xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 0ccf9e790d232720597416743840df88825a9317)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/priv.h>
58 #include <sys/zone.h>
59 
60 #include <sys/errno.h>
61 #include <sys/signal.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/isa_defs.h>
65 #include <sys/md5.h>
66 #include <sys/random.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 #include <inet/tcp_trace.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_if.h>
96 #include <inet/ipp_common.h>
97 #include <sys/squeue.h>
98 #include <inet/kssl/ksslapi.h>
99 #include <sys/tsol/label.h>
100 #include <sys/tsol/tnet.h>
101 #include <sys/sdt.h>
102 #include <rpc/pmap_prot.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
126  * squeue_fill). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. ip_tcpopen() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_conn_request(). But briefly, the squeue is picked by
173  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
199  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
200  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
201  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
202  * check to send packets directly to tcp_rput_data via squeue. Everyone
203  * else comes through tcp_input() on the read side.
204  *
205  * We also make special provisions for sockfs by marking tcp_issocket
206  * whenever we have only sockfs on top of TCP. This allows us to skip
207  * putting the tcp in acceptor hash since a sockfs listener can never
208  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
209  * since eager has already been allocated and the accept now happens
210  * on acceptor STREAM. There is a big blob of comment on top of
211  * tcp_conn_request explaining the new accept. When socket is POP'd,
212  * sockfs sends us an ioctl to mark the fact and we go back to old
213  * behaviour. Once tcp_issocket is unset, its never set for the
214  * life of that connection.
215  *
216  * IPsec notes :
217  *
218  * Since a packet is always executed on the correct TCP perimeter
219  * all IPsec processing is defered to IP including checking new
220  * connections and setting IPSEC policies for new connection. The
221  * only exception is tcp_xmit_listeners_reset() which is called
222  * directly from IP and needs to policy check to see if TH_RST
223  * can be sent out.
224  */
225 
226 extern major_t TCP6_MAJ;
227 
228 /*
229  * Values for squeue switch:
230  * 1: squeue_enter_nodrain
231  * 2: squeue_enter
232  * 3: squeue_fill
233  */
234 int tcp_squeue_close = 2;
235 int tcp_squeue_wput = 2;
236 
237 squeue_func_t tcp_squeue_close_proc;
238 squeue_func_t tcp_squeue_wput_proc;
239 
240 /*
241  * This controls how tiny a write must be before we try to copy it
242  * into the the mblk on the tail of the transmit queue.  Not much
243  * speedup is observed for values larger than sixteen.  Zero will
244  * disable the optimisation.
245  */
246 int tcp_tx_pull_len = 16;
247 
248 /*
249  * TCP Statistics.
250  *
251  * How TCP statistics work.
252  *
253  * There are two types of statistics invoked by two macros.
254  *
255  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
256  * supposed to be used in non MT-hot paths of the code.
257  *
258  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
259  * supposed to be used for DEBUG purposes and may be used on a hot path.
260  *
261  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
262  * (use "kstat tcp" to get them).
263  *
264  * There is also additional debugging facility that marks tcp_clean_death()
265  * instances and saves them in tcp_t structure. It is triggered by
266  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
267  * tcp_clean_death() calls that counts the number of times each tag was hit. It
268  * is triggered by TCP_CLD_COUNTERS define.
269  *
270  * How to add new counters.
271  *
272  * 1) Add a field in the tcp_stat structure describing your counter.
273  * 2) Add a line in tcp_statistics with the name of the counter.
274  *
275  *    IMPORTANT!! - make sure that both are in sync !!
276  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
277  *
278  * Please avoid using private counters which are not kstat-exported.
279  *
280  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
281  * in tcp_t structure.
282  *
283  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
284  */
285 
286 #ifndef TCP_DEBUG_COUNTER
287 #ifdef DEBUG
288 #define	TCP_DEBUG_COUNTER 1
289 #else
290 #define	TCP_DEBUG_COUNTER 0
291 #endif
292 #endif
293 
294 #define	TCP_CLD_COUNTERS 0
295 
296 #define	TCP_TAG_CLEAN_DEATH 1
297 #define	TCP_MAX_CLEAN_DEATH_TAG 32
298 
299 #ifdef lint
300 static int _lint_dummy_;
301 #endif
302 
303 #if TCP_CLD_COUNTERS
304 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
305 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
306 #elif defined(lint)
307 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
308 #else
309 #define	TCP_CLD_STAT(x)
310 #endif
311 
312 #if TCP_DEBUG_COUNTER
313 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
314 #elif defined(lint)
315 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
316 #else
317 #define	TCP_DBGSTAT(x)
318 #endif
319 
320 tcp_stat_t tcp_statistics = {
321 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
322 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
323 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
324 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
325 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
326 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
327 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
328 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
329 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
330 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
331 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
332 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
333 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
334 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
335 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
336 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
337 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
338 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
339 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
340 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
341 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
342 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
343 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
344 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
345 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
346 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
347 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
348 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
349 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
350 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
351 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
352 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
353 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
354 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
355 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
356 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
357 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
358 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
359 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
360 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
361 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
362 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
363 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
364 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
365 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
366 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
367 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
368 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
369 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
370 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
371 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
372 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
373 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
374 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
375 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
376 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
377 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
378 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
379 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
380 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
381 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
382 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
383 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
384 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
385 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
386 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
387 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
388 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
389 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
390 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
391 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
392 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
399 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
400 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
401 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
402 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
403 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
404 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
405 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
406 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
407 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
408 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
409 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
410 };
411 
412 static kstat_t *tcp_kstat;
413 
414 /*
415  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
416  * tcp write side.
417  */
418 #define	CALL_IP_WPUT(connp, q, mp) {					\
419 	ASSERT(((q)->q_flag & QREADR) == 0);				\
420 	TCP_DBGSTAT(tcp_ip_output);					\
421 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
422 }
423 
424 /* Macros for timestamp comparisons */
425 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
426 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
427 
428 /*
429  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
430  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
431  * by adding three components: a time component which grows by 1 every 4096
432  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
433  * a per-connection component which grows by 125000 for every new connection;
434  * and an "extra" component that grows by a random amount centered
435  * approximately on 64000.  This causes the the ISS generator to cycle every
436  * 4.89 hours if no TCP connections are made, and faster if connections are
437  * made.
438  *
439  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
440  * components: a time component which grows by 250000 every second; and
441  * a per-connection component which grows by 125000 for every new connections.
442  *
443  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
444  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
445  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
446  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
447  * password.
448  */
449 #define	ISS_INCR	250000
450 #define	ISS_NSEC_SHT	12
451 
452 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
453 static kmutex_t tcp_iss_key_lock;
454 static MD5_CTX tcp_iss_key;
455 static sin_t	sin_null;	/* Zero address for quick clears */
456 static sin6_t	sin6_null;	/* Zero address for quick clears */
457 
458 /* Packet dropper for TCP IPsec policy drops. */
459 static ipdropper_t tcp_dropper;
460 
461 /*
462  * This implementation follows the 4.3BSD interpretation of the urgent
463  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
464  * incompatible changes in protocols like telnet and rlogin.
465  */
466 #define	TCP_OLD_URP_INTERPRETATION	1
467 
468 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
469 	(TCP_IS_DETACHED(tcp) && \
470 	    (!(tcp)->tcp_hard_binding))
471 
472 /*
473  * TCP reassembly macros.  We hide starting and ending sequence numbers in
474  * b_next and b_prev of messages on the reassembly queue.  The messages are
475  * chained using b_cont.  These macros are used in tcp_reass() so we don't
476  * have to see the ugly casts and assignments.
477  */
478 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
479 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
480 					(mblk_t *)(uintptr_t)(u))
481 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
482 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
483 					(mblk_t *)(uintptr_t)(u))
484 
485 /*
486  * Implementation of TCP Timers.
487  * =============================
488  *
489  * INTERFACE:
490  *
491  * There are two basic functions dealing with tcp timers:
492  *
493  *	timeout_id_t	tcp_timeout(connp, func, time)
494  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
495  *	TCP_TIMER_RESTART(tcp, intvl)
496  *
497  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
498  * after 'time' ticks passed. The function called by timeout() must adhere to
499  * the same restrictions as a driver soft interrupt handler - it must not sleep
500  * or call other functions that might sleep. The value returned is the opaque
501  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
502  * cancel the request. The call to tcp_timeout() may fail in which case it
503  * returns zero. This is different from the timeout(9F) function which never
504  * fails.
505  *
506  * The call-back function 'func' always receives 'connp' as its single
507  * argument. It is always executed in the squeue corresponding to the tcp
508  * structure. The tcp structure is guaranteed to be present at the time the
509  * call-back is called.
510  *
511  * NOTE: The call-back function 'func' is never called if tcp is in
512  * 	the TCPS_CLOSED state.
513  *
514  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
515  * request. locks acquired by the call-back routine should not be held across
516  * the call to tcp_timeout_cancel() or a deadlock may result.
517  *
518  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
519  * Otherwise, it returns an integer value greater than or equal to 0. In
520  * particular, if the call-back function is already placed on the squeue, it can
521  * not be canceled.
522  *
523  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
524  * 	within squeue context corresponding to the tcp instance. Since the
525  *	call-back is also called via the same squeue, there are no race
526  *	conditions described in untimeout(9F) manual page since all calls are
527  *	strictly serialized.
528  *
529  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
530  *	stored in tcp_timer_tid and starts a new one using
531  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
532  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
533  *	field.
534  *
535  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
536  *	call-back may still be called, so it is possible tcp_timer() will be
537  *	called several times. This should not be a problem since tcp_timer()
538  *	should always check the tcp instance state.
539  *
540  *
541  * IMPLEMENTATION:
542  *
543  * TCP timers are implemented using three-stage process. The call to
544  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
545  * when the timer expires. The tcp_timer_callback() arranges the call of the
546  * tcp_timer_handler() function via squeue corresponding to the tcp
547  * instance. The tcp_timer_handler() calls actual requested timeout call-back
548  * and passes tcp instance as an argument to it. Information is passed between
549  * stages using the tcp_timer_t structure which contains the connp pointer, the
550  * tcp call-back to call and the timeout id returned by the timeout(9F).
551  *
552  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
553  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
554  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
555  * returns the pointer to this mblk.
556  *
557  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
558  * looks like a normal mblk without actual dblk attached to it.
559  *
560  * To optimize performance each tcp instance holds a small cache of timer
561  * mblocks. In the current implementation it caches up to two timer mblocks per
562  * tcp instance. The cache is preserved over tcp frees and is only freed when
563  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
564  * timer processing happens on a corresponding squeue, the cache manipulation
565  * does not require any locks. Experiments show that majority of timer mblocks
566  * allocations are satisfied from the tcp cache and do not involve kmem calls.
567  *
568  * The tcp_timeout() places a refhold on the connp instance which guarantees
569  * that it will be present at the time the call-back function fires. The
570  * tcp_timer_handler() drops the reference after calling the call-back, so the
571  * call-back function does not need to manipulate the references explicitly.
572  */
573 
574 typedef struct tcp_timer_s {
575 	conn_t	*connp;
576 	void 	(*tcpt_proc)(void *);
577 	timeout_id_t   tcpt_tid;
578 } tcp_timer_t;
579 
580 static kmem_cache_t *tcp_timercache;
581 kmem_cache_t	*tcp_sack_info_cache;
582 kmem_cache_t	*tcp_iphc_cache;
583 
584 /*
585  * For scalability, we must not run a timer for every TCP connection
586  * in TIME_WAIT state.  To see why, consider (for time wait interval of
587  * 4 minutes):
588  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
589  *
590  * This list is ordered by time, so you need only delete from the head
591  * until you get to entries which aren't old enough to delete yet.
592  * The list consists of only the detached TIME_WAIT connections.
593  *
594  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
595  * becomes detached TIME_WAIT (either by changing the state and already
596  * being detached or the other way around). This means that the TIME_WAIT
597  * state can be extended (up to doubled) if the connection doesn't become
598  * detached for a long time.
599  *
600  * The list manipulations (including tcp_time_wait_next/prev)
601  * are protected by the tcp_time_wait_lock. The content of the
602  * detached TIME_WAIT connections is protected by the normal perimeters.
603  */
604 
605 typedef struct tcp_squeue_priv_s {
606 	kmutex_t	tcp_time_wait_lock;
607 				/* Protects the next 3 globals */
608 	timeout_id_t	tcp_time_wait_tid;
609 	tcp_t		*tcp_time_wait_head;
610 	tcp_t		*tcp_time_wait_tail;
611 	tcp_t		*tcp_free_list;
612 	uint_t		tcp_free_list_cnt;
613 } tcp_squeue_priv_t;
614 
615 /*
616  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
617  * Running it every 5 seconds seems to give the best results.
618  */
619 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
620 
621 /*
622  * To prevent memory hog, limit the number of entries in tcp_free_list
623  * to 1% of available memory / number of cpus
624  */
625 uint_t tcp_free_list_max_cnt = 0;
626 
627 #define	TCP_XMIT_LOWATER	4096
628 #define	TCP_XMIT_HIWATER	49152
629 #define	TCP_RECV_LOWATER	2048
630 #define	TCP_RECV_HIWATER	49152
631 
632 /*
633  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
634  */
635 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
636 
637 #define	TIDUSZ	4096	/* transport interface data unit size */
638 
639 /*
640  * Bind hash list size and has function.  It has to be a power of 2 for
641  * hashing.
642  */
643 #define	TCP_BIND_FANOUT_SIZE	512
644 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
645 /*
646  * Size of listen and acceptor hash list.  It has to be a power of 2 for
647  * hashing.
648  */
649 #define	TCP_FANOUT_SIZE		256
650 
651 #ifdef	_ILP32
652 #define	TCP_ACCEPTOR_HASH(accid)					\
653 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
654 #else
655 #define	TCP_ACCEPTOR_HASH(accid)					\
656 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
657 #endif	/* _ILP32 */
658 
659 #define	IP_ADDR_CACHE_SIZE	2048
660 #define	IP_ADDR_CACHE_HASH(faddr)					\
661 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
662 
663 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
664 #define	TCP_HSP_HASH_SIZE 256
665 
666 #define	TCP_HSP_HASH(addr)					\
667 	(((addr>>24) ^ (addr >>16) ^			\
668 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
669 
670 /*
671  * TCP options struct returned from tcp_parse_options.
672  */
673 typedef struct tcp_opt_s {
674 	uint32_t	tcp_opt_mss;
675 	uint32_t	tcp_opt_wscale;
676 	uint32_t	tcp_opt_ts_val;
677 	uint32_t	tcp_opt_ts_ecr;
678 	tcp_t		*tcp;
679 } tcp_opt_t;
680 
681 /*
682  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
683  */
684 
685 #ifdef _BIG_ENDIAN
686 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
687 	(TCPOPT_TSTAMP << 8) | 10)
688 #else
689 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
690 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
691 #endif
692 
693 /*
694  * Flags returned from tcp_parse_options.
695  */
696 #define	TCP_OPT_MSS_PRESENT	1
697 #define	TCP_OPT_WSCALE_PRESENT	2
698 #define	TCP_OPT_TSTAMP_PRESENT	4
699 #define	TCP_OPT_SACK_OK_PRESENT	8
700 #define	TCP_OPT_SACK_PRESENT	16
701 
702 /* TCP option length */
703 #define	TCPOPT_NOP_LEN		1
704 #define	TCPOPT_MAXSEG_LEN	4
705 #define	TCPOPT_WS_LEN		3
706 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
707 #define	TCPOPT_TSTAMP_LEN	10
708 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
709 #define	TCPOPT_SACK_OK_LEN	2
710 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
711 #define	TCPOPT_REAL_SACK_LEN	4
712 #define	TCPOPT_MAX_SACK_LEN	36
713 #define	TCPOPT_HEADER_LEN	2
714 
715 /* TCP cwnd burst factor. */
716 #define	TCP_CWND_INFINITE	65535
717 #define	TCP_CWND_SS		3
718 #define	TCP_CWND_NORMAL		5
719 
720 /* Maximum TCP initial cwin (start/restart). */
721 #define	TCP_MAX_INIT_CWND	8
722 
723 /*
724  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
725  * either tcp_slow_start_initial or tcp_slow_start_after idle
726  * depending on the caller.  If the upper layer has not used the
727  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
728  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
729  * If the upper layer has changed set the tcp_init_cwnd, just use
730  * it to calculate the tcp_cwnd.
731  */
732 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
733 {									\
734 	if ((tcp)->tcp_init_cwnd == 0) {				\
735 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
736 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
737 	} else {							\
738 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
739 	}								\
740 	tcp->tcp_cwnd_cnt = 0;						\
741 }
742 
743 /* TCP Timer control structure */
744 typedef struct tcpt_s {
745 	pfv_t	tcpt_pfv;	/* The routine we are to call */
746 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
747 } tcpt_t;
748 
749 /* Host Specific Parameter structure */
750 typedef struct tcp_hsp {
751 	struct tcp_hsp	*tcp_hsp_next;
752 	in6_addr_t	tcp_hsp_addr_v6;
753 	in6_addr_t	tcp_hsp_subnet_v6;
754 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
755 	int32_t		tcp_hsp_sendspace;
756 	int32_t		tcp_hsp_recvspace;
757 	int32_t		tcp_hsp_tstamp;
758 } tcp_hsp_t;
759 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
760 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
761 
762 /*
763  * Functions called directly via squeue having a prototype of edesc_t.
764  */
765 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
766 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
767 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
768 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
769 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
770 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
771 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
772 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
773 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
774 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
775 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
776 
777 
778 /* Prototype for TCP functions */
779 static void	tcp_random_init(void);
780 int		tcp_random(void);
781 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
782 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
783 		    tcp_t *eager);
784 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
785 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
786     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
787     boolean_t user_specified);
788 static void	tcp_closei_local(tcp_t *tcp);
789 static void	tcp_close_detached(tcp_t *tcp);
790 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
791 			mblk_t *idmp, mblk_t **defermp);
792 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
793 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
794 		    in_port_t dstport, uint_t srcid);
795 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
796 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
797 		    uint32_t scope_id);
798 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
799 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
800 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
801 static char	*tcp_display(tcp_t *tcp, char *, char);
802 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
803 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
804 static void	tcp_eager_unlink(tcp_t *tcp);
805 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
806 		    int unixerr);
807 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
808 		    int tlierr, int unixerr);
809 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
810 		    cred_t *cr);
811 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
812 		    char *value, caddr_t cp, cred_t *cr);
813 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
814 		    char *value, caddr_t cp, cred_t *cr);
815 static int	tcp_tpistate(tcp_t *tcp);
816 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
817     int caller_holds_lock);
818 static void	tcp_bind_hash_remove(tcp_t *tcp);
819 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
820 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
821 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
822 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
823 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
824 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
825 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
826 static int	tcp_header_init_ipv4(tcp_t *tcp);
827 static int	tcp_header_init_ipv6(tcp_t *tcp);
828 int		tcp_init(tcp_t *tcp, queue_t *q);
829 static int	tcp_init_values(tcp_t *tcp);
830 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
831 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
832 		    t_scalar_t addr_length);
833 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
834 static void	tcp_ip_notify(tcp_t *tcp);
835 static mblk_t	*tcp_ire_mp(mblk_t *mp);
836 static void	tcp_iss_init(tcp_t *tcp);
837 static void	tcp_keepalive_killer(void *arg);
838 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
839 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
840 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
841 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
842 static boolean_t tcp_allow_connopt_set(int level, int name);
843 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
844 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
845 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
846 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
847 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
848 		    mblk_t *mblk);
849 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
850 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
851 		    uchar_t *ptr, uint_t len);
852 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
853 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
854 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
855 		    caddr_t cp, cred_t *cr);
856 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
857 		    caddr_t cp, cred_t *cr);
858 static void	tcp_iss_key_init(uint8_t *phrase, int len);
859 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
860 		    caddr_t cp, cred_t *cr);
861 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
862 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
863 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
864 static void	tcp_reinit(tcp_t *tcp);
865 static void	tcp_reinit_values(tcp_t *tcp);
866 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
867 		    tcp_t *thisstream, cred_t *cr);
868 
869 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
870 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
871 static boolean_t tcp_send_rst_chk(void);
872 static void	tcp_ss_rexmit(tcp_t *tcp);
873 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
874 static void	tcp_process_options(tcp_t *, tcph_t *);
875 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
876 static void	tcp_rsrv(queue_t *q);
877 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
878 static int	tcp_snmp_state(tcp_t *tcp);
879 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
880 		    cred_t *cr);
881 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
882 		    cred_t *cr);
883 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
884 		    cred_t *cr);
885 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
886 		    cred_t *cr);
887 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
888 		    cred_t *cr);
889 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
890 		    caddr_t cp, cred_t *cr);
891 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
892 		    caddr_t cp, cred_t *cr);
893 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
894 		    cred_t *cr);
895 static void	tcp_timer(void *arg);
896 static void	tcp_timer_callback(void *);
897 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
898     boolean_t random);
899 static in_port_t tcp_get_next_priv_port(const tcp_t *);
900 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
901 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
902 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
903 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
904 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
905 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
906 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
907 		    const int num_sack_blk, int *usable, uint_t *snxt,
908 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
909 		    const int mdt_thres);
910 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
911 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
912 		    const int num_sack_blk, int *usable, uint_t *snxt,
913 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
914 		    const int mdt_thres);
915 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
916 		    int num_sack_blk);
917 static void	tcp_wsrv(queue_t *q);
918 static int	tcp_xmit_end(tcp_t *tcp);
919 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
920 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
921 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
922 static void	tcp_ack_timer(void *arg);
923 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
924 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
925 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len);
926 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
927 		    uint32_t ack, int ctl);
928 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
929 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
930 static int	setmaxps(queue_t *q, int maxpsz);
931 static void	tcp_set_rto(tcp_t *, time_t);
932 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
933 		    boolean_t, boolean_t);
934 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
935 		    boolean_t ipsec_mctl);
936 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
937 		    char *opt, int optlen);
938 static int	tcp_build_hdrs(queue_t *, tcp_t *);
939 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
940 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
941 		    tcph_t *tcph);
942 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
943 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
944 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
945 boolean_t	tcp_reserved_port_check(in_port_t);
946 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
947 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
948 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
949 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
950 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
951 		    const boolean_t, const uint32_t, const uint32_t,
952 		    const uint32_t, const uint32_t);
953 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
954 		    const uint_t, const uint_t, boolean_t *);
955 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
956 extern mblk_t	*tcp_timermp_alloc(int);
957 extern void	tcp_timermp_free(tcp_t *);
958 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
959 static void	tcp_stop_lingering(tcp_t *tcp);
960 static void	tcp_close_linger_timeout(void *arg);
961 void		tcp_ddi_init(void);
962 void		tcp_ddi_destroy(void);
963 static void	tcp_kstat_init(void);
964 static void	tcp_kstat_fini(void);
965 static int	tcp_kstat_update(kstat_t *kp, int rw);
966 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
967 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
968 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
969 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
970 			tcph_t *tcph, mblk_t *idmp);
971 static squeue_func_t tcp_squeue_switch(int);
972 
973 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
974 static int	tcp_close(queue_t *, int);
975 static int	tcpclose_accept(queue_t *);
976 static int	tcp_modclose(queue_t *);
977 static void	tcp_wput_mod(queue_t *, mblk_t *);
978 
979 static void	tcp_squeue_add(squeue_t *);
980 static boolean_t tcp_zcopy_check(tcp_t *);
981 static void	tcp_zcopy_notify(tcp_t *);
982 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
983 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
984 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
985 
986 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
987 
988 /*
989  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
990  *
991  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
992  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
993  * (defined in tcp.h) needs to be filled in and passed into the kernel
994  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
995  * structure contains the four-tuple of a TCP connection and a range of TCP
996  * states (specified by ac_start and ac_end). The use of wildcard addresses
997  * and ports is allowed. Connections with a matching four tuple and a state
998  * within the specified range will be aborted. The valid states for the
999  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1000  * inclusive.
1001  *
1002  * An application which has its connection aborted by this ioctl will receive
1003  * an error that is dependent on the connection state at the time of the abort.
1004  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1005  * though a RST packet has been received.  If the connection state is equal to
1006  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1007  * and all resources associated with the connection will be freed.
1008  */
1009 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1010 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1011 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1012 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1013 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1014 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1015     boolean_t);
1016 
1017 static struct module_info tcp_rinfo =  {
1018 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1019 };
1020 
1021 static struct module_info tcp_winfo =  {
1022 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1023 };
1024 
1025 /*
1026  * Entry points for TCP as a module. It only allows SNMP requests
1027  * to pass through.
1028  */
1029 struct qinit tcp_mod_rinit = {
1030 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1031 };
1032 
1033 struct qinit tcp_mod_winit = {
1034 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1035 	&tcp_rinfo
1036 };
1037 
1038 /*
1039  * Entry points for TCP as a device. The normal case which supports
1040  * the TCP functionality.
1041  */
1042 struct qinit tcp_rinit = {
1043 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1044 };
1045 
1046 struct qinit tcp_winit = {
1047 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1048 };
1049 
1050 /* Initial entry point for TCP in socket mode. */
1051 struct qinit tcp_sock_winit = {
1052 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1053 };
1054 
1055 /*
1056  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1057  * an accept. Avoid allocating data structures since eager has already
1058  * been created.
1059  */
1060 struct qinit tcp_acceptor_rinit = {
1061 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1062 };
1063 
1064 struct qinit tcp_acceptor_winit = {
1065 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1066 };
1067 
1068 /*
1069  * Entry points for TCP loopback (read side only)
1070  */
1071 struct qinit tcp_loopback_rinit = {
1072 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1073 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1074 };
1075 
1076 struct streamtab tcpinfo = {
1077 	&tcp_rinit, &tcp_winit
1078 };
1079 
1080 extern squeue_func_t tcp_squeue_wput_proc;
1081 extern squeue_func_t tcp_squeue_timer_proc;
1082 
1083 /* Protected by tcp_g_q_lock */
1084 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1085 kmutex_t tcp_g_q_lock;
1086 
1087 /* Protected by tcp_hsp_lock */
1088 /*
1089  * XXX The host param mechanism should go away and instead we should use
1090  * the metrics associated with the routes to determine the default sndspace
1091  * and rcvspace.
1092  */
1093 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1094 krwlock_t tcp_hsp_lock;
1095 
1096 /*
1097  * Extra privileged ports. In host byte order.
1098  * Protected by tcp_epriv_port_lock.
1099  */
1100 #define	TCP_NUM_EPRIV_PORTS	64
1101 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1102 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1103 kmutex_t tcp_epriv_port_lock;
1104 
1105 /*
1106  * The smallest anonymous port in the privileged port range which TCP
1107  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1108  */
1109 static in_port_t tcp_min_anonpriv_port = 512;
1110 
1111 /* Only modified during _init and _fini thus no locking is needed. */
1112 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1113 
1114 /* Hint not protected by any lock */
1115 static uint_t	tcp_next_port_to_try;
1116 
1117 
1118 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1119 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1120 
1121 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1122 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1123 
1124 /*
1125  * TCP has a private interface for other kernel modules to reserve a
1126  * port range for them to use.  Once reserved, TCP will not use any ports
1127  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1128  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1129  * has to be verified.
1130  *
1131  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1132  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1133  * range is [port a, port b] inclusive.  And each port range is between
1134  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1135  *
1136  * Note that the default anonymous port range starts from 32768.  There is
1137  * no port "collision" between that and the reserved port range.  If there
1138  * is port collision (because the default smallest anonymous port is lowered
1139  * or some apps specifically bind to ports in the reserved port range), the
1140  * system may not be able to reserve a port range even there are enough
1141  * unbound ports as a reserved port range contains consecutive ports .
1142  */
1143 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1144 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1145 #define	TCP_SMALLEST_RESERVED_PORT		10240
1146 #define	TCP_LARGEST_RESERVED_PORT		20480
1147 
1148 /* Structure to represent those reserved port ranges. */
1149 typedef struct tcp_rport_s {
1150 	in_port_t	lo_port;
1151 	in_port_t	hi_port;
1152 	tcp_t		**temp_tcp_array;
1153 } tcp_rport_t;
1154 
1155 /* The reserved port array. */
1156 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1157 
1158 /* Locks to protect the tcp_reserved_ports array. */
1159 static krwlock_t tcp_reserved_port_lock;
1160 
1161 /* The number of ranges in the array. */
1162 uint32_t tcp_reserved_port_array_size = 0;
1163 
1164 /*
1165  * MIB-2 stuff for SNMP
1166  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1167  */
1168 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1169 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1170 
1171 boolean_t tcp_icmp_source_quench = B_FALSE;
1172 /*
1173  * Following assumes TPI alignment requirements stay along 32 bit
1174  * boundaries
1175  */
1176 #define	ROUNDUP32(x) \
1177 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1178 
1179 /* Template for response to info request. */
1180 static struct T_info_ack tcp_g_t_info_ack = {
1181 	T_INFO_ACK,		/* PRIM_type */
1182 	0,			/* TSDU_size */
1183 	T_INFINITE,		/* ETSDU_size */
1184 	T_INVALID,		/* CDATA_size */
1185 	T_INVALID,		/* DDATA_size */
1186 	sizeof (sin_t),		/* ADDR_size */
1187 	0,			/* OPT_size - not initialized here */
1188 	TIDUSZ,			/* TIDU_size */
1189 	T_COTS_ORD,		/* SERV_type */
1190 	TCPS_IDLE,		/* CURRENT_state */
1191 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1192 };
1193 
1194 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1195 	T_INFO_ACK,		/* PRIM_type */
1196 	0,			/* TSDU_size */
1197 	T_INFINITE,		/* ETSDU_size */
1198 	T_INVALID,		/* CDATA_size */
1199 	T_INVALID,		/* DDATA_size */
1200 	sizeof (sin6_t),	/* ADDR_size */
1201 	0,			/* OPT_size - not initialized here */
1202 	TIDUSZ,		/* TIDU_size */
1203 	T_COTS_ORD,		/* SERV_type */
1204 	TCPS_IDLE,		/* CURRENT_state */
1205 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1206 };
1207 
1208 #define	MS	1L
1209 #define	SECONDS	(1000 * MS)
1210 #define	MINUTES	(60 * SECONDS)
1211 #define	HOURS	(60 * MINUTES)
1212 #define	DAYS	(24 * HOURS)
1213 
1214 #define	PARAM_MAX (~(uint32_t)0)
1215 
1216 /* Max size IP datagram is 64k - 1 */
1217 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1218 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1219 /* Max of the above */
1220 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1221 
1222 /* Largest TCP port number */
1223 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1224 
1225 /*
1226  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1227  * layer header.  It has to be a multiple of 4.
1228  */
1229 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1230 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1231 
1232 /*
1233  * All of these are alterable, within the min/max values given, at run time.
1234  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1235  * per the TCP spec.
1236  */
1237 /* BEGIN CSTYLED */
1238 tcpparam_t	tcp_param_arr[] = {
1239  /*min		max		value		name */
1240  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1241  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1242  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1243  { 1,		1024,		1,		"tcp_conn_req_min" },
1244  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1245  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1246  { 0,		10,		0,		"tcp_debug" },
1247  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1248  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1249  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1250  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1251  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1252  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1253  { 1,		255,		64,		"tcp_ipv4_ttl"},
1254  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1255  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1256  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1257  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1258  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1259  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1260  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1261  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1262  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1263  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1264  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1265  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1266  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1267  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1268  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1269  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1270  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1271  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1272  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1273  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1274  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1275  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1276  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1277  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1278 /*
1279  * Question:  What default value should I set for tcp_strong_iss?
1280  */
1281  { 0,		2,		1,		"tcp_strong_iss"},
1282  { 0,		65536,		20,		"tcp_rtt_updates"},
1283  { 0,		1,		1,		"tcp_wscale_always"},
1284  { 0,		1,		0,		"tcp_tstamp_always"},
1285  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1286  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1287  { 0,		16,		2,		"tcp_deferred_acks_max"},
1288  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1289  { 1,		4,		4,		"tcp_slow_start_initial"},
1290  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1291  { 0,		2,		2,		"tcp_sack_permitted"},
1292  { 0,		1,		0,		"tcp_trace"},
1293  { 0,		1,		1,		"tcp_compression_enabled"},
1294  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1295  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1296  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1297  { 0,		1,		0,		"tcp_rev_src_routes"},
1298  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1299  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1300  { 0,		16,		8,		"tcp_local_dacks_max"},
1301  { 0,		2,		1,		"tcp_ecn_permitted"},
1302  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1303  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1304  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1305  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1306  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1307 };
1308 /* END CSTYLED */
1309 
1310 /*
1311  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1312  * each header fragment in the header buffer.  Each parameter value has
1313  * to be a multiple of 4 (32-bit aligned).
1314  */
1315 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1316 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1317 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1318 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1319 
1320 /*
1321  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1322  * the maximum number of payload buffers associated per Multidata.
1323  */
1324 static tcpparam_t tcp_mdt_max_pbufs_param =
1325 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1326 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1327 
1328 /* Round up the value to the nearest mss. */
1329 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1330 
1331 /*
1332  * Set ECN capable transport (ECT) code point in IP header.
1333  *
1334  * Note that there are 2 ECT code points '01' and '10', which are called
1335  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1336  * point ECT(0) for TCP as described in RFC 2481.
1337  */
1338 #define	SET_ECT(tcp, iph) \
1339 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1340 		/* We need to clear the code point first. */ \
1341 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1342 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1343 	} else { \
1344 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1345 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1346 	}
1347 
1348 /*
1349  * The format argument to pass to tcp_display().
1350  * DISP_PORT_ONLY means that the returned string has only port info.
1351  * DISP_ADDR_AND_PORT means that the returned string also contains the
1352  * remote and local IP address.
1353  */
1354 #define	DISP_PORT_ONLY		1
1355 #define	DISP_ADDR_AND_PORT	2
1356 
1357 /*
1358  * This controls the rate some ndd info report functions can be used
1359  * by non-privileged users.  It stores the last time such info is
1360  * requested.  When those report functions are called again, this
1361  * is checked with the current time and compare with the ndd param
1362  * tcp_ndd_get_info_interval.
1363  */
1364 static clock_t tcp_last_ndd_get_info_time = 0;
1365 #define	NDD_TOO_QUICK_MSG \
1366 	"ndd get info rate too high for non-privileged users, try again " \
1367 	"later.\n"
1368 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1369 
1370 #define	IS_VMLOANED_MBLK(mp) \
1371 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1372 
1373 /*
1374  * These two variables control the rate for TCP to generate RSTs in
1375  * response to segments not belonging to any connections.  We limit
1376  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1377  * each 1 second interval.  This is to protect TCP against DoS attack.
1378  */
1379 static clock_t tcp_last_rst_intrvl;
1380 static uint32_t tcp_rst_cnt;
1381 
1382 /* The number of RST not sent because of the rate limit. */
1383 static uint32_t tcp_rst_unsent;
1384 
1385 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1386 boolean_t tcp_mdt_chain = B_TRUE;
1387 
1388 /*
1389  * MDT threshold in the form of effective send MSS multiplier; we take
1390  * the MDT path if the amount of unsent data exceeds the threshold value
1391  * (default threshold is 1*SMSS).
1392  */
1393 uint_t tcp_mdt_smss_threshold = 1;
1394 
1395 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1396 
1397 /*
1398  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1399  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1400  * determined dynamically during tcp_adapt_ire(), which is the default.
1401  */
1402 boolean_t tcp_static_maxpsz = B_FALSE;
1403 
1404 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1405 uint32_t tcp_random_anon_port = 1;
1406 
1407 /*
1408  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1409  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1410  * data, TCP will not respond with an ACK.  RFC 793 requires that
1411  * TCP responds with an ACK for such a bogus ACK.  By not following
1412  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1413  * an attacker successfully spoofs an acceptable segment to our
1414  * peer; or when our peer is "confused."
1415  */
1416 uint32_t tcp_drop_ack_unsent_cnt = 10;
1417 
1418 /*
1419  * Hook functions to enable cluster networking
1420  * On non-clustered systems these vectors must always be NULL.
1421  */
1422 
1423 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1424 			    uint8_t *laddrp, in_port_t lport) = NULL;
1425 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1426 			    uint8_t *laddrp, in_port_t lport) = NULL;
1427 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1428 			    uint8_t *laddrp, in_port_t lport,
1429 			    uint8_t *faddrp, in_port_t fport) = NULL;
1430 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1431 			    uint8_t *laddrp, in_port_t lport,
1432 			    uint8_t *faddrp, in_port_t fport) = NULL;
1433 
1434 /*
1435  * The following are defined in ip.c
1436  */
1437 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1438 				uint8_t *laddrp);
1439 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1440 				uint8_t *laddrp, uint8_t *faddrp);
1441 
1442 #define	CL_INET_CONNECT(tcp)		{			\
1443 	if (cl_inet_connect != NULL) {				\
1444 		/*						\
1445 		 * Running in cluster mode - register active connection	\
1446 		 * information						\
1447 		 */							\
1448 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1449 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1450 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1451 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1452 				    (in_port_t)(tcp)->tcp_lport,	\
1453 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1454 				    (in_port_t)(tcp)->tcp_fport);	\
1455 			}						\
1456 		} else {						\
1457 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1458 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1459 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1460 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1461 				    (in_port_t)(tcp)->tcp_lport,	\
1462 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1463 				    (in_port_t)(tcp)->tcp_fport);	\
1464 			}						\
1465 		}							\
1466 	}								\
1467 }
1468 
1469 #define	CL_INET_DISCONNECT(tcp)	{				\
1470 	if (cl_inet_disconnect != NULL) {				\
1471 		/*							\
1472 		 * Running in cluster mode - deregister active		\
1473 		 * connection information				\
1474 		 */							\
1475 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1476 			if ((tcp)->tcp_ip_src != 0) {			\
1477 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1478 				    AF_INET,				\
1479 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1480 				    (in_port_t)(tcp)->tcp_lport,	\
1481 				    (uint8_t *)				\
1482 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1483 				    (in_port_t)(tcp)->tcp_fport);	\
1484 			}						\
1485 		} else {						\
1486 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1487 			    &(tcp)->tcp_ip_src_v6)) {			\
1488 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1489 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1490 				    (in_port_t)(tcp)->tcp_lport,	\
1491 				    (uint8_t *)				\
1492 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1493 				    (in_port_t)(tcp)->tcp_fport);	\
1494 			}						\
1495 		}							\
1496 	}								\
1497 }
1498 
1499 /*
1500  * Cluster networking hook for traversing current connection list.
1501  * This routine is used to extract the current list of live connections
1502  * which must continue to to be dispatched to this node.
1503  */
1504 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1505 
1506 /*
1507  * Figure out the value of window scale opton.  Note that the rwnd is
1508  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1509  * We cannot find the scale value and then do a round up of tcp_rwnd
1510  * because the scale value may not be correct after that.
1511  *
1512  * Set the compiler flag to make this function inline.
1513  */
1514 static void
1515 tcp_set_ws_value(tcp_t *tcp)
1516 {
1517 	int i;
1518 	uint32_t rwnd = tcp->tcp_rwnd;
1519 
1520 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1521 	    i++, rwnd >>= 1)
1522 		;
1523 	tcp->tcp_rcv_ws = i;
1524 }
1525 
1526 /*
1527  * Remove a connection from the list of detached TIME_WAIT connections.
1528  */
1529 static void
1530 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1531 {
1532 	boolean_t	locked = B_FALSE;
1533 
1534 	if (tcp_time_wait == NULL) {
1535 		tcp_time_wait = *((tcp_squeue_priv_t **)
1536 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1537 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1538 		locked = B_TRUE;
1539 	}
1540 
1541 	if (tcp->tcp_time_wait_expire == 0) {
1542 		ASSERT(tcp->tcp_time_wait_next == NULL);
1543 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1544 		if (locked)
1545 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1546 		return;
1547 	}
1548 	ASSERT(TCP_IS_DETACHED(tcp));
1549 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1550 
1551 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1552 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1553 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1554 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1555 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1556 			    NULL;
1557 		} else {
1558 			tcp_time_wait->tcp_time_wait_tail = NULL;
1559 		}
1560 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1561 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1562 		ASSERT(tcp->tcp_time_wait_next == NULL);
1563 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1564 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1565 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1566 	} else {
1567 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1568 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1569 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1570 		    tcp->tcp_time_wait_next;
1571 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1572 		    tcp->tcp_time_wait_prev;
1573 	}
1574 	tcp->tcp_time_wait_next = NULL;
1575 	tcp->tcp_time_wait_prev = NULL;
1576 	tcp->tcp_time_wait_expire = 0;
1577 
1578 	if (locked)
1579 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1580 }
1581 
1582 /*
1583  * Add a connection to the list of detached TIME_WAIT connections
1584  * and set its time to expire.
1585  */
1586 static void
1587 tcp_time_wait_append(tcp_t *tcp)
1588 {
1589 	tcp_squeue_priv_t *tcp_time_wait =
1590 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1591 		SQPRIVATE_TCP));
1592 
1593 	tcp_timers_stop(tcp);
1594 
1595 	/* Freed above */
1596 	ASSERT(tcp->tcp_timer_tid == 0);
1597 	ASSERT(tcp->tcp_ack_tid == 0);
1598 
1599 	/* must have happened at the time of detaching the tcp */
1600 	ASSERT(tcp->tcp_ptpahn == NULL);
1601 	ASSERT(tcp->tcp_flow_stopped == 0);
1602 	ASSERT(tcp->tcp_time_wait_next == NULL);
1603 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1604 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1605 	ASSERT(tcp->tcp_listener == NULL);
1606 
1607 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1608 	/*
1609 	 * The value computed below in tcp->tcp_time_wait_expire may
1610 	 * appear negative or wrap around. That is ok since our
1611 	 * interest is only in the difference between the current lbolt
1612 	 * value and tcp->tcp_time_wait_expire. But the value should not
1613 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1614 	 * The corresponding comparison in tcp_time_wait_collector() uses
1615 	 * modular arithmetic.
1616 	 */
1617 	tcp->tcp_time_wait_expire +=
1618 	    drv_usectohz(tcp_time_wait_interval * 1000);
1619 	if (tcp->tcp_time_wait_expire == 0)
1620 		tcp->tcp_time_wait_expire = 1;
1621 
1622 	ASSERT(TCP_IS_DETACHED(tcp));
1623 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1624 	ASSERT(tcp->tcp_time_wait_next == NULL);
1625 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1626 	TCP_DBGSTAT(tcp_time_wait);
1627 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1628 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1629 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1630 		tcp_time_wait->tcp_time_wait_head = tcp;
1631 	} else {
1632 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1633 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1634 		    TCPS_TIME_WAIT);
1635 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1636 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1637 	}
1638 	tcp_time_wait->tcp_time_wait_tail = tcp;
1639 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1640 }
1641 
1642 /* ARGSUSED */
1643 void
1644 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1645 {
1646 	conn_t	*connp = (conn_t *)arg;
1647 	tcp_t	*tcp = connp->conn_tcp;
1648 
1649 	ASSERT(tcp != NULL);
1650 	if (tcp->tcp_state == TCPS_CLOSED) {
1651 		return;
1652 	}
1653 
1654 	ASSERT((tcp->tcp_family == AF_INET &&
1655 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1656 	    (tcp->tcp_family == AF_INET6 &&
1657 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1658 	    tcp->tcp_ipversion == IPV6_VERSION)));
1659 	ASSERT(!tcp->tcp_listener);
1660 
1661 	TCP_STAT(tcp_time_wait_reap);
1662 	ASSERT(TCP_IS_DETACHED(tcp));
1663 
1664 	/*
1665 	 * Because they have no upstream client to rebind or tcp_close()
1666 	 * them later, we axe the connection here and now.
1667 	 */
1668 	tcp_close_detached(tcp);
1669 }
1670 
1671 void
1672 tcp_cleanup(tcp_t *tcp)
1673 {
1674 	mblk_t		*mp;
1675 	char		*tcp_iphc;
1676 	int		tcp_iphc_len;
1677 	int		tcp_hdr_grown;
1678 	tcp_sack_info_t	*tcp_sack_info;
1679 	conn_t		*connp = tcp->tcp_connp;
1680 
1681 	tcp_bind_hash_remove(tcp);
1682 	tcp_free(tcp);
1683 
1684 	/* Release any SSL context */
1685 	if (tcp->tcp_kssl_ent != NULL) {
1686 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1687 		tcp->tcp_kssl_ent = NULL;
1688 	}
1689 
1690 	if (tcp->tcp_kssl_ctx != NULL) {
1691 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1692 		tcp->tcp_kssl_ctx = NULL;
1693 	}
1694 	tcp->tcp_kssl_pending = B_FALSE;
1695 
1696 	conn_delete_ire(connp, NULL);
1697 	if (connp->conn_flags & IPCL_TCPCONN) {
1698 		if (connp->conn_latch != NULL)
1699 			IPLATCH_REFRELE(connp->conn_latch);
1700 		if (connp->conn_policy != NULL)
1701 			IPPH_REFRELE(connp->conn_policy);
1702 	}
1703 
1704 	/*
1705 	 * Since we will bzero the entire structure, we need to
1706 	 * remove it and reinsert it in global hash list. We
1707 	 * know the walkers can't get to this conn because we
1708 	 * had set CONDEMNED flag earlier and checked reference
1709 	 * under conn_lock so walker won't pick it and when we
1710 	 * go the ipcl_globalhash_remove() below, no walker
1711 	 * can get to it.
1712 	 */
1713 	ipcl_globalhash_remove(connp);
1714 
1715 	/* Save some state */
1716 	mp = tcp->tcp_timercache;
1717 
1718 	tcp_sack_info = tcp->tcp_sack_info;
1719 	tcp_iphc = tcp->tcp_iphc;
1720 	tcp_iphc_len = tcp->tcp_iphc_len;
1721 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1722 
1723 	if (connp->conn_cred != NULL)
1724 		crfree(connp->conn_cred);
1725 	if (connp->conn_peercred != NULL)
1726 		crfree(connp->conn_peercred);
1727 	bzero(connp, sizeof (conn_t));
1728 	bzero(tcp, sizeof (tcp_t));
1729 
1730 	/* restore the state */
1731 	tcp->tcp_timercache = mp;
1732 
1733 	tcp->tcp_sack_info = tcp_sack_info;
1734 	tcp->tcp_iphc = tcp_iphc;
1735 	tcp->tcp_iphc_len = tcp_iphc_len;
1736 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1737 
1738 
1739 	tcp->tcp_connp = connp;
1740 
1741 	connp->conn_tcp = tcp;
1742 	connp->conn_flags = IPCL_TCPCONN;
1743 	connp->conn_state_flags = CONN_INCIPIENT;
1744 	connp->conn_ulp = IPPROTO_TCP;
1745 	connp->conn_ref = 1;
1746 
1747 	ipcl_globalhash_insert(connp);
1748 }
1749 
1750 /*
1751  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1752  * is done forwards from the head.
1753  */
1754 /* ARGSUSED */
1755 void
1756 tcp_time_wait_collector(void *arg)
1757 {
1758 	tcp_t *tcp;
1759 	clock_t now;
1760 	mblk_t *mp;
1761 	conn_t *connp;
1762 	kmutex_t *lock;
1763 
1764 	squeue_t *sqp = (squeue_t *)arg;
1765 	tcp_squeue_priv_t *tcp_time_wait =
1766 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1767 
1768 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1769 	tcp_time_wait->tcp_time_wait_tid = 0;
1770 
1771 	if (tcp_time_wait->tcp_free_list != NULL &&
1772 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1773 		TCP_STAT(tcp_freelist_cleanup);
1774 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1775 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1776 			CONN_DEC_REF(tcp->tcp_connp);
1777 		}
1778 		tcp_time_wait->tcp_free_list_cnt = 0;
1779 	}
1780 
1781 	/*
1782 	 * In order to reap time waits reliably, we should use a
1783 	 * source of time that is not adjustable by the user -- hence
1784 	 * the call to ddi_get_lbolt().
1785 	 */
1786 	now = ddi_get_lbolt();
1787 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1788 		/*
1789 		 * Compare times using modular arithmetic, since
1790 		 * lbolt can wrapover.
1791 		 */
1792 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1793 			break;
1794 		}
1795 
1796 		tcp_time_wait_remove(tcp, tcp_time_wait);
1797 
1798 		connp = tcp->tcp_connp;
1799 		ASSERT(connp->conn_fanout != NULL);
1800 		lock = &connp->conn_fanout->connf_lock;
1801 		/*
1802 		 * This is essentially a TW reclaim fast path optimization for
1803 		 * performance where the timewait collector checks under the
1804 		 * fanout lock (so that no one else can get access to the
1805 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1806 		 * the classifier hash list. If ref count is indeed 2, we can
1807 		 * just remove the conn under the fanout lock and avoid
1808 		 * cleaning up the conn under the squeue, provided that
1809 		 * clustering callbacks are not enabled. If clustering is
1810 		 * enabled, we need to make the clustering callback before
1811 		 * setting the CONDEMNED flag and after dropping all locks and
1812 		 * so we forego this optimization and fall back to the slow
1813 		 * path. Also please see the comments in tcp_closei_local
1814 		 * regarding the refcnt logic.
1815 		 *
1816 		 * Since we are holding the tcp_time_wait_lock, its better
1817 		 * not to block on the fanout_lock because other connections
1818 		 * can't add themselves to time_wait list. So we do a
1819 		 * tryenter instead of mutex_enter.
1820 		 */
1821 		if (mutex_tryenter(lock)) {
1822 			mutex_enter(&connp->conn_lock);
1823 			if ((connp->conn_ref == 2) &&
1824 			    (cl_inet_disconnect == NULL)) {
1825 				ipcl_hash_remove_locked(connp,
1826 				    connp->conn_fanout);
1827 				/*
1828 				 * Set the CONDEMNED flag now itself so that
1829 				 * the refcnt cannot increase due to any
1830 				 * walker. But we have still not cleaned up
1831 				 * conn_ire_cache. This is still ok since
1832 				 * we are going to clean it up in tcp_cleanup
1833 				 * immediately and any interface unplumb
1834 				 * thread will wait till the ire is blown away
1835 				 */
1836 				connp->conn_state_flags |= CONN_CONDEMNED;
1837 				mutex_exit(lock);
1838 				mutex_exit(&connp->conn_lock);
1839 				if (tcp_time_wait->tcp_free_list_cnt <
1840 				    tcp_free_list_max_cnt) {
1841 					/* Add to head of tcp_free_list */
1842 					mutex_exit(
1843 					    &tcp_time_wait->tcp_time_wait_lock);
1844 					tcp_cleanup(tcp);
1845 					mutex_enter(
1846 					    &tcp_time_wait->tcp_time_wait_lock);
1847 					tcp->tcp_time_wait_next =
1848 					    tcp_time_wait->tcp_free_list;
1849 					tcp_time_wait->tcp_free_list = tcp;
1850 					tcp_time_wait->tcp_free_list_cnt++;
1851 					continue;
1852 				} else {
1853 					/* Do not add to tcp_free_list */
1854 					mutex_exit(
1855 					    &tcp_time_wait->tcp_time_wait_lock);
1856 					tcp_bind_hash_remove(tcp);
1857 					conn_delete_ire(tcp->tcp_connp, NULL);
1858 					CONN_DEC_REF(tcp->tcp_connp);
1859 				}
1860 			} else {
1861 				CONN_INC_REF_LOCKED(connp);
1862 				mutex_exit(lock);
1863 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1864 				mutex_exit(&connp->conn_lock);
1865 				/*
1866 				 * We can reuse the closemp here since conn has
1867 				 * detached (otherwise we wouldn't even be in
1868 				 * time_wait list).
1869 				 */
1870 				mp = &tcp->tcp_closemp;
1871 				squeue_fill(connp->conn_sqp, mp,
1872 				    tcp_timewait_output, connp,
1873 				    SQTAG_TCP_TIMEWAIT);
1874 			}
1875 		} else {
1876 			mutex_enter(&connp->conn_lock);
1877 			CONN_INC_REF_LOCKED(connp);
1878 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1879 			mutex_exit(&connp->conn_lock);
1880 			/*
1881 			 * We can reuse the closemp here since conn has
1882 			 * detached (otherwise we wouldn't even be in
1883 			 * time_wait list).
1884 			 */
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 
1900 /*
1901  * Reply to a clients T_CONN_RES TPI message. This function
1902  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1903  * on the acceptor STREAM and processed in tcp_wput_accept().
1904  * Read the block comment on top of tcp_conn_request().
1905  */
1906 static void
1907 tcp_accept(tcp_t *listener, mblk_t *mp)
1908 {
1909 	tcp_t	*acceptor;
1910 	tcp_t	*eager;
1911 	tcp_t   *tcp;
1912 	struct T_conn_res	*tcr;
1913 	t_uscalar_t	acceptor_id;
1914 	t_scalar_t	seqnum;
1915 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1916 	mblk_t	*ok_mp;
1917 	mblk_t	*mp1;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				break;
2165 			}
2166 		default:
2167 			break;
2168 		}
2169 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2170 	}
2171 
2172 	/*
2173 	 * If there are no options we know that the T_CONN_RES will
2174 	 * succeed. However, we can't send the T_OK_ACK upstream until
2175 	 * the tcp_accept_swap is done since it would be dangerous to
2176 	 * let the application start using the new fd prior to the swap.
2177 	 */
2178 	tcp_accept_swap(listener, acceptor, eager);
2179 
2180 	/*
2181 	 * tcp_accept_swap unlinks eager from listener but does not drop
2182 	 * the eager's reference on the listener.
2183 	 */
2184 	ASSERT(eager->tcp_listener == NULL);
2185 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2186 
2187 	/*
2188 	 * The eager is now associated with its own queue. Insert in
2189 	 * the hash so that the connection can be reused for a future
2190 	 * T_CONN_RES.
2191 	 */
2192 	tcp_acceptor_hash_insert(acceptor_id, eager);
2193 
2194 	/*
2195 	 * We now do the processing of options with T_CONN_RES.
2196 	 * We delay till now since we wanted to have queue to pass to
2197 	 * option processing routines that points back to the right
2198 	 * instance structure which does not happen until after
2199 	 * tcp_accept_swap().
2200 	 *
2201 	 * Note:
2202 	 * The sanity of the logic here assumes that whatever options
2203 	 * are appropriate to inherit from listner=>eager are done
2204 	 * before this point, and whatever were to be overridden (or not)
2205 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2206 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2207 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2208 	 * This may not be true at this point in time but can be fixed
2209 	 * independently. This option processing code starts with
2210 	 * the instantiated acceptor instance and the final queue at
2211 	 * this point.
2212 	 */
2213 
2214 	if (tcr->OPT_length != 0) {
2215 		/* Options to process */
2216 		int t_error = 0;
2217 		int sys_error = 0;
2218 		int do_disconnect = 0;
2219 
2220 		if (tcp_conprim_opt_process(eager, mp1,
2221 		    &do_disconnect, &t_error, &sys_error) < 0) {
2222 			eager->tcp_accept_error = 1;
2223 			if (do_disconnect) {
2224 				/*
2225 				 * An option failed which does not allow
2226 				 * connection to be accepted.
2227 				 *
2228 				 * We allow T_CONN_RES to succeed and
2229 				 * put a T_DISCON_IND on the eager queue.
2230 				 */
2231 				ASSERT(t_error == 0 && sys_error == 0);
2232 				eager->tcp_send_discon_ind = 1;
2233 			} else {
2234 				ASSERT(t_error != 0);
2235 				freemsg(ok_mp);
2236 				/*
2237 				 * Original mp was either freed or set
2238 				 * to ok_mp above, so use mp1 instead.
2239 				 */
2240 				tcp_err_ack(listener, mp1, t_error, sys_error);
2241 				goto finish;
2242 			}
2243 		}
2244 		/*
2245 		 * Most likely success in setting options (except if
2246 		 * eager->tcp_send_discon_ind set).
2247 		 * mp1 option buffer represented by OPT_length/offset
2248 		 * potentially modified and contains results of setting
2249 		 * options at this point
2250 		 */
2251 	}
2252 
2253 	/* We no longer need mp1, since all options processing has passed */
2254 	freemsg(mp1);
2255 
2256 	putnext(listener->tcp_rq, ok_mp);
2257 
2258 	mutex_enter(&listener->tcp_eager_lock);
2259 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2260 		tcp_t	*tail;
2261 		mblk_t	*conn_ind;
2262 
2263 		/*
2264 		 * This path should not be executed if listener and
2265 		 * acceptor streams are the same.
2266 		 */
2267 		ASSERT(listener != acceptor);
2268 
2269 		tcp = listener->tcp_eager_prev_q0;
2270 		/*
2271 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2272 		 * deferred T_conn_ind queue. We need to get to the head of
2273 		 * the queue in order to send up T_conn_ind the same order as
2274 		 * how the 3WHS is completed.
2275 		 */
2276 		while (tcp != listener) {
2277 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2278 				break;
2279 			else
2280 				tcp = tcp->tcp_eager_prev_q0;
2281 		}
2282 		ASSERT(tcp != listener);
2283 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2284 		ASSERT(conn_ind != NULL);
2285 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2286 
2287 		/* Move from q0 to q */
2288 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2289 		listener->tcp_conn_req_cnt_q0--;
2290 		listener->tcp_conn_req_cnt_q++;
2291 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2292 		    tcp->tcp_eager_prev_q0;
2293 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2294 		    tcp->tcp_eager_next_q0;
2295 		tcp->tcp_eager_prev_q0 = NULL;
2296 		tcp->tcp_eager_next_q0 = NULL;
2297 		tcp->tcp_conn_def_q0 = B_FALSE;
2298 
2299 		/*
2300 		 * Insert at end of the queue because sockfs sends
2301 		 * down T_CONN_RES in chronological order. Leaving
2302 		 * the older conn indications at front of the queue
2303 		 * helps reducing search time.
2304 		 */
2305 		tail = listener->tcp_eager_last_q;
2306 		if (tail != NULL)
2307 			tail->tcp_eager_next_q = tcp;
2308 		else
2309 			listener->tcp_eager_next_q = tcp;
2310 		listener->tcp_eager_last_q = tcp;
2311 		tcp->tcp_eager_next_q = NULL;
2312 		mutex_exit(&listener->tcp_eager_lock);
2313 		putnext(tcp->tcp_rq, conn_ind);
2314 	} else {
2315 		mutex_exit(&listener->tcp_eager_lock);
2316 	}
2317 
2318 	/*
2319 	 * Done with the acceptor - free it
2320 	 *
2321 	 * Note: from this point on, no access to listener should be made
2322 	 * as listener can be equal to acceptor.
2323 	 */
2324 finish:
2325 	ASSERT(acceptor->tcp_detached);
2326 	acceptor->tcp_rq = tcp_g_q;
2327 	acceptor->tcp_wq = WR(tcp_g_q);
2328 	(void) tcp_clean_death(acceptor, 0, 2);
2329 	CONN_DEC_REF(acceptor->tcp_connp);
2330 
2331 	/*
2332 	 * In case we already received a FIN we have to make tcp_rput send
2333 	 * the ordrel_ind. This will also send up a window update if the window
2334 	 * has opened up.
2335 	 *
2336 	 * In the normal case of a successful connection acceptance
2337 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2338 	 * indication that this was just accepted. This tells tcp_rput to
2339 	 * pass up any data queued in tcp_rcv_list.
2340 	 *
2341 	 * In the fringe case where options sent with T_CONN_RES failed and
2342 	 * we required, we would be indicating a T_DISCON_IND to blow
2343 	 * away this connection.
2344 	 */
2345 
2346 	/*
2347 	 * XXX: we currently have a problem if XTI application closes the
2348 	 * acceptor stream in between. This problem exists in on10-gate also
2349 	 * and is well know but nothing can be done short of major rewrite
2350 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2351 	 * eager same squeue as listener (we can distinguish non socket
2352 	 * listeners at the time of handling a SYN in tcp_conn_request)
2353 	 * and do most of the work that tcp_accept_finish does here itself
2354 	 * and then get behind the acceptor squeue to access the acceptor
2355 	 * queue.
2356 	 */
2357 	/*
2358 	 * We already have a ref on tcp so no need to do one before squeue_fill
2359 	 */
2360 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2361 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2362 }
2363 
2364 /*
2365  * Swap information between the eager and acceptor for a TLI/XTI client.
2366  * The sockfs accept is done on the acceptor stream and control goes
2367  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2368  * called. In either case, both the eager and listener are in their own
2369  * perimeter (squeue) and the code has to deal with potential race.
2370  *
2371  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2372  */
2373 static void
2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2375 {
2376 	conn_t	*econnp, *aconnp;
2377 
2378 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2379 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2380 	ASSERT(!eager->tcp_hard_bound);
2381 	ASSERT(!TCP_IS_SOCKET(acceptor));
2382 	ASSERT(!TCP_IS_SOCKET(eager));
2383 	ASSERT(!TCP_IS_SOCKET(listener));
2384 
2385 	acceptor->tcp_detached = B_TRUE;
2386 	/*
2387 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2388 	 * the acceptor id.
2389 	 */
2390 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2391 
2392 	/* remove eager from listen list... */
2393 	mutex_enter(&listener->tcp_eager_lock);
2394 	tcp_eager_unlink(eager);
2395 	ASSERT(eager->tcp_eager_next_q == NULL &&
2396 	    eager->tcp_eager_last_q == NULL);
2397 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2398 	    eager->tcp_eager_prev_q0 == NULL);
2399 	mutex_exit(&listener->tcp_eager_lock);
2400 	eager->tcp_rq = acceptor->tcp_rq;
2401 	eager->tcp_wq = acceptor->tcp_wq;
2402 
2403 	econnp = eager->tcp_connp;
2404 	aconnp = acceptor->tcp_connp;
2405 
2406 	eager->tcp_rq->q_ptr = econnp;
2407 	eager->tcp_wq->q_ptr = econnp;
2408 	eager->tcp_detached = B_FALSE;
2409 
2410 	ASSERT(eager->tcp_ack_tid == 0);
2411 
2412 	econnp->conn_dev = aconnp->conn_dev;
2413 	if (eager->tcp_cred != NULL)
2414 		crfree(eager->tcp_cred);
2415 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2416 	econnp->conn_zoneid = aconnp->conn_zoneid;
2417 	aconnp->conn_cred = NULL;
2418 
2419 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2420 	aconnp->conn_mac_exempt = B_FALSE;
2421 
2422 	ASSERT(aconnp->conn_peercred == NULL);
2423 
2424 	/* Do the IPC initialization */
2425 	CONN_INC_REF(econnp);
2426 
2427 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2428 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2429 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2430 	econnp->conn_ulp = aconnp->conn_ulp;
2431 
2432 	/* Done with old IPC. Drop its ref on its connp */
2433 	CONN_DEC_REF(aconnp);
2434 }
2435 
2436 
2437 /*
2438  * Adapt to the information, such as rtt and rtt_sd, provided from the
2439  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2440  *
2441  * Checks for multicast and broadcast destination address.
2442  * Returns zero on failure; non-zero if ok.
2443  *
2444  * Note that the MSS calculation here is based on the info given in
2445  * the IRE.  We do not do any calculation based on TCP options.  They
2446  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2447  * knows which options to use.
2448  *
2449  * Note on how TCP gets its parameters for a connection.
2450  *
2451  * When a tcp_t structure is allocated, it gets all the default parameters.
2452  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2453  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2454  * default.  But if there is an associated tcp_host_param, it will override
2455  * the metrics.
2456  *
2457  * An incoming SYN with a multicast or broadcast destination address, is dropped
2458  * in 1 of 2 places.
2459  *
2460  * 1. If the packet was received over the wire it is dropped in
2461  * ip_rput_process_broadcast()
2462  *
2463  * 2. If the packet was received through internal IP loopback, i.e. the packet
2464  * was generated and received on the same machine, it is dropped in
2465  * ip_wput_local()
2466  *
2467  * An incoming SYN with a multicast or broadcast source address is always
2468  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2469  * reject an attempt to connect to a broadcast or multicast (destination)
2470  * address.
2471  */
2472 static int
2473 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2474 {
2475 	tcp_hsp_t	*hsp;
2476 	ire_t		*ire;
2477 	ire_t		*sire = NULL;
2478 	iulp_t		*ire_uinfo = NULL;
2479 	uint32_t	mss_max;
2480 	uint32_t	mss;
2481 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2482 	conn_t		*connp = tcp->tcp_connp;
2483 	boolean_t	ire_cacheable = B_FALSE;
2484 	zoneid_t	zoneid = connp->conn_zoneid;
2485 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2486 			    MATCH_IRE_SECATTR;
2487 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2488 	ill_t		*ill = NULL;
2489 	boolean_t	incoming = (ire_mp == NULL);
2490 
2491 	ASSERT(connp->conn_ire_cache == NULL);
2492 
2493 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2494 
2495 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2496 			BUMP_MIB(&ip_mib, ipInDiscards);
2497 			return (0);
2498 		}
2499 		/*
2500 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2501 		 * for the destination with the nexthop as gateway.
2502 		 * ire_ctable_lookup() is used because this particular
2503 		 * ire, if it exists, will be marked private.
2504 		 * If that is not available, use the interface ire
2505 		 * for the nexthop.
2506 		 *
2507 		 * TSol: tcp_update_label will detect label mismatches based
2508 		 * only on the destination's label, but that would not
2509 		 * detect label mismatches based on the security attributes
2510 		 * of routes or next hop gateway. Hence we need to pass the
2511 		 * label to ire_ftable_lookup below in order to locate the
2512 		 * right prefix (and/or) ire cache. Similarly we also need
2513 		 * pass the label to the ire_cache_lookup below to locate
2514 		 * the right ire that also matches on the label.
2515 		 */
2516 		if (tcp->tcp_connp->conn_nexthop_set) {
2517 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2518 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2519 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2520 			if (ire == NULL) {
2521 				ire = ire_ftable_lookup(
2522 				    tcp->tcp_connp->conn_nexthop_v4,
2523 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2524 				    tsl, match_flags);
2525 				if (ire == NULL)
2526 					return (0);
2527 			} else {
2528 				ire_uinfo = &ire->ire_uinfo;
2529 			}
2530 		} else {
2531 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2532 			    zoneid, tsl);
2533 			if (ire != NULL) {
2534 				ire_cacheable = B_TRUE;
2535 				ire_uinfo = (ire_mp != NULL) ?
2536 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2537 				    &ire->ire_uinfo;
2538 
2539 			} else {
2540 				if (ire_mp == NULL) {
2541 					ire = ire_ftable_lookup(
2542 					    tcp->tcp_connp->conn_rem,
2543 					    0, 0, 0, NULL, &sire, zoneid, 0,
2544 					    tsl, (MATCH_IRE_RECURSIVE |
2545 					    MATCH_IRE_DEFAULT));
2546 					if (ire == NULL)
2547 						return (0);
2548 					ire_uinfo = (sire != NULL) ?
2549 					    &sire->ire_uinfo :
2550 					    &ire->ire_uinfo;
2551 				} else {
2552 					ire = (ire_t *)ire_mp->b_rptr;
2553 					ire_uinfo =
2554 					    &((ire_t *)
2555 					    ire_mp->b_rptr)->ire_uinfo;
2556 				}
2557 			}
2558 		}
2559 		ASSERT(ire != NULL);
2560 
2561 		if ((ire->ire_src_addr == INADDR_ANY) ||
2562 		    (ire->ire_type & IRE_BROADCAST)) {
2563 			/*
2564 			 * ire->ire_mp is non null when ire_mp passed in is used
2565 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2566 			 */
2567 			if (ire->ire_mp == NULL)
2568 				ire_refrele(ire);
2569 			if (sire != NULL)
2570 				ire_refrele(sire);
2571 			return (0);
2572 		}
2573 
2574 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2575 			ipaddr_t src_addr;
2576 
2577 			/*
2578 			 * ip_bind_connected() has stored the correct source
2579 			 * address in conn_src.
2580 			 */
2581 			src_addr = tcp->tcp_connp->conn_src;
2582 			tcp->tcp_ipha->ipha_src = src_addr;
2583 			/*
2584 			 * Copy of the src addr. in tcp_t is needed
2585 			 * for the lookup funcs.
2586 			 */
2587 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2588 		}
2589 		/*
2590 		 * Set the fragment bit so that IP will tell us if the MTU
2591 		 * should change. IP tells us the latest setting of
2592 		 * ip_path_mtu_discovery through ire_frag_flag.
2593 		 */
2594 		if (ip_path_mtu_discovery) {
2595 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2596 			    htons(IPH_DF);
2597 		}
2598 		/*
2599 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2600 		 * for IP_NEXTHOP. No cache ire has been found for the
2601 		 * destination and we are working with the nexthop's
2602 		 * interface ire. Since we need to forward all packets
2603 		 * to the nexthop first, we "blindly" set tcp_localnet
2604 		 * to false, eventhough the destination may also be
2605 		 * onlink.
2606 		 */
2607 		if (ire_uinfo == NULL)
2608 			tcp->tcp_localnet = 0;
2609 		else
2610 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2611 	} else {
2612 		/*
2613 		 * For incoming connection ire_mp = NULL
2614 		 * For outgoing connection ire_mp != NULL
2615 		 * Technically we should check conn_incoming_ill
2616 		 * when ire_mp is NULL and conn_outgoing_ill when
2617 		 * ire_mp is non-NULL. But this is performance
2618 		 * critical path and for IPV*_BOUND_IF, outgoing
2619 		 * and incoming ill are always set to the same value.
2620 		 */
2621 		ill_t	*dst_ill = NULL;
2622 		ipif_t  *dst_ipif = NULL;
2623 
2624 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2625 
2626 		if (connp->conn_outgoing_ill != NULL) {
2627 			/* Outgoing or incoming path */
2628 			int   err;
2629 
2630 			dst_ill = conn_get_held_ill(connp,
2631 			    &connp->conn_outgoing_ill, &err);
2632 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2633 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2634 				return (0);
2635 			}
2636 			match_flags |= MATCH_IRE_ILL;
2637 			dst_ipif = dst_ill->ill_ipif;
2638 		}
2639 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2640 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2641 
2642 		if (ire != NULL) {
2643 			ire_cacheable = B_TRUE;
2644 			ire_uinfo = (ire_mp != NULL) ?
2645 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2646 			    &ire->ire_uinfo;
2647 		} else {
2648 			if (ire_mp == NULL) {
2649 				ire = ire_ftable_lookup_v6(
2650 				    &tcp->tcp_connp->conn_remv6,
2651 				    0, 0, 0, dst_ipif, &sire, zoneid,
2652 				    0, tsl, match_flags);
2653 				if (ire == NULL) {
2654 					if (dst_ill != NULL)
2655 						ill_refrele(dst_ill);
2656 					return (0);
2657 				}
2658 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2659 				    &ire->ire_uinfo;
2660 			} else {
2661 				ire = (ire_t *)ire_mp->b_rptr;
2662 				ire_uinfo =
2663 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2664 			}
2665 		}
2666 		if (dst_ill != NULL)
2667 			ill_refrele(dst_ill);
2668 
2669 		ASSERT(ire != NULL);
2670 		ASSERT(ire_uinfo != NULL);
2671 
2672 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2673 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2674 			/*
2675 			 * ire->ire_mp is non null when ire_mp passed in is used
2676 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2677 			 */
2678 			if (ire->ire_mp == NULL)
2679 				ire_refrele(ire);
2680 			if (sire != NULL)
2681 				ire_refrele(sire);
2682 			return (0);
2683 		}
2684 
2685 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2686 			in6_addr_t	src_addr;
2687 
2688 			/*
2689 			 * ip_bind_connected_v6() has stored the correct source
2690 			 * address per IPv6 addr. selection policy in
2691 			 * conn_src_v6.
2692 			 */
2693 			src_addr = tcp->tcp_connp->conn_srcv6;
2694 
2695 			tcp->tcp_ip6h->ip6_src = src_addr;
2696 			/*
2697 			 * Copy of the src addr. in tcp_t is needed
2698 			 * for the lookup funcs.
2699 			 */
2700 			tcp->tcp_ip_src_v6 = src_addr;
2701 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2702 			    &connp->conn_srcv6));
2703 		}
2704 		tcp->tcp_localnet =
2705 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2706 	}
2707 
2708 	/*
2709 	 * This allows applications to fail quickly when connections are made
2710 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2711 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2712 	 */
2713 	if ((ire->ire_flags & RTF_REJECT) &&
2714 	    (ire->ire_flags & RTF_PRIVATE))
2715 		goto error;
2716 
2717 	/*
2718 	 * Make use of the cached rtt and rtt_sd values to calculate the
2719 	 * initial RTO.  Note that they are already initialized in
2720 	 * tcp_init_values().
2721 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2722 	 * IP_NEXTHOP, but instead are using the interface ire for the
2723 	 * nexthop, then we do not use the ire_uinfo from that ire to
2724 	 * do any initializations.
2725 	 */
2726 	if (ire_uinfo != NULL) {
2727 		if (ire_uinfo->iulp_rtt != 0) {
2728 			clock_t	rto;
2729 
2730 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2731 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2732 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2733 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2734 
2735 			if (rto > tcp_rexmit_interval_max) {
2736 				tcp->tcp_rto = tcp_rexmit_interval_max;
2737 			} else if (rto < tcp_rexmit_interval_min) {
2738 				tcp->tcp_rto = tcp_rexmit_interval_min;
2739 			} else {
2740 				tcp->tcp_rto = rto;
2741 			}
2742 		}
2743 		if (ire_uinfo->iulp_ssthresh != 0)
2744 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2745 		else
2746 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2747 		if (ire_uinfo->iulp_spipe > 0) {
2748 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2749 			    tcp_max_buf);
2750 			if (tcp_snd_lowat_fraction != 0)
2751 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2752 				    tcp_snd_lowat_fraction;
2753 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2754 		}
2755 		/*
2756 		 * Note that up till now, acceptor always inherits receive
2757 		 * window from the listener.  But if there is a metrics
2758 		 * associated with a host, we should use that instead of
2759 		 * inheriting it from listener. Thus we need to pass this
2760 		 * info back to the caller.
2761 		 */
2762 		if (ire_uinfo->iulp_rpipe > 0) {
2763 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2764 		}
2765 
2766 		if (ire_uinfo->iulp_rtomax > 0) {
2767 			tcp->tcp_second_timer_threshold =
2768 			    ire_uinfo->iulp_rtomax;
2769 		}
2770 
2771 		/*
2772 		 * Use the metric option settings, iulp_tstamp_ok and
2773 		 * iulp_wscale_ok, only for active open. What this means
2774 		 * is that if the other side uses timestamp or window
2775 		 * scale option, TCP will also use those options. That
2776 		 * is for passive open.  If the application sets a
2777 		 * large window, window scale is enabled regardless of
2778 		 * the value in iulp_wscale_ok.  This is the behavior
2779 		 * since 2.6.  So we keep it.
2780 		 * The only case left in passive open processing is the
2781 		 * check for SACK.
2782 		 * For ECN, it should probably be like SACK.  But the
2783 		 * current value is binary, so we treat it like the other
2784 		 * cases.  The metric only controls active open.For passive
2785 		 * open, the ndd param, tcp_ecn_permitted, controls the
2786 		 * behavior.
2787 		 */
2788 		if (!tcp_detached) {
2789 			/*
2790 			 * The if check means that the following can only
2791 			 * be turned on by the metrics only IRE, but not off.
2792 			 */
2793 			if (ire_uinfo->iulp_tstamp_ok)
2794 				tcp->tcp_snd_ts_ok = B_TRUE;
2795 			if (ire_uinfo->iulp_wscale_ok)
2796 				tcp->tcp_snd_ws_ok = B_TRUE;
2797 			if (ire_uinfo->iulp_sack == 2)
2798 				tcp->tcp_snd_sack_ok = B_TRUE;
2799 			if (ire_uinfo->iulp_ecn_ok)
2800 				tcp->tcp_ecn_ok = B_TRUE;
2801 		} else {
2802 			/*
2803 			 * Passive open.
2804 			 *
2805 			 * As above, the if check means that SACK can only be
2806 			 * turned on by the metric only IRE.
2807 			 */
2808 			if (ire_uinfo->iulp_sack > 0) {
2809 				tcp->tcp_snd_sack_ok = B_TRUE;
2810 			}
2811 		}
2812 	}
2813 
2814 
2815 	/*
2816 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2817 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2818 	 * length of all those options exceeds 28 bytes.  But because
2819 	 * of the tcp_mss_min check below, we may not have a problem if
2820 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2821 	 * the negative problem still exists.  And the check defeats PMTUd.
2822 	 * In fact, if PMTUd finds that the MSS should be smaller than
2823 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2824 	 * value.
2825 	 *
2826 	 * We do not deal with that now.  All those problems related to
2827 	 * PMTUd will be fixed later.
2828 	 */
2829 	ASSERT(ire->ire_max_frag != 0);
2830 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2831 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2832 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2833 			mss = MIN(mss, IPV6_MIN_MTU);
2834 		}
2835 	}
2836 
2837 	/* Sanity check for MSS value. */
2838 	if (tcp->tcp_ipversion == IPV4_VERSION)
2839 		mss_max = tcp_mss_max_ipv4;
2840 	else
2841 		mss_max = tcp_mss_max_ipv6;
2842 
2843 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2844 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2845 		/*
2846 		 * After receiving an ICMPv6 "packet too big" message with a
2847 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2848 		 * will insert a 8-byte fragment header in every packet; we
2849 		 * reduce the MSS by that amount here.
2850 		 */
2851 		mss -= sizeof (ip6_frag_t);
2852 	}
2853 
2854 	if (tcp->tcp_ipsec_overhead == 0)
2855 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2856 
2857 	mss -= tcp->tcp_ipsec_overhead;
2858 
2859 	if (mss < tcp_mss_min)
2860 		mss = tcp_mss_min;
2861 	if (mss > mss_max)
2862 		mss = mss_max;
2863 
2864 	/* Note that this is the maximum MSS, excluding all options. */
2865 	tcp->tcp_mss = mss;
2866 
2867 	/*
2868 	 * Initialize the ISS here now that we have the full connection ID.
2869 	 * The RFC 1948 method of initial sequence number generation requires
2870 	 * knowledge of the full connection ID before setting the ISS.
2871 	 */
2872 
2873 	tcp_iss_init(tcp);
2874 
2875 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2876 		tcp->tcp_loopback = B_TRUE;
2877 
2878 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2879 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2880 	} else {
2881 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2882 	}
2883 
2884 	if (hsp != NULL) {
2885 		/* Only modify if we're going to make them bigger */
2886 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2887 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2888 			if (tcp_snd_lowat_fraction != 0)
2889 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2890 					tcp_snd_lowat_fraction;
2891 		}
2892 
2893 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2894 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2895 		}
2896 
2897 		/* Copy timestamp flag only for active open */
2898 		if (!tcp_detached)
2899 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2900 	}
2901 
2902 	if (sire != NULL)
2903 		IRE_REFRELE(sire);
2904 
2905 	/*
2906 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2907 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2908 	 */
2909 	if (tcp->tcp_loopback ||
2910 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2911 		/*
2912 		 * For incoming, see if this tcp may be MDT-capable.  For
2913 		 * outgoing, this process has been taken care of through
2914 		 * tcp_rput_other.
2915 		 */
2916 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2917 		tcp->tcp_ire_ill_check_done = B_TRUE;
2918 	}
2919 
2920 	mutex_enter(&connp->conn_lock);
2921 	/*
2922 	 * Make sure that conn is not marked incipient
2923 	 * for incoming connections. A blind
2924 	 * removal of incipient flag is cheaper than
2925 	 * check and removal.
2926 	 */
2927 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2928 
2929 	/* Must not cache forwarding table routes. */
2930 	if (ire_cacheable) {
2931 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2932 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2933 			connp->conn_ire_cache = ire;
2934 			IRE_UNTRACE_REF(ire);
2935 			rw_exit(&ire->ire_bucket->irb_lock);
2936 			mutex_exit(&connp->conn_lock);
2937 			return (1);
2938 		}
2939 		rw_exit(&ire->ire_bucket->irb_lock);
2940 	}
2941 	mutex_exit(&connp->conn_lock);
2942 
2943 	if (ire->ire_mp == NULL)
2944 		ire_refrele(ire);
2945 	return (1);
2946 
2947 error:
2948 	if (ire->ire_mp == NULL)
2949 		ire_refrele(ire);
2950 	if (sire != NULL)
2951 		ire_refrele(sire);
2952 	return (0);
2953 }
2954 
2955 /*
2956  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2957  * O_T_BIND_REQ/T_BIND_REQ message.
2958  */
2959 static void
2960 tcp_bind(tcp_t *tcp, mblk_t *mp)
2961 {
2962 	sin_t	*sin;
2963 	sin6_t	*sin6;
2964 	mblk_t	*mp1;
2965 	in_port_t requested_port;
2966 	in_port_t allocated_port;
2967 	struct T_bind_req *tbr;
2968 	boolean_t	bind_to_req_port_only;
2969 	boolean_t	backlog_update = B_FALSE;
2970 	boolean_t	user_specified;
2971 	in6_addr_t	v6addr;
2972 	ipaddr_t	v4addr;
2973 	uint_t	origipversion;
2974 	int	err;
2975 	queue_t *q = tcp->tcp_wq;
2976 	conn_t	*connp;
2977 	mlp_type_t addrtype, mlptype;
2978 	zone_t	*zone;
2979 	cred_t	*cr;
2980 	in_port_t mlp_port;
2981 
2982 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2983 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2984 		if (tcp->tcp_debug) {
2985 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2986 			    "tcp_bind: bad req, len %u",
2987 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2988 		}
2989 		tcp_err_ack(tcp, mp, TPROTO, 0);
2990 		return;
2991 	}
2992 	/* Make sure the largest address fits */
2993 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
2994 	if (mp1 == NULL) {
2995 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2996 		return;
2997 	}
2998 	mp = mp1;
2999 	tbr = (struct T_bind_req *)mp->b_rptr;
3000 	if (tcp->tcp_state >= TCPS_BOUND) {
3001 		if ((tcp->tcp_state == TCPS_BOUND ||
3002 		    tcp->tcp_state == TCPS_LISTEN) &&
3003 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3004 		    tbr->CONIND_number > 0) {
3005 			/*
3006 			 * Handle listen() increasing CONIND_number.
3007 			 * This is more "liberal" then what the TPI spec
3008 			 * requires but is needed to avoid a t_unbind
3009 			 * when handling listen() since the port number
3010 			 * might be "stolen" between the unbind and bind.
3011 			 */
3012 			backlog_update = B_TRUE;
3013 			goto do_bind;
3014 		}
3015 		if (tcp->tcp_debug) {
3016 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3017 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3018 		}
3019 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3020 		return;
3021 	}
3022 	origipversion = tcp->tcp_ipversion;
3023 
3024 	switch (tbr->ADDR_length) {
3025 	case 0:			/* request for a generic port */
3026 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3027 		if (tcp->tcp_family == AF_INET) {
3028 			tbr->ADDR_length = sizeof (sin_t);
3029 			sin = (sin_t *)&tbr[1];
3030 			*sin = sin_null;
3031 			sin->sin_family = AF_INET;
3032 			mp->b_wptr = (uchar_t *)&sin[1];
3033 			tcp->tcp_ipversion = IPV4_VERSION;
3034 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3035 		} else {
3036 			ASSERT(tcp->tcp_family == AF_INET6);
3037 			tbr->ADDR_length = sizeof (sin6_t);
3038 			sin6 = (sin6_t *)&tbr[1];
3039 			*sin6 = sin6_null;
3040 			sin6->sin6_family = AF_INET6;
3041 			mp->b_wptr = (uchar_t *)&sin6[1];
3042 			tcp->tcp_ipversion = IPV6_VERSION;
3043 			V6_SET_ZERO(v6addr);
3044 		}
3045 		requested_port = 0;
3046 		break;
3047 
3048 	case sizeof (sin_t):	/* Complete IPv4 address */
3049 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3050 		    sizeof (sin_t));
3051 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3052 			if (tcp->tcp_debug) {
3053 				(void) strlog(TCP_MOD_ID, 0, 1,
3054 				    SL_ERROR|SL_TRACE,
3055 				    "tcp_bind: bad address parameter, "
3056 				    "offset %d, len %d",
3057 				    tbr->ADDR_offset, tbr->ADDR_length);
3058 			}
3059 			tcp_err_ack(tcp, mp, TPROTO, 0);
3060 			return;
3061 		}
3062 		/*
3063 		 * With sockets sockfs will accept bogus sin_family in
3064 		 * bind() and replace it with the family used in the socket
3065 		 * call.
3066 		 */
3067 		if (sin->sin_family != AF_INET ||
3068 		    tcp->tcp_family != AF_INET) {
3069 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3070 			return;
3071 		}
3072 		requested_port = ntohs(sin->sin_port);
3073 		tcp->tcp_ipversion = IPV4_VERSION;
3074 		v4addr = sin->sin_addr.s_addr;
3075 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3076 		break;
3077 
3078 	case sizeof (sin6_t): /* Complete IPv6 address */
3079 		sin6 = (sin6_t *)mi_offset_param(mp,
3080 		    tbr->ADDR_offset, sizeof (sin6_t));
3081 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3082 			if (tcp->tcp_debug) {
3083 				(void) strlog(TCP_MOD_ID, 0, 1,
3084 				    SL_ERROR|SL_TRACE,
3085 				    "tcp_bind: bad IPv6 address parameter, "
3086 				    "offset %d, len %d", tbr->ADDR_offset,
3087 				    tbr->ADDR_length);
3088 			}
3089 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3090 			return;
3091 		}
3092 		if (sin6->sin6_family != AF_INET6 ||
3093 		    tcp->tcp_family != AF_INET6) {
3094 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3095 			return;
3096 		}
3097 		requested_port = ntohs(sin6->sin6_port);
3098 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3099 		    IPV4_VERSION : IPV6_VERSION;
3100 		v6addr = sin6->sin6_addr;
3101 		break;
3102 
3103 	default:
3104 		if (tcp->tcp_debug) {
3105 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3106 			    "tcp_bind: bad address length, %d",
3107 			    tbr->ADDR_length);
3108 		}
3109 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3110 		return;
3111 	}
3112 	tcp->tcp_bound_source_v6 = v6addr;
3113 
3114 	/* Check for change in ipversion */
3115 	if (origipversion != tcp->tcp_ipversion) {
3116 		ASSERT(tcp->tcp_family == AF_INET6);
3117 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3118 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3119 		if (err) {
3120 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3121 			return;
3122 		}
3123 	}
3124 
3125 	/*
3126 	 * Initialize family specific fields. Copy of the src addr.
