK_NEEDED;
25188 			seg_len = 0;
25189 			goto process_ack;
25190 		}
25191 	}
25192 	/*
25193 	 * Check whether we can update tcp_ts_recent.  This test is
25194 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25195 	 * Extensions for High Performance: An Update", Internet Draft.
25196 	 */
25197 	if (tcp->tcp_snd_ts_ok &&
25198 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25199 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25200 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25201 		tcp->tcp_last_rcv_lbolt = lbolt64;
25202 	}
25203 
25204 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25205 		/* Always ack out of order packets */
25206 		flags |= TH_ACK_NEEDED;
25207 		seg_len = 0;
25208 	} else if (seg_len > 0) {
25209 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25210 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25211 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25212 	}
25213 	if (flags & TH_RST) {
25214 		(void) tcp_clean_death(tcp, 0, 28);
25215 		goto done;
25216 	}
25217 	if (flags & TH_SYN) {
25218 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25219 		    TH_RST|TH_ACK);
25220 		/*
25221 		 * Do not delete the TCP structure if it is in
25222 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25223 		 */
25224 		goto done;
25225 	}
25226 process_ack:
25227 	if (flags & TH_ACK) {
25228 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25229 		if (bytes_acked <= 0) {
25230 			if (bytes_acked == 0 && seg_len == 0 &&
25231 			    new_swnd == tcp->tcp_swnd)
25232 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25233 		} else {
25234 			/* Acks something not sent */
25235 			flags |= TH_ACK_NEEDED;
25236 		}
25237 	}
25238 	if (flags & TH_ACK_NEEDED) {
25239 		/*
25240 		 * Time to send an ack for some reason.
25241 		 */
25242 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25243 		    tcp->tcp_rnxt, TH_ACK);
25244 	}
25245 done:
25246 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25247 		DB_CKSUMSTART(mp) = 0;
25248 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25249 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25250 	}
25251 	freemsg(mp);
25252 }
25253 
25254 /*
25255  * TCP Timers Implementation.
25256  */
25257 timeout_id_t
25258 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25259 {
25260 	mblk_t *mp;
25261 	tcp_timer_t *tcpt;
25262 	tcp_t *tcp = connp->conn_tcp;
25263 
25264 	ASSERT(connp->conn_sqp != NULL);
25265 
25266 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
25267 
25268 	if (tcp->tcp_timercache == NULL) {
25269 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25270 	} else {
25271 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
25272 		mp = tcp->tcp_timercache;
25273 		tcp->tcp_timercache = mp->b_next;
25274 		mp->b_next = NULL;
25275 		ASSERT(mp->b_wptr == NULL);
25276 	}
25277 
25278 	CONN_INC_REF(connp);
25279 	tcpt = (tcp_timer_t *)mp->b_rptr;
25280 	tcpt->connp = connp;
25281 	tcpt->tcpt_proc = f;
25282 	/*
25283 	 * TCP timers are normal timeouts. Plus, they do not require more than
25284 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
25285 	 * rounding up the expiration to the next resolution boundary, we can
25286 	 * batch timers in the callout subsystem to make TCP timers more
25287 	 * efficient. The roundup also protects short timers from expiring too
25288 	 * early before they have a chance to be cancelled.
25289 	 */
25290 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
25291 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
25292 
25293 	return ((timeout_id_t)mp);
25294 }
25295 
25296 static void
25297 tcp_timer_callback(void *arg)
25298 {
25299 	mblk_t *mp = (mblk_t *)arg;
25300 	tcp_timer_t *tcpt;
25301 	conn_t	*connp;
25302 
25303 	tcpt = (tcp_timer_t *)mp->b_rptr;
25304 	connp = tcpt->connp;
25305 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
25306 	    SQ_FILL, SQTAG_TCP_TIMER);
25307 }
25308 
25309 static void
25310 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25311 {
25312 	tcp_timer_t *tcpt;
25313 	conn_t *connp = (conn_t *)arg;
25314 	tcp_t *tcp = connp->conn_tcp;
25315 
25316 	tcpt = (tcp_timer_t *)mp->b_rptr;
25317 	ASSERT(connp == tcpt->connp);
25318 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25319 
25320 	/*
25321 	 * If the TCP has reached the closed state, don't proceed any
25322 	 * further. This TCP logically does not exist on the system.
25323 	 * tcpt_proc could for example access queues, that have already
25324 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25325 	 */
25326 	if (tcp->tcp_state != TCPS_CLOSED) {
25327 		(*tcpt->tcpt_proc)(connp);
25328 	} else {
25329 		tcp->tcp_timer_tid = 0;
25330 	}
25331 	tcp_timer_free(connp->conn_tcp, mp);
25332 }
25333 
25334 /*
25335  * There is potential race with untimeout and the handler firing at the same
25336  * time. The mblock may be freed by the handler while we are trying to use
25337  * it. But since both should execute on the same squeue, this race should not
25338  * occur.
25339  */
25340 clock_t
25341 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25342 {
25343 	mblk_t	*mp = (mblk_t *)id;
25344 	tcp_timer_t *tcpt;
25345 	clock_t delta;
25346 
25347 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
25348 
25349 	if (mp == NULL)
25350 		return (-1);
25351 
25352 	tcpt = (tcp_timer_t *)mp->b_rptr;
25353 	ASSERT(tcpt->connp == connp);
25354 
25355 	delta = untimeout_default(tcpt->tcpt_tid, 0);
25356 
25357 	if (delta >= 0) {
25358 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
25359 		tcp_timer_free(connp->conn_tcp, mp);
25360 		CONN_DEC_REF(connp);
25361 	}
25362 
25363 	return (delta);
25364 }
25365 
25366 /*
25367  * Allocate space for the timer event. The allocation looks like mblk, but it is
25368  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25369  *
25370  * Dealing with failures: If we can't allocate from the timer cache we try
25371  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25372  * points to b_rptr.
25373  * If we can't allocate anything using allocb_tryhard(), we perform a last
25374  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25375  * save the actual allocation size in b_datap.
25376  */
25377 mblk_t *
25378 tcp_timermp_alloc(int kmflags)
25379 {
25380 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25381 	    kmflags & ~KM_PANIC);
25382 
25383 	if (mp != NULL) {
25384 		mp->b_next = mp->b_prev = NULL;
25385 		mp->b_rptr = (uchar_t *)(&mp[1]);
25386 		mp->b_wptr = NULL;
25387 		mp->b_datap = NULL;
25388 		mp->b_queue = NULL;
25389 		mp->b_cont = NULL;
25390 	} else if (kmflags & KM_PANIC) {
25391 		/*
25392 		 * Failed to allocate memory for the timer. Try allocating from
25393 		 * dblock caches.
25394 		 */
25395 		/* ipclassifier calls this from a constructor - hence no tcps */
25396 		TCP_G_STAT(tcp_timermp_allocfail);
25397 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25398 		if (mp == NULL) {
25399 			size_t size = 0;
25400 			/*
25401 			 * Memory is really low. Try tryhard allocation.
25402 			 *
25403 			 * ipclassifier calls this from a constructor -
25404 			 * hence no tcps
25405 			 */
25406 			TCP_G_STAT(tcp_timermp_allocdblfail);
25407 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25408 			    sizeof (tcp_timer_t), &size, kmflags);
25409 			mp->b_rptr = (uchar_t *)(&mp[1]);
25410 			mp->b_next = mp->b_prev = NULL;
25411 			mp->b_wptr = (uchar_t *)-1;
25412 			mp->b_datap = (dblk_t *)size;
25413 			mp->b_queue = NULL;
25414 			mp->b_cont = NULL;
25415 		}
25416 		ASSERT(mp->b_wptr != NULL);
25417 	}
25418 	/* ipclassifier calls this from a constructor - hence no tcps */
25419 	TCP_G_DBGSTAT(tcp_timermp_alloced);
25420 
25421 	return (mp);
25422 }
25423 
25424 /*
25425  * Free per-tcp timer cache.
25426  * It can only contain entries from tcp_timercache.
25427  */
25428 void
25429 tcp_timermp_free(tcp_t *tcp)
25430 {
25431 	mblk_t *mp;
25432 
25433 	while ((mp = tcp->tcp_timercache) != NULL) {
25434 		ASSERT(mp->b_wptr == NULL);
25435 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25436 		kmem_cache_free(tcp_timercache, mp);
25437 	}
25438 }
25439 
25440 /*
25441  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25442  * events there already (currently at most two events are cached).
25443  * If the event is not allocated from the timer cache, free it right away.
25444  */
25445 static void
25446 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25447 {
25448 	mblk_t *mp1 = tcp->tcp_timercache;
25449 
25450 	if (mp->b_wptr != NULL) {
25451 		/*
25452 		 * This allocation is not from a timer cache, free it right
25453 		 * away.
25454 		 */
25455 		if (mp->b_wptr != (uchar_t *)-1)
25456 			freeb(mp);
25457 		else
25458 			kmem_free(mp, (size_t)mp->b_datap);
25459 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25460 		/* Cache this timer block for future allocations */
25461 		mp->b_rptr = (uchar_t *)(&mp[1]);
25462 		mp->b_next = mp1;
25463 		tcp->tcp_timercache = mp;
25464 	} else {
25465 		kmem_cache_free(tcp_timercache, mp);
25466 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
25467 	}
25468 }
25469 
25470 /*
25471  * End of TCP Timers implementation.
25472  */
25473 
25474 /*
25475  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25476  * on the specified backing STREAMS q. Note, the caller may make the
25477  * decision to call based on the tcp_t.tcp_flow_stopped value which
25478  * when check outside the q's lock is only an advisory check ...
25479  */
25480 void
25481 tcp_setqfull(tcp_t *tcp)
25482 {
25483 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25484 	conn_t	*connp = tcp->tcp_connp;
25485 
25486 	if (tcp->tcp_closed)
25487 		return;
25488 
25489 	if (IPCL_IS_NONSTR(connp)) {
25490 		(*connp->conn_upcalls->su_txq_full)
25491 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
25492 		tcp->tcp_flow_stopped = B_TRUE;
25493 	} else {
25494 		queue_t *q = tcp->tcp_wq;
25495 
25496 		if (!(q->q_flag & QFULL)) {
25497 			mutex_enter(QLOCK(q));
25498 			if (!(q->q_flag & QFULL)) {
25499 				/* still need to set QFULL */
25500 				q->q_flag |= QFULL;
25501 				tcp->tcp_flow_stopped = B_TRUE;
25502 				mutex_exit(QLOCK(q));
25503 				TCP_STAT(tcps, tcp_flwctl_on);
25504 			} else {
25505 				mutex_exit(QLOCK(q));
25506 			}
25507 		}
25508 	}
25509 }
25510 
25511 void
25512 tcp_clrqfull(tcp_t *tcp)
25513 {
25514 	conn_t  *connp = tcp->tcp_connp;
25515 
25516 	if (tcp->tcp_closed)
25517 		return;
25518 
25519 	if (IPCL_IS_NONSTR(connp)) {
25520 		(*connp->conn_upcalls->su_txq_full)
25521 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
25522 		tcp->tcp_flow_stopped = B_FALSE;
25523 	} else {
25524 		queue_t *q = tcp->tcp_wq;
25525 
25526 		if (q->q_flag & QFULL) {
25527 			mutex_enter(QLOCK(q));
25528 			if (q->q_flag & QFULL) {
25529 				q->q_flag &= ~QFULL;
25530 				tcp->tcp_flow_stopped = B_FALSE;
25531 				mutex_exit(QLOCK(q));
25532 				if (q->q_flag & QWANTW)
25533 					qbackenable(q, 0);
25534 			} else {
25535 				mutex_exit(QLOCK(q));
25536 			}
25537 		}
25538 	}
25539 }
25540 
25541 /*
25542  * kstats related to squeues i.e. not per IP instance
25543  */
25544 static void *
25545 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
25546 {
25547 	kstat_t *ksp;
25548 
25549 	tcp_g_stat_t template = {
25550 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
25551 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
25552 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
25553 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
25554 	};
25555 
25556 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
25557 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25558 	    KSTAT_FLAG_VIRTUAL);
25559 
25560 	if (ksp == NULL)
25561 		return (NULL);
25562 
25563 	bcopy(&template, tcp_g_statp, sizeof (template));
25564 	ksp->ks_data = (void *)tcp_g_statp;
25565 
25566 	kstat_install(ksp);
25567 	return (ksp);
25568 }
25569 
25570 static void
25571 tcp_g_kstat_fini(kstat_t *ksp)
25572 {
25573 	if (ksp != NULL) {
25574 		kstat_delete(ksp);
25575 	}
25576 }
25577 
25578 
25579 static void *
25580 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
25581 {
25582 	kstat_t *ksp;
25583 
25584 	tcp_stat_t template = {
25585 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
25586 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
25587 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
25588 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
25589 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
25590 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
25591 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
25592 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
25593 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
25594 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
25595 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
25596 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
25597 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
25598 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
25599 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
25600 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
25601 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
25602 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
25603 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
25604 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
25605 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
25606 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
25607 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
25608 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
25609 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
25610 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
25611 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
25612 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
25613 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
25614 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
25615 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
25616 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
25617 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
25618 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
25619 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
25620 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
25621 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
25622 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
25623 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
25624 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
25625 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
25626 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
25627 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
25628 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
25629 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
25630 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
25631 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
25632 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
25633 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
25634 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
25635 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
25636 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
25637 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
25638 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
25639 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
25640 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
25641 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
25642 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
25643 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
25644 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
25645 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
25646 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
25647 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
25648 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
25649 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
25650 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
25651 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
25652 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
25653 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
25654 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
25655 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
25656 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
25657 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
25658 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
25659 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
25660 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
25661 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
25662 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
25663 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
25664 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
25665 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
25666 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
25667 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
25668 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
25669 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
25670 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
25671 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
25672 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
25673 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
25674 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
25675 	};
25676 
25677 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
25678 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25679 	    KSTAT_FLAG_VIRTUAL, stackid);
25680 
25681 	if (ksp == NULL)
25682 		return (NULL);
25683 
25684 	bcopy(&template, tcps_statisticsp, sizeof (template));
25685 	ksp->ks_data = (void *)tcps_statisticsp;
25686 	ksp->ks_private = (void *)(uintptr_t)stackid;
25687 
25688 	kstat_install(ksp);
25689 	return (ksp);
25690 }
25691 
25692 static void
25693 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
25694 {
25695 	if (ksp != NULL) {
25696 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25697 		kstat_delete_netstack(ksp, stackid);
25698 	}
25699 }
25700 
25701 /*
25702  * TCP Kstats implementation
25703  */
25704 static void *
25705 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
25706 {
25707 	kstat_t	*ksp;
25708 
25709 	tcp_named_kstat_t template = {
25710 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25711 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25712 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25713 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25714 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25715 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25716 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25717 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25718 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25719 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
25720 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
25721 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25722 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25723 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25724 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25725 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25726 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25727 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25728 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25729 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25730 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25731 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25732 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25733 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25734 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25735 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25736 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25737 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25738 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25739 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25740 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25741 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25742 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25743 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25744 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25745 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25746 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25747 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25748 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25749 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25750 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25751 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25752 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25753 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25754 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25755 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25756 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25757 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25758 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25759 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25760 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25761 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25762 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25763 	};
25764 
25765 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
25766 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
25767 
25768 	if (ksp == NULL)
25769 		return (NULL);
25770 
25771 	template.rtoAlgorithm.value.ui32 = 4;
25772 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
25773 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
25774 	template.maxConn.value.i32 = -1;
25775 
25776 	bcopy(&template, ksp->ks_data, sizeof (template));
25777 	ksp->ks_update = tcp_kstat_update;
25778 	ksp->ks_private = (void *)(uintptr_t)stackid;
25779 
25780 	kstat_install(ksp);
25781 	return (ksp);
25782 }
25783 
25784 static void
25785 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
25786 {
25787 	if (ksp != NULL) {
25788 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25789 		kstat_delete_netstack(ksp, stackid);
25790 	}
25791 }
25792 
25793 static int
25794 tcp_kstat_update(kstat_t *kp, int rw)
25795 {
25796 	tcp_named_kstat_t *tcpkp;
25797 	tcp_t		*tcp;
25798 	connf_t		*connfp;
25799 	conn_t		*connp;
25800 	int 		i;
25801 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
25802 	netstack_t	*ns;
25803 	tcp_stack_t	*tcps;
25804 	ip_stack_t	*ipst;
25805 
25806 	if ((kp == NULL) || (kp->ks_data == NULL))
25807 		return (EIO);
25808 
25809 	if (rw == KSTAT_WRITE)
25810 		return (EACCES);
25811 
25812 	ns = netstack_find_by_stackid(stackid);
25813 	if (ns == NULL)
25814 		return (-1);
25815 	tcps = ns->netstack_tcp;
25816 	if (tcps == NULL) {
25817 		netstack_rele(ns);
25818 		return (-1);
25819 	}
25820 
25821 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25822 
25823 	tcpkp->currEstab.value.ui32 = 0;
25824 
25825 	ipst = ns->netstack_ip;
25826 
25827 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25828 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25829 		connp = NULL;
25830 		while ((connp =
25831 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25832 			tcp = connp->conn_tcp;
25833 			switch (tcp_snmp_state(tcp)) {
25834 			case MIB2_TCP_established:
25835 			case MIB2_TCP_closeWait:
25836 				tcpkp->currEstab.value.ui32++;
25837 				break;
25838 			}
25839 		}
25840 	}
25841 
25842 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
25843 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
25844 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
25845 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
25846 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
25847 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
25848 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
25849 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
25850 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
25851 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
25852 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
25853 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
25854 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
25855 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
25856 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
25857 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
25858 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
25859 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
25860 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
25861 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
25862 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
25863 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
25864 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
25865 	tcpkp->inDataInorderSegs.value.ui32 =
25866 	    tcps->tcps_mib.tcpInDataInorderSegs;
25867 	tcpkp->inDataInorderBytes.value.ui32 =
25868 	    tcps->tcps_mib.tcpInDataInorderBytes;
25869 	tcpkp->inDataUnorderSegs.value.ui32 =
25870 	    tcps->tcps_mib.tcpInDataUnorderSegs;
25871 	tcpkp->inDataUnorderBytes.value.ui32 =
25872 	    tcps->tcps_mib.tcpInDataUnorderBytes;
25873 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
25874 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
25875 	tcpkp->inDataPartDupSegs.value.ui32 =
25876 	    tcps->tcps_mib.tcpInDataPartDupSegs;
25877 	tcpkp->inDataPartDupBytes.value.ui32 =
25878 	    tcps->tcps_mib.tcpInDataPartDupBytes;
25879 	tcpkp->inDataPastWinSegs.value.ui32 =
25880 	    tcps->tcps_mib.tcpInDataPastWinSegs;
25881 	tcpkp->inDataPastWinBytes.value.ui32 =
25882 	    tcps->tcps_mib.tcpInDataPastWinBytes;
25883 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
25884 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
25885 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
25886 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
25887 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
25888 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
25889 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
25890 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
25891 	tcpkp->timKeepaliveProbe.value.ui32 =
25892 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
25893 	tcpkp->timKeepaliveDrop.value.ui32 =
25894 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
25895 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
25896 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
25897 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
25898 	tcpkp->outSackRetransSegs.value.ui32 =
25899 	    tcps->tcps_mib.tcpOutSackRetransSegs;
25900 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
25901 
25902 	netstack_rele(ns);
25903 	return (0);
25904 }
25905 
25906 void
25907 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25908 {
25909 	uint16_t	hdr_len;
25910 	ipha_t		*ipha;
25911 	uint8_t		*nexthdrp;
25912 	tcph_t		*tcph;
25913 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25914 
25915 	/* Already has an eager */
25916 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25917 		TCP_STAT(tcps, tcp_reinput_syn);
25918 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25919 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
25920 		return;
25921 	}
25922 
25923 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25924 	case IPV4_VERSION:
25925 		ipha = (ipha_t *)mp->b_rptr;
25926 		hdr_len = IPH_HDR_LENGTH(ipha);
25927 		break;
25928 	case IPV6_VERSION:
25929 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25930 		    &hdr_len, &nexthdrp)) {
25931 			CONN_DEC_REF(connp);
25932 			freemsg(mp);
25933 			return;
25934 		}
25935 		break;
25936 	}
25937 
25938 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25939 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25940 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25941 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25942 	}
25943 
25944 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25945 	    SQ_FILL, SQTAG_TCP_REINPUT);
25946 }
25947 
25948 static int
25949 tcp_squeue_switch(int val)
25950 {
25951 	int rval = SQ_FILL;
25952 
25953 	switch (val) {
25954 	case 1:
25955 		rval = SQ_NODRAIN;
25956 		break;
25957 	case 2:
25958 		rval = SQ_PROCESS;
25959 		break;
25960 	default:
25961 		break;
25962 	}
25963 	return (rval);
25964 }
25965 
25966 /*
25967  * This is called once for each squeue - globally for all stack
25968  * instances.