3127 	 * in tcp_t is needed for the lookup funcs.
3128 	 */
3129 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3130 		tcp->tcp_ip6h->ip6_src = v6addr;
3131 	} else {
3132 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3133 	}
3134 	tcp->tcp_ip_src_v6 = v6addr;
3135 
3136 	/*
3137 	 * For O_T_BIND_REQ:
3138 	 * Verify that the target port/addr is available, or choose
3139 	 * another.
3140 	 * For  T_BIND_REQ:
3141 	 * Verify that the target port/addr is available or fail.
3142 	 * In both cases when it succeeds the tcp is inserted in the
3143 	 * bind hash table. This ensures that the operation is atomic
3144 	 * under the lock on the hash bucket.
3145 	 */
3146 	bind_to_req_port_only = requested_port != 0 &&
3147 	    tbr->PRIM_type != O_T_BIND_REQ;
3148 	/*
3149 	 * Get a valid port (within the anonymous range and should not
3150 	 * be a privileged one) to use if the user has not given a port.
3151 	 * If multiple threads are here, they may all start with
3152 	 * with the same initial port. But, it should be fine as long as
3153 	 * tcp_bindi will ensure that no two threads will be assigned
3154 	 * the same port.
3155 	 *
3156 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3157 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3158 	 * unless TCP_ANONPRIVBIND option is set.
3159 	 */
3160 	mlptype = mlptSingle;
3161 	mlp_port = requested_port;
3162 	if (requested_port == 0) {
3163 		requested_port = tcp->tcp_anon_priv_bind ?
3164 		    tcp_get_next_priv_port(tcp) :
3165 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3166 		if (requested_port == 0) {
3167 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3168 			return;
3169 		}
3170 		user_specified = B_FALSE;
3171 
3172 		/*
3173 		 * If the user went through one of the RPC interfaces to create
3174 		 * this socket and RPC is MLP in this zone, then give him an
3175 		 * anonymous MLP.
3176 		 */
3177 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3178 		connp = tcp->tcp_connp;
3179 		if (connp->conn_anon_mlp && is_system_labeled()) {
3180 			zone = crgetzone(cr);
3181 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3182 			    IPV6_VERSION, &v6addr);
3183 			if (addrtype == mlptSingle) {
3184 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3185 				return;
3186 			}
3187 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3188 			    PMAPPORT, addrtype);
3189 			mlp_port = PMAPPORT;
3190 		}
3191 	} else {
3192 		int i;
3193 		boolean_t priv = B_FALSE;
3194 
3195 		/*
3196 		 * If the requested_port is in the well-known privileged range,
3197 		 * verify that the stream was opened by a privileged user.
3198 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3199 		 * but instead the code relies on:
3200 		 * - the fact that the address of the array and its size never
3201 		 *   changes
3202 		 * - the atomic assignment of the elements of the array
3203 		 */
3204 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3205 		if (requested_port < tcp_smallest_nonpriv_port) {
3206 			priv = B_TRUE;
3207 		} else {
3208 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3209 				if (requested_port ==
3210 				    tcp_g_epriv_ports[i]) {
3211 					priv = B_TRUE;
3212 					break;
3213 				}
3214 			}
3215 		}
3216 		if (priv) {
3217 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3218 				if (tcp->tcp_debug) {
3219 					(void) strlog(TCP_MOD_ID, 0, 1,
3220 					    SL_ERROR|SL_TRACE,
3221 					    "tcp_bind: no priv for port %d",
3222 					    requested_port);
3223 				}
3224 				tcp_err_ack(tcp, mp, TACCES, 0);
3225 				return;
3226 			}
3227 		}
3228 		user_specified = B_TRUE;
3229 
3230 		connp = tcp->tcp_connp;
3231 		if (is_system_labeled()) {
3232 			zone = crgetzone(cr);
3233 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3234 			    IPV6_VERSION, &v6addr);
3235 			if (addrtype == mlptSingle) {
3236 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3237 				return;
3238 			}
3239 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3240 			    requested_port, addrtype);
3241 		}
3242 	}
3243 
3244 	if (mlptype != mlptSingle) {
3245 		if (secpolicy_net_bindmlp(cr) != 0) {
3246 			if (tcp->tcp_debug) {
3247 				(void) strlog(TCP_MOD_ID, 0, 1,
3248 				    SL_ERROR|SL_TRACE,
3249 				    "tcp_bind: no priv for multilevel port %d",
3250 				    requested_port);
3251 			}
3252 			tcp_err_ack(tcp, mp, TACCES, 0);
3253 			return;
3254 		}
3255 
3256 		/*
3257 		 * If we're specifically binding a shared IP address and the
3258 		 * port is MLP on shared addresses, then check to see if this
3259 		 * zone actually owns the MLP.  Reject if not.
3260 		 */
3261 		if (mlptype == mlptShared && addrtype == mlptShared) {
3262 			zoneid_t mlpzone;
3263 
3264 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3265 			    htons(mlp_port));
3266 			if (connp->conn_zoneid != mlpzone) {
3267 				if (tcp->tcp_debug) {
3268 					(void) strlog(TCP_MOD_ID, 0, 1,
3269 					    SL_ERROR|SL_TRACE,
3270 					    "tcp_bind: attempt to bind port "
3271 					    "%d on shared addr in zone %d "
3272 					    "(should be %d)",
3273 					    mlp_port, connp->conn_zoneid,
3274 					    mlpzone);
3275 				}
3276 				tcp_err_ack(tcp, mp, TACCES, 0);
3277 				return;
3278 			}
3279 		}
3280 
3281 		if (!user_specified) {
3282 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3283 			    requested_port, B_TRUE);
3284 			if (err != 0) {
3285 				if (tcp->tcp_debug) {
3286 					(void) strlog(TCP_MOD_ID, 0, 1,
3287 					    SL_ERROR|SL_TRACE,
3288 					    "tcp_bind: cannot establish anon "
3289 					    "MLP for port %d",
3290 					    requested_port);
3291 				}
3292 				tcp_err_ack(tcp, mp, TSYSERR, err);
3293 				return;
3294 			}
3295 			connp->conn_anon_port = B_TRUE;
3296 		}
3297 		connp->conn_mlp_type = mlptype;
3298 	}
3299 
3300 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3301 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3302 
3303 	if (allocated_port == 0) {
3304 		connp->conn_mlp_type = mlptSingle;
3305 		if (connp->conn_anon_port) {
3306 			connp->conn_anon_port = B_FALSE;
3307 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3308 			    requested_port, B_FALSE);
3309 		}
3310 		if (bind_to_req_port_only) {
3311 			if (tcp->tcp_debug) {
3312 				(void) strlog(TCP_MOD_ID, 0, 1,
3313 				    SL_ERROR|SL_TRACE,
3314 				    "tcp_bind: requested addr busy");
3315 			}
3316 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3317 		} else {
3318 			/* If we are out of ports, fail the bind. */
3319 			if (tcp->tcp_debug) {
3320 				(void) strlog(TCP_MOD_ID, 0, 1,
3321 				    SL_ERROR|SL_TRACE,
3322 				    "tcp_bind: out of ports?");
3323 			}
3324 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3325 		}
3326 		return;
3327 	}
3328 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3329 do_bind:
3330 	if (!backlog_update) {
3331 		if (tcp->tcp_family == AF_INET)
3332 			sin->sin_port = htons(allocated_port);
3333 		else
3334 			sin6->sin6_port = htons(allocated_port);
3335 	}
3336 	if (tcp->tcp_family == AF_INET) {
3337 		if (tbr->CONIND_number != 0) {
3338 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3339 			    sizeof (sin_t));
3340 		} else {
3341 			/* Just verify the local IP address */
3342 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3343 		}
3344 	} else {
3345 		if (tbr->CONIND_number != 0) {
3346 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3347 			    sizeof (sin6_t));
3348 		} else {
3349 			/* Just verify the local IP address */
3350 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3351 			    IPV6_ADDR_LEN);
3352 		}
3353 	}
3354 	if (mp1 == NULL) {
3355 		if (connp->conn_anon_port) {
3356 			connp->conn_anon_port = B_FALSE;
3357 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3358 			    requested_port, B_FALSE);
3359 		}
3360 		connp->conn_mlp_type = mlptSingle;
3361 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3362 		return;
3363 	}
3364 
3365 	tbr->PRIM_type = T_BIND_ACK;
3366 	mp->b_datap->db_type = M_PCPROTO;
3367 
3368 	/* Chain in the reply mp for tcp_rput() */
3369 	mp1->b_cont = mp;
3370 	mp = mp1;
3371 
3372 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3373 	if (tcp->tcp_conn_req_max) {
3374 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3375 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3376 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3377 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3378 		/*
3379 		 * If this is a listener, do not reset the eager list
3380 		 * and other stuffs.  Note that we don't check if the
3381 		 * existing eager list meets the new tcp_conn_req_max
3382 		 * requirement.
3383 		 */
3384 		if (tcp->tcp_state != TCPS_LISTEN) {
3385 			tcp->tcp_state = TCPS_LISTEN;
3386 			/* Initialize the chain. Don't need the eager_lock */
3387 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3388 			tcp->tcp_second_ctimer_threshold =
3389 			    tcp_ip_abort_linterval;
3390 		}
3391 	}
3392 
3393 	/*
3394 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3395 	 * processing continues in tcp_rput_other().
3396 	 */
3397 	if (tcp->tcp_family == AF_INET6) {
3398 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3399 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3400 	} else {
3401 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3402 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3403 	}
3404 	/*
3405 	 * If the bind cannot complete immediately
3406 	 * IP will arrange to call tcp_rput_other
3407 	 * when the bind completes.
3408 	 */
3409 	if (mp != NULL) {
3410 		tcp_rput_other(tcp, mp);
3411 	} else {
3412 		/*
3413 		 * Bind will be resumed later. Need to ensure
3414 		 * that conn doesn't disappear when that happens.
3415 		 * This will be decremented in ip_resume_tcp_bind().
3416 		 */
3417 		CONN_INC_REF(tcp->tcp_connp);
3418 	}
3419 }
3420 
3421 
3422 /*
3423  * If the "bind_to_req_port_only" parameter is set, if the requested port
3424  * number is available, return it, If not return 0
3425  *
3426  * If "bind_to_req_port_only" parameter is not set and
3427  * If the requested port number is available, return it.  If not, return
3428  * the first anonymous port we happen across.  If no anonymous ports are
3429  * available, return 0. addr is the requested local address, if any.
3430  *
3431  * In either case, when succeeding update the tcp_t to record the port number
3432  * and insert it in the bind hash table.
3433  *
3434  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3435  * without setting SO_REUSEADDR. This is needed so that they
3436  * can be viewed as two independent transport protocols.
3437  */
3438 static in_port_t
3439 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3440     int reuseaddr, boolean_t quick_connect,
3441     boolean_t bind_to_req_port_only, boolean_t user_specified)
3442 {
3443 	/* number of times we have run around the loop */
3444 	int count = 0;
3445 	/* maximum number of times to run around the loop */
3446 	int loopmax;
3447 	conn_t *connp = tcp->tcp_connp;
3448 	zoneid_t zoneid = connp->conn_zoneid;
3449 
3450 	/*
3451 	 * Lookup for free addresses is done in a loop and "loopmax"
3452 	 * influences how long we spin in the loop
3453 	 */
3454 	if (bind_to_req_port_only) {
3455 		/*
3456 		 * If the requested port is busy, don't bother to look
3457 		 * for a new one. Setting loop maximum count to 1 has
3458 		 * that effect.
3459 		 */
3460 		loopmax = 1;
3461 	} else {
3462 		/*
3463 		 * If the requested port is busy, look for a free one
3464 		 * in the anonymous port range.
3465 		 * Set loopmax appropriately so that one does not look
3466 		 * forever in the case all of the anonymous ports are in use.
3467 		 */
3468 		if (tcp->tcp_anon_priv_bind) {
3469 			/*
3470 			 * loopmax =
3471 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3472 			 */
3473 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3474 		} else {
3475 			loopmax = (tcp_largest_anon_port -
3476 			    tcp_smallest_anon_port + 1);
3477 		}
3478 	}
3479 	do {
3480 		uint16_t	lport;
3481 		tf_t		*tbf;
3482 		tcp_t		*ltcp;
3483 		conn_t		*lconnp;
3484 
3485 		lport = htons(port);
3486 
3487 		/*
3488 		 * Ensure that the tcp_t is not currently in the bind hash.
3489 		 * Hold the lock on the hash bucket to ensure that
3490 		 * the duplicate check plus the insertion is an atomic
3491 		 * operation.
3492 		 *
3493 		 * This function does an inline lookup on the bind hash list
3494 		 * Make sure that we access only members of tcp_t
3495 		 * and that we don't look at tcp_tcp, since we are not
3496 		 * doing a CONN_INC_REF.
3497 		 */
3498 		tcp_bind_hash_remove(tcp);
3499 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3500 		mutex_enter(&tbf->tf_lock);
3501 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3502 		    ltcp = ltcp->tcp_bind_hash) {
3503 			if (lport != ltcp->tcp_lport)
3504 				continue;
3505 
3506 			lconnp = ltcp->tcp_connp;
3507 
3508 			/*
3509 			 * On a labeled system, we must treat bindings to ports
3510 			 * on shared IP addresses by sockets with MAC exemption
3511 			 * privilege as being in all zones, as there's
3512 			 * otherwise no way to identify the right receiver.
3513 			 */
3514 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3515 			    !lconnp->conn_mac_exempt &&
3516 			    !connp->conn_mac_exempt)
3517 				continue;
3518 
3519 			/*
3520 			 * If TCP_EXCLBIND is set for either the bound or
3521 			 * binding endpoint, the semantics of bind
3522 			 * is changed according to the following.
3523 			 *
3524 			 * spec = specified address (v4 or v6)
3525 			 * unspec = unspecified address (v4 or v6)
3526 			 * A = specified addresses are different for endpoints
3527 			 *
3528 			 * bound	bind to		allowed
3529 			 * -------------------------------------
3530 			 * unspec	unspec		no
3531 			 * unspec	spec		no
3532 			 * spec		unspec		no
3533 			 * spec		spec		yes if A
3534 			 *
3535 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3536 			 * as UDP_EXCLBIND, except that zoneid is ignored.
3537 			 *
3538 			 * Note:
3539 			 *
3540 			 * 1. Because of TLI semantics, an endpoint can go
3541 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3542 			 * TCPS_BOUND, depending on whether it is originally
3543 			 * a listener or not.  That is why we need to check
3544 			 * for states greater than or equal to TCPS_BOUND
3545 			 * here.
3546 			 *
3547 			 * 2. Ideally, we should only check for state equals
3548 			 * to TCPS_LISTEN. And the following check should be
3549 			 * added.
3550 			 *
3551 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3552 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3553 			 *		...
3554 			 * }
3555 			 *
3556 			 * The semantics will be changed to this.  If the
3557 			 * endpoint on the list is in state not equal to
3558 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3559 			 * set, let the bind succeed.
3560 			 *
3561 			 * But because of (1), we cannot do that now.  If
3562 			 * in future, we can change this going back semantics,
3563 			 * we can add the above check.
3564 			 */
3565 			if (ltcp->tcp_exclbind || tcp->tcp_exclbind ||
3566 			    lconnp->conn_mac_exempt || connp->conn_mac_exempt) {
3567 				if (V6_OR_V4_INADDR_ANY(
3568 				    ltcp->tcp_bound_source_v6) ||
3569 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3570 				    IN6_ARE_ADDR_EQUAL(laddr,
3571 				    &ltcp->tcp_bound_source_v6)) {
3572 					break;
3573 				}
3574 				continue;
3575 			}
3576 
3577 			/*
3578 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3579 			 * have disjoint port number spaces, if *_EXCLBIND
3580 			 * is not set and only if the application binds to a
3581 			 * specific port. We use the same autoassigned port
3582 			 * number space for IPv4 and IPv6 sockets.
3583 			 */
3584 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3585 			    bind_to_req_port_only)
3586 				continue;
3587 
3588 			/*
3589 			 * Ideally, we should make sure that the source
3590 			 * address, remote address, and remote port in the
3591 			 * four tuple for this tcp-connection is unique.
3592 			 * However, trying to find out the local source
3593 			 * address would require too much code duplication
3594 			 * with IP, since IP needs needs to have that code
3595 			 * to support userland TCP implementations.
3596 			 */
3597 			if (quick_connect &&
3598 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3599 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3600 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3601 				    &ltcp->tcp_remote_v6)))
3602 				continue;
3603 
3604 			if (!reuseaddr) {
3605 				/*
3606 				 * No socket option SO_REUSEADDR.
3607 				 * If existing port is bound to
3608 				 * a non-wildcard IP address
3609 				 * and the requesting stream is
3610 				 * bound to a distinct
3611 				 * different IP addresses
3612 				 * (non-wildcard, also), keep
3613 				 * going.
3614 				 */
3615 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3616 				    !V6_OR_V4_INADDR_ANY(
3617 				    ltcp->tcp_bound_source_v6) &&
3618 				    !IN6_ARE_ADDR_EQUAL(laddr,
3619 					&ltcp->tcp_bound_source_v6))
3620 					continue;
3621 				if (ltcp->tcp_state >= TCPS_BOUND) {
3622 					/*
3623 					 * This port is being used and
3624 					 * its state is >= TCPS_BOUND,
3625 					 * so we can't bind to it.
3626 					 */
3627 					break;
3628 				}
3629 			} else {
3630 				/*
3631 				 * socket option SO_REUSEADDR is set on the
3632 				 * binding tcp_t.
3633 				 *
3634 				 * If two streams are bound to
3635 				 * same IP address or both addr
3636 				 * and bound source are wildcards
3637 				 * (INADDR_ANY), we want to stop
3638 				 * searching.
3639 				 * We have found a match of IP source
3640 				 * address and source port, which is
3641 				 * refused regardless of the
3642 				 * SO_REUSEADDR setting, so we break.
3643 				 */
3644 				if (IN6_ARE_ADDR_EQUAL(laddr,
3645 				    &ltcp->tcp_bound_source_v6) &&
3646 				    (ltcp->tcp_state == TCPS_LISTEN ||
3647 					ltcp->tcp_state == TCPS_BOUND))
3648 					break;
3649 			}
3650 		}
3651 		if (ltcp != NULL) {
3652 			/* The port number is busy */
3653 			mutex_exit(&tbf->tf_lock);
3654 		} else {
3655 			/*
3656 			 * This port is ours. Insert in fanout and mark as
3657 			 * bound to prevent others from getting the port
3658 			 * number.
3659 			 */
3660 			tcp->tcp_state = TCPS_BOUND;
3661 			tcp->tcp_lport = htons(port);
3662 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3663 
3664 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3665 			    tcp->tcp_lport)] == tbf);
3666 			tcp_bind_hash_insert(tbf, tcp, 1);
3667 
3668 			mutex_exit(&tbf->tf_lock);
3669 
3670 			/*
3671 			 * We don't want tcp_next_port_to_try to "inherit"
3672 			 * a port number supplied by the user in a bind.
3673 			 */
3674 			if (user_specified)
3675 				return (port);
3676 
3677 			/*
3678 			 * This is the only place where tcp_next_port_to_try
3679 			 * is updated. After the update, it may or may not
3680 			 * be in the valid range.
3681 			 */
3682 			if (!tcp->tcp_anon_priv_bind)
3683 				tcp_next_port_to_try = port + 1;
3684 			return (port);
3685 		}
3686 
3687 		if (tcp->tcp_anon_priv_bind) {
3688 			port = tcp_get_next_priv_port(tcp);
3689 		} else {
3690 			if (count == 0 && user_specified) {
3691 				/*
3692 				 * We may have to return an anonymous port. So
3693 				 * get one to start with.
3694 				 */
3695 				port =
3696 				    tcp_update_next_port(tcp_next_port_to_try,
3697 					tcp, B_TRUE);
3698 				user_specified = B_FALSE;
3699 			} else {
3700 				port = tcp_update_next_port(port + 1, tcp,
3701 				    B_FALSE);
3702 			}
3703 		}
3704 		if (port == 0)
3705 			break;
3706 
3707 		/*
3708 		 * Don't let this loop run forever in the case where
3709 		 * all of the anonymous ports are in use.
3710 		 */
3711 	} while (++count < loopmax);
3712 	return (0);
3713 }
3714 
3715 /*
3716  * We are dying for some reason.  Try to do it gracefully.  (May be called
3717  * as writer.)
3718  *
3719  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3720  * done by a service procedure).
3721  * TBD - Should the return value distinguish between the tcp_t being
3722  * freed and it being reinitialized?
3723  */
3724 static int
3725 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3726 {
3727 	mblk_t	*mp;
3728 	queue_t	*q;
3729 
3730 	TCP_CLD_STAT(tag);
3731 
3732 #if TCP_TAG_CLEAN_DEATH
3733 	tcp->tcp_cleandeathtag = tag;
3734 #endif
3735 
3736 	if (tcp->tcp_fused)
3737 		tcp_unfuse(tcp);
3738 
3739 	if (tcp->tcp_linger_tid != 0 &&
3740 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3741 		tcp_stop_lingering(tcp);
3742 	}
3743 
3744 	ASSERT(tcp != NULL);
3745 	ASSERT((tcp->tcp_family == AF_INET &&
3746 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3747 	    (tcp->tcp_family == AF_INET6 &&
3748 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3749 	    tcp->tcp_ipversion == IPV6_VERSION)));
3750 
3751 	if (TCP_IS_DETACHED(tcp)) {
3752 		if (tcp->tcp_hard_binding) {
3753 			/*
3754 			 * Its an eager that we are dealing with. We close the
3755 			 * eager but in case a conn_ind has already gone to the
3756 			 * listener, let tcp_accept_finish() send a discon_ind
3757 			 * to the listener and drop the last reference. If the
3758 			 * listener doesn't even know about the eager i.e. the
3759 			 * conn_ind hasn't gone up, blow away the eager and drop
3760 			 * the last reference as well. If the conn_ind has gone
3761 			 * up, state should be BOUND. tcp_accept_finish
3762 			 * will figure out that the connection has received a
3763 			 * RST and will send a DISCON_IND to the application.
3764 			 */
3765 			tcp_closei_local(tcp);
3766 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
3767 				CONN_DEC_REF(tcp->tcp_connp);
3768 			} else {
3769 				tcp->tcp_state = TCPS_BOUND;
3770 			}
3771 		} else {
3772 			tcp_close_detached(tcp);
3773 		}
3774 		return (0);
3775 	}
3776 
3777 	TCP_STAT(tcp_clean_death_nondetached);
3778 
3779 	/*
3780 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3781 	 * is run) postpone cleaning up the endpoint until service routine
3782 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3783 	 * client_errno since tcp_close uses the client_errno field.
3784 	 */
3785 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3786 		if (err != 0)
3787 			tcp->tcp_client_errno = err;
3788 
3789 		tcp->tcp_deferred_clean_death = B_TRUE;
3790 		return (-1);
3791 	}
3792 
3793 	q = tcp->tcp_rq;
3794 
3795 	/* Trash all inbound data */
3796 	flushq(q, FLUSHALL);
3797 
3798 	/*
3799 	 * If we are at least part way open and there is error
3800 	 * (err==0 implies no error)
3801 	 * notify our client by a T_DISCON_IND.
3802 	 */
3803 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3804 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3805 		    !TCP_IS_SOCKET(tcp)) {
3806 			/*
3807 			 * Send M_FLUSH according to TPI. Because sockets will
3808 			 * (and must) ignore FLUSHR we do that only for TPI
3809 			 * endpoints and sockets in STREAMS mode.
3810 			 */
3811 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3812 		}
3813 		if (tcp->tcp_debug) {
3814 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3815 			    "tcp_clean_death: discon err %d", err);
3816 		}
3817 		mp = mi_tpi_discon_ind(NULL, err, 0);
3818 		if (mp != NULL) {
3819 			putnext(q, mp);
3820 		} else {
3821 			if (tcp->tcp_debug) {
3822 				(void) strlog(TCP_MOD_ID, 0, 1,
3823 				    SL_ERROR|SL_TRACE,
3824 				    "tcp_clean_death, sending M_ERROR");
3825 			}
3826 			(void) putnextctl1(q, M_ERROR, EPROTO);
3827 		}
3828 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3829 			/* SYN_SENT or SYN_RCVD */
3830 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3831 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3832 			/* ESTABLISHED or CLOSE_WAIT */
3833 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3834 		}
3835 	}
3836 
3837 	tcp_reinit(tcp);
3838 	return (-1);
3839 }
3840 
3841 /*
3842  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3843  * to expire, stop the wait and finish the close.
3844  */
3845 static void
3846 tcp_stop_lingering(tcp_t *tcp)
3847 {
3848 	clock_t	delta = 0;
3849 
3850 	tcp->tcp_linger_tid = 0;
3851 	if (tcp->tcp_state > TCPS_LISTEN) {
3852 		tcp_acceptor_hash_remove(tcp);
3853 		if (tcp->tcp_flow_stopped) {
3854 			tcp_clrqfull(tcp);
3855 		}
3856 
3857 		if (tcp->tcp_timer_tid != 0) {
3858 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3859 			tcp->tcp_timer_tid = 0;
3860 		}
3861 		/*
3862 		 * Need to cancel those timers which will not be used when
3863 		 * TCP is detached.  This has to be done before the tcp_wq
3864 		 * is set to the global queue.
3865 		 */
3866 		tcp_timers_stop(tcp);
3867 
3868 
3869 		tcp->tcp_detached = B_TRUE;
3870 		tcp->tcp_rq = tcp_g_q;
3871 		tcp->tcp_wq = WR(tcp_g_q);
3872 
3873 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3874 			tcp_time_wait_append(tcp);
3875 			TCP_DBGSTAT(tcp_detach_time_wait);
3876 			goto finish;
3877 		}
3878 
3879 		/*
3880 		 * If delta is zero the timer event wasn't executed and was
3881 		 * successfully canceled. In this case we need to restart it
3882 		 * with the minimal delta possible.
3883 		 */
3884 		if (delta >= 0) {
3885 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3886 			    delta ? delta : 1);
3887 		}
3888 	} else {
3889 		tcp_closei_local(tcp);
3890 		CONN_DEC_REF(tcp->tcp_connp);
3891 	}
3892 finish:
3893 	/* Signal closing thread that it can complete close */
3894 	mutex_enter(&tcp->tcp_closelock);
3895 	tcp->tcp_detached = B_TRUE;
3896 	tcp->tcp_rq = tcp_g_q;
3897 	tcp->tcp_wq = WR(tcp_g_q);
3898 	tcp->tcp_closed = 1;
3899 	cv_signal(&tcp->tcp_closecv);
3900 	mutex_exit(&tcp->tcp_closelock);
3901 }
3902 
3903 /*
3904  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3905  * expires.
3906  */
3907 static void
3908 tcp_close_linger_timeout(void *arg)
3909 {
3910 	conn_t	*connp = (conn_t *)arg;
3911 	tcp_t 	*tcp = connp->conn_tcp;
3912 
3913 	tcp->tcp_client_errno = ETIMEDOUT;
3914 	tcp_stop_lingering(tcp);
3915 }
3916 
3917 static int
3918 tcp_close(queue_t *q, int flags)
3919 {
3920 	conn_t		*connp = Q_TO_CONN(q);
3921 	tcp_t		*tcp = connp->conn_tcp;
3922 	mblk_t 		*mp = &tcp->tcp_closemp;
3923 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3924 
3925 	ASSERT(WR(q)->q_next == NULL);
3926 	ASSERT(connp->conn_ref >= 2);
3927 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3928 
3929 	/*
3930 	 * We are being closed as /dev/tcp or /dev/tcp6.
3931 	 *
3932 	 * Mark the conn as closing. ill_pending_mp_add will not
3933 	 * add any mp to the pending mp list, after this conn has
3934 	 * started closing. Same for sq_pending_mp_add
3935 	 */
3936 	mutex_enter(&connp->conn_lock);
3937 	connp->conn_state_flags |= CONN_CLOSING;
3938 	if (connp->conn_oper_pending_ill != NULL)
3939 		conn_ioctl_cleanup_reqd = B_TRUE;
3940 	CONN_INC_REF_LOCKED(connp);
3941 	mutex_exit(&connp->conn_lock);
3942 	tcp->tcp_closeflags = (uint8_t)flags;
3943 	ASSERT(connp->conn_ref >= 3);
3944 
3945 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
3946 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
3947 
3948 	mutex_enter(&tcp->tcp_closelock);
3949 
3950 	while (!tcp->tcp_closed)
3951 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3952 	mutex_exit(&tcp->tcp_closelock);
3953 	/*
3954 	 * In the case of listener streams that have eagers in the q or q0
3955 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3956 	 * tcp_wq of the eagers point to our queues. By waiting for the
3957 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3958 	 * up their queue pointers and also dropped their references to us.
3959 	 */
3960 	if (tcp->tcp_wait_for_eagers) {
3961 		mutex_enter(&connp->conn_lock);
3962 		while (connp->conn_ref != 1) {
3963 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3964 		}
3965 		mutex_exit(&connp->conn_lock);
3966 	}
3967 	/*
3968 	 * ioctl cleanup. The mp is queued in the
3969 	 * ill_pending_mp or in the sq_pending_mp.
3970 	 */
3971 	if (conn_ioctl_cleanup_reqd)
3972 		conn_ioctl_cleanup(connp);
3973 
3974 	qprocsoff(q);
3975 	inet_minor_free(ip_minor_arena, connp->conn_dev);
3976 
3977 	tcp->tcp_cpid = -1;
3978 
3979 	/*
3980 	 * Drop IP's reference on the conn. This is the last reference
3981 	 * on the connp if the state was less than established. If the
3982 	 * connection has gone into timewait state, then we will have
3983 	 * one ref for the TCP and one more ref (total of two) for the
3984 	 * classifier connected hash list (a timewait connections stays
3985 	 * in connected hash till closed).
3986 	 *
3987 	 * We can't assert the references because there might be other
3988 	 * transient reference places because of some walkers or queued
3989 	 * packets in squeue for the timewait state.
3990 	 */
3991 	CONN_DEC_REF(connp);
3992 	q->q_ptr = WR(q)->q_ptr = NULL;
3993 	return (0);
3994 }
3995 
3996 static int
3997 tcpclose_accept(queue_t *q)
3998 {
3999 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4000 
4001 	/*
4002 	 * We had opened an acceptor STREAM for sockfs which is
4003 	 * now being closed due to some error.
4004 	 */
4005 	qprocsoff(q);
4006 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4007 	q->q_ptr = WR(q)->q_ptr = NULL;
4008 	return (0);
4009 }
4010 
4011 
4012 /*
4013  * Called by streams close routine via squeues when our client blows off her
4014  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4015  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4016  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4017  * acked.
4018  *
4019  * NOTE: tcp_close potentially returns error when lingering.
4020  * However, the stream head currently does not pass these errors
4021  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4022  * errors to the application (from tsleep()) and not errors
4023  * like ECONNRESET caused by receiving a reset packet.
4024  */
4025 
4026 /* ARGSUSED */
4027 static void
4028 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4029 {
4030 	char	*msg;
4031 	conn_t	*connp = (conn_t *)arg;
4032 	tcp_t	*tcp = connp->conn_tcp;
4033 	clock_t	delta = 0;
4034 
4035 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4036 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4037 
4038 	/* Cancel any pending timeout */
4039 	if (tcp->tcp_ordrelid != 0) {
4040 		if (tcp->tcp_timeout) {
4041 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4042 		}
4043 		tcp->tcp_ordrelid = 0;
4044 		tcp->tcp_timeout = B_FALSE;
4045 	}
4046 
4047 	mutex_enter(&tcp->tcp_eager_lock);
4048 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4049 		/* Cleanup for listener */
4050 		tcp_eager_cleanup(tcp, 0);
4051 		tcp->tcp_wait_for_eagers = 1;
4052 	}
4053 	mutex_exit(&tcp->tcp_eager_lock);
4054 
4055 	connp->conn_mdt_ok = B_FALSE;
4056 	tcp->tcp_mdt = B_FALSE;
4057 
4058 	msg = NULL;
4059 	switch (tcp->tcp_state) {
4060 	case TCPS_CLOSED:
4061 	case TCPS_IDLE:
4062 	case TCPS_BOUND:
4063 	case TCPS_LISTEN:
4064 		break;
4065 	case TCPS_SYN_SENT:
4066 		msg = "tcp_close, during connect";
4067 		break;
4068 	case TCPS_SYN_RCVD:
4069 		/*
4070 		 * Close during the connect 3-way handshake
4071 		 * but here there may or may not be pending data
4072 		 * already on queue. Process almost same as in
4073 		 * the ESTABLISHED state.
4074 		 */
4075 		/* FALLTHRU */
4076 	default:
4077 		if (tcp->tcp_fused)
4078 			tcp_unfuse(tcp);
4079 
4080 		/*
4081 		 * If SO_LINGER has set a zero linger time, abort the
4082 		 * connection with a reset.
4083 		 */
4084 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4085 			msg = "tcp_close, zero lingertime";
4086 			break;
4087 		}
4088 
4089 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4090 		/*
4091 		 * Abort connection if there is unread data queued.
4092 		 */
4093 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4094 			msg = "tcp_close, unread data";
4095 			break;
4096 		}
4097 		/*
4098 		 * tcp_hard_bound is now cleared thus all packets go through
4099 		 * tcp_lookup. This fact is used by tcp_detach below.
4100 		 *
4101 		 * We have done a qwait() above which could have possibly
4102 		 * drained more messages in turn causing transition to a
4103 		 * different state. Check whether we have to do the rest
4104 		 * of the processing or not.
4105 		 */
4106 		if (tcp->tcp_state <= TCPS_LISTEN)
4107 			break;
4108 
4109 		/*
4110 		 * Transmit the FIN before detaching the tcp_t.
4111 		 * After tcp_detach returns this queue/perimeter
4112 		 * no longer owns the tcp_t thus others can modify it.
4113 		 */
4114 		(void) tcp_xmit_end(tcp);
4115 
4116 		/*
4117 		 * If lingering on close then wait until the fin is acked,
4118 		 * the SO_LINGER time passes, or a reset is sent/received.
4119 		 */
4120 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4121 		    !(tcp->tcp_fin_acked) &&
4122 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4123 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4124 				tcp->tcp_client_errno = EWOULDBLOCK;
4125 			} else if (tcp->tcp_client_errno == 0) {
4126 
4127 				ASSERT(tcp->tcp_linger_tid == 0);
4128 
4129 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4130 				    tcp_close_linger_timeout,
4131 				    tcp->tcp_lingertime * hz);
4132 
4133 				/* tcp_close_linger_timeout will finish close */
4134 				if (tcp->tcp_linger_tid == 0)
4135 					tcp->tcp_client_errno = ENOSR;
4136 				else
4137 					return;
4138 			}
4139 
4140 			/*
4141 			 * Check if we need to detach or just close
4142 			 * the instance.
4143 			 */
4144 			if (tcp->tcp_state <= TCPS_LISTEN)
4145 				break;
4146 		}
4147 
4148 		/*
4149 		 * Make sure that no other thread will access the tcp_rq of
4150 		 * this instance (through lookups etc.) as tcp_rq will go
4151 		 * away shortly.
4152 		 */
4153 		tcp_acceptor_hash_remove(tcp);
4154 
4155 		if (tcp->tcp_flow_stopped) {
4156 			tcp_clrqfull(tcp);
4157 		}
4158 
4159 		if (tcp->tcp_timer_tid != 0) {
4160 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4161 			tcp->tcp_timer_tid = 0;
4162 		}
4163 		/*
4164 		 * Need to cancel those timers which will not be used when
4165 		 * TCP is detached.  This has to be done before the tcp_wq
4166 		 * is set to the global queue.
4167 		 */
4168 		tcp_timers_stop(tcp);
4169 
4170 		tcp->tcp_detached = B_TRUE;
4171 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4172 			tcp_time_wait_append(tcp);
4173 			TCP_DBGSTAT(tcp_detach_time_wait);
4174 			ASSERT(connp->conn_ref >= 3);
4175 			goto finish;
4176 		}
4177 
4178 		/*
4179 		 * If delta is zero the timer event wasn't executed and was
4180 		 * successfully canceled. In this case we need to restart it
4181 		 * with the minimal delta possible.
4182 		 */
4183 		if (delta >= 0)
4184 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4185 			    delta ? delta : 1);
4186 
4187 		ASSERT(connp->conn_ref >= 3);
4188 		goto finish;
4189 	}
4190 
4191 	/* Detach did not complete. Still need to remove q from stream. */
4192 	if (msg) {
4193 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4194 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4195 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4196 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4197 		    tcp->tcp_state == TCPS_SYN_RCVD)
4198 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4199 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4200 	}
4201 
4202 	tcp_closei_local(tcp);
4203 	CONN_DEC_REF(connp);
4204 	ASSERT(connp->conn_ref >= 2);
4205 
4206 finish:
4207 	/*
4208 	 * Although packets are always processed on the correct
4209 	 * tcp's perimeter and access is serialized via squeue's,
4210 	 * IP still needs a queue when sending packets in time_wait
4211 	 * state so use WR(tcp_g_q) till ip_output() can be
4212 	 * changed to deal with just connp. For read side, we
4213 	 * could have set tcp_rq to NULL but there are some cases
4214 	 * in tcp_rput_data() from early days of this code which
4215 	 * do a putnext without checking if tcp is closed. Those
4216 	 * need to be identified before both tcp_rq and tcp_wq
4217 	 * can be set to NULL and tcp_q_q can disappear forever.
4218 	 */
4219 	mutex_enter(&tcp->tcp_closelock);
4220 	/*
4221 	 * Don't change the queues in the case of a listener that has
4222 	 * eagers in its q or q0. It could surprise the eagers.
4223 	 * Instead wait for the eagers outside the squeue.
4224 	 */
4225 	if (!tcp->tcp_wait_for_eagers) {
4226 		tcp->tcp_detached = B_TRUE;
4227 		tcp->tcp_rq = tcp_g_q;
4228 		tcp->tcp_wq = WR(tcp_g_q);
4229 	}
4230 
4231 	/* Signal tcp_close() to finish closing. */
4232 	tcp->tcp_closed = 1;
4233 	cv_signal(&tcp->tcp_closecv);
4234 	mutex_exit(&tcp->tcp_closelock);
4235 }
4236 
4237 
4238 /*
4239  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4240  * Some stream heads get upset if they see these later on as anything but NULL.
4241  */
4242 static void
4243 tcp_close_mpp(mblk_t **mpp)
4244 {
4245 	mblk_t	*mp;
4246 
4247 	if ((mp = *mpp) != NULL) {
4248 		do {
4249 			mp->b_next = NULL;
4250 			mp->b_prev = NULL;
4251 		} while ((mp = mp->b_cont) != NULL);
4252 
4253 		mp = *mpp;
4254 		*mpp = NULL;
4255 		freemsg(mp);
4256 	}
4257 }
4258 
4259 /* Do detached close. */
4260 static void
4261 tcp_close_detached(tcp_t *tcp)
4262 {
4263 	if (tcp->tcp_fused)
4264 		tcp_unfuse(tcp);
4265 
4266 	/*
4267 	 * Clustering code serializes TCP disconnect callbacks and
4268 	 * cluster tcp list walks by blocking a TCP disconnect callback
4269 	 * if a cluster tcp list walk is in progress. This ensures
4270 	 * accurate accounting of TCPs in the cluster code even though
4271 	 * the TCP list walk itself is not atomic.
4272 	 */
4273 	tcp_closei_local(tcp);
4274 	CONN_DEC_REF(tcp->tcp_connp);
4275 }
4276 
4277 /*
4278  * Stop all TCP timers, and free the timer mblks if requested.
4279  */
4280 void
4281 tcp_timers_stop(tcp_t *tcp)
4282 {
4283 	if (tcp->tcp_timer_tid != 0) {
4284 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4285 		tcp->tcp_timer_tid = 0;
4286 	}
4287 	if (tcp->tcp_ka_tid != 0) {
4288 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4289 		tcp->tcp_ka_tid = 0;
4290 	}
4291 	if (tcp->tcp_ack_tid != 0) {
4292 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4293 		tcp->tcp_ack_tid = 0;
4294 	}
4295 	if (tcp->tcp_push_tid != 0) {
4296 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4297 		tcp->tcp_push_tid = 0;
4298 	}
4299 }
4300 
4301 /*
4302  * The tcp_t is going away. Remove it from all lists and set it
4303  * to TCPS_CLOSED. The freeing up of memory is deferred until
4304  * tcp_inactive. This is needed since a thread in tcp_rput might have
4305  * done a CONN_INC_REF on this structure before it was removed from the
4306  * hashes.
4307  */
4308 static void
4309 tcp_closei_local(tcp_t *tcp)
4310 {
4311 	ire_t 	*ire;
4312 	conn_t	*connp = tcp->tcp_connp;
4313 
4314 	if (!TCP_IS_SOCKET(tcp))
4315 		tcp_acceptor_hash_remove(tcp);
4316 
4317 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4318 	tcp->tcp_ibsegs = 0;
4319 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4320 	tcp->tcp_obsegs = 0;
4321 
4322 	/*
4323 	 * If we are an eager connection hanging off a listener that
4324 	 * hasn't formally accepted the connection yet, get off his
4325 	 * list and blow off any data that we have accumulated.
4326 	 */
4327 	if (tcp->tcp_listener != NULL) {
4328 		tcp_t	*listener = tcp->tcp_listener;
4329 		mutex_enter(&listener->tcp_eager_lock);
4330 		/*
4331 		 * tcp_eager_conn_ind == NULL means that the
4332 		 * conn_ind has already gone to listener. At
4333 		 * this point, eager will be closed but we
4334 		 * leave it in listeners eager list so that
4335 		 * if listener decides to close without doing
4336 		 * accept, we can clean this up. In tcp_wput_accept
4337 		 * we take case of the case of accept on closed
4338 		 * eager.
4339 		 */
4340 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4341 			tcp_eager_unlink(tcp);
4342 			mutex_exit(&listener->tcp_eager_lock);
4343 			/*
4344 			 * We don't want to have any pointers to the
4345 			 * listener queue, after we have released our
4346 			 * reference on the listener
4347 			 */
4348 			tcp->tcp_rq = tcp_g_q;
4349 			tcp->tcp_wq = WR(tcp_g_q);
4350 			CONN_DEC_REF(listener->tcp_connp);
4351 		} else {
4352 			mutex_exit(&listener->tcp_eager_lock);
4353 		}
4354 	}
4355 
4356 	/* Stop all the timers */
4357 	tcp_timers_stop(tcp);
4358 
4359 	if (tcp->tcp_state == TCPS_LISTEN) {
4360 		if (tcp->tcp_ip_addr_cache) {
4361 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4362 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4363 			tcp->tcp_ip_addr_cache = NULL;
4364 		}
4365 	}
4366 	if (tcp->tcp_flow_stopped)
4367 		tcp_clrqfull(tcp);
4368 
4369 	tcp_bind_hash_remove(tcp);
4370 	/*
4371 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4372 	 * is trying to remove this tcp from the time wait list, we will
4373 	 * block in tcp_time_wait_remove while trying to acquire the
4374 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4375 	 * requires the ipcl_hash_remove to be ordered after the
4376 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4377 	 */
4378 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4379 		tcp_time_wait_remove(tcp, NULL);
4380 	CL_INET_DISCONNECT(tcp);
4381 	ipcl_hash_remove(connp);
4382 
4383 	/*
4384 	 * Delete the cached ire in conn_ire_cache and also mark
4385 	 * the conn as CONDEMNED
4386 	 */
4387 	mutex_enter(&connp->conn_lock);
4388 	connp->conn_state_flags |= CONN_CONDEMNED;
4389 	ire = connp->conn_ire_cache;
4390 	connp->conn_ire_cache = NULL;
4391 	mutex_exit(&connp->conn_lock);
4392 	if (ire != NULL)
4393 		IRE_REFRELE_NOTR(ire);
4394 
4395 	/* Need to cleanup any pending ioctls */
4396 	ASSERT(tcp->tcp_time_wait_next == NULL);
4397 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4398 	ASSERT(tcp->tcp_time_wait_expire == 0);
4399 	tcp->tcp_state = TCPS_CLOSED;
4400 
4401 	/* Release any SSL context */
4402 	if (tcp->tcp_kssl_ent != NULL) {
4403 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4404 		tcp->tcp_kssl_ent = NULL;
4405 	}
4406 	if (tcp->tcp_kssl_ctx != NULL) {
4407 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4408 		tcp->tcp_kssl_ctx = NULL;
4409 	}
4410 	tcp->tcp_kssl_pending = B_FALSE;
4411 }
4412 
4413 /*
4414  * tcp is dying (called from ipcl_conn_destroy and error cases).
4415  * Free the tcp_t in either case.
4416  */
4417 void
4418 tcp_free(tcp_t *tcp)
4419 {
4420 	mblk_t	*mp;
4421 	ip6_pkt_t	*ipp;
4422 
4423 	ASSERT(tcp != NULL);
4424 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4425 
4426 	tcp->tcp_rq = NULL;
4427 	tcp->tcp_wq = NULL;
4428 
4429 	tcp_close_mpp(&tcp->tcp_xmit_head);
4430 	tcp_close_mpp(&tcp->tcp_reass_head);
4431 	if (tcp->tcp_rcv_list != NULL) {
4432 		/* Free b_next chain */
4433 		tcp_close_mpp(&tcp->tcp_rcv_list);
4434 	}
4435 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4436 		freemsg(mp);
4437 	}
4438 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4439 		freemsg(mp);
4440 	}
4441 
4442 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4443 		freeb(tcp->tcp_fused_sigurg_mp);
4444 		tcp->tcp_fused_sigurg_mp = NULL;
4445 	}
4446 
4447 	if (tcp->tcp_sack_info != NULL) {
4448 		if (tcp->tcp_notsack_list != NULL) {
4449 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4450 		}
4451 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4452 	}
4453 
4454 	if (tcp->tcp_hopopts != NULL) {
4455 		mi_free(tcp->tcp_hopopts);
4456 		tcp->tcp_hopopts = NULL;
4457 		tcp->tcp_hopoptslen = 0;
4458 	}
4459 	ASSERT(tcp->tcp_hopoptslen == 0);
4460 	if (tcp->tcp_dstopts != NULL) {
4461 		mi_free(tcp->tcp_dstopts);
4462 		tcp->tcp_dstopts = NULL;
4463 		tcp->tcp_dstoptslen = 0;
4464 	}
4465 	ASSERT(tcp->tcp_dstoptslen == 0);
4466 	if (tcp->tcp_rtdstopts != NULL) {
4467 		mi_free(tcp->tcp_rtdstopts);
4468 		tcp->tcp_rtdstopts = NULL;
4469 		tcp->tcp_rtdstoptslen = 0;
4470 	}
4471 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4472 	if (tcp->tcp_rthdr != NULL) {
4473 		mi_free(tcp->tcp_rthdr);
4474 		tcp->tcp_rthdr = NULL;
4475 		tcp->tcp_rthdrlen = 0;
4476 	}
4477 	ASSERT(tcp->tcp_rthdrlen == 0);
4478 
4479 	ipp = &tcp->tcp_sticky_ipp;
4480 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4481 	    IPPF_RTHDR))
4482 		ip6_pkt_free(ipp);
4483 
4484 	/*
4485 	 * Free memory associated with the tcp/ip header template.
4486 	 */
4487 
4488 	if (tcp->tcp_iphc != NULL)
4489 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4490 
4491 	/*
4492 	 * Following is really a blowing away a union.
4493 	 * It happens to have exactly two members of identical size
4494 	 * the following code is enough.
4495 	 */
4496 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4497 
4498 	if (tcp->tcp_tracebuf != NULL) {
4499 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4500 		tcp->tcp_tracebuf = NULL;
4501 	}
4502 }
4503 
4504 
4505 /*
4506  * Put a connection confirmation message upstream built from the
4507  * address information within 'iph' and 'tcph'.  Report our success or failure.
4508  */
4509 static boolean_t
4510 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4511     mblk_t **defermp)
4512 {
4513 	sin_t	sin;
4514 	sin6_t	sin6;
4515 	mblk_t	*mp;
4516 	char	*optp = NULL;
4517 	int	optlen = 0;
4518 	cred_t	*cr;
4519 
4520 	if (defermp != NULL)
4521 		*defermp = NULL;
4522 
4523 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4524 		/*
4525 		 * Return in T_CONN_CON results of option negotiation through
4526 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4527 		 * negotiation, then what is received from remote end needs
4528 		 * to be taken into account but there is no such thing (yet?)
4529 		 * in our TCP/IP.
4530 		 * Note: We do not use mi_offset_param() here as
4531 		 * tcp_opts_conn_req contents do not directly come from
4532 		 * an application and are either generated in kernel or
4533 		 * from user input that was already verified.
4534 		 */
4535 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4536 		optp = (char *)(mp->b_rptr +
4537 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4538 		optlen = (int)
4539 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4540 	}
4541 
4542 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4543 		ipha_t *ipha = (ipha_t *)iphdr;
4544 
4545 		/* packet is IPv4 */
4546 		if (tcp->tcp_family == AF_INET) {
4547 			sin = sin_null;
4548 			sin.sin_addr.s_addr = ipha->ipha_src;
4549 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4550 			sin.sin_family = AF_INET;
4551 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4552 			    (int)sizeof (sin_t), optp, optlen);
4553 		} else {
4554 			sin6 = sin6_null;
4555 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4556 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4557 			sin6.sin6_family = AF_INET6;
4558 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4559 			    (int)sizeof (sin6_t), optp, optlen);
4560 
4561 		}
4562 	} else {
4563 		ip6_t	*ip6h = (ip6_t *)iphdr;
4564 
4565 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4566 		ASSERT(tcp->tcp_family == AF_INET6);
4567 		sin6 = sin6_null;
4568 		sin6.sin6_addr = ip6h->ip6_src;
4569 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4570 		sin6.sin6_family = AF_INET6;
4571 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4572 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4573 		    (int)sizeof (sin6_t), optp, optlen);
4574 	}
4575 
4576 	if (!mp)
4577 		return (B_FALSE);
4578 
4579 	if ((cr = DB_CRED(idmp)) != NULL) {
4580 		mblk_setcred(mp, cr);
4581 		DB_CPID(mp) = DB_CPID(idmp);
4582 	}
4583 
4584 	if (defermp == NULL)
4585 		putnext(tcp->tcp_rq, mp);
4586 	else
4587 		*defermp = mp;
4588 
4589 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4590 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4591 	return (B_TRUE);
4592 }
4593 
4594 /*
4595  * Defense for the SYN attack -
4596  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
4597  *    one that doesn't have the dontdrop bit set.
4598  * 2. Don't drop a SYN request before its first timeout. This gives every
4599  *    request at least til the first timeout to complete its 3-way handshake.
4600  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4601  *    requests currently on the queue that has timed out. This will be used
4602  *    as an indicator of whether an attack is under way, so that appropriate
4603  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4604  *    either when eager goes into ESTABLISHED, or gets freed up.)
4605  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4606  *    # of timeout drops back to <= q0len/32 => SYN alert off
4607  */
4608 static boolean_t
4609 tcp_drop_q0(tcp_t *tcp)
4610 {
4611 	tcp_t	*eager;
4612 
4613 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4614 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4615 	/*
4616 	 * New one is added after next_q0 so prev_q0 points to the oldest
4617 	 * Also do not drop any established connections that are deferred on
4618 	 * q0 due to q being full
4619 	 */
4620 
4621 	eager = tcp->tcp_eager_prev_q0;
4622 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
4623 		eager = eager->tcp_eager_prev_q0;
4624 		if (eager == tcp) {
4625 			eager = tcp->tcp_eager_prev_q0;
4626 			break;
4627 		}
4628 	}
4629 	if (eager->tcp_syn_rcvd_timeout == 0)
4630 		return (B_FALSE);
4631 
4632 	if (tcp->tcp_debug) {
4633 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4634 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4635 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4636 		    tcp->tcp_conn_req_cnt_q0,
4637 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4638 	}
4639 
4640 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4641 
4642 	/*
4643 	 * need to do refhold here because the selected eager could
4644 	 * be removed by someone else if we release the eager lock.
4645 	 */
4646 	CONN_INC_REF(eager->tcp_connp);
4647 	mutex_exit(&tcp->tcp_eager_lock);
4648 
4649 	/* Mark the IRE created for this SYN request temporary */
4650 	tcp_ip_ire_mark_advice(eager);
4651 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
4652 	CONN_DEC_REF(eager->tcp_connp);
4653 
4654 	mutex_enter(&tcp->tcp_eager_lock);
4655 	return (B_TRUE);
4656 }
4657 
4658 int
4659 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4660     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4661 {
4662 	tcp_t 		*ltcp = lconnp->conn_tcp;
4663 	tcp_t		*tcp = connp->conn_tcp;
4664 	mblk_t		*tpi_mp;
4665 	ipha_t		*ipha;
4666 	ip6_t		*ip6h;
4667 	sin6_t 		sin6;
4668 	in6_addr_t 	v6dst;
4669 	int		err;
4670 	int		ifindex = 0;
4671 	cred_t		*cr;
4672 
4673 	if (ipvers == IPV4_VERSION) {
4674 		ipha = (ipha_t *)mp->b_rptr;
4675 
4676 		connp->conn_send = ip_output;
4677 		connp->conn_recv = tcp_input;
4678 
4679 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4680 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4681 
4682 		sin6 = sin6_null;
4683 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4684 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4685 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4686 		sin6.sin6_family = AF_INET6;
4687 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4688 		    lconnp->conn_zoneid);
4689 		if (tcp->tcp_recvdstaddr) {
4690 			sin6_t	sin6d;
4691 
4692 			sin6d = sin6_null;
4693 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4694 			    &sin6d.sin6_addr);
4695 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4696 			sin6d.sin6_family = AF_INET;
4697 			tpi_mp = mi_tpi_extconn_ind(NULL,
4698 			    (char *)&sin6d, sizeof (sin6_t),
4699 			    (char *)&tcp,
4700 			    (t_scalar_t)sizeof (intptr_t),
4701 			    (char *)&sin6d, sizeof (sin6_t),
4702 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4703 		} else {
4704 			tpi_mp = mi_tpi_conn_ind(NULL,
4705 			    (char *)&sin6, sizeof (sin6_t),
4706 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4707 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4708 		}
4709 	} else {
4710 		ip6h = (ip6_t *)mp->b_rptr;
4711 
4712 		connp->conn_send = ip_output_v6;
4713 		connp->conn_recv = tcp_input;
4714 
4715 		connp->conn_srcv6 = ip6h->ip6_dst;
4716 		connp->conn_remv6 = ip6h->ip6_src;
4717 
4718 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4719 		ifindex = (int)DB_CKSUMSTUFF(mp);
4720 		DB_CKSUMSTUFF(mp) = 0;
4721 
4722 		sin6 = sin6_null;
4723 		sin6.sin6_addr = ip6h->ip6_src;
4724 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4725 		sin6.sin6_family = AF_INET6;
4726 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4727 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4728 		    lconnp->conn_zoneid);
4729 
4730 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4731 			/* Pass up the scope_id of remote addr */
4732 			sin6.sin6_scope_id = ifindex;
4733 		} else {
4734 			sin6.sin6_scope_id = 0;
4735 		}
4736 		if (tcp->tcp_recvdstaddr) {
4737 			sin6_t	sin6d;
4738 
4739 			sin6d = sin6_null;
4740 			sin6.sin6_addr = ip6h->ip6_dst;
4741 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4742 			sin6d.sin6_family = AF_INET;
4743 			tpi_mp = mi_tpi_extconn_ind(NULL,
4744 			    (char *)&sin6d, sizeof (sin6_t),
4745 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4746 			    (char *)&sin6d, sizeof (sin6_t),
4747 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4748 		} else {
4749 			tpi_mp = mi_tpi_conn_ind(NULL,
4750 			    (char *)&sin6, sizeof (sin6_t),
4751 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4752 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4753 		}
4754 	}
4755 
4756 	if (tpi_mp == NULL)
4757 		return (ENOMEM);
4758 
4759 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4760 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4761 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4762 	connp->conn_fully_bound = B_FALSE;
4763 
4764 	if (tcp_trace)
4765 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4766 
4767 	/* Inherit information from the "parent" */
4768 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4769 	tcp->tcp_family = ltcp->tcp_family;
4770 	tcp->tcp_wq = ltcp->tcp_wq;
4771 	tcp->tcp_rq = ltcp->tcp_rq;
4772 	tcp->tcp_mss = tcp_mss_def_ipv6;
4773 	tcp->tcp_detached = B_TRUE;
4774 	if ((err = tcp_init_values(tcp)) != 0) {
4775 		freemsg(tpi_mp);
4776 		return (err);
4777 	}
4778 
4779 	if (ipvers == IPV4_VERSION) {
4780 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4781 			freemsg(tpi_mp);
4782 			return (err);
4783 		}
4784 		ASSERT(tcp->tcp_ipha != NULL);
4785 	} else {
4786 		/* ifindex must be already set */
4787 		ASSERT(ifindex != 0);
4788 
4789 		if (ltcp->tcp_bound_if != 0) {
4790 			/*
4791 			 * Set newtcp's bound_if equal to
4792 			 * listener's value. If ifindex is
4793 			 * not the same as ltcp->tcp_bound_if,
4794 			 * it must be a packet for the ipmp group
4795 			 * of interfaces
4796 			 */
4797 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4798 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4799 			tcp->tcp_bound_if = ifindex;
4800 		}
4801 
4802 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4803 		tcp->tcp_recvifindex = 0;
4804 		tcp->tcp_recvhops = 0xffffffffU;
4805 		ASSERT(tcp->tcp_ip6h != NULL);
4806 	}
4807 
4808 	tcp->tcp_lport = ltcp->tcp_lport;
4809 
4810 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4811 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4812 			/*
4813 			 * Listener had options of some sort; eager inherits.
4814 			 * Free up the eager template and allocate one
4815 			 * of the right size.
4816 			 */
4817 			if (tcp->tcp_hdr_grown) {
4818 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4819 			} else {
4820 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4821 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4822 			}
4823 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4824 			    KM_NOSLEEP);
4825 			if (tcp->tcp_iphc == NULL) {
4826 				tcp->tcp_iphc_len = 0;
4827 				freemsg(tpi_mp);
4828 				return (ENOMEM);
4829 			}
4830 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4831 			tcp->tcp_hdr_grown = B_TRUE;
4832 		}
4833 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4834 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4835 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4836 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4837 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4838 
4839 		/*
4840 		 * Copy the IP+TCP header template from listener to eager
4841 		 */
4842 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4843 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4844 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4845 			    IPPROTO_RAW) {
4846 				tcp->tcp_ip6h =
4847 				    (ip6_t *)(tcp->tcp_iphc +
4848 					sizeof (ip6i_t));
4849 			} else {
4850 				tcp->tcp_ip6h =
4851 				    (ip6_t *)(tcp->tcp_iphc);
4852 			}
4853 			tcp->tcp_ipha = NULL;
4854 		} else {
4855 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4856 			tcp->tcp_ip6h = NULL;
4857 		}
4858 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4859 		    tcp->tcp_ip_hdr_len);
4860 	} else {
4861 		/*
4862 		 * only valid case when ipversion of listener and
4863 		 * eager differ is when listener is IPv6 and
4864 		 * eager is IPv4.
4865 		 * Eager header template has been initialized to the
4866 		 * maximum v4 header sizes, which includes space for
4867 		 * TCP and IP options.
4868 		 */
4869 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4870 		    (tcp->tcp_ipversion == IPV4_VERSION));
4871 		ASSERT(tcp->tcp_iphc_len >=
4872 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4873 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4874 		/* copy IP header fields individually */
4875 		tcp->tcp_ipha->ipha_ttl =
4876 		    ltcp->tcp_ip6h->ip6_hops;
4877 		bcopy(ltcp->tcp_tcph->th_lport,
4878 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4879 	}
4880 
4881 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4882 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4883 	    sizeof (in_port_t));
4884 
4885 	if (ltcp->tcp_lport == 0) {
4886 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4887 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4888 		    sizeof (in_port_t));
4889 	}
4890 
4891 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4892 		ASSERT(ipha != NULL);
4893 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4894 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4895 
4896 		/* Source routing option copyover (reverse it) */
4897 		if (tcp_rev_src_routes)
4898 			tcp_opt_reverse(tcp, ipha);
4899 	} else {
4900 		ASSERT(ip6h != NULL);
4901 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4902 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4903 	}
4904 
4905 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4906 	/*
4907 	 * If the SYN contains a credential, it's a loopback packet; attach
4908 	 * the credential to the TPI message.
4909 	 */
4910 	if ((cr = DB_CRED(idmp)) != NULL) {
4911 		mblk_setcred(tpi_mp, cr);
4912 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4913 	}
4914 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4915 
4916 	/* Inherit the listener's SSL protection state */
4917 
4918 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4919 		kssl_hold_ent(tcp->tcp_kssl_ent);
4920 		tcp->tcp_kssl_pending = B_TRUE;
4921 	}
4922 
4923 	return (0);
4924 }
4925 
4926 
4927 int
4928 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4929     tcph_t *tcph, mblk_t *idmp)
4930 {
4931 	tcp_t 		*ltcp = lconnp->conn_tcp;
4932 	tcp_t		*tcp = connp->conn_tcp;
4933 	sin_t		sin;
4934 	mblk_t		*tpi_mp = NULL;
4935 	int		err;
4936 	cred_t		*cr;
4937 
4938 	sin = sin_null;
4939 	sin.sin_addr.s_addr = ipha->ipha_src;
4940 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4941 	sin.sin_family = AF_INET;
4942 	if (ltcp->tcp_recvdstaddr) {
4943 		sin_t	sind;
4944 
4945 		sind = sin_null;
4946 		sind.sin_addr.s_addr = ipha->ipha_dst;
4947 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4948 		sind.sin_family = AF_INET;
4949 		tpi_mp = mi_tpi_extconn_ind(NULL,
4950 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4951 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4952 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4953 	} else {
4954 		tpi_mp = mi_tpi_conn_ind(NULL,
4955 		    (char *)&sin, sizeof (sin_t),
4956 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4957 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4958 	}
4959 
4960 	if (tpi_mp == NULL) {
4961 		return (ENOMEM);
4962 	}
4963 
4964 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4965 	connp->conn_send = ip_output;
4966 	connp->conn_recv = tcp_input;
4967 	connp->conn_fully_bound = B_FALSE;
4968 
4969 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4970 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4971 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4972 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4973 
4974 	if (tcp_trace) {
4975 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4976 	}
4977 
4978 	/* Inherit information from the "parent" */
4979 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4980 	tcp->tcp_family = ltcp->tcp_family;
4981 	tcp->tcp_wq = ltcp->tcp_wq;
4982 	tcp->tcp_rq = ltcp->tcp_rq;
4983 	tcp->tcp_mss = tcp_mss_def_ipv4;
4984 	tcp->tcp_detached = B_TRUE;
4985 	if ((err = tcp_init_values(tcp)) != 0) {
4986 		freemsg(tpi_mp);
4987 		return (err);
4988 	}
4989 
4990 	/*
4991 	 * Let's make sure that eager tcp template has enough space to
4992 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4993 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4994 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4995 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4996 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4997 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4998 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4999 	 */
5000 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5001 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5002 
5003 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5004 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5005 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5006 	tcp->tcp_ttl = ltcp->tcp_ttl;
5007 	tcp->tcp_tos = ltcp->tcp_tos;
5008 
5009 	/* Copy the IP+TCP header template from listener to eager */
5010 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5011 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5012 	tcp->tcp_ip6h = NULL;
5013 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5014 	    tcp->tcp_ip_hdr_len);
5015 
5016 	/* Initialize the IP addresses and Ports */
5017 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5018 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5019 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5020 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5021 
5022 	/* Source routing option copyover (reverse it) */
5023 	if (tcp_rev_src_routes)
5024 		tcp_opt_reverse(tcp, ipha);
5025 
5026 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5027 
5028 	/*
5029 	 * If the SYN contains a credential, it's a loopback packet; attach
5030 	 * the credential to the TPI message.
5031 	 */
5032 	if ((cr = DB_CRED(idmp)) != NULL) {
5033 		mblk_setcred(tpi_mp, cr);
5034 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5035 	}
5036 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5037 
5038 	/* Inherit the listener's SSL protection state */
5039 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5040 		kssl_hold_ent(tcp->tcp_kssl_ent);
5041 		tcp->tcp_kssl_pending = B_TRUE;
5042 	}
5043 
5044 	return (0);
5045 }
5046 
5047 /*
5048  * sets up conn for ipsec.
5049  * if the first mblk is M_CTL it is consumed and mpp is updated.
5050  * in case of error mpp is freed.
5051  */
5052 conn_t *
5053 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5054 {
5055 	conn_t 		*connp = tcp->tcp_connp;
5056 	conn_t 		*econnp;
5057 	squeue_t 	*new_sqp;
5058 	mblk_t 		*first_mp = *mpp;
5059 	mblk_t		*mp = *mpp;
5060 	boolean_t	mctl_present = B_FALSE;
5061 	uint_t		ipvers;
5062 
5063 	econnp = tcp_get_conn(sqp);
5064 	if (econnp == NULL) {
5065 		freemsg(first_mp);
5066 		return (NULL);
5067 	}
5068 	if (DB_TYPE(mp) == M_CTL) {
5069 		if (mp->b_cont == NULL ||
5070 		    mp->b_cont->b_datap->db_type != M_DATA) {
5071 			freemsg(first_mp);
5072 			return (NULL);
5073 		}
5074 		mp = mp->b_cont;
5075 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5076 			freemsg(first_mp);
5077 			return (NULL);
5078 		}
5079 
5080 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5081 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5082 		mctl_present = B_TRUE;
5083 	} else {
5084 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5085 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5086 	}
5087 
5088 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5089 	DB_CKSUMSTART(mp) = 0;
5090 
5091 	ASSERT(OK_32PTR(mp->b_rptr));
5092 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5093 	if (ipvers == IPV4_VERSION) {
5094 		uint16_t  	*up;
5095 		uint32_t	ports;
5096 		ipha_t		*ipha;
5097 
5098 		ipha = (ipha_t *)mp->b_rptr;
5099 		up = (uint16_t *)((uchar_t *)ipha +
5100 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5101 		ports = *(uint32_t *)up;
5102 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5103 		    ipha->ipha_dst, ipha->ipha_src, ports);
5104 	} else {
5105 		uint16_t  	*up;
5106 		uint32_t	ports;
5107 		uint16_t	ip_hdr_len;
5108 		uint8_t		*nexthdrp;
5109 		ip6_t 		*ip6h;
5110 		tcph_t		*tcph;
5111 
5112 		ip6h = (ip6_t *)mp->b_rptr;
5113 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5114 			ip_hdr_len = IPV6_HDR_LEN;
5115 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5116 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5117 			CONN_DEC_REF(econnp);
5118 			freemsg(first_mp);
5119 			return (NULL);
5120 		}
5121 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5122 		up = (uint16_t *)tcph->th_lport;
5123 		ports = *(uint32_t *)up;
5124 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5125 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5126 	}
5127 
5128 	/*
5129 	 * The caller already ensured that there is a sqp present.
5130 	 */
5131 	econnp->conn_sqp = new_sqp;
5132 
5133 	if (connp->conn_policy != NULL) {
5134 		ipsec_in_t *ii;
5135 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5136 		ASSERT(ii->ipsec_in_policy == NULL);
5137 		IPPH_REFHOLD(connp->conn_policy);
5138 		ii->ipsec_in_policy = connp->conn_policy;
5139 
5140 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5141 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5142 			CONN_DEC_REF(econnp);
5143 			freemsg(first_mp);
5144 			return (NULL);
5145 		}
5146 	}
5147 
5148 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5149 		CONN_DEC_REF(econnp);
5150 		freemsg(first_mp);
5151 		return (NULL);
5152 	}
5153 
5154 	/*
5155 	 * If we know we have some policy, pass the "IPSEC"
5156 	 * options size TCP uses this adjust the MSS.
5157 	 */
5158 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5159 	if (mctl_present) {
5160 		freeb(first_mp);
5161 		*mpp = mp;
5162 	}
5163 
5164 	return (econnp);
5165 }
5166 
5167 /*
5168  * tcp_get_conn/tcp_free_conn
5169  *
5170  * tcp_get_conn is used to get a clean tcp connection structure.
5171  * It tries to reuse the connections put on the freelist by the
5172  * time_wait_collector failing which it goes to kmem_cache. This
5173  * way has two benefits compared to just allocating from and
5174  * freeing to kmem_cache.
5175  * 1) The time_wait_collector can free (which includes the cleanup)
5176  * outside the squeue. So when the interrupt comes, we have a clean
5177  * connection sitting in the freelist. Obviously, this buys us
5178  * performance.
5179  *
5180  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5181  * has multiple disadvantages - tying up the squeue during alloc, and the
5182  * fact that IPSec policy initialization has to happen here which
5183  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5184  * But allocating the conn/tcp in IP land is also not the best since
5185  * we can't check the 'q' and 'q0' which are protected by squeue and
5186  * blindly allocate memory which might have to be freed here if we are
5187  * not allowed to accept the connection. By using the freelist and
5188  * putting the conn/tcp back in freelist, we don't pay a penalty for
5189  * allocating memory without checking 'q/q0' and freeing it if we can't
5190  * accept the connection.
5191  *
5192  * Care should be taken to put the conn back in the same squeue's freelist
5193  * from which it was allocated. Best results are obtained if conn is
5194  * allocated from listener's squeue and freed to the same. Time wait
5195  * collector will free up the freelist is the connection ends up sitting
5196  * there for too long.
5197  */
5198 void *
5199 tcp_get_conn(void *arg)
5200 {
5201 	tcp_t			*tcp = NULL;
5202 	conn_t			*connp = NULL;
5203 	squeue_t		*sqp = (squeue_t *)arg;
5204 	tcp_squeue_priv_t 	*tcp_time_wait;
5205 
5206 	tcp_time_wait =
5207 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5208 
5209 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5210 	tcp = tcp_time_wait->tcp_free_list;
5211 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5212 	if (tcp != NULL) {
5213 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5214 		tcp_time_wait->tcp_free_list_cnt--;
5215 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5216 		tcp->tcp_time_wait_next = NULL;
5217 		connp = tcp->tcp_connp;
5218 		connp->conn_flags |= IPCL_REUSED;
5219 		return ((void *)connp);
5220 	}
5221 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5222 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5223 		return (NULL);
5224 	return ((void *)connp);
5225 }
5226 
5227 /*
5228  * Update the cached label for the given tcp_t.  This should be called once per
5229  * connection, and before any packets are sent or tcp_process_options is
5230  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5231  */
5232 static boolean_t
5233 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5234 {
5235 	conn_t *connp = tcp->tcp_connp;
5236 
5237 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5238 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5239 		int added;
5240 
5241 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5242 		    connp->conn_mac_exempt) != 0)
5243 			return (B_FALSE);
5244 
5245 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5246 		if (added == -1)
5247 			return (B_FALSE);
5248 		tcp->tcp_hdr_len += added;
5249 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5250 		tcp->tcp_ip_hdr_len += added;
5251 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5252 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5253 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5254 			    tcp->tcp_hdr_len);
5255 			if (added == -1)
5256 				return (B_FALSE);
5257 			tcp->tcp_hdr_len += added;
5258 			tcp->tcp_tcph = (tcph_t *)
5259 			    ((uchar_t *)tcp->tcp_tcph + added);
5260 			tcp->tcp_ip_hdr_len += added;
5261 		}
5262 	} else {
5263 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5264 
5265 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5266 		    connp->conn_mac_exempt) != 0)
5267 			return (B_FALSE);
5268 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5269 		    &tcp->tcp_label_len, optbuf) != 0)
5270 			return (B_FALSE);
5271 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5272 			return (B_FALSE);
5273 	}
5274 
5275 	connp->conn_ulp_labeled = 1;
5276 
5277 	return (B_TRUE);
5278 }
5279 
5280 /* BEGIN CSTYLED */
5281 /*
5282  *
5283  * The sockfs ACCEPT path:
5284  * =======================
5285  *
5286  * The eager is now established in its own perimeter as soon as SYN is
5287  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5288  * completes the accept processing on the acceptor STREAM. The sending
5289  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5290  * listener but a TLI/XTI listener completes the accept processing
5291  * on the listener perimeter.
5292  *
5293  * Common control flow for 3 way handshake:
5294  * ----------------------------------------
5295  *
5296  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5297  *					-> tcp_conn_request()
5298  *
5299  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5300  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5301  *
5302  * Sockfs ACCEPT Path:
5303  * -------------------
5304  *
5305  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5306  * as STREAM entry point)
5307  *
5308  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5309  *
5310  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5311  * association (we are not behind eager's squeue but sockfs is protecting us
5312  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5313  * is changed to point at tcp_wput().
5314  *
5315  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5316  * listener (done on listener's perimeter).
5317  *
5318  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5319  * accept.
5320  *
5321  * TLI/XTI client ACCEPT path:
5322  * ---------------------------
5323  *
5324  * soaccept() sends T_CONN_RES on the listener STREAM.
5325  *
5326  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5327  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5328  *
5329  * Locks:
5330  * ======
5331  *
5332  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5333  * and listeners->tcp_eager_next_q.
5334  *
5335  * Referencing:
5336  * ============
5337  *
5338  * 1) We start out in tcp_conn_request by eager placing a ref on
5339  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5340  *
5341  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5342  * doing so we place a ref on the eager. This ref is finally dropped at the
5343  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5344  * reference is dropped by the squeue framework.
5345  *
5346  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5347  *
5348  * The reference must be released by the same entity that added the reference
5349  * In the above scheme, the eager is the entity that adds and releases the
5350  * references. Note that tcp_accept_finish executes in the squeue of the eager
5351  * (albeit after it is attached to the acceptor stream). Though 1. executes
5352  * in the listener's squeue, the eager is nascent at this point and the
5353  * reference can be considered to have been added on behalf of the eager.
5354  *
5355  * Eager getting a Reset or listener closing:
5356  * ==========================================
5357  *
5358  * Once the listener and eager are linked, the listener never does the unlink.
5359  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5360  * a message on all eager perimeter. The eager then does the unlink, clears
5361  * any pointers to the listener's queue and drops the reference to the
5362  * listener. The listener waits in tcp_close outside the squeue until its
5363  * refcount has dropped to 1. This ensures that the listener has waited for
5364  * all eagers to clear their association with the listener.
5365  *
5366  * Similarly, if eager decides to go away, it can unlink itself and close.
5367  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5368  * the reference to eager is still valid because of the extra ref we put
5369  * in tcp_send_conn_ind.
5370  *
5371  * Listener can always locate the eager under the protection
5372  * of the listener->tcp_eager_lock, and then do a refhold
5373  * on the eager during the accept processing.
5374  *
5375  * The acceptor stream accesses the eager in the accept processing
5376  * based on the ref placed on eager before sending T_conn_ind.
5377  * The only entity that can negate this refhold is a listener close
5378  * which is mutually exclusive with an active acceptor stream.
5379  *
5380  * Eager's reference on the listener
5381  * ===================================
5382  *
5383  * If the accept happens (even on a closed eager) the eager drops its
5384  * reference on the listener at the start of tcp_accept_finish. If the
5385  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5386  * the reference is dropped in tcp_closei_local. If the listener closes,
5387  * the reference is dropped in tcp_eager_kill. In all cases the reference
5388  * is dropped while executing in the eager's context (squeue).
5389  */
5390 /* END CSTYLED */
5391 
5392 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5393 
5394 /*
5395  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5396  * tcp_rput_data will not see any SYN packets.
5397  */
5398 /* ARGSUSED */
5399 void
5400 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5401 {
5402 	tcph_t		*tcph;
5403 	uint32_t	seg_seq;
5404 	tcp_t		*eager;
5405 	uint_t		ipvers;
5406 	ipha_t		*ipha;
5407 	ip6_t		*ip6h;
5408 	int		err;
5409 	conn_t		*econnp = NULL;
5410 	squeue_t	*new_sqp;
5411 	mblk_t		*mp1;
5412 	uint_t 		ip_hdr_len;
5413 	conn_t		*connp = (conn_t *)arg;
5414 	tcp_t		*tcp = connp->conn_tcp;
5415 	ire_t		*ire;
5416 	cred_t		*credp;
5417 
5418 	if (tcp->tcp_state != TCPS_LISTEN)
5419 		goto error2;
5420 
5421 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5422 
5423 	mutex_enter(&tcp->tcp_eager_lock);
5424 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5425 		mutex_exit(&tcp->tcp_eager_lock);
5426 		TCP_STAT(tcp_listendrop);
5427 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5428 		if (tcp->tcp_debug) {
5429 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5430 			    "tcp_conn_request: listen backlog (max=%d) "
5431 			    "overflow (%d pending) on %s",
5432 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5433 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5434 		}
5435 		goto error2;
5436 	}
5437 
5438 	if (tcp->tcp_conn_req_cnt_q0 >=
5439 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5440 		/*
5441 		 * Q0 is full. Drop a pending half-open req from the queue
5442 		 * to make room for the new SYN req. Also mark the time we
5443 		 * drop a SYN.
5444 		 *
5445 		 * A more aggressive defense against SYN attack will
5446 		 * be to set the "tcp_syn_defense" flag now.
5447 		 */
5448 		TCP_STAT(tcp_listendropq0);
5449 		tcp->tcp_last_rcv_lbolt = lbolt64;
5450 		if (!tcp_drop_q0(tcp)) {
5451 			mutex_exit(&tcp->tcp_eager_lock);
5452 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5453 			if (tcp->tcp_debug) {
5454 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5455 				    "tcp_conn_request: listen half-open queue "
5456 				    "(max=%d) full (%d pending) on %s",
5457 				    tcp_conn_req_max_q0,
5458 				    tcp->tcp_conn_req_cnt_q0,
5459 				    tcp_display(tcp, NULL,
5460 				    DISP_PORT_ONLY));
5461 			}
5462 			goto error2;
5463 		}
5464 	}
5465 	mutex_exit(&tcp->tcp_eager_lock);
5466 
5467 	/*
5468 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5469 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5470 	 * link local address.  If IPSec is enabled, db_struioflag has
5471 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5472 	 * otherwise an error case if neither of them is set.
5473 	 */
5474 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5475 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5476 		DB_CKSUMSTART(mp) = 0;
5477 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5478 		econnp = (conn_t *)tcp_get_conn(arg2);
5479 		if (econnp == NULL)
5480 			goto error2;
5481 		econnp->conn_sqp = new_sqp;
5482 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5483 		/*
5484 		 * mp is updated in tcp_get_ipsec_conn().
5485 		 */
5486 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5487 		if (econnp == NULL) {
5488 			/*
5489 			 * mp freed by tcp_get_ipsec_conn.
5490 			 */
5491 			return;
5492 		}
5493 	} else {
5494 		goto error2;
5495 	}
5496 
5497 	ASSERT(DB_TYPE(mp) == M_DATA);
5498 
5499 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5500 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5501 	ASSERT(OK_32PTR(mp->b_rptr));
5502 	if (ipvers == IPV4_VERSION) {
5503 		ipha = (ipha_t *)mp->b_rptr;
5504 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5505 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5506 	} else {
5507 		ip6h = (ip6_t *)mp->b_rptr;
5508 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5509 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5510 	}
5511 
5512 	if (tcp->tcp_family == AF_INET) {
5513 		ASSERT(ipvers == IPV4_VERSION);
5514 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5515 	} else {
5516 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5517 	}
5518 
5519 	if (err)
5520 		goto error3;
5521 
5522 	eager = econnp->conn_tcp;
5523 
5524 	/* Inherit various TCP parameters from the listener */
5525 	eager->tcp_naglim = tcp->tcp_naglim;
5526 	eager->tcp_first_timer_threshold =
5527 	    tcp->tcp_first_timer_threshold;
5528 	eager->tcp_second_timer_threshold =
5529 	    tcp->tcp_second_timer_threshold;
5530 
5531 	eager->tcp_first_ctimer_threshold =
5532 	    tcp->tcp_first_ctimer_threshold;
5533 	eager->tcp_second_ctimer_threshold =
5534 	    tcp->tcp_second_ctimer_threshold;
5535 
5536 	/*
5537 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5538 	 * If it does not, the eager's receive window will be set to the
5539 	 * listener's receive window later in this function.
5540 	 */
5541 	eager->tcp_rwnd = 0;
5542 
5543 	/*
5544 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5545 	 * calling tcp_process_options() where tcp_mss_set() is called
5546 	 * to set the initial cwnd.
5547 	 */
5548 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5549 
5550 	/*
5551 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5552 	 * zone id before the accept is completed in tcp_wput_accept().
5553 	 */
5554 	econnp->conn_zoneid = connp->conn_zoneid;
5555 
5556 	/* Copy nexthop information from listener to eager */
5557 	if (connp->conn_nexthop_set) {
5558 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5559 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5560 	}
5561 
5562 	/*
5563 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5564 	 * eager is accepted
5565 	 */
5566 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5567 	crhold(credp);
5568 
5569 	/*
5570 	 * If the caller has the process-wide flag set, then default to MAC
5571 	 * exempt mode.  This allows read-down to unlabeled hosts.
5572 	 */
5573 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5574 		econnp->conn_mac_exempt = B_TRUE;
5575 
5576 	if (is_system_labeled()) {
5577 		cred_t *cr;
5578 
5579 		if (connp->conn_mlp_type != mlptSingle) {
5580 			cr = econnp->conn_peercred = DB_CRED(mp);
5581 			if (cr != NULL)
5582 				crhold(cr);
5583 			else
5584 				cr = econnp->conn_cred;
5585 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5586 			    econnp, cred_t *, cr)
5587 		} else {
5588 			cr = econnp->conn_cred;
5589 			DTRACE_PROBE2(syn_accept, conn_t *,
5590 			    econnp, cred_t *, cr)
5591 		}
5592 
5593 		if (!tcp_update_label(eager, cr)) {
5594 			DTRACE_PROBE3(
5595 			    tx__ip__log__error__connrequest__tcp,
5596 			    char *, "eager connp(1) label on SYN mp(2) failed",
5597 			    conn_t *, econnp, mblk_t *, mp);
5598 			goto error3;
5599 		}
5600 	}
5601 
5602 	eager->tcp_hard_binding = B_TRUE;
5603 
5604 	tcp_bind_hash_insert(&tcp_bind_fanout[
5605 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5606 
5607 	CL_INET_CONNECT(eager);
5608 
5609 	/*
5610 	 * No need to check for multicast destination since ip will only pass
5611 	 * up multicasts to those that have expressed interest
5612 	 * TODO: what about rejecting broadcasts?
5613 	 * Also check that source is not a multicast or broadcast address.
5614 	 */
5615 	eager->tcp_state = TCPS_SYN_RCVD;
5616 
5617 
5618 	/*
5619 	 * There should be no ire in the mp as we are being called after
5620 	 * receiving the SYN.
5621 	 */
5622 	ASSERT(tcp_ire_mp(mp) == NULL);
5623 
5624 	/*
5625 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5626 	 */
5627 
5628 	if (tcp_adapt_ire(eager, NULL) == 0) {
5629 		/* Undo the bind_hash_insert */
5630 		tcp_bind_hash_remove(eager);
5631 		goto error3;
5632 	}
5633 
5634 	/* Process all TCP options. */
5635 	tcp_process_options(eager, tcph);
5636 
5637 	/* Is the other end ECN capable? */
5638 	if (tcp_ecn_permitted >= 1 &&
5639 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5640 		eager->tcp_ecn_ok = B_TRUE;
5641 	}
5642 
5643 	/*
5644 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5645 	 * window size changed via SO_RCVBUF option.  First round up the
5646 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5647 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5648 	 * setting.
5649 	 *
5650 	 * Note if there is a rpipe metric associated with the remote host,
5651 	 * we should not inherit receive window size from listener.
5652 	 */
5653 	eager->tcp_rwnd = MSS_ROUNDUP(
5654 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5655 	    eager->tcp_rwnd), eager->tcp_mss);
5656 	if (eager->tcp_snd_ws_ok)
5657 		tcp_set_ws_value(eager);
5658 	/*
5659 	 * Note that this is the only place tcp_rwnd_set() is called for
5660 	 * accepting a connection.  We need to call it here instead of
5661 	 * after the 3-way handshake because we need to tell the other
5662 	 * side our rwnd in the SYN-ACK segment.
5663 	 */
5664 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5665 
5666 	/*
5667 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5668 	 * via soaccept()->soinheritoptions() which essentially applies
5669 	 * all the listener options to the new STREAM. The options that we
5670 	 * need to take care of are:
5671 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5672 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5673 	 * SO_SNDBUF, SO_RCVBUF.
5674 	 *
5675 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5676 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5677 	 *		tcp_maxpsz_set() gets called later from
5678 	 *		tcp_accept_finish(), the option takes effect.
5679 	 *
5680 	 */
5681 	/* Set the TCP options */
5682 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5683 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5684 	eager->tcp_oobinline = tcp->tcp_oobinline;
5685 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5686 	eager->tcp_broadcast = tcp->tcp_broadcast;
5687 	eager->tcp_useloopback = tcp->tcp_useloopback;
5688 	eager->tcp_dontroute = tcp->tcp_dontroute;
5689 	eager->tcp_linger = tcp->tcp_linger;
5690 	eager->tcp_lingertime = tcp->tcp_lingertime;
5691 	if (tcp->tcp_ka_enabled)
5692 		eager->tcp_ka_enabled = 1;
5693 
5694 	/* Set the IP options */
5695 	econnp->conn_broadcast = connp->conn_broadcast;
5696 	econnp->conn_loopback = connp->conn_loopback;
5697 	econnp->conn_dontroute = connp->conn_dontroute;
5698 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5699 
5700 	/* Put a ref on the listener for the eager. */
5701 	CONN_INC_REF(connp);
5702 	mutex_enter(&tcp->tcp_eager_lock);
5703 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5704 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5705 	tcp->tcp_eager_next_q0 = eager;
5706 	eager->tcp_eager_prev_q0 = tcp;
5707 
5708 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5709 	eager->tcp_listener = tcp;
5710 	eager->tcp_saved_listener = tcp;
5711 
5712 	/*
5713 	 * Tag this detached tcp vector for later retrieval
5714 	 * by our listener client in tcp_accept().
5715 	 */
5716 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5717 	tcp->tcp_conn_req_cnt_q0++;
5718 	if (++tcp->tcp_conn_req_seqnum == -1) {
5719 		/*
5720 		 * -1 is "special" and defined in TPI as something
5721 		 * that should never be used in T_CONN_IND
5722 		 */
5723 		++tcp->tcp_conn_req_seqnum;
5724 	}
5725 	mutex_exit(&tcp->tcp_eager_lock);
5726 
5727 	if (tcp->tcp_syn_defense) {
5728 		/* Don't drop the SYN that comes from a good IP source */
5729 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5730 		if (addr_cache != NULL && eager->tcp_remote ==
5731 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5732 			eager->tcp_dontdrop = B_TRUE;
5733 		}
5734 	}
5735 
5736 	/*
5737 	 * We need to insert the eager in its own perimeter but as soon
5738 	 * as we do that, we expose the eager to the classifier and
5739 	 * should not touch any field outside the eager's perimeter.
5740 	 * So do all the work necessary before inserting the eager
5741 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5742 	 * will succeed but undo everything if it fails.
5743 	 */
5744 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5745 	eager->tcp_irs = seg_seq;
5746 	eager->tcp_rack = seg_seq;
5747 	eager->tcp_rnxt = seg_seq + 1;
5748 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5749 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5750 	eager->tcp_state = TCPS_SYN_RCVD;
5751 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5752 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5753 	if (mp1 == NULL)
5754 		goto error1;
5755 	DB_CPID(mp1) = tcp->tcp_cpid;
5756 
5757 	/*
5758 	 * We need to start the rto timer. In normal case, we start
5759 	 * the timer after sending the packet on the wire (or at
5760 	 * least believing that packet was sent by waiting for
5761 	 * CALL_IP_WPUT() to return). Since this is the first packet
5762 	 * being sent on the wire for the eager, our initial tcp_rto
5763 	 * is at least tcp_rexmit_interval_min which is a fairly
5764 	 * large value to allow the algorithm to adjust slowly to large
5765 	 * fluctuations of RTT during first few transmissions.
5766 	 *
5767 	 * Starting the timer first and then sending the packet in this
5768 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5769 	 * is of the order of several 100ms and starting the timer
5770 	 * first and then sending the packet will result in difference
5771 	 * of few micro seconds.
5772 	 *
5773 	 * Without this optimization, we are forced to hold the fanout
5774 	 * lock across the ipcl_bind_insert() and sending the packet
5775 	 * so that we don't race against an incoming packet (maybe RST)
5776 	 * for this eager.
5777 	 */
5778 
5779 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5780 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5781 
5782 
5783 	/*
5784 	 * Insert the eager in its own perimeter now. We are ready to deal
5785 	 * with any packets on eager.
5786 	 */
5787 	if (eager->tcp_ipversion == IPV4_VERSION) {
5788 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5789 			goto error;
5790 		}
5791 	} else {
5792 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5793 			goto error;
5794 		}
5795 	}
5796 
5797 	/* mark conn as fully-bound */
5798 	econnp->conn_fully_bound = B_TRUE;
5799 
5800 	/* Send the SYN-ACK */
5801 	tcp_send_data(eager, eager->tcp_wq, mp1);
5802 	freemsg(mp);
5803 
5804 	return;
5805 error:
5806 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5807 	freemsg(mp1);
5808 error1:
5809 	/* Undo what we did above */
5810 	mutex_enter(&tcp->tcp_eager_lock);
5811 	tcp_eager_unlink(eager);
5812 	mutex_exit(&tcp->tcp_eager_lock);
5813 	/* Drop eager's reference on the listener */
5814 	CONN_DEC_REF(connp);
5815 
5816 	/*
5817 	 * Delete the cached ire in conn_ire_cache and also mark
5818 	 * the conn as CONDEMNED
5819 	 */
5820 	mutex_enter(&econnp->conn_lock);
5821 	econnp->conn_state_flags |= CONN_CONDEMNED;
5822 	ire = econnp->conn_ire_cache;
5823 	econnp->conn_ire_cache = NULL;
5824 	mutex_exit(&econnp->conn_lock);
5825 	if (ire != NULL)
5826 		IRE_REFRELE_NOTR(ire);
5827 
5828 	/*
5829 	 * tcp_accept_comm inserts the eager to the bind_hash
5830 	 * we need to remove it from the hash if ipcl_conn_insert
5831 	 * fails.
5832 	 */
5833 	tcp_bind_hash_remove(eager);
5834 	/* Drop the eager ref placed in tcp_open_detached */
5835 	CONN_DEC_REF(econnp);
5836 
5837 	/*
5838 	 * If a connection already exists, send the mp to that connections so
5839 	 * that it can be appropriately dealt with.
5840 	 */
5841 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
5842 		if (!IPCL_IS_CONNECTED(econnp)) {
5843 			/*
5844 			 * Something bad happened. ipcl_conn_insert()
5845 			 * failed because a connection already existed
5846 			 * in connected hash but we can't find it
5847 			 * anymore (someone blew it away). Just
5848 			 * free this message and hopefully remote
5849 			 * will retransmit at which time the SYN can be
5850 			 * treated as a new connection or dealth with
5851 			 * a TH_RST if a connection already exists.
5852 			 */
5853 			freemsg(mp);
5854 		} else {
5855 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
5856 			    econnp, SQTAG_TCP_CONN_REQ);
5857 		}
5858 	} else {
5859 		/* Nobody wants this packet */
5860 		freemsg(mp);
5861 	}
5862 	return;
5863 error2:
5864 	freemsg(mp);
5865 	return;
5866 error3:
5867 	CONN_DEC_REF(econnp);
5868 	freemsg(mp);
5869 }
5870 
5871 /*
5872  * In an ideal case of vertical partition in NUMA architecture, its
5873  * beneficial to have the listener and all the incoming connections
5874  * tied to the same squeue. The other constraint is that incoming
5875  * connections should be tied to the squeue attached to interrupted
5876  * CPU for obvious locality reason so this leaves the listener to
5877  * be tied to the same squeue. Our only problem is that when listener
5878  * is binding, the CPU that will get interrupted by the NIC whose
5879  * IP address the listener is binding to is not even known. So
5880  * the code below allows us to change that binding at the time the
5881  * CPU is interrupted by virtue of incoming connection's squeue.
5882  *
5883  * This is usefull only in case of a listener bound to a specific IP
5884  * address. For other kind of listeners, they get bound the
5885  * very first time and there is no attempt to rebind them.
5886  */
5887 void
5888 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5889 {
5890 	conn_t		*connp = (conn_t *)arg;
5891 	squeue_t	*sqp = (squeue_t *)arg2;
5892 	squeue_t	*new_sqp;
5893 	uint32_t	conn_flags;
5894 
5895 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5896 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5897 	} else {
5898 		goto done;
5899 	}
5900 
5901 	if (connp->conn_fanout == NULL)
5902 		goto done;
5903 
5904 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5905 		mutex_enter(&connp->conn_fanout->connf_lock);
5906 		mutex_enter(&connp->conn_lock);
5907 		/*
5908 		 * No one from read or write side can access us now
5909 		 * except for already queued packets on this squeue.
5910 		 * But since we haven't changed the squeue yet, they
5911 		 * can't execute. If they are processed after we have
5912 		 * changed the squeue, they are sent back to the
5913 		 * correct squeue down below.
5914 		 */
5915 		if (connp->conn_sqp != new_sqp) {
5916 			while (connp->conn_sqp != new_sqp)
5917 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5918 		}
5919 
5920 		do {
5921 			conn_flags = connp->conn_flags;
5922 			conn_flags |= IPCL_FULLY_BOUND;
5923 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5924 			    conn_flags);
5925 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5926 
5927 		mutex_exit(&connp->conn_fanout->connf_lock);
5928 		mutex_exit(&connp->conn_lock);
5929 	}
5930 
5931 done:
5932 	if (connp->conn_sqp != sqp) {
5933 		CONN_INC_REF(connp);
5934 		squeue_fill(connp->conn_sqp, mp,
5935 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
5936 	} else {
5937 		tcp_conn_request(connp, mp, sqp);
5938 	}
5939 }
5940 
5941 /*
5942  * Successful connect request processing begins when our client passes
5943  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5944  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5945  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
5946  *   upstream <- tcp_rput()                <- IP
5947  * After various error checks are completed, tcp_connect() lays
5948  * the target address and port into the composite header template,
5949  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5950  * request followed by an IRE request, and passes the three mblk message
5951  * down to IP looking like this:
5952  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5953  * Processing continues in tcp_rput() when we receive the following message:
5954  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5955  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5956  * to fire off the connection request, and then passes the T_OK_ACK mblk
5957  * upstream that we filled in below.  There are, of course, numerous
5958  * error conditions along the way which truncate the processing described
5959  * above.
5960  */
5961 static void
5962 tcp_connect(tcp_t *tcp, mblk_t *mp)
5963 {
5964 	sin_t		*sin;
5965 	sin6_t		*sin6;
5966 	queue_t		*q = tcp->tcp_wq;
5967 	struct T_conn_req	*tcr;
5968 	ipaddr_t	*dstaddrp;
5969 	in_port_t	dstport;
5970 	uint_t		srcid;
5971 
5972 	tcr = (struct T_conn_req *)mp->b_rptr;
5973 
5974 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5975 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5976 		tcp_err_ack(tcp, mp, TPROTO, 0);
5977 		return;
5978 	}
5979 
5980 	/*
5981 	 * Determine packet type based on type of address passed in
5982 	 * the request should contain an IPv4 or IPv6 address.
5983 	 * Make sure that address family matches the type of
5984 	 * family of the the address passed down
5985 	 */
5986 	switch (tcr->DEST_length) {
5987 	default:
5988 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5989 		return;
5990 
5991 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5992 		/*
5993 		 * XXX: The check for valid DEST_length was not there
5994 		 * in earlier releases and some buggy
5995 		 * TLI apps (e.g Sybase) got away with not feeding
5996 		 * in sin_zero part of address.
5997 		 * We allow that bug to keep those buggy apps humming.
5998 		 * Test suites require the check on DEST_length.
5999 		 * We construct a new mblk with valid DEST_length
6000 		 * free the original so the rest of the code does
6001 		 * not have to keep track of this special shorter
6002 		 * length address case.
6003 		 */
6004 		mblk_t *nmp;
6005 		struct T_conn_req *ntcr;
6006 		sin_t *nsin;
6007 
6008 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6009 		    tcr->OPT_length, BPRI_HI);
6010 		if (nmp == NULL) {
6011 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6012 			return;
6013 		}
6014 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6015 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6016 		ntcr->PRIM_type = T_CONN_REQ;
6017 		ntcr->DEST_length = sizeof (sin_t);
6018 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6019 
6020 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6021 		*nsin = sin_null;
6022 		/* Get pointer to shorter address to copy from original mp */
6023 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6024 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6025 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6026 			freemsg(nmp);
6027 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6028 			return;
6029 		}
6030 		nsin->sin_family = sin->sin_family;
6031 		nsin->sin_port = sin->sin_port;
6032 		nsin->sin_addr = sin->sin_addr;
6033 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6034 		nmp->b_wptr = (uchar_t *)&nsin[1];
6035 		if (tcr->OPT_length != 0) {
6036 			ntcr->OPT_length = tcr->OPT_length;
6037 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6038 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6039 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6040 			    tcr->OPT_length);
6041 			nmp->b_wptr += tcr->OPT_length;
6042 		}
6043 		freemsg(mp);	/* original mp freed */
6044 		mp = nmp;	/* re-initialize original variables */
6045 		tcr = ntcr;
6046 	}
6047 	/* FALLTHRU */
6048 
6049 	case sizeof (sin_t):
6050 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6051 		    sizeof (sin_t));
6052 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6053 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6054 			return;
6055 		}
6056 		if (tcp->tcp_family != AF_INET ||
6057 		    sin->sin_family != AF_INET) {
6058 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6059 			return;
6060 		}
6061 		if (sin->sin_port == 0) {
6062 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6063 			return;
6064 		}
6065 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6066 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6067 			return;
6068 		}
6069 
6070 		break;
6071 
6072 	case sizeof (sin6_t):
6073 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6074 		    sizeof (sin6_t));
6075 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6076 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6077 			return;
6078 		}
6079 		if (tcp->tcp_family != AF_INET6 ||
6080 		    sin6->sin6_family != AF_INET6) {
6081 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6082 			return;
6083 		}
6084 		if (sin6->sin6_port == 0) {
6085 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6086 			return;
6087 		}
6088 		break;
6089 	}
6090 	/*
6091 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6092 	 * should key on their sequence number and cut them loose.
6093 	 */
6094 
6095 	/*
6096 	 * If options passed in, feed it for verification and handling
6097 	 */
6098 	if (tcr->OPT_length != 0) {
6099 		mblk_t	*ok_mp;
6100 		mblk_t	*discon_mp;
6101 		mblk_t  *conn_opts_mp;
6102 		int t_error, sys_error, do_disconnect;
6103 
6104 		conn_opts_mp = NULL;
6105 
6106 		if (tcp_conprim_opt_process(tcp, mp,
6107 			&do_disconnect, &t_error, &sys_error) < 0) {
6108 			if (do_disconnect) {
6109 				ASSERT(t_error == 0 && sys_error == 0);
6110 				discon_mp = mi_tpi_discon_ind(NULL,
6111 				    ECONNREFUSED, 0);
6112 				if (!discon_mp) {
6113 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6114 					    TSYSERR, ENOMEM);
6115 					return;
6116 				}
6117 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6118 				if (!ok_mp) {
6119 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6120 					    TSYSERR, ENOMEM);
6121 					return;
6122 				}
6123 				qreply(q, ok_mp);
6124 				qreply(q, discon_mp); /* no flush! */
6125 			} else {
6126 				ASSERT(t_error != 0);
6127 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6128 				    sys_error);
6129 			}
6130 			return;
6131 		}
6132 		/*
6133 		 * Success in setting options, the mp option buffer represented
6134 		 * by OPT_length/offset has been potentially modified and
6135 		 * contains results of option processing. We copy it in
6136 		 * another mp to save it for potentially influencing returning
6137 		 * it in T_CONN_CONN.
6138 		 */
6139 		if (tcr->OPT_length != 0) { /* there are resulting options */
6140 			conn_opts_mp = copyb(mp);
6141 			if (!conn_opts_mp) {
6142 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6143 				    TSYSERR, ENOMEM);
6144 				return;
6145 			}
6146 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6147 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6148 			/*
6149 			 * Note:
6150 			 * These resulting option negotiation can include any
6151 			 * end-to-end negotiation options but there no such
6152 			 * thing (yet?) in our TCP/IP.
6153 			 */
6154 		}
6155 	}
6156 
6157 	/*
6158 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6159 	 * make sure that the template IP header in the tcp structure is an
6160 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6161 	 * need to this before we call tcp_bindi() so that the port lookup
6162 	 * code will look for ports in the correct port space (IPv4 and
6163 	 * IPv6 have separate port spaces).
6164 	 */
6165 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6166 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6167 		int err = 0;
6168 
6169 		err = tcp_header_init_ipv4(tcp);
6170 		if (err != 0) {
6171 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6172 			goto connect_failed;
6173 		}
6174 		if (tcp->tcp_lport != 0)
6175 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6176 	}
6177 
6178 	switch (tcp->tcp_state) {
6179 	case TCPS_IDLE:
6180 		/*
6181 		 * We support quick connect, refer to comments in
6182 		 * tcp_connect_*()
6183 		 */
6184 		/* FALLTHRU */
6185 	case TCPS_BOUND:
6186 	case TCPS_LISTEN:
6187 		if (tcp->tcp_family == AF_INET6) {
6188 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6189 				tcp_connect_ipv6(tcp, mp,
6190 				    &sin6->sin6_addr,
6191 				    sin6->sin6_port, sin6->sin6_flowinfo,
6192 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6193 				return;
6194 			}
6195 			/*
6196 			 * Destination adress is mapped IPv6 address.
6197 			 * Source bound address should be unspecified or
6198 			 * IPv6 mapped address as well.
6199 			 */
6200 			if (!IN6_IS_ADDR_UNSPECIFIED(
6201 			    &tcp->tcp_bound_source_v6) &&
6202 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6203 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6204 				    EADDRNOTAVAIL);
6205 				break;
6206 			}
6207 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6208 			dstport = sin6->sin6_port;
6209 			srcid = sin6->__sin6_src_id;
6210 		} else {
6211 			dstaddrp = &sin->sin_addr.s_addr;
6212 			dstport = sin->sin_port;
6213 			srcid = 0;
6214 		}
6215 
6216 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6217 		return;
6218 	default:
6219 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6220 		break;
6221 	}
6222 	/*
6223 	 * Note: Code below is the "failure" case
6224 	 */
6225 	/* return error ack and blow away saved option results if any */
6226 connect_failed:
6227 	if (mp != NULL)
6228 		putnext(tcp->tcp_rq, mp);
6229 	else {
6230 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6231 		    TSYSERR, ENOMEM);
6232 	}
6233 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6234 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6235 }
6236 
6237 /*
6238  * Handle connect to IPv4 destinations, including connections for AF_INET6
6239  * sockets connecting to IPv4 mapped IPv6 destinations.
6240  */
6241 static void
6242 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6243     uint_t srcid)
6244 {
6245 	tcph_t	*tcph;
6246 	mblk_t	*mp1;
6247 	ipaddr_t dstaddr = *dstaddrp;
6248 	int32_t	oldstate;
6249 	uint16_t lport;
6250 
6251 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6252 
6253 	/* Check for attempt to connect to INADDR_ANY */
6254 	if (dstaddr == INADDR_ANY)  {
6255 		/*
6256 		 * SunOS 4.x and 4.3 BSD allow an application
6257 		 * to connect a TCP socket to INADDR_ANY.
6258 		 * When they do this, the kernel picks the
6259 		 * address of one interface and uses it
6260 		 * instead.  The kernel usually ends up
6261 		 * picking the address of the loopback
6262 		 * interface.  This is an undocumented feature.
6263 		 * However, we provide the same thing here
6264 		 * in order to have source and binary
6265 		 * compatibility with SunOS 4.x.
6266 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6267 		 * generate the T_CONN_CON.
6268 		 */
6269 		dstaddr = htonl(INADDR_LOOPBACK);
6270 		*dstaddrp = dstaddr;
6271 	}
6272 
6273 	/* Handle __sin6_src_id if socket not bound to an IP address */
6274 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6275 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6276 		    tcp->tcp_connp->conn_zoneid);
6277 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6278 		    tcp->tcp_ipha->ipha_src);
6279 	}
6280 
6281 	/*
6282 	 * Don't let an endpoint connect to itself.  Note that
6283 	 * the test here does not catch the case where the
6284 	 * source IP addr was left unspecified by the user. In
6285 	 * this case, the source addr is set in tcp_adapt_ire()
6286 	 * using the reply to the T_BIND message that we send
6287 	 * down to IP here and the check is repeated in tcp_rput_other.
6288 	 */
6289 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6290 	    dstport == tcp->tcp_lport) {
6291 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6292 		goto failed;
6293 	}
6294 
6295 	tcp->tcp_ipha->ipha_dst = dstaddr;
6296 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6297 
6298 	/*
6299 	 * Massage a source route if any putting the first hop
6300 	 * in iph_dst. Compute a starting value for the checksum which
6301 	 * takes into account that the original iph_dst should be
6302 	 * included in the checksum but that ip will include the
6303 	 * first hop in the source route in the tcp checksum.
6304 	 */
6305 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6306 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6307 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6308 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6309 	if ((int)tcp->tcp_sum < 0)
6310 		tcp->tcp_sum--;
6311 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6312 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6313 	    (tcp->tcp_sum >> 16));
6314 	tcph = tcp->tcp_tcph;
6315 	*(uint16_t *)tcph->th_fport = dstport;
6316 	tcp->tcp_fport = dstport;
6317 
6318 	oldstate = tcp->tcp_state;
6319 	/*
6320 	 * At this point the remote destination address and remote port fields
6321 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6322 	 * have to see which state tcp was in so we can take apropriate action.
6323 	 */
6324 	if (oldstate == TCPS_IDLE) {
6325 		/*
6326 		 * We support a quick connect capability here, allowing
6327 		 * clients to transition directly from IDLE to SYN_SENT
6328 		 * tcp_bindi will pick an unused port, insert the connection
6329 		 * in the bind hash and transition to BOUND state.
6330 		 */
6331 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6332 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6333 		    B_FALSE, B_FALSE);
6334 		if (lport == 0) {
6335 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6336 			goto failed;
6337 		}
6338 	}
6339 	tcp->tcp_state = TCPS_SYN_SENT;
6340 
6341 	/*
6342 	 * TODO: allow data with connect requests
6343 	 * by unlinking M_DATA trailers here and
6344 	 * linking them in behind the T_OK_ACK mblk.
6345 	 * The tcp_rput() bind ack handler would then
6346 	 * feed them to tcp_wput_data() rather than call
6347 	 * tcp_timer().
6348 	 */
6349 	mp = mi_tpi_ok_ack_alloc(mp);
6350 	if (!mp) {
6351 		tcp->tcp_state = oldstate;
6352 		goto failed;
6353 	}
6354 	if (tcp->tcp_family == AF_INET) {
6355 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6356 		    sizeof (ipa_conn_t));
6357 	} else {
6358 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6359 		    sizeof (ipa6_conn_t));
6360 	}
6361 	if (mp1) {
6362 		/* Hang onto the T_OK_ACK for later. */
6363 		linkb(mp1, mp);
6364 		mblk_setcred(mp1, tcp->tcp_cred);
6365 		if (tcp->tcp_family == AF_INET)
6366 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6367 		else {
6368 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6369 			    &tcp->tcp_sticky_ipp);
6370 		}
6371 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6372 		tcp->tcp_active_open = 1;
6373 		/*
6374 		 * If the bind cannot complete immediately
6375 		 * IP will arrange to call tcp_rput_other
6376 		 * when the bind completes.
6377 		 */
6378 		if (mp1 != NULL)
6379 			tcp_rput_other(tcp, mp1);
6380 		return;
6381 	}
6382 	/* Error case */
6383 	tcp->tcp_state = oldstate;
6384 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6385 
6386 failed:
6387 	/* return error ack and blow away saved option results if any */
6388 	if (mp != NULL)
6389 		putnext(tcp->tcp_rq, mp);
6390 	else {
6391 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6392 		    TSYSERR, ENOMEM);
6393 	}
6394 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6395 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6396 
6397 }
6398 
6399 /*
6400  * Handle connect to IPv6 destinations.
6401  */
6402 static void
6403 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6404     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6405 {
6406 	tcph_t	*tcph;
6407 	mblk_t	*mp1;
6408 	ip6_rthdr_t *rth;
6409 	int32_t  oldstate;
6410 	uint16_t lport;
6411 
6412 	ASSERT(tcp->tcp_family == AF_INET6);
6413 
6414 	/*
6415 	 * If we're here, it means that the destination address is a native
6416 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6417 	 * reason why it might not be IPv6 is if the socket was bound to an
6418 	 * IPv4-mapped IPv6 address.
6419 	 */
6420 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6421 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6422 		goto failed;
6423 	}
6424 
6425 	/*
6426 	 * Interpret a zero destination to mean loopback.
6427 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6428 	 * generate the T_CONN_CON.
6429 	 */
6430 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6431 		*dstaddrp = ipv6_loopback;
6432 	}
6433 
6434 	/* Handle __sin6_src_id if socket not bound to an IP address */
6435 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6436 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6437 		    tcp->tcp_connp->conn_zoneid);
6438 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6439 	}
6440 
6441 	/*
6442 	 * Take care of the scope_id now and add ip6i_t
6443 	 * if ip6i_t is not already allocated through TCP
6444 	 * sticky options. At this point tcp_ip6h does not
6445 	 * have dst info, thus use dstaddrp.
6446 	 */
6447 	if (scope_id != 0 &&
6448 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6449 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6450 		ip6i_t  *ip6i;
6451 
6452 		ipp->ipp_ifindex = scope_id;
6453 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6454 
6455 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6456 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6457 			/* Already allocated */
6458 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6459 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6460 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6461 		} else {
6462 			int reterr;
6463 
6464 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6465 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6466 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6467 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6468 			if (reterr != 0)
6469 				goto failed;
6470 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6471 		}
6472 	}
6473 
6474 	/*
6475 	 * Don't let an endpoint connect to itself.  Note that
6476 	 * the test here does not catch the case where the
6477 	 * source IP addr was left unspecified by the user. In
6478 	 * this case, the source addr is set in tcp_adapt_ire()
6479 	 * using the reply to the T_BIND message that we send
6480 	 * down to IP here and the check is repeated in tcp_rput_other.
6481 	 */
6482 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6483 	    (dstport == tcp->tcp_lport)) {
6484 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6485 		goto failed;
6486 	}
6487 
6488 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6489 	tcp->tcp_remote_v6 = *dstaddrp;
6490 	tcp->tcp_ip6h->ip6_vcf =
6491 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6492 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6493 
6494 
6495 	/*
6496 	 * Massage a routing header (if present) putting the first hop
6497 	 * in ip6_dst. Compute a starting value for the checksum which
6498 	 * takes into account that the original ip6_dst should be
6499 	 * included in the checksum but that ip will include the
6500 	 * first hop in the source route in the tcp checksum.
6501 	 */
6502 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6503 	if (rth != NULL) {
6504 
6505 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6506 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6507 		    (tcp->tcp_sum >> 16));
6508 	} else {
6509 		tcp->tcp_sum = 0;
6510 	}
6511 
6512 	tcph = tcp->tcp_tcph;
6513 	*(uint16_t *)tcph->th_fport = dstport;
6514 	tcp->tcp_fport = dstport;
6515 
6516 	oldstate = tcp->tcp_state;
6517 	/*
6518 	 * At this point the remote destination address and remote port fields
6519 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6520 	 * have to see which state tcp was in so we can take apropriate action.
6521 	 */
6522 	if (oldstate == TCPS_IDLE) {
6523 		/*
6524 		 * We support a quick connect capability here, allowing
6525 		 * clients to transition directly from IDLE to SYN_SENT
6526 		 * tcp_bindi will pick an unused port, insert the connection
6527 		 * in the bind hash and transition to BOUND state.
6528 		 */
6529 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6530 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6531 		    B_FALSE, B_FALSE);
6532 		if (lport == 0) {
6533 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6534 			goto failed;
6535 		}
6536 	}
6537 	tcp->tcp_state = TCPS_SYN_SENT;
6538 	/*
6539 	 * TODO: allow data with connect requests
6540 	 * by unlinking M_DATA trailers here and
6541 	 * linking them in behind the T_OK_ACK mblk.
6542 	 * The tcp_rput() bind ack handler would then
6543 	 * feed them to tcp_wput_data() rather than call
6544 	 * tcp_timer().
6545 	 */
6546 	mp = mi_tpi_ok_ack_alloc(mp);
6547 	if (!mp) {
6548 		tcp->tcp_state = oldstate;
6549 		goto failed;
6550 	}
6551 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6552 	if (mp1) {
6553 		/* Hang onto the T_OK_ACK for later. */
6554 		linkb(mp1, mp);
6555 		mblk_setcred(mp1, tcp->tcp_cred);
6556 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6557 		    &tcp->tcp_sticky_ipp);
6558 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6559 		tcp->tcp_active_open = 1;
6560 		/* ip_bind_v6() may return ACK or ERROR */
6561 		if (mp1 != NULL)
6562 			tcp_rput_other(tcp, mp1);
6563 		return;
6564 	}
6565 	/* Error case */
6566 	tcp->tcp_state = oldstate;
6567 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6568 
6569 failed:
6570 	/* return error ack and blow away saved option results if any */
6571 	if (mp != NULL)
6572 		putnext(tcp->tcp_rq, mp);
6573 	else {
6574 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6575 		    TSYSERR, ENOMEM);
6576 	}
6577 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6578 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6579 }
6580 
6581 /*
6582  * We need a stream q for detached closing tcp connections
6583  * to use.  Our client hereby indicates that this q is the
6584  * one to use.
6585  */
6586 static void
6587 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6588 {
6589 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6590 	queue_t	*q = tcp->tcp_wq;
6591 
6592 	mp->b_datap->db_type = M_IOCACK;
6593 	iocp->ioc_count = 0;
6594 	mutex_enter(&tcp_g_q_lock);
6595 	if (tcp_g_q != NULL) {
6596 		mutex_exit(&tcp_g_q_lock);
6597 		iocp->ioc_error = EALREADY;
6598 	} else {
6599 		mblk_t *mp1;
6600 
6601 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6602 		if (mp1 == NULL) {
6603 			mutex_exit(&tcp_g_q_lock);
6604 			iocp->ioc_error = ENOMEM;
6605 		} else {
6606 			tcp_g_q = tcp->tcp_rq;
6607 			mutex_exit(&tcp_g_q_lock);
6608 			iocp->ioc_error = 0;
6609 			iocp->ioc_rval = 0;
6610 			/*
6611 			 * We are passing tcp_sticky_ipp as NULL
6612 			 * as it is not useful for tcp_default queue
6613 			 */
6614 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6615 			if (mp1 != NULL)
6616 				tcp_rput_other(tcp, mp1);
6617 		}
6618 	}
6619 	qreply(q, mp);
6620 }
6621 
6622 /*
6623  * Our client hereby directs us to reject the connection request
6624  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6625  * of sending the appropriate RST, not an ICMP error.
6626  */
6627 static void
6628 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6629 {
6630 	tcp_t	*ltcp = NULL;
6631 	t_scalar_t seqnum;
6632 	conn_t	*connp;
6633 
6634 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6635 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6636 		tcp_err_ack(tcp, mp, TPROTO, 0);
6637 		return;
6638 	}
6639 
6640 	/*
6641 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6642 	 * when the stream is in BOUND state. Do not send a reset,
6643 	 * since the destination IP address is not valid, and it can
6644 	 * be the initialized value of all zeros (broadcast address).
6645 	 *
6646 	 * If TCP has sent down a bind request to IP and has not
6647 	 * received the reply, reject the request.  Otherwise, TCP
6648 	 * will be confused.
6649 	 */
6650 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6651 		if (tcp->tcp_debug) {
6652 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6653 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6654 		}
6655 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6656 		return;
6657 	}
6658 
6659 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6660 
6661 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6662 
6663 		/*
6664 		 * According to TPI, for non-listeners, ignore seqnum
6665 		 * and disconnect.
6666 		 * Following interpretation of -1 seqnum is historical
6667 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6668 		 * a valid seqnum should not be -1).
6669 		 *
6670 		 *	-1 means disconnect everything
6671 		 *	regardless even on a listener.
6672 		 */
6673 
6674 		int old_state = tcp->tcp_state;
6675 
6676 		/*
6677 		 * The connection can't be on the tcp_time_wait_head list
6678 		 * since it is not detached.
6679 		 */
6680 		ASSERT(tcp->tcp_time_wait_next == NULL);
6681 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6682 		ASSERT(tcp->tcp_time_wait_expire == 0);
6683 		ltcp = NULL;
6684 		/*
6685 		 * If it used to be a listener, check to make sure no one else
6686 		 * has taken the port before switching back to LISTEN state.
6687 		 */
6688 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6689 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6690 			    tcp->tcp_ipha->ipha_src,
6691 			    tcp->tcp_connp->conn_zoneid);
6692 			if (connp != NULL)
6693 				ltcp = connp->conn_tcp;
6694 		} else {
6695 			/* Allow tcp_bound_if listeners? */
6696 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6697 			    &tcp->tcp_ip6h->ip6_src, 0,
6698 			    tcp->tcp_connp->conn_zoneid);
6699 			if (connp != NULL)
6700 				ltcp = connp->conn_tcp;
6701 		}
6702 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6703 			tcp->tcp_state = TCPS_LISTEN;
6704 		} else if (old_state > TCPS_BOUND) {
6705 			tcp->tcp_conn_req_max = 0;
6706 			tcp->tcp_state = TCPS_BOUND;
6707 		}
6708 		if (ltcp != NULL)
6709 			CONN_DEC_REF(ltcp->tcp_connp);
6710 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6711 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6712 		} else if (old_state == TCPS_ESTABLISHED ||
6713 		    old_state == TCPS_CLOSE_WAIT) {
6714 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6715 		}
6716 
6717 		if (tcp->tcp_fused)
6718 			tcp_unfuse(tcp);
6719 
6720 		mutex_enter(&tcp->tcp_eager_lock);
6721 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6722 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6723 			tcp_eager_cleanup(tcp, 0);
6724 		}
6725 		mutex_exit(&tcp->tcp_eager_lock);
6726 
6727 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6728 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6729 
6730 		tcp_reinit(tcp);
6731 
6732 		if (old_state >= TCPS_ESTABLISHED) {
6733 			/* Send M_FLUSH according to TPI */
6734 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6735 		}
6736 		mp = mi_tpi_ok_ack_alloc(mp);
6737 		if (mp)
6738 			putnext(tcp->tcp_rq, mp);
6739 		return;
6740 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6741 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6742 		return;
6743 	}
6744 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6745 		/* Send M_FLUSH according to TPI */
6746 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6747 	}
6748 	mp = mi_tpi_ok_ack_alloc(mp);
6749 	if (mp)
6750 		putnext(tcp->tcp_rq, mp);
6751 }
6752 
6753 /*
6754  * Diagnostic routine used to return a string associated with the tcp state.
6755  * Note that if the caller does not supply a buffer, it will use an internal
6756  * static string.  This means that if multiple threads call this function at
6757  * the same time, output can be corrupted...  Note also that this function
6758  * does not check the size of the supplied buffer.  The caller has to make
6759  * sure that it is big enough.
6760  */
6761 static char *
6762 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6763 {
6764 	char		buf1[30];
6765 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6766 	char		*buf;
6767 	char		*cp;
6768 	in6_addr_t	local, remote;
6769 	char		local_addrbuf[INET6_ADDRSTRLEN];
6770 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6771 
6772 	if (sup_buf != NULL)
6773 		buf = sup_buf;
6774 	else
6775 		buf = priv_buf;
6776 
6777 	if (tcp == NULL)
6778 		return ("NULL_TCP");
6779 	switch (tcp->tcp_state) {
6780 	case TCPS_CLOSED:
6781 		cp = "TCP_CLOSED";
6782 		break;
6783 	case TCPS_IDLE:
6784 		cp = "TCP_IDLE";
6785 		break;
6786 	case TCPS_BOUND:
6787 		cp = "TCP_BOUND";
6788 		break;
6789 	case TCPS_LISTEN:
6790 		cp = "TCP_LISTEN";
6791 		break;
6792 	case TCPS_SYN_SENT:
6793 		cp = "TCP_SYN_SENT";
6794 		break;
6795 	case TCPS_SYN_RCVD:
6796 		cp = "TCP_SYN_RCVD";
6797 		break;
6798 	case TCPS_ESTABLISHED:
6799 		cp = "TCP_ESTABLISHED";
6800 		break;
6801 	case TCPS_CLOSE_WAIT:
6802 		cp = "TCP_CLOSE_WAIT";
6803 		break;
6804 	case TCPS_FIN_WAIT_1:
6805 		cp = "TCP_FIN_WAIT_1";
6806 		break;
6807 	case TCPS_CLOSING:
6808 		cp = "TCP_CLOSING";
6809 		break;
6810 	case TCPS_LAST_ACK:
6811 		cp = "TCP_LAST_ACK";
6812 		break;
6813 	case TCPS_FIN_WAIT_2:
6814 		cp = "TCP_FIN_WAIT_2";
6815 		break;
6816 	case TCPS_TIME_WAIT:
6817 		cp = "TCP_TIME_WAIT";
6818 		break;
6819 	default:
6820 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6821 		cp = buf1;
6822 		break;
6823 	}
6824 	switch (format) {
6825 	case DISP_ADDR_AND_PORT:
6826 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6827 			/*
6828 			 * Note that we use the remote address in the tcp_b
6829 			 * structure.  This means that it will print out
6830 			 * the real destination address, not the next hop's
6831 			 * address if source routing is used.
6832 			 */
6833 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6834 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6835 
6836 		} else {
6837 			local = tcp->tcp_ip_src_v6;
6838 			remote = tcp->tcp_remote_v6;
6839 		}
6840 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6841 		    sizeof (local_addrbuf));
6842 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6843 		    sizeof (remote_addrbuf));
6844 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6845 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6846 		    ntohs(tcp->tcp_fport), cp);
6847 		break;
6848 	case DISP_PORT_ONLY:
6849 	default:
6850 		(void) mi_sprintf(buf, "[%u, %u] %s",
6851 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6852 		break;
6853 	}
6854 
6855 	return (buf);
6856 }
6857 
6858 /*
6859  * Called via squeue to get on to eager's perimeter to send a
6860  * TH_RST. The listener wants the eager to disappear either
6861  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
6862  * being called.
6863  */
6864 /* ARGSUSED */
6865 void
6866 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6867 {
6868 	conn_t	*econnp = (conn_t *)arg;
6869 	tcp_t	*eager = econnp->conn_tcp;
6870 	tcp_t	*listener = eager->tcp_listener;
6871 
6872 	/*
6873 	 * We could be called because listener is closing. Since
6874 	 * the eager is using listener's queue's, its not safe.
6875 	 * Better use the default queue just to send the TH_RST
6876 	 * out.
6877 	 */
6878 	eager->tcp_rq = tcp_g_q;
6879 	eager->tcp_wq = WR(tcp_g_q);
6880 
6881 	if (eager->tcp_state > TCPS_LISTEN) {
6882 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6883 		    eager, eager->tcp_snxt, 0, TH_RST);
6884 	}
6885 
6886 	/* We are here because listener wants this eager gone */
6887 	if (listener != NULL) {
6888 		mutex_enter(&listener->tcp_eager_lock);
6889 		tcp_eager_unlink(eager);
6890 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
6891 			/*
6892 			 * The eager has sent a conn_ind up to the
6893 			 * listener but listener decides to close
6894 			 * instead. We need to drop the extra ref
6895 			 * placed on eager in tcp_rput_data() before
6896 			 * sending the conn_ind to listener.
6897 			 */
6898 			CONN_DEC_REF(econnp);
6899 		}
6900 		mutex_exit(&listener->tcp_eager_lock);
6901 		CONN_DEC_REF(listener->tcp_connp);
6902 	}
6903 
6904 	if (eager->tcp_state > TCPS_BOUND)
6905 		tcp_close_detached(eager);
6906 }
6907 
6908 /*
6909  * Reset any eager connection hanging off this listener marked
6910  * with 'seqnum' and then reclaim it's resources.
6911  */
6912 static boolean_t
6913 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6914 {
6915 	tcp_t	*eager;
6916 	mblk_t 	*mp;
6917 
6918 	TCP_STAT(tcp_eager_blowoff_calls);
6919 	eager = listener;
6920 	mutex_enter(&listener->tcp_eager_lock);
6921 	do {
6922 		eager = eager->tcp_eager_next_q;
6923 		if (eager == NULL) {
6924 			mutex_exit(&listener->tcp_eager_lock);
6925 			return (B_FALSE);
6926 		}
6927 	} while (eager->tcp_conn_req_seqnum != seqnum);
6928 	CONN_INC_REF(eager->tcp_connp);
6929 	mutex_exit(&listener->tcp_eager_lock);
6930 	mp = &eager->tcp_closemp;
6931 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6932 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
6933 	return (B_TRUE);
6934 }
6935 
6936 /*
6937  * Reset any eager connection hanging off this listener
6938  * and then reclaim it's resources.
6939  */
6940 static void
6941 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6942 {
6943 	tcp_t	*eager;
6944 	mblk_t	*mp;
6945 
6946 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6947 
6948 	if (!q0_only) {
6949 		/* First cleanup q */
6950 		TCP_STAT(tcp_eager_blowoff_q);
6951 		eager = listener->tcp_eager_next_q;
6952 		while (eager != NULL) {
6953 			CONN_INC_REF(eager->tcp_connp);
6954 			mp = &eager->tcp_closemp;
6955 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
6956 			    tcp_eager_kill, eager->tcp_connp,
6957 			    SQTAG_TCP_EAGER_CLEANUP);
6958 			eager = eager->tcp_eager_next_q;
6959 		}
6960 	}
6961 	/* Then cleanup q0 */
6962 	TCP_STAT(tcp_eager_blowoff_q0);
6963 	eager = listener->tcp_eager_next_q0;
6964 	while (eager != listener) {
6965 		CONN_INC_REF(eager->tcp_connp);
6966 		mp = &eager->tcp_closemp;
6967 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
6968 		    tcp_eager_kill, eager->tcp_connp,
6969 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
6970 		eager = eager->tcp_eager_next_q0;
6971 	}
6972 }
6973 
6974 /*
6975  * If we are an eager connection hanging off a listener that hasn't
6976  * formally accepted the connection yet, get off his list and blow off
6977  * any data that we have accumulated.
6978  */
6979 static void
6980 tcp_eager_unlink(tcp_t *tcp)
6981 {
6982 	tcp_t	*listener = tcp->tcp_listener;
6983 
6984 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6985 	ASSERT(listener != NULL);
6986 	if (tcp->tcp_eager_next_q0 != NULL) {
6987 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6988 
6989 		/* Remove the eager tcp from q0 */
6990 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6991 		    tcp->tcp_eager_prev_q0;
6992 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6993 		    tcp->tcp_eager_next_q0;
6994 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6995 		listener->tcp_conn_req_cnt_q0--;
6996 
6997 		tcp->tcp_eager_next_q0 = NULL;
6998 		tcp->tcp_eager_prev_q0 = NULL;
6999 
7000 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7001 			/* we have timed out before */
7002 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7003 			listener->tcp_syn_rcvd_timeout--;
7004 		}
7005 	} else {
7006 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7007 		tcp_t	*prev = NULL;
7008 
7009 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7010 			if (tcpp[0] == tcp) {
7011 				if (listener->tcp_eager_last_q == tcp) {
7012 					/*
7013 					 * If we are unlinking the last
7014 					 * element on the list, adjust
7015 					 * tail pointer. Set tail pointer
7016 					 * to nil when list is empty.
7017 					 */
7018 					ASSERT(tcp->tcp_eager_next_q == NULL);
7019 					if (listener->tcp_eager_last_q ==
7020 					    listener->tcp_eager_next_q) {
7021 						listener->tcp_eager_last_q =
7022 						NULL;
7023 					} else {
7024 						/*
7025 						 * We won't get here if there
7026 						 * is only one eager in the
7027 						 * list.
7028 						 */
7029 						ASSERT(prev != NULL);
7030 						listener->tcp_eager_last_q =
7031 						    prev;
7032 					}
7033 				}
7034 				tcpp[0] = tcp->tcp_eager_next_q;
7035 				tcp->tcp_eager_next_q = NULL;
7036 				tcp->tcp_eager_last_q = NULL;
7037 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7038 				listener->tcp_conn_req_cnt_q--;
7039 				break;
7040 			}
7041 			prev = tcpp[0];
7042 		}
7043 	}
7044 	tcp->tcp_listener = NULL;
7045 }
7046 
7047 /* Shorthand to generate and send TPI error acks to our client */
7048 static void
7049 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7050 {
7051 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7052 		putnext(tcp->tcp_rq, mp);
7053 }
7054 
7055 /* Shorthand to generate and send TPI error acks to our client */
7056 static void
7057 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7058     int t_error, int sys_error)
7059 {
7060 	struct T_error_ack	*teackp;
7061 
7062 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7063 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7064 		teackp = (struct T_error_ack *)mp->b_rptr;
7065 		teackp->ERROR_prim = primitive;
7066 		teackp->TLI_error = t_error;
7067 		teackp->UNIX_error = sys_error;
7068 		putnext(tcp->tcp_rq, mp);
7069 	}
7070 }
7071 
7072 /*
7073  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7074  * but instead the code relies on:
7075  * - the fact that the address of the array and its size never changes
7076  * - the atomic assignment of the elements of the array
7077  */
7078 /* ARGSUSED */
7079 static int
7080 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7081 {
7082 	int i;
7083 
7084 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7085 		if (tcp_g_epriv_ports[i] != 0)
7086 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7087 	}
7088 	return (0);
7089 }
7090 
7091 /*
7092  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7093  * threads from changing it at the same time.
7094  */
7095 /* ARGSUSED */
7096 static int
7097 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7098     cred_t *cr)
7099 {
7100 	long	new_value;
7101 	int	i;
7102 
7103 	/*
7104 	 * Fail the request if the new value does not lie within the
7105 	 * port number limits.
7106 	 */
7107 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7108 	    new_value <= 0 || new_value >= 65536) {
7109 		return (EINVAL);
7110 	}
7111 
7112 	mutex_enter(&tcp_epriv_port_lock);
7113 	/* Check if the value is already in the list */
7114 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7115 		if (new_value == tcp_g_epriv_ports[i]) {
7116 			mutex_exit(&tcp_epriv_port_lock);
7117 			return (EEXIST);
7118 		}
7119 	}
7120 	/* Find an empty slot */
7121 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7122 		if (tcp_g_epriv_ports[i] == 0)
7123 			break;
7124 	}
7125 	if (i == tcp_g_num_epriv_ports) {
7126 		mutex_exit(&tcp_epriv_port_lock);
7127 		return (EOVERFLOW);
7128 	}
7129 	/* Set the new value */
7130 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7131 	mutex_exit(&tcp_epriv_port_lock);
7132 	return (0);
7133 }
7134 
7135 /*
7136  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7137  * threads from changing it at the same time.
7138  */
7139 /* ARGSUSED */
7140 static int
7141 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7142     cred_t *cr)
7143 {
7144 	long	new_value;
7145 	int	i;
7146 
7147 	/*
7148 	 * Fail the request if the new value does not lie within the
7149 	 * port number limits.
7150 	 */
7151 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7152 	    new_value >= 65536) {
7153 		return (EINVAL);
7154 	}
7155 
7156 	mutex_enter(&tcp_epriv_port_lock);
7157 	/* Check that the value is already in the list */
7158 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7159 		if (tcp_g_epriv_ports[i] == new_value)
7160 			break;
7161 	}
7162 	if (i == tcp_g_num_epriv_ports) {
7163 		mutex_exit(&tcp_epriv_port_lock);
7164 		return (ESRCH);
7165 	}
7166 	/* Clear the value */
7167 	tcp_g_epriv_ports[i] = 0;
7168 	mutex_exit(&tcp_epriv_port_lock);
7169 	return (0);
7170 }
7171 
7172 /* Return the TPI/TLI equivalent of our current tcp_state */
7173 static int
7174 tcp_tpistate(tcp_t *tcp)
7175 {
7176 	switch (tcp->tcp_state) {
7177 	case TCPS_IDLE:
7178 		return (TS_UNBND);
7179 	case TCPS_LISTEN:
7180 		/*
7181 		 * Return whether there are outstanding T_CONN_IND waiting
7182 		 * for the matching T_CONN_RES. Therefore don't count q0.
7183 		 */
7184 		if (tcp->tcp_conn_req_cnt_q > 0)
7185 			return (TS_WRES_CIND);
7186 		else
7187 			return (TS_IDLE);
7188 	case TCPS_BOUND:
7189 		return (TS_IDLE);
7190 	case TCPS_SYN_SENT:
7191 		return (TS_WCON_CREQ);
7192 	case TCPS_SYN_RCVD:
7193 		/*
7194 		 * Note: assumption: this has to the active open SYN_RCVD.
7195 		 * The passive instance is detached in SYN_RCVD stage of
7196 		 * incoming connection processing so we cannot get request
7197 		 * for T_info_ack on it.
7198 		 */
7199 		return (TS_WACK_CRES);
7200 	case TCPS_ESTABLISHED:
7201 		return (TS_DATA_XFER);
7202 	case TCPS_CLOSE_WAIT:
7203 		return (TS_WREQ_ORDREL);
7204 	case TCPS_FIN_WAIT_1:
7205 		return (TS_WIND_ORDREL);
7206 	case TCPS_FIN_WAIT_2:
7207 		return (TS_WIND_ORDREL);
7208 
7209 	case TCPS_CLOSING:
7210 	case TCPS_LAST_ACK:
7211 	case TCPS_TIME_WAIT:
7212 	case TCPS_CLOSED:
7213 		/*
7214 		 * Following TS_WACK_DREQ7 is a rendition of "not
7215 		 * yet TS_IDLE" TPI state. There is no best match to any
7216 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7217 		 * choose a value chosen that will map to TLI/XTI level
7218 		 * state of TSTATECHNG (state is process of changing) which
7219 		 * captures what this dummy state represents.
7220 		 */
7221 		return (TS_WACK_DREQ7);
7222 	default:
7223 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7224 		    tcp->tcp_state, tcp_display(tcp, NULL,
7225 		    DISP_PORT_ONLY));
7226 		return (TS_UNBND);
7227 	}
7228 }
7229 
7230 static void
7231 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7232 {
7233 	if (tcp->tcp_family == AF_INET6)
7234 		*tia = tcp_g_t_info_ack_v6;
7235 	else
7236 		*tia = tcp_g_t_info_ack;
7237 	tia->CURRENT_state = tcp_tpistate(tcp);
7238 	tia->OPT_size = tcp_max_optsize;
7239 	if (tcp->tcp_mss == 0) {
7240 		/* Not yet set - tcp_open does not set mss */
7241 		if (tcp->tcp_ipversion == IPV4_VERSION)
7242 			tia->TIDU_size = tcp_mss_def_ipv4;
7243 		else
7244 			tia->TIDU_size = tcp_mss_def_ipv6;
7245 	} else {
7246 		tia->TIDU_size = tcp->tcp_mss;
7247 	}
7248 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7249 }
7250 
7251 /*
7252  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7253  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7254  * tcp_g_t_info_ack.  The current state of the stream is copied from
7255  * tcp_state.
7256  */
7257 static void
7258 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7259 {
7260 	t_uscalar_t		cap_bits1;
7261 	struct T_capability_ack	*tcap;
7262 
7263 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7264 		freemsg(mp);
7265 		return;
7266 	}
7267 
7268 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7269 
7270 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7271 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7272 	if (mp == NULL)
7273 		return;
7274 
7275 	tcap = (struct T_capability_ack *)mp->b_rptr;
7276 	tcap->CAP_bits1 = 0;
7277 
7278 	if (cap_bits1 & TC1_INFO) {
7279 		tcp_copy_info(&tcap->INFO_ack, tcp);
7280 		tcap->CAP_bits1 |= TC1_INFO;
7281 	}
7282 
7283 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7284 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7285 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7286 	}
7287 
7288 	putnext(tcp->tcp_rq, mp);
7289 }
7290 
7291 /*
7292  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7293  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7294  * The current state of the stream is copied from tcp_state.
7295  */
7296 static void
7297 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7298 {
7299 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7300 	    T_INFO_ACK);
7301 	if (!mp) {
7302 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7303 		return;
7304 	}
7305 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7306 	putnext(tcp->tcp_rq, mp);
7307 }
7308 
7309 /* Respond to the TPI addr request */
7310 static void
7311 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7312 {
7313 	sin_t	*sin;
7314 	mblk_t	*ackmp;
7315 	struct T_addr_ack *taa;
7316 
7317 	/* Make it large enough for worst case */
7318 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7319 	    2 * sizeof (sin6_t), 1);
7320 	if (ackmp == NULL) {
7321 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7322 		return;
7323 	}
7324 
7325 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7326 		tcp_addr_req_ipv6(tcp, ackmp);
7327 		return;
7328 	}
7329 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7330 
7331 	bzero(taa, sizeof (struct T_addr_ack));
7332 	ackmp->b_wptr = (uchar_t *)&taa[1];
7333 
7334 	taa->PRIM_type = T_ADDR_ACK;
7335 	ackmp->b_datap->db_type = M_PCPROTO;
7336 
7337 	/*
7338 	 * Note: Following code assumes 32 bit alignment of basic
7339 	 * data structures like sin_t and struct T_addr_ack.
7340 	 */
7341 	if (tcp->tcp_state >= TCPS_BOUND) {
7342 		/*
7343 		 * Fill in local address
7344 		 */
7345 		taa->LOCADDR_length = sizeof (sin_t);
7346 		taa->LOCADDR_offset = sizeof (*taa);
7347 
7348 		sin = (sin_t *)&taa[1];
7349 
7350 		/* Fill zeroes and then intialize non-zero fields */
7351 		*sin = sin_null;
7352 
7353 		sin->sin_family = AF_INET;
7354 
7355 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7356 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7357 
7358 		ackmp->b_wptr = (uchar_t *)&sin[1];
7359 
7360 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7361 			/*
7362 			 * Fill in Remote address
7363 			 */
7364 			taa->REMADDR_length = sizeof (sin_t);
7365 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7366 						taa->LOCADDR_length);
7367 
7368 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7369 			*sin = sin_null;
7370 			sin->sin_family = AF_INET;
7371 			sin->sin_addr.s_addr = tcp->tcp_remote;
7372 			sin->sin_port = tcp->tcp_fport;
7373 
7374 			ackmp->b_wptr = (uchar_t *)&sin[1];
7375 		}
7376 	}
7377 	putnext(tcp->tcp_rq, ackmp);
7378 }
7379 
7380 /* Assumes that tcp_addr_req gets enough space and alignment */
7381 static void
7382 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7383 {
7384 	sin6_t	*sin6;
7385 	struct T_addr_ack *taa;
7386 
7387 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7388 	ASSERT(OK_32PTR(ackmp->b_rptr));
7389 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7390 	    2 * sizeof (sin6_t));
7391 
7392 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7393 
7394 	bzero(taa, sizeof (struct T_addr_ack));
7395 	ackmp->b_wptr = (uchar_t *)&taa[1];
7396 
7397 	taa->PRIM_type = T_ADDR_ACK;
7398 	ackmp->b_datap->db_type = M_PCPROTO;
7399 
7400 	/*
7401 	 * Note: Following code assumes 32 bit alignment of basic
7402 	 * data structures like sin6_t and struct T_addr_ack.
7403 	 */
7404 	if (tcp->tcp_state >= TCPS_BOUND) {
7405 		/*
7406 		 * Fill in local address
7407 		 */
7408 		taa->LOCADDR_length = sizeof (sin6_t);
7409 		taa->LOCADDR_offset = sizeof (*taa);
7410 
7411 		sin6 = (sin6_t *)&taa[1];
7412 		*sin6 = sin6_null;
7413 
7414 		sin6->sin6_family = AF_INET6;
7415 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7416 		sin6->sin6_port = tcp->tcp_lport;
7417 
7418 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7419 
7420 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7421 			/*
7422 			 * Fill in Remote address
7423 			 */
7424 			taa->REMADDR_length = sizeof (sin6_t);
7425 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7426 						taa->LOCADDR_length);
7427 
7428 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7429 			*sin6 = sin6_null;
7430 			sin6->sin6_family = AF_INET6;
7431 			sin6->sin6_flowinfo =
7432 			    tcp->tcp_ip6h->ip6_vcf &
7433 			    ~IPV6_VERS_AND_FLOW_MASK;
7434 			sin6->sin6_addr = tcp->tcp_remote_v6;
7435 			sin6->sin6_port = tcp->tcp_fport;
7436 
7437 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7438 		}
7439 	}
7440 	putnext(tcp->tcp_rq, ackmp);
7441 }
7442 
7443 /*
7444  * Handle reinitialization of a tcp structure.
7445  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7446  */
7447 static void
7448 tcp_reinit(tcp_t *tcp)
7449 {
7450 	mblk_t	*mp;
7451 	int 	err;
7452 
7453 	TCP_STAT(tcp_reinit_calls);
7454 
7455 	/* tcp_reinit should never be called for detached tcp_t's */
7456 	ASSERT(tcp->tcp_listener == NULL);
7457 	ASSERT((tcp->tcp_family == AF_INET &&
7458 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7459 	    (tcp->tcp_family == AF_INET6 &&
7460 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7461 	    tcp->tcp_ipversion == IPV6_VERSION)));
7462 
7463 	/* Cancel outstanding timers */
7464 	tcp_timers_stop(tcp);
7465 
7466 	/*
7467 	 * Reset everything in the state vector, after updating global
7468 	 * MIB data from instance counters.
7469 	 */
7470 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7471 	tcp->tcp_ibsegs = 0;
7472 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7473 	tcp->tcp_obsegs = 0;
7474 
7475 	tcp_close_mpp(&tcp->tcp_xmit_head);
7476 	if (tcp->tcp_snd_zcopy_aware)
7477 		tcp_zcopy_notify(tcp);
7478 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7479 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7480 	if (tcp->tcp_flow_stopped &&
7481 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7482 		tcp_clrqfull(tcp);
7483 	}
7484 	tcp_close_mpp(&tcp->tcp_reass_head);
7485 	tcp->tcp_reass_tail = NULL;
7486 	if (tcp->tcp_rcv_list != NULL) {
7487 		/* Free b_next chain */
7488 		tcp_close_mpp(&tcp->tcp_rcv_list);
7489 		tcp->tcp_rcv_last_head = NULL;
7490 		tcp->tcp_rcv_last_tail = NULL;
7491 		tcp->tcp_rcv_cnt = 0;
7492 	}
7493 	tcp->tcp_rcv_last_tail = NULL;
7494 
7495 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7496 		freemsg(mp);
7497 		tcp->tcp_urp_mp = NULL;
7498 	}
7499 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7500 		freemsg(mp);
7501 		tcp->tcp_urp_mark_mp = NULL;
7502 	}
7503 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7504 		freeb(tcp->tcp_fused_sigurg_mp);
7505 		tcp->tcp_fused_sigurg_mp = NULL;
7506 	}
7507 
7508 	/*
7509 	 * Following is a union with two members which are
7510 	 * identical types and size so the following cleanup
7511 	 * is enough.
7512 	 */
7513 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7514 
7515 	CL_INET_DISCONNECT(tcp);
7516 
7517 	/*
7518 	 * The connection can't be on the tcp_time_wait_head list
7519 	 * since it is not detached.
7520 	 */
7521 	ASSERT(tcp->tcp_time_wait_next == NULL);
7522 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7523 	ASSERT(tcp->tcp_time_wait_expire == 0);
7524 
7525 	if (tcp->tcp_kssl_pending) {
7526 		tcp->tcp_kssl_pending = B_FALSE;
7527 
7528 		/* Don't reset if the initialized by bind. */
7529 		if (tcp->tcp_kssl_ent != NULL) {
7530 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7531 			    KSSL_NO_PROXY);
7532 		}
7533 	}
7534 	if (tcp->tcp_kssl_ctx != NULL) {
7535 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7536 		tcp->tcp_kssl_ctx = NULL;
7537 	}
7538 
7539 	/*
7540 	 * Reset/preserve other values
7541 	 */
7542 	tcp_reinit_values(tcp);
7543 	ipcl_hash_remove(tcp->tcp_connp);
7544 	conn_delete_ire(tcp->tcp_connp, NULL);
7545 
7546 	if (tcp->tcp_conn_req_max != 0) {
7547 		/*
7548 		 * This is the case when a TLI program uses the same
7549 		 * transport end point to accept a connection.  This
7550 		 * makes the TCP both a listener and acceptor.  When
7551 		 * this connection is closed, we need to set the state
7552 		 * back to TCPS_LISTEN.  Make sure that the eager list
7553 		 * is reinitialized.
7554 		 *
7555 		 * Note that this stream is still bound to the four
7556 		 * tuples of the previous connection in IP.  If a new
7557 		 * SYN with different foreign address comes in, IP will
7558 		 * not find it and will send it to the global queue.  In
7559 		 * the global queue, TCP will do a tcp_lookup_listener()
7560 		 * to find this stream.  This works because this stream
7561 		 * is only removed from connected hash.
7562 		 *
7563 		 */
7564 		tcp->tcp_state = TCPS_LISTEN;
7565 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7566 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7567 		if (tcp->tcp_family == AF_INET6) {
7568 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7569 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7570 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7571 		} else {
7572 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7573 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7574 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7575 		}
7576 	} else {
7577 		tcp->tcp_state = TCPS_BOUND;
7578 	}
7579 
7580 	/*
7581 	 * Initialize to default values
7582 	 * Can't fail since enough header template space already allocated
7583 	 * at open().
7584 	 */
7585 	err = tcp_init_values(tcp);
7586 	ASSERT(err == 0);
7587 	/* Restore state in tcp_tcph */
7588 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7589 	if (tcp->tcp_ipversion == IPV4_VERSION)
7590 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7591 	else
7592 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7593 	/*
7594 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7595 	 * since the lookup funcs can only lookup on tcp_t
7596 	 */
7597 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7598 
7599 	ASSERT(tcp->tcp_ptpbhn != NULL);
7600 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7601 	tcp->tcp_rwnd = tcp_recv_hiwat;
7602 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7603 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7604 }
7605 
7606 /*
7607  * Force values to zero that need be zero.
7608  * Do not touch values asociated with the BOUND or LISTEN state
7609  * since the connection will end up in that state after the reinit.
7610  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7611  * structure!
7612  */
7613 static void
7614 tcp_reinit_values(tcp)
7615 	tcp_t *tcp;
7616 {
7617 #ifndef	lint
7618 #define	DONTCARE(x)
7619 #define	PRESERVE(x)
7620 #else
7621 #define	DONTCARE(x)	((x) = (x))
7622 #define	PRESERVE(x)	((x) = (x))
7623 #endif	/* lint */
7624 
7625 	PRESERVE(tcp->tcp_bind_hash);
7626 	PRESERVE(tcp->tcp_ptpbhn);
7627 	PRESERVE(tcp->tcp_acceptor_hash);
7628 	PRESERVE(tcp->tcp_ptpahn);
7629 
7630 	/* Should be ASSERT NULL on these with new code! */
7631 	ASSERT(tcp->tcp_time_wait_next == NULL);
7632 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7633 	ASSERT(tcp->tcp_time_wait_expire == 0);
7634 	PRESERVE(tcp->tcp_state);
7635 	PRESERVE(tcp->tcp_rq);
7636 	PRESERVE(tcp->tcp_wq);
7637 
7638 	ASSERT(tcp->tcp_xmit_head == NULL);
7639 	ASSERT(tcp->tcp_xmit_last == NULL);
7640 	ASSERT(tcp->tcp_unsent == 0);
7641 	ASSERT(tcp->tcp_xmit_tail == NULL);
7642 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7643 
7644 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7645 	tcp->tcp_suna = 0;			/* Displayed in mib */
7646 	tcp->tcp_swnd = 0;
7647 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7648 
7649 	ASSERT(tcp->tcp_ibsegs == 0);
7650 	ASSERT(tcp->tcp_obsegs == 0);
7651 
7652 	if (tcp->tcp_iphc != NULL) {
7653 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7654 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7655 	}
7656 
7657 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7658 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7659 	DONTCARE(tcp->tcp_ipha);
7660 	DONTCARE(tcp->tcp_ip6h);
7661 	DONTCARE(tcp->tcp_ip_hdr_len);
7662 	DONTCARE(tcp->tcp_tcph);
7663 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7664 	tcp->tcp_valid_bits = 0;
7665 
7666 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7667 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7668 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7669 	tcp->tcp_last_rcv_lbolt = 0;
7670 
7671 	tcp->tcp_init_cwnd = 0;
7672 
7673 	tcp->tcp_urp_last_valid = 0;
7674 	tcp->tcp_hard_binding = 0;
7675 	tcp->tcp_hard_bound = 0;
7676 	PRESERVE(tcp->tcp_cred);
7677 	PRESERVE(tcp->tcp_cpid);
7678 	PRESERVE(tcp->tcp_exclbind);
7679 
7680 	tcp->tcp_fin_acked = 0;
7681 	tcp->tcp_fin_rcvd = 0;
7682 	tcp->tcp_fin_sent = 0;
7683 	tcp->tcp_ordrel_done = 0;
7684 
7685 	tcp->tcp_debug = 0;
7686 	tcp->tcp_dontroute = 0;
7687 	tcp->tcp_broadcast = 0;
7688 
7689 	tcp->tcp_useloopback = 0;
7690 	tcp->tcp_reuseaddr = 0;
7691 	tcp->tcp_oobinline = 0;
7692 	tcp->tcp_dgram_errind = 0;
7693 
7694 	tcp->tcp_detached = 0;
7695 	tcp->tcp_bind_pending = 0;
7696 	tcp->tcp_unbind_pending = 0;
7697 	tcp->tcp_deferred_clean_death = 0;
7698 
7699 	tcp->tcp_snd_ws_ok = B_FALSE;
7700 	tcp->tcp_snd_ts_ok = B_FALSE;
7701 	tcp->tcp_linger = 0;
7702 	tcp->tcp_ka_enabled = 0;
7703 	tcp->tcp_zero_win_probe = 0;
7704 
7705 	tcp->tcp_loopback = 0;
7706 	tcp->tcp_localnet = 0;
7707 	tcp->tcp_syn_defense = 0;
7708 	tcp->tcp_set_timer = 0;
7709 
7710 	tcp->tcp_active_open = 0;
7711 	ASSERT(tcp->tcp_timeout == B_FALSE);
7712 	tcp->tcp_rexmit = B_FALSE;
7713 	tcp->tcp_xmit_zc_clean = B_FALSE;
7714 
7715 	tcp->tcp_snd_sack_ok = B_FALSE;
7716 	PRESERVE(tcp->tcp_recvdstaddr);
7717 	tcp->tcp_hwcksum = B_FALSE;
7718 
7719 	tcp->tcp_ire_ill_check_done = B_FALSE;
7720 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7721 
7722 	tcp->tcp_mdt = B_FALSE;
7723 	tcp->tcp_mdt_hdr_head = 0;
7724 	tcp->tcp_mdt_hdr_tail = 0;
7725 
7726 	tcp->tcp_conn_def_q0 = 0;
7727 	tcp->tcp_ip_forward_progress = B_FALSE;
7728 	tcp->tcp_anon_priv_bind = 0;
7729 	tcp->tcp_ecn_ok = B_FALSE;
7730 
7731 	tcp->tcp_cwr = B_FALSE;
7732 	tcp->tcp_ecn_echo_on = B_FALSE;
7733 
7734 	if (tcp->tcp_sack_info != NULL) {
7735 		if (tcp->tcp_notsack_list != NULL) {
7736 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7737 		}
7738 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7739 		tcp->tcp_sack_info = NULL;
7740 	}
7741 
7742 	tcp->tcp_rcv_ws = 0;
7743 	tcp->tcp_snd_ws = 0;
7744 	tcp->tcp_ts_recent = 0;
7745 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7746 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7747 	tcp->tcp_if_mtu = 0;
7748 
7749 	ASSERT(tcp->tcp_reass_head == NULL);
7750 	ASSERT(tcp->tcp_reass_tail == NULL);
7751 
7752 	tcp->tcp_cwnd_cnt = 0;
7753 
7754 	ASSERT(tcp->tcp_rcv_list == NULL);
7755 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7756 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7757 	ASSERT(tcp->tcp_rcv_cnt == 0);
7758 
7759 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7760 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7761 	tcp->tcp_csuna = 0;
7762 
7763 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7764 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7765 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7766 	tcp->tcp_rtt_update = 0;
7767 
7768 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7769 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7770 
7771 	tcp->tcp_rack = 0;			/* Displayed in mib */
7772 	tcp->tcp_rack_cnt = 0;
7773 	tcp->tcp_rack_cur_max = 0;
7774 	tcp->tcp_rack_abs_max = 0;
7775 
7776 	tcp->tcp_max_swnd = 0;
7777 
7778 	ASSERT(tcp->tcp_listener == NULL);
7779 
7780 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7781 
7782 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7783 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7784 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7785 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7786 
7787 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7788 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7789 	PRESERVE(tcp->tcp_conn_req_max);
7790 	PRESERVE(tcp->tcp_conn_req_seqnum);
7791 
7792 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7793 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7794 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7795 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7796 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7797 
7798 	tcp->tcp_lingertime = 0;
7799 
7800 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7801 	ASSERT(tcp->tcp_urp_mp == NULL);
7802 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7803 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7804 
7805 	ASSERT(tcp->tcp_eager_next_q == NULL);
7806 	ASSERT(tcp->tcp_eager_last_q == NULL);
7807 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7808 	    tcp->tcp_eager_prev_q0 == NULL) ||
7809 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7810 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7811 
7812 	tcp->tcp_client_errno = 0;
7813 
7814 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7815 
7816 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7817 
7818 	PRESERVE(tcp->tcp_bound_source_v6);
7819 	tcp->tcp_last_sent_len = 0;
7820 	tcp->tcp_dupack_cnt = 0;
7821 
7822 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7823 	PRESERVE(tcp->tcp_lport);
7824 
7825 	PRESERVE(tcp->tcp_acceptor_lockp);
7826 
7827 	ASSERT(tcp->tcp_ordrelid == 0);
7828 	PRESERVE(tcp->tcp_acceptor_id);
7829 	DONTCARE(tcp->tcp_ipsec_overhead);
7830 
7831 	/*
7832 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
7833 	 * in tcp structure and now tracing), Re-initialize all
7834 	 * members of tcp_traceinfo.
7835 	 */
7836 	if (tcp->tcp_tracebuf != NULL) {
7837 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
7838 	}
7839 
7840 	PRESERVE(tcp->tcp_family);
7841 	if (tcp->tcp_family == AF_INET6) {
7842 		tcp->tcp_ipversion = IPV6_VERSION;
7843 		tcp->tcp_mss = tcp_mss_def_ipv6;
7844 	} else {
7845 		tcp->tcp_ipversion = IPV4_VERSION;
7846 		tcp->tcp_mss = tcp_mss_def_ipv4;
7847 	}
7848 
7849 	tcp->tcp_bound_if = 0;
7850 	tcp->tcp_ipv6_recvancillary = 0;
7851 	tcp->tcp_recvifindex = 0;
7852 	tcp->tcp_recvhops = 0;
7853 	tcp->tcp_closed = 0;
7854 	tcp->tcp_cleandeathtag = 0;
7855 	if (tcp->tcp_hopopts != NULL) {
7856 		mi_free(tcp->tcp_hopopts);
7857 		tcp->tcp_hopopts = NULL;
7858 		tcp->tcp_hopoptslen = 0;
7859 	}
7860 	ASSERT(tcp->tcp_hopoptslen == 0);
7861 	if (tcp->tcp_dstopts != NULL) {
7862 		mi_free(tcp->tcp_dstopts);
7863 		tcp->tcp_dstopts = NULL;
7864 		tcp->tcp_dstoptslen = 0;
7865 	}
7866 	ASSERT(tcp->tcp_dstoptslen == 0);
7867 	if (tcp->tcp_rtdstopts != NULL) {
7868 		mi_free(tcp->tcp_rtdstopts);
7869 		tcp->tcp_rtdstopts = NULL;
7870 		tcp->tcp_rtdstoptslen = 0;
7871 	}
7872 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7873 	if (tcp->tcp_rthdr != NULL) {
7874 		mi_free(tcp->tcp_rthdr);
7875 		tcp->tcp_rthdr = NULL;
7876 		tcp->tcp_rthdrlen = 0;
7877 	}
7878 	ASSERT(tcp->tcp_rthdrlen == 0);
7879 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7880 
7881 	/* Reset fusion-related fields */
7882 	tcp->tcp_fused = B_FALSE;
7883 	tcp->tcp_unfusable = B_FALSE;
7884 	tcp->tcp_fused_sigurg = B_FALSE;
7885 	tcp->tcp_direct_sockfs = B_FALSE;
7886 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7887 	tcp->tcp_loopback_peer = NULL;
7888 	tcp->tcp_fuse_rcv_hiwater = 0;
7889 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7890 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7891 
7892 	tcp->tcp_in_ack_unsent = 0;
7893 	tcp->tcp_cork = B_FALSE;
7894 
7895 	PRESERVE(tcp->tcp_squeue_bytes);
7896 
7897 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7898 	ASSERT(!tcp->tcp_kssl_pending);
7899 	PRESERVE(tcp->tcp_kssl_ent);
7900 
7901 #undef	DONTCARE
7902 #undef	PRESERVE
7903 }
7904 
7905 /*
7906  * Allocate necessary resources and initialize state vector.
7907  * Guaranteed not to fail so that when an error is returned,
7908  * the caller doesn't need to do any additional cleanup.
7909  */
7910 int
7911 tcp_init(tcp_t *tcp, queue_t *q)
7912 {
7913 	int	err;
7914 
7915 	tcp->tcp_rq = q;
7916 	tcp->tcp_wq = WR(q);
7917 	tcp->tcp_state = TCPS_IDLE;
7918 	if ((err = tcp_init_values(tcp)) != 0)
7919 		tcp_timers_stop(tcp);
7920 	return (err);
7921 }
7922 
7923 static int
7924 tcp_init_values(tcp_t *tcp)
7925 {
7926 	int	err;
7927 
7928 	ASSERT((tcp->tcp_family == AF_INET &&
7929 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7930 	    (tcp->tcp_family == AF_INET6 &&
7931 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7932 	    tcp->tcp_ipversion == IPV6_VERSION)));
7933 
7934 	/*
7935 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7936 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7937 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7938 	 * during first few transmissions of a connection as seen in slow
7939 	 * links.
7940 	 */
7941 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
7942 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
7943 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7944 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7945 	    tcp_conn_grace_period;
7946 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
7947 		tcp->tcp_rto = tcp_rexmit_interval_min;
7948 	tcp->tcp_timer_backoff = 0;
7949 	tcp->tcp_ms_we_have_waited = 0;
7950 	tcp->tcp_last_recv_time = lbolt;
7951 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
7952 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7953 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7954 
7955 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
7956 
7957 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
7958 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
7959 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
7960 	/*
7961 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7962 	 * passive open.
7963 	 */
7964 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
7965 
7966 	tcp->tcp_naglim = tcp_naglim_def;
7967 
7968 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7969 
7970 	tcp->tcp_mdt_hdr_head = 0;
7971 	tcp->tcp_mdt_hdr_tail = 0;
7972 
7973 	/* Reset fusion-related fields */
7974 	tcp->tcp_fused = B_FALSE;
7975 	tcp->tcp_unfusable = B_FALSE;
7976 	tcp->tcp_fused_sigurg = B_FALSE;
7977 	tcp->tcp_direct_sockfs = B_FALSE;
7978 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7979 	tcp->tcp_loopback_peer = NULL;
7980 	tcp->tcp_fuse_rcv_hiwater = 0;
7981 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7982 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7983 
7984 	/* Initialize the header template */
7985 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7986 		err = tcp_header_init_ipv4(tcp);
7987 	} else {
7988 		err = tcp_header_init_ipv6(tcp);
7989 	}
7990 	if (err)
7991 		return (err);
7992 
7993 	/*
7994 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7995 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7996 	 */
7997 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7998 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
7999 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8000 
8001 	tcp->tcp_cork = B_FALSE;
8002 	/*
8003 	 * Init the tcp_debug option.  This value determines whether TCP
8004 	 * calls strlog() to print out debug messages.  Doing this
8005 	 * initialization here means that this value is not inherited thru
8006 	 * tcp_reinit().
8007 	 */
8008 	tcp->tcp_debug = tcp_dbg;
8009 
8010 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8011 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8012 
8013 	return (0);
8014 }
8015 
8016 /*
8017  * Initialize the IPv4 header. Loses any record of any IP options.
8018  */
8019 static int
8020 tcp_header_init_ipv4(tcp_t *tcp)
8021 {
8022 	tcph_t		*tcph;
8023 	uint32_t	sum;
8024 	conn_t		*connp;
8025 
8026 	/*
8027 	 * This is a simple initialization. If there's
8028 	 * already a template, it should never be too small,
8029 	 * so reuse it.  Otherwise, allocate space for the new one.
8030 	 */
8031 	if (tcp->tcp_iphc == NULL) {
8032 		ASSERT(tcp->tcp_iphc_len == 0);
8033 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8034 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8035 		if (tcp->tcp_iphc == NULL) {
8036 			tcp->tcp_iphc_len = 0;
8037 			return (ENOMEM);
8038 		}
8039 	}
8040 
8041 	/* options are gone; may need a new label */
8042 	connp = tcp->tcp_connp;
8043 	connp->conn_mlp_type = mlptSingle;
8044 	connp->conn_ulp_labeled = !is_system_labeled();
8045 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8046 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8047 	tcp->tcp_ip6h = NULL;
8048 	tcp->tcp_ipversion = IPV4_VERSION;
8049 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8050 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8051 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8052 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8053 	tcp->tcp_ipha->ipha_version_and_hdr_length
8054 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8055 	tcp->tcp_ipha->ipha_ident = 0;
8056 
8057 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8058 	tcp->tcp_tos = 0;
8059 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8060 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8061 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8062 
8063 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8064 	tcp->tcp_tcph = tcph;
8065 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8066 	/*
8067 	 * IP wants our header length in the checksum field to
8068 	 * allow it to perform a single pseudo-header+checksum
8069 	 * calculation on behalf of TCP.
8070 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8071 	 */
8072 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8073 	sum = (sum >> 16) + (sum & 0xFFFF);
8074 	U16_TO_ABE16(sum, tcph->th_sum);
8075 	return (0);
8076 }
8077 
8078 /*
8079  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8080  */
8081 static int
8082 tcp_header_init_ipv6(tcp_t *tcp)
8083 {
8084 	tcph_t	*tcph;
8085 	uint32_t	sum;
8086 	conn_t	*connp;
8087 
8088 	/*
8089 	 * This is a simple initialization. If there's
8090 	 * already a template, it should never be too small,
8091 	 * so reuse it. Otherwise, allocate space for the new one.
8092 	 * Ensure that there is enough space to "downgrade" the tcp_t
8093 	 * to an IPv4 tcp_t. This requires having space for a full load
8094 	 * of IPv4 options, as well as a full load of TCP options
8095 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8096 	 * than a v6 header and a TCP header with a full load of TCP options
8097 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8098 	 * We want to avoid reallocation in the "downgraded" case when
8099 	 * processing outbound IPv4 options.
8100 	 */
8101 	if (tcp->tcp_iphc == NULL) {
8102 		ASSERT(tcp->tcp_iphc_len == 0);
8103 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8104 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8105 		if (tcp->tcp_iphc == NULL) {
8106 			tcp->tcp_iphc_len = 0;
8107 			return (ENOMEM);
8108 		}
8109 	}
8110 
8111 	/* options are gone; may need a new label */
8112 	connp = tcp->tcp_connp;
8113 	connp->conn_mlp_type = mlptSingle;
8114 	connp->conn_ulp_labeled = !is_system_labeled();
8115 
8116 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8117 	tcp->tcp_ipversion = IPV6_VERSION;
8118 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8119 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8120 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8121 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8122 	tcp->tcp_ipha = NULL;
8123 
8124 	/* Initialize the header template */
8125 
8126 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8127 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8128 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8129 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8130 
8131 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8132 	tcp->tcp_tcph = tcph;
8133 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8134 	/*
8135 	 * IP wants our header length in the checksum field to
8136 	 * allow it to perform a single psuedo-header+checksum
8137 	 * calculation on behalf of TCP.
8138 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8139 	 */
8140 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8141 	sum = (sum >> 16) + (sum & 0xFFFF);
8142 	U16_TO_ABE16(sum, tcph->th_sum);
8143 	return (0);
8144 }
8145 
8146 /* At minimum we need 4 bytes in the TCP header for the lookup */
8147 #define	ICMP_MIN_TCP_HDR	12
8148 
8149 /*
8150  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8151  * passed up by IP. The message is always received on the correct tcp_t.
8152  * Assumes that IP has pulled up everything up to and including the ICMP header.
8153  */
8154 void
8155 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8156 {
8157 	icmph_t *icmph;
8158 	ipha_t	*ipha;
8159 	int	iph_hdr_length;
8160 	tcph_t	*tcph;
8161 	boolean_t ipsec_mctl = B_FALSE;
8162 	boolean_t secure;
8163 	mblk_t *first_mp = mp;
8164 	uint32_t new_mss;
8165 	uint32_t ratio;
8166 	size_t mp_size = MBLKL(mp);
8167 	uint32_t seg_ack;
8168 	uint32_t seg_seq;
8169 
8170 	/* Assume IP provides aligned packets - otherwise toss */
8171 	if (!OK_32PTR(mp->b_rptr)) {
8172 		freemsg(mp);
8173 		return;
8174 	}
8175 
8176 	/*
8177 	 * Since ICMP errors are normal data marked with M_CTL when sent
8178 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8179 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8180 	 */
8181 	if ((mp_size == sizeof (ipsec_info_t)) &&
8182 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8183 		ASSERT(mp->b_cont != NULL);
8184 		mp = mp->b_cont;
8185 		/* IP should have done this */
8186 		ASSERT(OK_32PTR(mp->b_rptr));
8187 		mp_size = MBLKL(mp);
8188 		ipsec_mctl = B_TRUE;
8189 	}
8190 
8191 	/*
8192 	 * Verify that we have a complete outer IP header. If not, drop it.
8193 	 */
8194 	if (mp_size < sizeof (ipha_t)) {
8195 noticmpv4:
8196 		freemsg(first_mp);
8197 		return;
8198 	}
8199 
8200 	ipha = (ipha_t *)mp->b_rptr;
8201 	/*
8202 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8203 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8204 	 */
8205 	switch (IPH_HDR_VERSION(ipha)) {
8206 	case IPV6_VERSION:
8207 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8208 		return;
8209 	case IPV4_VERSION:
8210 		break;
8211 	default:
8212 		goto noticmpv4;
8213 	}
8214 
8215 	/* Skip past the outer IP and ICMP headers */
8216 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8217 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8218 	/*
8219 	 * If we don't have the correct outer IP header length or if the ULP
8220 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8221 	 * send it upstream.
8222 	 */
8223 	if (iph_hdr_length < sizeof (ipha_t) ||
8224 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8225 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8226 		goto noticmpv4;
8227 	}
8228 	ipha = (ipha_t *)&icmph[1];
8229 
8230 	/* Skip past the inner IP and find the ULP header */
8231 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8232 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8233 	/*
8234 	 * If we don't have the correct inner IP header length or if the ULP
8235 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8236 	 * bytes of TCP header, drop it.
8237 	 */
8238 	if (iph_hdr_length < sizeof (ipha_t) ||
8239 	    ipha->ipha_protocol != IPPROTO_TCP ||
8240 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8241 		goto noticmpv4;
8242 	}
8243 
8244 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8245 		if (ipsec_mctl) {
8246 			secure = ipsec_in_is_secure(first_mp);
8247 		} else {
8248 			secure = B_FALSE;
8249 		}
8250 		if (secure) {
8251 			/*
8252 			 * If we are willing to accept this in clear
8253 			 * we don't have to verify policy.
8254 			 */
8255 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8256 				if (!tcp_check_policy(tcp, first_mp,
8257 				    ipha, NULL, secure, ipsec_mctl)) {
8258 					/*
8259 					 * tcp_check_policy called
8260 					 * ip_drop_packet() on failure.
8261 					 */
8262 					return;
8263 				}
8264 			}
8265 		}
8266 	} else if (ipsec_mctl) {
8267 		/*
8268 		 * This is a hard_bound connection. IP has already
8269 		 * verified policy. We don't have to do it again.
8270 		 */
8271 		freeb(first_mp);
8272 		first_mp = mp;
8273 		ipsec_mctl = B_FALSE;
8274 	}
8275 
8276 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8277 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8278 	/*
8279 	 * TCP SHOULD check that the TCP sequence number contained in
8280 	 * payload of the ICMP error message is within the range
8281 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8282 	 */
8283 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8284 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8285 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8286 		/*
8287 		 * If the ICMP message is bogus, should we kill the
8288 		 * connection, or should we just drop the bogus ICMP
8289 		 * message? It would probably make more sense to just
8290 		 * drop the message so that if this one managed to get
8291 		 * in, the real connection should not suffer.