25969  */
25970 static void
25971 tcp_squeue_add(squeue_t *sqp)
25972 {
25973 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25974 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
25975 
25976 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25977 	tcp_time_wait->tcp_time_wait_tid =
25978 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
25979 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
25980 	    CALLOUT_FLAG_ROUNDUP);
25981 	if (tcp_free_list_max_cnt == 0) {
25982 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25983 		    max_ncpus : boot_max_ncpus);
25984 
25985 		/*
25986 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25987 		 */
25988 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25989 		    (tcp_ncpus * sizeof (tcp_t) * 100);
25990 	}
25991 	tcp_time_wait->tcp_free_list_cnt = 0;
25992 }
25993 
25994 static int
25995 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
25996 {
25997 	mblk_t	*ire_mp = NULL;
25998 	mblk_t	*syn_mp;
25999 	mblk_t	*mdti;
26000 	mblk_t	*lsoi;
26001 	int	retval;
26002 	tcph_t	*tcph;
26003 	uint32_t	mss;
26004 	queue_t	*q = tcp->tcp_rq;
26005 	conn_t	*connp = tcp->tcp_connp;
26006 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26007 
26008 	if (error == 0) {
26009 		/*
26010 		 * Adapt Multidata information, if any.  The
26011 		 * following tcp_mdt_update routine will free
26012 		 * the message.
26013 		 */
26014 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
26015 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
26016 			    b_rptr)->mdt_capab, B_TRUE);
26017 			freemsg(mdti);
26018 		}
26019 
26020 		/*
26021 		 * Check to update LSO information with tcp, and
26022 		 * tcp_lso_update routine will free the message.
26023 		 */
26024 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
26025 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
26026 			    b_rptr)->lso_capab);
26027 			freemsg(lsoi);
26028 		}
26029 
26030 		/* Get the IRE, if we had requested for it */
26031 		if (mp != NULL)
26032 			ire_mp = tcp_ire_mp(&mp);
26033 
26034 		if (tcp->tcp_hard_binding) {
26035 			tcp->tcp_hard_binding = B_FALSE;
26036 			tcp->tcp_hard_bound = B_TRUE;
26037 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
26038 			if (retval != 0) {
26039 				error = EADDRINUSE;
26040 				goto bind_failed;
26041 			}
26042 		} else {
26043 			if (ire_mp != NULL)
26044 				freeb(ire_mp);
26045 			goto after_syn_sent;
26046 		}
26047 
26048 		retval = tcp_adapt_ire(tcp, ire_mp);
26049 		if (ire_mp != NULL)
26050 			freeb(ire_mp);
26051 		if (retval == 0) {
26052 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
26053 			    ENETUNREACH : EADDRNOTAVAIL);
26054 			goto ipcl_rm;
26055 		}
26056 		/*
26057 		 * Don't let an endpoint connect to itself.
26058 		 * Also checked in tcp_connect() but that
26059 		 * check can't handle the case when the
26060 		 * local IP address is INADDR_ANY.
26061 		 */
26062 		if (tcp->tcp_ipversion == IPV4_VERSION) {
26063 			if ((tcp->tcp_ipha->ipha_dst ==
26064 			    tcp->tcp_ipha->ipha_src) &&
26065 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26066 			    tcp->tcp_tcph->th_fport))) {
26067 				error = EADDRNOTAVAIL;
26068 				goto ipcl_rm;
26069 			}
26070 		} else {
26071 			if (IN6_ARE_ADDR_EQUAL(
26072 			    &tcp->tcp_ip6h->ip6_dst,
26073 			    &tcp->tcp_ip6h->ip6_src) &&
26074 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26075 			    tcp->tcp_tcph->th_fport))) {
26076 				error = EADDRNOTAVAIL;
26077 				goto ipcl_rm;
26078 			}
26079 		}
26080 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
26081 		/*
26082 		 * This should not be possible!  Just for
26083 		 * defensive coding...
26084 		 */
26085 		if (tcp->tcp_state != TCPS_SYN_SENT)
26086 			goto after_syn_sent;
26087 
26088 		if (is_system_labeled() &&
26089 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
26090 			error = EHOSTUNREACH;
26091 			goto ipcl_rm;
26092 		}
26093 
26094 		/*
26095 		 * tcp_adapt_ire() does not adjust
26096 		 * for TCP/IP header length.
26097 		 */
26098 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
26099 
26100 		/*
26101 		 * Just make sure our rwnd is at
26102 		 * least tcp_recv_hiwat_mss * MSS
26103 		 * large, and round up to the nearest
26104 		 * MSS.
26105 		 *
26106 		 * We do the round up here because
26107 		 * we need to get the interface
26108 		 * MTU first before we can do the
26109 		 * round up.
26110 		 */
26111 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
26112 		    tcps->tcps_recv_hiwat_minmss * mss);
26113 		if (!IPCL_IS_NONSTR(connp))
26114 			q->q_hiwat = tcp->tcp_rwnd;
26115 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
26116 		tcp_set_ws_value(tcp);
26117 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
26118 		    tcp->tcp_tcph->th_win);
26119 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
26120 			tcp->tcp_snd_ws_ok = B_TRUE;
26121 
26122 		/*
26123 		 * Set tcp_snd_ts_ok to true
26124 		 * so that tcp_xmit_mp will
26125 		 * include the timestamp
26126 		 * option in the SYN segment.
26127 		 */
26128 		if (tcps->tcps_tstamp_always ||
26129 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
26130 			tcp->tcp_snd_ts_ok = B_TRUE;
26131 		}
26132 
26133 		/*
26134 		 * tcp_snd_sack_ok can be set in
26135 		 * tcp_adapt_ire() if the sack metric
26136 		 * is set.  So check it here also.
26137 		 */
26138 		if (tcps->tcps_sack_permitted == 2 ||
26139 		    tcp->tcp_snd_sack_ok) {
26140 			if (tcp->tcp_sack_info == NULL) {
26141 				tcp->tcp_sack_info =
26142 				    kmem_cache_alloc(tcp_sack_info_cache,
26143 				    KM_SLEEP);
26144 			}
26145 			tcp->tcp_snd_sack_ok = B_TRUE;
26146 		}
26147 
26148 		/*
26149 		 * Should we use ECN?  Note that the current
26150 		 * default value (SunOS 5.9) of tcp_ecn_permitted
26151 		 * is 1.  The reason for doing this is that there
26152 		 * are equipments out there that will drop ECN
26153 		 * enabled IP packets.  Setting it to 1 avoids
26154 		 * compatibility problems.