8292 		 */
8293 		goto noticmpv4;
8294 	}
8295 
8296 	switch (icmph->icmph_type) {
8297 	case ICMP_DEST_UNREACHABLE:
8298 		switch (icmph->icmph_code) {
8299 		case ICMP_FRAGMENTATION_NEEDED:
8300 			/*
8301 			 * Reduce the MSS based on the new MTU.  This will
8302 			 * eliminate any fragmentation locally.
8303 			 * N.B.  There may well be some funny side-effects on
8304 			 * the local send policy and the remote receive policy.
8305 			 * Pending further research, we provide
8306 			 * tcp_ignore_path_mtu just in case this proves
8307 			 * disastrous somewhere.
8308 			 *
8309 			 * After updating the MSS, retransmit part of the
8310 			 * dropped segment using the new mss by calling
8311 			 * tcp_wput_data().  Need to adjust all those
8312 			 * params to make sure tcp_wput_data() work properly.
8313 			 */
8314 			if (tcp_ignore_path_mtu)
8315 				break;
8316 
8317 			/*
8318 			 * Decrease the MSS by time stamp options
8319 			 * IP options and IPSEC options. tcp_hdr_len
8320 			 * includes time stamp option and IP option
8321 			 * length.
8322 			 */
8323 
8324 			new_mss = ntohs(icmph->icmph_du_mtu) -
8325 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8326 
8327 			/*
8328 			 * Only update the MSS if the new one is
8329 			 * smaller than the previous one.  This is
8330 			 * to avoid problems when getting multiple
8331 			 * ICMP errors for the same MTU.
8332 			 */
8333 			if (new_mss >= tcp->tcp_mss)
8334 				break;
8335 
8336 			/*
8337 			 * Stop doing PMTU if new_mss is less than 68
8338 			 * or less than tcp_mss_min.
8339 			 * The value 68 comes from rfc 1191.
8340 			 */
8341 			if (new_mss < MAX(68, tcp_mss_min))
8342 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8343 				    0;
8344 
8345 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8346 			ASSERT(ratio >= 1);
8347 			tcp_mss_set(tcp, new_mss);
8348 
8349 			/*
8350 			 * Make sure we have something to
8351 			 * send.
8352 			 */
8353 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8354 			    (tcp->tcp_xmit_head != NULL)) {
8355 				/*
8356 				 * Shrink tcp_cwnd in
8357 				 * proportion to the old MSS/new MSS.
8358 				 */
8359 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8360 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8361 				    (tcp->tcp_unsent == 0)) {
8362 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8363 				} else {
8364 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8365 				}
8366 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8367 				tcp->tcp_rexmit = B_TRUE;
8368 				tcp->tcp_dupack_cnt = 0;
8369 				tcp->tcp_snd_burst = TCP_CWND_SS;
8370 				tcp_ss_rexmit(tcp);
8371 			}
8372 			break;
8373 		case ICMP_PORT_UNREACHABLE:
8374 		case ICMP_PROTOCOL_UNREACHABLE:
8375 			switch (tcp->tcp_state) {
8376 			case TCPS_SYN_SENT:
8377 			case TCPS_SYN_RCVD:
8378 				/*
8379 				 * ICMP can snipe away incipient
8380 				 * TCP connections as long as
8381 				 * seq number is same as initial
8382 				 * send seq number.
8383 				 */
8384 				if (seg_seq == tcp->tcp_iss) {
8385 					(void) tcp_clean_death(tcp,
8386 					    ECONNREFUSED, 6);
8387 				}
8388 				break;
8389 			}
8390 			break;
8391 		case ICMP_HOST_UNREACHABLE:
8392 		case ICMP_NET_UNREACHABLE:
8393 			/* Record the error in case we finally time out. */
8394 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8395 				tcp->tcp_client_errno = EHOSTUNREACH;
8396 			else
8397 				tcp->tcp_client_errno = ENETUNREACH;
8398 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8399 				if (tcp->tcp_listener != NULL &&
8400 				    tcp->tcp_listener->tcp_syn_defense) {
8401 					/*
8402 					 * Ditch the half-open connection if we
8403 					 * suspect a SYN attack is under way.
8404 					 */
8405 					tcp_ip_ire_mark_advice(tcp);
8406 					(void) tcp_clean_death(tcp,
8407 					    tcp->tcp_client_errno, 7);
8408 				}
8409 			}
8410 			break;
8411 		default:
8412 			break;
8413 		}
8414 		break;
8415 	case ICMP_SOURCE_QUENCH: {
8416 		/*
8417 		 * use a global boolean to control
8418 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8419 		 * The default is false.
8420 		 */
8421 		if (tcp_icmp_source_quench) {
8422 			/*
8423 			 * Reduce the sending rate as if we got a
8424 			 * retransmit timeout
8425 			 */
8426 			uint32_t npkt;
8427 
8428 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8429 			    tcp->tcp_mss;
8430 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8431 			tcp->tcp_cwnd = tcp->tcp_mss;
8432 			tcp->tcp_cwnd_cnt = 0;
8433 		}
8434 		break;
8435 	}
8436 	}
8437 	freemsg(first_mp);
8438 }
8439 
8440 /*
8441  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8442  * error messages passed up by IP.
8443  * Assumes that IP has pulled up all the extension headers as well
8444  * as the ICMPv6 header.
8445  */
8446 static void
8447 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8448 {
8449 	icmp6_t *icmp6;
8450 	ip6_t	*ip6h;
8451 	uint16_t	iph_hdr_length;
8452 	tcpha_t	*tcpha;
8453 	uint8_t	*nexthdrp;
8454 	uint32_t new_mss;
8455 	uint32_t ratio;
8456 	boolean_t secure;
8457 	mblk_t *first_mp = mp;
8458 	size_t mp_size;
8459 	uint32_t seg_ack;
8460 	uint32_t seg_seq;
8461 
8462 	/*
8463 	 * The caller has determined if this is an IPSEC_IN packet and
8464 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8465 	 */
8466 	if (ipsec_mctl)
8467 		mp = mp->b_cont;
8468 
8469 	mp_size = MBLKL(mp);
8470 
8471 	/*
8472 	 * Verify that we have a complete IP header. If not, send it upstream.
8473 	 */
8474 	if (mp_size < sizeof (ip6_t)) {
8475 noticmpv6:
8476 		freemsg(first_mp);
8477 		return;
8478 	}
8479 
8480 	/*
8481 	 * Verify this is an ICMPV6 packet, else send it upstream.
8482 	 */
8483 	ip6h = (ip6_t *)mp->b_rptr;
8484 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8485 		iph_hdr_length = IPV6_HDR_LEN;
8486 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8487 	    &nexthdrp) ||
8488 	    *nexthdrp != IPPROTO_ICMPV6) {
8489 		goto noticmpv6;
8490 	}
8491 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8492 	ip6h = (ip6_t *)&icmp6[1];
8493 	/*
8494 	 * Verify if we have a complete ICMP and inner IP header.
8495 	 */
8496 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8497 		goto noticmpv6;
8498 
8499 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8500 		goto noticmpv6;
8501 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8502 	/*
8503 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8504 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8505 	 * packet.
8506 	 */
8507 	if ((*nexthdrp != IPPROTO_TCP) ||
8508 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8509 		goto noticmpv6;
8510 	}
8511 
8512 	/*
8513 	 * ICMP errors come on the right queue or come on
8514 	 * listener/global queue for detached connections and
8515 	 * get switched to the right queue. If it comes on the
8516 	 * right queue, policy check has already been done by IP
8517 	 * and thus free the first_mp without verifying the policy.
8518 	 * If it has come for a non-hard bound connection, we need
8519 	 * to verify policy as IP may not have done it.
8520 	 */
8521 	if (!tcp->tcp_hard_bound) {
8522 		if (ipsec_mctl) {
8523 			secure = ipsec_in_is_secure(first_mp);
8524 		} else {
8525 			secure = B_FALSE;
8526 		}
8527 		if (secure) {
8528 			/*
8529 			 * If we are willing to accept this in clear
8530 			 * we don't have to verify policy.
8531 			 */
8532 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8533 				if (!tcp_check_policy(tcp, first_mp,
8534 				    NULL, ip6h, secure, ipsec_mctl)) {
8535 					/*
8536 					 * tcp_check_policy called
8537 					 * ip_drop_packet() on failure.
8538 					 */
8539 					return;
8540 				}
8541 			}
8542 		}
8543 	} else if (ipsec_mctl) {
8544 		/*
8545 		 * This is a hard_bound connection. IP has already
8546 		 * verified policy. We don't have to do it again.
8547 		 */
8548 		freeb(first_mp);
8549 		first_mp = mp;
8550 		ipsec_mctl = B_FALSE;
8551 	}
8552 
8553 	seg_ack = ntohl(tcpha->tha_ack);
8554 	seg_seq = ntohl(tcpha->tha_seq);
8555 	/*
8556 	 * TCP SHOULD check that the TCP sequence number contained in
8557 	 * payload of the ICMP error message is within the range
8558 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8559 	 */
8560 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8561 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8562 		/*
8563 		 * If the ICMP message is bogus, should we kill the
8564 		 * connection, or should we just drop the bogus ICMP
8565 		 * message? It would probably make more sense to just
8566 		 * drop the message so that if this one managed to get
8567 		 * in, the real connection should not suffer.
8568 		 */
8569 		goto noticmpv6;
8570 	}
8571 
8572 	switch (icmp6->icmp6_type) {
8573 	case ICMP6_PACKET_TOO_BIG:
8574 		/*
8575 		 * Reduce the MSS based on the new MTU.  This will
8576 		 * eliminate any fragmentation locally.
8577 		 * N.B.  There may well be some funny side-effects on
8578 		 * the local send policy and the remote receive policy.
8579 		 * Pending further research, we provide
8580 		 * tcp_ignore_path_mtu just in case this proves
8581 		 * disastrous somewhere.
8582 		 *
8583 		 * After updating the MSS, retransmit part of the
8584 		 * dropped segment using the new mss by calling
8585 		 * tcp_wput_data().  Need to adjust all those
8586 		 * params to make sure tcp_wput_data() work properly.
8587 		 */
8588 		if (tcp_ignore_path_mtu)
8589 			break;
8590 
8591 		/*
8592 		 * Decrease the MSS by time stamp options
8593 		 * IP options and IPSEC options. tcp_hdr_len
8594 		 * includes time stamp option and IP option
8595 		 * length.
8596 		 */
8597 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8598 			    tcp->tcp_ipsec_overhead;
8599 
8600 		/*
8601 		 * Only update the MSS if the new one is
8602 		 * smaller than the previous one.  This is
8603 		 * to avoid problems when getting multiple
8604 		 * ICMP errors for the same MTU.
8605 		 */
8606 		if (new_mss >= tcp->tcp_mss)
8607 			break;
8608 
8609 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8610 		ASSERT(ratio >= 1);
8611 		tcp_mss_set(tcp, new_mss);
8612 
8613 		/*
8614 		 * Make sure we have something to
8615 		 * send.
8616 		 */
8617 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8618 		    (tcp->tcp_xmit_head != NULL)) {
8619 			/*
8620 			 * Shrink tcp_cwnd in
8621 			 * proportion to the old MSS/new MSS.
8622 			 */
8623 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8624 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8625 			    (tcp->tcp_unsent == 0)) {
8626 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8627 			} else {
8628 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8629 			}
8630 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8631 			tcp->tcp_rexmit = B_TRUE;
8632 			tcp->tcp_dupack_cnt = 0;
8633 			tcp->tcp_snd_burst = TCP_CWND_SS;
8634 			tcp_ss_rexmit(tcp);
8635 		}
8636 		break;
8637 
8638 	case ICMP6_DST_UNREACH:
8639 		switch (icmp6->icmp6_code) {
8640 		case ICMP6_DST_UNREACH_NOPORT:
8641 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8642 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8643 			    (seg_seq == tcp->tcp_iss)) {
8644 				(void) tcp_clean_death(tcp,
8645 				    ECONNREFUSED, 8);
8646 			}
8647 			break;
8648 
8649 		case ICMP6_DST_UNREACH_ADMIN:
8650 		case ICMP6_DST_UNREACH_NOROUTE:
8651 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8652 		case ICMP6_DST_UNREACH_ADDR:
8653 			/* Record the error in case we finally time out. */
8654 			tcp->tcp_client_errno = EHOSTUNREACH;
8655 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8656 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8657 			    (seg_seq == tcp->tcp_iss)) {
8658 				if (tcp->tcp_listener != NULL &&
8659 				    tcp->tcp_listener->tcp_syn_defense) {
8660 					/*
8661 					 * Ditch the half-open connection if we
8662 					 * suspect a SYN attack is under way.
8663 					 */
8664 					tcp_ip_ire_mark_advice(tcp);
8665 					(void) tcp_clean_death(tcp,
8666 					    tcp->tcp_client_errno, 9);
8667 				}
8668 			}
8669 
8670 
8671 			break;
8672 		default:
8673 			break;
8674 		}
8675 		break;
8676 
8677 	case ICMP6_PARAM_PROB:
8678 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8679 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8680 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8681 		    (uchar_t *)nexthdrp) {
8682 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8683 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8684 				(void) tcp_clean_death(tcp,
8685 				    ECONNREFUSED, 10);
8686 			}
8687 			break;
8688 		}
8689 		break;
8690 
8691 	case ICMP6_TIME_EXCEEDED:
8692 	default:
8693 		break;
8694 	}
8695 	freemsg(first_mp);
8696 }
8697 
8698 /*
8699  * IP recognizes seven kinds of bind requests:
8700  *
8701  * - A zero-length address binds only to the protocol number.
8702  *
8703  * - A 4-byte address is treated as a request to
8704  * validate that the address is a valid local IPv4
8705  * address, appropriate for an application to bind to.
8706  * IP does the verification, but does not make any note
8707  * of the address at this time.
8708  *
8709  * - A 16-byte address contains is treated as a request
8710  * to validate a local IPv6 address, as the 4-byte
8711  * address case above.
8712  *
8713  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8714  * use it for the inbound fanout of packets.
8715  *
8716  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8717  * use it for the inbound fanout of packets.
8718  *
8719  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8720  * information consisting of local and remote addresses
8721  * and ports.  In this case, the addresses are both
8722  * validated as appropriate for this operation, and, if
8723  * so, the information is retained for use in the
8724  * inbound fanout.
8725  *
8726  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8727  * fanout information, like the 12-byte case above.
8728  *
8729  * IP will also fill in the IRE request mblk with information
8730  * regarding our peer.  In all cases, we notify IP of our protocol
8731  * type by appending a single protocol byte to the bind request.
8732  */
8733 static mblk_t *
8734 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8735 {
8736 	char	*cp;
8737 	mblk_t	*mp;
8738 	struct T_bind_req *tbr;
8739 	ipa_conn_t	*ac;
8740 	ipa6_conn_t	*ac6;
8741 	sin_t		*sin;
8742 	sin6_t		*sin6;
8743 
8744 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8745 	ASSERT((tcp->tcp_family == AF_INET &&
8746 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8747 	    (tcp->tcp_family == AF_INET6 &&
8748 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8749 	    tcp->tcp_ipversion == IPV6_VERSION)));
8750 
8751 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8752 	if (!mp)
8753 		return (mp);
8754 	mp->b_datap->db_type = M_PROTO;
8755 	tbr = (struct T_bind_req *)mp->b_rptr;
8756 	tbr->PRIM_type = bind_prim;
8757 	tbr->ADDR_offset = sizeof (*tbr);
8758 	tbr->CONIND_number = 0;
8759 	tbr->ADDR_length = addr_length;
8760 	cp = (char *)&tbr[1];
8761 	switch (addr_length) {
8762 	case sizeof (ipa_conn_t):
8763 		ASSERT(tcp->tcp_family == AF_INET);
8764 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8765 
8766 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8767 		if (mp->b_cont == NULL) {
8768 			freemsg(mp);
8769 			return (NULL);
8770 		}
8771 		mp->b_cont->b_wptr += sizeof (ire_t);
8772 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8773 
8774 		/* cp known to be 32 bit aligned */
8775 		ac = (ipa_conn_t *)cp;
8776 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
8777 		ac->ac_faddr = tcp->tcp_remote;
8778 		ac->ac_fport = tcp->tcp_fport;
8779 		ac->ac_lport = tcp->tcp_lport;
8780 		tcp->tcp_hard_binding = 1;
8781 		break;
8782 
8783 	case sizeof (ipa6_conn_t):
8784 		ASSERT(tcp->tcp_family == AF_INET6);
8785 
8786 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8787 		if (mp->b_cont == NULL) {
8788 			freemsg(mp);
8789 			return (NULL);
8790 		}
8791 		mp->b_cont->b_wptr += sizeof (ire_t);
8792 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8793 
8794 		/* cp known to be 32 bit aligned */
8795 		ac6 = (ipa6_conn_t *)cp;
8796 		if (tcp->tcp_ipversion == IPV4_VERSION) {
8797 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
8798 			    &ac6->ac6_laddr);
8799 		} else {
8800 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
8801 		}
8802 		ac6->ac6_faddr = tcp->tcp_remote_v6;
8803 		ac6->ac6_fport = tcp->tcp_fport;
8804 		ac6->ac6_lport = tcp->tcp_lport;
8805 		tcp->tcp_hard_binding = 1;
8806 		break;
8807 
8808 	case sizeof (sin_t):
8809 		/*
8810 		 * NOTE: IPV6_ADDR_LEN also has same size.
8811 		 * Use family to discriminate.
8812 		 */
8813 		if (tcp->tcp_family == AF_INET) {
8814 			sin = (sin_t *)cp;
8815 
8816 			*sin = sin_null;
8817 			sin->sin_family = AF_INET;
8818 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
8819 			sin->sin_port = tcp->tcp_lport;
8820 			break;
8821 		} else {
8822 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
8823 		}
8824 		break;
8825 
8826 	case sizeof (sin6_t):
8827 		ASSERT(tcp->tcp_family == AF_INET6);
8828 		sin6 = (sin6_t *)cp;
8829 
8830 		*sin6 = sin6_null;
8831 		sin6->sin6_family = AF_INET6;
8832 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
8833 		sin6->sin6_port = tcp->tcp_lport;
8834 		break;
8835 
8836 	case IP_ADDR_LEN:
8837 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8838 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
8839 		break;
8840 
8841 	}
8842 	/* Add protocol number to end */
8843 	cp[addr_length] = (char)IPPROTO_TCP;
8844 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
8845 	return (mp);
8846 }
8847 
8848 /*
8849  * Notify IP that we are having trouble with this connection.  IP should
8850  * blow the IRE away and start over.
8851  */
8852 static void
8853 tcp_ip_notify(tcp_t *tcp)
8854 {
8855 	struct iocblk	*iocp;
8856 	ipid_t	*ipid;
8857 	mblk_t	*mp;
8858 
8859 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8860 	if (tcp->tcp_ipversion == IPV6_VERSION)
8861 		return;
8862 
8863 	mp = mkiocb(IP_IOCTL);
8864 	if (mp == NULL)
8865 		return;
8866 
8867 	iocp = (struct iocblk *)mp->b_rptr;
8868 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8869 
8870 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8871 	if (!mp->b_cont) {
8872 		freeb(mp);
8873 		return;
8874 	}
8875 
8876 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8877 	mp->b_cont->b_wptr += iocp->ioc_count;
8878 	bzero(ipid, sizeof (*ipid));
8879 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8880 	ipid->ipid_ire_type = IRE_CACHE;
8881 	ipid->ipid_addr_offset = sizeof (ipid_t);
8882 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8883 	/*
8884 	 * Note: in the case of source routing we want to blow away the
8885 	 * route to the first source route hop.
8886 	 */
8887 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8888 	    sizeof (tcp->tcp_ipha->ipha_dst));
8889 
8890 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8891 }
8892 
8893 /* Unlink and return any mblk that looks like it contains an ire */
8894 static mblk_t *
8895 tcp_ire_mp(mblk_t *mp)
8896 {
8897 	mblk_t	*prev_mp;
8898 
8899 	for (;;) {
8900 		prev_mp = mp;
8901 		mp = mp->b_cont;
8902 		if (mp == NULL)
8903 			break;
8904 		switch (DB_TYPE(mp)) {
8905 		case IRE_DB_TYPE:
8906 		case IRE_DB_REQ_TYPE:
8907 			if (prev_mp != NULL)
8908 				prev_mp->b_cont = mp->b_cont;
8909 			mp->b_cont = NULL;
8910 			return (mp);
8911 		default:
8912 			break;
8913 		}
8914 	}
8915 	return (mp);
8916 }
8917 
8918 /*
8919  * Timer callback routine for keepalive probe.  We do a fake resend of
8920  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8921  * check to see if we have heard anything from the other end for the last
8922  * RTO period.  If we have, set the timer to expire for another
8923  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8924  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8925  * the timeout if we have not heard from the other side.  If for more than
8926  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8927  * kill the connection unless the keepalive abort threshold is 0.  In
8928  * that case, we will probe "forever."
8929  */
8930 static void
8931 tcp_keepalive_killer(void *arg)
8932 {
8933 	mblk_t	*mp;
8934 	conn_t	*connp = (conn_t *)arg;
8935 	tcp_t  	*tcp = connp->conn_tcp;
8936 	int32_t	firetime;
8937 	int32_t	idletime;
8938 	int32_t	ka_intrvl;
8939 
8940 	tcp->tcp_ka_tid = 0;
8941 
8942 	if (tcp->tcp_fused)
8943 		return;
8944 
8945 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
8946 	ka_intrvl = tcp->tcp_ka_interval;
8947 
8948 	/*
8949 	 * Keepalive probe should only be sent if the application has not
8950 	 * done a close on the connection.
8951 	 */
8952 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8953 		return;
8954 	}
8955 	/* Timer fired too early, restart it. */
8956 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8957 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8958 		    MSEC_TO_TICK(ka_intrvl));
8959 		return;
8960 	}
8961 
8962 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8963 	/*
8964 	 * If we have not heard from the other side for a long
8965 	 * time, kill the connection unless the keepalive abort
8966 	 * threshold is 0.  In that case, we will probe "forever."
8967 	 */
8968 	if (tcp->tcp_ka_abort_thres != 0 &&
8969 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8970 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
8971 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8972 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8973 		return;
8974 	}
8975 
8976 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8977 	    idletime >= ka_intrvl) {
8978 		/* Fake resend of last ACKed byte. */
8979 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8980 
8981 		if (mp1 != NULL) {
8982 			*mp1->b_wptr++ = '\0';
8983 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8984 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8985 			freeb(mp1);
8986 			/*
8987 			 * if allocation failed, fall through to start the
8988 			 * timer back.
8989 			 */
8990 			if (mp != NULL) {
8991 				TCP_RECORD_TRACE(tcp, mp,
8992 				    TCP_TRACE_SEND_PKT);
8993 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8994 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
8995 				if (tcp->tcp_ka_last_intrvl != 0) {
8996 					/*
8997 					 * We should probe again at least
8998 					 * in ka_intrvl, but not more than
8999 					 * tcp_rexmit_interval_max.
9000 					 */
9001 					firetime = MIN(ka_intrvl - 1,
9002 					    tcp->tcp_ka_last_intrvl << 1);
9003 					if (firetime > tcp_rexmit_interval_max)
9004 						firetime =
9005 						    tcp_rexmit_interval_max;
9006 				} else {
9007 					firetime = tcp->tcp_rto;
9008 				}
9009 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9010 				    tcp_keepalive_killer,
9011 				    MSEC_TO_TICK(firetime));
9012 				tcp->tcp_ka_last_intrvl = firetime;
9013 				return;
9014 			}
9015 		}
9016 	} else {
9017 		tcp->tcp_ka_last_intrvl = 0;
9018 	}
9019 
9020 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9021 	if ((firetime = ka_intrvl - idletime) < 0) {
9022 		firetime = ka_intrvl;
9023 	}
9024 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9025 	    MSEC_TO_TICK(firetime));
9026 }
9027 
9028 int
9029 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9030 {
9031 	queue_t	*q = tcp->tcp_rq;
9032 	int32_t	mss = tcp->tcp_mss;
9033 	int	maxpsz;
9034 
9035 	if (TCP_IS_DETACHED(tcp))
9036 		return (mss);
9037 
9038 	if (tcp->tcp_fused) {
9039 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9040 		mss = INFPSZ;
9041 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9042 		/*
9043 		 * Set the sd_qn_maxpsz according to the socket send buffer
9044 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9045 		 * instruct the stream head to copyin user data into contiguous
9046 		 * kernel-allocated buffers without breaking it up into smaller
9047 		 * chunks.  We round up the buffer size to the nearest SMSS.
9048 		 */
9049 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9050 		if (tcp->tcp_kssl_ctx == NULL)
9051 			mss = INFPSZ;
9052 		else
9053 			mss = SSL3_MAX_RECORD_LEN;
9054 	} else {
9055 		/*
9056 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9057 		 * (and a multiple of the mss).  This instructs the stream
9058 		 * head to break down larger than SMSS writes into SMSS-
9059 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9060 		 */
9061 		maxpsz = tcp->tcp_maxpsz * mss;
9062 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9063 			maxpsz = tcp->tcp_xmit_hiwater/2;
9064 			/* Round up to nearest mss */
9065 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9066 		}
9067 	}
9068 	(void) setmaxps(q, maxpsz);
9069 	tcp->tcp_wq->q_maxpsz = maxpsz;
9070 
9071 	if (set_maxblk)
9072 		(void) mi_set_sth_maxblk(q, mss);
9073 
9074 	return (mss);
9075 }
9076 
9077 /*
9078  * Extract option values from a tcp header.  We put any found values into the
9079  * tcpopt struct and return a bitmask saying which options were found.
9080  */
9081 static int
9082 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9083 {
9084 	uchar_t		*endp;
9085 	int		len;
9086 	uint32_t	mss;
9087 	uchar_t		*up = (uchar_t *)tcph;
9088 	int		found = 0;
9089 	int32_t		sack_len;
9090 	tcp_seq		sack_begin, sack_end;
9091 	tcp_t		*tcp;
9092 
9093 	endp = up + TCP_HDR_LENGTH(tcph);
9094 	up += TCP_MIN_HEADER_LENGTH;
9095 	while (up < endp) {
9096 		len = endp - up;
9097 		switch (*up) {
9098 		case TCPOPT_EOL:
9099 			break;
9100 
9101 		case TCPOPT_NOP:
9102 			up++;
9103 			continue;
9104 
9105 		case TCPOPT_MAXSEG:
9106 			if (len < TCPOPT_MAXSEG_LEN ||
9107 			    up[1] != TCPOPT_MAXSEG_LEN)
9108 				break;
9109 
9110 			mss = BE16_TO_U16(up+2);
9111 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9112 			tcpopt->tcp_opt_mss = mss;
9113 			found |= TCP_OPT_MSS_PRESENT;
9114 
9115 			up += TCPOPT_MAXSEG_LEN;
9116 			continue;
9117 
9118 		case TCPOPT_WSCALE:
9119 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9120 				break;
9121 
9122 			if (up[2] > TCP_MAX_WINSHIFT)
9123 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9124 			else
9125 				tcpopt->tcp_opt_wscale = up[2];
9126 			found |= TCP_OPT_WSCALE_PRESENT;
9127 
9128 			up += TCPOPT_WS_LEN;
9129 			continue;
9130 
9131 		case TCPOPT_SACK_PERMITTED:
9132 			if (len < TCPOPT_SACK_OK_LEN ||
9133 			    up[1] != TCPOPT_SACK_OK_LEN)
9134 				break;
9135 			found |= TCP_OPT_SACK_OK_PRESENT;
9136 			up += TCPOPT_SACK_OK_LEN;
9137 			continue;
9138 
9139 		case TCPOPT_SACK:
9140 			if (len <= 2 || up[1] <= 2 || len < up[1])
9141 				break;
9142 
9143 			/* If TCP is not interested in SACK blks... */
9144 			if ((tcp = tcpopt->tcp) == NULL) {
9145 				up += up[1];
9146 				continue;
9147 			}
9148 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9149 			up += TCPOPT_HEADER_LEN;
9150 
9151 			/*
9152 			 * If the list is empty, allocate one and assume
9153 			 * nothing is sack'ed.
9154 			 */
9155 			ASSERT(tcp->tcp_sack_info != NULL);
9156 			if (tcp->tcp_notsack_list == NULL) {
9157 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9158 				    tcp->tcp_suna, tcp->tcp_snxt,
9159 				    &(tcp->tcp_num_notsack_blk),
9160 				    &(tcp->tcp_cnt_notsack_list));
9161 
9162 				/*
9163 				 * Make sure tcp_notsack_list is not NULL.
9164 				 * This happens when kmem_alloc(KM_NOSLEEP)
9165 				 * returns NULL.
9166 				 */
9167 				if (tcp->tcp_notsack_list == NULL) {
9168 					up += sack_len;
9169 					continue;
9170 				}
9171 				tcp->tcp_fack = tcp->tcp_suna;
9172 			}
9173 
9174 			while (sack_len > 0) {
9175 				if (up + 8 > endp) {
9176 					up = endp;
9177 					break;
9178 				}
9179 				sack_begin = BE32_TO_U32(up);
9180 				up += 4;
9181 				sack_end = BE32_TO_U32(up);
9182 				up += 4;
9183 				sack_len -= 8;
9184 				/*
9185 				 * Bounds checking.  Make sure the SACK
9186 				 * info is within tcp_suna and tcp_snxt.
9187 				 * If this SACK blk is out of bound, ignore
9188 				 * it but continue to parse the following
9189 				 * blks.
9190 				 */
9191 				if (SEQ_LEQ(sack_end, sack_begin) ||
9192 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9193 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9194 					continue;
9195 				}
9196 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9197 				    sack_begin, sack_end,
9198 				    &(tcp->tcp_num_notsack_blk),
9199 				    &(tcp->tcp_cnt_notsack_list));
9200 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9201 					tcp->tcp_fack = sack_end;
9202 				}
9203 			}
9204 			found |= TCP_OPT_SACK_PRESENT;
9205 			continue;
9206 
9207 		case TCPOPT_TSTAMP:
9208 			if (len < TCPOPT_TSTAMP_LEN ||
9209 			    up[1] != TCPOPT_TSTAMP_LEN)
9210 				break;
9211 
9212 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9213 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9214 
9215 			found |= TCP_OPT_TSTAMP_PRESENT;
9216 
9217 			up += TCPOPT_TSTAMP_LEN;
9218 			continue;
9219 
9220 		default:
9221 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9222 				break;
9223 			up += up[1];
9224 			continue;
9225 		}
9226 		break;
9227 	}
9228 	return (found);
9229 }
9230 
9231 /*
9232  * Set the mss associated with a particular tcp based on its current value,
9233  * and a new one passed in. Observe minimums and maximums, and reset
9234  * other state variables that we want to view as multiples of mss.
9235  *
9236  * This function is called in various places mainly because
9237  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9238  *    other side's SYN/SYN-ACK packet arrives.
9239  * 2) PMTUd may get us a new MSS.
9240  * 3) If the other side stops sending us timestamp option, we need to
9241  *    increase the MSS size to use the extra bytes available.
9242  */
9243 static void
9244 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9245 {
9246 	uint32_t	mss_max;
9247 
9248 	if (tcp->tcp_ipversion == IPV4_VERSION)
9249 		mss_max = tcp_mss_max_ipv4;
9250 	else
9251 		mss_max = tcp_mss_max_ipv6;
9252 
9253 	if (mss < tcp_mss_min)
9254 		mss = tcp_mss_min;
9255 	if (mss > mss_max)
9256 		mss = mss_max;
9257 	/*
9258 	 * Unless naglim has been set by our client to
9259 	 * a non-mss value, force naglim to track mss.
9260 	 * This can help to aggregate small writes.
9261 	 */
9262 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9263 		tcp->tcp_naglim = mss;
9264 	/*
9265 	 * TCP should be able to buffer at least 4 MSS data for obvious
9266 	 * performance reason.
9267 	 */
9268 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9269 		tcp->tcp_xmit_hiwater = mss << 2;
9270 
9271 	/*
9272 	 * Check if we need to apply the tcp_init_cwnd here.  If
9273 	 * it is set and the MSS gets bigger (should not happen
9274 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9275 	 * The new tcp_cwnd should not get bigger.
9276 	 */
9277 	if (tcp->tcp_init_cwnd == 0) {
9278 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9279 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9280 	} else {
9281 		if (tcp->tcp_mss < mss) {
9282 			tcp->tcp_cwnd = MAX(1,
9283 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9284 		} else {
9285 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9286 		}
9287 	}
9288 	tcp->tcp_mss = mss;
9289 	tcp->tcp_cwnd_cnt = 0;
9290 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9291 }
9292 
9293 static int
9294 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9295 {
9296 	tcp_t		*tcp = NULL;
9297 	conn_t		*connp;
9298 	int		err;
9299 	dev_t		conn_dev;
9300 	zoneid_t	zoneid = getzoneid();
9301 
9302 	/*
9303 	 * Special case for install: miniroot needs to be able to access files
9304 	 * via NFS as though it were always in the global zone.
9305 	 */
9306 	if (credp == kcred && nfs_global_client_only != 0)
9307 		zoneid = GLOBAL_ZONEID;
9308 
9309 	if (q->q_ptr != NULL)
9310 		return (0);
9311 
9312 	if (sflag == MODOPEN) {
9313 		/*
9314 		 * This is a special case. The purpose of a modopen
9315 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9316 		 * through for MIB browsers. Everything else is failed.
9317 		 */
9318 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9319 
9320 		if (connp == NULL)
9321 			return (ENOMEM);
9322 
9323 		connp->conn_flags |= IPCL_TCPMOD;
9324 		connp->conn_cred = credp;
9325 		connp->conn_zoneid = zoneid;
9326 		q->q_ptr = WR(q)->q_ptr = connp;
9327 		crhold(credp);
9328 		q->q_qinfo = &tcp_mod_rinit;
9329 		WR(q)->q_qinfo = &tcp_mod_winit;
9330 		qprocson(q);
9331 		return (0);
9332 	}
9333 
9334 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9335 		return (EBUSY);
9336 
9337 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9338 
9339 	if (flag & SO_ACCEPTOR) {
9340 		q->q_qinfo = &tcp_acceptor_rinit;
9341 		q->q_ptr = (void *)conn_dev;
9342 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9343 		WR(q)->q_ptr = (void *)conn_dev;
9344 		qprocson(q);
9345 		return (0);
9346 	}
9347 
9348 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9349 	if (connp == NULL) {
9350 		inet_minor_free(ip_minor_arena, conn_dev);
9351 		q->q_ptr = NULL;
9352 		return (ENOSR);
9353 	}
9354 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9355 	tcp = connp->conn_tcp;
9356 
9357 	q->q_ptr = WR(q)->q_ptr = connp;
9358 	if (getmajor(*devp) == TCP6_MAJ) {
9359 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9360 		connp->conn_send = ip_output_v6;
9361 		connp->conn_af_isv6 = B_TRUE;
9362 		connp->conn_pkt_isv6 = B_TRUE;
9363 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9364 		tcp->tcp_ipversion = IPV6_VERSION;
9365 		tcp->tcp_family = AF_INET6;
9366 		tcp->tcp_mss = tcp_mss_def_ipv6;
9367 	} else {
9368 		connp->conn_flags |= IPCL_TCP4;
9369 		connp->conn_send = ip_output;
9370 		connp->conn_af_isv6 = B_FALSE;
9371 		connp->conn_pkt_isv6 = B_FALSE;
9372 		tcp->tcp_ipversion = IPV4_VERSION;
9373 		tcp->tcp_family = AF_INET;
9374 		tcp->tcp_mss = tcp_mss_def_ipv4;
9375 	}
9376 
9377 	/*
9378 	 * TCP keeps a copy of cred for cache locality reasons but
9379 	 * we put a reference only once. If connp->conn_cred
9380 	 * becomes invalid, tcp_cred should also be set to NULL.
9381 	 */
9382 	tcp->tcp_cred = connp->conn_cred = credp;
9383 	crhold(connp->conn_cred);
9384 	tcp->tcp_cpid = curproc->p_pid;
9385 	connp->conn_zoneid = zoneid;
9386 	connp->conn_mlp_type = mlptSingle;
9387 	connp->conn_ulp_labeled = !is_system_labeled();
9388 
9389 	/*
9390 	 * If the caller has the process-wide flag set, then default to MAC
9391 	 * exempt mode.  This allows read-down to unlabeled hosts.
9392 	 */
9393 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9394 		connp->conn_mac_exempt = B_TRUE;
9395 
9396 	connp->conn_dev = conn_dev;
9397 
9398 	ASSERT(q->q_qinfo == &tcp_rinit);
9399 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9400 
9401 	if (flag & SO_SOCKSTR) {
9402 		/*
9403 		 * No need to insert a socket in tcp acceptor hash.
9404 		 * If it was a socket acceptor stream, we dealt with
9405 		 * it above. A socket listener can never accept a
9406 		 * connection and doesn't need acceptor_id.
9407 		 */
9408 		connp->conn_flags |= IPCL_SOCKET;
9409 		tcp->tcp_issocket = 1;
9410 		WR(q)->q_qinfo = &tcp_sock_winit;
9411 	} else {
9412 #ifdef	_ILP32
9413 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9414 #else
9415 		tcp->tcp_acceptor_id = conn_dev;
9416 #endif	/* _ILP32 */
9417 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9418 	}
9419 
9420 	if (tcp_trace)
9421 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9422 
9423 	err = tcp_init(tcp, q);
9424 	if (err != 0) {
9425 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9426 		tcp_acceptor_hash_remove(tcp);
9427 		CONN_DEC_REF(connp);
9428 		q->q_ptr = WR(q)->q_ptr = NULL;
9429 		return (err);
9430 	}
9431 
9432 	RD(q)->q_hiwat = tcp_recv_hiwat;
9433 	tcp->tcp_rwnd = tcp_recv_hiwat;
9434 
9435 	/* Non-zero default values */
9436 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9437 	/*
9438 	 * Put the ref for TCP. Ref for IP was already put
9439 	 * by ipcl_conn_create. Also Make the conn_t globally
9440 	 * visible to walkers
9441 	 */
9442 	mutex_enter(&connp->conn_lock);
9443 	CONN_INC_REF_LOCKED(connp);
9444 	ASSERT(connp->conn_ref == 2);
9445 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9446 	mutex_exit(&connp->conn_lock);
9447 
9448 	qprocson(q);
9449 	return (0);
9450 }
9451 
9452 /*
9453  * Some TCP options can be "set" by requesting them in the option
9454  * buffer. This is needed for XTI feature test though we do not
9455  * allow it in general. We interpret that this mechanism is more
9456  * applicable to OSI protocols and need not be allowed in general.
9457  * This routine filters out options for which it is not allowed (most)
9458  * and lets through those (few) for which it is. [ The XTI interface
9459  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9460  * ever implemented will have to be allowed here ].
9461  */
9462 static boolean_t
9463 tcp_allow_connopt_set(int level, int name)
9464 {
9465 
9466 	switch (level) {
9467 	case IPPROTO_TCP:
9468 		switch (name) {
9469 		case TCP_NODELAY:
9470 			return (B_TRUE);
9471 		default:
9472 			return (B_FALSE);
9473 		}
9474 		/*NOTREACHED*/
9475 	default:
9476 		return (B_FALSE);
9477 	}
9478 	/*NOTREACHED*/
9479 }
9480 
9481 /*
9482  * This routine gets default values of certain options whose default
9483  * values are maintained by protocol specific code
9484  */
9485 /* ARGSUSED */
9486 int
9487 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9488 {
9489 	int32_t	*i1 = (int32_t *)ptr;
9490 
9491 	switch (level) {
9492 	case IPPROTO_TCP:
9493 		switch (name) {
9494 		case TCP_NOTIFY_THRESHOLD:
9495 			*i1 = tcp_ip_notify_interval;
9496 			break;
9497 		case TCP_ABORT_THRESHOLD:
9498 			*i1 = tcp_ip_abort_interval;
9499 			break;
9500 		case TCP_CONN_NOTIFY_THRESHOLD:
9501 			*i1 = tcp_ip_notify_cinterval;
9502 			break;
9503 		case TCP_CONN_ABORT_THRESHOLD:
9504 			*i1 = tcp_ip_abort_cinterval;
9505 			break;
9506 		default:
9507 			return (-1);
9508 		}
9509 		break;
9510 	case IPPROTO_IP:
9511 		switch (name) {
9512 		case IP_TTL:
9513 			*i1 = tcp_ipv4_ttl;
9514 			break;
9515 		default:
9516 			return (-1);
9517 		}
9518 		break;
9519 	case IPPROTO_IPV6:
9520 		switch (name) {
9521 		case IPV6_UNICAST_HOPS:
9522 			*i1 = tcp_ipv6_hoplimit;
9523 			break;
9524 		default:
9525 			return (-1);
9526 		}
9527 		break;
9528 	default:
9529 		return (-1);
9530 	}
9531 	return (sizeof (int));
9532 }
9533 
9534 
9535 /*
9536  * TCP routine to get the values of options.
9537  */
9538 int
9539 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9540 {
9541 	int		*i1 = (int *)ptr;
9542 	conn_t		*connp = Q_TO_CONN(q);
9543 	tcp_t		*tcp = connp->conn_tcp;
9544 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9545 
9546 	switch (level) {
9547 	case SOL_SOCKET:
9548 		switch (name) {
9549 		case SO_LINGER:	{
9550 			struct linger *lgr = (struct linger *)ptr;
9551 
9552 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9553 			lgr->l_linger = tcp->tcp_lingertime;
9554 			}
9555 			return (sizeof (struct linger));
9556 		case SO_DEBUG:
9557 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9558 			break;
9559 		case SO_KEEPALIVE:
9560 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9561 			break;
9562 		case SO_DONTROUTE:
9563 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9564 			break;
9565 		case SO_USELOOPBACK:
9566 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9567 			break;
9568 		case SO_BROADCAST:
9569 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9570 			break;
9571 		case SO_REUSEADDR:
9572 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9573 			break;
9574 		case SO_OOBINLINE:
9575 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9576 			break;
9577 		case SO_DGRAM_ERRIND:
9578 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9579 			break;
9580 		case SO_TYPE:
9581 			*i1 = SOCK_STREAM;
9582 			break;
9583 		case SO_SNDBUF:
9584 			*i1 = tcp->tcp_xmit_hiwater;
9585 			break;
9586 		case SO_RCVBUF:
9587 			*i1 = RD(q)->q_hiwat;
9588 			break;
9589 		case SO_SND_COPYAVOID:
9590 			*i1 = tcp->tcp_snd_zcopy_on ?
9591 			    SO_SND_COPYAVOID : 0;
9592 			break;
9593 		case SO_ALLZONES:
9594 			*i1 = connp->conn_allzones ? 1 : 0;
9595 			break;
9596 		case SO_ANON_MLP:
9597 			*i1 = connp->conn_anon_mlp;
9598 			break;
9599 		case SO_MAC_EXEMPT:
9600 			*i1 = connp->conn_mac_exempt;
9601 			break;
9602 		default:
9603 			return (-1);
9604 		}
9605 		break;
9606 	case IPPROTO_TCP:
9607 		switch (name) {
9608 		case TCP_NODELAY:
9609 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9610 			break;
9611 		case TCP_MAXSEG:
9612 			*i1 = tcp->tcp_mss;
9613 			break;
9614 		case TCP_NOTIFY_THRESHOLD:
9615 			*i1 = (int)tcp->tcp_first_timer_threshold;
9616 			break;
9617 		case TCP_ABORT_THRESHOLD:
9618 			*i1 = tcp->tcp_second_timer_threshold;
9619 			break;
9620 		case TCP_CONN_NOTIFY_THRESHOLD:
9621 			*i1 = tcp->tcp_first_ctimer_threshold;
9622 			break;
9623 		case TCP_CONN_ABORT_THRESHOLD:
9624 			*i1 = tcp->tcp_second_ctimer_threshold;
9625 			break;
9626 		case TCP_RECVDSTADDR:
9627 			*i1 = tcp->tcp_recvdstaddr;
9628 			break;
9629 		case TCP_ANONPRIVBIND:
9630 			*i1 = tcp->tcp_anon_priv_bind;
9631 			break;
9632 		case TCP_EXCLBIND:
9633 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9634 			break;
9635 		case TCP_INIT_CWND:
9636 			*i1 = tcp->tcp_init_cwnd;
9637 			break;
9638 		case TCP_KEEPALIVE_THRESHOLD:
9639 			*i1 = tcp->tcp_ka_interval;
9640 			break;
9641 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9642 			*i1 = tcp->tcp_ka_abort_thres;
9643 			break;
9644 		case TCP_CORK:
9645 			*i1 = tcp->tcp_cork;
9646 			break;
9647 		default:
9648 			return (-1);
9649 		}
9650 		break;
9651 	case IPPROTO_IP:
9652 		if (tcp->tcp_family != AF_INET)
9653 			return (-1);
9654 		switch (name) {
9655 		case IP_OPTIONS:
9656 		case T_IP_OPTIONS: {
9657 			/*
9658 			 * This is compatible with BSD in that in only return
9659 			 * the reverse source route with the final destination
9660 			 * as the last entry. The first 4 bytes of the option
9661 			 * will contain the final destination.
9662 			 */
9663 			int	opt_len;
9664 
9665 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9666 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9667 			ASSERT(opt_len >= 0);
9668 			/* Caller ensures enough space */
9669 			if (opt_len > 0) {
9670 				/*
9671 				 * TODO: Do we have to handle getsockopt on an
9672 				 * initiator as well?
9673 				 */
9674 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9675 			}
9676 			return (0);
9677 			}
9678 		case IP_TOS:
9679 		case T_IP_TOS:
9680 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9681 			break;
9682 		case IP_TTL:
9683 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9684 			break;
9685 		case IP_NEXTHOP:
9686 			/* Handled at IP level */
9687 			return (-EINVAL);
9688 		default:
9689 			return (-1);
9690 		}
9691 		break;
9692 	case IPPROTO_IPV6:
9693 		/*
9694 		 * IPPROTO_IPV6 options are only supported for sockets
9695 		 * that are using IPv6 on the wire.
9696 		 */
9697 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9698 			return (-1);
9699 		}
9700 		switch (name) {
9701 		case IPV6_UNICAST_HOPS:
9702 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9703 			break;	/* goto sizeof (int) option return */
9704 		case IPV6_BOUND_IF:
9705 			/* Zero if not set */
9706 			*i1 = tcp->tcp_bound_if;
9707 			break;	/* goto sizeof (int) option return */
9708 		case IPV6_RECVPKTINFO:
9709 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9710 				*i1 = 1;
9711 			else
9712 				*i1 = 0;
9713 			break;	/* goto sizeof (int) option return */
9714 		case IPV6_RECVTCLASS:
9715 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9716 				*i1 = 1;
9717 			else
9718 				*i1 = 0;
9719 			break;	/* goto sizeof (int) option return */
9720 		case IPV6_RECVHOPLIMIT:
9721 			if (tcp->tcp_ipv6_recvancillary &
9722 			    TCP_IPV6_RECVHOPLIMIT)
9723 				*i1 = 1;
9724 			else
9725 				*i1 = 0;
9726 			break;	/* goto sizeof (int) option return */
9727 		case IPV6_RECVHOPOPTS:
9728 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9729 				*i1 = 1;
9730 			else
9731 				*i1 = 0;
9732 			break;	/* goto sizeof (int) option return */
9733 		case IPV6_RECVDSTOPTS:
9734 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9735 				*i1 = 1;
9736 			else
9737 				*i1 = 0;
9738 			break;	/* goto sizeof (int) option return */
9739 		case _OLD_IPV6_RECVDSTOPTS:
9740 			if (tcp->tcp_ipv6_recvancillary &
9741 			    TCP_OLD_IPV6_RECVDSTOPTS)
9742 				*i1 = 1;
9743 			else
9744 				*i1 = 0;
9745 			break;	/* goto sizeof (int) option return */
9746 		case IPV6_RECVRTHDR:
9747 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9748 				*i1 = 1;
9749 			else
9750 				*i1 = 0;
9751 			break;	/* goto sizeof (int) option return */
9752 		case IPV6_RECVRTHDRDSTOPTS:
9753 			if (tcp->tcp_ipv6_recvancillary &
9754 			    TCP_IPV6_RECVRTDSTOPTS)
9755 				*i1 = 1;
9756 			else
9757 				*i1 = 0;
9758 			break;	/* goto sizeof (int) option return */
9759 		case IPV6_PKTINFO: {
9760 			/* XXX assumes that caller has room for max size! */
9761 			struct in6_pktinfo *pkti;
9762 
9763 			pkti = (struct in6_pktinfo *)ptr;
9764 			if (ipp->ipp_fields & IPPF_IFINDEX)
9765 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9766 			else
9767 				pkti->ipi6_ifindex = 0;
9768 			if (ipp->ipp_fields & IPPF_ADDR)
9769 				pkti->ipi6_addr = ipp->ipp_addr;
9770 			else
9771 				pkti->ipi6_addr = ipv6_all_zeros;
9772 			return (sizeof (struct in6_pktinfo));
9773 		}
9774 		case IPV6_TCLASS:
9775 			if (ipp->ipp_fields & IPPF_TCLASS)
9776 				*i1 = ipp->ipp_tclass;
9777 			else
9778 				*i1 = IPV6_FLOW_TCLASS(
9779 				    IPV6_DEFAULT_VERS_AND_FLOW);
9780 			break;	/* goto sizeof (int) option return */
9781 		case IPV6_NEXTHOP: {
9782 			sin6_t *sin6 = (sin6_t *)ptr;
9783 
9784 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9785 				return (0);
9786 			*sin6 = sin6_null;
9787 			sin6->sin6_family = AF_INET6;
9788 			sin6->sin6_addr = ipp->ipp_nexthop;
9789 			return (sizeof (sin6_t));
9790 		}
9791 		case IPV6_HOPOPTS:
9792 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9793 				return (0);
9794 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9795 				return (0);
9796 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9797 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9798 			if (tcp->tcp_label_len > 0) {
9799 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9800 				ptr[1] = (ipp->ipp_hopoptslen -
9801 				    tcp->tcp_label_len + 7) / 8 - 1;
9802 			}
9803 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9804 		case IPV6_RTHDRDSTOPTS:
9805 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9806 				return (0);
9807 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9808 			return (ipp->ipp_rtdstoptslen);
9809 		case IPV6_RTHDR:
9810 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9811 				return (0);
9812 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9813 			return (ipp->ipp_rthdrlen);
9814 		case IPV6_DSTOPTS:
9815 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9816 				return (0);
9817 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9818 			return (ipp->ipp_dstoptslen);
9819 		case IPV6_SRC_PREFERENCES:
9820 			return (ip6_get_src_preferences(connp,
9821 			    (uint32_t *)ptr));
9822 		case IPV6_PATHMTU: {
9823 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9824 
9825 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9826 				return (-1);
9827 
9828 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9829 				connp->conn_fport, mtuinfo));
9830 		}
9831 		default:
9832 			return (-1);
9833 		}
9834 		break;
9835 	default:
9836 		return (-1);
9837 	}
9838 	return (sizeof (int));
9839 }
9840 
9841 /*
9842  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9843  * Parameters are assumed to be verified by the caller.
9844  */
9845 /* ARGSUSED */
9846 int
9847 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9848     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9849     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9850 {
9851 	conn_t	*connp = Q_TO_CONN(q);
9852 	tcp_t	*tcp = connp->conn_tcp;
9853 	int	*i1 = (int *)invalp;
9854 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9855 	boolean_t checkonly;
9856 	int	reterr;
9857 
9858 	switch (optset_context) {
9859 	case SETFN_OPTCOM_CHECKONLY:
9860 		checkonly = B_TRUE;
9861 		/*
9862 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9863 		 * inlen != 0 implies value supplied and
9864 		 * 	we have to "pretend" to set it.
9865 		 * inlen == 0 implies that there is no
9866 		 * 	value part in T_CHECK request and just validation
9867 		 * done elsewhere should be enough, we just return here.
9868 		 */
9869 		if (inlen == 0) {
9870 			*outlenp = 0;
9871 			return (0);
9872 		}
9873 		break;
9874 	case SETFN_OPTCOM_NEGOTIATE:
9875 		checkonly = B_FALSE;
9876 		break;
9877 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9878 	case SETFN_CONN_NEGOTIATE:
9879 		checkonly = B_FALSE;
9880 		/*
9881 		 * Negotiating local and "association-related" options
9882 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9883 		 * primitives is allowed by XTI, but we choose
9884 		 * to not implement this style negotiation for Internet
9885 		 * protocols (We interpret it is a must for OSI world but
9886 		 * optional for Internet protocols) for all options.
9887 		 * [ Will do only for the few options that enable test
9888 		 * suites that our XTI implementation of this feature
9889 		 * works for transports that do allow it ]
9890 		 */
9891 		if (!tcp_allow_connopt_set(level, name)) {
9892 			*outlenp = 0;
9893 			return (EINVAL);
9894 		}
9895 		break;
9896 	default:
9897 		/*
9898 		 * We should never get here
9899 		 */
9900 		*outlenp = 0;
9901 		return (EINVAL);
9902 	}
9903 
9904 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9905 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9906 
9907 	/*
9908 	 * For TCP, we should have no ancillary data sent down
9909 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9910 	 * has to be zero.
9911 	 */
9912 	ASSERT(thisdg_attrs == NULL);
9913 
9914 	/*
9915 	 * For fixed length options, no sanity check
9916 	 * of passed in length is done. It is assumed *_optcom_req()
9917 	 * routines do the right thing.
9918 	 */
9919 
9920 	switch (level) {
9921 	case SOL_SOCKET:
9922 		switch (name) {
9923 		case SO_LINGER: {
9924 			struct linger *lgr = (struct linger *)invalp;
9925 
9926 			if (!checkonly) {
9927 				if (lgr->l_onoff) {
9928 					tcp->tcp_linger = 1;
9929 					tcp->tcp_lingertime = lgr->l_linger;
9930 				} else {
9931 					tcp->tcp_linger = 0;
9932 					tcp->tcp_lingertime = 0;
9933 				}
9934 				/* struct copy */
9935 				*(struct linger *)outvalp = *lgr;
9936 			} else {
9937 				if (!lgr->l_onoff) {
9938 				    ((struct linger *)outvalp)->l_onoff = 0;
9939 				    ((struct linger *)outvalp)->l_linger = 0;
9940 				} else {
9941 				    /* struct copy */
9942 				    *(struct linger *)outvalp = *lgr;
9943 				}
9944 			}
9945 			*outlenp = sizeof (struct linger);
9946 			return (0);
9947 		}
9948 		case SO_DEBUG:
9949 			if (!checkonly)
9950 				tcp->tcp_debug = onoff;
9951 			break;
9952 		case SO_KEEPALIVE:
9953 			if (checkonly) {
9954 				/* T_CHECK case */
9955 				break;
9956 			}
9957 
9958 			if (!onoff) {
9959 				if (tcp->tcp_ka_enabled) {
9960 					if (tcp->tcp_ka_tid != 0) {
9961 						(void) TCP_TIMER_CANCEL(tcp,
9962 						    tcp->tcp_ka_tid);
9963 						tcp->tcp_ka_tid = 0;
9964 					}
9965 					tcp->tcp_ka_enabled = 0;
9966 				}
9967 				break;
9968 			}
9969 			if (!tcp->tcp_ka_enabled) {
9970 				/* Crank up the keepalive timer */
9971 				tcp->tcp_ka_last_intrvl = 0;
9972 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9973 				    tcp_keepalive_killer,
9974 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9975 				tcp->tcp_ka_enabled = 1;
9976 			}
9977 			break;
9978 		case SO_DONTROUTE:
9979 			/*
9980 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
9981 			 * only of interest to IP.  We track them here only so
9982 			 * that we can report their current value.
9983 			 */
9984 			if (!checkonly) {
9985 				tcp->tcp_dontroute = onoff;
9986 				tcp->tcp_connp->conn_dontroute = onoff;
9987 			}
9988 			break;
9989 		case SO_USELOOPBACK:
9990 			if (!checkonly) {
9991 				tcp->tcp_useloopback = onoff;
9992 				tcp->tcp_connp->conn_loopback = onoff;
9993 			}
9994 			break;
9995 		case SO_BROADCAST:
9996 			if (!checkonly) {
9997 				tcp->tcp_broadcast = onoff;
9998 				tcp->tcp_connp->conn_broadcast = onoff;
9999 			}
10000 			break;
10001 		case SO_REUSEADDR:
10002 			if (!checkonly) {
10003 				tcp->tcp_reuseaddr = onoff;
10004 				tcp->tcp_connp->conn_reuseaddr = onoff;
10005 			}
10006 			break;
10007 		case SO_OOBINLINE:
10008 			if (!checkonly)
10009 				tcp->tcp_oobinline = onoff;
10010 			break;
10011 		case SO_DGRAM_ERRIND:
10012 			if (!checkonly)
10013 				tcp->tcp_dgram_errind = onoff;
10014 			break;
10015 		case SO_SNDBUF: {
10016 			tcp_t *peer_tcp;
10017 
10018 			if (*i1 > tcp_max_buf) {
10019 				*outlenp = 0;
10020 				return (ENOBUFS);
10021 			}
10022 			if (checkonly)
10023 				break;
10024 
10025 			tcp->tcp_xmit_hiwater = *i1;
10026 			if (tcp_snd_lowat_fraction != 0)
10027 				tcp->tcp_xmit_lowater =
10028 				    tcp->tcp_xmit_hiwater /
10029 				    tcp_snd_lowat_fraction;
10030 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10031 			/*
10032 			 * If we are flow-controlled, recheck the condition.
10033 			 * There are apps that increase SO_SNDBUF size when
10034 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10035 			 * control condition to be lifted right away.
10036 			 *
10037 			 * For the fused tcp loopback case, in order to avoid
10038 			 * a race with the peer's tcp_fuse_rrw() we need to
10039 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10040 			 */
10041 			peer_tcp = tcp->tcp_loopback_peer;
10042 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10043 			if (tcp->tcp_fused)
10044 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10045 
10046 			if (tcp->tcp_flow_stopped &&
10047 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10048 				tcp_clrqfull(tcp);
10049 			}
10050 			if (tcp->tcp_fused)
10051 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10052 			break;
10053 		}
10054 		case SO_RCVBUF:
10055 			if (*i1 > tcp_max_buf) {
10056 				*outlenp = 0;
10057 				return (ENOBUFS);
10058 			}
10059 			/* Silently ignore zero */
10060 			if (!checkonly && *i1 != 0) {
10061 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10062 				(void) tcp_rwnd_set(tcp, *i1);
10063 			}
10064 			/*
10065 			 * XXX should we return the rwnd here
10066 			 * and tcp_opt_get ?
10067 			 */
10068 			break;
10069 		case SO_SND_COPYAVOID:
10070 			if (!checkonly) {
10071 				/* we only allow enable at most once for now */
10072 				if (tcp->tcp_loopback ||
10073 				    (!tcp->tcp_snd_zcopy_aware &&
10074 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10075 					*outlenp = 0;
10076 					return (EOPNOTSUPP);
10077 				}
10078 				tcp->tcp_snd_zcopy_aware = 1;
10079 			}
10080 			break;
10081 		case SO_ALLZONES:
10082 			/* Handled at the IP level */
10083 			return (-EINVAL);
10084 		case SO_ANON_MLP:
10085 			if (!checkonly) {
10086 				mutex_enter(&connp->conn_lock);
10087 				connp->conn_anon_mlp = onoff;
10088 				mutex_exit(&connp->conn_lock);
10089 			}
10090 			break;
10091 		case SO_MAC_EXEMPT:
10092 			if (secpolicy_net_mac_aware(cr) != 0 ||
10093 			    IPCL_IS_BOUND(connp))
10094 				return (EACCES);
10095 			if (!checkonly) {
10096 				mutex_enter(&connp->conn_lock);
10097 				connp->conn_mac_exempt = onoff;
10098 				mutex_exit(&connp->conn_lock);
10099 			}
10100 			break;
10101 		default:
10102 			*outlenp = 0;
10103 			return (EINVAL);
10104 		}
10105 		break;
10106 	case IPPROTO_TCP:
10107 		switch (name) {
10108 		case TCP_NODELAY:
10109 			if (!checkonly)
10110 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10111 			break;
10112 		case TCP_NOTIFY_THRESHOLD:
10113 			if (!checkonly)
10114 				tcp->tcp_first_timer_threshold = *i1;
10115 			break;
10116 		case TCP_ABORT_THRESHOLD:
10117 			if (!checkonly)
10118 				tcp->tcp_second_timer_threshold = *i1;
10119 			break;
10120 		case TCP_CONN_NOTIFY_THRESHOLD:
10121 			if (!checkonly)
10122 				tcp->tcp_first_ctimer_threshold = *i1;
10123 			break;
10124 		case TCP_CONN_ABORT_THRESHOLD:
10125 			if (!checkonly)
10126 				tcp->tcp_second_ctimer_threshold = *i1;
10127 			break;
10128 		case TCP_RECVDSTADDR:
10129 			if (tcp->tcp_state > TCPS_LISTEN)
10130 				return (EOPNOTSUPP);
10131 			if (!checkonly)
10132 				tcp->tcp_recvdstaddr = onoff;
10133 			break;
10134 		case TCP_ANONPRIVBIND:
10135 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10136 				*outlenp = 0;
10137 				return (reterr);
10138 			}
10139 			if (!checkonly) {
10140 				tcp->tcp_anon_priv_bind = onoff;
10141 			}
10142 			break;
10143 		case TCP_EXCLBIND:
10144 			if (!checkonly)
10145 				tcp->tcp_exclbind = onoff;
10146 			break;	/* goto sizeof (int) option return */
10147 		case TCP_INIT_CWND: {
10148 			uint32_t init_cwnd = *((uint32_t *)invalp);
10149 
10150 			if (checkonly)
10151 				break;
10152 
10153 			/*
10154 			 * Only allow socket with network configuration
10155 			 * privilege to set the initial cwnd to be larger
10156 			 * than allowed by RFC 3390.
10157 			 */
10158 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10159 				tcp->tcp_init_cwnd = init_cwnd;
10160 				break;
10161 			}
10162 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10163 				*outlenp = 0;
10164 				return (reterr);
10165 			}
10166 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10167 				*outlenp = 0;
10168 				return (EINVAL);
10169 			}
10170 			tcp->tcp_init_cwnd = init_cwnd;
10171 			break;
10172 		}
10173 		case TCP_KEEPALIVE_THRESHOLD:
10174 			if (checkonly)
10175 				break;
10176 
10177 			if (*i1 < tcp_keepalive_interval_low ||
10178 			    *i1 > tcp_keepalive_interval_high) {
10179 				*outlenp = 0;
10180 				return (EINVAL);
10181 			}
10182 			if (*i1 != tcp->tcp_ka_interval) {
10183 				tcp->tcp_ka_interval = *i1;
10184 				/*
10185 				 * Check if we need to restart the
10186 				 * keepalive timer.
10187 				 */
10188 				if (tcp->tcp_ka_tid != 0) {
10189 					ASSERT(tcp->tcp_ka_enabled);
10190 					(void) TCP_TIMER_CANCEL(tcp,
10191 					    tcp->tcp_ka_tid);
10192 					tcp->tcp_ka_last_intrvl = 0;
10193 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10194 					    tcp_keepalive_killer,
10195 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10196 				}
10197 			}
10198 			break;
10199 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10200 			if (!checkonly) {
10201 				if (*i1 < tcp_keepalive_abort_interval_low ||
10202 				    *i1 > tcp_keepalive_abort_interval_high) {
10203 					*outlenp = 0;
10204 					return (EINVAL);
10205 				}
10206 				tcp->tcp_ka_abort_thres = *i1;
10207 			}
10208 			break;
10209 		case TCP_CORK:
10210 			if (!checkonly) {
10211 				/*
10212 				 * if tcp->tcp_cork was set and is now
10213 				 * being unset, we have to make sure that
10214 				 * the remaining data gets sent out. Also
10215 				 * unset tcp->tcp_cork so that tcp_wput_data()
10216 				 * can send data even if it is less than mss
10217 				 */
10218 				if (tcp->tcp_cork && onoff == 0 &&
10219 				    tcp->tcp_unsent > 0) {
10220 					tcp->tcp_cork = B_FALSE;
10221 					tcp_wput_data(tcp, NULL, B_FALSE);
10222 				}
10223 				tcp->tcp_cork = onoff;
10224 			}
10225 			break;
10226 		default:
10227 			*outlenp = 0;
10228 			return (EINVAL);
10229 		}
10230 		break;
10231 	case IPPROTO_IP:
10232 		if (tcp->tcp_family != AF_INET) {
10233 			*outlenp = 0;
10234 			return (ENOPROTOOPT);
10235 		}
10236 		switch (name) {
10237 		case IP_OPTIONS:
10238 		case T_IP_OPTIONS:
10239 			reterr = tcp_opt_set_header(tcp, checkonly,
10240 			    invalp, inlen);
10241 			if (reterr) {
10242 				*outlenp = 0;
10243 				return (reterr);
10244 			}
10245 			/* OK return - copy input buffer into output buffer */
10246 			if (invalp != outvalp) {
10247 				/* don't trust bcopy for identical src/dst */
10248 				bcopy(invalp, outvalp, inlen);
10249 			}
10250 			*outlenp = inlen;
10251 			return (0);
10252 		case IP_TOS:
10253 		case T_IP_TOS:
10254 			if (!checkonly) {
10255 				tcp->tcp_ipha->ipha_type_of_service =
10256 				    (uchar_t)*i1;
10257 				tcp->tcp_tos = (uchar_t)*i1;
10258 			}
10259 			break;
10260 		case IP_TTL:
10261 			if (!checkonly) {
10262 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10263 				tcp->tcp_ttl = (uchar_t)*i1;
10264 			}
10265 			break;
10266 		case IP_BOUND_IF:
10267 		case IP_NEXTHOP:
10268 			/* Handled at the IP level */
10269 			return (-EINVAL);
10270 		case IP_SEC_OPT:
10271 			/*
10272 			 * We should not allow policy setting after
10273 			 * we start listening for connections.
10274 			 */
10275 			if (tcp->tcp_state == TCPS_LISTEN) {
10276 				return (EINVAL);
10277 			} else {
10278 				/* Handled at the IP level */
10279 				return (-EINVAL);
10280 			}
10281 		default:
10282 			*outlenp = 0;
10283 			return (EINVAL);
10284 		}
10285 		break;
10286 	case IPPROTO_IPV6: {
10287 		ip6_pkt_t		*ipp;
10288 
10289 		/*
10290 		 * IPPROTO_IPV6 options are only supported for sockets
10291 		 * that are using IPv6 on the wire.
10292 		 */
10293 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10294 			*outlenp = 0;
10295 			return (ENOPROTOOPT);
10296 		}
10297 		/*
10298 		 * Only sticky options; no ancillary data
10299 		 */
10300 		ASSERT(thisdg_attrs == NULL);
10301 		ipp = &tcp->tcp_sticky_ipp;
10302 
10303 		switch (name) {
10304 		case IPV6_UNICAST_HOPS:
10305 			/* -1 means use default */
10306 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10307 				*outlenp = 0;
10308 				return (EINVAL);
10309 			}
10310 			if (!checkonly) {
10311 				if (*i1 == -1) {
10312 					tcp->tcp_ip6h->ip6_hops =
10313 					    ipp->ipp_unicast_hops =
10314 					    (uint8_t)tcp_ipv6_hoplimit;
10315 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10316 					/* Pass modified value to IP. */
10317 					*i1 = tcp->tcp_ip6h->ip6_hops;
10318 				} else {
10319 					tcp->tcp_ip6h->ip6_hops =
10320 					    ipp->ipp_unicast_hops =
10321 					    (uint8_t)*i1;
10322 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10323 				}
10324 				reterr = tcp_build_hdrs(q, tcp);
10325 				if (reterr != 0)
10326 					return (reterr);
10327 			}
10328 			break;
10329 		case IPV6_BOUND_IF:
10330 			if (!checkonly) {
10331 				int error = 0;
10332 
10333 				tcp->tcp_bound_if = *i1;
10334 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10335 				    B_TRUE, checkonly, level, name, mblk);
10336 				if (error != 0) {
10337 					*outlenp = 0;
10338 					return (error);
10339 				}
10340 			}
10341 			break;
10342 		/*
10343 		 * Set boolean switches for ancillary data delivery
10344 		 */
10345 		case IPV6_RECVPKTINFO:
10346 			if (!checkonly) {
10347 				if (onoff)
10348 					tcp->tcp_ipv6_recvancillary |=
10349 					    TCP_IPV6_RECVPKTINFO;
10350 				else
10351 					tcp->tcp_ipv6_recvancillary &=
10352 					    ~TCP_IPV6_RECVPKTINFO;
10353 				/* Force it to be sent up with the next msg */
10354 				tcp->tcp_recvifindex = 0;
10355 			}
10356 			break;
10357 		case IPV6_RECVTCLASS:
10358 			if (!checkonly) {
10359 				if (onoff)
10360 					tcp->tcp_ipv6_recvancillary |=
10361 					    TCP_IPV6_RECVTCLASS;
10362 				else
10363 					tcp->tcp_ipv6_recvancillary &=
10364 					    ~TCP_IPV6_RECVTCLASS;
10365 			}
10366 			break;
10367 		case IPV6_RECVHOPLIMIT:
10368 			if (!checkonly) {
10369 				if (onoff)
10370 					tcp->tcp_ipv6_recvancillary |=
10371 					    TCP_IPV6_RECVHOPLIMIT;
10372 				else
10373 					tcp->tcp_ipv6_recvancillary &=
10374 					    ~TCP_IPV6_RECVHOPLIMIT;
10375 				/* Force it to be sent up with the next msg */
10376 				tcp->tcp_recvhops = 0xffffffffU;
10377 			}
10378 			break;
10379 		case IPV6_RECVHOPOPTS:
10380 			if (!checkonly) {
10381 				if (onoff)
10382 					tcp->tcp_ipv6_recvancillary |=
10383 					    TCP_IPV6_RECVHOPOPTS;
10384 				else
10385 					tcp->tcp_ipv6_recvancillary &=
10386 					    ~TCP_IPV6_RECVHOPOPTS;
10387 			}
10388 			break;
10389 		case IPV6_RECVDSTOPTS:
10390 			if (!checkonly) {
10391 				if (onoff)
10392 					tcp->tcp_ipv6_recvancillary |=
10393 					    TCP_IPV6_RECVDSTOPTS;
10394 				else
10395 					tcp->tcp_ipv6_recvancillary &=
10396 					    ~TCP_IPV6_RECVDSTOPTS;
10397 			}
10398 			break;
10399 		case _OLD_IPV6_RECVDSTOPTS:
10400 			if (!checkonly) {
10401 				if (onoff)
10402 					tcp->tcp_ipv6_recvancillary |=
10403 					    TCP_OLD_IPV6_RECVDSTOPTS;
10404 				else
10405 					tcp->tcp_ipv6_recvancillary &=
10406 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10407 			}
10408 			break;
10409 		case IPV6_RECVRTHDR:
10410 			if (!checkonly) {
10411 				if (onoff)
10412 					tcp->tcp_ipv6_recvancillary |=
10413 					    TCP_IPV6_RECVRTHDR;
10414 				else
10415 					tcp->tcp_ipv6_recvancillary &=
10416 					    ~TCP_IPV6_RECVRTHDR;
10417 			}
10418 			break;
10419 		case IPV6_RECVRTHDRDSTOPTS:
10420 			if (!checkonly) {
10421 				if (onoff)
10422 					tcp->tcp_ipv6_recvancillary |=
10423 					    TCP_IPV6_RECVRTDSTOPTS;
10424 				else
10425 					tcp->tcp_ipv6_recvancillary &=
10426 					    ~TCP_IPV6_RECVRTDSTOPTS;
10427 			}
10428 			break;
10429 		case IPV6_PKTINFO:
10430 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10431 				return (EINVAL);
10432 			if (checkonly)
10433 				break;
10434 
10435 			if (inlen == 0) {
10436 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10437 			} else {
10438 				struct in6_pktinfo *pkti;
10439 
10440 				pkti = (struct in6_pktinfo *)invalp;
10441 				/*
10442 				 * RFC 3542 states that ipi6_addr must be
10443 				 * the unspecified address when setting the
10444 				 * IPV6_PKTINFO sticky socket option on a
10445 				 * TCP socket.
10446 				 */
10447 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10448 					return (EINVAL);
10449 				/*
10450 				 * ip6_set_pktinfo() validates the source
10451 				 * address and interface index.
10452 				 */
10453 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10454 				    pkti, mblk);
10455 				if (reterr != 0)
10456 					return (reterr);
10457 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10458 				ipp->ipp_addr = pkti->ipi6_addr;
10459 				if (ipp->ipp_ifindex != 0)
10460 					ipp->ipp_fields |= IPPF_IFINDEX;
10461 				else
10462 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10463 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10464 					ipp->ipp_fields |= IPPF_ADDR;
10465 				else
10466 					ipp->ipp_fields &= ~IPPF_ADDR;
10467 			}
10468 			reterr = tcp_build_hdrs(q, tcp);
10469 			if (reterr != 0)
10470 				return (reterr);
10471 			break;
10472 		case IPV6_TCLASS:
10473 			if (inlen != 0 && inlen != sizeof (int))
10474 				return (EINVAL);
10475 			if (checkonly)
10476 				break;
10477 
10478 			if (inlen == 0) {
10479 				ipp->ipp_fields &= ~IPPF_TCLASS;
10480 			} else {
10481 				if (*i1 > 255 || *i1 < -1)
10482 					return (EINVAL);
10483 				if (*i1 == -1) {
10484 					ipp->ipp_tclass = 0;
10485 					*i1 = 0;
10486 				} else {
10487 					ipp->ipp_tclass = *i1;
10488 				}
10489 				ipp->ipp_fields |= IPPF_TCLASS;
10490 			}
10491 			reterr = tcp_build_hdrs(q, tcp);
10492 			if (reterr != 0)
10493 				return (reterr);
10494 			break;
10495 		case IPV6_NEXTHOP:
10496 			/*
10497 			 * IP will verify that the nexthop is reachable
10498 			 * and fail for sticky options.
10499 			 */
10500 			if (inlen != 0 && inlen != sizeof (sin6_t))
10501 				return (EINVAL);
10502 			if (checkonly)
10503 				break;
10504 
10505 			if (inlen == 0) {
10506 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10507 			} else {
10508 				sin6_t *sin6 = (sin6_t *)invalp;
10509 
10510 				if (sin6->sin6_family != AF_INET6)
10511 					return (EAFNOSUPPORT);
10512 				if (IN6_IS_ADDR_V4MAPPED(
10513 				    &sin6->sin6_addr))
10514 					return (EADDRNOTAVAIL);
10515 				ipp->ipp_nexthop = sin6->sin6_addr;
10516 				if (!IN6_IS_ADDR_UNSPECIFIED(
10517 				    &ipp->ipp_nexthop))
10518 					ipp->ipp_fields |= IPPF_NEXTHOP;
10519 				else
10520 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10521 			}
10522 			reterr = tcp_build_hdrs(q, tcp);
10523 			if (reterr != 0)
10524 				return (reterr);
10525 			break;
10526 		case IPV6_HOPOPTS: {
10527 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10528 
10529 			/*
10530 			 * Sanity checks - minimum size, size a multiple of
10531 			 * eight bytes, and matching size passed in.
10532 			 */
10533 			if (inlen != 0 &&
10534 			    inlen != (8 * (hopts->ip6h_len + 1)))
10535 				return (EINVAL);
10536 
10537 			if (checkonly)
10538 				break;
10539 
10540 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10541 			    (uchar_t **)&ipp->ipp_hopopts,
10542 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10543 			if (reterr != 0)
10544 				return (reterr);
10545 			if (ipp->ipp_hopoptslen == 0)
10546 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10547 			else
10548 				ipp->ipp_fields |= IPPF_HOPOPTS;
10549 			reterr = tcp_build_hdrs(q, tcp);
10550 			if (reterr != 0)
10551 				return (reterr);
10552 			break;
10553 		}
10554 		case IPV6_RTHDRDSTOPTS: {
10555 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10556 
10557 			/*
10558 			 * Sanity checks - minimum size, size a multiple of
10559 			 * eight bytes, and matching size passed in.
10560 			 */
10561 			if (inlen != 0 &&
10562 			    inlen != (8 * (dopts->ip6d_len + 1)))
10563 				return (EINVAL);
10564 
10565 			if (checkonly)
10566 				break;
10567 
10568 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10569 			    (uchar_t **)&ipp->ipp_rtdstopts,
10570 			    &ipp->ipp_rtdstoptslen, 0);
10571 			if (reterr != 0)
10572 				return (reterr);
10573 			if (ipp->ipp_rtdstoptslen == 0)
10574 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10575 			else
10576 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10577 			reterr = tcp_build_hdrs(q, tcp);
10578 			if (reterr != 0)
10579 				return (reterr);
10580 			break;
10581 		}
10582 		case IPV6_DSTOPTS: {
10583 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10584 
10585 			/*
10586 			 * Sanity checks - minimum size, size a multiple of
10587 			 * eight bytes, and matching size passed in.
10588 			 */
10589 			if (inlen != 0 &&
10590 			    inlen != (8 * (dopts->ip6d_len + 1)))
10591 				return (EINVAL);
10592 
10593 			if (checkonly)
10594 				break;
10595 
10596 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10597 			    (uchar_t **)&ipp->ipp_dstopts,
10598 			    &ipp->ipp_dstoptslen, 0);
10599 			if (reterr != 0)
10600 				return (reterr);
10601 			if (ipp->ipp_dstoptslen == 0)
10602 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10603 			else
10604 				ipp->ipp_fields |= IPPF_DSTOPTS;
10605 			reterr = tcp_build_hdrs(q, tcp);
10606 			if (reterr != 0)
10607 				return (reterr);
10608 			break;
10609 		}
10610 		case IPV6_RTHDR: {
10611 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10612 
10613 			/*
10614 			 * Sanity checks - minimum size, size a multiple of
10615 			 * eight bytes, and matching size passed in.
10616 			 */
10617 			if (inlen != 0 &&
10618 			    inlen != (8 * (rt->ip6r_len + 1)))
10619 				return (EINVAL);
10620 
10621 			if (checkonly)
10622 				break;
10623 
10624 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10625 			    (uchar_t **)&ipp->ipp_rthdr,
10626 			    &ipp->ipp_rthdrlen, 0);
10627 			if (reterr != 0)
10628 				return (reterr);
10629 			if (ipp->ipp_rthdrlen == 0)
10630 				ipp->ipp_fields &= ~IPPF_RTHDR;
10631 			else
10632 				ipp->ipp_fields |= IPPF_RTHDR;
10633 			reterr = tcp_build_hdrs(q, tcp);
10634 			if (reterr != 0)
10635 				return (reterr);
10636 			break;
10637 		}
10638 		case IPV6_V6ONLY:
10639 			if (!checkonly)
10640 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10641 			break;
10642 		case IPV6_USE_MIN_MTU:
10643 			if (inlen != sizeof (int))
10644 				return (EINVAL);
10645 
10646 			if (*i1 < -1 || *i1 > 1)
10647 				return (EINVAL);
10648 
10649 			if (checkonly)
10650 				break;
10651 
10652 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10653 			ipp->ipp_use_min_mtu = *i1;
10654 			break;
10655 		case IPV6_BOUND_PIF:
10656 			/* Handled at the IP level */
10657 			return (-EINVAL);
10658 		case IPV6_SEC_OPT:
10659 			/*
10660 			 * We should not allow policy setting after
10661 			 * we start listening for connections.
10662 			 */
10663 			if (tcp->tcp_state == TCPS_LISTEN) {
10664 				return (EINVAL);
10665 			} else {
10666 				/* Handled at the IP level */
10667 				return (-EINVAL);
10668 			}
10669 		case IPV6_SRC_PREFERENCES:
10670 			if (inlen != sizeof (uint32_t))
10671 				return (EINVAL);
10672 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10673 			    *(uint32_t *)invalp);
10674 			if (reterr != 0) {
10675 				*outlenp = 0;
10676 				return (reterr);
10677 			}
10678 			break;
10679 		default:
10680 			*outlenp = 0;
10681 			return (EINVAL);
10682 		}
10683 		break;
10684 	}		/* end IPPROTO_IPV6 */
10685 	default:
10686 		*outlenp = 0;
10687 		return (EINVAL);
10688 	}
10689 	/*
10690 	 * Common case of OK return with outval same as inval
10691 	 */
10692 	if (invalp != outvalp) {
10693 		/* don't trust bcopy for identical src/dst */
10694 		(void) bcopy(invalp, outvalp, inlen);
10695 	}
10696 	*outlenp = inlen;
10697 	return (0);
10698 }
10699 
10700 /*
10701  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10702  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10703  * headers, and the maximum size tcp header (to avoid reallocation
10704  * on the fly for additional tcp options).
10705  * Returns failure if can't allocate memory.
10706  */
10707 static int
10708 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10709 {
10710 	char	*hdrs;
10711 	uint_t	hdrs_len;
10712 	ip6i_t	*ip6i;
10713 	char	buf[TCP_MAX_HDR_LENGTH];
10714 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10715 	in6_addr_t src, dst;
10716 
10717 	/*
10718 	 * save the existing tcp header and source/dest IP addresses
10719 	 */
10720 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10721 	src = tcp->tcp_ip6h->ip6_src;
10722 	dst = tcp->tcp_ip6h->ip6_dst;
10723 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10724 	ASSERT(hdrs_len != 0);
10725 	if (hdrs_len > tcp->tcp_iphc_len) {
10726 		/* Need to reallocate */
10727 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10728 		if (hdrs == NULL)
10729 			return (ENOMEM);
10730 		if (tcp->tcp_iphc != NULL) {
10731 			if (tcp->tcp_hdr_grown) {
10732 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10733 			} else {
10734 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10735 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10736 			}
10737 			tcp->tcp_iphc_len = 0;
10738 		}
10739 		ASSERT(tcp->tcp_iphc_len == 0);
10740 		tcp->tcp_iphc = hdrs;
10741 		tcp->tcp_iphc_len = hdrs_len;
10742 		tcp->tcp_hdr_grown = B_TRUE;
10743 	}
10744 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10745 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10746 
10747 	/* Set header fields not in ipp */
10748 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10749 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10750 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10751 	} else {
10752 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10753 	}
10754 	/*
10755 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10756 	 *
10757 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10758 	 */
10759 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10760 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10761 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10762 
10763 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10764 
10765 	tcp->tcp_ip6h->ip6_src = src;
10766 	tcp->tcp_ip6h->ip6_dst = dst;
10767 
10768 	/*
10769 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10770 	 * the default value for TCP.
10771 	 */
10772 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10773 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
10774 
10775 	/*
10776 	 * If we're setting extension headers after a connection
10777 	 * has been established, and if we have a routing header
10778 	 * among the extension headers, call ip_massage_options_v6 to
10779 	 * manipulate the routing header/ip6_dst set the checksum
10780 	 * difference in the tcp header template.
10781 	 * (This happens in tcp_connect_ipv6 if the routing header
10782 	 * is set prior to the connect.)
10783 	 * Set the tcp_sum to zero first in case we've cleared a
10784 	 * routing header or don't have one at all.
10785 	 */
10786 	tcp->tcp_sum = 0;
10787 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10788 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10789 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10790 		    (uint8_t *)tcp->tcp_tcph);
10791 		if (rth != NULL) {
10792 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10793 			    rth);
10794 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10795 			    (tcp->tcp_sum >> 16));
10796 		}
10797 	}
10798 
10799 	/* Try to get everything in a single mblk */
10800 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
10801 	return (0);
10802 }
10803 
10804 /*
10805  * Transfer any source route option from ipha to buf/dst in reversed form.
10806  */
10807 static int
10808 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10809 {
10810 	ipoptp_t	opts;
10811 	uchar_t		*opt;
10812 	uint8_t		optval;
10813 	uint8_t		optlen;
10814 	uint32_t	len = 0;
10815 
10816 	for (optval = ipoptp_first(&opts, ipha);
10817 	    optval != IPOPT_EOL;
10818 	    optval = ipoptp_next(&opts)) {
10819 		opt = opts.ipoptp_cur;
10820 		optlen = opts.ipoptp_len;
10821 		switch (optval) {
10822 			int	off1, off2;
10823 		case IPOPT_SSRR:
10824 		case IPOPT_LSRR:
10825 
10826 			/* Reverse source route */
10827 			/*
10828 			 * First entry should be the next to last one in the
10829 			 * current source route (the last entry is our
10830 			 * address.)
10831 			 * The last entry should be the final destination.
10832 			 */
10833 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10834 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10835 			off1 = IPOPT_MINOFF_SR - 1;
10836 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10837 			if (off2 < 0) {
10838 				/* No entries in source route */
10839 				break;
10840 			}
10841 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10842 			/*
10843 			 * Note: use src since ipha has not had its src
10844 			 * and dst reversed (it is in the state it was
10845 			 * received.
10846 			 */
10847 			bcopy(&ipha->ipha_src, buf + off2,
10848 			    IP_ADDR_LEN);
10849 			off2 -= IP_ADDR_LEN;
10850 
10851 			while (off2 > 0) {
10852 				bcopy(opt + off2, buf + off1,
10853 				    IP_ADDR_LEN);
10854 				off1 += IP_ADDR_LEN;
10855 				off2 -= IP_ADDR_LEN;
10856 			}
10857 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10858 			buf += optlen;
10859 			len += optlen;
10860 			break;
10861 		}
10862 	}
10863 done:
10864 	/* Pad the resulting options */
10865 	while (len & 0x3) {
10866 		*buf++ = IPOPT_EOL;
10867 		len++;
10868 	}
10869 	return (len);
10870 }
10871 
10872 
10873 /*
10874  * Extract and revert a source route from ipha (if any)
10875  * and then update the relevant fields in both tcp_t and the standard header.