26155 		 */
26156 		if (tcps->tcps_ecn_permitted == 2)
26157 			tcp->tcp_ecn_ok = B_TRUE;
26158 
26159 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
26160 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
26161 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
26162 		if (syn_mp) {
26163 			if (cr == NULL) {
26164 				cr = tcp->tcp_cred;
26165 				pid = tcp->tcp_cpid;
26166 			}
26167 			mblk_setcred(syn_mp, cr, pid);
26168 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
26169 		}
26170 	after_syn_sent:
26171 		if (mp != NULL) {
26172 			ASSERT(mp->b_cont == NULL);
26173 			freeb(mp);
26174 		}
26175 		return (error);
26176 	} else {
26177 		/* error */
26178 		if (tcp->tcp_debug) {
26179 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
26180 			    "tcp_post_ip_bind: error == %d", error);
26181 		}
26182 		if (mp != NULL) {
26183 			freeb(mp);
26184 		}
26185 	}
26186 
26187 ipcl_rm:
26188 	/*
26189 	 * Need to unbind with classifier since we were just
26190 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
26191 	 */
26192 	tcp->tcp_hard_bound = B_FALSE;
26193 	tcp->tcp_hard_binding = B_FALSE;
26194 
26195 	ipcl_hash_remove(connp);
26196 
26197 bind_failed:
26198 	tcp->tcp_state = TCPS_IDLE;
26199 	if (tcp->tcp_ipversion == IPV4_VERSION)
26200 		tcp->tcp_ipha->ipha_src = 0;
26201 	else
26202 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
26203 	/*
26204 	 * Copy of the src addr. in tcp_t is needed since
26205 	 * the lookup funcs. can only look at tcp_t
26206 	 */
26207 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
26208 
26209 	tcph = tcp->tcp_tcph;
26210 	tcph->th_lport[0] = 0;
26211 	tcph->th_lport[1] = 0;
26212 	tcp_bind_hash_remove(tcp);
26213 	bzero(&connp->u_port, sizeof (connp->u_port));
26214 	/* blow away saved option results if any */
26215 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26216 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26217 
26218 	conn_delete_ire(tcp->tcp_connp, NULL);
26219 
26220 	return (error);
26221 }
26222 
26223 static int
26224 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
26225     boolean_t bind_to_req_port_only, cred_t *cr)
26226 {
26227 	in_port_t	mlp_port;
26228 	mlp_type_t 	addrtype, mlptype;
26229 	boolean_t	user_specified;
26230 	in_port_t	allocated_port;
26231 	in_port_t	requested_port = *requested_port_ptr;
26232 	conn_t		*connp;
26233 	zone_t		*zone;
26234 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26235 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
26236 
26237 	/*
26238 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
26239 	 */
26240 	if (cr == NULL)
26241 		cr = tcp->tcp_cred;
26242 	/*
26243 	 * Get a valid port (within the anonymous range and should not
26244 	 * be a privileged one) to use if the user has not given a port.
26245 	 * If multiple threads are here, they may all start with
26246 	 * with the same initial port. But, it should be fine as long as
26247 	 * tcp_bindi will ensure that no two threads will be assigned
26248 	 * the same port.
26249 	 *
26250 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
26251 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
26252 	 * unless TCP_ANONPRIVBIND option is set.
26253 	 */
26254 	mlptype = mlptSingle;
26255 	mlp_port = requested_port;
26256 	if (requested_port == 0) {
26257 		requested_port = tcp->tcp_anon_priv_bind ?
26258 		    tcp_get_next_priv_port(tcp) :
26259 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
26260 		    tcp, B_TRUE);
26261 		if (requested_port == 0) {
26262 			return (-TNOADDR);
26263 		}
26264 		user_specified = B_FALSE;
26265 
26266 		/*
26267 		 * If the user went through one of the RPC interfaces to create
26268 		 * this socket and RPC is MLP in this zone, then give him an
26269 		 * anonymous MLP.
26270 		 */
26271 		connp = tcp->tcp_connp;
26272 		if (connp->conn_anon_mlp && is_system_labeled()) {
26273 			zone = crgetzone(cr);
26274 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26275 			    IPV6_VERSION, &v6addr,
26276 			    tcps->tcps_netstack->netstack_ip);
26277 			if (addrtype == mlptSingle) {
26278 				return (-TNOADDR);
26279 			}
26280 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26281 			    PMAPPORT, addrtype);
26282 			mlp_port = PMAPPORT;
26283 		}
26284 	} else {
26285 		int i;
26286 		boolean_t priv = B_FALSE;
26287 
26288 		/*
26289 		 * If the requested_port is in the well-known privileged range,
26290 		 * verify that the stream was opened by a privileged user.
26291 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
26292 		 * but instead the code relies on:
26293 		 * - the fact that the address of the array and its size never
26294 		 *   changes
26295 		 * - the atomic assignment of the elements of the array
26296 		 */
26297 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
26298 			priv = B_TRUE;
26299 		} else {
26300 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
26301 				if (requested_port ==
26302 				    tcps->tcps_g_epriv_ports[i]) {
26303 					priv = B_TRUE;
26304 					break;
26305 				}
26306 			}
26307 		}
26308 		if (priv) {
26309 			if (secpolicy_net_privaddr(cr, requested_port,
26310 			    IPPROTO_TCP) != 0) {
26311 				if (tcp->tcp_debug) {
26312 					(void) strlog(TCP_MOD_ID, 0, 1,
26313 					    SL_ERROR|SL_TRACE,
26314 					    "tcp_bind: no priv for port %d",
26315 					    requested_port);
26316 				}
26317 				return (-TACCES);
26318 			}
26319 		}
26320 		user_specified = B_TRUE;
26321 
26322 		connp = tcp->tcp_connp;
26323 		if (is_system_labeled()) {
26324 			zone = crgetzone(cr);
26325 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26326 			    IPV6_VERSION, &v6addr,
26327 			    tcps->tcps_netstack->netstack_ip);
26328 			if (addrtype == mlptSingle) {
26329 				return (-TNOADDR);
26330 			}
26331 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26332 			    requested_port, addrtype);
26333 		}
26334 	}
26335 
26336 	if (mlptype != mlptSingle) {
26337 		if (secpolicy_net_bindmlp(cr) != 0) {
26338 			if (tcp->tcp_debug) {
26339 				(void) strlog(TCP_MOD_ID, 0, 1,
26340 				    SL_ERROR|SL_TRACE,
26341 				    "tcp_bind: no priv for multilevel port %d",
26342 				    requested_port);
26343 			}
26344 			return (-TACCES);
26345 		}
26346 
26347 		/*
26348 		 * If we're specifically binding a shared IP address and the
26349 		 * port is MLP on shared addresses, then check to see if this
26350 		 * zone actually owns the MLP.  Reject if not.
26351 		 */
26352 		if (mlptype == mlptShared && addrtype == mlptShared) {
26353 			/*
26354 			 * No need to handle exclusive-stack zones since
26355 			 * ALL_ZONES only applies to the shared stack.
26356 			 */
26357 			zoneid_t mlpzone;
26358 
26359 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
26360 			    htons(mlp_port));
26361 			if (connp->conn_zoneid != mlpzone) {
26362 				if (tcp->tcp_debug) {
26363 					(void) strlog(TCP_MOD_ID, 0, 1,
26364 					    SL_ERROR|SL_TRACE,
26365 					    "tcp_bind: attempt to bind port "
26366 					    "%d on shared addr in zone %d "
26367 					    "(should be %d)",
26368 					    mlp_port, connp->conn_zoneid,
26369 					    mlpzone);
26370 				}
26371 				return (-TACCES);
26372 			}
26373 		}
26374 
26375 		if (!user_specified) {
26376 			int err;
26377 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26378 			    requested_port, B_TRUE);
26379 			if (err != 0) {
26380 				if (tcp->tcp_debug) {
26381 					(void) strlog(TCP_MOD_ID, 0, 1,
26382 					    SL_ERROR|SL_TRACE,
26383 					    "tcp_bind: cannot establish anon "
26384 					    "MLP for port %d",
26385 					    requested_port);
26386 				}
26387 				return (err);
26388 			}
26389 			connp->conn_anon_port = B_TRUE;
26390 		}
26391 		connp->conn_mlp_type = mlptype;
26392 	}
26393 
26394 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
26395 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
26396 
26397 	if (allocated_port == 0) {
26398 		connp->conn_mlp_type = mlptSingle;
26399 		if (connp->conn_anon_port) {
26400 			connp->conn_anon_port = B_FALSE;
26401 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26402 			    requested_port, B_FALSE);
26403 		}
26404 		if (bind_to_req_port_only) {
26405 			if (tcp->tcp_debug) {
26406 				(void) strlog(TCP_MOD_ID, 0, 1,
26407 				    SL_ERROR|SL_TRACE,
26408 				    "tcp_bind: requested addr busy");
26409 			}
26410 			return (-TADDRBUSY);
26411 		} else {
26412 			/* If we are out of ports, fail the bind. */
26413 			if (tcp->tcp_debug) {
26414 				(void) strlog(TCP_MOD_ID, 0, 1,
26415 				    SL_ERROR|SL_TRACE,
26416 				    "tcp_bind: out of ports?");
26417 			}
26418 			return (-TNOADDR);
26419 		}
26420 	}
26421 
26422 	/* Pass the allocated port back */
26423 	*requested_port_ptr = allocated_port;
26424 	return (0);
26425 }
26426 
26427 static int
26428 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26429     boolean_t bind_to_req_port_only)
26430 {
26431 	tcp_t	*tcp = connp->conn_tcp;
26432 	sin_t	*sin;
26433 	sin6_t  *sin6;
26434 	in_port_t requested_port;
26435 	ipaddr_t	v4addr;
26436 	in6_addr_t	v6addr;
26437 	uint_t	origipversion;
26438 	int	error = 0;
26439 
26440 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
26441 
26442 	if (tcp->tcp_state == TCPS_BOUND) {
26443 		return (0);
26444 	} else if (tcp->tcp_state > TCPS_BOUND) {
26445 		if (tcp->tcp_debug) {
26446 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26447 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26448 		}
26449 		return (-TOUTSTATE);
26450 	}
26451 	origipversion = tcp->tcp_ipversion;
26452 
26453 	ASSERT(sa != NULL && len != 0);
26454 
26455 	if (!OK_32PTR((char *)sa)) {
26456 		if (tcp->tcp_debug) {
26457 			(void) strlog(TCP_MOD_ID, 0, 1,
26458 			    SL_ERROR|SL_TRACE,
26459 			    "tcp_bind: bad address parameter, "
26460 			    "address %p, len %d",
26461 			    (void *)sa, len);
26462 		}
26463 		return (-TPROTO);
26464 	}
26465 
26466 	switch (len) {
26467 	case sizeof (sin_t):	/* Complete IPv4 address */
26468 		sin = (sin_t *)sa;
26469 		/*
26470 		 * With sockets sockfs will accept bogus sin_family in
26471 		 * bind() and replace it with the family used in the socket
26472 		 * call.
26473 		 */
26474 		if (sin->sin_family != AF_INET ||
26475 		    tcp->tcp_family != AF_INET) {
26476 			return (EAFNOSUPPORT);
26477 		}
26478 		requested_port = ntohs(sin->sin_port);
26479 		tcp->tcp_ipversion = IPV4_VERSION;
26480 		v4addr = sin->sin_addr.s_addr;
26481 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
26482 		break;
26483 
26484 	case sizeof (sin6_t): /* Complete IPv6 address */
26485 		sin6 = (sin6_t *)sa;
26486 		if (sin6->sin6_family != AF_INET6 ||
26487 		    tcp->tcp_family != AF_INET6) {
26488 			return (EAFNOSUPPORT);
26489 		}
26490 		requested_port = ntohs(sin6->sin6_port);
26491 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
26492 		    IPV4_VERSION : IPV6_VERSION;
26493 		v6addr = sin6->sin6_addr;
26494 		break;
26495 
26496 	default:
26497 		if (tcp->tcp_debug) {
26498 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26499 			    "tcp_bind: bad address length, %d", len);
26500 		}
26501 		return (EAFNOSUPPORT);
26502 		/* return (-TBADADDR); */
26503 	}
26504 
26505 	tcp->tcp_bound_source_v6 = v6addr;
26506 
26507 	/* Check for change in ipversion */
26508 	if (origipversion != tcp->tcp_ipversion) {
26509 		ASSERT(tcp->tcp_family == AF_INET6);
26510 		error = tcp->tcp_ipversion == IPV6_VERSION ?
26511 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
26512 		if (error) {
26513 			return (ENOMEM);
26514 		}
26515 	}
26516 
26517 	/*
26518 	 * Initialize family specific fields. Copy of the src addr.
26519 	 * in tcp_t is needed for the lookup funcs.
26520 	 */
26521 	if (tcp->tcp_ipversion == IPV6_VERSION) {
26522 		tcp->tcp_ip6h->ip6_src = v6addr;
26523 	} else {
26524 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
26525 	}
26526 	tcp->tcp_ip_src_v6 = v6addr;
26527 
26528 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
26529 
26530 	error = tcp_bind_select_lport(tcp, &requested_port,
26531 	    bind_to_req_port_only, cr);
26532 
26533 	return (error);
26534 }
26535 
26536 /*
26537  * Return unix error is tli error is TSYSERR, otherwise return a negative
26538  * tli error.
26539  */
26540 int
26541 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26542     boolean_t bind_to_req_port_only)
26543 {
26544 	int error;
26545 	tcp_t *tcp = connp->conn_tcp;
26546 
26547 	if (tcp->tcp_state >= TCPS_BOUND) {
26548 		if (tcp->tcp_debug) {
26549 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26550 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26551 		}
26552 		return (-TOUTSTATE);
26553 	}
26554 
26555 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
26556 	if (error != 0)
26557 		return (error);
26558 
26559 	ASSERT(tcp->tcp_state == TCPS_BOUND);
26560 
26561 	tcp->tcp_conn_req_max = 0;
26562 
26563 	if (tcp->tcp_family == AF_INET6) {
26564 		ASSERT(tcp->tcp_connp->conn_af_isv6);
26565 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26566 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
26567 	} else {
26568 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
26569 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
26570 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
26571 	}
26572 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26573 }
26574 
26575 int
26576 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
26577     socklen_t len, cred_t *cr)
26578 {
26579 	int 		error;
26580 	conn_t		*connp = (conn_t *)proto_handle;
26581 	squeue_t	*sqp = connp->conn_sqp;
26582 
26583 	/* All Solaris components should pass a cred for this operation. */
26584 	ASSERT(cr != NULL);
26585 
26586 	ASSERT(sqp != NULL);
26587 	ASSERT(connp->conn_upper_handle != NULL);
26588 
26589 	error = squeue_synch_enter(sqp, connp, 0);
26590 	if (error != 0) {
26591 		/* failed to enter */
26592 		return (ENOSR);
26593 	}
26594 
26595 	/* binding to a NULL address really means unbind */
26596 	if (sa == NULL) {
26597 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
26598 			error = tcp_do_unbind(connp);
26599 		else
26600 			error = EINVAL;
26601 	} else {
26602 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
26603 	}
26604 
26605 	squeue_synch_exit(sqp, connp);
26606 
26607 	if (error < 0) {
26608 		if (error == -TOUTSTATE)
26609 			error = EINVAL;
26610 		else
26611 			error = proto_tlitosyserr(-error);
26612 	}
26613 
26614 	return (error);
26615 }
26616 
26617 /*
26618  * If the return value from this function is positive, it's a UNIX error.
26619  * Otherwise, if it's negative, then the absolute value is a TLI error.
26620  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
26621  */
26622 int
26623 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
26624     cred_t *cr, pid_t pid)
26625 {
26626 	tcp_t		*tcp = connp->conn_tcp;
26627 	sin_t		*sin = (sin_t *)sa;
26628 	sin6_t		*sin6 = (sin6_t *)sa;
26629 	ipaddr_t	*dstaddrp;
26630 	in_port_t	dstport;
26631 	uint_t		srcid;
26632 	int		error = 0;
26633 
26634 	switch (len) {
26635 	default:
26636 		/*
26637 		 * Should never happen
26638 		 */
26639 		return (EINVAL);
26640 
26641 	case sizeof (sin_t):
26642 		sin = (sin_t *)sa;
26643 		if (sin->sin_port == 0) {
26644 			return (-TBADADDR);
26645 		}
26646 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
26647 			return (EAFNOSUPPORT);
26648 		}
26649 		break;
26650 
26651 	case sizeof (sin6_t):
26652 		sin6 = (sin6_t *)sa;
26653 		if (sin6->sin6_port == 0) {
26654 			return (-TBADADDR);
26655 		}
26656 		break;
26657 	}
26658 	/*
26659 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
26660 	 * make sure that the template IP header in the tcp structure is an
26661 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
26662 	 * need to this before we call tcp_bindi() so that the port lookup
26663 	 * code will look for ports in the correct port space (IPv4 and
26664 	 * IPv6 have separate port spaces).
26665 	 */
26666 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
26667 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26668 		int err = 0;
26669 
26670 		err = tcp_header_init_ipv4(tcp);
26671 			if (err != 0) {
26672 				error = ENOMEM;
26673 				goto connect_failed;
26674 			}
26675 		if (tcp->tcp_lport != 0)
26676 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
26677 	}
26678 
26679 	switch (tcp->tcp_state) {
26680 	case TCPS_LISTEN:
26681 		/*
26682 		 * Listening sockets are not allowed to issue connect().
26683 		 */
26684 		if (IPCL_IS_NONSTR(connp))
26685 			return (EOPNOTSUPP);
26686 		/* FALLTHRU */
26687 	case TCPS_IDLE:
26688 		/*
26689 		 * We support quick connect, refer to comments in
26690 		 * tcp_connect_*()
26691 		 */
26692 		/* FALLTHRU */
26693 	case TCPS_BOUND:
26694 		/*
26695 		 * We must bump the generation before the operation start.
26696 		 * This is done to ensure that any upcall made later on sends
26697 		 * up the right generation to the socket.
26698 		 */
26699 		SOCK_CONNID_BUMP(tcp->tcp_connid);
26700 
26701 		if (tcp->tcp_family == AF_INET6) {
26702 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26703 				return (tcp_connect_ipv6(tcp,
26704 				    &sin6->sin6_addr,
26705 				    sin6->sin6_port, sin6->sin6_flowinfo,
26706 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
26707 				    cr, pid));
26708 			}
26709 			/*
26710 			 * Destination adress is mapped IPv6 address.
26711 			 * Source bound address should be unspecified or
26712 			 * IPv6 mapped address as well.