10876  */
10877 static void
10878 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10879 {
10880 	char	buf[TCP_MAX_HDR_LENGTH];
10881 	uint_t	tcph_len;
10882 	int	len;
10883 
10884 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10885 	len = IPH_HDR_LENGTH(ipha);
10886 	if (len == IP_SIMPLE_HDR_LENGTH)
10887 		/* Nothing to do */
10888 		return;
10889 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10890 	    (len & 0x3))
10891 		return;
10892 
10893 	tcph_len = tcp->tcp_tcp_hdr_len;
10894 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10895 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10896 		(tcp->tcp_ipha->ipha_dst & 0xffff);
10897 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10898 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10899 	len += IP_SIMPLE_HDR_LENGTH;
10900 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10901 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10902 	if ((int)tcp->tcp_sum < 0)
10903 		tcp->tcp_sum--;
10904 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10905 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10906 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10907 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10908 	tcp->tcp_ip_hdr_len = len;
10909 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10910 	    (IP_VERSION << 4) | (len >> 2);
10911 	len += tcph_len;
10912 	tcp->tcp_hdr_len = len;
10913 }
10914 
10915 /*
10916  * Copy the standard header into its new location,
10917  * lay in the new options and then update the relevant
10918  * fields in both tcp_t and the standard header.
10919  */
10920 static int
10921 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10922 {
10923 	uint_t	tcph_len;
10924 	uint8_t	*ip_optp;
10925 	tcph_t	*new_tcph;
10926 
10927 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10928 		return (EINVAL);
10929 
10930 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10931 		return (EINVAL);
10932 
10933 	if (checkonly) {
10934 		/*
10935 		 * do not really set, just pretend to - T_CHECK
10936 		 */
10937 		return (0);
10938 	}
10939 
10940 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10941 	if (tcp->tcp_label_len > 0) {
10942 		int padlen;
10943 		uint8_t opt;
10944 
10945 		/* convert list termination to no-ops */
10946 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10947 		ip_optp += ip_optp[IPOPT_OLEN];
10948 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
10949 		while (--padlen >= 0)
10950 			*ip_optp++ = opt;
10951 	}
10952 	tcph_len = tcp->tcp_tcp_hdr_len;
10953 	new_tcph = (tcph_t *)(ip_optp + len);
10954 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
10955 	tcp->tcp_tcph = new_tcph;
10956 	bcopy(ptr, ip_optp, len);
10957 
10958 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
10959 
10960 	tcp->tcp_ip_hdr_len = len;
10961 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10962 	    (IP_VERSION << 4) | (len >> 2);
10963 	tcp->tcp_hdr_len = len + tcph_len;
10964 	if (!TCP_IS_DETACHED(tcp)) {
10965 		/* Always allocate room for all options. */
10966 		(void) mi_set_sth_wroff(tcp->tcp_rq,
10967 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
10968 	}
10969 	return (0);
10970 }
10971 
10972 /* Get callback routine passed to nd_load by tcp_param_register */
10973 /* ARGSUSED */
10974 static int
10975 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
10976 {
10977 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
10978 
10979 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
10980 	return (0);
10981 }
10982 
10983 /*
10984  * Walk through the param array specified registering each element with the
10985  * named dispatch handler.
10986  */
10987 static boolean_t
10988 tcp_param_register(tcpparam_t *tcppa, int cnt)
10989 {
10990 	for (; cnt-- > 0; tcppa++) {
10991 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
10992 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
10993 			    tcp_param_get, tcp_param_set,
10994 			    (caddr_t)tcppa)) {
10995 				nd_free(&tcp_g_nd);
10996 				return (B_FALSE);
10997 			}
10998 		}
10999 	}
11000 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11001 	    tcp_param_get, tcp_param_set_aligned,
11002 	    (caddr_t)&tcp_wroff_xtra_param)) {
11003 		nd_free(&tcp_g_nd);
11004 		return (B_FALSE);
11005 	}
11006 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11007 	    tcp_param_get, tcp_param_set_aligned,
11008 	    (caddr_t)&tcp_mdt_head_param)) {
11009 		nd_free(&tcp_g_nd);
11010 		return (B_FALSE);
11011 	}
11012 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11013 	    tcp_param_get, tcp_param_set_aligned,
11014 	    (caddr_t)&tcp_mdt_tail_param)) {
11015 		nd_free(&tcp_g_nd);
11016 		return (B_FALSE);
11017 	}
11018 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11019 	    tcp_param_get, tcp_param_set,
11020 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11021 		nd_free(&tcp_g_nd);
11022 		return (B_FALSE);
11023 	}
11024 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11025 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11026 		nd_free(&tcp_g_nd);
11027 		return (B_FALSE);
11028 	}
11029 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11030 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11031 		nd_free(&tcp_g_nd);
11032 		return (B_FALSE);
11033 	}
11034 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11035 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11036 		nd_free(&tcp_g_nd);
11037 		return (B_FALSE);
11038 	}
11039 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11040 	    NULL)) {
11041 		nd_free(&tcp_g_nd);
11042 		return (B_FALSE);
11043 	}
11044 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11045 	    NULL, NULL)) {
11046 		nd_free(&tcp_g_nd);
11047 		return (B_FALSE);
11048 	}
11049 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11050 	    NULL, NULL)) {
11051 		nd_free(&tcp_g_nd);
11052 		return (B_FALSE);
11053 	}
11054 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11055 	    NULL, NULL)) {
11056 		nd_free(&tcp_g_nd);
11057 		return (B_FALSE);
11058 	}
11059 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11060 	    NULL, NULL)) {
11061 		nd_free(&tcp_g_nd);
11062 		return (B_FALSE);
11063 	}
11064 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11065 	    tcp_host_param_set, NULL)) {
11066 		nd_free(&tcp_g_nd);
11067 		return (B_FALSE);
11068 	}
11069 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11070 	    tcp_host_param_set_ipv6, NULL)) {
11071 		nd_free(&tcp_g_nd);
11072 		return (B_FALSE);
11073 	}
11074 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11075 	    NULL)) {
11076 		nd_free(&tcp_g_nd);
11077 		return (B_FALSE);
11078 	}
11079 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11080 	    tcp_reserved_port_list, NULL, NULL)) {
11081 		nd_free(&tcp_g_nd);
11082 		return (B_FALSE);
11083 	}
11084 	/*
11085 	 * Dummy ndd variables - only to convey obsolescence information
11086 	 * through printing of their name (no get or set routines)
11087 	 * XXX Remove in future releases ?
11088 	 */
11089 	if (!nd_load(&tcp_g_nd,
11090 	    "tcp_close_wait_interval(obsoleted - "
11091 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11092 		nd_free(&tcp_g_nd);
11093 		return (B_FALSE);
11094 	}
11095 	return (B_TRUE);
11096 }
11097 
11098 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11099 /* ARGSUSED */
11100 static int
11101 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11102     cred_t *cr)
11103 {
11104 	long new_value;
11105 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11106 
11107 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11108 	    new_value < tcppa->tcp_param_min ||
11109 	    new_value > tcppa->tcp_param_max) {
11110 		return (EINVAL);
11111 	}
11112 	/*
11113 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11114 	 * round it up.  For future 64 bit requirement, we actually make it
11115 	 * a multiple of 8.
11116 	 */
11117 	if (new_value & 0x7) {
11118 		new_value = (new_value & ~0x7) + 0x8;
11119 	}
11120 	tcppa->tcp_param_val = new_value;
11121 	return (0);
11122 }
11123 
11124 /* Set callback routine passed to nd_load by tcp_param_register */
11125 /* ARGSUSED */
11126 static int
11127 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11128 {
11129 	long	new_value;
11130 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11131 
11132 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11133 	    new_value < tcppa->tcp_param_min ||
11134 	    new_value > tcppa->tcp_param_max) {
11135 		return (EINVAL);
11136 	}
11137 	tcppa->tcp_param_val = new_value;
11138 	return (0);
11139 }
11140 
11141 /*
11142  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11143  * is filled, return as much as we can.  The message passed in may be
11144  * multi-part, chained using b_cont.  "start" is the starting sequence
11145  * number for this piece.
11146  */
11147 static mblk_t *
11148 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11149 {
11150 	uint32_t	end;
11151 	mblk_t		*mp1;
11152 	mblk_t		*mp2;
11153 	mblk_t		*next_mp;
11154 	uint32_t	u1;
11155 
11156 	/* Walk through all the new pieces. */
11157 	do {
11158 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11159 		    (uintptr_t)INT_MAX);
11160 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11161 		next_mp = mp->b_cont;
11162 		if (start == end) {
11163 			/* Empty.  Blast it. */
11164 			freeb(mp);
11165 			continue;
11166 		}
11167 		mp->b_cont = NULL;
11168 		TCP_REASS_SET_SEQ(mp, start);
11169 		TCP_REASS_SET_END(mp, end);
11170 		mp1 = tcp->tcp_reass_tail;
11171 		if (!mp1) {
11172 			tcp->tcp_reass_tail = mp;
11173 			tcp->tcp_reass_head = mp;
11174 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11175 			UPDATE_MIB(&tcp_mib,
11176 			    tcpInDataUnorderBytes, end - start);
11177 			continue;
11178 		}
11179 		/* New stuff completely beyond tail? */
11180 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11181 			/* Link it on end. */
11182 			mp1->b_cont = mp;
11183 			tcp->tcp_reass_tail = mp;
11184 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11185 			UPDATE_MIB(&tcp_mib,
11186 			    tcpInDataUnorderBytes, end - start);
11187 			continue;
11188 		}
11189 		mp1 = tcp->tcp_reass_head;
11190 		u1 = TCP_REASS_SEQ(mp1);
11191 		/* New stuff at the front? */
11192 		if (SEQ_LT(start, u1)) {
11193 			/* Yes... Check for overlap. */
11194 			mp->b_cont = mp1;
11195 			tcp->tcp_reass_head = mp;
11196 			tcp_reass_elim_overlap(tcp, mp);
11197 			continue;
11198 		}
11199 		/*
11200 		 * The new piece fits somewhere between the head and tail.
11201 		 * We find our slot, where mp1 precedes us and mp2 trails.
11202 		 */
11203 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11204 			u1 = TCP_REASS_SEQ(mp2);
11205 			if (SEQ_LEQ(start, u1))
11206 				break;
11207 		}
11208 		/* Link ourselves in */
11209 		mp->b_cont = mp2;
11210 		mp1->b_cont = mp;
11211 
11212 		/* Trim overlap with following mblk(s) first */
11213 		tcp_reass_elim_overlap(tcp, mp);
11214 
11215 		/* Trim overlap with preceding mblk */
11216 		tcp_reass_elim_overlap(tcp, mp1);
11217 
11218 	} while (start = end, mp = next_mp);
11219 	mp1 = tcp->tcp_reass_head;
11220 	/* Anything ready to go? */
11221 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11222 		return (NULL);
11223 	/* Eat what we can off the queue */
11224 	for (;;) {
11225 		mp = mp1->b_cont;
11226 		end = TCP_REASS_END(mp1);
11227 		TCP_REASS_SET_SEQ(mp1, 0);
11228 		TCP_REASS_SET_END(mp1, 0);
11229 		if (!mp) {
11230 			tcp->tcp_reass_tail = NULL;
11231 			break;
11232 		}
11233 		if (end != TCP_REASS_SEQ(mp)) {
11234 			mp1->b_cont = NULL;
11235 			break;
11236 		}
11237 		mp1 = mp;
11238 	}
11239 	mp1 = tcp->tcp_reass_head;
11240 	tcp->tcp_reass_head = mp;
11241 	return (mp1);
11242 }
11243 
11244 /* Eliminate any overlap that mp may have over later mblks */
11245 static void
11246 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11247 {
11248 	uint32_t	end;
11249 	mblk_t		*mp1;
11250 	uint32_t	u1;
11251 
11252 	end = TCP_REASS_END(mp);
11253 	while ((mp1 = mp->b_cont) != NULL) {
11254 		u1 = TCP_REASS_SEQ(mp1);
11255 		if (!SEQ_GT(end, u1))
11256 			break;
11257 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11258 			mp->b_wptr -= end - u1;
11259 			TCP_REASS_SET_END(mp, u1);
11260 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11261 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11262 			break;
11263 		}
11264 		mp->b_cont = mp1->b_cont;
11265 		TCP_REASS_SET_SEQ(mp1, 0);
11266 		TCP_REASS_SET_END(mp1, 0);
11267 		freeb(mp1);
11268 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11269 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11270 	}
11271 	if (!mp1)
11272 		tcp->tcp_reass_tail = mp;
11273 }
11274 
11275 /*
11276  * Send up all messages queued on tcp_rcv_list.
11277  */
11278 static uint_t
11279 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11280 {
11281 	mblk_t *mp;
11282 	uint_t ret = 0;
11283 	uint_t thwin;
11284 #ifdef DEBUG
11285 	uint_t cnt = 0;
11286 #endif
11287 	/* Can't drain on an eager connection */
11288 	if (tcp->tcp_listener != NULL)
11289 		return (ret);
11290 
11291 	/*
11292 	 * Handle two cases here: we are currently fused or we were
11293 	 * previously fused and have some urgent data to be delivered
11294 	 * upstream.  The latter happens because we either ran out of
11295 	 * memory or were detached and therefore sending the SIGURG was
11296 	 * deferred until this point.  In either case we pass control
11297 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11298 	 * some work.
11299 	 */
11300 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11301 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11302 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11303 		    &tcp->tcp_fused_sigurg_mp))
11304 			return (ret);
11305 	}
11306 
11307 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11308 		tcp->tcp_rcv_list = mp->b_next;
11309 		mp->b_next = NULL;
11310 #ifdef DEBUG
11311 		cnt += msgdsize(mp);
11312 #endif
11313 		/* Does this need SSL processing first? */
11314 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11315 			tcp_kssl_input(tcp, mp);
11316 			continue;
11317 		}
11318 		putnext(q, mp);
11319 	}
11320 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11321 	tcp->tcp_rcv_last_head = NULL;
11322 	tcp->tcp_rcv_last_tail = NULL;
11323 	tcp->tcp_rcv_cnt = 0;
11324 
11325 	/* Learn the latest rwnd information that we sent to the other side. */
11326 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11327 	    << tcp->tcp_rcv_ws;
11328 	/* This is peer's calculated send window (our receive window). */
11329 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11330 	/*
11331 	 * Increase the receive window to max.  But we need to do receiver
11332 	 * SWS avoidance.  This means that we need to check the increase of
11333 	 * of receive window is at least 1 MSS.
11334 	 */
11335 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11336 		/*
11337 		 * If the window that the other side knows is less than max
11338 		 * deferred acks segments, send an update immediately.
11339 		 */
11340 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11341 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11342 			ret = TH_ACK_NEEDED;
11343 		}
11344 		tcp->tcp_rwnd = q->q_hiwat;
11345 	}
11346 	/* No need for the push timer now. */
11347 	if (tcp->tcp_push_tid != 0) {
11348 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11349 		tcp->tcp_push_tid = 0;
11350 	}
11351 	return (ret);
11352 }
11353 
11354 /*
11355  * Queue data on tcp_rcv_list which is a b_next chain.
11356  * tcp_rcv_last_head/tail is the last element of this chain.
11357  * Each element of the chain is a b_cont chain.
11358  *
11359  * M_DATA messages are added to the current element.
11360  * Other messages are added as new (b_next) elements.
11361  */
11362 void
11363 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11364 {
11365 	ASSERT(seg_len == msgdsize(mp));
11366 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11367 
11368 	if (tcp->tcp_rcv_list == NULL) {
11369 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11370 		tcp->tcp_rcv_list = mp;
11371 		tcp->tcp_rcv_last_head = mp;
11372 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11373 		tcp->tcp_rcv_last_tail->b_cont = mp;
11374 	} else {
11375 		tcp->tcp_rcv_last_head->b_next = mp;
11376 		tcp->tcp_rcv_last_head = mp;
11377 	}
11378 
11379 	while (mp->b_cont)
11380 		mp = mp->b_cont;
11381 
11382 	tcp->tcp_rcv_last_tail = mp;
11383 	tcp->tcp_rcv_cnt += seg_len;
11384 	tcp->tcp_rwnd -= seg_len;
11385 }
11386 
11387 /*
11388  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11389  *
11390  * This is the default entry function into TCP on the read side. TCP is
11391  * always entered via squeue i.e. using squeue's for mutual exclusion.
11392  * When classifier does a lookup to find the tcp, it also puts a reference
11393  * on the conn structure associated so the tcp is guaranteed to exist
11394  * when we come here. We still need to check the state because it might
11395  * as well has been closed. The squeue processing function i.e. squeue_enter,
11396  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11397  * CONN_DEC_REF.
11398  *
11399  * Apart from the default entry point, IP also sends packets directly to
11400  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11401  * connections.
11402  */
11403 void
11404 tcp_input(void *arg, mblk_t *mp, void *arg2)
11405 {
11406 	conn_t	*connp = (conn_t *)arg;
11407 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11408 
11409 	/* arg2 is the sqp */
11410 	ASSERT(arg2 != NULL);
11411 	ASSERT(mp != NULL);
11412 
11413 	/*
11414 	 * Don't accept any input on a closed tcp as this TCP logically does
11415 	 * not exist on the system. Don't proceed further with this TCP.
11416 	 * For eg. this packet could trigger another close of this tcp
11417 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11418 	 * tcp_clean_death / tcp_closei_local must be called at most once
11419 	 * on a TCP. In this case we need to refeed the packet into the
11420 	 * classifier and figure out where the packet should go. Need to
11421 	 * preserve the recv_ill somehow. Until we figure that out, for
11422 	 * now just drop the packet if we can't classify the packet.
11423 	 */
11424 	if (tcp->tcp_state == TCPS_CLOSED ||
11425 	    tcp->tcp_state == TCPS_BOUND) {
11426 		conn_t	*new_connp;
11427 
11428 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11429 		if (new_connp != NULL) {
11430 			tcp_reinput(new_connp, mp, arg2);
11431 			return;
11432 		}
11433 		/* We failed to classify. For now just drop the packet */
11434 		freemsg(mp);
11435 		return;
11436 	}
11437 
11438 	if (DB_TYPE(mp) == M_DATA)
11439 		tcp_rput_data(connp, mp, arg2);
11440 	else
11441 		tcp_rput_common(tcp, mp);
11442 }
11443 
11444 /*
11445  * The read side put procedure.
11446  * The packets passed up by ip are assume to be aligned according to
11447  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11448  */
11449 static void
11450 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11451 {
11452 	/*
11453 	 * tcp_rput_data() does not expect M_CTL except for the case
11454 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11455 	 * type. Need to make sure that any other M_CTLs don't make
11456 	 * it to tcp_rput_data since it is not expecting any and doesn't
11457 	 * check for it.
11458 	 */
11459 	if (DB_TYPE(mp) == M_CTL) {
11460 		switch (*(uint32_t *)(mp->b_rptr)) {
11461 		case TCP_IOC_ABORT_CONN:
11462 			/*
11463 			 * Handle connection abort request.
11464 			 */
11465 			tcp_ioctl_abort_handler(tcp, mp);
11466 			return;
11467 		case IPSEC_IN:
11468 			/*
11469 			 * Only secure icmp arrive in TCP and they
11470 			 * don't go through data path.
11471 			 */
11472 			tcp_icmp_error(tcp, mp);
11473 			return;
11474 		case IN_PKTINFO:
11475 			/*
11476 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11477 			 * sockets that are receiving IPv4 traffic. tcp
11478 			 */
11479 			ASSERT(tcp->tcp_family == AF_INET6);
11480 			ASSERT(tcp->tcp_ipv6_recvancillary &
11481 			    TCP_IPV6_RECVPKTINFO);
11482 			tcp_rput_data(tcp->tcp_connp, mp,
11483 			    tcp->tcp_connp->conn_sqp);
11484 			return;
11485 		case MDT_IOC_INFO_UPDATE:
11486 			/*
11487 			 * Handle Multidata information update; the
11488 			 * following routine will free the message.
11489 			 */
11490 			if (tcp->tcp_connp->conn_mdt_ok) {
11491 				tcp_mdt_update(tcp,
11492 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11493 				    B_FALSE);
11494 			}
11495 			freemsg(mp);
11496 			return;
11497 		default:
11498 			break;
11499 		}
11500 	}
11501 
11502 	/* No point processing the message if tcp is already closed */
11503 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11504 		freemsg(mp);
11505 		return;
11506 	}
11507 
11508 	tcp_rput_other(tcp, mp);
11509 }
11510 
11511 
11512 /* The minimum of smoothed mean deviation in RTO calculation. */
11513 #define	TCP_SD_MIN	400
11514 
11515 /*
11516  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11517  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11518  * are the same as those in Appendix A.2 of that paper.
11519  *
11520  * m = new measurement
11521  * sa = smoothed RTT average (8 * average estimates).
11522  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11523  */
11524 static void
11525 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11526 {
11527 	long m = TICK_TO_MSEC(rtt);
11528 	clock_t sa = tcp->tcp_rtt_sa;
11529 	clock_t sv = tcp->tcp_rtt_sd;
11530 	clock_t rto;
11531 
11532 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11533 	tcp->tcp_rtt_update++;
11534 
11535 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11536 	if (sa != 0) {
11537 		/*
11538 		 * Update average estimator:
11539 		 *	new rtt = 7/8 old rtt + 1/8 Error
11540 		 */
11541 
11542 		/* m is now Error in estimate. */
11543 		m -= sa >> 3;
11544 		if ((sa += m) <= 0) {
11545 			/*
11546 			 * Don't allow the smoothed average to be negative.
11547 			 * We use 0 to denote reinitialization of the
11548 			 * variables.
11549 			 */
11550 			sa = 1;
11551 		}
11552 
11553 		/*
11554 		 * Update deviation estimator:
11555 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11556 		 */
11557 		if (m < 0)
11558 			m = -m;
11559 		m -= sv >> 2;
11560 		sv += m;
11561 	} else {
11562 		/*
11563 		 * This follows BSD's implementation.  So the reinitialized
11564 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11565 		 * link is bandwidth dominated, doubling the window size
11566 		 * during slow start means doubling the RTT.  We want to be
11567 		 * more conservative when we reinitialize our estimates.  3
11568 		 * is just a convenient number.
11569 		 */
11570 		sa = m << 3;
11571 		sv = m << 1;
11572 	}
11573 	if (sv < TCP_SD_MIN) {
11574 		/*
11575 		 * We do not know that if sa captures the delay ACK
11576 		 * effect as in a long train of segments, a receiver
11577 		 * does not delay its ACKs.  So set the minimum of sv
11578 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11579 		 * of BSD DATO.  That means the minimum of mean
11580 		 * deviation is 100 ms.
11581 		 *
11582 		 */
11583 		sv = TCP_SD_MIN;
11584 	}
11585 	tcp->tcp_rtt_sa = sa;
11586 	tcp->tcp_rtt_sd = sv;
11587 	/*
11588 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11589 	 *
11590 	 * Add tcp_rexmit_interval extra in case of extreme environment
11591 	 * where the algorithm fails to work.  The default value of
11592 	 * tcp_rexmit_interval_extra should be 0.
11593 	 *
11594 	 * As we use a finer grained clock than BSD and update
11595 	 * RTO for every ACKs, add in another .25 of RTT to the
11596 	 * deviation of RTO to accomodate burstiness of 1/4 of
11597 	 * window size.
11598 	 */
11599 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11600 
11601 	if (rto > tcp_rexmit_interval_max) {
11602 		tcp->tcp_rto = tcp_rexmit_interval_max;
11603 	} else if (rto < tcp_rexmit_interval_min) {
11604 		tcp->tcp_rto = tcp_rexmit_interval_min;
11605 	} else {
11606 		tcp->tcp_rto = rto;
11607 	}
11608 
11609 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11610 	tcp->tcp_timer_backoff = 0;
11611 }
11612 
11613 /*
11614  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11615  * send queue which starts at the given seq. no.
11616  *
11617  * Parameters:
11618  *	tcp_t *tcp: the tcp instance pointer.
11619  *	uint32_t seq: the starting seq. no of the requested segment.
11620  *	int32_t *off: after the execution, *off will be the offset to
11621  *		the returned mblk which points to the requested seq no.
11622  *		It is the caller's responsibility to send in a non-null off.
11623  *
11624  * Return:
11625  *	A mblk_t pointer pointing to the requested segment in send queue.
11626  */
11627 static mblk_t *
11628 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11629 {
11630 	int32_t	cnt;
11631 	mblk_t	*mp;
11632 
11633 	/* Defensive coding.  Make sure we don't send incorrect data. */
11634 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11635 		return (NULL);
11636 
11637 	cnt = seq - tcp->tcp_suna;
11638 	mp = tcp->tcp_xmit_head;
11639 	while (cnt > 0 && mp != NULL) {
11640 		cnt -= mp->b_wptr - mp->b_rptr;
11641 		if (cnt < 0) {
11642 			cnt += mp->b_wptr - mp->b_rptr;
11643 			break;
11644 		}
11645 		mp = mp->b_cont;
11646 	}
11647 	ASSERT(mp != NULL);
11648 	*off = cnt;
11649 	return (mp);
11650 }
11651 
11652 /*
11653  * This function handles all retransmissions if SACK is enabled for this
11654  * connection.  First it calculates how many segments can be retransmitted
11655  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11656  * segments.  A segment is eligible if sack_cnt for that segment is greater
11657  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11658  * all eligible segments, it checks to see if TCP can send some new segments
11659  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11660  *
11661  * Parameters:
11662  *	tcp_t *tcp: the tcp structure of the connection.
11663  *	uint_t *flags: in return, appropriate value will be set for
11664  *	tcp_rput_data().
11665  */
11666 static void
11667 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11668 {
11669 	notsack_blk_t	*notsack_blk;
11670 	int32_t		usable_swnd;
11671 	int32_t		mss;
11672 	uint32_t	seg_len;
11673 	mblk_t		*xmit_mp;
11674 
11675 	ASSERT(tcp->tcp_sack_info != NULL);
11676 	ASSERT(tcp->tcp_notsack_list != NULL);
11677 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11678 
11679 	/* Defensive coding in case there is a bug... */
11680 	if (tcp->tcp_notsack_list == NULL) {
11681 		return;
11682 	}
11683 	notsack_blk = tcp->tcp_notsack_list;
11684 	mss = tcp->tcp_mss;
11685 
11686 	/*
11687 	 * Limit the num of outstanding data in the network to be
11688 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11689 	 */
11690 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11691 
11692 	/* At least retransmit 1 MSS of data. */
11693 	if (usable_swnd <= 0) {
11694 		usable_swnd = mss;
11695 	}
11696 
11697 	/* Make sure no new RTT samples will be taken. */
11698 	tcp->tcp_csuna = tcp->tcp_snxt;
11699 
11700 	notsack_blk = tcp->tcp_notsack_list;
11701 	while (usable_swnd > 0) {
11702 		mblk_t		*snxt_mp, *tmp_mp;
11703 		tcp_seq		begin = tcp->tcp_sack_snxt;
11704 		tcp_seq		end;
11705 		int32_t		off;
11706 
11707 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11708 			if (SEQ_GT(notsack_blk->end, begin) &&
11709 			    (notsack_blk->sack_cnt >=
11710 			    tcp_dupack_fast_retransmit)) {
11711 				end = notsack_blk->end;
11712 				if (SEQ_LT(begin, notsack_blk->begin)) {
11713 					begin = notsack_blk->begin;
11714 				}
11715 				break;
11716 			}
11717 		}
11718 		/*
11719 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11720 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11721 		 * set to tcp_cwnd_ssthresh.
11722 		 */
11723 		if (notsack_blk == NULL) {
11724 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11725 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11726 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11727 				ASSERT(tcp->tcp_cwnd > 0);
11728 				return;
11729 			} else {
11730 				usable_swnd = usable_swnd / mss;
11731 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11732 				    MAX(usable_swnd * mss, mss);
11733 				*flags |= TH_XMIT_NEEDED;
11734 				return;
11735 			}
11736 		}
11737 
11738 		/*
11739 		 * Note that we may send more than usable_swnd allows here
11740 		 * because of round off, but no more than 1 MSS of data.
11741 		 */
11742 		seg_len = end - begin;
11743 		if (seg_len > mss)
11744 			seg_len = mss;
11745 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11746 		ASSERT(snxt_mp != NULL);
11747 		/* This should not happen.  Defensive coding again... */
11748 		if (snxt_mp == NULL) {
11749 			return;
11750 		}
11751 
11752 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11753 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11754 		if (xmit_mp == NULL)
11755 			return;
11756 
11757 		usable_swnd -= seg_len;
11758 		tcp->tcp_pipe += seg_len;
11759 		tcp->tcp_sack_snxt = begin + seg_len;
11760 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
11761 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11762 
11763 		/*
11764 		 * Update the send timestamp to avoid false retransmission.
11765 		 */
11766 		snxt_mp->b_prev = (mblk_t *)lbolt;
11767 
11768 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
11769 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
11770 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
11771 		/*
11772 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11773 		 * This happens when new data sent during fast recovery is
11774 		 * also lost.  If TCP retransmits those new data, it needs
11775 		 * to extend SACK recover phase to avoid starting another
11776 		 * fast retransmit/recovery unnecessarily.
11777 		 */
11778 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11779 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11780 		}
11781 	}
11782 }
11783 
11784 /*
11785  * This function handles policy checking at TCP level for non-hard_bound/
11786  * detached connections.
11787  */
11788 static boolean_t
11789 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11790     boolean_t secure, boolean_t mctl_present)
11791 {
11792 	ipsec_latch_t *ipl = NULL;
11793 	ipsec_action_t *act = NULL;
11794 	mblk_t *data_mp;
11795 	ipsec_in_t *ii;
11796 	const char *reason;
11797 	kstat_named_t *counter;
11798 
11799 	ASSERT(mctl_present || !secure);
11800 
11801 	ASSERT((ipha == NULL && ip6h != NULL) ||
11802 	    (ip6h == NULL && ipha != NULL));
11803 
11804 	/*
11805 	 * We don't necessarily have an ipsec_in_act action to verify
11806 	 * policy because of assymetrical policy where we have only
11807 	 * outbound policy and no inbound policy (possible with global
11808 	 * policy).
11809 	 */
11810 	if (!secure) {
11811 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11812 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11813 			return (B_TRUE);
11814 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
11815 		    "tcp_check_policy", ipha, ip6h, secure);
11816 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11817 		    &ipdrops_tcp_clear, &tcp_dropper);
11818 		return (B_FALSE);
11819 	}
11820 
11821 	/*
11822 	 * We have a secure packet.
11823 	 */
11824 	if (act == NULL) {
11825 		ipsec_log_policy_failure(tcp->tcp_wq,
11826 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
11827 		    secure);
11828 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11829 		    &ipdrops_tcp_secure, &tcp_dropper);
11830 		return (B_FALSE);
11831 	}
11832 
11833 	/*
11834 	 * XXX This whole routine is currently incorrect.  ipl should
11835 	 * be set to the latch pointer, but is currently not set, so
11836 	 * we initialize it to NULL to avoid picking up random garbage.
11837 	 */
11838 	if (ipl == NULL)
11839 		return (B_TRUE);
11840 
11841 	data_mp = first_mp->b_cont;
11842 
11843 	ii = (ipsec_in_t *)first_mp->b_rptr;
11844 
11845 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11846 	    &counter)) {
11847 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
11848 		return (B_TRUE);
11849 	}
11850 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11851 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11852 	    reason);
11853 	BUMP_MIB(&ip_mib, ipsecInFailed);
11854 
11855 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
11856 	return (B_FALSE);
11857 }
11858 
11859 /*
11860  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11861  * retransmission after a timeout.
11862  *
11863  * To limit the number of duplicate segments, we limit the number of segment
11864  * to be sent in one time to tcp_snd_burst, the burst variable.
11865  */
11866 static void
11867 tcp_ss_rexmit(tcp_t *tcp)
11868 {
11869 	uint32_t	snxt;
11870 	uint32_t	smax;
11871 	int32_t		win;
11872 	int32_t		mss;
11873 	int32_t		off;
11874 	int32_t		burst = tcp->tcp_snd_burst;
11875 	mblk_t		*snxt_mp;
11876 
11877 	/*
11878 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11879 	 * all unack'ed segments.
11880 	 */
11881 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11882 		smax = tcp->tcp_rexmit_max;
11883 		snxt = tcp->tcp_rexmit_nxt;
11884 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11885 			snxt = tcp->tcp_suna;
11886 		}
11887 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11888 		win -= snxt - tcp->tcp_suna;
11889 		mss = tcp->tcp_mss;
11890 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11891 
11892 		while (SEQ_LT(snxt, smax) && (win > 0) &&
11893 		    (burst > 0) && (snxt_mp != NULL)) {
11894 			mblk_t	*xmit_mp;
11895 			mblk_t	*old_snxt_mp = snxt_mp;
11896 			uint32_t cnt = mss;
11897 
11898 			if (win < cnt) {
11899 				cnt = win;
11900 			}
11901 			if (SEQ_GT(snxt + cnt, smax)) {
11902 				cnt = smax - snxt;
11903 			}
11904 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
11905 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
11906 			if (xmit_mp == NULL)
11907 				return;
11908 
11909 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11910 
11911 			snxt += cnt;
11912 			win -= cnt;
11913 			/*
11914 			 * Update the send timestamp to avoid false
11915 			 * retransmission.
11916 			 */
11917 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
11918 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
11919 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
11920 
11921 			tcp->tcp_rexmit_nxt = snxt;
11922 			burst--;
11923 		}
11924 		/*
11925 		 * If we have transmitted all we have at the time
11926 		 * we started the retranmission, we can leave
11927 		 * the rest of the job to tcp_wput_data().  But we
11928 		 * need to check the send window first.  If the
11929 		 * win is not 0, go on with tcp_wput_data().
11930 		 */
11931 		if (SEQ_LT(snxt, smax) || win == 0) {
11932 			return;
11933 		}
11934 	}
11935 	/* Only call tcp_wput_data() if there is data to be sent. */
11936 	if (tcp->tcp_unsent) {
11937 		tcp_wput_data(tcp, NULL, B_FALSE);
11938 	}
11939 }
11940 
11941 /*
11942  * Process all TCP option in SYN segment.  Note that this function should
11943  * be called after tcp_adapt_ire() is called so that the necessary info
11944  * from IRE is already set in the tcp structure.
11945  *
11946  * This function sets up the correct tcp_mss value according to the
11947  * MSS option value and our header size.  It also sets up the window scale
11948  * and timestamp values, and initialize SACK info blocks.  But it does not
11949  * change receive window size after setting the tcp_mss value.  The caller
11950  * should do the appropriate change.
11951  */
11952 void
11953 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
11954 {
11955 	int options;
11956 	tcp_opt_t tcpopt;
11957 	uint32_t mss_max;
11958 	char *tmp_tcph;
11959 
11960 	tcpopt.tcp = NULL;
11961 	options = tcp_parse_options(tcph, &tcpopt);
11962 
11963 	/*
11964 	 * Process MSS option.  Note that MSS option value does not account
11965 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
11966 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
11967 	 * IPv6.
11968 	 */
11969 	if (!(options & TCP_OPT_MSS_PRESENT)) {
11970 		if (tcp->tcp_ipversion == IPV4_VERSION)
11971 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
11972 		else
11973 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
11974 	} else {
11975 		if (tcp->tcp_ipversion == IPV4_VERSION)
11976 			mss_max = tcp_mss_max_ipv4;
11977 		else
11978 			mss_max = tcp_mss_max_ipv6;
11979 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
11980 			tcpopt.tcp_opt_mss = tcp_mss_min;
11981 		else if (tcpopt.tcp_opt_mss > mss_max)
11982 			tcpopt.tcp_opt_mss = mss_max;
11983 	}
11984 
11985 	/* Process Window Scale option. */
11986 	if (options & TCP_OPT_WSCALE_PRESENT) {
11987 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
11988 		tcp->tcp_snd_ws_ok = B_TRUE;
11989 	} else {
11990 		tcp->tcp_snd_ws = B_FALSE;
11991 		tcp->tcp_snd_ws_ok = B_FALSE;
11992 		tcp->tcp_rcv_ws = B_FALSE;
11993 	}
11994 
11995 	/* Process Timestamp option. */
11996 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
11997 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
11998 		tmp_tcph = (char *)tcp->tcp_tcph;
11999 
12000 		tcp->tcp_snd_ts_ok = B_TRUE;
12001 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12002 		tcp->tcp_last_rcv_lbolt = lbolt64;
12003 		ASSERT(OK_32PTR(tmp_tcph));
12004 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12005 
12006 		/* Fill in our template header with basic timestamp option. */
12007 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12008 		tmp_tcph[0] = TCPOPT_NOP;
12009 		tmp_tcph[1] = TCPOPT_NOP;
12010 		tmp_tcph[2] = TCPOPT_TSTAMP;
12011 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12012 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12013 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12014 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12015 	} else {
12016 		tcp->tcp_snd_ts_ok = B_FALSE;
12017 	}
12018 
12019 	/*
12020 	 * Process SACK options.  If SACK is enabled for this connection,
12021 	 * then allocate the SACK info structure.  Note the following ways
12022 	 * when tcp_snd_sack_ok is set to true.
12023 	 *
12024 	 * For active connection: in tcp_adapt_ire() called in
12025 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12026 	 * is checked.
12027 	 *
12028 	 * For passive connection: in tcp_adapt_ire() called in
12029 	 * tcp_accept_comm().
12030 	 *
12031 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12032 	 * That check makes sure that if we did not send a SACK OK option,
12033 	 * we will not enable SACK for this connection even though the other
12034 	 * side sends us SACK OK option.  For active connection, the SACK
12035 	 * info structure has already been allocated.  So we need to free
12036 	 * it if SACK is disabled.
12037 	 */
12038 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12039 	    (tcp->tcp_snd_sack_ok ||
12040 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12041 		/* This should be true only in the passive case. */
12042 		if (tcp->tcp_sack_info == NULL) {
12043 			ASSERT(TCP_IS_DETACHED(tcp));
12044 			tcp->tcp_sack_info =
12045 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12046 		}
12047 		if (tcp->tcp_sack_info == NULL) {
12048 			tcp->tcp_snd_sack_ok = B_FALSE;
12049 		} else {
12050 			tcp->tcp_snd_sack_ok = B_TRUE;
12051 			if (tcp->tcp_snd_ts_ok) {
12052 				tcp->tcp_max_sack_blk = 3;
12053 			} else {
12054 				tcp->tcp_max_sack_blk = 4;
12055 			}
12056 		}
12057 	} else {
12058 		/*
12059 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12060 		 * no SACK info will be used for this
12061 		 * connection.  This assumes that SACK usage
12062 		 * permission is negotiated.  This may need
12063 		 * to be changed once this is clarified.
12064 		 */
12065 		if (tcp->tcp_sack_info != NULL) {
12066 			ASSERT(tcp->tcp_notsack_list == NULL);
12067 			kmem_cache_free(tcp_sack_info_cache,
12068 			    tcp->tcp_sack_info);
12069 			tcp->tcp_sack_info = NULL;
12070 		}
12071 		tcp->tcp_snd_sack_ok = B_FALSE;
12072 	}
12073 
12074 	/*
12075 	 * Now we know the exact TCP/IP header length, subtract
12076 	 * that from tcp_mss to get our side's MSS.
12077 	 */
12078 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12079 	/*
12080 	 * Here we assume that the other side's header size will be equal to
12081 	 * our header size.  We calculate the real MSS accordingly.  Need to
12082 	 * take into additional stuffs IPsec puts in.
12083 	 *
12084 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12085 	 */
12086 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12087 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12088 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12089 
12090 	/*
12091 	 * Set MSS to the smaller one of both ends of the connection.
12092 	 * We should not have called tcp_mss_set() before, but our
12093 	 * side of the MSS should have been set to a proper value
12094 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12095 	 * STREAM head parameters properly.
12096 	 *
12097 	 * If we have a larger-than-16-bit window but the other side
12098 	 * didn't want to do window scale, tcp_rwnd_set() will take
12099 	 * care of that.
12100 	 */
12101 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12102 }
12103 
12104 /*
12105  * Sends the T_CONN_IND to the listener. The caller calls this
12106  * functions via squeue to get inside the listener's perimeter
12107  * once the 3 way hand shake is done a T_CONN_IND needs to be
12108  * sent. As an optimization, the caller can call this directly
12109  * if listener's perimeter is same as eager's.
12110  */
12111 /* ARGSUSED */
12112 void
12113 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12114 {
12115 	conn_t			*lconnp = (conn_t *)arg;
12116 	tcp_t			*listener = lconnp->conn_tcp;
12117 	tcp_t			*tcp;
12118 	struct T_conn_ind	*conn_ind;
12119 	ipaddr_t 		*addr_cache;
12120 	boolean_t		need_send_conn_ind = B_FALSE;
12121 
12122 	/* retrieve the eager */
12123 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12124 	ASSERT(conn_ind->OPT_offset != 0 &&
12125 	    conn_ind->OPT_length == sizeof (intptr_t));
12126 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12127 		conn_ind->OPT_length);
12128 
12129 	/*
12130 	 * TLI/XTI applications will get confused by
12131 	 * sending eager as an option since it violates
12132 	 * the option semantics. So remove the eager as
12133 	 * option since TLI/XTI app doesn't need it anyway.
12134 	 */
12135 	if (!TCP_IS_SOCKET(listener)) {
12136 		conn_ind->OPT_length = 0;
12137 		conn_ind->OPT_offset = 0;
12138 	}
12139 	if (listener->tcp_state == TCPS_CLOSED ||
12140 	    TCP_IS_DETACHED(listener)) {
12141 		/*
12142 		 * If listener has closed, it would have caused a
12143 		 * a cleanup/blowoff to happen for the eager. We
12144 		 * just need to return.
12145 		 */
12146 		freemsg(mp);
12147 		return;
12148 	}
12149 
12150 
12151 	/*
12152 	 * if the conn_req_q is full defer passing up the
12153 	 * T_CONN_IND until space is availabe after t_accept()
12154 	 * processing
12155 	 */
12156 	mutex_enter(&listener->tcp_eager_lock);
12157 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12158 		tcp_t *tail;
12159 
12160 		/*
12161 		 * The eager already has an extra ref put in tcp_rput_data
12162 		 * so that it stays till accept comes back even though it
12163 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12164 		 */
12165 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12166 		listener->tcp_conn_req_cnt_q0--;
12167 		listener->tcp_conn_req_cnt_q++;
12168 
12169 		/* Move from SYN_RCVD to ESTABLISHED list  */
12170 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12171 		    tcp->tcp_eager_prev_q0;
12172 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12173 		    tcp->tcp_eager_next_q0;
12174 		tcp->tcp_eager_prev_q0 = NULL;
12175 		tcp->tcp_eager_next_q0 = NULL;
12176 
12177 		/*
12178 		 * Insert at end of the queue because sockfs
12179 		 * sends down T_CONN_RES in chronological
12180 		 * order. Leaving the older conn indications
12181 		 * at front of the queue helps reducing search
12182 		 * time.
12183 		 */
12184 		tail = listener->tcp_eager_last_q;
12185 		if (tail != NULL)
12186 			tail->tcp_eager_next_q = tcp;
12187 		else
12188 			listener->tcp_eager_next_q = tcp;
12189 		listener->tcp_eager_last_q = tcp;
12190 		tcp->tcp_eager_next_q = NULL;
12191 		/*
12192 		 * Delay sending up the T_conn_ind until we are
12193 		 * done with the eager. Once we have have sent up
12194 		 * the T_conn_ind, the accept can potentially complete
12195 		 * any time and release the refhold we have on the eager.
12196 		 */
12197 		need_send_conn_ind = B_TRUE;
12198 	} else {
12199 		/*
12200 		 * Defer connection on q0 and set deferred
12201 		 * connection bit true
12202 		 */
12203 		tcp->tcp_conn_def_q0 = B_TRUE;
12204 
12205 		/* take tcp out of q0 ... */
12206 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12207 		    tcp->tcp_eager_next_q0;
12208 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12209 		    tcp->tcp_eager_prev_q0;
12210 
12211 		/* ... and place it at the end of q0 */
12212 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12213 		tcp->tcp_eager_next_q0 = listener;
12214 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12215 		listener->tcp_eager_prev_q0 = tcp;
12216 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12217 	}
12218 
12219 	/* we have timed out before */
12220 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12221 		tcp->tcp_syn_rcvd_timeout = 0;
12222 		listener->tcp_syn_rcvd_timeout--;
12223 		if (listener->tcp_syn_defense &&
12224 		    listener->tcp_syn_rcvd_timeout <=
12225 		    (tcp_conn_req_max_q0 >> 5) &&
12226 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12227 			listener->tcp_last_rcv_lbolt)) {
12228 			/*
12229 			 * Turn off the defense mode if we
12230 			 * believe the SYN attack is over.
12231 			 */
12232 			listener->tcp_syn_defense = B_FALSE;
12233 			if (listener->tcp_ip_addr_cache) {
12234 				kmem_free((void *)listener->tcp_ip_addr_cache,
12235 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12236 				listener->tcp_ip_addr_cache = NULL;
12237 			}
12238 		}
12239 	}
12240 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12241 	if (addr_cache != NULL) {
12242 		/*
12243 		 * We have finished a 3-way handshake with this
12244 		 * remote host. This proves the IP addr is good.
12245 		 * Cache it!
12246 		 */
12247 		addr_cache[IP_ADDR_CACHE_HASH(
12248 			tcp->tcp_remote)] = tcp->tcp_remote;
12249 	}
12250 	mutex_exit(&listener->tcp_eager_lock);
12251 	if (need_send_conn_ind)
12252 		putnext(listener->tcp_rq, mp);
12253 }
12254 
12255 mblk_t *
12256 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12257     uint_t *ifindexp, ip6_pkt_t *ippp)
12258 {
12259 	in_pktinfo_t	*pinfo;
12260 	ip6_t		*ip6h;
12261 	uchar_t		*rptr;
12262 	mblk_t		*first_mp = mp;
12263 	boolean_t	mctl_present = B_FALSE;
12264 	uint_t 		ifindex = 0;
12265 	ip6_pkt_t	ipp;
12266 	uint_t		ipvers;
12267 	uint_t		ip_hdr_len;
12268 
12269 	rptr = mp->b_rptr;
12270 	ASSERT(OK_32PTR(rptr));
12271 	ASSERT(tcp != NULL);
12272 	ipp.ipp_fields = 0;
12273 
12274 	switch DB_TYPE(mp) {
12275 	case M_CTL:
12276 		mp = mp->b_cont;
12277 		if (mp == NULL) {
12278 			freemsg(first_mp);
12279 			return (NULL);
12280 		}
12281 		if (DB_TYPE(mp) != M_DATA) {
12282 			freemsg(first_mp);
12283 			return (NULL);
12284 		}
12285 		mctl_present = B_TRUE;
12286 		break;
12287 	case M_DATA:
12288 		break;
12289 	default:
12290 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12291 		freemsg(mp);
12292 		return (NULL);
12293 	}
12294 	ipvers = IPH_HDR_VERSION(rptr);
12295 	if (ipvers == IPV4_VERSION) {
12296 		if (tcp == NULL) {
12297 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12298 			goto done;
12299 		}
12300 
12301 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12302 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12303 
12304 		/*
12305 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12306 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12307 		 */
12308 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12309 		    mctl_present) {
12310 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12311 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12312 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12313 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12314 				ipp.ipp_fields |= IPPF_IFINDEX;
12315 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12316 				ifindex = pinfo->in_pkt_ifindex;
12317 			}
12318 			freeb(first_mp);
12319 			mctl_present = B_FALSE;
12320 		}
12321 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12322 	} else {
12323 		ip6h = (ip6_t *)rptr;
12324 
12325 		ASSERT(ipvers == IPV6_VERSION);
12326 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12327 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12328 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12329 
12330 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12331 			uint8_t	nexthdrp;
12332 
12333 			/* Look for ifindex information */
12334 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12335 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12336 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12337 					BUMP_MIB(&ip_mib, tcpInErrs);
12338 					freemsg(first_mp);
12339 					return (NULL);
12340 				}
12341 
12342 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12343 					ASSERT(ip6i->ip6i_ifindex != 0);
12344 					ipp.ipp_fields |= IPPF_IFINDEX;
12345 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12346 					ifindex = ip6i->ip6i_ifindex;
12347 				}
12348 				rptr = (uchar_t *)&ip6i[1];
12349 				mp->b_rptr = rptr;
12350 				if (rptr == mp->b_wptr) {
12351 					mblk_t *mp1;
12352 					mp1 = mp->b_cont;
12353 					freeb(mp);
12354 					mp = mp1;
12355 					rptr = mp->b_rptr;
12356 				}
12357 				if (MBLKL(mp) < IPV6_HDR_LEN +
12358 				    sizeof (tcph_t)) {
12359 					BUMP_MIB(&ip_mib, tcpInErrs);
12360 					freemsg(first_mp);
12361 					return (NULL);
12362 				}
12363 				ip6h = (ip6_t *)rptr;
12364 			}
12365 
12366 			/*
12367 			 * Find any potentially interesting extension headers
12368 			 * as well as the length of the IPv6 + extension
12369 			 * headers.
12370 			 */
12371 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12372 			/* Verify if this is a TCP packet */
12373 			if (nexthdrp != IPPROTO_TCP) {
12374 				BUMP_MIB(&ip_mib, tcpInErrs);
12375 				freemsg(first_mp);
12376 				return (NULL);
12377 			}
12378 		} else {
12379 			ip_hdr_len = IPV6_HDR_LEN;
12380 		}
12381 	}
12382 
12383 done:
12384 	if (ipversp != NULL)
12385 		*ipversp = ipvers;
12386 	if (ip_hdr_lenp != NULL)
12387 		*ip_hdr_lenp = ip_hdr_len;
12388 	if (ippp != NULL)
12389 		*ippp = ipp;
12390 	if (ifindexp != NULL)
12391 		*ifindexp = ifindex;
12392 	if (mctl_present) {
12393 		freeb(first_mp);
12394 	}
12395 	return (mp);
12396 }
12397 
12398 /*
12399  * Handle M_DATA messages from IP. Its called directly from IP via
12400  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12401  * in this path.
12402  *
12403  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12404  * v4 and v6), we are called through tcp_input() and a M_CTL can
12405  * be present for options but tcp_find_pktinfo() deals with it. We
12406  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12407  *
12408  * The first argument is always the connp/tcp to which the mp belongs.
12409  * There are no exceptions to this rule. The caller has already put
12410  * a reference on this connp/tcp and once tcp_rput_data() returns,
12411  * the squeue will do the refrele.
12412  *
12413  * The TH_SYN for the listener directly go to tcp_conn_request via
12414  * squeue.
12415  *
12416  * sqp: NULL = recursive, sqp != NULL means called from squeue
12417  */
12418 void
12419 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12420 {
12421 	int32_t		bytes_acked;
12422 	int32_t		gap;
12423 	mblk_t		*mp1;
12424 	uint_t		flags;
12425 	uint32_t	new_swnd = 0;
12426 	uchar_t		*iphdr;
12427 	uchar_t		*rptr;
12428 	int32_t		rgap;
12429 	uint32_t	seg_ack;
12430 	int		seg_len;
12431 	uint_t		ip_hdr_len;
12432 	uint32_t	seg_seq;
12433 	tcph_t		*tcph;
12434 	int		urp;
12435 	tcp_opt_t	tcpopt;
12436 	uint_t		ipvers;
12437 	ip6_pkt_t	ipp;
12438 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12439 	uint32_t	cwnd;
12440 	uint32_t	add;
12441 	int		npkt;
12442 	int		mss;
12443 	conn_t		*connp = (conn_t *)arg;
12444 	squeue_t	*sqp = (squeue_t *)arg2;
12445 	tcp_t		*tcp = connp->conn_tcp;
12446 
12447 	/*
12448 	 * RST from fused tcp loopback peer should trigger an unfuse.
12449 	 */
12450 	if (tcp->tcp_fused) {
12451 		TCP_STAT(tcp_fusion_aborted);
12452 		tcp_unfuse(tcp);
12453 	}
12454 
12455 	iphdr = mp->b_rptr;
12456 	rptr = mp->b_rptr;
12457 	ASSERT(OK_32PTR(rptr));
12458 
12459 	/*
12460 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12461 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12462 	 * necessary information.
12463 	 */
12464 	if (IPCL_IS_TCP4(connp)) {
12465 		ipvers = IPV4_VERSION;
12466 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12467 	} else {
12468 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12469 		    NULL, &ipp);
12470 		if (mp == NULL) {
12471 			TCP_STAT(tcp_rput_v6_error);
12472 			return;
12473 		}
12474 		iphdr = mp->b_rptr;
12475 		rptr = mp->b_rptr;
12476 	}
12477 	ASSERT(DB_TYPE(mp) == M_DATA);
12478 
12479 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12480 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12481 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12482 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12483 	seg_len = (int)(mp->b_wptr - rptr) -
12484 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12485 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12486 		do {
12487 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12488 			    (uintptr_t)INT_MAX);
12489 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12490 		} while ((mp1 = mp1->b_cont) != NULL &&
12491 		    mp1->b_datap->db_type == M_DATA);
12492 	}
12493 
12494 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12495 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12496 		    seg_len, tcph);
12497 		return;
12498 	}
12499 
12500 	if (sqp != NULL) {
12501 		/*
12502 		 * This is the correct place to update tcp_last_recv_time. Note
12503 		 * that it is also updated for tcp structure that belongs to
12504 		 * global and listener queues which do not really need updating.
12505 		 * But that should not cause any harm.  And it is updated for
12506 		 * all kinds of incoming segments, not only for data segments.
12507 		 */
12508 		tcp->tcp_last_recv_time = lbolt;
12509 	}
12510 
12511 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12512 
12513 	BUMP_LOCAL(tcp->tcp_ibsegs);
12514 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12515 
12516 	if ((flags & TH_URG) && sqp != NULL) {
12517 		/*
12518 		 * TCP can't handle urgent pointers that arrive before
12519 		 * the connection has been accept()ed since it can't
12520 		 * buffer OOB data.  Discard segment if this happens.
12521 		 *
12522 		 * Nor can it reassemble urgent pointers, so discard
12523 		 * if it's not the next segment expected.
12524 		 *
12525 		 * Otherwise, collapse chain into one mblk (discard if
12526 		 * that fails).  This makes sure the headers, retransmitted
12527 		 * data, and new data all are in the same mblk.
12528 		 */
12529 		ASSERT(mp != NULL);
12530 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12531 			freemsg(mp);
12532 			return;
12533 		}
12534 		/* Update pointers into message */
12535 		iphdr = rptr = mp->b_rptr;
12536 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12537 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12538 			/*
12539 			 * Since we can't handle any data with this urgent
12540 			 * pointer that is out of sequence, we expunge
12541 			 * the data.  This allows us to still register
12542 			 * the urgent mark and generate the M_PCSIG,
12543 			 * which we can do.
12544 			 */
12545 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12546 			seg_len = 0;
12547 		}
12548 	}
12549 
12550 	switch (tcp->tcp_state) {
12551 	case TCPS_SYN_SENT:
12552 		if (flags & TH_ACK) {
12553 			/*
12554 			 * Note that our stack cannot send data before a
12555 			 * connection is established, therefore the
12556 			 * following check is valid.  Otherwise, it has
12557 			 * to be changed.
12558 			 */
12559 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12560 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12561 				freemsg(mp);
12562 				if (flags & TH_RST)
12563 					return;
12564 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12565 				    tcp, seg_ack, 0, TH_RST);
12566 				return;
12567 			}
12568 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12569 		}
12570 		if (flags & TH_RST) {
12571 			freemsg(mp);
12572 			if (flags & TH_ACK)
12573 				(void) tcp_clean_death(tcp,
12574 				    ECONNREFUSED, 13);
12575 			return;
12576 		}
12577 		if (!(flags & TH_SYN)) {
12578 			freemsg(mp);
12579 			return;
12580 		}
12581 
12582 		/* Process all TCP options. */
12583 		tcp_process_options(tcp, tcph);
12584 		/*
12585 		 * The following changes our rwnd to be a multiple of the
12586 		 * MIN(peer MSS, our MSS) for performance reason.
12587 		 */
12588 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12589 		    tcp->tcp_mss));
12590 
12591 		/* Is the other end ECN capable? */
12592 		if (tcp->tcp_ecn_ok) {
12593 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12594 				tcp->tcp_ecn_ok = B_FALSE;
12595 			}
12596 		}
12597 		/*
12598 		 * Clear ECN flags because it may interfere with later
12599 		 * processing.
12600 		 */
12601 		flags &= ~(TH_ECE|TH_CWR);
12602 
12603 		tcp->tcp_irs = seg_seq;
12604 		tcp->tcp_rack = seg_seq;
12605 		tcp->tcp_rnxt = seg_seq + 1;
12606 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12607 		if (!TCP_IS_DETACHED(tcp)) {
12608 			/* Allocate room for SACK options if needed. */
12609 			if (tcp->tcp_snd_sack_ok) {
12610 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12611 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12612 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12613 			} else {
12614 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12615 				    tcp->tcp_hdr_len +
12616 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12617 			}
12618 		}
12619 		if (flags & TH_ACK) {
12620 			/*
12621 			 * If we can't get the confirmation upstream, pretend
12622 			 * we didn't even see this one.
12623 			 *
12624 			 * XXX: how can we pretend we didn't see it if we
12625 			 * have updated rnxt et. al.
12626 			 *
12627 			 * For loopback we defer sending up the T_CONN_CON
12628 			 * until after some checks below.
12629 			 */
12630 			mp1 = NULL;
12631 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12632 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12633 				freemsg(mp);
12634 				return;
12635 			}
12636 			/* SYN was acked - making progress */
12637 			if (tcp->tcp_ipversion == IPV6_VERSION)
12638 				tcp->tcp_ip_forward_progress = B_TRUE;
12639 
12640 			/* One for the SYN */
12641 			tcp->tcp_suna = tcp->tcp_iss + 1;
12642 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12643 			tcp->tcp_state = TCPS_ESTABLISHED;
12644 
12645 			/*
12646 			 * If SYN was retransmitted, need to reset all
12647 			 * retransmission info.  This is because this
12648 			 * segment will be treated as a dup ACK.
12649 			 */
12650 			if (tcp->tcp_rexmit) {
12651 				tcp->tcp_rexmit = B_FALSE;
12652 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12653 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12654 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12655 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12656 				tcp->tcp_ms_we_have_waited = 0;
12657 
12658 				/*
12659 				 * Set tcp_cwnd back to 1 MSS, per
12660 				 * recommendation from
12661 				 * draft-floyd-incr-init-win-01.txt,
12662 				 * Increasing TCP's Initial Window.
12663 				 */
12664 				tcp->tcp_cwnd = tcp->tcp_mss;
12665 			}
12666 
12667 			tcp->tcp_swl1 = seg_seq;
12668 			tcp->tcp_swl2 = seg_ack;
12669 
12670 			new_swnd = BE16_TO_U16(tcph->th_win);
12671 			tcp->tcp_swnd = new_swnd;
12672 			if (new_swnd > tcp->tcp_max_swnd)
12673 				tcp->tcp_max_swnd = new_swnd;
12674 
12675 			/*
12676 			 * Always send the three-way handshake ack immediately
12677 			 * in order to make the connection complete as soon as
12678 			 * possible on the accepting host.
12679 			 */
12680 			flags |= TH_ACK_NEEDED;
12681 
12682 			/*
12683 			 * Special case for loopback.  At this point we have
12684 			 * received SYN-ACK from the remote endpoint.  In
12685 			 * order to ensure that both endpoints reach the
12686 			 * fused state prior to any data exchange, the final
12687 			 * ACK needs to be sent before we indicate T_CONN_CON
12688 			 * to the module upstream.
12689 			 */
12690 			if (tcp->tcp_loopback) {
12691 				mblk_t *ack_mp;
12692 
12693 				ASSERT(!tcp->tcp_unfusable);
12694 				ASSERT(mp1 != NULL);
12695 				/*
12696 				 * For loopback, we always get a pure SYN-ACK
12697 				 * and only need to send back the final ACK
12698 				 * with no data (this is because the other
12699 				 * tcp is ours and we don't do T/TCP).  This
12700 				 * final ACK triggers the passive side to
12701 				 * perform fusion in ESTABLISHED state.
12702 				 */
12703 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12704 					if (tcp->tcp_ack_tid != 0) {
12705 						(void) TCP_TIMER_CANCEL(tcp,
12706 						    tcp->tcp_ack_tid);
12707 						tcp->tcp_ack_tid = 0;
12708 					}
12709 					TCP_RECORD_TRACE(tcp, ack_mp,
12710 					    TCP_TRACE_SEND_PKT);
12711 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12712 					BUMP_LOCAL(tcp->tcp_obsegs);
12713 					BUMP_MIB(&tcp_mib, tcpOutAck);
12714 
12715 					/* Send up T_CONN_CON */
12716 					putnext(tcp->tcp_rq, mp1);
12717 
12718 					freemsg(mp);
12719 					return;
12720 				}
12721 				/*
12722 				 * Forget fusion; we need to handle more
12723 				 * complex cases below.  Send the deferred
12724 				 * T_CONN_CON message upstream and proceed
12725 				 * as usual.  Mark this tcp as not capable
12726 				 * of fusion.
12727 				 */
12728 				TCP_STAT(tcp_fusion_unfusable);
12729 				tcp->tcp_unfusable = B_TRUE;
12730 				putnext(tcp->tcp_rq, mp1);
12731 			}
12732 
12733 			/*
12734 			 * Check to see if there is data to be sent.  If
12735 			 * yes, set the transmit flag.  Then check to see
12736 			 * if received data processing needs to be done.
12737 			 * If not, go straight to xmit_check.  This short
12738 			 * cut is OK as we don't support T/TCP.
12739 			 */
12740 			if (tcp->tcp_unsent)
12741 				flags |= TH_XMIT_NEEDED;
12742 
12743 			if (seg_len == 0 && !(flags & TH_URG)) {
12744 				freemsg(mp);
12745 				goto xmit_check;
12746 			}
12747 
12748 			flags &= ~TH_SYN;
12749 			seg_seq++;
12750 			break;
12751 		}
12752 		tcp->tcp_state = TCPS_SYN_RCVD;
12753 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12754 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12755 		if (mp1) {
12756 			DB_CPID(mp1) = tcp->tcp_cpid;
12757 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
12758 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12759 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12760 		}
12761 		freemsg(mp);
12762 		return;
12763 	case TCPS_SYN_RCVD:
12764 		if (flags & TH_ACK) {
12765 			/*
12766 			 * In this state, a SYN|ACK packet is either bogus
12767 			 * because the other side must be ACKing our SYN which
12768 			 * indicates it has seen the ACK for their SYN and
12769 			 * shouldn't retransmit it or we're crossing SYNs
12770 			 * on active open.
12771 			 */
12772 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12773 				freemsg(mp);
12774 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12775 				    tcp, seg_ack, 0, TH_RST);
12776 				return;
12777 			}
12778 			/*
12779 			 * NOTE: RFC 793 pg. 72 says this should be
12780 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12781 			 * but that would mean we have an ack that ignored
12782 			 * our SYN.
12783 			 */
12784 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12785 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12786 				freemsg(mp);
12787 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12788 				    tcp, seg_ack, 0, TH_RST);
12789 				return;
12790 			}
12791 		}
12792 		break;
12793 	case TCPS_LISTEN:
12794 		/*
12795 		 * Only a TLI listener can come through this path when a
12796 		 * acceptor is going back to be a listener and a packet
12797 		 * for the acceptor hits the classifier. For a socket
12798 		 * listener, this can never happen because a listener
12799 		 * can never accept connection on itself and hence a
12800 		 * socket acceptor can not go back to being a listener.
12801 		 */
12802 		ASSERT(!TCP_IS_SOCKET(tcp));
12803 		/*FALLTHRU*/
12804 	case TCPS_CLOSED:
12805 	case TCPS_BOUND: {
12806 		conn_t	*new_connp;
12807 
12808 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
12809 		if (new_connp != NULL) {
12810 			tcp_reinput(new_connp, mp, connp->conn_sqp);
12811 			return;
12812 		}
12813 		/* We failed to classify. For now just drop the packet */
12814 		freemsg(mp);
12815 		return;
12816 	}
12817 	case TCPS_IDLE:
12818 		/*
12819 		 * Handle the case where the tcp_clean_death() has happened
12820 		 * on a connection (application hasn't closed yet) but a packet
12821 		 * was already queued on squeue before tcp_clean_death()
12822 		 * was processed. Calling tcp_clean_death() twice on same
12823 		 * connection can result in weird behaviour.
12824 		 */
12825 		freemsg(mp);
12826 		return;
12827 	default:
12828 		break;
12829 	}
12830 
12831 	/*
12832 	 * Already on the correct queue/perimeter.
12833 	 * If this is a detached connection and not an eager
12834 	 * connection hanging off a listener then new data
12835 	 * (past the FIN) will cause a reset.
12836 	 * We do a special check here where it
12837 	 * is out of the main line, rather than check
12838 	 * if we are detached every time we see new
12839 	 * data down below.
12840 	 */
12841 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
12842 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
12843 		BUMP_MIB(&tcp_mib, tcpInClosed);
12844 		TCP_RECORD_TRACE(tcp,
12845 		    mp, TCP_TRACE_RECV_PKT);
12846 
12847 		freemsg(mp);
12848 		/*
12849 		 * This could be an SSL closure alert. We're detached so just
12850 		 * acknowledge it this last time.
12851 		 */
12852 		if (tcp->tcp_kssl_ctx != NULL) {
12853 			kssl_release_ctx(tcp->tcp_kssl_ctx);
12854 			tcp->tcp_kssl_ctx = NULL;
12855 
12856 			tcp->tcp_rnxt += seg_len;
12857 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12858 			flags |= TH_ACK_NEEDED;
12859 			goto ack_check;
12860 		}
12861 
12862 		tcp_xmit_ctl("new data when detached", tcp,
12863 		    tcp->tcp_snxt, 0, TH_RST);
12864 		(void) tcp_clean_death(tcp, EPROTO, 12);
12865 		return;
12866 	}
12867 
12868 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12869 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
12870 	new_swnd = BE16_TO_U16(tcph->th_win) <<
12871 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
12872 	mss = tcp->tcp_mss;
12873 
12874 	if (tcp->tcp_snd_ts_ok) {
12875 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
12876 			/*
12877 			 * This segment is not acceptable.
12878 			 * Drop it and send back an ACK.
12879 			 */
12880 			freemsg(mp);
12881 			flags |= TH_ACK_NEEDED;
12882 			goto ack_check;
12883 		}
12884 	} else if (tcp->tcp_snd_sack_ok) {
12885 		ASSERT(tcp->tcp_sack_info != NULL);
12886 		tcpopt.tcp = tcp;
12887 		/*
12888 		 * SACK info in already updated in tcp_parse_options.  Ignore
12889 		 * all other TCP options...
12890 		 */
12891 		(void) tcp_parse_options(tcph, &tcpopt);
12892 	}
12893 try_again:;
12894 	gap = seg_seq - tcp->tcp_rnxt;
12895 	rgap = tcp->tcp_rwnd - (gap + seg_len);
12896 	/*
12897 	 * gap is the amount of sequence space between what we expect to see
12898 	 * and what we got for seg_seq.  A positive value for gap means
12899 	 * something got lost.  A negative value means we got some old stuff.
12900 	 */
12901 	if (gap < 0) {
12902 		/* Old stuff present.  Is the SYN in there? */
12903 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
12904 		    (seg_len != 0)) {
12905 			flags &= ~TH_SYN;
12906 			seg_seq++;
12907 			urp--;
12908 			/* Recompute the gaps after noting the SYN. */
12909 			goto try_again;
12910 		}
12911 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
12912 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
12913 		    (seg_len > -gap ? -gap : seg_len));
12914 		/* Remove the old stuff from seg_len. */
12915 		seg_len += gap;
12916 		/*
12917 		 * Anything left?
12918 		 * Make sure to check for unack'd FIN when rest of data
12919 		 * has been previously ack'd.
12920 		 */
12921 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
12922 			/*
12923 			 * Resets are only valid if they lie within our offered
12924 			 * window.  If the RST bit is set, we just ignore this
12925 			 * segment.
12926 			 */
12927 			if (flags & TH_RST) {
12928 				freemsg(mp);
12929 				return;
12930 			}
12931 
12932 			/*
12933 			 * The arriving of dup data packets indicate that we
12934 			 * may have postponed an ack for too long, or the other
12935 			 * side's RTT estimate is out of shape. Start acking
12936 			 * more often.
12937 			 */
12938 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
12939 			    tcp->tcp_rack_cnt >= 1 &&
12940 			    tcp->tcp_rack_abs_max > 2) {
12941 				tcp->tcp_rack_abs_max--;
12942 			}
12943 			tcp->tcp_rack_cur_max = 1;
12944 
12945 			/*
12946 			 * This segment is "unacceptable".  None of its
12947 			 * sequence space lies within our advertized window.
12948 			 *
12949 			 * Adjust seg_len to the original value for tracing.
12950 			 */
12951 			seg_len -= gap;
12952 			if (tcp->tcp_debug) {
12953 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12954 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
12955 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
12956 				    "seg_len %d, rnxt %u, snxt %u, %s",
12957 				    gap, rgap, flags, seg_seq, seg_ack,
12958 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
12959 				    tcp_display(tcp, NULL,
12960 				    DISP_ADDR_AND_PORT));
12961 			}
12962 
12963 			/*
12964 			 * Arrange to send an ACK in response to the
12965 			 * unacceptable segment per RFC 793 page 69. There
12966 			 * is only one small difference between ours and the
12967 			 * acceptability test in the RFC - we accept ACK-only
12968 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
12969 			 * will be generated.
12970 			 *
12971 			 * Note that we have to ACK an ACK-only packet at least
12972 			 * for stacks that send 0-length keep-alives with
12973 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
12974 			 * section 4.2.3.6. As long as we don't ever generate
12975 			 * an unacceptable packet in response to an incoming
12976 			 * packet that is unacceptable, it should not cause
12977 			 * "ACK wars".
12978 			 */
12979 			flags |=  TH_ACK_NEEDED;
12980 
12981 			/*
12982 			 * Continue processing this segment in order to use the
12983 			 * ACK information it contains, but skip all other
12984 			 * sequence-number processing.	Processing the ACK
12985 			 * information is necessary in order to
12986 			 * re-synchronize connections that may have lost
12987 			 * synchronization.
12988 			 *
12989 			 * We clear seg_len and flag fields related to
12990 			 * sequence number processing as they are not
12991 			 * to be trusted for an unacceptable segment.
12992 			 */
12993 			seg_len = 0;
12994 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
12995 			goto process_ack;
12996 		}
12997 
12998 		/* Fix seg_seq, and chew the gap off the front. */
12999 		seg_seq = tcp->tcp_rnxt;
13000 		urp += gap;
13001 		do {
13002 			mblk_t	*mp2;
13003 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13004 			    (uintptr_t)UINT_MAX);
13005 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13006 			if (gap > 0) {
13007 				mp->b_rptr = mp->b_wptr - gap;
13008 				break;
13009 			}
13010 			mp2 = mp;
13011 			mp = mp->b_cont;
13012 			freeb(mp2);
13013 		} while (gap < 0);
13014 		/*
13015 		 * If the urgent data has already been acknowledged, we
13016 		 * should ignore TH_URG below
13017 		 */
13018 		if (urp < 0)
13019 			flags &= ~TH_URG;
13020 	}
13021 	/*
13022 	 * rgap is the amount of stuff received out of window.  A negative
13023 	 * value is the amount out of window.
13024 	 */
13025 	if (rgap < 0) {
13026 		mblk_t	*mp2;
13027 
13028 		if (tcp->tcp_rwnd == 0) {
13029 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13030 		} else {
13031 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13032 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13033 		}
13034 
13035 		/*
13036 		 * seg_len does not include the FIN, so if more than
13037 		 * just the FIN is out of window, we act like we don't
13038 		 * see it.  (If just the FIN is out of window, rgap
13039 		 * will be zero and we will go ahead and acknowledge
13040 		 * the FIN.)
13041 		 */
13042 		flags &= ~TH_FIN;
13043 
13044 		/* Fix seg_len and make sure there is something left. */
13045 		seg_len += rgap;
13046 		if (seg_len <= 0) {
13047 			/*
13048 			 * Resets are only valid if they lie within our offered
13049 			 * window.  If the RST bit is set, we just ignore this
13050 			 * segment.
13051 			 */
13052 			if (flags & TH_RST) {
13053 				freemsg(mp);
13054 				return;
13055 			}
13056 
13057 			/* Per RFC 793, we need to send back an ACK. */
13058 			flags |= TH_ACK_NEEDED;
13059 
13060 			/*
13061 			 * Send SIGURG as soon as possible i.e. even
13062 			 * if the TH_URG was delivered in a window probe
13063 			 * packet (which will be unacceptable).
13064 			 *
13065 			 * We generate a signal if none has been generated
13066 			 * for this connection or if this is a new urgent
13067 			 * byte. Also send a zero-length "unmarked" message
13068 			 * to inform SIOCATMARK that this is not the mark.
13069 			 *
13070 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13071 			 * is sent up. This plus the check for old data
13072 			 * (gap >= 0) handles the wraparound of the sequence
13073 			 * number space without having to always track the
13074 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13075 			 * this max in its rcv_up variable).
13076 			 *
13077 			 * This prevents duplicate SIGURGS due to a "late"
13078 			 * zero-window probe when the T_EXDATA_IND has already
13079 			 * been sent up.
13080 			 */
13081 			if ((flags & TH_URG) &&
13082 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13083 			    tcp->tcp_urp_last))) {
13084 				mp1 = allocb(0, BPRI_MED);
13085 				if (mp1 == NULL) {
13086 					freemsg(mp);
13087 					return;
13088 				}
13089 				if (!TCP_IS_DETACHED(tcp) &&
13090 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13091 				    SIGURG)) {
13092 					/* Try again on the rexmit. */
13093 					freemsg(mp1);
13094 					freemsg(mp);
13095 					return;
13096 				}
13097 				/*
13098 				 * If the next byte would be the mark
13099 				 * then mark with MARKNEXT else mark
13100 				 * with NOTMARKNEXT.
13101 				 */
13102 				if (gap == 0 && urp == 0)
13103 					mp1->b_flag |= MSGMARKNEXT;
13104 				else
13105 					mp1->b_flag |= MSGNOTMARKNEXT;
13106 				freemsg(tcp->tcp_urp_mark_mp);
13107 				tcp->tcp_urp_mark_mp = mp1;
13108 				flags |= TH_SEND_URP_MARK;
13109 				tcp->tcp_urp_last_valid = B_TRUE;
13110 				tcp->tcp_urp_last = urp + seg_seq;
13111 			}
13112 			/*
13113 			 * If this is a zero window probe, continue to
13114 			 * process the ACK part.  But we need to set seg_len
13115 			 * to 0 to avoid data processing.  Otherwise just
13116 			 * drop the segment and send back an ACK.
13117 			 */
13118 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13119 				flags &= ~(TH_SYN | TH_URG);
13120 				seg_len = 0;
13121 				goto process_ack;
13122 			} else {
13123 				freemsg(mp);
13124 				goto ack_check;
13125 			}
13126 		}
13127 		/* Pitch out of window stuff off the end. */
13128 		rgap = seg_len;
13129 		mp2 = mp;
13130 		do {
13131 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13132 			    (uintptr_t)INT_MAX);
13133 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13134 			if (rgap < 0) {
13135 				mp2->b_wptr += rgap;
13136 				if ((mp1 = mp2->b_cont) != NULL) {
13137 					mp2->b_cont = NULL;
13138 					freemsg(mp1);
13139 				}
13140 				break;
13141 			}
13142 		} while ((mp2 = mp2->b_cont) != NULL);
13143 	}
13144 ok:;
13145 	/*
13146 	 * TCP should check ECN info for segments inside the window only.
13147 	 * Therefore the check should be done here.
13148 	 */
13149 	if (tcp->tcp_ecn_ok) {
13150 		if (flags & TH_CWR) {
13151 			tcp->tcp_ecn_echo_on = B_FALSE;
13152 		}
13153 		/*
13154 		 * Note that both ECN_CE and CWR can be set in the
13155 		 * same segment.  In this case, we once again turn
13156 		 * on ECN_ECHO.
13157 		 */
13158 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13159 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13160 
13161 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13162 				tcp->tcp_ecn_echo_on = B_TRUE;
13163 			}
13164 		} else {
13165 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13166 
13167 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13168 			    htonl(IPH_ECN_CE << 20)) {
13169 				tcp->tcp_ecn_echo_on = B_TRUE;
13170 			}
13171 		}
13172 	}
13173 
13174 	/*
13175 	 * Check whether we can update tcp_ts_recent.  This test is
13176 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13177 	 * Extensions for High Performance: An Update", Internet Draft.
13178 	 */
13179 	if (tcp->tcp_snd_ts_ok &&
13180 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13181 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13182 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13183 		tcp->tcp_last_rcv_lbolt = lbolt64;
13184 	}
13185 
13186 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13187 		/*
13188 		 * FIN in an out of order segment.  We record this in
13189 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13190 		 * Clear the FIN so that any check on FIN flag will fail.
13191 		 * Remember that FIN also counts in the sequence number
13192 		 * space.  So we need to ack out of order FIN only segments.
13193 		 */
13194 		if (flags & TH_FIN) {
13195 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13196 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13197 			flags &= ~TH_FIN;
13198 			flags |= TH_ACK_NEEDED;
13199 		}
13200 		if (seg_len > 0) {
13201 			/* Fill in the SACK blk list. */
13202 			if (tcp->tcp_snd_sack_ok) {
13203 				ASSERT(tcp->tcp_sack_info != NULL);
13204 				tcp_sack_insert(tcp->tcp_sack_list,
13205 				    seg_seq, seg_seq + seg_len,
13206 				    &(tcp->tcp_num_sack_blk));
13207 			}
13208 
13209 			/*
13210 			 * Attempt reassembly and see if we have something
13211 			 * ready to go.
13212 			 */
13213 			mp = tcp_reass(tcp, mp, seg_seq);
13214 			/* Always ack out of order packets */
13215 			flags |= TH_ACK_NEEDED | TH_PUSH;
13216 			if (mp) {
13217 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13218 				    (uintptr_t)INT_MAX);
13219 				seg_len = mp->b_cont ? msgdsize(mp) :
13220 					(int)(mp->b_wptr - mp->b_rptr);
13221 				seg_seq = tcp->tcp_rnxt;
13222 				/*
13223 				 * A gap is filled and the seq num and len
13224 				 * of the gap match that of a previously
13225 				 * received FIN, put the FIN flag back in.
13226 				 */
13227 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13228 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13229 					flags |= TH_FIN;
13230 					tcp->tcp_valid_bits &=
13231 					    ~TCP_OFO_FIN_VALID;
13232 				}
13233 			} else {
13234 				/*
13235 				 * Keep going even with NULL mp.
13236 				 * There may be a useful ACK or something else
13237 				 * we don't want to miss.
13238 				 *
13239 				 * But TCP should not perform fast retransmit
13240 				 * because of the ack number.  TCP uses
13241 				 * seg_len == 0 to determine if it is a pure
13242 				 * ACK.  And this is not a pure ACK.
13243 				 */
13244 				seg_len = 0;
13245 				ofo_seg = B_TRUE;
13246 			}
13247 		}
13248 	} else if (seg_len > 0) {
13249 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13250 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13251 		/*
13252 		 * If an out of order FIN was received before, and the seq
13253 		 * num and len of the new segment match that of the FIN,
13254 		 * put the FIN flag back in.
13255 		 */
13256 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13257 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13258 			flags |= TH_FIN;
13259 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13260 		}
13261 	}
13262 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13263 	if (flags & TH_RST) {
13264 		freemsg(mp);
13265 		switch (tcp->tcp_state) {
13266 		case TCPS_SYN_RCVD:
13267 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13268 			break;
13269 		case TCPS_ESTABLISHED:
13270 		case TCPS_FIN_WAIT_1:
13271 		case TCPS_FIN_WAIT_2:
13272 		case TCPS_CLOSE_WAIT:
13273 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13274 			break;
13275 		case TCPS_CLOSING:
13276 		case TCPS_LAST_ACK:
13277 			(void) tcp_clean_death(tcp, 0, 16);
13278 			break;
13279 		default:
13280 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13281 			(void) tcp_clean_death(tcp, ENXIO, 17);
13282 			break;
13283 		}
13284 		return;
13285 	}
13286 	if (flags & TH_SYN) {
13287 		/*
13288 		 * See RFC 793, Page 71
13289 		 *
13290 		 * The seq number must be in the window as it should
13291 		 * be "fixed" above.  If it is outside window, it should
13292 		 * be already rejected.  Note that we allow seg_seq to be
13293 		 * rnxt + rwnd because we want to accept 0 window probe.
13294 		 */
13295 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13296 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13297 		freemsg(mp);
13298 		/*
13299 		 * If the ACK flag is not set, just use our snxt as the
13300 		 * seq number of the RST segment.
13301 		 */
13302 		if (!(flags & TH_ACK)) {
13303 			seg_ack = tcp->tcp_snxt;
13304 		}
13305 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13306 		    TH_RST|TH_ACK);
13307 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13308 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13309 		return;
13310 	}
13311 	/*
13312 	 * urp could be -1 when the urp field in the packet is 0
13313 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13314 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13315 	 */
13316 	if (flags & TH_URG && urp >= 0) {
13317 		if (!tcp->tcp_urp_last_valid ||
13318 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13319 			/*
13320 			 * If we haven't generated the signal yet for this
13321 			 * urgent pointer value, do it now.  Also, send up a
13322 			 * zero-length M_DATA indicating whether or not this is
13323 			 * the mark. The latter is not needed when a
13324 			 * T_EXDATA_IND is sent up. However, if there are
13325 			 * allocation failures this code relies on the sender
13326 			 * retransmitting and the socket code for determining
13327 			 * the mark should not block waiting for the peer to
13328 			 * transmit. Thus, for simplicity we always send up the
13329 			 * mark indication.
13330 			 */
13331 			mp1 = allocb(0, BPRI_MED);
13332 			if (mp1 == NULL) {
13333 				freemsg(mp);
13334 				return;
13335 			}
13336 			if (!TCP_IS_DETACHED(tcp) &&
13337 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13338 				/* Try again on the rexmit. */
13339 				freemsg(mp1);
13340 				freemsg(mp);
13341 				return;
13342 			}
13343 			/*
13344 			 * Mark with NOTMARKNEXT for now.
13345 			 * The code below will change this to MARKNEXT
13346 			 * if we are at the mark.
13347 			 *
13348 			 * If there are allocation failures (e.g. in dupmsg
13349 			 * below) the next time tcp_rput_data sees the urgent
13350 			 * segment it will send up the MSG*MARKNEXT message.
13351 			 */
13352 			mp1->b_flag |= MSGNOTMARKNEXT;
13353 			freemsg(tcp->tcp_urp_mark_mp);
13354 			tcp->tcp_urp_mark_mp = mp1;
13355 			flags |= TH_SEND_URP_MARK;
13356 #ifdef DEBUG
13357 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13358 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13359 			    "last %x, %s",
13360 			    seg_seq, urp, tcp->tcp_urp_last,
13361 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13362 #endif /* DEBUG */
13363 			tcp->tcp_urp_last_valid = B_TRUE;
13364 			tcp->tcp_urp_last = urp + seg_seq;
13365 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13366 			/*
13367 			 * An allocation failure prevented the previous
13368 			 * tcp_rput_data from sending up the allocated
13369 			 * MSG*MARKNEXT message - send it up this time
13370 			 * around.
13371 			 */
13372 			flags |= TH_SEND_URP_MARK;
13373 		}
13374 
13375 		/*
13376 		 * If the urgent byte is in this segment, make sure that it is
13377 		 * all by itself.  This makes it much easier to deal with the
13378 		 * possibility of an allocation failure on the T_exdata_ind.
13379 		 * Note that seg_len is the number of bytes in the segment, and
13380 		 * urp is the offset into the segment of the urgent byte.
13381 		 * urp < seg_len means that the urgent byte is in this segment.
13382 		 */
13383 		if (urp < seg_len) {
13384 			if (seg_len != 1) {
13385 				uint32_t  tmp_rnxt;
13386 				/*
13387 				 * Break it up and feed it back in.
13388 				 * Re-attach the IP header.
13389 				 */
13390 				mp->b_rptr = iphdr;
13391 				if (urp > 0) {
13392 					/*
13393 					 * There is stuff before the urgent
13394 					 * byte.
13395 					 */
13396 					mp1 = dupmsg(mp);
13397 					if (!mp1) {
13398 						/*
13399 						 * Trim from urgent byte on.
13400 						 * The rest will come back.