26713 			 */
26714 			if (!IN6_IS_ADDR_UNSPECIFIED(
26715 			    &tcp->tcp_bound_source_v6) &&
26716 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
26717 				return (EADDRNOTAVAIL);
26718 			}
26719 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
26720 			dstport = sin6->sin6_port;
26721 			srcid = sin6->__sin6_src_id;
26722 		} else {
26723 			dstaddrp = &sin->sin_addr.s_addr;
26724 			dstport = sin->sin_port;
26725 			srcid = 0;
26726 		}
26727 
26728 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
26729 		    pid);
26730 		break;
26731 	default:
26732 		return (-TOUTSTATE);
26733 	}
26734 	/*
26735 	 * Note: Code below is the "failure" case
26736 	 */
26737 connect_failed:
26738 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26739 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26740 	return (error);
26741 }
26742 
26743 int
26744 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
26745     socklen_t len, sock_connid_t *id, cred_t *cr)
26746 {
26747 	conn_t		*connp = (conn_t *)proto_handle;
26748 	tcp_t		*tcp = connp->conn_tcp;
26749 	squeue_t	*sqp = connp->conn_sqp;
26750 	int		error;
26751 
26752 	ASSERT(connp->conn_upper_handle != NULL);
26753 
26754 	/* All Solaris components should pass a cred for this operation. */
26755 	ASSERT(cr != NULL);
26756 
26757 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
26758 	if (error != 0) {
26759 		return (error);
26760 	}
26761 
26762 	error = squeue_synch_enter(sqp, connp, 0);
26763 	if (error != 0) {
26764 		/* failed to enter */
26765 		return (ENOSR);
26766 	}
26767 
26768 	/*
26769 	 * TCP supports quick connect, so no need to do an implicit bind
26770 	 */
26771 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
26772 	if (error == 0) {
26773 		*id = connp->conn_tcp->tcp_connid;
26774 	} else if (error < 0) {
26775 		if (error == -TOUTSTATE) {
26776 			switch (connp->conn_tcp->tcp_state) {
26777 			case TCPS_SYN_SENT:
26778 				error = EALREADY;
26779 				break;
26780 			case TCPS_ESTABLISHED:
26781 				error = EISCONN;
26782 				break;
26783 			case TCPS_LISTEN:
26784 				error = EOPNOTSUPP;
26785 				break;
26786 			default:
26787 				error = EINVAL;
26788 				break;
26789 			}
26790 		} else {
26791 			error = proto_tlitosyserr(-error);
26792 		}
26793 	}
26794 done:
26795 	squeue_synch_exit(sqp, connp);
26796 
26797 	return ((error == 0) ? EINPROGRESS : error);
26798 }
26799 
26800 /* ARGSUSED */
26801 sock_lower_handle_t
26802 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
26803     uint_t *smodep, int *errorp, int flags, cred_t *credp)
26804 {
26805 	conn_t		*connp;
26806 	boolean_t	isv6 = family == AF_INET6;
26807 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
26808 	    (proto != 0 && proto != IPPROTO_TCP)) {
26809 		*errorp = EPROTONOSUPPORT;
26810 		return (NULL);
26811 	}
26812 
26813 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
26814 	if (connp == NULL) {
26815 		return (NULL);
26816 	}
26817 
26818 	/*
26819 	 * Put the ref for TCP. Ref for IP was already put
26820 	 * by ipcl_conn_create. Also Make the conn_t globally
26821 	 * visible to walkers
26822 	 */
26823 	mutex_enter(&connp->conn_lock);
26824 	CONN_INC_REF_LOCKED(connp);
26825 	ASSERT(connp->conn_ref == 2);
26826 	connp->conn_state_flags &= ~CONN_INCIPIENT;
26827 
26828 	connp->conn_flags |= IPCL_NONSTR;
26829 	mutex_exit(&connp->conn_lock);
26830 
26831 	ASSERT(errorp != NULL);
26832 	*errorp = 0;
26833 	*sock_downcalls = &sock_tcp_downcalls;
26834 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
26835 	    SM_SENDFILESUPP;
26836 
26837 	return ((sock_lower_handle_t)connp);
26838 }
26839 
26840 /* ARGSUSED */
26841 void
26842 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
26843     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
26844 {
26845 	conn_t *connp = (conn_t *)proto_handle;
26846 	struct sock_proto_props sopp;
26847 
26848 	ASSERT(connp->conn_upper_handle == NULL);
26849 
26850 	/* All Solaris components should pass a cred for this operation. */
26851 	ASSERT(cr != NULL);
26852 
26853 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
26854 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
26855 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
26856 
26857 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
26858 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
26859 	sopp.sopp_maxpsz = INFPSZ;
26860 	sopp.sopp_maxblk = INFPSZ;
26861 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
26862 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
26863 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
26864 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
26865 	    tcp_rinfo.mi_minpsz;
26866 
26867 	connp->conn_upcalls = sock_upcalls;
26868 	connp->conn_upper_handle = sock_handle;
26869 
26870 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
26871 }
26872 
26873 /* ARGSUSED */
26874 int
26875 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
26876 {
26877 	conn_t *connp = (conn_t *)proto_handle;
26878 
26879 	ASSERT(connp->conn_upper_handle != NULL);
26880 
26881 	/* All Solaris components should pass a cred for this operation. */
26882 	ASSERT(cr != NULL);
26883 
26884 	tcp_close_common(connp, flags);
26885 
26886 	ip_free_helper_stream(connp);
26887 
26888 	/*
26889 	 * Drop IP's reference on the conn. This is the last reference
26890 	 * on the connp if the state was less than established. If the
26891 	 * connection has gone into timewait state, then we will have
26892 	 * one ref for the TCP and one more ref (total of two) for the
26893 	 * classifier connected hash list (a timewait connections stays
26894 	 * in connected hash till closed).
26895 	 *
26896 	 * We can't assert the references because there might be other
26897 	 * transient reference places because of some walkers or queued
26898 	 * packets in squeue for the timewait state.
26899 	 */
26900 	CONN_DEC_REF(connp);
26901 	return (0);
26902 }
26903 
26904 /* ARGSUSED */
26905 int
26906 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
26907     cred_t *cr)
26908 {
26909 	tcp_t		*tcp;
26910 	uint32_t	msize;
26911 	conn_t *connp = (conn_t *)proto_handle;
26912 	int32_t		tcpstate;
26913 
26914 	/* All Solaris components should pass a cred for this operation. */
26915 	ASSERT(cr != NULL);
26916 
26917 	ASSERT(connp->conn_ref >= 2);
26918 	ASSERT(connp->conn_upper_handle != NULL);
26919 
26920 	if (msg->msg_controllen != 0) {
26921 		return (EOPNOTSUPP);
26922 
26923 	}
26924 	switch (DB_TYPE(mp)) {
26925 	case M_DATA:
26926 		tcp = connp->conn_tcp;
26927 		ASSERT(tcp != NULL);
26928 
26929 		tcpstate = tcp->tcp_state;
26930 		if (tcpstate < TCPS_ESTABLISHED) {
26931 			freemsg(mp);
26932 			return (ENOTCONN);
26933 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
26934 			freemsg(mp);
26935 			return (EPIPE);
26936 		}
26937 
26938 		msize = msgdsize(mp);
26939 
26940 		mutex_enter(&tcp->tcp_non_sq_lock);
26941 		tcp->tcp_squeue_bytes += msize;
26942 		/*
26943 		 * Squeue Flow Control
26944 		 */
26945 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
26946 			tcp_setqfull(tcp);
26947 		}
26948 		mutex_exit(&tcp->tcp_non_sq_lock);
26949 
26950 		/*
26951 		 * The application may pass in an address in the msghdr, but
26952 		 * we ignore the address on connection-oriented sockets.
26953 		 * Just like BSD this code does not generate an error for
26954 		 * TCP (a CONNREQUIRED socket) when sending to an address
26955 		 * passed in with sendto/sendmsg. Instead the data is
26956 		 * delivered on the connection as if no address had been
26957 		 * supplied.
26958 		 */
26959 		CONN_INC_REF(connp);
26960 
26961 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
26962 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
26963 			    tcp_output_urgent, connp, tcp_squeue_flag,
26964 			    SQTAG_TCP_OUTPUT);
26965 		} else {
26966 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
26967 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
26968 		}
26969 
26970 		return (0);
26971 
26972 	default:
26973 		ASSERT(0);
26974 	}
26975 
26976 	freemsg(mp);
26977 	return (0);
26978 }
26979 
26980 /* ARGSUSED */
26981 void
26982 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
26983 {
26984 	int len;
26985 	uint32_t msize;
26986 	conn_t *connp = (conn_t *)arg;
26987 	tcp_t *tcp = connp->conn_tcp;
26988 
26989 	msize = msgdsize(mp);
26990 
26991 	len = msize - 1;
26992 	if (len < 0) {
26993 		freemsg(mp);
26994 		return;
26995 	}
26996 
26997 	/*
26998 	 * Try to force urgent data out on the wire.
26999 	 * Even if we have unsent data this will
27000 	 * at least send the urgent flag.
27001 	 * XXX does not handle more flag correctly.