13401 						 */
13402 						(void) adjmsg(mp,
13403 						    urp - seg_len);
13404 						tcp_rput_data(connp,
13405 						    mp, NULL);
13406 						return;
13407 					}
13408 					(void) adjmsg(mp1, urp - seg_len);
13409 					/* Feed this piece back in. */
13410 					tmp_rnxt = tcp->tcp_rnxt;
13411 					tcp_rput_data(connp, mp1, NULL);
13412 					/*
13413 					 * If the data passed back in was not
13414 					 * processed (ie: bad ACK) sending
13415 					 * the remainder back in will cause a
13416 					 * loop. In this case, drop the
13417 					 * packet and let the sender try
13418 					 * sending a good packet.
13419 					 */
13420 					if (tmp_rnxt == tcp->tcp_rnxt) {
13421 						freemsg(mp);
13422 						return;
13423 					}
13424 				}
13425 				if (urp != seg_len - 1) {
13426 					uint32_t  tmp_rnxt;
13427 					/*
13428 					 * There is stuff after the urgent
13429 					 * byte.
13430 					 */
13431 					mp1 = dupmsg(mp);
13432 					if (!mp1) {
13433 						/*
13434 						 * Trim everything beyond the
13435 						 * urgent byte.  The rest will
13436 						 * come back.
13437 						 */
13438 						(void) adjmsg(mp,
13439 						    urp + 1 - seg_len);
13440 						tcp_rput_data(connp,
13441 						    mp, NULL);
13442 						return;
13443 					}
13444 					(void) adjmsg(mp1, urp + 1 - seg_len);
13445 					tmp_rnxt = tcp->tcp_rnxt;
13446 					tcp_rput_data(connp, mp1, NULL);
13447 					/*
13448 					 * If the data passed back in was not
13449 					 * processed (ie: bad ACK) sending
13450 					 * the remainder back in will cause a
13451 					 * loop. In this case, drop the
13452 					 * packet and let the sender try
13453 					 * sending a good packet.
13454 					 */
13455 					if (tmp_rnxt == tcp->tcp_rnxt) {
13456 						freemsg(mp);
13457 						return;
13458 					}
13459 				}
13460 				tcp_rput_data(connp, mp, NULL);
13461 				return;
13462 			}
13463 			/*
13464 			 * This segment contains only the urgent byte.  We
13465 			 * have to allocate the T_exdata_ind, if we can.
13466 			 */
13467 			if (!tcp->tcp_urp_mp) {
13468 				struct T_exdata_ind *tei;
13469 				mp1 = allocb(sizeof (struct T_exdata_ind),
13470 				    BPRI_MED);
13471 				if (!mp1) {
13472 					/*
13473 					 * Sigh... It'll be back.
13474 					 * Generate any MSG*MARK message now.
13475 					 */
13476 					freemsg(mp);
13477 					seg_len = 0;
13478 					if (flags & TH_SEND_URP_MARK) {
13479 
13480 
13481 						ASSERT(tcp->tcp_urp_mark_mp);
13482 						tcp->tcp_urp_mark_mp->b_flag &=
13483 							~MSGNOTMARKNEXT;
13484 						tcp->tcp_urp_mark_mp->b_flag |=
13485 							MSGMARKNEXT;
13486 					}
13487 					goto ack_check;
13488 				}
13489 				mp1->b_datap->db_type = M_PROTO;
13490 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13491 				tei->PRIM_type = T_EXDATA_IND;
13492 				tei->MORE_flag = 0;
13493 				mp1->b_wptr = (uchar_t *)&tei[1];
13494 				tcp->tcp_urp_mp = mp1;
13495 #ifdef DEBUG
13496 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13497 				    "tcp_rput: allocated exdata_ind %s",
13498 				    tcp_display(tcp, NULL,
13499 				    DISP_PORT_ONLY));
13500 #endif /* DEBUG */
13501 				/*
13502 				 * There is no need to send a separate MSG*MARK
13503 				 * message since the T_EXDATA_IND will be sent
13504 				 * now.
13505 				 */
13506 				flags &= ~TH_SEND_URP_MARK;
13507 				freemsg(tcp->tcp_urp_mark_mp);
13508 				tcp->tcp_urp_mark_mp = NULL;
13509 			}
13510 			/*
13511 			 * Now we are all set.  On the next putnext upstream,
13512 			 * tcp_urp_mp will be non-NULL and will get prepended
13513 			 * to what has to be this piece containing the urgent
13514 			 * byte.  If for any reason we abort this segment below,
13515 			 * if it comes back, we will have this ready, or it
13516 			 * will get blown off in close.
13517 			 */
13518 		} else if (urp == seg_len) {
13519 			/*
13520 			 * The urgent byte is the next byte after this sequence
13521 			 * number. If there is data it is marked with
13522 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13523 			 * since it is not needed. Otherwise, if the code
13524 			 * above just allocated a zero-length tcp_urp_mark_mp
13525 			 * message, that message is tagged with MSGMARKNEXT.
13526 			 * Sending up these MSGMARKNEXT messages makes
13527 			 * SIOCATMARK work correctly even though
13528 			 * the T_EXDATA_IND will not be sent up until the
13529 			 * urgent byte arrives.
13530 			 */
13531 			if (seg_len != 0) {
13532 				flags |= TH_MARKNEXT_NEEDED;
13533 				freemsg(tcp->tcp_urp_mark_mp);
13534 				tcp->tcp_urp_mark_mp = NULL;
13535 				flags &= ~TH_SEND_URP_MARK;
13536 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13537 				flags |= TH_SEND_URP_MARK;
13538 				tcp->tcp_urp_mark_mp->b_flag &=
13539 					~MSGNOTMARKNEXT;
13540 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13541 			}
13542 #ifdef DEBUG
13543 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13544 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13545 			    seg_len, flags,
13546 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13547 #endif /* DEBUG */
13548 		} else {
13549 			/* Data left until we hit mark */
13550 #ifdef DEBUG
13551 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13552 			    "tcp_rput: URP %d bytes left, %s",
13553 			    urp - seg_len, tcp_display(tcp, NULL,
13554 			    DISP_PORT_ONLY));
13555 #endif /* DEBUG */
13556 		}
13557 	}
13558 
13559 process_ack:
13560 	if (!(flags & TH_ACK)) {
13561 		freemsg(mp);
13562 		goto xmit_check;
13563 	}
13564 	}
13565 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13566 
13567 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13568 		tcp->tcp_ip_forward_progress = B_TRUE;
13569 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13570 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13571 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13572 			/* 3-way handshake complete - pass up the T_CONN_IND */
13573 			tcp_t	*listener = tcp->tcp_listener;
13574 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13575 
13576 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13577 			/*
13578 			 * We are here means eager is fine but it can
13579 			 * get a TH_RST at any point between now and till
13580 			 * accept completes and disappear. We need to
13581 			 * ensure that reference to eager is valid after
13582 			 * we get out of eager's perimeter. So we do
13583 			 * an extra refhold.
13584 			 */
13585 			CONN_INC_REF(connp);
13586 
13587 			/*
13588 			 * The listener also exists because of the refhold
13589 			 * done in tcp_conn_request. Its possible that it
13590 			 * might have closed. We will check that once we
13591 			 * get inside listeners context.
13592 			 */
13593 			CONN_INC_REF(listener->tcp_connp);
13594 			if (listener->tcp_connp->conn_sqp ==
13595 			    connp->conn_sqp) {
13596 				tcp_send_conn_ind(listener->tcp_connp, mp,
13597 				    listener->tcp_connp->conn_sqp);
13598 				CONN_DEC_REF(listener->tcp_connp);
13599 			} else if (!tcp->tcp_loopback) {
13600 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13601 				    tcp_send_conn_ind,
13602 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13603 			} else {
13604 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13605 				    tcp_send_conn_ind, listener->tcp_connp,
13606 				    SQTAG_TCP_CONN_IND);
13607 			}
13608 		}
13609 
13610 		if (tcp->tcp_active_open) {
13611 			/*
13612 			 * We are seeing the final ack in the three way
13613 			 * hand shake of a active open'ed connection
13614 			 * so we must send up a T_CONN_CON
13615 			 */
13616 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13617 				freemsg(mp);
13618 				return;
13619 			}
13620 			/*
13621 			 * Don't fuse the loopback endpoints for
13622 			 * simultaneous active opens.
13623 			 */
13624 			if (tcp->tcp_loopback) {
13625 				TCP_STAT(tcp_fusion_unfusable);
13626 				tcp->tcp_unfusable = B_TRUE;
13627 			}
13628 		}
13629 
13630 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13631 		bytes_acked--;
13632 		/* SYN was acked - making progress */
13633 		if (tcp->tcp_ipversion == IPV6_VERSION)
13634 			tcp->tcp_ip_forward_progress = B_TRUE;
13635 
13636 		/*
13637 		 * If SYN was retransmitted, need to reset all
13638 		 * retransmission info as this segment will be
13639 		 * treated as a dup ACK.
13640 		 */
13641 		if (tcp->tcp_rexmit) {
13642 			tcp->tcp_rexmit = B_FALSE;
13643 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13644 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13645 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13646 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13647 			tcp->tcp_ms_we_have_waited = 0;
13648 			tcp->tcp_cwnd = mss;
13649 		}
13650 
13651 		/*
13652 		 * We set the send window to zero here.
13653 		 * This is needed if there is data to be
13654 		 * processed already on the queue.
13655 		 * Later (at swnd_update label), the
13656 		 * "new_swnd > tcp_swnd" condition is satisfied
13657 		 * the XMIT_NEEDED flag is set in the current
13658 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13659 		 * called if there is already data on queue in
13660 		 * this state.
13661 		 */
13662 		tcp->tcp_swnd = 0;
13663 
13664 		if (new_swnd > tcp->tcp_max_swnd)
13665 			tcp->tcp_max_swnd = new_swnd;
13666 		tcp->tcp_swl1 = seg_seq;
13667 		tcp->tcp_swl2 = seg_ack;
13668 		tcp->tcp_state = TCPS_ESTABLISHED;
13669 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13670 
13671 		/* Fuse when both sides are in ESTABLISHED state */
13672 		if (tcp->tcp_loopback && do_tcp_fusion)
13673 			tcp_fuse(tcp, iphdr, tcph);
13674 
13675 	}
13676 	/* This code follows 4.4BSD-Lite2 mostly. */
13677 	if (bytes_acked < 0)
13678 		goto est;
13679 
13680 	/*
13681 	 * If TCP is ECN capable and the congestion experience bit is
13682 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13683 	 * done once per window (or more loosely, per RTT).
13684 	 */
13685 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13686 		tcp->tcp_cwr = B_FALSE;
13687 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13688 		if (!tcp->tcp_cwr) {
13689 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13690 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13691 			tcp->tcp_cwnd = npkt * mss;
13692 			/*
13693 			 * If the cwnd is 0, use the timer to clock out
13694 			 * new segments.  This is required by the ECN spec.
13695 			 */
13696 			if (npkt == 0) {
13697 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13698 				/*
13699 				 * This makes sure that when the ACK comes
13700 				 * back, we will increase tcp_cwnd by 1 MSS.
13701 				 */
13702 				tcp->tcp_cwnd_cnt = 0;
13703 			}
13704 			tcp->tcp_cwr = B_TRUE;
13705 			/*
13706 			 * This marks the end of the current window of in
13707 			 * flight data.  That is why we don't use
13708 			 * tcp_suna + tcp_swnd.  Only data in flight can
13709 			 * provide ECN info.
13710 			 */
13711 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13712 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13713 		}
13714 	}
13715 
13716 	mp1 = tcp->tcp_xmit_head;
13717 	if (bytes_acked == 0) {
13718 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13719 			int dupack_cnt;
13720 
13721 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13722 			/*
13723 			 * Fast retransmit.  When we have seen exactly three
13724 			 * identical ACKs while we have unacked data
13725 			 * outstanding we take it as a hint that our peer
13726 			 * dropped something.
13727 			 *
13728 			 * If TCP is retransmitting, don't do fast retransmit.
13729 			 */
13730 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13731 			    ! tcp->tcp_rexmit) {
13732 				/* Do Limited Transmit */
13733 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13734 				    tcp_dupack_fast_retransmit) {
13735 					/*
13736 					 * RFC 3042
13737 					 *
13738 					 * What we need to do is temporarily
13739 					 * increase tcp_cwnd so that new
13740 					 * data can be sent if it is allowed
13741 					 * by the receive window (tcp_rwnd).
13742 					 * tcp_wput_data() will take care of
13743 					 * the rest.
13744 					 *
13745 					 * If the connection is SACK capable,
13746 					 * only do limited xmit when there
13747 					 * is SACK info.
13748 					 *
13749 					 * Note how tcp_cwnd is incremented.
13750 					 * The first dup ACK will increase
13751 					 * it by 1 MSS.  The second dup ACK
13752 					 * will increase it by 2 MSS.  This
13753 					 * means that only 1 new segment will
13754 					 * be sent for each dup ACK.
13755 					 */
13756 					if (tcp->tcp_unsent > 0 &&
13757 					    (!tcp->tcp_snd_sack_ok ||
13758 					    (tcp->tcp_snd_sack_ok &&
13759 					    tcp->tcp_notsack_list != NULL))) {
13760 						tcp->tcp_cwnd += mss <<
13761 						    (tcp->tcp_dupack_cnt - 1);
13762 						flags |= TH_LIMIT_XMIT;
13763 					}
13764 				} else if (dupack_cnt ==
13765 				    tcp_dupack_fast_retransmit) {
13766 
13767 				/*
13768 				 * If we have reduced tcp_ssthresh
13769 				 * because of ECN, do not reduce it again
13770 				 * unless it is already one window of data
13771 				 * away.  After one window of data, tcp_cwr
13772 				 * should then be cleared.  Note that
13773 				 * for non ECN capable connection, tcp_cwr
13774 				 * should always be false.
13775 				 *
13776 				 * Adjust cwnd since the duplicate
13777 				 * ack indicates that a packet was
13778 				 * dropped (due to congestion.)
13779 				 */
13780 				if (!tcp->tcp_cwr) {
13781 					npkt = ((tcp->tcp_snxt -
13782 					    tcp->tcp_suna) >> 1) / mss;
13783 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13784 					    mss;
13785 					tcp->tcp_cwnd = (npkt +
13786 					    tcp->tcp_dupack_cnt) * mss;
13787 				}
13788 				if (tcp->tcp_ecn_ok) {
13789 					tcp->tcp_cwr = B_TRUE;
13790 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13791 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13792 				}
13793 
13794 				/*
13795 				 * We do Hoe's algorithm.  Refer to her
13796 				 * paper "Improving the Start-up Behavior
13797 				 * of a Congestion Control Scheme for TCP,"
13798 				 * appeared in SIGCOMM'96.
13799 				 *
13800 				 * Save highest seq no we have sent so far.
13801 				 * Be careful about the invisible FIN byte.
13802 				 */
13803 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13804 				    (tcp->tcp_unsent == 0)) {
13805 					tcp->tcp_rexmit_max = tcp->tcp_fss;
13806 				} else {
13807 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
13808 				}
13809 
13810 				/*
13811 				 * Do not allow bursty traffic during.
13812 				 * fast recovery.  Refer to Fall and Floyd's
13813 				 * paper "Simulation-based Comparisons of
13814 				 * Tahoe, Reno and SACK TCP" (in CCR?)
13815 				 * This is a best current practise.
13816 				 */
13817 				tcp->tcp_snd_burst = TCP_CWND_SS;
13818 
13819 				/*
13820 				 * For SACK:
13821 				 * Calculate tcp_pipe, which is the
13822 				 * estimated number of bytes in
13823 				 * network.
13824 				 *
13825 				 * tcp_fack is the highest sack'ed seq num
13826 				 * TCP has received.
13827 				 *
13828 				 * tcp_pipe is explained in the above quoted
13829 				 * Fall and Floyd's paper.  tcp_fack is
13830 				 * explained in Mathis and Mahdavi's
13831 				 * "Forward Acknowledgment: Refining TCP
13832 				 * Congestion Control" in SIGCOMM '96.
13833 				 */
13834 				if (tcp->tcp_snd_sack_ok) {
13835 					ASSERT(tcp->tcp_sack_info != NULL);
13836 					if (tcp->tcp_notsack_list != NULL) {
13837 						tcp->tcp_pipe = tcp->tcp_snxt -
13838 						    tcp->tcp_fack;
13839 						tcp->tcp_sack_snxt = seg_ack;
13840 						flags |= TH_NEED_SACK_REXMIT;
13841 					} else {
13842 						/*
13843 						 * Always initialize tcp_pipe
13844 						 * even though we don't have
13845 						 * any SACK info.  If later
13846 						 * we get SACK info and
13847 						 * tcp_pipe is not initialized,
13848 						 * funny things will happen.
13849 						 */
13850 						tcp->tcp_pipe =
13851 						    tcp->tcp_cwnd_ssthresh;
13852 					}
13853 				} else {
13854 					flags |= TH_REXMIT_NEEDED;
13855 				} /* tcp_snd_sack_ok */
13856 
13857 				} else {
13858 					/*
13859 					 * Here we perform congestion
13860 					 * avoidance, but NOT slow start.
13861 					 * This is known as the Fast
13862 					 * Recovery Algorithm.
13863 					 */
13864 					if (tcp->tcp_snd_sack_ok &&
13865 					    tcp->tcp_notsack_list != NULL) {
13866 						flags |= TH_NEED_SACK_REXMIT;
13867 						tcp->tcp_pipe -= mss;
13868 						if (tcp->tcp_pipe < 0)
13869 							tcp->tcp_pipe = 0;
13870 					} else {
13871 					/*
13872 					 * We know that one more packet has
13873 					 * left the pipe thus we can update
13874 					 * cwnd.
13875 					 */
13876 					cwnd = tcp->tcp_cwnd + mss;
13877 					if (cwnd > tcp->tcp_cwnd_max)
13878 						cwnd = tcp->tcp_cwnd_max;
13879 					tcp->tcp_cwnd = cwnd;
13880 					if (tcp->tcp_unsent > 0)
13881 						flags |= TH_XMIT_NEEDED;
13882 					}
13883 				}
13884 			}
13885 		} else if (tcp->tcp_zero_win_probe) {
13886 			/*
13887 			 * If the window has opened, need to arrange
13888 			 * to send additional data.
13889 			 */
13890 			if (new_swnd != 0) {
13891 				/* tcp_suna != tcp_snxt */
13892 				/* Packet contains a window update */
13893 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
13894 				tcp->tcp_zero_win_probe = 0;
13895 				tcp->tcp_timer_backoff = 0;
13896 				tcp->tcp_ms_we_have_waited = 0;
13897 
13898 				/*
13899 				 * Transmit starting with tcp_suna since
13900 				 * the one byte probe is not ack'ed.
13901 				 * If TCP has sent more than one identical
13902 				 * probe, tcp_rexmit will be set.  That means
13903 				 * tcp_ss_rexmit() will send out the one
13904 				 * byte along with new data.  Otherwise,
13905 				 * fake the retransmission.
13906 				 */
13907 				flags |= TH_XMIT_NEEDED;
13908 				if (!tcp->tcp_rexmit) {
13909 					tcp->tcp_rexmit = B_TRUE;
13910 					tcp->tcp_dupack_cnt = 0;
13911 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13912 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
13913 				}
13914 			}
13915 		}
13916 		goto swnd_update;
13917 	}
13918 
13919 	/*
13920 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
13921 	 * If the ACK value acks something that we have not yet sent, it might
13922 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
13923 	 * other side.
13924 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
13925 	 * state is handled above, so we can always just drop the segment and
13926 	 * send an ACK here.
13927 	 *
13928 	 * Should we send ACKs in response to ACK only segments?
13929 	 */
13930 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13931 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
13932 		/* drop the received segment */
13933 		freemsg(mp);
13934 
13935 		/*
13936 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
13937 		 * greater than 0, check if the number of such
13938 		 * bogus ACks is greater than that count.  If yes,
13939 		 * don't send back any ACK.  This prevents TCP from
13940 		 * getting into an ACK storm if somehow an attacker
13941 		 * successfully spoofs an acceptable segment to our
13942 		 * peer.
13943 		 */
13944 		if (tcp_drop_ack_unsent_cnt > 0 &&
13945 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
13946 			TCP_STAT(tcp_in_ack_unsent_drop);
13947 			return;
13948 		}
13949 		mp = tcp_ack_mp(tcp);
13950 		if (mp != NULL) {
13951 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
13952 			BUMP_LOCAL(tcp->tcp_obsegs);
13953 			BUMP_MIB(&tcp_mib, tcpOutAck);
13954 			tcp_send_data(tcp, tcp->tcp_wq, mp);
13955 		}
13956 		return;
13957 	}
13958 
13959 	/*
13960 	 * TCP gets a new ACK, update the notsack'ed list to delete those
13961 	 * blocks that are covered by this ACK.
13962 	 */
13963 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
13964 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
13965 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
13966 	}
13967 
13968 	/*
13969 	 * If we got an ACK after fast retransmit, check to see
13970 	 * if it is a partial ACK.  If it is not and the congestion
13971 	 * window was inflated to account for the other side's
13972 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
13973 	 */
13974 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
13975 		ASSERT(tcp->tcp_rexmit == B_FALSE);
13976 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
13977 			tcp->tcp_dupack_cnt = 0;
13978 			/*
13979 			 * Restore the orig tcp_cwnd_ssthresh after
13980 			 * fast retransmit phase.
13981 			 */
13982 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
13983 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
13984 			}
13985 			tcp->tcp_rexmit_max = seg_ack;
13986 			tcp->tcp_cwnd_cnt = 0;
13987 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13988 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13989 
13990 			/*
13991 			 * Remove all notsack info to avoid confusion with
13992 			 * the next fast retrasnmit/recovery phase.
13993 			 */
13994 			if (tcp->tcp_snd_sack_ok &&
13995 			    tcp->tcp_notsack_list != NULL) {
13996 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
13997 			}
13998 		} else {
13999 			if (tcp->tcp_snd_sack_ok &&
14000 			    tcp->tcp_notsack_list != NULL) {
14001 				flags |= TH_NEED_SACK_REXMIT;
14002 				tcp->tcp_pipe -= mss;
14003 				if (tcp->tcp_pipe < 0)
14004 					tcp->tcp_pipe = 0;
14005 			} else {
14006 				/*
14007 				 * Hoe's algorithm:
14008 				 *
14009 				 * Retransmit the unack'ed segment and
14010 				 * restart fast recovery.  Note that we
14011 				 * need to scale back tcp_cwnd to the
14012 				 * original value when we started fast
14013 				 * recovery.  This is to prevent overly
14014 				 * aggressive behaviour in sending new
14015 				 * segments.
14016 				 */
14017 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14018 					tcp_dupack_fast_retransmit * mss;
14019 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14020 				flags |= TH_REXMIT_NEEDED;
14021 			}
14022 		}
14023 	} else {
14024 		tcp->tcp_dupack_cnt = 0;
14025 		if (tcp->tcp_rexmit) {
14026 			/*
14027 			 * TCP is retranmitting.  If the ACK ack's all
14028 			 * outstanding data, update tcp_rexmit_max and
14029 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14030 			 * to the correct value.
14031 			 *
14032 			 * Note that SEQ_LEQ() is used.  This is to avoid
14033 			 * unnecessary fast retransmit caused by dup ACKs
14034 			 * received when TCP does slow start retransmission
14035 			 * after a time out.  During this phase, TCP may
14036 			 * send out segments which are already received.
14037 			 * This causes dup ACKs to be sent back.
14038 			 */
14039 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14040 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14041 					tcp->tcp_rexmit_nxt = seg_ack;
14042 				}
14043 				if (seg_ack != tcp->tcp_rexmit_max) {
14044 					flags |= TH_XMIT_NEEDED;
14045 				}
14046 			} else {
14047 				tcp->tcp_rexmit = B_FALSE;
14048 				tcp->tcp_xmit_zc_clean = B_FALSE;
14049 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14050 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14051 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14052 			}
14053 			tcp->tcp_ms_we_have_waited = 0;
14054 		}
14055 	}
14056 
14057 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14058 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14059 	tcp->tcp_suna = seg_ack;
14060 	if (tcp->tcp_zero_win_probe != 0) {
14061 		tcp->tcp_zero_win_probe = 0;
14062 		tcp->tcp_timer_backoff = 0;
14063 	}
14064 
14065 	/*
14066 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14067 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14068 	 * will not reach here.
14069 	 */
14070 	if (mp1 == NULL) {
14071 		goto fin_acked;
14072 	}
14073 
14074 	/*
14075 	 * Update the congestion window.
14076 	 *
14077 	 * If TCP is not ECN capable or TCP is ECN capable but the
14078 	 * congestion experience bit is not set, increase the tcp_cwnd as
14079 	 * usual.
14080 	 */
14081 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14082 		cwnd = tcp->tcp_cwnd;
14083 		add = mss;
14084 
14085 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14086 			/*
14087 			 * This is to prevent an increase of less than 1 MSS of
14088 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14089 			 * may send out tinygrams in order to preserve mblk
14090 			 * boundaries.
14091 			 *
14092 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14093 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14094 			 * increased by 1 MSS for every RTTs.
14095 			 */
14096 			if (tcp->tcp_cwnd_cnt <= 0) {
14097 				tcp->tcp_cwnd_cnt = cwnd + add;
14098 			} else {
14099 				tcp->tcp_cwnd_cnt -= add;
14100 				add = 0;
14101 			}
14102 		}
14103 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14104 	}
14105 
14106 	/* See if the latest urgent data has been acknowledged */
14107 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14108 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14109 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14110 
14111 	/* Can we update the RTT estimates? */
14112 	if (tcp->tcp_snd_ts_ok) {
14113 		/* Ignore zero timestamp echo-reply. */
14114 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14115 			tcp_set_rto(tcp, (int32_t)lbolt -
14116 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14117 		}
14118 
14119 		/* If needed, restart the timer. */
14120 		if (tcp->tcp_set_timer == 1) {
14121 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14122 			tcp->tcp_set_timer = 0;
14123 		}
14124 		/*
14125 		 * Update tcp_csuna in case the other side stops sending
14126 		 * us timestamps.
14127 		 */
14128 		tcp->tcp_csuna = tcp->tcp_snxt;
14129 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14130 		/*
14131 		 * An ACK sequence we haven't seen before, so get the RTT
14132 		 * and update the RTO. But first check if the timestamp is
14133 		 * valid to use.
14134 		 */
14135 		if ((mp1->b_next != NULL) &&
14136 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14137 			tcp_set_rto(tcp, (int32_t)lbolt -
14138 			    (int32_t)(intptr_t)mp1->b_prev);
14139 		else
14140 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14141 
14142 		/* Remeber the last sequence to be ACKed */
14143 		tcp->tcp_csuna = seg_ack;
14144 		if (tcp->tcp_set_timer == 1) {
14145 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14146 			tcp->tcp_set_timer = 0;
14147 		}
14148 	} else {
14149 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14150 	}
14151 
14152 	/* Eat acknowledged bytes off the xmit queue. */
14153 	for (;;) {
14154 		mblk_t	*mp2;
14155 		uchar_t	*wptr;
14156 
14157 		wptr = mp1->b_wptr;
14158 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14159 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14160 		if (bytes_acked < 0) {
14161 			mp1->b_rptr = wptr + bytes_acked;
14162 			/*
14163 			 * Set a new timestamp if all the bytes timed by the
14164 			 * old timestamp have been ack'ed.
14165 			 */
14166 			if (SEQ_GT(seg_ack,
14167 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14168 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14169 				mp1->b_next = NULL;
14170 			}
14171 			break;
14172 		}
14173 		mp1->b_next = NULL;
14174 		mp1->b_prev = NULL;
14175 		mp2 = mp1;
14176 		mp1 = mp1->b_cont;
14177 
14178 		/*
14179 		 * This notification is required for some zero-copy
14180 		 * clients to maintain a copy semantic. After the data
14181 		 * is ack'ed, client is safe to modify or reuse the buffer.
14182 		 */
14183 		if (tcp->tcp_snd_zcopy_aware &&
14184 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14185 			tcp_zcopy_notify(tcp);
14186 		freeb(mp2);
14187 		if (bytes_acked == 0) {
14188 			if (mp1 == NULL) {
14189 				/* Everything is ack'ed, clear the tail. */
14190 				tcp->tcp_xmit_tail = NULL;
14191 				/*
14192 				 * Cancel the timer unless we are still
14193 				 * waiting for an ACK for the FIN packet.
14194 				 */
14195 				if (tcp->tcp_timer_tid != 0 &&
14196 				    tcp->tcp_snxt == tcp->tcp_suna) {
14197 					(void) TCP_TIMER_CANCEL(tcp,
14198 					    tcp->tcp_timer_tid);
14199 					tcp->tcp_timer_tid = 0;
14200 				}
14201 				goto pre_swnd_update;
14202 			}
14203 			if (mp2 != tcp->tcp_xmit_tail)
14204 				break;
14205 			tcp->tcp_xmit_tail = mp1;
14206 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14207 			    (uintptr_t)INT_MAX);
14208 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14209 			    mp1->b_rptr);
14210 			break;
14211 		}
14212 		if (mp1 == NULL) {
14213 			/*
14214 			 * More was acked but there is nothing more
14215 			 * outstanding.  This means that the FIN was
14216 			 * just acked or that we're talking to a clown.
14217 			 */
14218 fin_acked:
14219 			ASSERT(tcp->tcp_fin_sent);
14220 			tcp->tcp_xmit_tail = NULL;
14221 			if (tcp->tcp_fin_sent) {
14222 				/* FIN was acked - making progress */
14223 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14224 				    !tcp->tcp_fin_acked)
14225 					tcp->tcp_ip_forward_progress = B_TRUE;
14226 				tcp->tcp_fin_acked = B_TRUE;
14227 				if (tcp->tcp_linger_tid != 0 &&
14228 				    TCP_TIMER_CANCEL(tcp,
14229 					tcp->tcp_linger_tid) >= 0) {
14230 					tcp_stop_lingering(tcp);
14231 				}
14232 			} else {
14233 				/*
14234 				 * We should never get here because
14235 				 * we have already checked that the
14236 				 * number of bytes ack'ed should be
14237 				 * smaller than or equal to what we
14238 				 * have sent so far (it is the
14239 				 * acceptability check of the ACK).
14240 				 * We can only get here if the send
14241 				 * queue is corrupted.
14242 				 *
14243 				 * Terminate the connection and
14244 				 * panic the system.  It is better
14245 				 * for us to panic instead of
14246 				 * continuing to avoid other disaster.
14247 				 */
14248 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14249 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14250 				panic("Memory corruption "
14251 				    "detected for connection %s.",
14252 				    tcp_display(tcp, NULL,
14253 					DISP_ADDR_AND_PORT));
14254 				/*NOTREACHED*/
14255 			}
14256 			goto pre_swnd_update;
14257 		}
14258 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14259 	}
14260 	if (tcp->tcp_unsent) {
14261 		flags |= TH_XMIT_NEEDED;
14262 	}
14263 pre_swnd_update:
14264 	tcp->tcp_xmit_head = mp1;
14265 swnd_update:
14266 	/*
14267 	 * The following check is different from most other implementations.
14268 	 * For bi-directional transfer, when segments are dropped, the
14269 	 * "normal" check will not accept a window update in those
14270 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14271 	 * segments which are outside receiver's window.  As TCP accepts
14272 	 * the ack in those retransmitted segments, if the window update in
14273 	 * the same segment is not accepted, TCP will incorrectly calculates
14274 	 * that it can send more segments.  This can create a deadlock
14275 	 * with the receiver if its window becomes zero.
14276 	 */
14277 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14278 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14279 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14280 		/*
14281 		 * The criteria for update is:
14282 		 *
14283 		 * 1. the segment acknowledges some data.  Or
14284 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14285 		 * 3. the segment is not old and the advertised window is
14286 		 * larger than the previous advertised window.
14287 		 */
14288 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14289 			flags |= TH_XMIT_NEEDED;
14290 		tcp->tcp_swnd = new_swnd;
14291 		if (new_swnd > tcp->tcp_max_swnd)
14292 			tcp->tcp_max_swnd = new_swnd;
14293 		tcp->tcp_swl1 = seg_seq;
14294 		tcp->tcp_swl2 = seg_ack;
14295 	}
14296 est:
14297 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14298 
14299 		switch (tcp->tcp_state) {
14300 		case TCPS_FIN_WAIT_1:
14301 			if (tcp->tcp_fin_acked) {
14302 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14303 				/*
14304 				 * We implement the non-standard BSD/SunOS
14305 				 * FIN_WAIT_2 flushing algorithm.
14306 				 * If there is no user attached to this
14307 				 * TCP endpoint, then this TCP struct
14308 				 * could hang around forever in FIN_WAIT_2
14309 				 * state if the peer forgets to send us
14310 				 * a FIN.  To prevent this, we wait only
14311 				 * 2*MSL (a convenient time value) for
14312 				 * the FIN to arrive.  If it doesn't show up,
14313 				 * we flush the TCP endpoint.  This algorithm,
14314 				 * though a violation of RFC-793, has worked
14315 				 * for over 10 years in BSD systems.
14316 				 * Note: SunOS 4.x waits 675 seconds before
14317 				 * flushing the FIN_WAIT_2 connection.
14318 				 */
14319 				TCP_TIMER_RESTART(tcp,
14320 				    tcp_fin_wait_2_flush_interval);
14321 			}
14322 			break;
14323 		case TCPS_FIN_WAIT_2:
14324 			break;	/* Shutdown hook? */
14325 		case TCPS_LAST_ACK:
14326 			freemsg(mp);
14327 			if (tcp->tcp_fin_acked) {
14328 				(void) tcp_clean_death(tcp, 0, 19);
14329 				return;
14330 			}
14331 			goto xmit_check;
14332 		case TCPS_CLOSING:
14333 			if (tcp->tcp_fin_acked) {
14334 				tcp->tcp_state = TCPS_TIME_WAIT;
14335 				if (!TCP_IS_DETACHED(tcp)) {
14336 					TCP_TIMER_RESTART(tcp,
14337 					    tcp_time_wait_interval);
14338 				} else {
14339 					tcp_time_wait_append(tcp);
14340 					TCP_DBGSTAT(tcp_rput_time_wait);
14341 				}
14342 			}
14343 			/*FALLTHRU*/
14344 		case TCPS_CLOSE_WAIT:
14345 			freemsg(mp);
14346 			goto xmit_check;
14347 		default:
14348 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14349 			break;
14350 		}
14351 	}
14352 	if (flags & TH_FIN) {
14353 		/* Make sure we ack the fin */
14354 		flags |= TH_ACK_NEEDED;
14355 		if (!tcp->tcp_fin_rcvd) {
14356 			tcp->tcp_fin_rcvd = B_TRUE;
14357 			tcp->tcp_rnxt++;
14358 			tcph = tcp->tcp_tcph;
14359 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14360 
14361 			/*
14362 			 * Generate the ordrel_ind at the end unless we
14363 			 * are an eager guy.
14364 			 * In the eager case tcp_rsrv will do this when run
14365 			 * after tcp_accept is done.
14366 			 */
14367 			if (tcp->tcp_listener == NULL &&
14368 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14369 				flags |= TH_ORDREL_NEEDED;
14370 			switch (tcp->tcp_state) {
14371 			case TCPS_SYN_RCVD:
14372 			case TCPS_ESTABLISHED:
14373 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14374 				/* Keepalive? */
14375 				break;
14376 			case TCPS_FIN_WAIT_1:
14377 				if (!tcp->tcp_fin_acked) {
14378 					tcp->tcp_state = TCPS_CLOSING;
14379 					break;
14380 				}
14381 				/* FALLTHRU */
14382 			case TCPS_FIN_WAIT_2:
14383 				tcp->tcp_state = TCPS_TIME_WAIT;
14384 				if (!TCP_IS_DETACHED(tcp)) {
14385 					TCP_TIMER_RESTART(tcp,
14386 					    tcp_time_wait_interval);
14387 				} else {
14388 					tcp_time_wait_append(tcp);
14389 					TCP_DBGSTAT(tcp_rput_time_wait);
14390 				}
14391 				if (seg_len) {
14392 					/*
14393 					 * implies data piggybacked on FIN.
14394 					 * break to handle data.
14395 					 */
14396 					break;
14397 				}
14398 				freemsg(mp);
14399 				goto ack_check;
14400 			}
14401 		}
14402 	}
14403 	if (mp == NULL)
14404 		goto xmit_check;
14405 	if (seg_len == 0) {
14406 		freemsg(mp);
14407 		goto xmit_check;
14408 	}
14409 	if (mp->b_rptr == mp->b_wptr) {
14410 		/*
14411 		 * The header has been consumed, so we remove the
14412 		 * zero-length mblk here.
14413 		 */
14414 		mp1 = mp;
14415 		mp = mp->b_cont;
14416 		freeb(mp1);
14417 	}
14418 	tcph = tcp->tcp_tcph;
14419 	tcp->tcp_rack_cnt++;
14420 	{
14421 		uint32_t cur_max;
14422 
14423 		cur_max = tcp->tcp_rack_cur_max;
14424 		if (tcp->tcp_rack_cnt >= cur_max) {
14425 			/*
14426 			 * We have more unacked data than we should - send
14427 			 * an ACK now.
14428 			 */
14429 			flags |= TH_ACK_NEEDED;
14430 			cur_max++;
14431 			if (cur_max > tcp->tcp_rack_abs_max)
14432 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14433 			else
14434 				tcp->tcp_rack_cur_max = cur_max;
14435 		} else if (TCP_IS_DETACHED(tcp)) {
14436 			/* We don't have an ACK timer for detached TCP. */
14437 			flags |= TH_ACK_NEEDED;
14438 		} else if (seg_len < mss) {
14439 			/*
14440 			 * If we get a segment that is less than an mss, and we
14441 			 * already have unacknowledged data, and the amount
14442 			 * unacknowledged is not a multiple of mss, then we
14443 			 * better generate an ACK now.  Otherwise, this may be
14444 			 * the tail piece of a transaction, and we would rather
14445 			 * wait for the response.
14446 			 */
14447 			uint32_t udif;
14448 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14449 			    (uintptr_t)INT_MAX);
14450 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14451 			if (udif && (udif % mss))
14452 				flags |= TH_ACK_NEEDED;
14453 			else
14454 				flags |= TH_ACK_TIMER_NEEDED;
14455 		} else {
14456 			/* Start delayed ack timer */
14457 			flags |= TH_ACK_TIMER_NEEDED;
14458 		}
14459 	}
14460 	tcp->tcp_rnxt += seg_len;
14461 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14462 
14463 	/* Update SACK list */
14464 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14465 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14466 		    &(tcp->tcp_num_sack_blk));
14467 	}
14468 
14469 	if (tcp->tcp_urp_mp) {
14470 		tcp->tcp_urp_mp->b_cont = mp;
14471 		mp = tcp->tcp_urp_mp;
14472 		tcp->tcp_urp_mp = NULL;
14473 		/* Ready for a new signal. */
14474 		tcp->tcp_urp_last_valid = B_FALSE;
14475 #ifdef DEBUG
14476 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14477 		    "tcp_rput: sending exdata_ind %s",
14478 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14479 #endif /* DEBUG */
14480 	}
14481 
14482 	/*
14483 	 * Check for ancillary data changes compared to last segment.
14484 	 */
14485 	if (tcp->tcp_ipv6_recvancillary != 0) {
14486 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14487 		if (mp == NULL)
14488 			return;
14489 	}
14490 
14491 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14492 		/*
14493 		 * Side queue inbound data until the accept happens.
14494 		 * tcp_accept/tcp_rput drains this when the accept happens.
14495 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14496 		 * T_EXDATA_IND) it is queued on b_next.
14497 		 * XXX Make urgent data use this. Requires:
14498 		 *	Removing tcp_listener check for TH_URG
14499 		 *	Making M_PCPROTO and MARK messages skip the eager case
14500 		 */
14501 
14502 		if (tcp->tcp_kssl_pending) {
14503 			tcp_kssl_input(tcp, mp);
14504 		} else {
14505 			tcp_rcv_enqueue(tcp, mp, seg_len);
14506 		}
14507 	} else {
14508 		if (mp->b_datap->db_type != M_DATA ||
14509 		    (flags & TH_MARKNEXT_NEEDED)) {
14510 			if (tcp->tcp_rcv_list != NULL) {
14511 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14512 			}
14513 			ASSERT(tcp->tcp_rcv_list == NULL ||
14514 			    tcp->tcp_fused_sigurg);
14515 			if (flags & TH_MARKNEXT_NEEDED) {
14516 #ifdef DEBUG
14517 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14518 				    "tcp_rput: sending MSGMARKNEXT %s",
14519 				    tcp_display(tcp, NULL,
14520 				    DISP_PORT_ONLY));
14521 #endif /* DEBUG */
14522 				mp->b_flag |= MSGMARKNEXT;
14523 				flags &= ~TH_MARKNEXT_NEEDED;
14524 			}
14525 
14526 			/* Does this need SSL processing first? */
14527 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14528 			    (DB_TYPE(mp) == M_DATA)) {
14529 				tcp_kssl_input(tcp, mp);
14530 			} else {
14531 				putnext(tcp->tcp_rq, mp);
14532 				if (!canputnext(tcp->tcp_rq))
14533 					tcp->tcp_rwnd -= seg_len;
14534 			}
14535 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14536 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14537 			if (tcp->tcp_rcv_list != NULL) {
14538 				/*
14539 				 * Enqueue the new segment first and then
14540 				 * call tcp_rcv_drain() to send all data
14541 				 * up.  The other way to do this is to
14542 				 * send all queued data up and then call
14543 				 * putnext() to send the new segment up.
14544 				 * This way can remove the else part later
14545 				 * on.
14546 				 *
14547 				 * We don't this to avoid one more call to
14548 				 * canputnext() as tcp_rcv_drain() needs to
14549 				 * call canputnext().
14550 				 */
14551 				tcp_rcv_enqueue(tcp, mp, seg_len);
14552 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14553 			} else {
14554 				/* Does this need SSL processing first? */
14555 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14556 				    (DB_TYPE(mp) == M_DATA)) {
14557 					tcp_kssl_input(tcp, mp);
14558 				} else {
14559 					putnext(tcp->tcp_rq, mp);
14560 					if (!canputnext(tcp->tcp_rq))
14561 						tcp->tcp_rwnd -= seg_len;
14562 				}
14563 			}
14564 		} else {
14565 			/*
14566 			 * Enqueue all packets when processing an mblk
14567 			 * from the co queue and also enqueue normal packets.
14568 			 */
14569 			tcp_rcv_enqueue(tcp, mp, seg_len);
14570 		}
14571 		/*
14572 		 * Make sure the timer is running if we have data waiting
14573 		 * for a push bit. This provides resiliency against
14574 		 * implementations that do not correctly generate push bits.
14575 		 */
14576 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14577 			/*
14578 			 * The connection may be closed at this point, so don't
14579 			 * do anything for a detached tcp.
14580 			 */
14581 			if (!TCP_IS_DETACHED(tcp))
14582 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14583 				    tcp_push_timer,
14584 				    MSEC_TO_TICK(tcp_push_timer_interval));
14585 		}
14586 	}
14587 xmit_check:
14588 	/* Is there anything left to do? */
14589 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14590 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14591 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14592 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14593 		goto done;
14594 
14595 	/* Any transmit work to do and a non-zero window? */
14596 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14597 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14598 		if (flags & TH_REXMIT_NEEDED) {
14599 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14600 
14601 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14602 			if (snd_size > mss)
14603 				snd_size = mss;
14604 			if (snd_size > tcp->tcp_swnd)
14605 				snd_size = tcp->tcp_swnd;
14606 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14607 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14608 			    B_TRUE);
14609 
14610 			if (mp1 != NULL) {
14611 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14612 				tcp->tcp_csuna = tcp->tcp_snxt;
14613 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14614 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14615 				TCP_RECORD_TRACE(tcp, mp1,
14616 				    TCP_TRACE_SEND_PKT);
14617 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14618 			}
14619 		}
14620 		if (flags & TH_NEED_SACK_REXMIT) {
14621 			tcp_sack_rxmit(tcp, &flags);
14622 		}
14623 		/*
14624 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14625 		 * out new segment.  Note that tcp_rexmit should not be
14626 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14627 		 */
14628 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14629 			if (!tcp->tcp_rexmit) {
14630 				tcp_wput_data(tcp, NULL, B_FALSE);
14631 			} else {
14632 				tcp_ss_rexmit(tcp);
14633 			}
14634 		}
14635 		/*
14636 		 * Adjust tcp_cwnd back to normal value after sending
14637 		 * new data segments.
14638 		 */
14639 		if (flags & TH_LIMIT_XMIT) {
14640 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14641 			/*
14642 			 * This will restart the timer.  Restarting the
14643 			 * timer is used to avoid a timeout before the
14644 			 * limited transmitted segment's ACK gets back.
14645 			 */
14646 			if (tcp->tcp_xmit_head != NULL)
14647 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14648 		}
14649 
14650 		/* Anything more to do? */
14651 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14652 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14653 			goto done;
14654 	}
14655 ack_check:
14656 	if (flags & TH_SEND_URP_MARK) {
14657 		ASSERT(tcp->tcp_urp_mark_mp);
14658 		/*
14659 		 * Send up any queued data and then send the mark message
14660 		 */
14661 		if (tcp->tcp_rcv_list != NULL) {
14662 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14663 		}
14664 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14665 
14666 		mp1 = tcp->tcp_urp_mark_mp;
14667 		tcp->tcp_urp_mark_mp = NULL;
14668 #ifdef DEBUG
14669 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14670 		    "tcp_rput: sending zero-length %s %s",
14671 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14672 		    "MSGNOTMARKNEXT"),
14673 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14674 #endif /* DEBUG */
14675 		putnext(tcp->tcp_rq, mp1);
14676 		flags &= ~TH_SEND_URP_MARK;
14677 	}
14678 	if (flags & TH_ACK_NEEDED) {
14679 		/*
14680 		 * Time to send an ack for some reason.
14681 		 */
14682 		mp1 = tcp_ack_mp(tcp);
14683 
14684 		if (mp1 != NULL) {
14685 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14686 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14687 			BUMP_LOCAL(tcp->tcp_obsegs);
14688 			BUMP_MIB(&tcp_mib, tcpOutAck);
14689 		}
14690 		if (tcp->tcp_ack_tid != 0) {
14691 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14692 			tcp->tcp_ack_tid = 0;
14693 		}
14694 	}
14695 	if (flags & TH_ACK_TIMER_NEEDED) {
14696 		/*
14697 		 * Arrange for deferred ACK or push wait timeout.
14698 		 * Start timer if it is not already running.
14699 		 */
14700 		if (tcp->tcp_ack_tid == 0) {
14701 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14702 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14703 			    (clock_t)tcp_local_dack_interval :
14704 			    (clock_t)tcp_deferred_ack_interval));
14705 		}
14706 	}
14707 	if (flags & TH_ORDREL_NEEDED) {
14708 		/*
14709 		 * Send up the ordrel_ind unless we are an eager guy.
14710 		 * In the eager case tcp_rsrv will do this when run
14711 		 * after tcp_accept is done.
14712 		 */
14713 		ASSERT(tcp->tcp_listener == NULL);
14714 		if (tcp->tcp_rcv_list != NULL) {
14715 			/*
14716 			 * Push any mblk(s) enqueued from co processing.
14717 			 */
14718 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14719 		}
14720 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14721 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14722 			tcp->tcp_ordrel_done = B_TRUE;
14723 			putnext(tcp->tcp_rq, mp1);
14724 			if (tcp->tcp_deferred_clean_death) {
14725 				/*
14726 				 * tcp_clean_death was deferred
14727 				 * for T_ORDREL_IND - do it now
14728 				 */
14729 				(void) tcp_clean_death(tcp,
14730 				    tcp->tcp_client_errno, 20);
14731 				tcp->tcp_deferred_clean_death =	B_FALSE;
14732 			}
14733 		} else {
14734 			/*
14735 			 * Run the orderly release in the
14736 			 * service routine.
14737 			 */
14738 			qenable(tcp->tcp_rq);
14739 			/*
14740 			 * Caveat(XXX): The machine may be so
14741 			 * overloaded that tcp_rsrv() is not scheduled
14742 			 * until after the endpoint has transitioned
14743 			 * to TCPS_TIME_WAIT
14744 			 * and tcp_time_wait_interval expires. Then
14745 			 * tcp_timer() will blow away state in tcp_t
14746 			 * and T_ORDREL_IND will never be delivered
14747 			 * upstream. Unlikely but potentially
14748 			 * a problem.
14749 			 */
14750 		}
14751 	}
14752 done:
14753 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14754 }
14755 
14756 /*
14757  * This function does PAWS protection check. Returns B_TRUE if the
14758  * segment passes the PAWS test, else returns B_FALSE.
14759  */
14760 boolean_t
14761 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
14762 {
14763 	uint8_t	flags;
14764 	int	options;
14765 	uint8_t *up;
14766 
14767 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
14768 	/*
14769 	 * If timestamp option is aligned nicely, get values inline,
14770 	 * otherwise call general routine to parse.  Only do that
14771 	 * if timestamp is the only option.
14772 	 */
14773 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
14774 	    TCPOPT_REAL_TS_LEN &&
14775 	    OK_32PTR((up = ((uint8_t *)tcph) +
14776 	    TCP_MIN_HEADER_LENGTH)) &&
14777 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
14778 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
14779 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
14780 
14781 		options = TCP_OPT_TSTAMP_PRESENT;
14782 	} else {
14783 		if (tcp->tcp_snd_sack_ok) {
14784 			tcpoptp->tcp = tcp;
14785 		} else {
14786 			tcpoptp->tcp = NULL;
14787 		}
14788 		options = tcp_parse_options(tcph, tcpoptp);
14789 	}
14790 
14791 	if (options & TCP_OPT_TSTAMP_PRESENT) {
14792 		/*
14793 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
14794 		 * regardless of the timestamp, page 18 RFC 1323.bis.
14795 		 */
14796 		if ((flags & TH_RST) == 0 &&
14797 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
14798 		    tcp->tcp_ts_recent)) {
14799 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
14800 			    PAWS_TIMEOUT)) {
14801 				/* This segment is not acceptable. */
14802 				return (B_FALSE);
14803 			} else {
14804 				/*
14805 				 * Connection has been idle for
14806 				 * too long.  Reset the timestamp
14807 				 * and assume the segment is valid.
14808 				 */
14809 				tcp->tcp_ts_recent =
14810 				    tcpoptp->tcp_opt_ts_val;
14811 			}
14812 		}
14813 	} else {
14814 		/*
14815 		 * If we don't get a timestamp on every packet, we
14816 		 * figure we can't really trust 'em, so we stop sending
14817 		 * and parsing them.
14818 		 */
14819 		tcp->tcp_snd_ts_ok = B_FALSE;
14820 
14821 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14822 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14823 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
14824 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
14825 		if (tcp->tcp_snd_sack_ok) {
14826 			ASSERT(tcp->tcp_sack_info != NULL);
14827 			tcp->tcp_max_sack_blk = 4;
14828 		}
14829 	}
14830 	return (B_TRUE);
14831 }
14832 
14833 /*
14834  * Attach ancillary data to a received TCP segments for the
14835  * ancillary pieces requested by the application that are
14836  * different than they were in the previous data segment.
14837  *
14838  * Save the "current" values once memory allocation is ok so that
14839  * when memory allocation fails we can just wait for the next data segment.
14840  */
14841 static mblk_t *
14842 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
14843 {
14844 	struct T_optdata_ind *todi;
14845 	int optlen;
14846 	uchar_t *optptr;
14847 	struct T_opthdr *toh;
14848 	uint_t addflag;	/* Which pieces to add */
14849 	mblk_t *mp1;
14850 
14851 	optlen = 0;
14852 	addflag = 0;
14853 	/* If app asked for pktinfo and the index has changed ... */
14854 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
14855 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
14856 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
14857 		optlen += sizeof (struct T_opthdr) +
14858 		    sizeof (struct in6_pktinfo);
14859 		addflag |= TCP_IPV6_RECVPKTINFO;
14860 	}
14861 	/* If app asked for hoplimit and it has changed ... */
14862 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
14863 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
14864 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
14865 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14866 		addflag |= TCP_IPV6_RECVHOPLIMIT;
14867 	}
14868 	/* If app asked for tclass and it has changed ... */
14869 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
14870 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
14871 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
14872 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14873 		addflag |= TCP_IPV6_RECVTCLASS;
14874 	}
14875 	/*
14876 	 * If app asked for hopbyhop headers and it has changed ...
14877 	 * For security labels, note that (1) security labels can't change on
14878 	 * a connected socket at all, (2) we're connected to at most one peer,
14879 	 * (3) if anything changes, then it must be some other extra option.
14880 	 */
14881 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
14882 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
14883 	    (ipp->ipp_fields & IPPF_HOPOPTS),
14884 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
14885 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
14886 		    tcp->tcp_label_len;
14887 		addflag |= TCP_IPV6_RECVHOPOPTS;
14888 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
14889 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
14890 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
14891 			return (mp);
14892 	}
14893 	/* If app asked for dst headers before routing headers ... */
14894 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
14895 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
14896 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
14897 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
14898 		optlen += sizeof (struct T_opthdr) +
14899 		    ipp->ipp_rtdstoptslen;
14900 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
14901 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
14902 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
14903 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
14904 			return (mp);
14905 	}
14906 	/* If app asked for routing headers and it has changed ... */
14907 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
14908 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
14909 	    (ipp->ipp_fields & IPPF_RTHDR),
14910 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
14911 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
14912 		addflag |= TCP_IPV6_RECVRTHDR;
14913 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
14914 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
14915 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
14916 			return (mp);
14917 	}
14918 	/* If app asked for dest headers and it has changed ... */
14919 	if ((tcp->tcp_ipv6_recvancillary &
14920 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
14921 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
14922 	    (ipp->ipp_fields & IPPF_DSTOPTS),
14923 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
14924 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
14925 		addflag |= TCP_IPV6_RECVDSTOPTS;
14926 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
14927 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
14928 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
14929 			return (mp);
14930 	}
14931 
14932 	if (optlen == 0) {
14933 		/* Nothing to add */
14934 		return (mp);
14935 	}
14936 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
14937 	if (mp1 == NULL) {
14938 		/*
14939 		 * Defer sending ancillary data until the next TCP segment
14940 		 * arrives.
14941 		 */
14942 		return (mp);
14943 	}
14944 	mp1->b_cont = mp;
14945 	mp = mp1;
14946 	mp->b_wptr += sizeof (*todi) + optlen;
14947 	mp->b_datap->db_type = M_PROTO;
14948 	todi = (struct T_optdata_ind *)mp->b_rptr;
14949 	todi->PRIM_type = T_OPTDATA_IND;
14950 	todi->DATA_flag = 1;	/* MORE data */
14951 	todi->OPT_length = optlen;
14952 	todi->OPT_offset = sizeof (*todi);
14953 	optptr = (uchar_t *)&todi[1];
14954 	/*
14955 	 * If app asked for pktinfo and the index has changed ...
14956 	 * Note that the local address never changes for the connection.
14957 	 */
14958 	if (addflag & TCP_IPV6_RECVPKTINFO) {
14959 		struct in6_pktinfo *pkti;
14960 
14961 		toh = (struct T_opthdr *)optptr;
14962 		toh->level = IPPROTO_IPV6;
14963 		toh->name = IPV6_PKTINFO;
14964 		toh->len = sizeof (*toh) + sizeof (*pkti);
14965 		toh->status = 0;
14966 		optptr += sizeof (*toh);
14967 		pkti = (struct in6_pktinfo *)optptr;
14968 		if (tcp->tcp_ipversion == IPV6_VERSION)
14969 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
14970 		else
14971 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
14972 			    &pkti->ipi6_addr);
14973 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
14974 		optptr += sizeof (*pkti);
14975 		ASSERT(OK_32PTR(optptr));
14976 		/* Save as "last" value */
14977 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
14978 	}
14979 	/* If app asked for hoplimit and it has changed ... */
14980 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
14981 		toh = (struct T_opthdr *)optptr;
14982 		toh->level = IPPROTO_IPV6;
14983 		toh->name = IPV6_HOPLIMIT;
14984 		toh->len = sizeof (*toh) + sizeof (uint_t);
14985 		toh->status = 0;
14986 		optptr += sizeof (*toh);
14987 		*(uint_t *)optptr = ipp->ipp_hoplimit;
14988 		optptr += sizeof (uint_t);
14989 		ASSERT(OK_32PTR(optptr));
14990 		/* Save as "last" value */
14991 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
14992 	}
14993 	/* If app asked for tclass and it has changed ... */
14994 	if (addflag & TCP_IPV6_RECVTCLASS) {
14995 		toh = (struct T_opthdr *)optptr;
14996 		toh->level = IPPROTO_IPV6;
14997 		toh->name = IPV6_TCLASS;
14998 		toh->len = sizeof (*toh) + sizeof (uint_t);
14999 		toh->status = 0;
15000 		optptr += sizeof (*toh);
15001 		*(uint_t *)optptr = ipp->ipp_tclass;
15002 		optptr += sizeof (uint_t);
15003 		ASSERT(OK_32PTR(optptr));
15004 		/* Save as "last" value */
15005 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15006 	}
15007 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15008 		toh = (struct T_opthdr *)optptr;
15009 		toh->level = IPPROTO_IPV6;
15010 		toh->name = IPV6_HOPOPTS;
15011 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15012 		    tcp->tcp_label_len;
15013 		toh->status = 0;
15014 		optptr += sizeof (*toh);
15015 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15016 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15017 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15018 		ASSERT(OK_32PTR(optptr));
15019 		/* Save as last value */
15020 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15021 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15022 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15023 	}
15024 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15025 		toh = (struct T_opthdr *)optptr;
15026 		toh->level = IPPROTO_IPV6;
15027 		toh->name = IPV6_RTHDRDSTOPTS;
15028 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15029 		toh->status = 0;
15030 		optptr += sizeof (*toh);
15031 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15032 		optptr += ipp->ipp_rtdstoptslen;
15033 		ASSERT(OK_32PTR(optptr));
15034 		/* Save as last value */
15035 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15036 		    &tcp->tcp_rtdstoptslen,
15037 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15038 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15039 	}
15040 	if (addflag & TCP_IPV6_RECVRTHDR) {
15041 		toh = (struct T_opthdr *)optptr;
15042 		toh->level = IPPROTO_IPV6;
15043 		toh->name = IPV6_RTHDR;
15044 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15045 		toh->status = 0;
15046 		optptr += sizeof (*toh);
15047 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15048 		optptr += ipp->ipp_rthdrlen;
15049 		ASSERT(OK_32PTR(optptr));
15050 		/* Save as last value */
15051 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15052 		    (ipp->ipp_fields & IPPF_RTHDR),
15053 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15054 	}
15055 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15056 		toh = (struct T_opthdr *)optptr;
15057 		toh->level = IPPROTO_IPV6;
15058 		toh->name = IPV6_DSTOPTS;
15059 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15060 		toh->status = 0;
15061 		optptr += sizeof (*toh);
15062 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15063 		optptr += ipp->ipp_dstoptslen;
15064 		ASSERT(OK_32PTR(optptr));
15065 		/* Save as last value */
15066 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15067 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15068 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15069 	}
15070 	ASSERT(optptr == mp->b_wptr);
15071 	return (mp);
15072 }
15073 
15074 
15075 /*
15076  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15077  * or a "bad" IRE detected by tcp_adapt_ire.
15078  * We can't tell if the failure was due to the laddr or the faddr
15079  * thus we clear out all addresses and ports.
15080  */
15081 static void
15082 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15083 {
15084 	queue_t	*q = tcp->tcp_rq;
15085 	tcph_t	*tcph;
15086 	struct T_error_ack *tea;
15087 	conn_t	*connp = tcp->tcp_connp;
15088 
15089 
15090 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15091 
15092 	if (mp->b_cont) {
15093 		freemsg(mp->b_cont);
15094 		mp->b_cont = NULL;
15095 	}
15096 	tea = (struct T_error_ack *)mp->b_rptr;
15097 	switch (tea->PRIM_type) {
15098 	case T_BIND_ACK:
15099 		/*
15100 		 * Need to unbind with classifier since we were just told that
15101 		 * our bind succeeded.
15102 		 */
15103 		tcp->tcp_hard_bound = B_FALSE;
15104 		tcp->tcp_hard_binding = B_FALSE;
15105 
15106 		ipcl_hash_remove(connp);
15107 		/* Reuse the mblk if possible */
15108 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15109 			sizeof (*tea));
15110 		mp->b_rptr = mp->b_datap->db_base;
15111 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15112 		tea = (struct T_error_ack *)mp->b_rptr;
15113 		tea->PRIM_type = T_ERROR_ACK;
15114 		tea->TLI_error = TSYSERR;
15115 		tea->UNIX_error = error;
15116 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15117 			tea->ERROR_prim = T_CONN_REQ;
15118 		} else {
15119 			tea->ERROR_prim = O_T_BIND_REQ;
15120 		}
15121 		break;
15122 
15123 	case T_ERROR_ACK:
15124 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15125 			tea->ERROR_prim = T_CONN_REQ;
15126 		break;
15127 	default:
15128 		panic("tcp_bind_failed: unexpected TPI type");
15129 		/*NOTREACHED*/
15130 	}
15131 
15132 	tcp->tcp_state = TCPS_IDLE;
15133 	if (tcp->tcp_ipversion == IPV4_VERSION)
15134 		tcp->tcp_ipha->ipha_src = 0;
15135 	else
15136 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15137 	/*
15138 	 * Copy of the src addr. in tcp_t is needed since
15139 	 * the lookup funcs. can only look at tcp_t
15140 	 */
15141 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15142 
15143 	tcph = tcp->tcp_tcph;
15144 	tcph->th_lport[0] = 0;
15145 	tcph->th_lport[1] = 0;
15146 	tcp_bind_hash_remove(tcp);
15147 	bzero(&connp->u_port, sizeof (connp->u_port));
15148 	/* blow away saved option results if any */
15149 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15150 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15151 
15152 	conn_delete_ire(tcp->tcp_connp, NULL);
15153 	putnext(q, mp);
15154 }
15155 
15156 /*
15157  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15158  * messages.
15159  */
15160 void
15161 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15162 {
15163 	mblk_t	*mp1;
15164 	uchar_t	*rptr = mp->b_rptr;
15165 	queue_t	*q = tcp->tcp_rq;
15166 	struct T_error_ack *tea;
15167 	uint32_t mss;
15168 	mblk_t *syn_mp;
15169 	mblk_t *mdti;
15170 	int	retval;
15171 	mblk_t *ire_mp;
15172 
15173 	switch (mp->b_datap->db_type) {
15174 	case M_PROTO:
15175 	case M_PCPROTO:
15176 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15177 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15178 			break;
15179 		tea = (struct T_error_ack *)rptr;
15180 		switch (tea->PRIM_type) {
15181 		case T_BIND_ACK:
15182 			/*
15183 			 * Adapt Multidata information, if any.  The
15184 			 * following tcp_mdt_update routine will free
15185 			 * the message.
15186 			 */
15187 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15188 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15189 				    b_rptr)->mdt_capab, B_TRUE);
15190 				freemsg(mdti);
15191 			}
15192 
15193 			/* Get the IRE, if we had requested for it */
15194 			ire_mp = tcp_ire_mp(mp);
15195 
15196 			if (tcp->tcp_hard_binding) {
15197 				tcp->tcp_hard_binding = B_FALSE;
15198 				tcp->tcp_hard_bound = B_TRUE;
15199 				CL_INET_CONNECT(tcp);
15200 			} else {
15201 				if (ire_mp != NULL)
15202 					freeb(ire_mp);
15203 				goto after_syn_sent;
15204 			}
15205 
15206 			retval = tcp_adapt_ire(tcp, ire_mp);
15207 			if (ire_mp != NULL)
15208 				freeb(ire_mp);
15209 			if (retval == 0) {
15210 				tcp_bind_failed(tcp, mp,
15211 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15212 				    ENETUNREACH : EADDRNOTAVAIL));
15213 				return;
15214 			}
15215 			/*
15216 			 * Don't let an endpoint connect to itself.
15217 			 * Also checked in tcp_connect() but that
15218 			 * check can't handle the case when the
15219 			 * local IP address is INADDR_ANY.
15220 			 */
15221 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15222 				if ((tcp->tcp_ipha->ipha_dst ==
15223 				    tcp->tcp_ipha->ipha_src) &&
15224 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15225 				    tcp->tcp_tcph->th_fport))) {
15226 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15227 					return;
15228 				}
15229 			} else {
15230 				if (IN6_ARE_ADDR_EQUAL(
15231 				    &tcp->tcp_ip6h->ip6_dst,
15232 				    &tcp->tcp_ip6h->ip6_src) &&
15233 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15234 				    tcp->tcp_tcph->th_fport))) {
15235 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15236 					return;
15237 				}
15238 			}
15239 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15240 			/*
15241 			 * This should not be possible!  Just for
15242 			 * defensive coding...
15243 			 */
15244 			if (tcp->tcp_state != TCPS_SYN_SENT)
15245 				goto after_syn_sent;
15246 
15247 			if (is_system_labeled() &&
15248 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15249 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15250 				return;
15251 			}
15252 
15253 			ASSERT(q == tcp->tcp_rq);
15254 			/*
15255 			 * tcp_adapt_ire() does not adjust
15256 			 * for TCP/IP header length.
15257 			 */
15258 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15259 
15260 			/*
15261 			 * Just make sure our rwnd is at
15262 			 * least tcp_recv_hiwat_mss * MSS
15263 			 * large, and round up to the nearest
15264 			 * MSS.
15265 			 *
15266 			 * We do the round up here because
15267 			 * we need to get the interface
15268 			 * MTU first before we can do the
15269 			 * round up.
15270 			 */
15271 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15272 			    tcp_recv_hiwat_minmss * mss);
15273 			q->q_hiwat = tcp->tcp_rwnd;
15274 			tcp_set_ws_value(tcp);
15275 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15276 			    tcp->tcp_tcph->th_win);
15277 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15278 				tcp->tcp_snd_ws_ok = B_TRUE;
15279 
15280 			/*
15281 			 * Set tcp_snd_ts_ok to true
15282 			 * so that tcp_xmit_mp will
15283 			 * include the timestamp
15284 			 * option in the SYN segment.
15285 			 */
15286 			if (tcp_tstamp_always ||
15287 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15288 				tcp->tcp_snd_ts_ok = B_TRUE;
15289 			}
15290 
15291 			/*
15292 			 * tcp_snd_sack_ok can be set in
15293 			 * tcp_adapt_ire() if the sack metric
15294 			 * is set.  So check it here also.
15295 			 */
15296 			if (tcp_sack_permitted == 2 ||
15297 			    tcp->tcp_snd_sack_ok) {
15298 				if (tcp->tcp_sack_info == NULL) {
15299 					tcp->tcp_sack_info =
15300 					kmem_cache_alloc(tcp_sack_info_cache,
15301 					    KM_SLEEP);
15302 				}
15303 				tcp->tcp_snd_sack_ok = B_TRUE;
15304 			}
15305 
15306 			/*
15307 			 * Should we use ECN?  Note that the current
15308 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15309 			 * is 1.  The reason for doing this is that there
15310 			 * are equipments out there that will drop ECN
15311 			 * enabled IP packets.  Setting it to 1 avoids
15312 			 * compatibility problems.
15313 			 */
15314 			if (tcp_ecn_permitted == 2)
15315 				tcp->tcp_ecn_ok = B_TRUE;
15316 
15317 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15318 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15319 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15320 			if (syn_mp) {
15321 				cred_t *cr;
15322 				pid_t pid;
15323 
15324 				/*
15325 				 * Obtain the credential from the
15326 				 * thread calling connect(); the credential
15327 				 * lives on in the second mblk which
15328 				 * originated from T_CONN_REQ and is echoed
15329 				 * with the T_BIND_ACK from ip.  If none
15330 				 * can be found, default to the creator
15331 				 * of the socket.
15332 				 */
15333 				if (mp->b_cont == NULL ||
15334 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15335 					cr = tcp->tcp_cred;
15336 					pid = tcp->tcp_cpid;
15337 				} else {
15338 					pid = DB_CPID(mp->b_cont);
15339 				}
15340 
15341 				TCP_RECORD_TRACE(tcp, syn_mp,
15342 				    TCP_TRACE_SEND_PKT);
15343 				mblk_setcred(syn_mp, cr);
15344 				DB_CPID(syn_mp) = pid;
15345 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15346 			}
15347 		after_syn_sent:
15348 			/*
15349 			 * A trailer mblk indicates a waiting client upstream.
15350 			 * We complete here the processing begun in
15351 			 * either tcp_bind() or tcp_connect() by passing
15352 			 * upstream the reply message they supplied.
15353 			 */
15354 			mp1 = mp;
15355 			mp = mp->b_cont;
15356 			freeb(mp1);
15357 			if (mp)
15358 				break;
15359 			return;
15360 		case T_ERROR_ACK:
15361 			if (tcp->tcp_debug) {
15362 				(void) strlog(TCP_MOD_ID, 0, 1,
15363 				    SL_TRACE|SL_ERROR,
15364 				    "tcp_rput_other: case T_ERROR_ACK, "
15365 				    "ERROR_prim == %d",
15366 				    tea->ERROR_prim);
15367 			}
15368 			switch (tea->ERROR_prim) {
15369 			case O_T_BIND_REQ:
15370 			case T_BIND_REQ:
15371 				tcp_bind_failed(tcp, mp,
15372 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15373 				    ENETUNREACH : EADDRNOTAVAIL));
15374 				return;
15375 			case T_UNBIND_REQ:
15376 				tcp->tcp_hard_binding = B_FALSE;
15377 				tcp->tcp_hard_bound = B_FALSE;
15378 				if (mp->b_cont) {
15379 					freemsg(mp->b_cont);
15380 					mp->b_cont = NULL;
15381 				}
15382 				if (tcp->tcp_unbind_pending)
15383 					tcp->tcp_unbind_pending = 0;
15384 				else {
15385 					/* From tcp_ip_unbind() - free */
15386 					freemsg(mp);
15387 					return;
15388 				}
15389 				break;
15390 			case T_SVR4_OPTMGMT_REQ:
15391 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15392 					/* T_OPTMGMT_REQ generated by TCP */
15393 					printf("T_SVR4_OPTMGMT_REQ failed "
15394 					    "%d/%d - dropped (cnt %d)\n",
15395 					    tea->TLI_error, tea->UNIX_error,
15396 					    tcp->tcp_drop_opt_ack_cnt);
15397 					freemsg(mp);
15398 					tcp->tcp_drop_opt_ack_cnt--;
15399 					return;
15400 				}
15401 				break;
15402 			}
15403 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15404 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15405 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15406 				    "- dropped (cnt %d)\n",
15407 				    tea->TLI_error, tea->UNIX_error,
15408 				    tcp->tcp_drop_opt_ack_cnt);
15409 				freemsg(mp);
15410 				tcp->tcp_drop_opt_ack_cnt--;
15411 				return;
15412 			}
15413 			break;
15414 		case T_OPTMGMT_ACK:
15415 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15416 				/* T_OPTMGMT_REQ generated by TCP */
15417 				freemsg(mp);
15418 				tcp->tcp_drop_opt_ack_cnt--;
15419 				return;
15420 			}
15421 			break;
15422 		default:
15423 			break;
15424 		}
15425 		break;
15426 	case M_CTL:
15427 		/*
15428 		 * ICMP messages.
15429 		 */
15430 		tcp_icmp_error(tcp, mp);
15431 		return;
15432 	case M_FLUSH:
15433 		if (*rptr & FLUSHR)
15434 			flushq(q, FLUSHDATA);
15435 		break;
15436 	default:
15437 		break;
15438 	}
15439 	/*
15440 	 * Make sure we set this bit before sending the ACK for
15441 	 * bind. Otherwise accept could possibly run and free
15442 	 * this tcp struct.
15443 	 */
15444 	putnext(q, mp);
15445 }
15446 
15447 /*
15448  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15449  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15450  * tcp_rsrv() try again.
15451  */
15452 static void
15453 tcp_ordrel_kick(void *arg)
15454 {
15455 	conn_t 	*connp = (conn_t *)arg;
15456 	tcp_t	*tcp = connp->conn_tcp;
15457 
15458 	tcp->tcp_ordrelid = 0;
15459 	tcp->tcp_timeout = B_FALSE;
15460 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15461 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15462 		qenable(tcp->tcp_rq);
15463 	}
15464 }
15465 
15466 /* ARGSUSED */
15467 static void
15468 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15469 {
15470 	conn_t	*connp = (conn_t *)arg;
15471 	tcp_t	*tcp = connp->conn_tcp;
15472 	queue_t	*q = tcp->tcp_rq;
15473 	uint_t	thwin;
15474 
15475 	freeb(mp);
15476 
15477 	TCP_STAT(tcp_rsrv_calls);
15478 
15479 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15480 		return;
15481 	}
15482 
15483 	if (tcp->tcp_fused) {
15484 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15485 
15486 		ASSERT(tcp->tcp_fused);
15487 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15488 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15489 		ASSERT(!TCP_IS_DETACHED(tcp));
15490 		ASSERT(tcp->tcp_connp->conn_sqp ==
15491 		    peer_tcp->tcp_connp->conn_sqp);
15492 
15493 		/*
15494 		 * Normally we would not get backenabled in synchronous
15495 		 * streams mode, but in case this happens, we need to stop
15496 		 * synchronous streams temporarily to prevent a race with
15497 		 * tcp_fuse_rrw() or tcp_fuse_rinfop().  It is safe to access
15498 		 * tcp_rcv_list here because those entry points will return
15499 		 * right away when synchronous streams is stopped.
15500 		 */
15501 		TCP_FUSE_SYNCSTR_STOP(tcp);
15502 		if (tcp->tcp_rcv_list != NULL)
15503 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15504 
15505 		tcp_clrqfull(peer_tcp);
15506 		TCP_FUSE_SYNCSTR_RESUME(tcp);
15507 		TCP_STAT(tcp_fusion_backenabled);
15508 		return;
15509 	}
15510 
15511 	if (canputnext(q)) {
15512 		tcp->tcp_rwnd = q->q_hiwat;
15513 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15514 		    << tcp->tcp_rcv_ws;
15515 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15516 		/*
15517 		 * Send back a window update immediately if TCP is above
15518 		 * ESTABLISHED state and the increase of the rcv window
15519 		 * that the other side knows is at least 1 MSS after flow
15520 		 * control is lifted.
15521 		 */
15522 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15523 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15524 			tcp_xmit_ctl(NULL, tcp,
15525 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15526 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15527 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15528 		}
15529 	}
15530 	/* Handle a failure to allocate a T_ORDREL_IND here */
15531 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15532 		ASSERT(tcp->tcp_listener == NULL);
15533 		if (tcp->tcp_rcv_list != NULL) {
15534 			(void) tcp_rcv_drain(q, tcp);
15535 		}
15536 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15537 		mp = mi_tpi_ordrel_ind();
15538 		if (mp) {
15539 			tcp->tcp_ordrel_done = B_TRUE;
15540 			putnext(q, mp);
15541 			if (tcp->tcp_deferred_clean_death) {
15542 				/*
15543 				 * tcp_clean_death was deferred for
15544 				 * T_ORDREL_IND - do it now
15545 				 */
15546 				tcp->tcp_deferred_clean_death = B_FALSE;
15547 				(void) tcp_clean_death(tcp,
15548 				    tcp->tcp_client_errno, 22);
15549 			}
15550 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15551 			/*
15552 			 * If there isn't already a timer running
15553 			 * start one.  Use a 4 second
15554 			 * timer as a fallback since it can't fail.
15555 			 */
15556 			tcp->tcp_timeout = B_TRUE;
15557 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15558 			    MSEC_TO_TICK(4000));
15559 		}
15560 	}
15561 }
15562 
15563 /*
15564  * The read side service routine is called mostly when we get back-enabled as a
15565  * result of flow control relief.  Since we don't actually queue anything in
15566  * TCP, we have no data to send out of here.  What we do is clear the receive
15567  * window, and send out a window update.
15568  * This routine is also called to drive an orderly release message upstream
15569  * if the attempt in tcp_rput failed.
15570  */
15571 static void
15572 tcp_rsrv(queue_t *q)
15573 {
15574 	conn_t *connp = Q_TO_CONN(q);
15575 	tcp_t	*tcp = connp->conn_tcp;
15576 	mblk_t	*mp;
15577 
15578 	/* No code does a putq on the read side */
15579 	ASSERT(q->q_first == NULL);
15580 
15581 	/* Nothing to do for the default queue */
15582 	if (q == tcp_g_q) {
15583 		return;
15584 	}
15585 
15586 	mp = allocb(0, BPRI_HI);
15587 	if (mp == NULL) {
15588 		/*
15589 		 * We are under memory pressure. Return for now and we
15590 		 * we will be called again later.
15591 		 */
15592 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15593 			/*
15594 			 * If there isn't already a timer running
15595 			 * start one.  Use a 4 second
15596 			 * timer as a fallback since it can't fail.
15597 			 */
15598 			tcp->tcp_timeout = B_TRUE;
15599 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15600 			    MSEC_TO_TICK(4000));
15601 		}
15602 		return;
15603 	}
15604 	CONN_INC_REF(connp);
15605 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15606 	    SQTAG_TCP_RSRV);
15607 }
15608 
15609 /*
15610  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15611  * We do not allow the receive window to shrink.  After setting rwnd,
15612  * set the flow control hiwat of the stream.
15613  *
15614  * This function is called in 2 cases:
15615  *
15616  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15617  *    connection (passive open) and in tcp_rput_data() for active connect.
15618  *    This is called after tcp_mss_set() when the desired MSS value is known.
15619  *    This makes sure that our window size is a mutiple of the other side's
15620  *    MSS.
15621  * 2) Handling SO_RCVBUF option.
15622  *
15623  * It is ASSUMED that the requested size is a multiple of the current MSS.
15624  *
15625  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15626  * user requests so.
15627  */
15628 static int
15629 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15630 {
15631 	uint32_t	mss = tcp->tcp_mss;
15632 	uint32_t	old_max_rwnd;
15633 	uint32_t	max_transmittable_rwnd;
15634 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15635 
15636 	if (tcp->tcp_fused) {
15637 		size_t sth_hiwat;
15638 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15639 
15640 		ASSERT(peer_tcp != NULL);
15641 		/*
15642 		 * Record the stream head's high water mark for
15643 		 * this endpoint; this is used for flow-control
15644 		 * purposes in tcp_fuse_output().
15645 		 */
15646 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15647 		if (!tcp_detached)
15648 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15649 
15650 		/*
15651 		 * In the fusion case, the maxpsz stream head value of
15652 		 * our peer is set according to its send buffer size
15653 		 * and our receive buffer size; since the latter may
15654 		 * have changed we need to update the peer's maxpsz.
15655 		 */
15656 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15657 		return (rwnd);
15658 	}
15659 
15660 	if (tcp_detached)
15661 		old_max_rwnd = tcp->tcp_rwnd;
15662 	else
15663 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15664 
15665 	/*
15666 	 * Insist on a receive window that is at least
15667 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15668 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15669 	 * and delayed acknowledgement.
15670 	 */
15671 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15672 
15673 	/*
15674 	 * If window size info has already been exchanged, TCP should not
15675 	 * shrink the window.  Shrinking window is doable if done carefully.
15676 	 * We may add that support later.  But so far there is not a real
15677 	 * need to do that.
15678 	 */
15679 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15680 		/* MSS may have changed, do a round up again. */
15681 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15682 	}
15683 
15684 	/*
15685 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15686 	 * can be applied even before the window scale option is decided.
15687 	 */
15688 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15689 	if (rwnd > max_transmittable_rwnd) {
15690 		rwnd = max_transmittable_rwnd -
15691 		    (max_transmittable_rwnd % mss);
15692 		if (rwnd < mss)
15693 			rwnd = max_transmittable_rwnd;
15694 		/*
15695 		 * If we're over the limit we may have to back down tcp_rwnd.
15696 		 * The increment below won't work for us. So we set all three
15697 		 * here and the increment below will have no effect.
15698 		 */
15699 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15700 	}
15701 	if (tcp->tcp_localnet) {
15702 		tcp->tcp_rack_abs_max =
15703 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15704 	} else {
15705 		/*
15706 		 * For a remote host on a different subnet (through a router),
15707 		 * we ack every other packet to be conforming to RFC1122.
15708 		 * tcp_deferred_acks_max is default to 2.
15709 		 */
15710 		tcp->tcp_rack_abs_max =
15711 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15712 	}
15713 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15714 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15715 	else
15716 		tcp->tcp_rack_cur_max = 0;
15717 	/*
15718 	 * Increment the current rwnd by the amount the maximum grew (we
15719 	 * can not overwrite it since we might be in the middle of a
15720 	 * connection.)
15721 	 */
15722 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15723 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15724 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15725 		tcp->tcp_cwnd_max = rwnd;
15726 
15727 	if (tcp_detached)
15728 		return (rwnd);
15729 	/*
15730 	 * We set the maximum receive window into rq->q_hiwat.
15731 	 * This is not actually used for flow control.
15732 	 */
15733 	tcp->tcp_rq->q_hiwat = rwnd;
15734 	/*
15735 	 * Set the Stream head high water mark. This doesn't have to be
15736 	 * here, since we are simply using default values, but we would
15737 	 * prefer to choose these values algorithmically, with a likely
15738 	 * relationship to rwnd.
15739 	 */
15740 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
15741 	return (rwnd);
15742 }
15743 
15744 /*
15745  * Return SNMP stuff in buffer in mpdata.
15746  */
15747 int
15748 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15749 {
15750 	mblk_t			*mpdata;
15751 	mblk_t			*mp_conn_ctl = NULL;
15752 	mblk_t			*mp_conn_tail;
15753 	mblk_t			*mp_attr_ctl = NULL;
15754 	mblk_t			*mp_attr_tail;
15755 	mblk_t			*mp6_conn_ctl = NULL;
15756 	mblk_t			*mp6_conn_tail;
15757 	mblk_t			*mp6_attr_ctl = NULL;
15758 	mblk_t			*mp6_attr_tail;
15759 	struct opthdr		*optp;
15760 	mib2_tcpConnEntry_t	tce;
15761 	mib2_tcp6ConnEntry_t	tce6;
15762 	mib2_transportMLPEntry_t mlp;
15763 	connf_t			*connfp;
15764 	conn_t			*connp;
15765 	int			i;
15766 	boolean_t 		ispriv;
15767 	zoneid_t 		zoneid;
15768 	int			v4_conn_idx;
15769 	int			v6_conn_idx;
15770 
15771 	if (mpctl == NULL ||
15772 	    (mpdata = mpctl->b_cont) == NULL ||
15773 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15774 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15775 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15776 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15777 		freemsg(mp_conn_ctl);
15778 		freemsg(mp_attr_ctl);
15779 		freemsg(mp6_conn_ctl);
15780 		freemsg(mp6_attr_ctl);
15781 		return (0);
15782 	}
15783 
15784 	/* build table of connections -- need count in fixed part */
15785 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
15786 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
15787 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
15788 	SET_MIB(tcp_mib.tcpMaxConn, -1);
15789 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
15790 
15791 	ispriv =
15792 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15793 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15794 
15795 	v4_conn_idx = v6_conn_idx = 0;
15796 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15797 
15798 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15799 
15800 		connfp = &ipcl_globalhash_fanout[i];
15801 
15802 		connp = NULL;
15803 
15804 		while ((connp =
15805 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15806 			tcp_t *tcp;
15807 			boolean_t needattr;
15808 
15809 			if (connp->conn_zoneid != zoneid)
15810 				continue;	/* not in this zone */
15811 
15812 			tcp = connp->conn_tcp;
15813 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
15814 			tcp->tcp_ibsegs = 0;
15815 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
15816 			tcp->tcp_obsegs = 0;
15817 
15818 			tce6.tcp6ConnState = tce.tcpConnState =
15819 			    tcp_snmp_state(tcp);
15820 			if (tce.tcpConnState == MIB2_TCP_established ||
15821 			    tce.tcpConnState == MIB2_TCP_closeWait)
15822 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
15823 
15824 			needattr = B_FALSE;
15825 			bzero(&mlp, sizeof (mlp));
15826 			if (connp->conn_mlp_type != mlptSingle) {
15827 				if (connp->conn_mlp_type == mlptShared ||
15828 				    connp->conn_mlp_type == mlptBoth)
15829 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15830 				if (connp->conn_mlp_type == mlptPrivate ||
15831 				    connp->conn_mlp_type == mlptBoth)
15832 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15833 				needattr = B_TRUE;
15834 			}
15835 			if (connp->conn_peercred != NULL) {
15836 				ts_label_t *tsl;
15837 
15838 				tsl = crgetlabel(connp->conn_peercred);
15839 				mlp.tme_doi = label2doi(tsl);
15840 				mlp.tme_label = *label2bslabel(tsl);
15841 				needattr = B_TRUE;
15842 			}
15843 
15844 			/* Create a message to report on IPv6 entries */
15845 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15846 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15847 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15848 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15849 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15850 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15851 			/* Don't want just anybody seeing these... */
15852 			if (ispriv) {
15853 				tce6.tcp6ConnEntryInfo.ce_snxt =
15854 				    tcp->tcp_snxt;
15855 				tce6.tcp6ConnEntryInfo.ce_suna =
15856 				    tcp->tcp_suna;
15857 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15858 				    tcp->tcp_rnxt;
15859 				tce6.tcp6ConnEntryInfo.ce_rack =
15860 				    tcp->tcp_rack;
15861 			} else {
15862 				/*
15863 				 * Netstat, unfortunately, uses this to
15864 				 * get send/receive queue sizes.  How to fix?
15865 				 * Why not compute the difference only?
15866 				 */
15867 				tce6.tcp6ConnEntryInfo.ce_snxt =
15868 				    tcp->tcp_snxt - tcp->tcp_suna;
15869 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15870 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15871 				    tcp->tcp_rnxt - tcp->tcp_rack;
15872 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15873 			}
15874 
15875 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15876 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15877 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15878 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15879 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15880 
15881 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15882 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15883 
15884 			mlp.tme_connidx = v6_conn_idx++;
15885 			if (needattr)
15886 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15887 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15888 			}
15889 			/*
15890 			 * Create an IPv4 table entry for IPv4 entries and also
15891 			 * for IPv6 entries which are bound to in6addr_any
15892 			 * but don't have IPV6_V6ONLY set.
15893 			 * (i.e. anything an IPv4 peer could connect to)
15894 			 */
15895 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15896 			    (tcp->tcp_state <= TCPS_LISTEN &&
15897 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15898 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15899 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15900 					tce.tcpConnRemAddress = INADDR_ANY;
15901 					tce.tcpConnLocalAddress = INADDR_ANY;
15902 				} else {
15903 					tce.tcpConnRemAddress =
15904 					    tcp->tcp_remote;
15905 					tce.tcpConnLocalAddress =
15906 					    tcp->tcp_ip_src;
15907 				}
15908 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15909 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15910 				/* Don't want just anybody seeing these... */
15911 				if (ispriv) {
15912 					tce.tcpConnEntryInfo.ce_snxt =
15913 					    tcp->tcp_snxt;
15914 					tce.tcpConnEntryInfo.ce_suna =
15915 					    tcp->tcp_suna;
15916 					tce.tcpConnEntryInfo.ce_rnxt =
15917 					    tcp->tcp_rnxt;
15918 					tce.tcpConnEntryInfo.ce_rack =
15919 					    tcp->tcp_rack;
15920 				} else {
15921 					/*
15922 					 * Netstat, unfortunately, uses this to
15923 					 * get send/receive queue sizes.  How
15924 					 * to fix?
15925 					 * Why not compute the difference only?
15926 					 */
15927 					tce.tcpConnEntryInfo.ce_snxt =
15928 					    tcp->tcp_snxt - tcp->tcp_suna;
15929 					tce.tcpConnEntryInfo.ce_suna = 0;
15930 					tce.tcpConnEntryInfo.ce_rnxt =
15931 					    tcp->tcp_rnxt - tcp->tcp_rack;
15932 					tce.tcpConnEntryInfo.ce_rack = 0;
15933 				}
15934 
15935 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15936 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15937 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15938 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15939 				tce.tcpConnEntryInfo.ce_state =
15940 				    tcp->tcp_state;
15941 
15942 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15943 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15944 
15945 				mlp.tme_connidx = v4_conn_idx++;
15946 				if (needattr)
15947 					(void) snmp_append_data2(
15948 					    mp_attr_ctl->b_cont,
15949 					    &mp_attr_tail, (char *)&mlp,
15950 					    sizeof (mlp));
15951 			}
15952 		}
15953 	}
15954 
15955 	/* fixed length structure for IPv4 and IPv6 counters */
15956 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15957 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
15958 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15959 	optp->level = MIB2_TCP;
15960 	optp->name = 0;
15961 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
15962 	optp->len = msgdsize(mpdata);
15963 	qreply(q, mpctl);
15964 
15965 	/* table of connections... */
15966 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
15967 	    sizeof (struct T_optmgmt_ack)];
15968 	optp->level = MIB2_TCP;
15969 	optp->name = MIB2_TCP_CONN;
15970 	optp->len = msgdsize(mp_conn_ctl->b_cont);
15971 	qreply(q, mp_conn_ctl);
15972 
15973 	/* table of MLP attributes... */
15974 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
15975 	    sizeof (struct T_optmgmt_ack)];
15976 	optp->level = MIB2_TCP;
15977 	optp->name = EXPER_XPORT_MLP;
15978 	optp->len = msgdsize(mp_attr_ctl->b_cont);
15979 	if (optp->len == 0)
15980 		freemsg(mp_attr_ctl);
15981 	else
15982 		qreply(q, mp_attr_ctl);
15983 
15984 	/* table of IPv6 connections... */
15985 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
15986 	    sizeof (struct T_optmgmt_ack)];
15987 	optp->level = MIB2_TCP6;
15988 	optp->name = MIB2_TCP6_CONN;
15989 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
15990 	qreply(q, mp6_conn_ctl);
15991 
15992 	/* table of IPv6 MLP attributes... */
15993 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
15994 	    sizeof (struct T_optmgmt_ack)];
15995 	optp->level = MIB2_TCP6;
15996 	optp->name = EXPER_XPORT_MLP;
15997 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
15998 	if (optp->len == 0)
15999 		freemsg(mp6_attr_ctl);
16000 	else
16001 		qreply(q, mp6_attr_ctl);
16002 	return (1);
16003 }
16004 
16005 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16006 /* ARGSUSED */
16007 int
16008 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16009 {
16010 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16011 
16012 	switch (level) {
16013 	case MIB2_TCP:
16014 		switch (name) {
16015 		case 13:
16016 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16017 				return (0);
16018 			/* TODO: delete entry defined by tce */
16019 			return (1);
16020 		default:
16021 			return (0);
16022 		}
16023 	default:
16024 		return (1);
16025 	}
16026 }
16027 
16028 /* Translate TCP state to MIB2 TCP state. */
16029 static int
16030 tcp_snmp_state(tcp_t *tcp)
16031 {
16032 	if (tcp == NULL)
16033 		return (0);
16034 
16035 	switch (tcp->tcp_state) {
16036 	case TCPS_CLOSED:
16037 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16038 	case TCPS_BOUND:
16039 		return (MIB2_TCP_closed);
16040 	case TCPS_LISTEN:
16041 		return (MIB2_TCP_listen);
16042 	case TCPS_SYN_SENT:
16043 		return (MIB2_TCP_synSent);
16044 	case TCPS_SYN_RCVD:
16045 		return (MIB2_TCP_synReceived);
16046 	case TCPS_ESTABLISHED:
16047 		return (MIB2_TCP_established);
16048 	case TCPS_CLOSE_WAIT:
16049 		return (MIB2_TCP_closeWait);
16050 	case TCPS_FIN_WAIT_1:
16051 		return (MIB2_TCP_finWait1);
16052 	case TCPS_CLOSING:
16053 		return (MIB2_TCP_closing);
16054 	case TCPS_LAST_ACK:
16055 		return (MIB2_TCP_lastAck);
16056 	case TCPS_FIN_WAIT_2:
16057 		return (MIB2_TCP_finWait2);
16058 	case TCPS_TIME_WAIT:
16059 		return (MIB2_TCP_timeWait);
16060 	default:
16061 		return (0);
16062 	}
16063 }
16064 
16065 static char tcp_report_header[] =
16066 	"TCP     " MI_COL_HDRPAD_STR
16067 	"zone dest            snxt     suna     "
16068 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16069 	"recent   [lport,fport] state";
16070 
16071 /*
16072  * TCP status report triggered via the Named Dispatch mechanism.
16073  */
16074 /* ARGSUSED */
16075 static void
16076 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16077     cred_t *cr)
16078 {
16079 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16080 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16081 	char cflag;
16082 	in6_addr_t	v6dst;
16083 	char buf[80];
16084 	uint_t print_len, buf_len;
16085 
16086 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16087 	if (buf_len <= 0)
16088 		return;
16089 
16090 	if (hashval >= 0)
16091 		(void) sprintf(hash, "%03d ", hashval);
16092 	else
16093 		hash[0] = '\0';
16094 
16095 	/*
16096 	 * Note that we use the remote address in the tcp_b  structure.
16097 	 * This means that it will print out the real destination address,
16098 	 * not the next hop's address if source routing is used.  This
16099 	 * avoid the confusion on the output because user may not
16100 	 * know that source routing is used for a connection.
16101 	 */
16102 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16103 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16104 	} else {
16105 		v6dst = tcp->tcp_remote_v6;
16106 	}
16107 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16108 	/*
16109 	 * the ispriv checks are so that normal users cannot determine
16110 	 * sequence number information using NDD.
16111 	 */
16112 
16113 	if (TCP_IS_DETACHED(tcp))
16114 		cflag = '*';
16115 	else
16116 		cflag = ' ';
16117 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16118 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16119 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16120 	    hash,
16121 	    (void *)tcp,
16122 	    tcp->tcp_connp->conn_zoneid,
16123 	    addrbuf,
16124 	    (ispriv) ? tcp->tcp_snxt : 0,
16125 	    (ispriv) ? tcp->tcp_suna : 0,
16126 	    tcp->tcp_swnd,
16127 	    (ispriv) ? tcp->tcp_rnxt : 0,
16128 	    (ispriv) ? tcp->tcp_rack : 0,
16129 	    tcp->tcp_rwnd,
16130 	    tcp->tcp_rto,
16131 	    tcp->tcp_mss,
16132 	    tcp->tcp_snd_ws_ok,
16133 	    tcp->tcp_snd_ws,
16134 	    tcp->tcp_rcv_ws,
16135 	    tcp->tcp_snd_ts_ok,
16136 	    tcp->tcp_ts_recent,
16137 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16138 	if (print_len < buf_len) {
16139 		((mblk_t *)mp)->b_wptr += print_len;
16140 	} else {
16141 		((mblk_t *)mp)->b_wptr += buf_len;
16142 	}
16143 }
16144 
16145 /*
16146  * TCP status report (for listeners only) triggered via the Named Dispatch
16147  * mechanism.
16148  */
16149 /* ARGSUSED */
16150 static void
16151 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16152 {
16153 	char addrbuf[INET6_ADDRSTRLEN];
16154 	in6_addr_t	v6dst;
16155 	uint_t print_len, buf_len;
16156 
16157 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16158 	if (buf_len <= 0)
16159 		return;
16160 
16161 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16162 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16163 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16164 	} else {
16165 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16166 		    addrbuf, sizeof (addrbuf));
16167 	}
16168 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16169 	    "%03d "
16170 	    MI_COL_PTRFMT_STR
16171 	    "%d %s %05u %08u %d/%d/%d%c\n",
16172 	    hashval, (void *)tcp,
16173 	    tcp->tcp_connp->conn_zoneid,
16174 	    addrbuf,
16175 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16176 	    tcp->tcp_conn_req_seqnum,
16177 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16178 	    tcp->tcp_conn_req_max,
16179 	    tcp->tcp_syn_defense ? '*' : ' ');
16180 	if (print_len < buf_len) {
16181 		((mblk_t *)mp)->b_wptr += print_len;
16182 	} else {
16183 		((mblk_t *)mp)->b_wptr += buf_len;
16184 	}
16185 }
16186 
16187 /* TCP status report triggered via the Named Dispatch mechanism. */
16188 /* ARGSUSED */
16189 static int
16190 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16191 {
16192 	tcp_t	*tcp;
16193 	int	i;
16194 	conn_t	*connp;
16195 	connf_t	*connfp;
16196 	zoneid_t zoneid;
16197 
16198 	/*
16199 	 * Because of the ndd constraint, at most we can have 64K buffer
16200 	 * to put in all TCP info.  So to be more efficient, just
16201 	 * allocate a 64K buffer here, assuming we need that large buffer.
16202 	 * This may be a problem as any user can read tcp_status.  Therefore
16203 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16204 	 * This should be OK as normal users should not do this too often.
16205 	 */
16206 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16207 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16208 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16209 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16210 			return (0);
16211 		}
16212 	}
16213 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16214 		/* The following may work even if we cannot get a large buf. */
16215 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16216 		return (0);
16217 	}
16218 
16219 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16220 
16221 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16222 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16223 
16224 		connfp = &ipcl_globalhash_fanout[i];
16225 
16226 		connp = NULL;
16227 
16228 		while ((connp =
16229 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16230 			tcp = connp->conn_tcp;
16231 			if (zoneid != GLOBAL_ZONEID &&
16232 			    zoneid != connp->conn_zoneid)
16233 				continue;
16234 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16235 			    cr);
16236 		}
16237 
16238 	}
16239 
16240 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16241 	return (0);
16242 }
16243 
16244 /* TCP status report triggered via the Named Dispatch mechanism. */
16245 /* ARGSUSED */
16246 static int
16247 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16248 {
16249 	tf_t	*tbf;
16250 	tcp_t	*tcp;
16251 	int	i;
16252 	zoneid_t zoneid;
16253 
16254 	/* Refer to comments in tcp_status_report(). */
16255 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16256 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16257 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16258 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16259 			return (0);
16260 		}
16261 	}
16262 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16263 		/* The following may work even if we cannot get a large buf. */
16264 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16265 		return (0);
16266 	}
16267 
16268 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16269 
16270 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16271 
16272 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16273 		tbf = &tcp_bind_fanout[i];
16274 		mutex_enter(&tbf->tf_lock);
16275 		for (tcp = tbf->tf_tcp; tcp != NULL;
16276 		    tcp = tcp->tcp_bind_hash) {
16277 			if (zoneid != GLOBAL_ZONEID &&
16278 			    zoneid != tcp->tcp_connp->conn_zoneid)
16279 				continue;
16280 			CONN_INC_REF(tcp->tcp_connp);
16281 			tcp_report_item(mp->b_cont, tcp, i,
16282 			    Q_TO_TCP(q), cr);
16283 			CONN_DEC_REF(tcp->tcp_connp);
16284 		}
16285 		mutex_exit(&tbf->tf_lock);
16286 	}
16287 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16288 	return (0);
16289 }
16290 
16291 /* TCP status report triggered via the Named Dispatch mechanism. */
16292 /* ARGSUSED */
16293 static int
16294 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16295 {
16296 	connf_t	*connfp;
16297 	conn_t	*connp;
16298 	tcp_t	*tcp;
16299 	int	i;
16300 	zoneid_t zoneid;
16301 
16302 	/* Refer to comments in tcp_status_report(). */
16303 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16304 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16305 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16306 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16307 			return (0);
16308 		}
16309 	}
16310 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16311 		/* The following may work even if we cannot get a large buf. */
16312 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16313 		return (0);
16314 	}
16315 
16316 	(void) mi_mpprintf(mp,
16317 	    "    TCP    " MI_COL_HDRPAD_STR
16318 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16319 
16320 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16321 
16322 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16323 		connfp =  &ipcl_bind_fanout[i];
16324 		connp = NULL;
16325 		while ((connp =
16326 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16327 			tcp = connp->conn_tcp;
16328 			if (zoneid != GLOBAL_ZONEID &&
16329 			    zoneid != connp->conn_zoneid)
16330 				continue;
16331 			tcp_report_listener(mp->b_cont, tcp, i);
16332 		}
16333 	}
16334 
16335 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16336 	return (0);
16337 }
16338 
16339 /* TCP status report triggered via the Named Dispatch mechanism. */
16340 /* ARGSUSED */
16341 static int
16342 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16343 {
16344 	connf_t	*connfp;
16345 	conn_t	*connp;
16346 	tcp_t	*tcp;
16347 	int	i;
16348 	zoneid_t zoneid;
16349 
16350 	/* Refer to comments in tcp_status_report(). */
16351 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16352 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16353 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16354 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16355 			return (0);
16356 		}
16357 	}
16358 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16359 		/* The following may work even if we cannot get a large buf. */
16360 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16361 		return (0);
16362 	}
16363 
16364 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16365 	    ipcl_conn_fanout_size);
16366 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16367 
16368 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16369 
16370 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16371 		connfp =  &ipcl_conn_fanout[i];
16372 		connp = NULL;
16373 		while ((connp =
16374 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16375 			tcp = connp->conn_tcp;
16376 			if (zoneid != GLOBAL_ZONEID &&
16377 			    zoneid != connp->conn_zoneid)
16378 				continue;
16379 			tcp_report_item(mp->b_cont, tcp, i,
16380 			    Q_TO_TCP(q), cr);
16381 		}
16382 	}
16383 
16384 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16385 	return (0);
16386 }
16387 
16388 /* TCP status report triggered via the Named Dispatch mechanism. */
16389 /* ARGSUSED */
16390 static int
16391 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16392 {
16393 	tf_t	*tf;
16394 	tcp_t	*tcp;
16395 	int	i;
16396 	zoneid_t zoneid;
16397 
16398 	/* Refer to comments in tcp_status_report(). */
16399 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16400 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16401 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16402 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16403 			return (0);
16404 		}
16405 	}
16406 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16407 		/* The following may work even if we cannot get a large buf. */
16408 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16409 		return (0);
16410 	}
16411 
16412 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16413 
16414 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16415 
16416 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16417 		tf = &tcp_acceptor_fanout[i];
16418 		mutex_enter(&tf->tf_lock);
16419 		for (tcp = tf->tf_tcp; tcp != NULL;
16420 		    tcp = tcp->tcp_acceptor_hash) {
16421 			if (zoneid != GLOBAL_ZONEID &&
16422 			    zoneid != tcp->tcp_connp->conn_zoneid)
16423 				continue;
16424 			tcp_report_item(mp->b_cont, tcp, i,
16425 			    Q_TO_TCP(q), cr);
16426 		}
16427 		mutex_exit(&tf->tf_lock);
16428 	}
16429 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16430 	return (0);
16431 }
16432 
16433 /*
16434  * tcp_timer is the timer service routine.  It handles the retransmission,
16435  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16436  * from the state of the tcp instance what kind of action needs to be done
16437  * at the time it is called.
16438  */
16439 static void
16440 tcp_timer(void *arg)
16441 {
16442 	mblk_t		*mp;
16443 	clock_t		first_threshold;
16444 	clock_t		second_threshold;
16445 	clock_t		ms;
16446 	uint32_t	mss;
16447 	conn_t		*connp = (conn_t *)arg;
16448 	tcp_t		*tcp = connp->conn_tcp;
16449 
16450 	tcp->tcp_timer_tid = 0;
16451 
16452 	if (tcp->tcp_fused)
16453 		return;
16454 
16455 	first_threshold =  tcp->tcp_first_timer_threshold;
16456 	second_threshold = tcp->tcp_second_timer_threshold;
16457 	switch (tcp->tcp_state) {
16458 	case TCPS_IDLE:
16459 	case TCPS_BOUND:
16460 	case TCPS_LISTEN:
16461 		return;
16462 	case TCPS_SYN_RCVD: {
16463 		tcp_t	*listener = tcp->tcp_listener;
16464 
16465 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16466 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16467 			/* it's our first timeout */
16468 			tcp->tcp_syn_rcvd_timeout = 1;
16469 			mutex_enter(&listener->tcp_eager_lock);
16470 			listener->tcp_syn_rcvd_timeout++;
16471 			if (!listener->tcp_syn_defense &&
16472 			    (listener->tcp_syn_rcvd_timeout >
16473 			    (tcp_conn_req_max_q0 >> 2)) &&
16474 			    (tcp_conn_req_max_q0 > 200)) {
16475 				/* We may be under attack. Put on a defense. */
16476 				listener->tcp_syn_defense = B_TRUE;
16477 				cmn_err(CE_WARN, "High TCP connect timeout "
16478 				    "rate! System (port %d) may be under a "
16479 				    "SYN flood attack!",
16480 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16481 
16482 				listener->tcp_ip_addr_cache = kmem_zalloc(
16483 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16484 				    KM_NOSLEEP);
16485 			}
16486 			mutex_exit(&listener->tcp_eager_lock);
16487 		}
16488 	}
16489 		/* FALLTHRU */
16490 	case TCPS_SYN_SENT:
16491 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16492 		second_threshold = tcp->tcp_second_ctimer_threshold;
16493 		break;
16494 	case TCPS_ESTABLISHED:
16495 	case TCPS_FIN_WAIT_1:
16496 	case TCPS_CLOSING:
16497 	case TCPS_CLOSE_WAIT:
16498 	case TCPS_LAST_ACK:
16499 		/* If we have data to rexmit */
16500 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16501 			clock_t	time_to_wait;
16502 
16503 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16504 			if (!tcp->tcp_xmit_head)
16505 				break;
16506 			time_to_wait = lbolt -
16507 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16508 			time_to_wait = tcp->tcp_rto -
16509 			    TICK_TO_MSEC(time_to_wait);
16510 			/*
16511 			 * If the timer fires too early, 1 clock tick earlier,
16512 			 * restart the timer.
16513 			 */
16514 			if (time_to_wait > msec_per_tick) {
16515 				TCP_STAT(tcp_timer_fire_early);
16516 				TCP_TIMER_RESTART(tcp, time_to_wait);
16517 				return;
16518 			}
16519 			/*
16520 			 * When we probe zero windows, we force the swnd open.
16521 			 * If our peer acks with a closed window swnd will be
16522 			 * set to zero by tcp_rput(). As long as we are
16523 			 * receiving acks tcp_rput will
16524 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16525 			 * first and second interval actions.  NOTE: the timer
16526 			 * interval is allowed to continue its exponential
16527 			 * backoff.
16528 			 */
16529 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16530 				if (tcp->tcp_debug) {
16531 					(void) strlog(TCP_MOD_ID, 0, 1,
16532 					    SL_TRACE, "tcp_timer: zero win");
16533 				}
16534 			} else {
16535 				/*
16536 				 * After retransmission, we need to do
16537 				 * slow start.  Set the ssthresh to one
16538 				 * half of current effective window and
16539 				 * cwnd to one MSS.  Also reset
16540 				 * tcp_cwnd_cnt.
16541 				 *
16542 				 * Note that if tcp_ssthresh is reduced because
16543 				 * of ECN, do not reduce it again unless it is
16544 				 * already one window of data away (tcp_cwr
16545 				 * should then be cleared) or this is a
16546 				 * timeout for a retransmitted segment.
16547 				 */
16548 				uint32_t npkt;
16549 
16550 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16551 					npkt = ((tcp->tcp_timer_backoff ?
16552 					    tcp->tcp_cwnd_ssthresh :
16553 					    tcp->tcp_snxt -
16554 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16555 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16556 					    tcp->tcp_mss;
16557 				}
16558 				tcp->tcp_cwnd = tcp->tcp_mss;
16559 				tcp->tcp_cwnd_cnt = 0;
16560 				if (tcp->tcp_ecn_ok) {
16561 					tcp->tcp_cwr = B_TRUE;
16562 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16563 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16564 				}
16565 			}
16566 			break;
16567 		}
16568 		/*
16569 		 * We have something to send yet we cannot send.  The
16570 		 * reason can be:
16571 		 *
16572 		 * 1. Zero send window: we need to do zero window probe.
16573 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16574 		 * segments.
16575 		 * 3. SWS avoidance: receiver may have shrunk window,
16576 		 * reset our knowledge.
16577 		 *
16578 		 * Note that condition 2 can happen with either 1 or
16579 		 * 3.  But 1 and 3 are exclusive.
16580 		 */
16581 		if (tcp->tcp_unsent != 0) {
16582 			if (tcp->tcp_cwnd == 0) {
16583 				/*
16584 				 * Set tcp_cwnd to 1 MSS so that a
16585 				 * new segment can be sent out.  We
16586 				 * are "clocking out" new data when
16587 				 * the network is really congested.
16588 				 */
16589 				ASSERT(tcp->tcp_ecn_ok);
16590 				tcp->tcp_cwnd = tcp->tcp_mss;
16591 			}
16592 			if (tcp->tcp_swnd == 0) {
16593 				/* Extend window for zero window probe */
16594 				tcp->tcp_swnd++;
16595 				tcp->tcp_zero_win_probe = B_TRUE;
16596 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16597 			} else {
16598 				/*
16599 				 * Handle timeout from sender SWS avoidance.
16600 				 * Reset our knowledge of the max send window
16601 				 * since the receiver might have reduced its
16602 				 * receive buffer.  Avoid setting tcp_max_swnd
16603 				 * to one since that will essentially disable
16604 				 * the SWS checks.
16605 				 *
16606 				 * Note that since we don't have a SWS
16607 				 * state variable, if the timeout is set
16608 				 * for ECN but not for SWS, this
16609 				 * code will also be executed.  This is
16610 				 * fine as tcp_max_swnd is updated
16611 				 * constantly and it will not affect
16612 				 * anything.
16613 				 */
16614 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16615 			}
16616 			tcp_wput_data(tcp, NULL, B_FALSE);
16617 			return;
16618 		}
16619 		/* Is there a FIN that needs to be to re retransmitted? */
16620 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16621 		    !tcp->tcp_fin_acked)
16622 			break;
16623 		/* Nothing to do, return without restarting timer. */
16624 		TCP_STAT(tcp_timer_fire_miss);
16625 		return;
16626 	case TCPS_FIN_WAIT_2:
16627 		/*
16628 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16629 		 * We waited some time for for peer's FIN, but it hasn't
16630 		 * arrived.  We flush the connection now to avoid
16631 		 * case where the peer has rebooted.
16632 		 */
16633 		if (TCP_IS_DETACHED(tcp)) {
16634 			(void) tcp_clean_death(tcp, 0, 23);
16635 		} else {
16636 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16637 		}
16638 		return;
16639 	case TCPS_TIME_WAIT:
16640 		(void) tcp_clean_death(tcp, 0, 24);
16641 		return;
16642 	default:
16643 		if (tcp->tcp_debug) {
16644 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16645 			    "tcp_timer: strange state (%d) %s",
16646 			    tcp->tcp_state, tcp_display(tcp, NULL,
16647 			    DISP_PORT_ONLY));
16648 		}
16649 		return;
16650 	}
16651 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16652 		/*
16653 		 * For zero window probe, we need to send indefinitely,
16654 		 * unless we have not heard from the other side for some
16655 		 * time...
16656 		 */
16657 		if ((tcp->tcp_zero_win_probe == 0) ||
16658 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16659 		    second_threshold)) {
16660 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16661 			/*
16662 			 * If TCP is in SYN_RCVD state, send back a
16663 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16664 			 * should be zero in TCPS_SYN_RCVD state.
16665 			 */
16666 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16667 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16668 				    "in SYN_RCVD",
16669 				    tcp, tcp->tcp_snxt,
16670 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16671 			}
16672 			(void) tcp_clean_death(tcp,
16673 			    tcp->tcp_client_errno ?
16674 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16675 			return;
16676 		} else {
16677 			/*
16678 			 * Set tcp_ms_we_have_waited to second_threshold
16679 			 * so that in next timeout, we will do the above
16680 			 * check (lbolt - tcp_last_recv_time).  This is
16681 			 * also to avoid overflow.
16682 			 *
16683 			 * We don't need to decrement tcp_timer_backoff
16684 			 * to avoid overflow because it will be decremented
16685 			 * later if new timeout value is greater than
16686 			 * tcp_rexmit_interval_max.  In the case when
16687 			 * tcp_rexmit_interval_max is greater than
16688 			 * second_threshold, it means that we will wait
16689 			 * longer than second_threshold to send the next
16690 			 * window probe.
16691 			 */
16692 			tcp->tcp_ms_we_have_waited = second_threshold;
16693 		}
16694 	} else if (ms > first_threshold) {
16695 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16696 		    tcp->tcp_xmit_head != NULL) {
16697 			tcp->tcp_xmit_head =
16698 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16699 		}
16700 		/*
16701 		 * We have been retransmitting for too long...  The RTT
16702 		 * we calculated is probably incorrect.  Reinitialize it.
16703 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16704 		 * tcp_rtt_update so that we won't accidentally cache a
16705 		 * bad value.  But only do this if this is not a zero
16706 		 * window probe.
16707 		 */
16708 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16709 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16710 			    (tcp->tcp_rtt_sa >> 5);
16711 			tcp->tcp_rtt_sa = 0;
16712 			tcp_ip_notify(tcp);
16713 			tcp->tcp_rtt_update = 0;
16714 		}
16715 	}
16716 	tcp->tcp_timer_backoff++;
16717 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16718 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16719 	    tcp_rexmit_interval_min) {
16720 		/*
16721 		 * This means the original RTO is tcp_rexmit_interval_min.
16722 		 * So we will use tcp_rexmit_interval_min as the RTO value
16723 		 * and do the backoff.
16724 		 */
16725 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
16726 	} else {
16727 		ms <<= tcp->tcp_timer_backoff;
16728 	}
16729 	if (ms > tcp_rexmit_interval_max) {
16730 		ms = tcp_rexmit_interval_max;
16731 		/*
16732 		 * ms is at max, decrement tcp_timer_backoff to avoid
16733 		 * overflow.
16734 		 */
16735 		tcp->tcp_timer_backoff--;
16736 	}
16737 	tcp->tcp_ms_we_have_waited += ms;
16738 	if (tcp->tcp_zero_win_probe == 0) {
16739 		tcp->tcp_rto = ms;
16740 	}
16741 	TCP_TIMER_RESTART(tcp, ms);
16742 	/*
16743 	 * This is after a timeout and tcp_rto is backed off.  Set
16744 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16745 	 * restart the timer with a correct value.
16746 	 */
16747 	tcp->tcp_set_timer = 1;
16748 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16749 	if (mss > tcp->tcp_mss)
16750 		mss = tcp->tcp_mss;
16751 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16752 		mss = tcp->tcp_swnd;
16753 
16754 	if ((mp = tcp->tcp_xmit_head) != NULL)
16755 		mp->b_prev = (mblk_t *)lbolt;
16756 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16757 	    B_TRUE);
16758 
16759 	/*
16760 	 * When slow start after retransmission begins, start with
16761 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16762 	 * start phase.  tcp_snd_burst controls how many segments
16763 	 * can be sent because of an ack.
16764 	 */
16765 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16766 	tcp->tcp_snd_burst = TCP_CWND_SS;
16767 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16768 	    (tcp->tcp_unsent == 0)) {
16769 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16770 	} else {
16771 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16772 	}
16773 	tcp->tcp_rexmit = B_TRUE;
16774 	tcp->tcp_dupack_cnt = 0;
16775 
16776 	/*
16777 	 * Remove all rexmit SACK blk to start from fresh.
16778 	 */
16779 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16780 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16781 		tcp->tcp_num_notsack_blk = 0;
16782 		tcp->tcp_cnt_notsack_list = 0;
16783 	}
16784 	if (mp == NULL) {
16785 		return;
16786 	}
16787 	/* Attach credentials to retransmitted initial SYNs. */
16788 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16789 		mblk_setcred(mp, tcp->tcp_cred);
16790 		DB_CPID(mp) = tcp->tcp_cpid;
16791 	}
16792 
16793 	tcp->tcp_csuna = tcp->tcp_snxt;
16794 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
16795 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
16796 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
16797 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16798 
16799 }
16800 
16801 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16802 static void
16803 tcp_unbind(tcp_t *tcp, mblk_t *mp)
16804 {
16805 	conn_t	*connp;
16806 
16807 	switch (tcp->tcp_state) {
16808 	case TCPS_BOUND:
16809 	case TCPS_LISTEN:
16810 		break;
16811 	default:
16812 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
16813 		return;
16814 	}
16815 
16816 	/*
16817 	 * Need to clean up all the eagers since after the unbind, segments
16818 	 * will no longer be delivered to this listener stream.
16819 	 */
16820 	mutex_enter(&tcp->tcp_eager_lock);
16821 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16822 		tcp_eager_cleanup(tcp, 0);
16823 	}
16824 	mutex_exit(&tcp->tcp_eager_lock);
16825 
16826 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16827 		tcp->tcp_ipha->ipha_src = 0;
16828 	} else {
16829 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16830 	}
16831 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16832 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16833 	tcp_bind_hash_remove(tcp);
16834 	tcp->tcp_state = TCPS_IDLE;
16835 	tcp->tcp_mdt = B_FALSE;
16836 	/* Send M_FLUSH according to TPI */
16837 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16838 	connp = tcp->tcp_connp;
16839 	connp->conn_mdt_ok = B_FALSE;
16840 	ipcl_hash_remove(connp);
16841 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16842 	mp = mi_tpi_ok_ack_alloc(mp);
16843 	putnext(tcp->tcp_rq, mp);
16844 }
16845 
16846 /*
16847  * Don't let port fall into the privileged range.
16848  * Since the extra privileged ports can be arbitrary we also
16849  * ensure that we exclude those from consideration.
16850  * tcp_g_epriv_ports is not sorted thus we loop over it until
16851  * there are no changes.
16852  *
16853  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16854  * but instead the code relies on:
16855  * - the fact that the address of the array and its size never changes
16856  * - the atomic assignment of the elements of the array
16857  *
16858  * Returns 0 if there are no more ports available.
16859  *
16860  * TS note: skip multilevel ports.
16861  */
16862 static in_port_t
16863 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16864 {
16865 	int i;
16866 	boolean_t restart = B_FALSE;
16867 
16868 	if (random && tcp_random_anon_port != 0) {
16869 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16870 		    sizeof (in_port_t));
16871 		/*
16872 		 * Unless changed by a sys admin, the smallest anon port
16873 		 * is 32768 and the largest anon port is 65535.  It is
16874 		 * very likely (50%) for the random port to be smaller
16875 		 * than the smallest anon port.  When that happens,
16876 		 * add port % (anon port range) to the smallest anon
16877 		 * port to get the random port.  It should fall into the
16878 		 * valid anon port range.
16879 		 */
16880 		if (port < tcp_smallest_anon_port) {
16881 			port = tcp_smallest_anon_port +
16882 			    port % (tcp_largest_anon_port -
16883 				tcp_smallest_anon_port);
16884 		}
16885 	}
16886 
16887 retry:
16888 	if (port < tcp_smallest_anon_port)
16889 		port = (in_port_t)tcp_smallest_anon_port;
16890 
16891 	if (port > tcp_largest_anon_port) {
16892 		if (restart)
16893 			return (0);
16894 		restart = B_TRUE;
16895 		port = (in_port_t)tcp_smallest_anon_port;
16896 	}
16897 
16898 	if (port < tcp_smallest_nonpriv_port)
16899 		port = (in_port_t)tcp_smallest_nonpriv_port;
16900 
16901 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
16902 		if (port == tcp_g_epriv_ports[i]) {
16903 			port++;
16904 			/*
16905 			 * Make sure whether the port is in the
16906 			 * valid range.
16907 			 */
16908 			goto retry;
16909 		}
16910 	}
16911 	if (is_system_labeled() &&
16912 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16913 	    IPPROTO_TCP, B_TRUE)) != 0) {
16914 		port = i;
16915 		goto retry;
16916 	}
16917 	return (port);
16918 }
16919 
16920 /*
16921  * Return the next anonymous port in the privileged port range for
16922  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16923  * downwards.  This is the same behavior as documented in the userland
16924  * library call rresvport(3N).
16925  *
16926  * TS note: skip multilevel ports.
16927  */
16928 static in_port_t
16929 tcp_get_next_priv_port(const tcp_t *tcp)
16930 {
16931 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16932 	in_port_t nextport;
16933 	boolean_t restart = B_FALSE;
16934 
16935 retry:
16936 	if (next_priv_port < tcp_min_anonpriv_port ||
16937 	    next_priv_port >= IPPORT_RESERVED) {
16938 		next_priv_port = IPPORT_RESERVED - 1;
16939 		if (restart)
16940 			return (0);
16941 		restart = B_TRUE;
16942 	}
16943 	if (is_system_labeled() &&
16944 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16945 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16946 		next_priv_port = nextport;
16947 		goto retry;
16948 	}
16949 	return (next_priv_port--);
16950 }
16951 
16952 /* The write side r/w procedure. */
16953 
16954 #if CCS_STATS
16955 struct {
16956 	struct {
16957 		int64_t count, bytes;
16958 	} tot, hit;
16959 } wrw_stats;
16960 #endif
16961 
16962 /*
16963  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
16964  * messages.
16965  */
16966 /* ARGSUSED */
16967 static void
16968 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
16969 {
16970 	conn_t	*connp = (conn_t *)arg;
16971 	tcp_t	*tcp = connp->conn_tcp;
16972 	queue_t	*q = tcp->tcp_wq;
16973 
16974 	ASSERT(DB_TYPE(mp) != M_IOCTL);
16975 	/*
16976 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
16977 	 * Once the close starts, streamhead and sockfs will not let any data
16978 	 * packets come down (close ensures that there are no threads using the
16979 	 * queue and no new threads will come down) but since qprocsoff()
16980 	 * hasn't happened yet, a M_FLUSH or some non data message might
16981 	 * get reflected back (in response to our own FLUSHRW) and get
16982 	 * processed after tcp_close() is done. The conn would still be valid
16983 	 * because a ref would have added but we need to check the state
16984 	 * before actually processing the packet.
16985 	 */
16986 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
16987 		freemsg(mp);
16988 		return;
16989 	}
16990 
16991 	switch (DB_TYPE(mp)) {
16992 	case M_IOCDATA:
16993 		tcp_wput_iocdata(tcp, mp);
16994 		break;
16995 	case M_FLUSH:
16996 		tcp_wput_flush(tcp, mp);
16997 		break;
16998 	default:
16999 		CALL_IP_WPUT(connp, q, mp);
17000 		break;
17001 	}
17002 }
17003 
17004 /*
17005  * The TCP fast path write put procedure.
17006  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17007  */
17008 /* ARGSUSED */
17009 void
17010 tcp_output(void *arg, mblk_t *mp, void *arg2)
17011 {
17012 	int		len;
17013 	int		hdrlen;
17014 	int		plen;
17015 	mblk_t		*mp1;
17016 	uchar_t		*rptr;
17017 	uint32_t	snxt;
17018 	tcph_t		*tcph;
17019 	struct datab	*db;
17020 	uint32_t	suna;
17021 	uint32_t	mss;
17022 	ipaddr_t	*dst;
17023 	ipaddr_t	*src;
17024 	uint32_t	sum;
17025 	int		usable;
17026 	conn_t		*connp = (conn_t *)arg;
17027 	tcp_t		*tcp = connp->conn_tcp;
17028 	uint32_t	msize;
17029 
17030 	/*
17031 	 * Try and ASSERT the minimum possible references on the
17032 	 * conn early enough. Since we are executing on write side,
17033 	 * the connection is obviously not detached and that means
17034 	 * there is a ref each for TCP and IP. Since we are behind
17035 	 * the squeue, the minimum references needed are 3. If the
17036 	 * conn is in classifier hash list, there should be an
17037 	 * extra ref for that (we check both the possibilities).
17038 	 */
17039 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17040 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17041 
17042 	ASSERT(DB_TYPE(mp) == M_DATA);
17043 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17044 
17045 	mutex_enter(&connp->conn_lock);
17046 	tcp->tcp_squeue_bytes -= msize;
17047 	mutex_exit(&connp->conn_lock);
17048 
17049 	/* Bypass tcp protocol for fused tcp loopback */
17050 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17051 		return;
17052 
17053 	mss = tcp->tcp_mss;
17054 	if (tcp->tcp_xmit_zc_clean)
17055 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17056 
17057 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17058 	len = (int)(mp->b_wptr - mp->b_rptr);
17059 
17060 	/*
17061 	 * Criteria for fast path:
17062 	 *
17063 	 *   1. no unsent data
17064 	 *   2. single mblk in request
17065 	 *   3. connection established
17066 	 *   4. data in mblk
17067 	 *   5. len <= mss
17068 	 *   6. no tcp_valid bits
17069 	 */
17070 	if ((tcp->tcp_unsent != 0) ||
17071 	    (tcp->tcp_cork) ||
17072 	    (mp->b_cont != NULL) ||
17073 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17074 	    (len == 0) ||
17075 	    (len > mss) ||
17076 	    (tcp->tcp_valid_bits != 0)) {
17077 		tcp_wput_data(tcp, mp, B_FALSE);
17078 		return;
17079 	}
17080 
17081 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17082 	ASSERT(tcp->tcp_fin_sent == 0);
17083 
17084 	/* queue new packet onto retransmission queue */
17085 	if (tcp->tcp_xmit_head == NULL) {
17086 		tcp->tcp_xmit_head = mp;
17087 	} else {
17088 		tcp->tcp_xmit_last->b_cont = mp;
17089 	}
17090 	tcp->tcp_xmit_last = mp;
17091 	tcp->tcp_xmit_tail = mp;
17092 
17093 	/* find out how much we can send */
17094 	/* BEGIN CSTYLED */
17095 	/*
17096 	 *    un-acked           usable
17097 	 *  |--------------|-----------------|
17098 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17099 	 */
17100 	/* END CSTYLED */
17101 
17102 	/* start sending from tcp_snxt */
17103 	snxt = tcp->tcp_snxt;
17104 
17105 	/*
17106 	 * Check to see if this connection has been idled for some
17107 	 * time and no ACK is expected.  If it is, we need to slow
17108 	 * start again to get back the connection's "self-clock" as
17109 	 * described in VJ's paper.
17110 	 *
17111 	 * Refer to the comment in tcp_mss_set() for the calculation
17112 	 * of tcp_cwnd after idle.
17113 	 */
17114 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17115 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17116 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17117 	}
17118 
17119 	usable = tcp->tcp_swnd;		/* tcp window size */
17120 	if (usable > tcp->tcp_cwnd)
17121 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17122 	usable -= snxt;		/* subtract stuff already sent */
17123 	suna = tcp->tcp_suna;
17124 	usable += suna;
17125 	/* usable can be < 0 if the congestion window is smaller */
17126 	if (len > usable) {
17127 		/* Can't send complete M_DATA in one shot */
17128 		goto slow;
17129 	}
17130 
17131 	if (tcp->tcp_flow_stopped &&
17132 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17133 		tcp_clrqfull(tcp);
17134 	}
17135 
17136 	/*
17137 	 * determine if anything to send (Nagle).
17138 	 *
17139 	 *   1. len < tcp_mss (i.e. small)
17140 	 *   2. unacknowledged data present
17141 	 *   3. len < nagle limit
17142 	 *   4. last packet sent < nagle limit (previous packet sent)
17143 	 */
17144 	if ((len < mss) && (snxt != suna) &&
17145 	    (len < (int)tcp->tcp_naglim) &&
17146 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17147 		/*
17148 		 * This was the first unsent packet and normally
17149 		 * mss < xmit_hiwater so there is no need to worry
17150 		 * about flow control. The next packet will go
17151 		 * through the flow control check in tcp_wput_data().
17152 		 */
17153 		/* leftover work from above */
17154 		tcp->tcp_unsent = len;
17155 		tcp->tcp_xmit_tail_unsent = len;
17156 
17157 		return;
17158 	}
17159 
17160 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17161 
17162 	if (snxt == suna) {
17163 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17164 	}
17165 
17166 	/* we have always sent something */
17167 	tcp->tcp_rack_cnt = 0;
17168 
17169 	tcp->tcp_snxt = snxt + len;
17170 	tcp->tcp_rack = tcp->tcp_rnxt;
17171 
17172 	if ((mp1 = dupb(mp)) == 0)
17173 		goto no_memory;
17174 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17175 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17176 
17177 	/* adjust tcp header information */
17178 	tcph = tcp->tcp_tcph;
17179 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17180 
17181 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17182 	sum = (sum >> 16) + (sum & 0xFFFF);
17183 	U16_TO_ABE16(sum, tcph->th_sum);
17184 
17185 	U32_TO_ABE32(snxt, tcph->th_seq);
17186 
17187 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17188 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17189 	BUMP_LOCAL(tcp->tcp_obsegs);
17190 
17191 	/* Update the latest receive window size in TCP header. */
17192 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17193 	    tcph->th_win);
17194 
17195 	tcp->tcp_last_sent_len = (ushort_t)len;
17196 
17197 	plen = len + tcp->tcp_hdr_len;
17198 
17199 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17200 		tcp->tcp_ipha->ipha_length = htons(plen);
17201 	} else {
17202 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17203 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17204 	}
17205 
17206 	/* see if we need to allocate a mblk for the headers */
17207 	hdrlen = tcp->tcp_hdr_len;
17208 	rptr = mp1->b_rptr - hdrlen;
17209 	db = mp1->b_datap;
17210 	if ((db->db_ref != 2) || rptr < db->db_base ||
17211 	    (!OK_32PTR(rptr))) {
17212 		/* NOTE: we assume allocb returns an OK_32PTR */
17213 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17214 		    tcp_wroff_xtra, BPRI_MED);
17215 		if (!mp) {
17216 			freemsg(mp1);
17217 			goto no_memory;
17218 		}
17219 		mp->b_cont = mp1;
17220 		mp1 = mp;
17221 		/* Leave room for Link Level header */
17222 		/* hdrlen = tcp->tcp_hdr_len; */
17223 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17224 		mp1->b_wptr = &rptr[hdrlen];
17225 	}
17226 	mp1->b_rptr = rptr;
17227 
17228 	/* Fill in the timestamp option. */
17229 	if (tcp->tcp_snd_ts_ok) {
17230 		U32_TO_BE32((uint32_t)lbolt,
17231 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17232 		U32_TO_BE32(tcp->tcp_ts_recent,
17233 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17234 	} else {
17235 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17236 	}
17237 
17238 	/* copy header into outgoing packet */
17239 	dst = (ipaddr_t *)rptr;
17240 	src = (ipaddr_t *)tcp->tcp_iphc;
17241 	dst[0] = src[0];
17242 	dst[1] = src[1];
17243 	dst[2] = src[2];
17244 	dst[3] = src[3];
17245 	dst[4] = src[4];
17246 	dst[5] = src[5];
17247 	dst[6] = src[6];
17248 	dst[7] = src[7];
17249 	dst[8] = src[8];
17250 	dst[9] = src[9];
17251 	if (hdrlen -= 40) {
17252 		hdrlen >>= 2;
17253 		dst += 10;
17254 		src += 10;
17255 		do {
17256 			*dst++ = *src++;
17257 		} while (--hdrlen);
17258 	}
17259 
17260 	/*
17261 	 * Set the ECN info in the TCP header.  Note that this
17262 	 * is not the template header.
17263 	 */
17264 	if (tcp->tcp_ecn_ok) {
17265 		SET_ECT(tcp, rptr);
17266 
17267 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17268 		if (tcp->tcp_ecn_echo_on)
17269 			tcph->th_flags[0] |= TH_ECE;
17270 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17271 			tcph->th_flags[0] |= TH_CWR;
17272 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17273 		}
17274 	}
17275 
17276 	if (tcp->tcp_ip_forward_progress) {
17277 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17278 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17279 		tcp->tcp_ip_forward_progress = B_FALSE;
17280 	}
17281 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17282 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17283 	return;
17284 
17285 	/*
17286 	 * If we ran out of memory, we pretend to have sent the packet
17287 	 * and that it was lost on the wire.
17288 	 */
17289 no_memory:
17290 	return;
17291 
17292 slow:
17293 	/* leftover work from above */
17294 	tcp->tcp_unsent = len;
17295 	tcp->tcp_xmit_tail_unsent = len;
17296 	tcp_wput_data(tcp, NULL, B_FALSE);
17297 }
17298 
17299 /*
17300  * The function called through squeue to get behind eager's perimeter to
17301  * finish the accept processing.
17302  */
17303 /* ARGSUSED */
17304 void
17305 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17306 {
17307 	conn_t			*connp = (conn_t *)arg;
17308 	tcp_t			*tcp = connp->conn_tcp;
17309 	queue_t			*q = tcp->tcp_rq;
17310 	mblk_t			*mp1;
17311 	mblk_t			*stropt_mp = mp;
17312 	struct  stroptions	*stropt;
17313 	uint_t			thwin;
17314 
17315 	/*
17316 	 * Drop the eager's ref on the listener, that was placed when
17317 	 * this eager began life in tcp_conn_request.
17318 	 */
17319 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17320 
17321 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17322 		/*
17323 		 * Someone blewoff the eager before we could finish
17324 		 * the accept.
17325 		 *
17326 		 * The only reason eager exists it because we put in
17327 		 * a ref on it when conn ind went up. We need to send
17328 		 * a disconnect indication up while the last reference
17329 		 * on the eager will be dropped by the squeue when we
17330 		 * return.
17331 		 */
17332 		ASSERT(tcp->tcp_listener == NULL);
17333 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17334 			struct	T_discon_ind	*tdi;
17335 
17336 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17337 			/*
17338 			 * Let us reuse the incoming mblk to avoid memory
17339 			 * allocation failure problems. We know that the
17340 			 * size of the incoming mblk i.e. stroptions is greater
17341 			 * than sizeof T_discon_ind. So the reallocb below
17342 			 * can't fail.
17343 			 */
17344 			freemsg(mp->b_cont);
17345 			mp->b_cont = NULL;
17346 			ASSERT(DB_REF(mp) == 1);
17347 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17348 			    B_FALSE);
17349 			ASSERT(mp != NULL);
17350 			DB_TYPE(mp) = M_PROTO;
17351 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17352 			tdi = (struct T_discon_ind *)mp->b_rptr;
17353 			if (tcp->tcp_issocket) {
17354 				tdi->DISCON_reason = ECONNREFUSED;
17355 				tdi->SEQ_number = 0;
17356 			} else {
17357 				tdi->DISCON_reason = ENOPROTOOPT;
17358 				tdi->SEQ_number =
17359 				    tcp->tcp_conn_req_seqnum;
17360 			}
17361 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17362 			putnext(q, mp);
17363 		} else {
17364 			freemsg(mp);
17365 		}
17366 		if (tcp->tcp_hard_binding) {
17367 			tcp->tcp_hard_binding = B_FALSE;
17368 			tcp->tcp_hard_bound = B_TRUE;
17369 		}
17370 		tcp->tcp_detached = B_FALSE;
17371 		return;
17372 	}
17373 
17374 	mp1 = stropt_mp->b_cont;
17375 	stropt_mp->b_cont = NULL;
17376 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17377 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17378 
17379 	while (mp1 != NULL) {
17380 		mp = mp1;
17381 		mp1 = mp1->b_cont;
17382 		mp->b_cont = NULL;
17383 		tcp->tcp_drop_opt_ack_cnt++;
17384 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17385 	}
17386 	mp = NULL;
17387 
17388 	/*
17389 	 * For a loopback connection with tcp_direct_sockfs on, note that
17390 	 * we don't have to protect tcp_rcv_list yet because synchronous
17391 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17392 	 * possibly race with us.
17393 	 */
17394 
17395 	/*
17396 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17397 	 * properly.  This is the first time we know of the acceptor'
17398 	 * queue.  So we do it here.
17399 	 */
17400 	if (tcp->tcp_rcv_list == NULL) {
17401 		/*
17402 		 * Recv queue is empty, tcp_rwnd should not have changed.
17403 		 * That means it should be equal to the listener's tcp_rwnd.
17404 		 */
17405 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17406 	} else {
17407 #ifdef DEBUG
17408 		uint_t cnt = 0;
17409 
17410 		mp1 = tcp->tcp_rcv_list;
17411 		while ((mp = mp1) != NULL) {
17412 			mp1 = mp->b_next;
17413 			cnt += msgdsize(mp);
17414 		}
17415 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17416 #endif
17417 		/* There is some data, add them back to get the max. */
17418 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17419 	}
17420 
17421 	stropt->so_flags = SO_HIWAT;
17422 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17423 
17424 	stropt->so_flags |= SO_MAXBLK;
17425 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17426 
17427 	/*
17428 	 * This is the first time we run on the correct
17429 	 * queue after tcp_accept. So fix all the q parameters
17430 	 * here.
17431 	 */
17432 	/* Allocate room for SACK options if needed. */
17433 	stropt->so_flags |= SO_WROFF;
17434 	if (tcp->tcp_fused) {
17435 		ASSERT(tcp->tcp_loopback);
17436 		ASSERT(tcp->tcp_loopback_peer != NULL);
17437 		/*
17438 		 * For fused tcp loopback, set the stream head's write
17439 		 * offset value to zero since we won't be needing any room
17440 		 * for TCP/IP headers.  This would also improve performance
17441 		 * since it would reduce the amount of work done by kmem.
17442 		 * Non-fused tcp loopback case is handled separately below.
17443 		 */
17444 		stropt->so_wroff = 0;
17445 		/*
17446 		 * Record the stream head's high water mark for this endpoint;
17447 		 * this is used for flow-control purposes in tcp_fuse_output().
17448 		 */
17449 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17450 		/*
17451 		 * Update the peer's transmit parameters according to
17452 		 * our recently calculated high water mark value.
17453 		 */
17454 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17455 	} else if (tcp->tcp_snd_sack_ok) {
17456 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17457 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17458 	} else {
17459 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17460 		    tcp_wroff_xtra);
17461 	}
17462 
17463 	/*
17464 	 * If this is endpoint is handling SSL, then reserve extra
17465 	 * offset and space at the end.
17466 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17467 	 * overriding the previous setting. The extra cost of signing and
17468 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17469 	 * instead of a single contiguous one by the stream head
17470 	 * largely outweighs the statistical reduction of ACKs, when
17471 	 * applicable. The peer will also save on decyption and verification
17472 	 * costs.
17473 	 */
17474 	if (tcp->tcp_kssl_ctx != NULL) {
17475 		stropt->so_wroff += SSL3_WROFFSET;
17476 
17477 		stropt->so_flags |= SO_TAIL;
17478 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17479 
17480 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17481 	}
17482 
17483 	/* Send the options up */
17484 	putnext(q, stropt_mp);
17485 
17486 	/*
17487 	 * Pass up any data and/or a fin that has been received.
17488 	 *
17489 	 * Adjust receive window in case it had decreased
17490 	 * (because there is data <=> tcp_rcv_list != NULL)
17491 	 * while the connection was detached. Note that
17492 	 * in case the eager was flow-controlled, w/o this
17493 	 * code, the rwnd may never open up again!
17494 	 */
17495 	if (tcp->tcp_rcv_list != NULL) {
17496 		/* We drain directly in case of fused tcp loopback */
17497 		if (!tcp->tcp_fused && canputnext(q)) {
17498 			tcp->tcp_rwnd = q->q_hiwat;
17499 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17500 			    << tcp->tcp_rcv_ws;
17501 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17502 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17503 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17504 				tcp_xmit_ctl(NULL,
17505 				    tcp, (tcp->tcp_swnd == 0) ?
17506 				    tcp->tcp_suna : tcp->tcp_snxt,
17507 				    tcp->tcp_rnxt, TH_ACK);
17508 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17509 			}
17510 
17511 		}
17512 		(void) tcp_rcv_drain(q, tcp);
17513 
17514 		/*
17515 		 * For fused tcp loopback, back-enable peer endpoint
17516 		 * if it's currently flow-controlled.
17517 		 */
17518 		if (tcp->tcp_fused &&
17519 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17520 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17521 
17522 			ASSERT(peer_tcp != NULL);
17523 			ASSERT(peer_tcp->tcp_fused);
17524 
17525 			tcp_clrqfull(peer_tcp);
17526 			TCP_STAT(tcp_fusion_backenabled);
17527 		}
17528 	}
17529 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17530 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17531 		mp = mi_tpi_ordrel_ind();
17532 		if (mp) {
17533 			tcp->tcp_ordrel_done = B_TRUE;
17534 			putnext(q, mp);
17535 			if (tcp->tcp_deferred_clean_death) {
17536 				/*
17537 				 * tcp_clean_death was deferred
17538 				 * for T_ORDREL_IND - do it now
17539 				 */
17540 				(void) tcp_clean_death(tcp,
17541 				    tcp->tcp_client_errno, 21);
17542 				tcp->tcp_deferred_clean_death = B_FALSE;
17543 			}
17544 		} else {
17545 			/*
17546 			 * Run the orderly release in the
17547 			 * service routine.
17548 			 */
17549 			qenable(q);
17550 		}
17551 	}
17552 	if (tcp->tcp_hard_binding) {
17553 		tcp->tcp_hard_binding = B_FALSE;
17554 		tcp->tcp_hard_bound = B_TRUE;
17555 	}
17556 
17557 	tcp->tcp_detached = B_FALSE;
17558 
17559 	/* We can enable synchronous streams now */
17560 	if (tcp->tcp_fused) {
17561 		tcp_fuse_syncstr_enable_pair(tcp);
17562 	}
17563 
17564 	if (tcp->tcp_ka_enabled) {
17565 		tcp->tcp_ka_last_intrvl = 0;
17566 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17567 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17568 	}
17569 
17570 	/*
17571 	 * At this point, eager is fully established and will
17572 	 * have the following references -
17573 	 *
17574 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17575 	 * 1 reference for the squeue which will be dropped by the squeue as
17576 	 *	soon as this function returns.
17577 	 * There will be 1 additonal reference for being in classifier
17578 	 *	hash list provided something bad hasn't happened.
17579 	 */
17580 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17581 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17582 }
17583 
17584 /*
17585  * The function called through squeue to get behind listener's perimeter to
17586  * send a deffered conn_ind.
17587  */
17588 /* ARGSUSED */
17589 void
17590 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17591 {
17592 	conn_t	*connp = (conn_t *)arg;
17593 	tcp_t *listener = connp->conn_tcp;
17594 
17595 	if (listener->tcp_state == TCPS_CLOSED ||
17596 	    TCP_IS_DETACHED(listener)) {
17597 		/*
17598 		 * If listener has closed, it would have caused a
17599 		 * a cleanup/blowoff to happen for the eager.
17600 		 */
17601 		tcp_t *tcp;
17602 		struct T_conn_ind	*conn_ind;
17603 
17604 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17605 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17606 		    conn_ind->OPT_length);
17607 		/*
17608 		 * We need to drop the ref on eager that was put
17609 		 * tcp_rput_data() before trying to send the conn_ind
17610 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17611 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17612 		 * listener is closed so we drop the ref.
17613 		 */
17614 		CONN_DEC_REF(tcp->tcp_connp);
17615 		freemsg(mp);
17616 		return;
17617 	}
17618 	putnext(listener->tcp_rq, mp);
17619 }
17620 
17621 
17622 /*
17623  * This is the STREAMS entry point for T_CONN_RES coming down on
17624  * Acceptor STREAM when  sockfs listener does accept processing.
17625  * Read the block comment on top pf tcp_conn_request().
17626  */
17627 void
17628 tcp_wput_accept(queue_t *q, mblk_t *mp)
17629 {
17630 	queue_t *rq = RD(q);
17631 	struct T_conn_res *conn_res;
17632 	tcp_t *eager;
17633 	tcp_t *listener;
17634 	struct T_ok_ack *ok;
17635 	t_scalar_t PRIM_type;
17636 	mblk_t *opt_mp;
17637 	conn_t *econnp;
17638 
17639 	ASSERT(DB_TYPE(mp) == M_PROTO);
17640 
17641 	conn_res = (struct T_conn_res *)mp->b_rptr;
17642 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17643 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17644 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17645 		if (mp != NULL)
17646 			putnext(rq, mp);
17647 		return;
17648 	}
17649 	switch (conn_res->PRIM_type) {
17650 	case O_T_CONN_RES:
17651 	case T_CONN_RES:
17652 		/*
17653 		 * We pass up an err ack if allocb fails. This will
17654 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17655 		 * tcp_eager_blowoff to be called. sockfs will then call
17656 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17657 		 * we need to do the allocb up here because we have to
17658 		 * make sure rq->q_qinfo->qi_qclose still points to the
17659 		 * correct function (tcpclose_accept) in case allocb
17660 		 * fails.
17661 		 */
17662 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17663 		if (opt_mp == NULL) {
17664 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17665 			if (mp != NULL)
17666 				putnext(rq, mp);
17667 			return;
17668 		}
17669 
17670 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17671 		    &eager, conn_res->OPT_length);
17672 		PRIM_type = conn_res->PRIM_type;
17673 		mp->b_datap->db_type = M_PCPROTO;
17674 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17675 		ok = (struct T_ok_ack *)mp->b_rptr;
17676 		ok->PRIM_type = T_OK_ACK;
17677 		ok->CORRECT_prim = PRIM_type;
17678 		econnp = eager->tcp_connp;
17679 		econnp->conn_dev = (dev_t)q->q_ptr;
17680 		eager->tcp_rq = rq;
17681 		eager->tcp_wq = q;
17682 		rq->q_ptr = econnp;
17683 		rq->q_qinfo = &tcp_rinit;
17684 		q->q_ptr = econnp;
17685 		q->q_qinfo = &tcp_winit;
17686 		listener = eager->tcp_listener;
17687 		eager->tcp_issocket = B_TRUE;
17688 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17689 
17690 		/* Put the ref for IP */
17691 		CONN_INC_REF(econnp);
17692 
17693 		/*
17694 		 * We should have minimum of 3 references on the conn
17695 		 * at this point. One each for TCP and IP and one for
17696 		 * the T_conn_ind that was sent up when the 3-way handshake
17697 		 * completed. In the normal case we would also have another
17698 		 * reference (making a total of 4) for the conn being in the
17699 		 * classifier hash list. However the eager could have received
17700 		 * an RST subsequently and tcp_closei_local could have removed
17701 		 * the eager from the classifier hash list, hence we can't
17702 		 * assert that reference.
17703 		 */
17704 		ASSERT(econnp->conn_ref >= 3);
17705 
17706 		/*
17707 		 * Send the new local address also up to sockfs. There
17708 		 * should already be enough space in the mp that came
17709 		 * down from soaccept().
17710 		 */
17711 		if (eager->tcp_family == AF_INET) {
17712 			sin_t *sin;
17713 
17714 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17715 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17716 			sin = (sin_t *)mp->b_wptr;
17717 			mp->b_wptr += sizeof (sin_t);
17718 			sin->sin_family = AF_INET;
17719 			sin->sin_port = eager->tcp_lport;
17720 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17721 		} else {
17722 			sin6_t *sin6;
17723 
17724 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17725 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17726 			sin6 = (sin6_t *)mp->b_wptr;
17727 			mp->b_wptr += sizeof (sin6_t);
17728 			sin6->sin6_family = AF_INET6;
17729 			sin6->sin6_port = eager->tcp_lport;
17730 			if (eager->tcp_ipversion == IPV4_VERSION) {
17731 				sin6->sin6_flowinfo = 0;
17732 				IN6_IPADDR_TO_V4MAPPED(
17733 					eager->tcp_ipha->ipha_src,
17734 					    &sin6->sin6_addr);
17735 			} else {
17736 				ASSERT(eager->tcp_ip6h != NULL);
17737 				sin6->sin6_flowinfo =
17738 				    eager->tcp_ip6h->ip6_vcf &
17739 				    ~IPV6_VERS_AND_FLOW_MASK;
17740 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17741 			}
17742 			sin6->sin6_scope_id = 0;
17743 			sin6->__sin6_src_id = 0;
17744 		}
17745 
17746 		putnext(rq, mp);
17747 
17748 		opt_mp->b_datap->db_type = M_SETOPTS;
17749 		opt_mp->b_wptr += sizeof (struct stroptions);
17750 
17751 		/*
17752 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17753 		 * from listener to acceptor. The message is chained on the
17754 		 * bind_mp which tcp_rput_other will send down to IP.
17755 		 */
17756 		if (listener->tcp_bound_if != 0) {
17757 			/* allocate optmgmt req */
17758 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17759 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
17760 			    sizeof (int));
17761 			if (mp != NULL)
17762 				linkb(opt_mp, mp);
17763 		}
17764 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17765 			uint_t on = 1;
17766 
17767 			/* allocate optmgmt req */
17768 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17769 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
17770 			if (mp != NULL)
17771 				linkb(opt_mp, mp);
17772 		}
17773 
17774 
17775 		mutex_enter(&listener->tcp_eager_lock);
17776 
17777 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17778 
17779 			tcp_t *tail;
17780 			tcp_t *tcp;
17781 			mblk_t *mp1;
17782 
17783 			tcp = listener->tcp_eager_prev_q0;
17784 			/*
17785 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
17786 			 * deferred T_conn_ind queue. We need to get to the head
17787 			 * of the queue in order to send up T_conn_ind the same
17788 			 * order as how the 3WHS is completed.
17789 			 */
17790 			while (tcp != listener) {
17791 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17792 				    !tcp->tcp_kssl_pending)
17793 					break;
17794 				else
17795 					tcp = tcp->tcp_eager_prev_q0;
17796 			}
17797 			/* None of the pending eagers can be sent up now */
17798 			if (tcp == listener)
17799 				goto no_more_eagers;
17800 
17801 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17802 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17803 			/* Move from q0 to q */
17804 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17805 			listener->tcp_conn_req_cnt_q0--;
17806 			listener->tcp_conn_req_cnt_q++;
17807 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17808 			    tcp->tcp_eager_prev_q0;
17809 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17810 			    tcp->tcp_eager_next_q0;
17811 			tcp->tcp_eager_prev_q0 = NULL;
17812 			tcp->tcp_eager_next_q0 = NULL;
17813 			tcp->tcp_conn_def_q0 = B_FALSE;
17814 
17815 			/*
17816 			 * Insert at end of the queue because sockfs sends
17817 			 * down T_CONN_RES in chronological order. Leaving
17818 			 * the older conn indications at front of the queue
17819 			 * helps reducing search time.
17820 			 */
17821 			tail = listener->tcp_eager_last_q;
17822 			if (tail != NULL) {
17823 				tail->tcp_eager_next_q = tcp;
17824 			} else {
17825 				listener->tcp_eager_next_q = tcp;
17826 			}
17827 			listener->tcp_eager_last_q = tcp;
17828 			tcp->tcp_eager_next_q = NULL;
17829 
17830 			/* Need to get inside the listener perimeter */
17831 			CONN_INC_REF(listener->tcp_connp);
17832 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
17833 			    tcp_send_pending, listener->tcp_connp,
17834 			    SQTAG_TCP_SEND_PENDING);
17835 		}
17836 no_more_eagers:
17837 		tcp_eager_unlink(eager);
17838 		mutex_exit(&listener->tcp_eager_lock);
17839 
17840 		/*
17841 		 * At this point, the eager is detached from the listener
17842 		 * but we still have an extra refs on eager (apart from the
17843 		 * usual tcp references). The ref was placed in tcp_rput_data
17844 		 * before sending the conn_ind in tcp_send_conn_ind.
17845 		 * The ref will be dropped in tcp_accept_finish().
17846 		 */
17847 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
17848 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
17849 		return;
17850 	default:
17851 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17852 		if (mp != NULL)
17853 			putnext(rq, mp);
17854 		return;
17855 	}
17856 }
17857 
17858 void
17859 tcp_wput(queue_t *q, mblk_t *mp)
17860 {
17861 	conn_t	*connp = Q_TO_CONN(q);
17862 	tcp_t	*tcp;
17863 	void (*output_proc)();
17864 	t_scalar_t type;
17865 	uchar_t *rptr;
17866 	struct iocblk	*iocp;
17867 	uint32_t	msize;
17868 
17869 	ASSERT(connp->conn_ref >= 2);
17870 
17871 	switch (DB_TYPE(mp)) {
17872 	case M_DATA:
17873 		tcp = connp->conn_tcp;
17874 		ASSERT(tcp != NULL);
17875 
17876 		msize = msgdsize(mp);
17877 
17878 		mutex_enter(&connp->conn_lock);
17879 		CONN_INC_REF_LOCKED(connp);
17880 
17881 		tcp->tcp_squeue_bytes += msize;
17882 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17883 			mutex_exit(&connp->conn_lock);
17884 			tcp_setqfull(tcp);
17885 		} else
17886 			mutex_exit(&connp->conn_lock);
17887 
17888 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17889 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
17890 		return;
17891 	case M_PROTO:
17892 	case M_PCPROTO:
17893 		/*
17894 		 * if it is a snmp message, don't get behind the squeue
17895 		 */
17896 		tcp = connp->conn_tcp;
17897 		rptr = mp->b_rptr;
17898 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17899 			type = ((union T_primitives *)rptr)->type;
17900 		} else {
17901 			if (tcp->tcp_debug) {
17902 				(void) strlog(TCP_MOD_ID, 0, 1,
17903 				    SL_ERROR|SL_TRACE,
17904 				    "tcp_wput_proto, dropping one...");
17905 			}
17906 			freemsg(mp);
17907 			return;
17908 		}
17909 		if (type == T_SVR4_OPTMGMT_REQ) {
17910 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
17911 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
17912 			    cr)) {
17913 				/*
17914 				 * This was a SNMP request
17915 				 */
17916 				return;
17917 			} else {
17918 				output_proc = tcp_wput_proto;
17919 			}
17920 		} else {
17921 			output_proc = tcp_wput_proto;
17922 		}
17923 		break;
17924 	case M_IOCTL:
17925 		/*
17926 		 * Most ioctls can be processed right away without going via
17927 		 * squeues - process them right here. Those that do require
17928 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17929 		 * are processed by tcp_wput_ioctl().
17930 		 */
17931 		iocp = (struct iocblk *)mp->b_rptr;
17932 		tcp = connp->conn_tcp;
17933 
17934 		switch (iocp->ioc_cmd) {
17935 		case TCP_IOC_ABORT_CONN:
17936 			tcp_ioctl_abort_conn(q, mp);
17937 			return;
17938 		case TI_GETPEERNAME:
17939 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
17940 				iocp->ioc_error = ENOTCONN;
17941 				iocp->ioc_count = 0;
17942 				mp->b_datap->db_type = M_IOCACK;
17943 				qreply(q, mp);
17944 				return;
17945 			}
17946 			/* FALLTHRU */
17947 		case TI_GETMYNAME:
17948 			mi_copyin(q, mp, NULL,
17949 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17950 			return;
17951 		case ND_SET:
17952 			/* nd_getset does the necessary checks */
17953 		case ND_GET:
17954 			if (!nd_getset(q, tcp_g_nd, mp)) {
17955 				CALL_IP_WPUT(connp, q, mp);
17956 				return;
17957 			}
17958 			qreply(q, mp);
17959 			return;
17960 		case TCP_IOC_DEFAULT_Q:
17961 			/*
17962 			 * Wants to be the default wq. Check the credentials
17963 			 * first, the rest is executed via squeue.
17964 			 */
17965 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
17966 				iocp->ioc_error = EPERM;
17967 				iocp->ioc_count = 0;
17968 				mp->b_datap->db_type = M_IOCACK;
17969 				qreply(q, mp);
17970 				return;
17971 			}
17972 			output_proc = tcp_wput_ioctl;
17973 			break;
17974 		default:
17975 			output_proc = tcp_wput_ioctl;
17976 			break;
17977 		}
17978 		break;
17979 	default:
17980 		output_proc = tcp_wput_nondata;
17981 		break;
17982 	}
17983 
17984 	CONN_INC_REF(connp);
17985 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17986 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
17987 }
17988 
17989 /*
17990  * Initial STREAMS write side put() procedure for sockets. It tries to
17991  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
17992  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
17993  * are handled by tcp_wput() as usual.
17994  *
17995  * All further messages will also be handled by tcp_wput() because we cannot
17996  * be sure that the above short cut is safe later.
17997  */
17998 static void
17999 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18000 {
18001 	conn_t			*connp = Q_TO_CONN(wq);
18002 	tcp_t			*tcp = connp->conn_tcp;
18003 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18004 
18005 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18006 	wq->q_qinfo = &tcp_winit;
18007 
18008 	ASSERT(IPCL_IS_TCP(connp));
18009 	ASSERT(TCP_IS_SOCKET(tcp));
18010 
18011 	if (DB_TYPE(mp) == M_PCPROTO &&
18012 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18013 	    car->PRIM_type == T_CAPABILITY_REQ) {
18014 		tcp_capability_req(tcp, mp);
18015 		return;
18016 	}
18017 
18018 	tcp_wput(wq, mp);
18019 }
18020 
18021 static boolean_t
18022 tcp_zcopy_check(tcp_t *tcp)
18023 {
18024 	conn_t	*connp = tcp->tcp_connp;
18025 	ire_t	*ire;
18026 	boolean_t	zc_enabled = B_FALSE;
18027 
18028 	if (do_tcpzcopy == 2)
18029 		zc_enabled = B_TRUE;
18030 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18031 	    IPCL_IS_CONNECTED(connp) &&
18032 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18033 	    connp->conn_dontroute == 0 &&
18034 	    !connp->conn_nexthop_set &&
18035 	    connp->conn_xmit_if_ill == NULL &&
18036 	    connp->conn_nofailover_ill == NULL &&
18037 	    do_tcpzcopy == 1) {
18038 		/*
18039 		 * the checks above  closely resemble the fast path checks
18040 		 * in tcp_send_data().
18041 		 */
18042 		mutex_enter(&connp->conn_lock);
18043 		ire = connp->conn_ire_cache;
18044 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18045 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18046 			IRE_REFHOLD(ire);
18047 			if (ire->ire_stq != NULL) {
18048 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18049 
18050 				zc_enabled = ill && (ill->ill_capabilities &
18051 				    ILL_CAPAB_ZEROCOPY) &&
18052 				    (ill->ill_zerocopy_capab->
18053 				    ill_zerocopy_flags != 0);
18054 			}
18055 			IRE_REFRELE(ire);
18056 		}
18057 		mutex_exit(&connp->conn_lock);
18058 	}
18059 	tcp->tcp_snd_zcopy_on = zc_enabled;
18060 	if (!TCP_IS_DETACHED(tcp)) {
18061 		if (zc_enabled) {
18062 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18063 			TCP_STAT(tcp_zcopy_on);
18064 		} else {
18065 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18066 			TCP_STAT(tcp_zcopy_off);
18067 		}
18068 	}
18069 	return (zc_enabled);
18070 }
18071 
18072 static mblk_t *
18073 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18074 {
18075 	if (do_tcpzcopy == 2)
18076 		return (bp);
18077 	else if (tcp->tcp_snd_zcopy_on) {
18078 		tcp->tcp_snd_zcopy_on = B_FALSE;
18079 		if (!TCP_IS_DETACHED(tcp)) {
18080 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18081 			TCP_STAT(tcp_zcopy_disable);
18082 		}
18083 	}
18084 	return (tcp_zcopy_backoff(tcp, bp, 0));
18085 }
18086 
18087 /*
18088  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18089  * the original desballoca'ed segmapped mblk.
18090  */
18091 static mblk_t *
18092 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18093 {
18094 	mblk_t *head, *tail, *nbp;
18095 	if (IS_VMLOANED_MBLK(bp)) {
18096 		TCP_STAT(tcp_zcopy_backoff);
18097 		if ((head = copyb(bp)) == NULL) {
18098 			/* fail to backoff; leave it for the next backoff */
18099 			tcp->tcp_xmit_zc_clean = B_FALSE;
18100 			return (bp);
18101 		}
18102 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18103 			if (fix_xmitlist)
18104 				tcp_zcopy_notify(tcp);
18105 			else
18106 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18107 		}
18108 		nbp = bp->b_cont;
18109 		if (fix_xmitlist) {
18110 			head->b_prev = bp->b_prev;
18111 			head->b_next = bp->b_next;
18112 			if (tcp->tcp_xmit_tail == bp)
18113 				tcp->tcp_xmit_tail = head;
18114 		}
18115 		bp->b_next = NULL;
18116 		bp->b_prev = NULL;
18117 		freeb(bp);
18118 	} else {
18119 		head = bp;
18120 		nbp = bp->b_cont;
18121 	}
18122 	tail = head;
18123 	while (nbp) {
18124 		if (IS_VMLOANED_MBLK(nbp)) {
18125 			TCP_STAT(tcp_zcopy_backoff);
18126 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18127 				tcp->tcp_xmit_zc_clean = B_FALSE;
18128 				tail->b_cont = nbp;
18129 				return (head);
18130 			}
18131 			tail = tail->b_cont;
18132 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18133 				if (fix_xmitlist)
18134 					tcp_zcopy_notify(tcp);
18135 				else
18136 					tail->b_datap->db_struioflag |=
18137 					    STRUIO_ZCNOTIFY;
18138 			}
18139 			bp = nbp;
18140 			nbp = nbp->b_cont;
18141 			if (fix_xmitlist) {
18142 				tail->b_prev = bp->b_prev;
18143 				tail->b_next = bp->b_next;
18144 				if (tcp->tcp_xmit_tail == bp)
18145 					tcp->tcp_xmit_tail = tail;
18146 			}
18147 			bp->b_next = NULL;
18148 			bp->b_prev = NULL;
18149 			freeb(bp);
18150 		} else {
18151 			tail->b_cont = nbp;
18152 			tail = nbp;
18153 			nbp = nbp->b_cont;
18154 		}
18155 	}
18156 	if (fix_xmitlist) {
18157 		tcp->tcp_xmit_last = tail;
18158 		tcp->tcp_xmit_zc_clean = B_TRUE;
18159 	}
18160 	return (head);
18161 }
18162 
18163 static void
18164 tcp_zcopy_notify(tcp_t *tcp)
18165 {
18166 	struct stdata	*stp;
18167 
18168 	if (tcp->tcp_detached)
18169 		return;
18170 	stp = STREAM(tcp->tcp_rq);
18171 	mutex_enter(&stp->sd_lock);
18172 	stp->sd_flag |= STZCNOTIFY;
18173 	cv_broadcast(&stp->sd_zcopy_wait);
18174 	mutex_exit(&stp->sd_lock);
18175 }
18176 
18177 static void
18178 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18179 {
18180 	ipha_t		*ipha;
18181 	ipaddr_t	src;
18182 	ipaddr_t	dst;
18183 	uint32_t	cksum;
18184 	ire_t		*ire;
18185 	uint16_t	*up;
18186 	ill_t		*ill;
18187 	conn_t		*connp = tcp->tcp_connp;
18188 	uint32_t	hcksum_txflags = 0;
18189 	mblk_t		*ire_fp_mp;
18190 	uint_t		ire_fp_mp_len;
18191 
18192 	ASSERT(DB_TYPE(mp) == M_DATA);
18193 
18194 	if (DB_CRED(mp) == NULL)
18195 		mblk_setcred(mp, CONN_CRED(connp));
18196 
18197 	ipha = (ipha_t *)mp->b_rptr;
18198 	src = ipha->ipha_src;
18199 	dst = ipha->ipha_dst;
18200 
18201 	/*
18202 	 * Drop off fast path for IPv6 and also if options are present or
18203 	 * we need to resolve a TS label.
18204 	 */
18205 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18206 	    !IPCL_IS_CONNECTED(connp) ||
18207 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18208 	    connp->conn_dontroute ||
18209 	    connp->conn_nexthop_set ||
18210 	    connp->conn_xmit_if_ill != NULL ||
18211 	    connp->conn_nofailover_ill != NULL ||
18212 	    !connp->conn_ulp_labeled ||
18213 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18214 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18215 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18216 		if (tcp->tcp_snd_zcopy_aware)
18217 			mp = tcp_zcopy_disable(tcp, mp);
18218 		TCP_STAT(tcp_ip_send);
18219 		CALL_IP_WPUT(connp, q, mp);
18220 		return;
18221 	}
18222 
18223 	mutex_enter(&connp->conn_lock);
18224 	ire = connp->conn_ire_cache;
18225 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18226 	if (ire != NULL && ire->ire_addr == dst &&
18227 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18228 		IRE_REFHOLD(ire);
18229 		mutex_exit(&connp->conn_lock);
18230 	} else {
18231 		boolean_t cached = B_FALSE;
18232 
18233 		/* force a recheck later on */
18234 		tcp->tcp_ire_ill_check_done = B_FALSE;
18235 
18236 		TCP_DBGSTAT(tcp_ire_null1);
18237 		connp->conn_ire_cache = NULL;
18238 		mutex_exit(&connp->conn_lock);
18239 		if (ire != NULL)
18240 			IRE_REFRELE_NOTR(ire);
18241 		ire = ire_cache_lookup(dst, connp->conn_zoneid,
18242 		    MBLK_GETLABEL(mp));
18243 		if (ire == NULL) {
18244 			if (tcp->tcp_snd_zcopy_aware)
18245 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18246 			TCP_STAT(tcp_ire_null);
18247 			CALL_IP_WPUT(connp, q, mp);
18248 			return;
18249 		}
18250 		IRE_REFHOLD_NOTR(ire);
18251 		/*
18252 		 * Since we are inside the squeue, there cannot be another
18253 		 * thread in TCP trying to set the conn_ire_cache now.  The
18254 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18255 		 * unplumb thread has not yet started cleaning up the conns.
18256 		 * Hence we don't need to grab the conn lock.
18257 		 */
18258 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18259 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18260 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18261 				connp->conn_ire_cache = ire;
18262 				cached = B_TRUE;
18263 			}
18264 			rw_exit(&ire->ire_bucket->irb_lock);
18265 		}
18266 
18267 		/*
18268 		 * We can continue to use the ire but since it was
18269 		 * not cached, we should drop the extra reference.
18270 		 */
18271 		if (!cached)
18272 			IRE_REFRELE_NOTR(ire);
18273 
18274 		/*
18275 		 * Rampart note: no need to select a new label here, since
18276 		 * labels are not allowed to change during the life of a TCP
18277 		 * connection.
18278 		 */
18279 	}
18280 
18281 	if (ire->ire_flags & RTF_MULTIRT ||
18282 	    ire->ire_stq == NULL ||
18283 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18284 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
18285 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18286 		if (tcp->tcp_snd_zcopy_aware)
18287 			mp = tcp_zcopy_disable(tcp, mp);
18288 		TCP_STAT(tcp_ip_ire_send);
18289 		IRE_REFRELE(ire);
18290 		CALL_IP_WPUT(connp, q, mp);
18291 		return;
18292 	}
18293 
18294 	ill = ire_to_ill(ire);
18295 	if (connp->conn_outgoing_ill != NULL) {
18296 		ill_t *conn_outgoing_ill = NULL;
18297 		/*
18298 		 * Choose a good ill in the group to send the packets on.
18299 		 */
18300 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18301 		ill = ire_to_ill(ire);
18302 	}
18303 	ASSERT(ill != NULL);
18304 
18305 	if (!tcp->tcp_ire_ill_check_done) {
18306 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18307 		tcp->tcp_ire_ill_check_done = B_TRUE;
18308 	}
18309 
18310 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18311 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18312 #ifndef _BIG_ENDIAN
18313 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18314 #endif
18315 
18316 	/*
18317 	 * Check to see if we need to re-enable MDT for this connection
18318 	 * because it was previously disabled due to changes in the ill;
18319 	 * note that by doing it here, this re-enabling only applies when
18320 	 * the packet is not dispatched through CALL_IP_WPUT().
18321 	 *
18322 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18323 	 * case, since that's how we ended up here.  For IPv6, we do the
18324 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18325 	 */
18326 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18327 		/*
18328 		 * Restore MDT for this connection, so that next time around
18329 		 * it is eligible to go through tcp_multisend() path again.
18330 		 */
18331 		TCP_STAT(tcp_mdt_conn_resumed1);
18332 		tcp->tcp_mdt = B_TRUE;
18333 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18334 		    "interface %s\n", (void *)connp, ill->ill_name));
18335 	}
18336 
18337 	if (tcp->tcp_snd_zcopy_aware) {
18338 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18339 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18340 			mp = tcp_zcopy_disable(tcp, mp);
18341 		/*
18342 		 * we shouldn't need to reset ipha as the mp containing
18343 		 * ipha should never be a zero-copy mp.
18344 		 */
18345 	}
18346 
18347 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18348 		ASSERT(ill->ill_hcksum_capab != NULL);
18349 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18350 	}
18351 
18352 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18353 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18354 
18355 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18356 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18357 
18358 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18359 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18360 
18361 	/* Software checksum? */
18362 	if (DB_CKSUMFLAGS(mp) == 0) {
18363 		TCP_STAT(tcp_out_sw_cksum);
18364 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18365 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18366 	}
18367 
18368 	ipha->ipha_fragment_offset_and_flags |=
18369 	    (uint32_t)htons(ire->ire_frag_flag);
18370 
18371 	/* Calculate IP header checksum if hardware isn't capable */
18372 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18373 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18374 		    ((uint16_t *)ipha)[4]);
18375 	}
18376 
18377 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18378 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18379 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18380 
18381 	UPDATE_OB_PKT_COUNT(ire);
18382 	ire->ire_last_used_time = lbolt;
18383 	BUMP_MIB(&ip_mib, ipOutRequests);
18384 
18385 	if (ILL_DLS_CAPABLE(ill)) {
18386 		/*
18387 		 * Send the packet directly to DLD, where it may be queued
18388 		 * depending on the availability of transmit resources at
18389 		 * the media layer.
18390 		 */
18391 		IP_DLS_ILL_TX(ill, mp);
18392 	} else {
18393 		putnext(ire->ire_stq, mp);
18394 	}
18395 	IRE_REFRELE(ire);
18396 }
18397 
18398 /*
18399  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18400  * if the receiver shrinks the window, i.e. moves the right window to the
18401  * left, the we should not send new data, but should retransmit normally the
18402  * old unacked data between suna and suna + swnd. We might has sent data
18403  * that is now outside the new window, pretend that we didn't send  it.
18404  */
18405 static void
18406 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18407 {
18408 	uint32_t	snxt = tcp->tcp_snxt;
18409 	mblk_t		*xmit_tail;
18410 	int32_t		offset;
18411 
18412 	ASSERT(shrunk_count > 0);
18413 
18414 	/* Pretend we didn't send the data outside the window */
18415 	snxt -= shrunk_count;
18416 
18417 	/* Get the mblk and the offset in it per the shrunk window */
18418 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18419 
18420 	ASSERT(xmit_tail != NULL);
18421 
18422 	/* Reset all the values per the now shrunk window */
18423 	tcp->tcp_snxt = snxt;
18424 	tcp->tcp_xmit_tail = xmit_tail;
18425 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18426 	    offset;
18427 	tcp->tcp_unsent += shrunk_count;
18428 
18429 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18430 		/*
18431 		 * Make sure the timer is running so that we will probe a zero
18432 		 * window.
18433 		 */
18434 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18435 }
18436 
18437 
18438 /*
18439  * The TCP normal data output path.
18440  * NOTE: the logic of the fast path is duplicated from this function.