27002 	 */
27003 	len += tcp->tcp_unsent;
27004 	len += tcp->tcp_snxt;
27005 	tcp->tcp_urg = len;
27006 	tcp->tcp_valid_bits |= TCP_URG_VALID;
27007 
27008 	/* Bypass tcp protocol for fused tcp loopback */
27009 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
27010 		return;
27011 	tcp_wput_data(tcp, mp, B_TRUE);
27012 }
27013 
27014 /* ARGSUSED */
27015 int
27016 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27017     socklen_t *addrlenp, cred_t *cr)
27018 {
27019 	conn_t	*connp = (conn_t *)proto_handle;
27020 	tcp_t	*tcp = connp->conn_tcp;
27021 
27022 	ASSERT(connp->conn_upper_handle != NULL);
27023 	/* All Solaris components should pass a cred for this operation. */
27024 	ASSERT(cr != NULL);
27025 
27026 	ASSERT(tcp != NULL);
27027 
27028 	return (tcp_do_getpeername(tcp, addr, addrlenp));
27029 }
27030 
27031 /* ARGSUSED */
27032 int
27033 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27034     socklen_t *addrlenp, cred_t *cr)
27035 {
27036 	conn_t	*connp = (conn_t *)proto_handle;
27037 	tcp_t	*tcp = connp->conn_tcp;
27038 
27039 	/* All Solaris components should pass a cred for this operation. */
27040 	ASSERT(cr != NULL);
27041 
27042 	ASSERT(connp->conn_upper_handle != NULL);
27043 
27044 	return (tcp_do_getsockname(tcp, addr, addrlenp));
27045 }
27046 
27047 /*
27048  * tcp_fallback
27049  *
27050  * A direct socket is falling back to using STREAMS. The queue
27051  * that is being passed down was created using tcp_open() with
27052  * the SO_FALLBACK flag set. As a result, the queue is not
27053  * associated with a conn, and the q_ptrs instead contain the
27054  * dev and minor area that should be used.
27055  *
27056  * The 'direct_sockfs' flag indicates whether the FireEngine
27057  * optimizations should be used. The common case would be that
27058  * optimizations are enabled, and they might be subsequently
27059  * disabled using the _SIOCSOCKFALLBACK ioctl.
27060  */
27061 
27062 /*
27063  * An active connection is falling back to TPI. Gather all the information
27064  * required by the STREAM head and TPI sonode and send it up.
27065  */
27066 void
27067 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
27068     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
27069 {
27070 	conn_t			*connp = tcp->tcp_connp;
27071 	struct stroptions	*stropt;
27072 	struct T_capability_ack tca;
27073 	struct sockaddr_in6	laddr, faddr;
27074 	socklen_t 		laddrlen, faddrlen;
27075 	short			opts;
27076 	int			error;
27077 	mblk_t			*mp;
27078 
27079 	/* Disable I/OAT during fallback */
27080 	tcp->tcp_sodirect = NULL;
27081 
27082 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
27083 	connp->conn_minor_arena = WR(q)->q_ptr;
27084 
27085 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
27086 
27087 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
27088 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
27089 
27090 	WR(q)->q_qinfo = &tcp_sock_winit;
27091 
27092 	if (!direct_sockfs)
27093 		tcp_disable_direct_sockfs(tcp);
27094 
27095 	/*
27096 	 * free the helper stream
27097 	 */
27098 	ip_free_helper_stream(connp);
27099 
27100 	/*
27101 	 * Notify the STREAM head about options
27102 	 */
27103 	DB_TYPE(stropt_mp) = M_SETOPTS;
27104 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27105 	stropt_mp->b_wptr += sizeof (struct stroptions);
27106 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27107 	stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
27108 
27109 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
27110 	    tcp->tcp_tcps->tcps_wroff_xtra);
27111 	if (tcp->tcp_snd_sack_ok)
27112 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
27113 	stropt->so_hiwat = tcp->tcp_fused ?
27114 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
27115 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
27116 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
27117 
27118 	putnext(RD(q), stropt_mp);
27119 
27120 	/*
27121 	 * Collect the information needed to sync with the sonode
27122 	 */
27123 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
27124 
27125 	laddrlen = faddrlen = sizeof (sin6_t);
27126 	(void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen);
27127 	error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen);
27128 	if (error != 0)
27129 		faddrlen = 0;
27130 
27131 	opts = 0;
27132 	if (tcp->tcp_oobinline)
27133 		opts |= SO_OOBINLINE;
27134 	if (tcp->tcp_dontroute)
27135 		opts |= SO_DONTROUTE;
27136 
27137 	/*
27138 	 * Notify the socket that the protocol is now quiescent,
27139 	 * and it's therefore safe move data from the socket
27140 	 * to the stream head.
27141 	 */
27142 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
27143 	    (struct sockaddr *)&laddr, laddrlen,
27144 	    (struct sockaddr *)&faddr, faddrlen, opts);
27145 
27146 	while ((mp = tcp->tcp_rcv_list) != NULL) {
27147 		tcp->tcp_rcv_list = mp->b_next;
27148 		mp->b_next = NULL;
27149 		putnext(q, mp);
27150 	}
27151 	tcp->tcp_rcv_last_head = NULL;
27152 	tcp->tcp_rcv_last_tail = NULL;
27153 	tcp->tcp_rcv_cnt = 0;
27154 }
27155 
27156 /*
27157  * An eager is falling back to TPI. All we have to do is send
27158  * up a T_CONN_IND.
27159  */
27160 void
27161 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
27162 {
27163 	tcp_t *listener = eager->tcp_listener;
27164 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
27165 
27166 	ASSERT(listener != NULL);
27167 	ASSERT(mp != NULL);
27168 
27169 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
27170 
27171 	/*
27172 	 * TLI/XTI applications will get confused by
27173 	 * sending eager as an option since it violates
27174 	 * the option semantics. So remove the eager as
27175 	 * option since TLI/XTI app doesn't need it anyway.
27176 	 */
27177 	if (!direct_sockfs) {
27178 		struct T_conn_ind *conn_ind;
27179 
27180 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
27181 		conn_ind->OPT_length = 0;
27182 		conn_ind->OPT_offset = 0;
27183 	}
27184 
27185 	/*
27186 	 * Sockfs guarantees that the listener will not be closed
27187 	 * during fallback. So we can safely use the listener's queue.
27188 	 */
27189 	putnext(listener->tcp_rq, mp);
27190 }
27191 
27192 int
27193 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
27194     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
27195 {
27196 	tcp_t			*tcp;
27197 	conn_t 			*connp = (conn_t *)proto_handle;
27198 	int			error;
27199 	mblk_t			*stropt_mp;
27200 	mblk_t			*ordrel_mp;
27201 	mblk_t			*fused_sigurp_mp;
27202 	mblk_t			*tcp_rsrv_mp;
27203 
27204 	tcp = connp->conn_tcp;
27205 
27206 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
27207 	    NULL);
27208 
27209 	/* Pre-allocate the T_ordrel_ind mblk. */
27210 	ASSERT(tcp->tcp_ordrel_mp == NULL);
27211 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
27212 	    STR_NOSIG, NULL);
27213 	ordrel_mp->b_datap->db_type = M_PROTO;
27214 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
27215 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
27216 
27217 	/* Pre-allocate the M_PCSIG used by fusion */
27218 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
27219 
27220 	/*
27221 	 * Pre-allocate the tcp_rsrv_mp mblk.
27222 	 * It is possible that this conn was previously used for a streams
27223 	 * socket and already has tcp_rsrv_mp
27224 	 */
27225 	tcp_rsrv_mp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
27226 
27227 	/*
27228 	 * Enter the squeue so that no new packets can come in
27229 	 */
27230 	error = squeue_synch_enter(connp->conn_sqp, connp, 0);
27231 	if (error != 0) {
27232 		/* failed to enter, free all the pre-allocated messages. */
27233 		freeb(stropt_mp);
27234 		freeb(ordrel_mp);
27235 		freeb(fused_sigurp_mp);
27236 		freeb(tcp_rsrv_mp);
27237 		/*
27238 		 * We cannot process the eager, so at least send out a
27239 		 * RST so the peer can reconnect.
27240 		 */
27241 		if (tcp->tcp_listener != NULL) {
27242 			(void) tcp_eager_blowoff(tcp->tcp_listener,
27243 			    tcp->tcp_conn_req_seqnum);
27244 		}
27245 		return (ENOMEM);
27246 	}
27247 
27248 	/*
27249 	 * No longer a direct socket
27250 	 */
27251 	connp->conn_flags &= ~IPCL_NONSTR;
27252 
27253 	tcp->tcp_ordrel_mp = ordrel_mp;
27254 
27255 	if (tcp->tcp_fused) {
27256 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
27257 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
27258 	} else {
27259 		freeb(fused_sigurp_mp);
27260 	}
27261 
27262 	if (tcp->tcp_rsrv_mp == NULL) {
27263 		tcp->tcp_rsrv_mp = tcp_rsrv_mp;
27264 	} else {
27265 		/*
27266 		 * reusing a conn that was previously used for streams socket
27267 		 */
27268 		freeb(tcp_rsrv_mp);
27269 	}
27270 	if (tcp->tcp_listener != NULL) {
27271 		/* The eager will deal with opts when accept() is called */
27272 		freeb(stropt_mp);
27273 		tcp_fallback_eager(tcp, direct_sockfs);
27274 	} else {
27275 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
27276 		    quiesced_cb);
27277 	}
27278 
27279 	/*
27280 	 * There should be atleast two ref's (IP + TCP)
27281 	 */
27282 	ASSERT(connp->conn_ref >= 2);
27283 	squeue_synch_exit(connp->conn_sqp, connp);
27284 
27285 	return (0);
27286 }
27287 
27288 /* ARGSUSED */
27289 static void
27290 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
27291 {
27292 	conn_t 	*connp = (conn_t *)arg;
27293 	tcp_t	*tcp = connp->conn_tcp;
27294 
27295 	freemsg(mp);
27296 
27297 	if (tcp->tcp_fused)
27298 		tcp_unfuse(tcp);
27299 
27300 	if (tcp_xmit_end(tcp) != 0) {
27301 		/*
27302 		 * We were crossing FINs and got a reset from
27303 		 * the other side. Just ignore it.
27304 		 */
27305 		if (tcp->tcp_debug) {
27306 			(void) strlog(TCP_MOD_ID, 0, 1,
27307 			    SL_ERROR|SL_TRACE,
27308 			    "tcp_shutdown_output() out of state %s",
27309 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
27310 		}
27311 	}
27312 }
27313 
27314 /* ARGSUSED */
27315 int
27316 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
27317 {
27318 	conn_t  *connp = (conn_t *)proto_handle;
27319 	tcp_t   *tcp = connp->conn_tcp;
27320 
27321 	ASSERT(connp->conn_upper_handle != NULL);
27322 
27323 	/* All Solaris components should pass a cred for this operation. */
27324 	ASSERT(cr != NULL);
27325 
27326 	/*
27327 	 * X/Open requires that we check the connected state.
27328 	 */
27329 	if (tcp->tcp_state < TCPS_SYN_SENT)
27330 		return (ENOTCONN);
27331 
27332 	/* shutdown the send side */
27333 	if (how != SHUT_RD) {
27334 		mblk_t *bp;
27335 
27336 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
27337 		CONN_INC_REF(connp);
27338 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
27339 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
27340 
27341 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27342 		    SOCK_OPCTL_SHUT_SEND, 0);
27343 	}
27344 
27345 	/* shutdown the recv side */
27346 	if (how != SHUT_WR)
27347 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27348 		    SOCK_OPCTL_SHUT_RECV, 0);
27349 
27350 	return (0);
27351 }
27352 
27353 /*
27354  * SOP_LISTEN() calls into tcp_listen().
27355  */
27356 /* ARGSUSED */
27357 int
27358 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
27359 {
27360 	conn_t	*connp = (conn_t *)proto_handle;
27361 	int 	error;
27362 	squeue_t *sqp = connp->conn_sqp;
27363 
27364 	ASSERT(connp->conn_upper_handle != NULL);
27365 
27366 	/* All Solaris components should pass a cred for this operation. */
27367 	ASSERT(cr != NULL);
27368 
27369 	error = squeue_synch_enter(sqp, connp, 0);
27370 	if (error != 0) {
27371 		/* failed to enter */
27372 		return (ENOBUFS);
27373 	}
27374 
27375 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
27376 	if (error == 0) {
27377 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27378 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
27379 	} else if (error < 0) {
27380 		if (error == -TOUTSTATE)
27381 			error = EINVAL;
27382 		else
27383 			error = proto_tlitosyserr(-error);
27384 	}
27385 	squeue_synch_exit(sqp, connp);
27386 	return (error);
27387 }
27388 
27389 static int
27390 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
27391     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
27392 {
27393 	tcp_t		*tcp = connp->conn_tcp;
27394 	int		error = 0;
27395 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27396 
27397 	/* All Solaris components should pass a cred for this operation. */
27398 	ASSERT(cr != NULL);
27399 
27400 	if (tcp->tcp_state >= TCPS_BOUND) {
27401 		if ((tcp->tcp_state == TCPS_BOUND ||
27402 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
27403 			/*
27404 			 * Handle listen() increasing backlog.
27405 			 * This is more "liberal" then what the TPI spec
27406 			 * requires but is needed to avoid a t_unbind
27407 			 * when handling listen() since the port number
27408 			 * might be "stolen" between the unbind and bind.
27409 			 */
27410 			goto do_listen;
27411 		}
27412 		if (tcp->tcp_debug) {
27413 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27414 			    "tcp_listen: bad state, %d", tcp->tcp_state);
27415 		}
27416 		return (-TOUTSTATE);
27417 	} else {
27418 		if (sa == NULL) {
27419 			sin6_t	addr;
27420 			sin_t *sin;
27421 			sin6_t *sin6;
27422 
27423 			ASSERT(IPCL_IS_NONSTR(connp));
27424 
27425 			/* Do an implicit bind: Request for a generic port. */
27426 			if (tcp->tcp_family == AF_INET) {
27427 				len = sizeof (sin_t);
27428 				sin = (sin_t *)&addr;
27429 				*sin = sin_null;
27430 				sin->sin_family = AF_INET;
27431 				tcp->tcp_ipversion = IPV4_VERSION;
27432 			} else {
27433 				ASSERT(tcp->tcp_family == AF_INET6);
27434 				len = sizeof (sin6_t);
27435 				sin6 = (sin6_t *)&addr;
27436 				*sin6 = sin6_null;
27437 				sin6->sin6_family = AF_INET6;
27438 				tcp->tcp_ipversion = IPV6_VERSION;
27439 			}
27440 			sa = (struct sockaddr *)&addr;
27441 		}
27442 
27443 		error = tcp_bind_check(connp, sa, len, cr,
27444 		    bind_to_req_port_only);
27445 		if (error)
27446 			return (error);
27447 		/* Fall through and do the fanout insertion */
27448 	}
27449 
27450 do_listen:
27451 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
27452 	tcp->tcp_conn_req_max = backlog;
27453 	if (tcp->tcp_conn_req_max) {
27454 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
27455 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
27456 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
27457 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
27458 		/*
27459 		 * If this is a listener, do not reset the eager list
27460 		 * and other stuffs.  Note that we don't check if the
27461 		 * existing eager list meets the new tcp_conn_req_max
27462 		 * requirement.
27463 		 */
27464 		if (tcp->tcp_state != TCPS_LISTEN) {
27465 			tcp->tcp_state = TCPS_LISTEN;
27466 			/* Initialize the chain. Don't need the eager_lock */
27467 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
27468 			tcp->tcp_eager_next_drop_q0 = tcp;
27469 			tcp->tcp_eager_prev_drop_q0 = tcp;
27470 			tcp->tcp_second_ctimer_threshold =
27471 			    tcps->tcps_ip_abort_linterval;
27472 		}
27473 	}
27474 
27475 	/*
27476 	 * We can call ip_bind directly, the processing continues
27477 	 * in tcp_post_ip_bind().
27478 	 *
27479 	 * We need to make sure that the conn_recv is set to a non-null
27480 	 * value before we insert the conn into the classifier table.
27481 	 * This is to avoid a race with an incoming packet which does an
27482 	 * ipcl_classify().
27483 	 */
27484 	connp->conn_recv = tcp_conn_request;
27485 	if (tcp->tcp_family == AF_INET) {
27486 		error = ip_proto_bind_laddr_v4(connp, NULL,
27487 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
27488 	} else {
27489 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27490 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
27491 	}
27492 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
27493 }
27494 
27495 void
27496 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
27497 {
27498 	conn_t  *connp = (conn_t *)proto_handle;
27499 	tcp_t	*tcp = connp->conn_tcp;
27500 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27501 	uint_t thwin;
27502 
27503 	ASSERT(connp->conn_upper_handle != NULL);
27504 
27505 	(void) squeue_synch_enter(connp->conn_sqp, connp, 0);
27506 
27507 	/* Flow control condition has been removed. */
27508 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
27509 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
27510 	    << tcp->tcp_rcv_ws;
27511 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
27512 	/*
27513 	 * Send back a window update immediately if TCP is above
27514 	 * ESTABLISHED state and the increase of the rcv window
27515 	 * that the other side knows is at least 1 MSS after flow
27516 	 * control is lifted.
27517 	 */
27518 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
27519 	    (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) {
27520 		tcp_xmit_ctl(NULL, tcp,
27521 		    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
27522 		    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
27523 		BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
27524 	}
27525 
27526 	squeue_synch_exit(connp->conn_sqp, connp);
27527 }
27528 
27529 /* ARGSUSED */
27530 int
27531 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
27532     int mode, int32_t *rvalp, cred_t *cr)
27533 {
27534 	conn_t  	*connp = (conn_t *)proto_handle;
27535 	int		error;
27536 
27537 	ASSERT(connp->conn_upper_handle != NULL);
27538 
27539 	/* All Solaris components should pass a cred for this operation. */
27540 	ASSERT(cr != NULL);
27541 
27542 	switch (cmd) {
27543 		case ND_SET:
27544 		case ND_GET:
27545 		case TCP_IOC_DEFAULT_Q:
27546 		case _SIOCSOCKFALLBACK:
27547 		case TCP_IOC_ABORT_CONN:
27548 		case TI_GETPEERNAME:
27549 		case TI_GETMYNAME:
27550 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
27551 			    cmd));
27552 			error = EINVAL;
27553 			break;
27554 		default:
27555 			/*
27556 			 * Pass on to IP using helper stream
27557 			 */
27558 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
27559 			    cmd, arg, mode, cr, rvalp);
27560 			break;
27561 	}
27562 	return (error);
27563 }
27564 
27565 sock_downcalls_t sock_tcp_downcalls = {
27566 	tcp_activate,
27567 	tcp_accept,
27568 	tcp_bind,
27569 	tcp_listen,
27570 	tcp_connect,
27571 	tcp_getpeername,
27572 	tcp_getsockname,
27573 	tcp_getsockopt,
27574 	tcp_setsockopt,
27575 	tcp_sendmsg,
27576 	NULL,
27577 	NULL,
27578 	NULL,
27579 	tcp_shutdown,
27580 	tcp_clr_flowctrl,
27581 	tcp_ioctl,
27582 	tcp_close,
27583 };
27584