18441  */
18442 static void
18443 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18444 {
18445 	int		len;
18446 	mblk_t		*local_time;
18447 	mblk_t		*mp1;
18448 	uint32_t	snxt;
18449 	int		tail_unsent;
18450 	int		tcpstate;
18451 	int		usable = 0;
18452 	mblk_t		*xmit_tail;
18453 	queue_t		*q = tcp->tcp_wq;
18454 	int32_t		mss;
18455 	int32_t		num_sack_blk = 0;
18456 	int32_t		tcp_hdr_len;
18457 	int32_t		tcp_tcp_hdr_len;
18458 	int		mdt_thres;
18459 	int		rc;
18460 
18461 	tcpstate = tcp->tcp_state;
18462 	if (mp == NULL) {
18463 		/*
18464 		 * tcp_wput_data() with NULL mp should only be called when
18465 		 * there is unsent data.
18466 		 */
18467 		ASSERT(tcp->tcp_unsent > 0);
18468 		/* Really tacky... but we need this for detached closes. */
18469 		len = tcp->tcp_unsent;
18470 		goto data_null;
18471 	}
18472 
18473 #if CCS_STATS
18474 	wrw_stats.tot.count++;
18475 	wrw_stats.tot.bytes += msgdsize(mp);
18476 #endif
18477 	ASSERT(mp->b_datap->db_type == M_DATA);
18478 	/*
18479 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18480 	 * or before a connection attempt has begun.
18481 	 */
18482 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18483 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18484 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18485 #ifdef DEBUG
18486 			cmn_err(CE_WARN,
18487 			    "tcp_wput_data: data after ordrel, %s",
18488 			    tcp_display(tcp, NULL,
18489 			    DISP_ADDR_AND_PORT));
18490 #else
18491 			if (tcp->tcp_debug) {
18492 				(void) strlog(TCP_MOD_ID, 0, 1,
18493 				    SL_TRACE|SL_ERROR,
18494 				    "tcp_wput_data: data after ordrel, %s\n",
18495 				    tcp_display(tcp, NULL,
18496 				    DISP_ADDR_AND_PORT));
18497 			}
18498 #endif /* DEBUG */
18499 		}
18500 		if (tcp->tcp_snd_zcopy_aware &&
18501 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18502 			tcp_zcopy_notify(tcp);
18503 		freemsg(mp);
18504 		if (tcp->tcp_flow_stopped &&
18505 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18506 			tcp_clrqfull(tcp);
18507 		}
18508 		return;
18509 	}
18510 
18511 	/* Strip empties */
18512 	for (;;) {
18513 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18514 		    (uintptr_t)INT_MAX);
18515 		len = (int)(mp->b_wptr - mp->b_rptr);
18516 		if (len > 0)
18517 			break;
18518 		mp1 = mp;
18519 		mp = mp->b_cont;
18520 		freeb(mp1);
18521 		if (!mp) {
18522 			return;
18523 		}
18524 	}
18525 
18526 	/* If we are the first on the list ... */
18527 	if (tcp->tcp_xmit_head == NULL) {
18528 		tcp->tcp_xmit_head = mp;
18529 		tcp->tcp_xmit_tail = mp;
18530 		tcp->tcp_xmit_tail_unsent = len;
18531 	} else {
18532 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18533 		struct datab *dp;
18534 
18535 		mp1 = tcp->tcp_xmit_last;
18536 		if (len < tcp_tx_pull_len &&
18537 		    (dp = mp1->b_datap)->db_ref == 1 &&
18538 		    dp->db_lim - mp1->b_wptr >= len) {
18539 			ASSERT(len > 0);
18540 			ASSERT(!mp1->b_cont);
18541 			if (len == 1) {
18542 				*mp1->b_wptr++ = *mp->b_rptr;
18543 			} else {
18544 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18545 				mp1->b_wptr += len;
18546 			}
18547 			if (mp1 == tcp->tcp_xmit_tail)
18548 				tcp->tcp_xmit_tail_unsent += len;
18549 			mp1->b_cont = mp->b_cont;
18550 			if (tcp->tcp_snd_zcopy_aware &&
18551 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18552 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18553 			freeb(mp);
18554 			mp = mp1;
18555 		} else {
18556 			tcp->tcp_xmit_last->b_cont = mp;
18557 		}
18558 		len += tcp->tcp_unsent;
18559 	}
18560 
18561 	/* Tack on however many more positive length mblks we have */
18562 	if ((mp1 = mp->b_cont) != NULL) {
18563 		do {
18564 			int tlen;
18565 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18566 			    (uintptr_t)INT_MAX);
18567 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18568 			if (tlen <= 0) {
18569 				mp->b_cont = mp1->b_cont;
18570 				freeb(mp1);
18571 			} else {
18572 				len += tlen;
18573 				mp = mp1;
18574 			}
18575 		} while ((mp1 = mp->b_cont) != NULL);
18576 	}
18577 	tcp->tcp_xmit_last = mp;
18578 	tcp->tcp_unsent = len;
18579 
18580 	if (urgent)
18581 		usable = 1;
18582 
18583 data_null:
18584 	snxt = tcp->tcp_snxt;
18585 	xmit_tail = tcp->tcp_xmit_tail;
18586 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18587 
18588 	/*
18589 	 * Note that tcp_mss has been adjusted to take into account the
18590 	 * timestamp option if applicable.  Because SACK options do not
18591 	 * appear in every TCP segments and they are of variable lengths,
18592 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18593 	 * the actual segment length when we need to send a segment which
18594 	 * includes SACK options.
18595 	 */
18596 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18597 		int32_t	opt_len;
18598 
18599 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18600 		    tcp->tcp_num_sack_blk);
18601 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18602 		    2 + TCPOPT_HEADER_LEN;
18603 		mss = tcp->tcp_mss - opt_len;
18604 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18605 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18606 	} else {
18607 		mss = tcp->tcp_mss;
18608 		tcp_hdr_len = tcp->tcp_hdr_len;
18609 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18610 	}
18611 
18612 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18613 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18614 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18615 	}
18616 	if (tcpstate == TCPS_SYN_RCVD) {
18617 		/*
18618 		 * The three-way connection establishment handshake is not
18619 		 * complete yet. We want to queue the data for transmission
18620 		 * after entering ESTABLISHED state (RFC793). A jump to
18621 		 * "done" label effectively leaves data on the queue.
18622 		 */
18623 		goto done;
18624 	} else {
18625 		int usable_r;
18626 
18627 		/*
18628 		 * In the special case when cwnd is zero, which can only
18629 		 * happen if the connection is ECN capable, return now.
18630 		 * New segments is sent using tcp_timer().  The timer
18631 		 * is set in tcp_rput_data().
18632 		 */
18633 		if (tcp->tcp_cwnd == 0) {
18634 			/*
18635 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18636 			 * finished.
18637 			 */
18638 			ASSERT(tcp->tcp_ecn_ok ||
18639 			    tcp->tcp_state < TCPS_ESTABLISHED);
18640 			return;
18641 		}
18642 
18643 		/* NOTE: trouble if xmitting while SYN not acked? */
18644 		usable_r = snxt - tcp->tcp_suna;
18645 		usable_r = tcp->tcp_swnd - usable_r;
18646 
18647 		/*
18648 		 * Check if the receiver has shrunk the window.  If
18649 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18650 		 * cannot be set as there is unsent data, so FIN cannot
18651 		 * be sent out.  Otherwise, we need to take into account
18652 		 * of FIN as it consumes an "invisible" sequence number.
18653 		 */
18654 		ASSERT(tcp->tcp_fin_sent == 0);
18655 		if (usable_r < 0) {
18656 			/*
18657 			 * The receiver has shrunk the window and we have sent
18658 			 * -usable_r date beyond the window, re-adjust.
18659 			 *
18660 			 * If TCP window scaling is enabled, there can be
18661 			 * round down error as the advertised receive window
18662 			 * is actually right shifted n bits.  This means that
18663 			 * the lower n bits info is wiped out.  It will look
18664 			 * like the window is shrunk.  Do a check here to
18665 			 * see if the shrunk amount is actually within the
18666 			 * error in window calculation.  If it is, just
18667 			 * return.  Note that this check is inside the
18668 			 * shrunk window check.  This makes sure that even
18669 			 * though tcp_process_shrunk_swnd() is not called,
18670 			 * we will stop further processing.
18671 			 */
18672 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18673 				tcp_process_shrunk_swnd(tcp, -usable_r);
18674 			}
18675 			return;
18676 		}
18677 
18678 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18679 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18680 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18681 
18682 		/* usable = MIN(usable, unsent) */
18683 		if (usable_r > len)
18684 			usable_r = len;
18685 
18686 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18687 		if (usable_r > 0) {
18688 			usable = usable_r;
18689 		} else {
18690 			/* Bypass all other unnecessary processing. */
18691 			goto done;
18692 		}
18693 	}
18694 
18695 	local_time = (mblk_t *)lbolt;
18696 
18697 	/*
18698 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18699 	 * BSD.  This is more in line with the true intent of Nagle.
18700 	 *
18701 	 * The conditions are:
18702 	 * 1. The amount of unsent data (or amount of data which can be
18703 	 *    sent, whichever is smaller) is less than Nagle limit.
18704 	 * 2. The last sent size is also less than Nagle limit.
18705 	 * 3. There is unack'ed data.
18706 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18707 	 *    Nagle algorithm.  This reduces the probability that urgent
18708 	 *    bytes get "merged" together.
18709 	 * 5. The app has not closed the connection.  This eliminates the
18710 	 *    wait time of the receiving side waiting for the last piece of
18711 	 *    (small) data.
18712 	 *
18713 	 * If all are satisified, exit without sending anything.  Note
18714 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18715 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18716 	 * 4095).
18717 	 */
18718 	if (usable < (int)tcp->tcp_naglim &&
18719 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18720 	    snxt != tcp->tcp_suna &&
18721 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18722 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18723 		goto done;
18724 	}
18725 
18726 	if (tcp->tcp_cork) {
18727 		/*
18728 		 * if the tcp->tcp_cork option is set, then we have to force
18729 		 * TCP not to send partial segment (smaller than MSS bytes).
18730 		 * We are calculating the usable now based on full mss and
18731 		 * will save the rest of remaining data for later.
18732 		 */
18733 		if (usable < mss)
18734 			goto done;
18735 		usable = (usable / mss) * mss;
18736 	}
18737 
18738 	/* Update the latest receive window size in TCP header. */
18739 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18740 	    tcp->tcp_tcph->th_win);
18741 
18742 	/*
18743 	 * Determine if it's worthwhile to attempt MDT, based on:
18744 	 *
18745 	 * 1. Simple TCP/IP{v4,v6} (no options).
18746 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18747 	 * 3. If the TCP connection is in ESTABLISHED state.
18748 	 * 4. The TCP is not detached.
18749 	 *
18750 	 * If any of the above conditions have changed during the
18751 	 * connection, stop using MDT and restore the stream head
18752 	 * parameters accordingly.
18753 	 */
18754 	if (tcp->tcp_mdt &&
18755 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18756 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18757 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18758 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18759 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18760 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
18761 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18762 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
18763 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18764 		tcp->tcp_mdt = B_FALSE;
18765 
18766 		/* Anything other than detached is considered pathological */
18767 		if (!TCP_IS_DETACHED(tcp)) {
18768 			TCP_STAT(tcp_mdt_conn_halted1);
18769 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18770 		}
18771 	}
18772 
18773 	/* Use MDT if sendable amount is greater than the threshold */
18774 	if (tcp->tcp_mdt &&
18775 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18776 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18777 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18778 	    (tcp->tcp_valid_bits == 0 ||
18779 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18780 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18781 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18782 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18783 		    local_time, mdt_thres);
18784 	} else {
18785 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18786 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18787 		    local_time, INT_MAX);
18788 	}
18789 
18790 	/* Pretend that all we were trying to send really got sent */
18791 	if (rc < 0 && tail_unsent < 0) {
18792 		do {
18793 			xmit_tail = xmit_tail->b_cont;
18794 			xmit_tail->b_prev = local_time;
18795 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18796 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18797 			tail_unsent += (int)(xmit_tail->b_wptr -
18798 			    xmit_tail->b_rptr);
18799 		} while (tail_unsent < 0);
18800 	}
18801 done:;
18802 	tcp->tcp_xmit_tail = xmit_tail;
18803 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18804 	len = tcp->tcp_snxt - snxt;
18805 	if (len) {
18806 		/*
18807 		 * If new data was sent, need to update the notsack
18808 		 * list, which is, afterall, data blocks that have
18809 		 * not been sack'ed by the receiver.  New data is
18810 		 * not sack'ed.
18811 		 */
18812 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18813 			/* len is a negative value. */
18814 			tcp->tcp_pipe -= len;
18815 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18816 			    tcp->tcp_snxt, snxt,
18817 			    &(tcp->tcp_num_notsack_blk),
18818 			    &(tcp->tcp_cnt_notsack_list));
18819 		}
18820 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18821 		tcp->tcp_rack = tcp->tcp_rnxt;
18822 		tcp->tcp_rack_cnt = 0;
18823 		if ((snxt + len) == tcp->tcp_suna) {
18824 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18825 		}
18826 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18827 		/*
18828 		 * Didn't send anything. Make sure the timer is running
18829 		 * so that we will probe a zero window.
18830 		 */
18831 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18832 	}
18833 	/* Note that len is the amount we just sent but with a negative sign */
18834 	tcp->tcp_unsent += len;
18835 	if (tcp->tcp_flow_stopped) {
18836 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18837 			tcp_clrqfull(tcp);
18838 		}
18839 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18840 		tcp_setqfull(tcp);
18841 	}
18842 }
18843 
18844 /*
18845  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18846  * outgoing TCP header with the template header, as well as other
18847  * options such as time-stamp, ECN and/or SACK.
18848  */
18849 static void
18850 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18851 {
18852 	tcph_t *tcp_tmpl, *tcp_h;
18853 	uint32_t *dst, *src;
18854 	int hdrlen;
18855 
18856 	ASSERT(OK_32PTR(rptr));
18857 
18858 	/* Template header */
18859 	tcp_tmpl = tcp->tcp_tcph;
18860 
18861 	/* Header of outgoing packet */
18862 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18863 
18864 	/* dst and src are opaque 32-bit fields, used for copying */
18865 	dst = (uint32_t *)rptr;
18866 	src = (uint32_t *)tcp->tcp_iphc;
18867 	hdrlen = tcp->tcp_hdr_len;
18868 
18869 	/* Fill time-stamp option if needed */
18870 	if (tcp->tcp_snd_ts_ok) {
18871 		U32_TO_BE32((uint32_t)now,
18872 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
18873 		U32_TO_BE32(tcp->tcp_ts_recent,
18874 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
18875 	} else {
18876 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18877 	}
18878 
18879 	/*
18880 	 * Copy the template header; is this really more efficient than
18881 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
18882 	 * but perhaps not for other scenarios.
18883 	 */
18884 	dst[0] = src[0];
18885 	dst[1] = src[1];
18886 	dst[2] = src[2];
18887 	dst[3] = src[3];
18888 	dst[4] = src[4];
18889 	dst[5] = src[5];
18890 	dst[6] = src[6];
18891 	dst[7] = src[7];
18892 	dst[8] = src[8];
18893 	dst[9] = src[9];
18894 	if (hdrlen -= 40) {
18895 		hdrlen >>= 2;
18896 		dst += 10;
18897 		src += 10;
18898 		do {
18899 			*dst++ = *src++;
18900 		} while (--hdrlen);
18901 	}
18902 
18903 	/*
18904 	 * Set the ECN info in the TCP header if it is not a zero
18905 	 * window probe.  Zero window probe is only sent in
18906 	 * tcp_wput_data() and tcp_timer().
18907 	 */
18908 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
18909 		SET_ECT(tcp, rptr);
18910 
18911 		if (tcp->tcp_ecn_echo_on)
18912 			tcp_h->th_flags[0] |= TH_ECE;
18913 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18914 			tcp_h->th_flags[0] |= TH_CWR;
18915 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18916 		}
18917 	}
18918 
18919 	/* Fill in SACK options */
18920 	if (num_sack_blk > 0) {
18921 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
18922 		sack_blk_t *tmp;
18923 		int32_t	i;
18924 
18925 		wptr[0] = TCPOPT_NOP;
18926 		wptr[1] = TCPOPT_NOP;
18927 		wptr[2] = TCPOPT_SACK;
18928 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
18929 		    sizeof (sack_blk_t);
18930 		wptr += TCPOPT_REAL_SACK_LEN;
18931 
18932 		tmp = tcp->tcp_sack_list;
18933 		for (i = 0; i < num_sack_blk; i++) {
18934 			U32_TO_BE32(tmp[i].begin, wptr);
18935 			wptr += sizeof (tcp_seq);
18936 			U32_TO_BE32(tmp[i].end, wptr);
18937 			wptr += sizeof (tcp_seq);
18938 		}
18939 		tcp_h->th_offset_and_rsrvd[0] +=
18940 		    ((num_sack_blk * 2 + 1) << 4);
18941 	}
18942 }
18943 
18944 /*
18945  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
18946  * the destination address and SAP attribute, and if necessary, the
18947  * hardware checksum offload attribute to a Multidata message.
18948  */
18949 static int
18950 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
18951     const uint32_t start, const uint32_t stuff, const uint32_t end,
18952     const uint32_t flags)
18953 {
18954 	/* Add global destination address & SAP attribute */
18955 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
18956 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
18957 		    "destination address+SAP\n"));
18958 
18959 		if (dlmp != NULL)
18960 			TCP_STAT(tcp_mdt_allocfail);
18961 		return (-1);
18962 	}
18963 
18964 	/* Add global hwcksum attribute */
18965 	if (hwcksum &&
18966 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
18967 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
18968 		    "checksum attribute\n"));
18969 
18970 		TCP_STAT(tcp_mdt_allocfail);
18971 		return (-1);
18972 	}
18973 
18974 	return (0);
18975 }
18976 
18977 /*
18978  * Smaller and private version of pdescinfo_t used specifically for TCP,
18979  * which allows for only two payload spans per packet.
18980  */
18981 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
18982 
18983 /*
18984  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
18985  * scheme, and returns one the following:
18986  *
18987  * -1 = failed allocation.
18988  *  0 = success; burst count reached, or usable send window is too small,
18989  *      and that we'd rather wait until later before sending again.
18990  */
18991 static int
18992 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
18993     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
18994     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
18995     const int mdt_thres)
18996 {
18997 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
18998 	multidata_t	*mmd;
18999 	uint_t		obsegs, obbytes, hdr_frag_sz;
19000 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19001 	int		num_burst_seg, max_pld;
19002 	pdesc_t		*pkt;
19003 	tcp_pdescinfo_t	tcp_pkt_info;
19004 	pdescinfo_t	*pkt_info;
19005 	int		pbuf_idx, pbuf_idx_nxt;
19006 	int		seg_len, len, spill, af;
19007 	boolean_t	add_buffer, zcopy, clusterwide;
19008 	boolean_t	rconfirm = B_FALSE;
19009 	boolean_t	done = B_FALSE;
19010 	uint32_t	cksum;
19011 	uint32_t	hwcksum_flags;
19012 	ire_t		*ire;
19013 	ill_t		*ill;
19014 	ipha_t		*ipha;
19015 	ip6_t		*ip6h;
19016 	ipaddr_t	src, dst;
19017 	ill_zerocopy_capab_t *zc_cap = NULL;
19018 	uint16_t	*up;
19019 	int		err;
19020 	conn_t		*connp;
19021 
19022 #ifdef	_BIG_ENDIAN
19023 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19024 #else
19025 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19026 #endif
19027 
19028 #define	PREP_NEW_MULTIDATA() {			\
19029 	mmd = NULL;				\
19030 	md_mp = md_hbuf = NULL;			\
19031 	cur_hdr_off = 0;			\
19032 	max_pld = tcp->tcp_mdt_max_pld;		\
19033 	pbuf_idx = pbuf_idx_nxt = -1;		\
19034 	add_buffer = B_TRUE;			\
19035 	zcopy = B_FALSE;			\
19036 }
19037 
19038 #define	PREP_NEW_PBUF() {			\
19039 	md_pbuf = md_pbuf_nxt = NULL;		\
19040 	pbuf_idx = pbuf_idx_nxt = -1;		\
19041 	cur_pld_off = 0;			\
19042 	first_snxt = *snxt;			\
19043 	ASSERT(*tail_unsent > 0);		\
19044 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19045 }
19046 
19047 	ASSERT(mdt_thres >= mss);
19048 	ASSERT(*usable > 0 && *usable > mdt_thres);
19049 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19050 	ASSERT(!TCP_IS_DETACHED(tcp));
19051 	ASSERT(tcp->tcp_valid_bits == 0 ||
19052 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19053 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19054 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19055 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19056 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19057 
19058 	connp = tcp->tcp_connp;
19059 	ASSERT(connp != NULL);
19060 	ASSERT(CONN_IS_MD_FASTPATH(connp));
19061 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19062 
19063 	/*
19064 	 * Note that tcp will only declare at most 2 payload spans per
19065 	 * packet, which is much lower than the maximum allowable number
19066 	 * of packet spans per Multidata.  For this reason, we use the
19067 	 * privately declared and smaller descriptor info structure, in
19068 	 * order to save some stack space.
19069 	 */
19070 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19071 
19072 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19073 	if (af == AF_INET) {
19074 		dst = tcp->tcp_ipha->ipha_dst;
19075 		src = tcp->tcp_ipha->ipha_src;
19076 		ASSERT(!CLASSD(dst));
19077 	}
19078 	ASSERT(af == AF_INET ||
19079 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19080 
19081 	obsegs = obbytes = 0;
19082 	num_burst_seg = tcp->tcp_snd_burst;
19083 	md_mp_head = NULL;
19084 	PREP_NEW_MULTIDATA();
19085 
19086 	/*
19087 	 * Before we go on further, make sure there is an IRE that we can
19088 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19089 	 * in proceeding any further, and we should just hand everything
19090 	 * off to the legacy path.
19091 	 */
19092 	mutex_enter(&connp->conn_lock);
19093 	ire = connp->conn_ire_cache;
19094 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19095 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19096 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19097 	    &tcp->tcp_ip6h->ip6_dst))) &&
19098 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19099 		IRE_REFHOLD(ire);
19100 		mutex_exit(&connp->conn_lock);
19101 	} else {
19102 		boolean_t cached = B_FALSE;
19103 		ts_label_t *tsl;
19104 
19105 		/* force a recheck later on */
19106 		tcp->tcp_ire_ill_check_done = B_FALSE;
19107 
19108 		TCP_DBGSTAT(tcp_ire_null1);
19109 		connp->conn_ire_cache = NULL;
19110 		mutex_exit(&connp->conn_lock);
19111 
19112 		/* Release the old ire */
19113 		if (ire != NULL)
19114 			IRE_REFRELE_NOTR(ire);
19115 
19116 		tsl = crgetlabel(CONN_CRED(connp));
19117 		ire = (af == AF_INET) ?
19118 		    ire_cache_lookup(dst, connp->conn_zoneid, tsl) :
19119 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19120 		    connp->conn_zoneid, tsl);
19121 
19122 		if (ire == NULL) {
19123 			TCP_STAT(tcp_ire_null);
19124 			goto legacy_send_no_md;
19125 		}
19126 
19127 		IRE_REFHOLD_NOTR(ire);
19128 		/*
19129 		 * Since we are inside the squeue, there cannot be another
19130 		 * thread in TCP trying to set the conn_ire_cache now. The
19131 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19132 		 * unplumb thread has not yet started cleaning up the conns.
19133 		 * Hence we don't need to grab the conn lock.
19134 		 */
19135 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
19136 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19137 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19138 				connp->conn_ire_cache = ire;
19139 				cached = B_TRUE;
19140 			}
19141 			rw_exit(&ire->ire_bucket->irb_lock);
19142 		}
19143 
19144 		/*
19145 		 * We can continue to use the ire but since it was not
19146 		 * cached, we should drop the extra reference.
19147 		 */
19148 		if (!cached)
19149 			IRE_REFRELE_NOTR(ire);
19150 	}
19151 
19152 	ASSERT(ire != NULL);
19153 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19154 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19155 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19156 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19157 	/*
19158 	 * If we do support loopback for MDT (which requires modifications
19159 	 * to the receiving paths), the following assertions should go away,
19160 	 * and we would be sending the Multidata to loopback conn later on.
19161 	 */
19162 	ASSERT(!IRE_IS_LOCAL(ire));
19163 	ASSERT(ire->ire_stq != NULL);
19164 
19165 	ill = ire_to_ill(ire);
19166 	ASSERT(ill != NULL);
19167 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19168 
19169 	if (!tcp->tcp_ire_ill_check_done) {
19170 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19171 		tcp->tcp_ire_ill_check_done = B_TRUE;
19172 	}
19173 
19174 	/*
19175 	 * If the underlying interface conditions have changed, or if the
19176 	 * new interface does not support MDT, go back to legacy path.
19177 	 */
19178 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19179 		/* don't go through this path anymore for this connection */
19180 		TCP_STAT(tcp_mdt_conn_halted2);
19181 		tcp->tcp_mdt = B_FALSE;
19182 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19183 		    "interface %s\n", (void *)connp, ill->ill_name));
19184 		/* IRE will be released prior to returning */
19185 		goto legacy_send_no_md;
19186 	}
19187 
19188 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19189 		zc_cap = ill->ill_zerocopy_capab;
19190 
19191 	/* go to legacy path if interface doesn't support zerocopy */
19192 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19193 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19194 		/* IRE will be released prior to returning */
19195 		goto legacy_send_no_md;
19196 	}
19197 
19198 	/* does the interface support hardware checksum offload? */
19199 	hwcksum_flags = 0;
19200 	if (ILL_HCKSUM_CAPABLE(ill) &&
19201 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19202 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19203 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19204 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19205 		    HCKSUM_IPHDRCKSUM)
19206 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19207 
19208 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19209 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19210 			hwcksum_flags |= HCK_FULLCKSUM;
19211 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19212 		    HCKSUM_INET_PARTIAL)
19213 			hwcksum_flags |= HCK_PARTIALCKSUM;
19214 	}
19215 
19216 	/*
19217 	 * Each header fragment consists of the leading extra space,
19218 	 * followed by the TCP/IP header, and the trailing extra space.
19219 	 * We make sure that each header fragment begins on a 32-bit
19220 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19221 	 * aligned in tcp_mdt_update).
19222 	 */
19223 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19224 	    tcp->tcp_mdt_hdr_tail), 4);
19225 
19226 	/* are we starting from the beginning of data block? */
19227 	if (*tail_unsent == 0) {
19228 		*xmit_tail = (*xmit_tail)->b_cont;
19229 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19230 		*tail_unsent = (int)MBLKL(*xmit_tail);
19231 	}
19232 
19233 	/*
19234 	 * Here we create one or more Multidata messages, each made up of
19235 	 * one header buffer and up to N payload buffers.  This entire
19236 	 * operation is done within two loops:
19237 	 *
19238 	 * The outer loop mostly deals with creating the Multidata message,
19239 	 * as well as the header buffer that gets added to it.  It also
19240 	 * links the Multidata messages together such that all of them can
19241 	 * be sent down to the lower layer in a single putnext call; this
19242 	 * linking behavior depends on the tcp_mdt_chain tunable.
19243 	 *
19244 	 * The inner loop takes an existing Multidata message, and adds
19245 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19246 	 * packetizes those buffers by filling up the corresponding header
19247 	 * buffer fragments with the proper IP and TCP headers, and by
19248 	 * describing the layout of each packet in the packet descriptors
19249 	 * that get added to the Multidata.
19250 	 */
19251 	do {
19252 		/*
19253 		 * If usable send window is too small, or data blocks in
19254 		 * transmit list are smaller than our threshold (i.e. app
19255 		 * performs large writes followed by small ones), we hand
19256 		 * off the control over to the legacy path.  Note that we'll
19257 		 * get back the control once it encounters a large block.
19258 		 */
19259 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19260 		    (*xmit_tail)->b_cont != NULL &&
19261 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19262 			/* send down what we've got so far */
19263 			if (md_mp_head != NULL) {
19264 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19265 				    obsegs, obbytes, &rconfirm);
19266 			}
19267 			/*
19268 			 * Pass control over to tcp_send(), but tell it to
19269 			 * return to us once a large-size transmission is
19270 			 * possible.
19271 			 */
19272 			TCP_STAT(tcp_mdt_legacy_small);
19273 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19274 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19275 			    tail_unsent, xmit_tail, local_time,
19276 			    mdt_thres)) <= 0) {
19277 				/* burst count reached, or alloc failed */
19278 				IRE_REFRELE(ire);
19279 				return (err);
19280 			}
19281 
19282 			/* tcp_send() may have sent everything, so check */
19283 			if (*usable <= 0) {
19284 				IRE_REFRELE(ire);
19285 				return (0);
19286 			}
19287 
19288 			TCP_STAT(tcp_mdt_legacy_ret);
19289 			/*
19290 			 * We may have delivered the Multidata, so make sure
19291 			 * to re-initialize before the next round.
19292 			 */
19293 			md_mp_head = NULL;
19294 			obsegs = obbytes = 0;
19295 			num_burst_seg = tcp->tcp_snd_burst;
19296 			PREP_NEW_MULTIDATA();
19297 
19298 			/* are we starting from the beginning of data block? */
19299 			if (*tail_unsent == 0) {
19300 				*xmit_tail = (*xmit_tail)->b_cont;
19301 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19302 				    (uintptr_t)INT_MAX);
19303 				*tail_unsent = (int)MBLKL(*xmit_tail);
19304 			}
19305 		}
19306 
19307 		/*
19308 		 * max_pld limits the number of mblks in tcp's transmit
19309 		 * queue that can be added to a Multidata message.  Once
19310 		 * this counter reaches zero, no more additional mblks
19311 		 * can be added to it.  What happens afterwards depends
19312 		 * on whether or not we are set to chain the Multidata
19313 		 * messages.  If we are to link them together, reset
19314 		 * max_pld to its original value (tcp_mdt_max_pld) and
19315 		 * prepare to create a new Multidata message which will
19316 		 * get linked to md_mp_head.  Else, leave it alone and
19317 		 * let the inner loop break on its own.
19318 		 */
19319 		if (tcp_mdt_chain && max_pld == 0)
19320 			PREP_NEW_MULTIDATA();
19321 
19322 		/* adding a payload buffer; re-initialize values */
19323 		if (add_buffer)
19324 			PREP_NEW_PBUF();
19325 
19326 		/*
19327 		 * If we don't have a Multidata, either because we just
19328 		 * (re)entered this outer loop, or after we branched off
19329 		 * to tcp_send above, setup the Multidata and header
19330 		 * buffer to be used.
19331 		 */
19332 		if (md_mp == NULL) {
19333 			int md_hbuflen;
19334 			uint32_t start, stuff;
19335 
19336 			/*
19337 			 * Calculate Multidata header buffer size large enough
19338 			 * to hold all of the headers that can possibly be
19339 			 * sent at this moment.  We'd rather over-estimate
19340 			 * the size than running out of space; this is okay
19341 			 * since this buffer is small anyway.
19342 			 */
19343 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19344 
19345 			/*
19346 			 * Start and stuff offset for partial hardware
19347 			 * checksum offload; these are currently for IPv4.
19348 			 * For full checksum offload, they are set to zero.
19349 			 */
19350 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19351 				if (af == AF_INET) {
19352 					start = IP_SIMPLE_HDR_LENGTH;
19353 					stuff = IP_SIMPLE_HDR_LENGTH +
19354 					    TCP_CHECKSUM_OFFSET;
19355 				} else {
19356 					start = IPV6_HDR_LEN;
19357 					stuff = IPV6_HDR_LEN +
19358 					    TCP_CHECKSUM_OFFSET;
19359 				}
19360 			} else {
19361 				start = stuff = 0;
19362 			}
19363 
19364 			/*
19365 			 * Create the header buffer, Multidata, as well as
19366 			 * any necessary attributes (destination address,
19367 			 * SAP and hardware checksum offload) that should
19368 			 * be associated with the Multidata message.
19369 			 */
19370 			ASSERT(cur_hdr_off == 0);
19371 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19372 			    ((md_hbuf->b_wptr += md_hbuflen),
19373 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19374 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19375 			    /* fastpath mblk */
19376 			    (af == AF_INET) ? ire->ire_dlureq_mp :
19377 			    ire->ire_nce->nce_res_mp,
19378 			    /* hardware checksum enabled */
19379 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19380 			    /* hardware checksum offsets */
19381 			    start, stuff, 0,
19382 			    /* hardware checksum flag */
19383 			    hwcksum_flags) != 0)) {
19384 legacy_send:
19385 				if (md_mp != NULL) {
19386 					/* Unlink message from the chain */
19387 					if (md_mp_head != NULL) {
19388 						err = (intptr_t)rmvb(md_mp_head,
19389 						    md_mp);
19390 						/*
19391 						 * We can't assert that rmvb
19392 						 * did not return -1, since we
19393 						 * may get here before linkb
19394 						 * happens.  We do, however,
19395 						 * check if we just removed the
19396 						 * only element in the list.
19397 						 */
19398 						if (err == 0)
19399 							md_mp_head = NULL;
19400 					}
19401 					/* md_hbuf gets freed automatically */
19402 					TCP_STAT(tcp_mdt_discarded);
19403 					freeb(md_mp);
19404 				} else {
19405 					/* Either allocb or mmd_alloc failed */
19406 					TCP_STAT(tcp_mdt_allocfail);
19407 					if (md_hbuf != NULL)
19408 						freeb(md_hbuf);
19409 				}
19410 
19411 				/* send down what we've got so far */
19412 				if (md_mp_head != NULL) {
19413 					tcp_multisend_data(tcp, ire, ill,
19414 					    md_mp_head, obsegs, obbytes,
19415 					    &rconfirm);
19416 				}
19417 legacy_send_no_md:
19418 				if (ire != NULL)
19419 					IRE_REFRELE(ire);
19420 				/*
19421 				 * Too bad; let the legacy path handle this.
19422 				 * We specify INT_MAX for the threshold, since
19423 				 * we gave up with the Multidata processings
19424 				 * and let the old path have it all.
19425 				 */
19426 				TCP_STAT(tcp_mdt_legacy_all);
19427 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19428 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19429 				    snxt, tail_unsent, xmit_tail, local_time,
19430 				    INT_MAX));
19431 			}
19432 
19433 			/* link to any existing ones, if applicable */
19434 			TCP_STAT(tcp_mdt_allocd);
19435 			if (md_mp_head == NULL) {
19436 				md_mp_head = md_mp;
19437 			} else if (tcp_mdt_chain) {
19438 				TCP_STAT(tcp_mdt_linked);
19439 				linkb(md_mp_head, md_mp);
19440 			}
19441 		}
19442 
19443 		ASSERT(md_mp_head != NULL);
19444 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19445 		ASSERT(md_mp != NULL && mmd != NULL);
19446 		ASSERT(md_hbuf != NULL);
19447 
19448 		/*
19449 		 * Packetize the transmittable portion of the data block;
19450 		 * each data block is essentially added to the Multidata
19451 		 * as a payload buffer.  We also deal with adding more
19452 		 * than one payload buffers, which happens when the remaining
19453 		 * packetized portion of the current payload buffer is less
19454 		 * than MSS, while the next data block in transmit queue
19455 		 * has enough data to make up for one.  This "spillover"
19456 		 * case essentially creates a split-packet, where portions
19457 		 * of the packet's payload fragments may span across two
19458 		 * virtually discontiguous address blocks.
19459 		 */
19460 		seg_len = mss;
19461 		do {
19462 			len = seg_len;
19463 
19464 			ASSERT(len > 0);
19465 			ASSERT(max_pld >= 0);
19466 			ASSERT(!add_buffer || cur_pld_off == 0);
19467 
19468 			/*
19469 			 * First time around for this payload buffer; note
19470 			 * in the case of a spillover, the following has
19471 			 * been done prior to adding the split-packet
19472 			 * descriptor to Multidata, and we don't want to
19473 			 * repeat the process.
19474 			 */
19475 			if (add_buffer) {
19476 				ASSERT(mmd != NULL);
19477 				ASSERT(md_pbuf == NULL);
19478 				ASSERT(md_pbuf_nxt == NULL);
19479 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19480 
19481 				/*
19482 				 * Have we reached the limit?  We'd get to
19483 				 * this case when we're not chaining the
19484 				 * Multidata messages together, and since
19485 				 * we're done, terminate this loop.
19486 				 */
19487 				if (max_pld == 0)
19488 					break; /* done */
19489 
19490 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19491 					TCP_STAT(tcp_mdt_allocfail);
19492 					goto legacy_send; /* out_of_mem */
19493 				}
19494 
19495 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19496 				    zc_cap != NULL) {
19497 					if (!ip_md_zcopy_attr(mmd, NULL,
19498 					    zc_cap->ill_zerocopy_flags)) {
19499 						freeb(md_pbuf);
19500 						TCP_STAT(tcp_mdt_allocfail);
19501 						/* out_of_mem */
19502 						goto legacy_send;
19503 					}
19504 					zcopy = B_TRUE;
19505 				}
19506 
19507 				md_pbuf->b_rptr += base_pld_off;
19508 
19509 				/*
19510 				 * Add a payload buffer to the Multidata; this
19511 				 * operation must not fail, or otherwise our
19512 				 * logic in this routine is broken.  There
19513 				 * is no memory allocation done by the
19514 				 * routine, so any returned failure simply
19515 				 * tells us that we've done something wrong.
19516 				 *
19517 				 * A failure tells us that either we're adding
19518 				 * the same payload buffer more than once, or
19519 				 * we're trying to add more buffers than
19520 				 * allowed (max_pld calculation is wrong).
19521 				 * None of the above cases should happen, and
19522 				 * we panic because either there's horrible
19523 				 * heap corruption, and/or programming mistake.
19524 				 */
19525 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19526 				if (pbuf_idx < 0) {
19527 					cmn_err(CE_PANIC, "tcp_multisend: "
19528 					    "payload buffer logic error "
19529 					    "detected for tcp %p mmd %p "
19530 					    "pbuf %p (%d)\n",
19531 					    (void *)tcp, (void *)mmd,
19532 					    (void *)md_pbuf, pbuf_idx);
19533 				}
19534 
19535 				ASSERT(max_pld > 0);
19536 				--max_pld;
19537 				add_buffer = B_FALSE;
19538 			}
19539 
19540 			ASSERT(md_mp_head != NULL);
19541 			ASSERT(md_pbuf != NULL);
19542 			ASSERT(md_pbuf_nxt == NULL);
19543 			ASSERT(pbuf_idx != -1);
19544 			ASSERT(pbuf_idx_nxt == -1);
19545 			ASSERT(*usable > 0);
19546 
19547 			/*
19548 			 * We spillover to the next payload buffer only
19549 			 * if all of the following is true:
19550 			 *
19551 			 *   1. There is not enough data on the current
19552 			 *	payload buffer to make up `len',
19553 			 *   2. We are allowed to send `len',
19554 			 *   3. The next payload buffer length is large
19555 			 *	enough to accomodate `spill'.
19556 			 */
19557 			if ((spill = len - *tail_unsent) > 0 &&
19558 			    *usable >= len &&
19559 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19560 			    max_pld > 0) {
19561 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19562 				if (md_pbuf_nxt == NULL) {
19563 					TCP_STAT(tcp_mdt_allocfail);
19564 					goto legacy_send; /* out_of_mem */
19565 				}
19566 
19567 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19568 				    zc_cap != NULL) {
19569 					if (!ip_md_zcopy_attr(mmd, NULL,
19570 					    zc_cap->ill_zerocopy_flags)) {
19571 						freeb(md_pbuf_nxt);
19572 						TCP_STAT(tcp_mdt_allocfail);
19573 						/* out_of_mem */
19574 						goto legacy_send;
19575 					}
19576 					zcopy = B_TRUE;
19577 				}
19578 
19579 				/*
19580 				 * See comments above on the first call to
19581 				 * mmd_addpldbuf for explanation on the panic.
19582 				 */
19583 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19584 				if (pbuf_idx_nxt < 0) {
19585 					panic("tcp_multisend: "
19586 					    "next payload buffer logic error "
19587 					    "detected for tcp %p mmd %p "
19588 					    "pbuf %p (%d)\n",
19589 					    (void *)tcp, (void *)mmd,
19590 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19591 				}
19592 
19593 				ASSERT(max_pld > 0);
19594 				--max_pld;
19595 			} else if (spill > 0) {
19596 				/*
19597 				 * If there's a spillover, but the following
19598 				 * xmit_tail couldn't give us enough octets
19599 				 * to reach "len", then stop the current
19600 				 * Multidata creation and let the legacy
19601 				 * tcp_send() path take over.  We don't want
19602 				 * to send the tiny segment as part of this
19603 				 * Multidata for performance reasons; instead,
19604 				 * we let the legacy path deal with grouping
19605 				 * it with the subsequent small mblks.
19606 				 */
19607 				if (*usable >= len &&
19608 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19609 					max_pld = 0;
19610 					break;	/* done */
19611 				}
19612 
19613 				/*
19614 				 * We can't spillover, and we are near
19615 				 * the end of the current payload buffer,
19616 				 * so send what's left.
19617 				 */
19618 				ASSERT(*tail_unsent > 0);
19619 				len = *tail_unsent;
19620 			}
19621 
19622 			/* tail_unsent is negated if there is a spillover */
19623 			*tail_unsent -= len;
19624 			*usable -= len;
19625 			ASSERT(*usable >= 0);
19626 
19627 			if (*usable < mss)
19628 				seg_len = *usable;
19629 			/*
19630 			 * Sender SWS avoidance; see comments in tcp_send();
19631 			 * everything else is the same, except that we only
19632 			 * do this here if there is no more data to be sent
19633 			 * following the current xmit_tail.  We don't check
19634 			 * for 1-byte urgent data because we shouldn't get
19635 			 * here if TCP_URG_VALID is set.
19636 			 */
19637 			if (*usable > 0 && *usable < mss &&
19638 			    ((md_pbuf_nxt == NULL &&
19639 			    (*xmit_tail)->b_cont == NULL) ||
19640 			    (md_pbuf_nxt != NULL &&
19641 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19642 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19643 			    (tcp->tcp_unsent -
19644 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19645 			    !tcp->tcp_zero_win_probe) {
19646 				if ((*snxt + len) == tcp->tcp_snxt &&
19647 				    (*snxt + len) == tcp->tcp_suna) {
19648 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19649 				}
19650 				done = B_TRUE;
19651 			}
19652 
19653 			/*
19654 			 * Prime pump for IP's checksumming on our behalf;
19655 			 * include the adjustment for a source route if any.
19656 			 * Do this only for software/partial hardware checksum
19657 			 * offload, as this field gets zeroed out later for
19658 			 * the full hardware checksum offload case.
19659 			 */
19660 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19661 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19662 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19663 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19664 			}
19665 
19666 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19667 			*snxt += len;
19668 
19669 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19670 			/*
19671 			 * We set the PUSH bit only if TCP has no more buffered
19672 			 * data to be transmitted (or if sender SWS avoidance
19673 			 * takes place), as opposed to setting it for every
19674 			 * last packet in the burst.
19675 			 */
19676 			if (done ||
19677 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19678 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19679 
19680 			/*
19681 			 * Set FIN bit if this is our last segment; snxt
19682 			 * already includes its length, and it will not
19683 			 * be adjusted after this point.
19684 			 */
19685 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19686 			    *snxt == tcp->tcp_fss) {
19687 				if (!tcp->tcp_fin_acked) {
19688 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19689 					BUMP_MIB(&tcp_mib, tcpOutControl);
19690 				}
19691 				if (!tcp->tcp_fin_sent) {
19692 					tcp->tcp_fin_sent = B_TRUE;
19693 					/*
19694 					 * tcp state must be ESTABLISHED
19695 					 * in order for us to get here in
19696 					 * the first place.
19697 					 */
19698 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19699 
19700 					/*
19701 					 * Upon returning from this routine,
19702 					 * tcp_wput_data() will set tcp_snxt
19703 					 * to be equal to snxt + tcp_fin_sent.
19704 					 * This is essentially the same as
19705 					 * setting it to tcp_fss + 1.
19706 					 */
19707 				}
19708 			}
19709 
19710 			tcp->tcp_last_sent_len = (ushort_t)len;
19711 
19712 			len += tcp_hdr_len;
19713 			if (tcp->tcp_ipversion == IPV4_VERSION)
19714 				tcp->tcp_ipha->ipha_length = htons(len);
19715 			else
19716 				tcp->tcp_ip6h->ip6_plen = htons(len -
19717 				    ((char *)&tcp->tcp_ip6h[1] -
19718 				    tcp->tcp_iphc));
19719 
19720 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19721 
19722 			/* setup header fragment */
19723 			PDESC_HDR_ADD(pkt_info,
19724 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19725 			    tcp->tcp_mdt_hdr_head,		/* head room */
19726 			    tcp_hdr_len,			/* len */
19727 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19728 
19729 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19730 			    hdr_frag_sz);
19731 			ASSERT(MBLKIN(md_hbuf,
19732 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19733 			    PDESC_HDRSIZE(pkt_info)));
19734 
19735 			/* setup first payload fragment */
19736 			PDESC_PLD_INIT(pkt_info);
19737 			PDESC_PLD_SPAN_ADD(pkt_info,
19738 			    pbuf_idx,				/* index */
19739 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19740 			    tcp->tcp_last_sent_len);		/* len */
19741 
19742 			/* create a split-packet in case of a spillover */
19743 			if (md_pbuf_nxt != NULL) {
19744 				ASSERT(spill > 0);
19745 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19746 				ASSERT(!add_buffer);
19747 
19748 				md_pbuf = md_pbuf_nxt;
19749 				md_pbuf_nxt = NULL;
19750 				pbuf_idx = pbuf_idx_nxt;
19751 				pbuf_idx_nxt = -1;
19752 				cur_pld_off = spill;
19753 
19754 				/* trim out first payload fragment */
19755 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19756 
19757 				/* setup second payload fragment */
19758 				PDESC_PLD_SPAN_ADD(pkt_info,
19759 				    pbuf_idx,			/* index */
19760 				    md_pbuf->b_rptr,		/* start */
19761 				    spill);			/* len */
19762 
19763 				if ((*xmit_tail)->b_next == NULL) {
19764 					/*
19765 					 * Store the lbolt used for RTT
19766 					 * estimation. We can only record one
19767 					 * timestamp per mblk so we do it when
19768 					 * we reach the end of the payload
19769 					 * buffer.  Also we only take a new
19770 					 * timestamp sample when the previous
19771 					 * timed data from the same mblk has
19772 					 * been ack'ed.
19773 					 */
19774 					(*xmit_tail)->b_prev = local_time;
19775 					(*xmit_tail)->b_next =
19776 					    (mblk_t *)(uintptr_t)first_snxt;
19777 				}
19778 
19779 				first_snxt = *snxt - spill;
19780 
19781 				/*
19782 				 * Advance xmit_tail; usable could be 0 by
19783 				 * the time we got here, but we made sure
19784 				 * above that we would only spillover to
19785 				 * the next data block if usable includes
19786 				 * the spilled-over amount prior to the
19787 				 * subtraction.  Therefore, we are sure
19788 				 * that xmit_tail->b_cont can't be NULL.
19789 				 */
19790 				ASSERT((*xmit_tail)->b_cont != NULL);
19791 				*xmit_tail = (*xmit_tail)->b_cont;
19792 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19793 				    (uintptr_t)INT_MAX);
19794 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19795 			} else {
19796 				cur_pld_off += tcp->tcp_last_sent_len;
19797 			}
19798 
19799 			/*
19800 			 * Fill in the header using the template header, and
19801 			 * add options such as time-stamp, ECN and/or SACK,
19802 			 * as needed.
19803 			 */
19804 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19805 			    (clock_t)local_time, num_sack_blk);
19806 
19807 			/* take care of some IP header businesses */
19808 			if (af == AF_INET) {
19809 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19810 
19811 				ASSERT(OK_32PTR((uchar_t *)ipha));
19812 				ASSERT(PDESC_HDRL(pkt_info) >=
19813 				    IP_SIMPLE_HDR_LENGTH);
19814 				ASSERT(ipha->ipha_version_and_hdr_length ==
19815 				    IP_SIMPLE_HDR_VERSION);
19816 
19817 				/*
19818 				 * Assign ident value for current packet; see
19819 				 * related comments in ip_wput_ire() about the
19820 				 * contract private interface with clustering
19821 				 * group.
19822 				 */
19823 				clusterwide = B_FALSE;
19824 				if (cl_inet_ipident != NULL) {
19825 					ASSERT(cl_inet_isclusterwide != NULL);
19826 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
19827 					    AF_INET,
19828 					    (uint8_t *)(uintptr_t)src)) {
19829 						ipha->ipha_ident =
19830 						    (*cl_inet_ipident)
19831 						    (IPPROTO_IP, AF_INET,
19832 						    (uint8_t *)(uintptr_t)src,
19833 						    (uint8_t *)(uintptr_t)dst);
19834 						clusterwide = B_TRUE;
19835 					}
19836 				}
19837 
19838 				if (!clusterwide) {
19839 					ipha->ipha_ident = (uint16_t)
19840 					    atomic_add_32_nv(
19841 						&ire->ire_ident, 1);
19842 				}
19843 #ifndef _BIG_ENDIAN
19844 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19845 				    (ipha->ipha_ident >> 8);
19846 #endif
19847 			} else {
19848 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19849 
19850 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19851 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19852 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19853 				ASSERT(PDESC_HDRL(pkt_info) >=
19854 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19855 				    TCP_CHECKSUM_SIZE));
19856 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19857 
19858 				if (tcp->tcp_ip_forward_progress) {
19859 					rconfirm = B_TRUE;
19860 					tcp->tcp_ip_forward_progress = B_FALSE;
19861 				}
19862 			}
19863 
19864 			/* at least one payload span, and at most two */
19865 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
19866 
19867 			/* add the packet descriptor to Multidata */
19868 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
19869 			    KM_NOSLEEP)) == NULL) {
19870 				/*
19871 				 * Any failure other than ENOMEM indicates
19872 				 * that we have passed in invalid pkt_info
19873 				 * or parameters to mmd_addpdesc, which must
19874 				 * not happen.
19875 				 *
19876 				 * EINVAL is a result of failure on boundary
19877 				 * checks against the pkt_info contents.  It
19878 				 * should not happen, and we panic because
19879 				 * either there's horrible heap corruption,
19880 				 * and/or programming mistake.
19881 				 */
19882 				if (err != ENOMEM) {
19883 					cmn_err(CE_PANIC, "tcp_multisend: "
19884 					    "pdesc logic error detected for "
19885 					    "tcp %p mmd %p pinfo %p (%d)\n",
19886 					    (void *)tcp, (void *)mmd,
19887 					    (void *)pkt_info, err);
19888 				}
19889 				TCP_STAT(tcp_mdt_addpdescfail);
19890 				goto legacy_send; /* out_of_mem */
19891 			}
19892 			ASSERT(pkt != NULL);
19893 
19894 			/* calculate IP header and TCP checksums */
19895 			if (af == AF_INET) {
19896 				/* calculate pseudo-header checksum */
19897 				cksum = (dst >> 16) + (dst & 0xFFFF) +
19898 				    (src >> 16) + (src & 0xFFFF);
19899 
19900 				/* offset for TCP header checksum */
19901 				up = IPH_TCPH_CHECKSUMP(ipha,
19902 				    IP_SIMPLE_HDR_LENGTH);
19903 			} else {
19904 				up = (uint16_t *)&ip6h->ip6_src;
19905 
19906 				/* calculate pseudo-header checksum */
19907 				cksum = up[0] + up[1] + up[2] + up[3] +
19908 				    up[4] + up[5] + up[6] + up[7] +
19909 				    up[8] + up[9] + up[10] + up[11] +
19910 				    up[12] + up[13] + up[14] + up[15];
19911 
19912 				/* Fold the initial sum */
19913 				cksum = (cksum & 0xffff) + (cksum >> 16);
19914 
19915 				up = (uint16_t *)(((uchar_t *)ip6h) +
19916 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
19917 			}
19918 
19919 			if (hwcksum_flags & HCK_FULLCKSUM) {
19920 				/* clear checksum field for hardware */
19921 				*up = 0;
19922 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
19923 				uint32_t sum;
19924 
19925 				/* pseudo-header checksumming */
19926 				sum = *up + cksum + IP_TCP_CSUM_COMP;
19927 				sum = (sum & 0xFFFF) + (sum >> 16);
19928 				*up = (sum & 0xFFFF) + (sum >> 16);
19929 			} else {
19930 				/* software checksumming */
19931 				TCP_STAT(tcp_out_sw_cksum);
19932 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
19933 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
19934 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
19935 				    cksum + IP_TCP_CSUM_COMP);
19936 				if (*up == 0)
19937 					*up = 0xFFFF;
19938 			}
19939 
19940 			/* IPv4 header checksum */
19941 			if (af == AF_INET) {
19942 				ipha->ipha_fragment_offset_and_flags |=
19943 				    (uint32_t)htons(ire->ire_frag_flag);
19944 
19945 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
19946 					ipha->ipha_hdr_checksum = 0;
19947 				} else {
19948 					IP_HDR_CKSUM(ipha, cksum,
19949 					    ((uint32_t *)ipha)[0],
19950 					    ((uint16_t *)ipha)[4]);
19951 				}
19952 			}
19953 
19954 			/* advance header offset */
19955 			cur_hdr_off += hdr_frag_sz;
19956 
19957 			obbytes += tcp->tcp_last_sent_len;
19958 			++obsegs;
19959 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
19960 		    *tail_unsent > 0);
19961 
19962 		if ((*xmit_tail)->b_next == NULL) {
19963 			/*
19964 			 * Store the lbolt used for RTT estimation. We can only
19965 			 * record one timestamp per mblk so we do it when we
19966 			 * reach the end of the payload buffer. Also we only
19967 			 * take a new timestamp sample when the previous timed
19968 			 * data from the same mblk has been ack'ed.
19969 			 */
19970 			(*xmit_tail)->b_prev = local_time;
19971 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
19972 		}
19973 
19974 		ASSERT(*tail_unsent >= 0);
19975 		if (*tail_unsent > 0) {
19976 			/*
19977 			 * We got here because we broke out of the above
19978 			 * loop due to of one of the following cases:
19979 			 *
19980 			 *   1. len < adjusted MSS (i.e. small),
19981 			 *   2. Sender SWS avoidance,
19982 			 *   3. max_pld is zero.
19983 			 *
19984 			 * We are done for this Multidata, so trim our
19985 			 * last payload buffer (if any) accordingly.
19986 			 */
19987 			if (md_pbuf != NULL)
19988 				md_pbuf->b_wptr -= *tail_unsent;
19989 		} else if (*usable > 0) {
19990 			*xmit_tail = (*xmit_tail)->b_cont;
19991 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19992 			    (uintptr_t)INT_MAX);
19993 			*tail_unsent = (int)MBLKL(*xmit_tail);
19994 			add_buffer = B_TRUE;
19995 		}
19996 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
19997 	    (tcp_mdt_chain || max_pld > 0));
19998 
19999 	/* send everything down */
20000 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20001 	    &rconfirm);
20002 
20003 #undef PREP_NEW_MULTIDATA
20004 #undef PREP_NEW_PBUF
20005 #undef IPVER
20006 
20007 	IRE_REFRELE(ire);
20008 	return (0);
20009 }
20010 
20011 /*
20012  * A wrapper function for sending one or more Multidata messages down to
20013  * the module below ip; this routine does not release the reference of the
20014  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20015  */
20016 static void
20017 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20018     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20019 {
20020 	uint64_t delta;
20021 	nce_t *nce;
20022 
20023 	ASSERT(ire != NULL && ill != NULL);
20024 	ASSERT(ire->ire_stq != NULL);
20025 	ASSERT(md_mp_head != NULL);
20026 	ASSERT(rconfirm != NULL);
20027 
20028 	/* adjust MIBs and IRE timestamp */
20029 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20030 	tcp->tcp_obsegs += obsegs;
20031 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20032 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20033 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20034 
20035 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20036 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20037 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20038 	} else {
20039 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20040 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20041 	}
20042 
20043 	ire->ire_ob_pkt_count += obsegs;
20044 	if (ire->ire_ipif != NULL)
20045 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20046 	ire->ire_last_used_time = lbolt;
20047 
20048 	/* send it down */
20049 	putnext(ire->ire_stq, md_mp_head);
20050 
20051 	/* we're done for TCP/IPv4 */
20052 	if (tcp->tcp_ipversion == IPV4_VERSION)
20053 		return;
20054 
20055 	nce = ire->ire_nce;
20056 
20057 	ASSERT(nce != NULL);
20058 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20059 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20060 
20061 	/* reachability confirmation? */
20062 	if (*rconfirm) {
20063 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20064 		if (nce->nce_state != ND_REACHABLE) {
20065 			mutex_enter(&nce->nce_lock);
20066 			nce->nce_state = ND_REACHABLE;
20067 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20068 			mutex_exit(&nce->nce_lock);
20069 			(void) untimeout(nce->nce_timeout_id);
20070 			if (ip_debug > 2) {
20071 				/* ip1dbg */
20072 				pr_addr_dbg("tcp_multisend_data: state "
20073 				    "for %s changed to REACHABLE\n",
20074 				    AF_INET6, &ire->ire_addr_v6);
20075 			}
20076 		}
20077 		/* reset transport reachability confirmation */
20078 		*rconfirm = B_FALSE;
20079 	}
20080 
20081 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20082 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20083 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20084 
20085 	if (delta > (uint64_t)ill->ill_reachable_time) {
20086 		mutex_enter(&nce->nce_lock);
20087 		switch (nce->nce_state) {
20088 		case ND_REACHABLE:
20089 		case ND_STALE:
20090 			/*
20091 			 * ND_REACHABLE is identical to ND_STALE in this
20092 			 * specific case. If reachable time has expired for
20093 			 * this neighbor (delta is greater than reachable
20094 			 * time), conceptually, the neighbor cache is no
20095 			 * longer in REACHABLE state, but already in STALE
20096 			 * state.  So the correct transition here is to
20097 			 * ND_DELAY.
20098 			 */
20099 			nce->nce_state = ND_DELAY;
20100 			mutex_exit(&nce->nce_lock);
20101 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20102 			if (ip_debug > 3) {
20103 				/* ip2dbg */
20104 				pr_addr_dbg("tcp_multisend_data: state "
20105 				    "for %s changed to DELAY\n",
20106 				    AF_INET6, &ire->ire_addr_v6);
20107 			}
20108 			break;
20109 		case ND_DELAY:
20110 		case ND_PROBE:
20111 			mutex_exit(&nce->nce_lock);
20112 			/* Timers have already started */
20113 			break;
20114 		case ND_UNREACHABLE:
20115 			/*
20116 			 * ndp timer has detected that this nce is
20117 			 * unreachable and initiated deleting this nce
20118 			 * and all its associated IREs. This is a race
20119 			 * where we found the ire before it was deleted
20120 			 * and have just sent out a packet using this
20121 			 * unreachable nce.
20122 			 */
20123 			mutex_exit(&nce->nce_lock);
20124 			break;
20125 		default:
20126 			ASSERT(0);
20127 		}
20128 	}
20129 }
20130 
20131 /*
20132  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20133  * scheme, and returns one of the following:
20134  *
20135  * -1 = failed allocation.
20136  *  0 = success; burst count reached, or usable send window is too small,
20137  *      and that we'd rather wait until later before sending again.
20138  *  1 = success; we are called from tcp_multisend(), and both usable send
20139  *      window and tail_unsent are greater than the MDT threshold, and thus
20140  *      Multidata Transmit should be used instead.
20141  */
20142 static int
20143 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20144     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20145     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20146     const int mdt_thres)
20147 {
20148 	int num_burst_seg = tcp->tcp_snd_burst;
20149 
20150 	for (;;) {
20151 		struct datab	*db;
20152 		tcph_t		*tcph;
20153 		uint32_t	sum;
20154 		mblk_t		*mp, *mp1;
20155 		uchar_t		*rptr;
20156 		int		len;
20157 
20158 		/*
20159 		 * If we're called by tcp_multisend(), and the amount of
20160 		 * sendable data as well as the size of current xmit_tail
20161 		 * is beyond the MDT threshold, return to the caller and
20162 		 * let the large data transmit be done using MDT.
20163 		 */
20164 		if (*usable > 0 && *usable > mdt_thres &&
20165 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20166 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20167 			ASSERT(tcp->tcp_mdt);
20168 			return (1);	/* success; do large send */
20169 		}
20170 
20171 		if (num_burst_seg-- == 0)
20172 			break;		/* success; burst count reached */
20173 
20174 		len = mss;
20175 		if (len > *usable) {
20176 			len = *usable;
20177 			if (len <= 0) {
20178 				/* Terminate the loop */
20179 				break;	/* success; too small */
20180 			}
20181 			/*
20182 			 * Sender silly-window avoidance.
20183 			 * Ignore this if we are going to send a
20184 			 * zero window probe out.
20185 			 *
20186 			 * TODO: force data into microscopic window?
20187 			 *	==> (!pushed || (unsent > usable))
20188 			 */
20189 			if (len < (tcp->tcp_max_swnd >> 1) &&
20190 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20191 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20192 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20193 				/*
20194 				 * If the retransmit timer is not running
20195 				 * we start it so that we will retransmit
20196 				 * in the case when the the receiver has
20197 				 * decremented the window.
20198 				 */
20199 				if (*snxt == tcp->tcp_snxt &&
20200 				    *snxt == tcp->tcp_suna) {
20201 					/*
20202 					 * We are not supposed to send
20203 					 * anything.  So let's wait a little
20204 					 * bit longer before breaking SWS
20205 					 * avoidance.
20206 					 *
20207 					 * What should the value be?
20208 					 * Suggestion: MAX(init rexmit time,
20209 					 * tcp->tcp_rto)
20210 					 */
20211 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20212 				}
20213 				break;	/* success; too small */
20214 			}
20215 		}
20216 
20217 		tcph = tcp->tcp_tcph;
20218 
20219 		*usable -= len; /* Approximate - can be adjusted later */
20220 		if (*usable > 0)
20221 			tcph->th_flags[0] = TH_ACK;
20222 		else
20223 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20224 
20225 		/*
20226 		 * Prime pump for IP's checksumming on our behalf
20227 		 * Include the adjustment for a source route if any.
20228 		 */
20229 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20230 		sum = (sum >> 16) + (sum & 0xFFFF);
20231 		U16_TO_ABE16(sum, tcph->th_sum);
20232 
20233 		U32_TO_ABE32(*snxt, tcph->th_seq);
20234 
20235 		/*
20236 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20237 		 * set.  For the case when TCP_FSS_VALID is the only valid
20238 		 * bit (normal active close), branch off only when we think
20239 		 * that the FIN flag needs to be set.  Note for this case,
20240 		 * that (snxt + len) may not reflect the actual seg_len,
20241 		 * as len may be further reduced in tcp_xmit_mp().  If len
20242 		 * gets modified, we will end up here again.
20243 		 */
20244 		if (tcp->tcp_valid_bits != 0 &&
20245 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20246 		    ((*snxt + len) == tcp->tcp_fss))) {
20247 			uchar_t		*prev_rptr;
20248 			uint32_t	prev_snxt = tcp->tcp_snxt;
20249 
20250 			if (*tail_unsent == 0) {
20251 				ASSERT((*xmit_tail)->b_cont != NULL);
20252 				*xmit_tail = (*xmit_tail)->b_cont;
20253 				prev_rptr = (*xmit_tail)->b_rptr;
20254 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20255 				    (*xmit_tail)->b_rptr);
20256 			} else {
20257 				prev_rptr = (*xmit_tail)->b_rptr;
20258 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20259 				    *tail_unsent;
20260 			}
20261 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20262 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20263 			/* Restore tcp_snxt so we get amount sent right. */
20264 			tcp->tcp_snxt = prev_snxt;
20265 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20266 				/*
20267 				 * If the previous timestamp is still in use,
20268 				 * don't stomp on it.
20269 				 */
20270 				if ((*xmit_tail)->b_next == NULL) {
20271 					(*xmit_tail)->b_prev = local_time;
20272 					(*xmit_tail)->b_next =
20273 					    (mblk_t *)(uintptr_t)(*snxt);
20274 				}
20275 			} else
20276 				(*xmit_tail)->b_rptr = prev_rptr;
20277 
20278 			if (mp == NULL)
20279 				return (-1);
20280 			mp1 = mp->b_cont;
20281 
20282 			tcp->tcp_last_sent_len = (ushort_t)len;
20283 			while (mp1->b_cont) {
20284 				*xmit_tail = (*xmit_tail)->b_cont;
20285 				(*xmit_tail)->b_prev = local_time;
20286 				(*xmit_tail)->b_next =
20287 				    (mblk_t *)(uintptr_t)(*snxt);
20288 				mp1 = mp1->b_cont;
20289 			}
20290 			*snxt += len;
20291 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20292 			BUMP_LOCAL(tcp->tcp_obsegs);
20293 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20294 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20295 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20296 			tcp_send_data(tcp, q, mp);
20297 			continue;
20298 		}
20299 
20300 		*snxt += len;	/* Adjust later if we don't send all of len */
20301 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20302 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20303 
20304 		if (*tail_unsent) {
20305 			/* Are the bytes above us in flight? */
20306 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20307 			if (rptr != (*xmit_tail)->b_rptr) {
20308 				*tail_unsent -= len;
20309 				tcp->tcp_last_sent_len = (ushort_t)len;
20310 				len += tcp_hdr_len;
20311 				if (tcp->tcp_ipversion == IPV4_VERSION)
20312 					tcp->tcp_ipha->ipha_length = htons(len);
20313 				else
20314 					tcp->tcp_ip6h->ip6_plen =
20315 					    htons(len -
20316 					    ((char *)&tcp->tcp_ip6h[1] -
20317 					    tcp->tcp_iphc));
20318 				mp = dupb(*xmit_tail);
20319 				if (!mp)
20320 					return (-1);	/* out_of_mem */
20321 				mp->b_rptr = rptr;
20322 				/*
20323 				 * If the old timestamp is no longer in use,
20324 				 * sample a new timestamp now.
20325 				 */
20326 				if ((*xmit_tail)->b_next == NULL) {
20327 					(*xmit_tail)->b_prev = local_time;
20328 					(*xmit_tail)->b_next =
20329 					    (mblk_t *)(uintptr_t)(*snxt-len);
20330 				}
20331 				goto must_alloc;
20332 			}
20333 		} else {
20334 			*xmit_tail = (*xmit_tail)->b_cont;
20335 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20336 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20337 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20338 			    (*xmit_tail)->b_rptr);
20339 		}
20340 
20341 		(*xmit_tail)->b_prev = local_time;
20342 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20343 
20344 		*tail_unsent -= len;
20345 		tcp->tcp_last_sent_len = (ushort_t)len;
20346 
20347 		len += tcp_hdr_len;
20348 		if (tcp->tcp_ipversion == IPV4_VERSION)
20349 			tcp->tcp_ipha->ipha_length = htons(len);
20350 		else
20351 			tcp->tcp_ip6h->ip6_plen = htons(len -
20352 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20353 
20354 		mp = dupb(*xmit_tail);
20355 		if (!mp)
20356 			return (-1);	/* out_of_mem */
20357 
20358 		len = tcp_hdr_len;
20359 		/*
20360 		 * There are four reasons to allocate a new hdr mblk:
20361 		 *  1) The bytes above us are in use by another packet
20362 		 *  2) We don't have good alignment
20363 		 *  3) The mblk is being shared
20364 		 *  4) We don't have enough room for a header
20365 		 */
20366 		rptr = mp->b_rptr - len;
20367 		if (!OK_32PTR(rptr) ||
20368 		    ((db = mp->b_datap), db->db_ref != 2) ||
20369 		    rptr < db->db_base) {
20370 			/* NOTE: we assume allocb returns an OK_32PTR */
20371 
20372 		must_alloc:;
20373 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20374 			    tcp_wroff_xtra, BPRI_MED);
20375 			if (!mp1) {
20376 				freemsg(mp);
20377 				return (-1);	/* out_of_mem */
20378 			}
20379 			mp1->b_cont = mp;
20380 			mp = mp1;
20381 			/* Leave room for Link Level header */
20382 			len = tcp_hdr_len;
20383 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20384 			mp->b_wptr = &rptr[len];
20385 		}
20386 
20387 		/*
20388 		 * Fill in the header using the template header, and add
20389 		 * options such as time-stamp, ECN and/or SACK, as needed.
20390 		 */
20391 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20392 
20393 		mp->b_rptr = rptr;
20394 
20395 		if (*tail_unsent) {
20396 			int spill = *tail_unsent;
20397 
20398 			mp1 = mp->b_cont;
20399 			if (!mp1)
20400 				mp1 = mp;
20401 
20402 			/*
20403 			 * If we're a little short, tack on more mblks until
20404 			 * there is no more spillover.
20405 			 */
20406 			while (spill < 0) {
20407 				mblk_t *nmp;
20408 				int nmpsz;
20409 
20410 				nmp = (*xmit_tail)->b_cont;
20411 				nmpsz = MBLKL(nmp);
20412 
20413 				/*
20414 				 * Excess data in mblk; can we split it?
20415 				 * If MDT is enabled for the connection,
20416 				 * keep on splitting as this is a transient
20417 				 * send path.
20418 				 */
20419 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20420 					/*
20421 					 * Don't split if stream head was
20422 					 * told to break up larger writes
20423 					 * into smaller ones.
20424 					 */
20425 					if (tcp->tcp_maxpsz > 0)
20426 						break;
20427 
20428 					/*
20429 					 * Next mblk is less than SMSS/2
20430 					 * rounded up to nearest 64-byte;
20431 					 * let it get sent as part of the
20432 					 * next segment.
20433 					 */
20434 					if (tcp->tcp_localnet &&
20435 					    !tcp->tcp_cork &&
20436 					    (nmpsz < roundup((mss >> 1), 64)))
20437 						break;
20438 				}
20439 
20440 				*xmit_tail = nmp;
20441 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20442 				/* Stash for rtt use later */
20443 				(*xmit_tail)->b_prev = local_time;
20444 				(*xmit_tail)->b_next =
20445 				    (mblk_t *)(uintptr_t)(*snxt - len);
20446 				mp1->b_cont = dupb(*xmit_tail);
20447 				mp1 = mp1->b_cont;
20448 
20449 				spill += nmpsz;
20450 				if (mp1 == NULL) {
20451 					*tail_unsent = spill;
20452 					freemsg(mp);
20453 					return (-1);	/* out_of_mem */
20454 				}
20455 			}
20456 
20457 			/* Trim back any surplus on the last mblk */
20458 			if (spill >= 0) {
20459 				mp1->b_wptr -= spill;
20460 				*tail_unsent = spill;
20461 			} else {
20462 				/*
20463 				 * We did not send everything we could in
20464 				 * order to remain within the b_cont limit.
20465 				 */
20466 				*usable -= spill;
20467 				*snxt += spill;
20468 				tcp->tcp_last_sent_len += spill;
20469 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20470 				/*
20471 				 * Adjust the checksum
20472 				 */
20473 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20474 				sum += spill;
20475 				sum = (sum >> 16) + (sum & 0xFFFF);
20476 				U16_TO_ABE16(sum, tcph->th_sum);
20477 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20478 					sum = ntohs(
20479 					    ((ipha_t *)rptr)->ipha_length) +
20480 					    spill;
20481 					((ipha_t *)rptr)->ipha_length =
20482 					    htons(sum);
20483 				} else {
20484 					sum = ntohs(
20485 					    ((ip6_t *)rptr)->ip6_plen) +
20486 					    spill;
20487 					((ip6_t *)rptr)->ip6_plen =
20488 					    htons(sum);
20489 				}
20490 				*tail_unsent = 0;
20491 			}
20492 		}
20493 		if (tcp->tcp_ip_forward_progress) {
20494 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20495 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20496 			tcp->tcp_ip_forward_progress = B_FALSE;
20497 		}
20498 
20499 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20500 		tcp_send_data(tcp, q, mp);
20501 		BUMP_LOCAL(tcp->tcp_obsegs);
20502 	}
20503 
20504 	return (0);
20505 }
20506 
20507 /* Unlink and return any mblk that looks like it contains a MDT info */
20508 static mblk_t *
20509 tcp_mdt_info_mp(mblk_t *mp)
20510 {
20511 	mblk_t	*prev_mp;
20512 
20513 	for (;;) {
20514 		prev_mp = mp;
20515 		/* no more to process? */
20516 		if ((mp = mp->b_cont) == NULL)
20517 			break;
20518 
20519 		switch (DB_TYPE(mp)) {
20520 		case M_CTL:
20521 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20522 				continue;
20523 			ASSERT(prev_mp != NULL);
20524 			prev_mp->b_cont = mp->b_cont;
20525 			mp->b_cont = NULL;
20526 			return (mp);
20527 		default:
20528 			break;
20529 		}
20530 	}
20531 	return (mp);
20532 }
20533 
20534 /* MDT info update routine, called when IP notifies us about MDT */
20535 static void
20536 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20537 {
20538 	boolean_t prev_state;
20539 
20540 	/*
20541 	 * IP is telling us to abort MDT on this connection?  We know
20542 	 * this because the capability is only turned off when IP
20543 	 * encounters some pathological cases, e.g. link-layer change
20544 	 * where the new driver doesn't support MDT, or in situation
20545 	 * where MDT usage on the link-layer has been switched off.
20546 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20547 	 * if the link-layer doesn't support MDT, and if it does, it
20548 	 * will indicate that the feature is to be turned on.
20549 	 */
20550 	prev_state = tcp->tcp_mdt;
20551 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20552 	if (!tcp->tcp_mdt && !first) {
20553 		TCP_STAT(tcp_mdt_conn_halted3);
20554 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20555 		    (void *)tcp->tcp_connp));
20556 	}
20557 
20558 	/*
20559 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20560 	 * so disable MDT otherwise.  The checks are done here
20561 	 * and in tcp_wput_data().
20562 	 */
20563 	if (tcp->tcp_mdt &&
20564 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20565 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20566 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20567 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20568 		tcp->tcp_mdt = B_FALSE;
20569 
20570 	if (tcp->tcp_mdt) {
20571 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20572 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20573 			    "version (%d), expected version is %d",
20574 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20575 			tcp->tcp_mdt = B_FALSE;
20576 			return;
20577 		}
20578 
20579 		/*
20580 		 * We need the driver to be able to handle at least three
20581 		 * spans per packet in order for tcp MDT to be utilized.
20582 		 * The first is for the header portion, while the rest are
20583 		 * needed to handle a packet that straddles across two
20584 		 * virtually non-contiguous buffers; a typical tcp packet
20585 		 * therefore consists of only two spans.  Note that we take
20586 		 * a zero as "don't care".
20587 		 */
20588 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20589 		    mdt_capab->ill_mdt_span_limit < 3) {
20590 			tcp->tcp_mdt = B_FALSE;
20591 			return;
20592 		}
20593 
20594 		/* a zero means driver wants default value */
20595 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20596 		    tcp_mdt_max_pbufs);
20597 		if (tcp->tcp_mdt_max_pld == 0)
20598 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20599 
20600 		/* ensure 32-bit alignment */
20601 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20602 		    mdt_capab->ill_mdt_hdr_head), 4);
20603 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20604 		    mdt_capab->ill_mdt_hdr_tail), 4);
20605 
20606 		if (!first && !prev_state) {
20607 			TCP_STAT(tcp_mdt_conn_resumed2);
20608 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20609 			    (void *)tcp->tcp_connp));
20610 		}
20611 	}
20612 }
20613 
20614 static void
20615 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20616 {
20617 	conn_t *connp = tcp->tcp_connp;
20618 
20619 	ASSERT(ire != NULL);
20620 
20621 	/*
20622 	 * We may be in the fastpath here, and although we essentially do
20623 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20624 	 * we try to keep things as brief as possible.  After all, these
20625 	 * are only best-effort checks, and we do more thorough ones prior
20626 	 * to calling tcp_multisend().
20627 	 */
20628 	if (ip_multidata_outbound && check_mdt &&
20629 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20630 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
20631 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20632 	    !(ire->ire_flags & RTF_MULTIRT) &&
20633 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20634 	    CONN_IS_MD_FASTPATH(connp)) {
20635 		/* Remember the result */
20636 		connp->conn_mdt_ok = B_TRUE;
20637 
20638 		ASSERT(ill->ill_mdt_capab != NULL);
20639 		if (!ill->ill_mdt_capab->ill_mdt_on) {
20640 			/*
20641 			 * If MDT has been previously turned off in the past,
20642 			 * and we currently can do MDT (due to IPQoS policy
20643 			 * removal, etc.) then enable it for this interface.
20644 			 */
20645 			ill->ill_mdt_capab->ill_mdt_on = 1;
20646 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
20647 			    "interface %s\n", (void *)connp, ill->ill_name));
20648 		}
20649 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
20650 	}
20651 
20652 	/*
20653 	 * The goal is to reduce the number of generated tcp segments by
20654 	 * setting the maxpsz multiplier to 0; this will have an affect on
20655 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
20656 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
20657 	 * of outbound segments and incoming ACKs, thus allowing for better
20658 	 * network and system performance.  In contrast the legacy behavior
20659 	 * may result in sending less than SMSS size, because the last mblk
20660 	 * for some packets may have more data than needed to make up SMSS,
20661 	 * and the legacy code refused to "split" it.
20662 	 *
20663 	 * We apply the new behavior on following situations:
20664 	 *
20665 	 *   1) Loopback connections,
20666 	 *   2) Connections in which the remote peer is not on local subnet,
20667 	 *   3) Local subnet connections over the bge interface (see below).
20668 	 *
20669 	 * Ideally, we would like this behavior to apply for interfaces other
20670 	 * than bge.  However, doing so would negatively impact drivers which
20671 	 * perform dynamic mapping and unmapping of DMA resources, which are
20672 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
20673 	 * packet will be generated by tcp).  The bge driver does not suffer
20674 	 * from this, as it copies the mblks into pre-mapped buffers, and
20675 	 * therefore does not require more I/O resources than before.
20676 	 *
20677 	 * Otherwise, this behavior is present on all network interfaces when
20678 	 * the destination endpoint is non-local, since reducing the number
20679 	 * of packets in general is good for the network.
20680 	 *
20681 	 * TODO We need to remove this hard-coded conditional for bge once
20682 	 *	a better "self-tuning" mechanism, or a way to comprehend
20683 	 *	the driver transmit strategy is devised.  Until the solution
20684 	 *	is found and well understood, we live with this hack.
20685 	 */
20686 	if (!tcp_static_maxpsz &&
20687 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
20688 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
20689 		/* override the default value */
20690 		tcp->tcp_maxpsz = 0;
20691 
20692 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
20693 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
20694 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
20695 	}
20696 
20697 	/* set the stream head parameters accordingly */
20698 	(void) tcp_maxpsz_set(tcp, B_TRUE);
20699 }
20700 
20701 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
20702 static void
20703 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
20704 {
20705 	uchar_t	fval = *mp->b_rptr;
20706 	mblk_t	*tail;
20707 	queue_t	*q = tcp->tcp_wq;
20708 
20709 	/* TODO: How should flush interact with urgent data? */
20710 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
20711 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
20712 		/*
20713 		 * Flush only data that has not yet been put on the wire.  If
20714 		 * we flush data that we have already transmitted, life, as we
20715 		 * know it, may come to an end.
20716 		 */
20717 		tail = tcp->tcp_xmit_tail;
20718 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
20719 		tcp->tcp_xmit_tail_unsent = 0;
20720 		tcp->tcp_unsent = 0;
20721 		if (tail->b_wptr != tail->b_rptr)
20722 			tail = tail->b_cont;
20723 		if (tail) {
20724 			mblk_t **excess = &tcp->tcp_xmit_head;
20725 			for (;;) {
20726 				mblk_t *mp1 = *excess;
20727 				if (mp1 == tail)
20728 					break;
20729 				tcp->tcp_xmit_tail = mp1;
20730 				tcp->tcp_xmit_last = mp1;
20731 				excess = &mp1->b_cont;
20732 			}
20733 			*excess = NULL;
20734 			tcp_close_mpp(&tail);
20735 			if (tcp->tcp_snd_zcopy_aware)
20736 				tcp_zcopy_notify(tcp);
20737 		}
20738 		/*
20739 		 * We have no unsent data, so unsent must be less than
20740 		 * tcp_xmit_lowater, so re-enable flow.
20741 		 */
20742 		if (tcp->tcp_flow_stopped) {
20743 			tcp_clrqfull(tcp);
20744 		}
20745 	}
20746 	/*
20747 	 * TODO: you can't just flush these, you have to increase rwnd for one
20748 	 * thing.  For another, how should urgent data interact?
20749 	 */
20750 	if (fval & FLUSHR) {
20751 		*mp->b_rptr = fval & ~FLUSHW;
20752 		/* XXX */
20753 		qreply(q, mp);
20754 		return;
20755 	}
20756 	freemsg(mp);
20757 }
20758 
20759 /*
20760  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
20761  * messages.
20762  */
20763 static void
20764 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
20765 {
20766 	mblk_t	*mp1;
20767 	STRUCT_HANDLE(strbuf, sb);
20768 	uint16_t port;
20769 	queue_t 	*q = tcp->tcp_wq;
20770 	in6_addr_t	v6addr;
20771 	ipaddr_t	v4addr;
20772 	uint32_t	flowinfo = 0;
20773 	int		addrlen;
20774 
20775 	/* Make sure it is one of ours. */
20776 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20777 	case TI_GETMYNAME:
20778 	case TI_GETPEERNAME:
20779 		break;
20780 	default:
20781 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20782 		return;
20783 	}
20784 	switch (mi_copy_state(q, mp, &mp1)) {
20785 	case -1:
20786 		return;
20787 	case MI_COPY_CASE(MI_COPY_IN, 1):
20788 		break;
20789 	case MI_COPY_CASE(MI_COPY_OUT, 1):
20790 		/* Copy out the strbuf. */
20791 		mi_copyout(q, mp);
20792 		return;
20793 	case MI_COPY_CASE(MI_COPY_OUT, 2):
20794 		/* All done. */
20795 		mi_copy_done(q, mp, 0);
20796 		return;
20797 	default:
20798 		mi_copy_done(q, mp, EPROTO);
20799 		return;
20800 	}
20801 	/* Check alignment of the strbuf */
20802 	if (!OK_32PTR(mp1->b_rptr)) {
20803 		mi_copy_done(q, mp, EINVAL);
20804 		return;
20805 	}
20806 
20807 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
20808 	    (void *)mp1->b_rptr);
20809 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
20810 
20811 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
20812 		mi_copy_done(q, mp, EINVAL);
20813 		return;
20814 	}
20815 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20816 	case TI_GETMYNAME:
20817 		if (tcp->tcp_family == AF_INET) {
20818 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20819 				v4addr = tcp->tcp_ipha->ipha_src;
20820 			} else {
20821 				/* can't return an address in this case */
20822 				v4addr = 0;
20823 			}
20824 		} else {
20825 			/* tcp->tcp_family == AF_INET6 */
20826 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20827 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
20828 				    &v6addr);
20829 			} else {
20830 				v6addr = tcp->tcp_ip6h->ip6_src;
20831 			}
20832 		}
20833 		port = tcp->tcp_lport;
20834 		break;
20835 	case TI_GETPEERNAME:
20836 		if (tcp->tcp_family == AF_INET) {
20837 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20838 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
20839 				    v4addr);
20840 			} else {
20841 				/* can't return an address in this case */
20842 				v4addr = 0;
20843 			}
20844 		} else {
20845 			/* tcp->tcp_family == AF_INET6) */
20846 			v6addr = tcp->tcp_remote_v6;
20847 			if (tcp->tcp_ipversion == IPV6_VERSION) {
20848 				/*
20849 				 * No flowinfo if tcp->tcp_ipversion is v4.
20850 				 *
20851 				 * flowinfo was already initialized to zero
20852 				 * where it was declared above, so only
20853 				 * set it if ipversion is v6.
20854 				 */
20855 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
20856 				    ~IPV6_VERS_AND_FLOW_MASK;
20857 			}
20858 		}
20859 		port = tcp->tcp_fport;
20860 		break;
20861 	default:
20862 		mi_copy_done(q, mp, EPROTO);
20863 		return;
20864 	}
20865 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
20866 	if (!mp1)
20867 		return;
20868 
20869 	if (tcp->tcp_family == AF_INET) {
20870 		sin_t *sin;
20871 
20872 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
20873 		sin = (sin_t *)mp1->b_rptr;
20874 		mp1->b_wptr = (uchar_t *)&sin[1];
20875 		*sin = sin_null;
20876 		sin->sin_family = AF_INET;
20877 		sin->sin_addr.s_addr = v4addr;
20878 		sin->sin_port = port;
20879 	} else {
20880 		/* tcp->tcp_family == AF_INET6 */
20881 		sin6_t *sin6;
20882 
20883 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
20884 		sin6 = (sin6_t *)mp1->b_rptr;
20885 		mp1->b_wptr = (uchar_t *)&sin6[1];
20886 		*sin6 = sin6_null;
20887 		sin6->sin6_family = AF_INET6;
20888 		sin6->sin6_flowinfo = flowinfo;
20889 		sin6->sin6_addr = v6addr;
20890 		sin6->sin6_port = port;
20891 	}
20892 	/* Copy out the address */
20893 	mi_copyout(q, mp);
20894 }
20895 
20896 /*
20897  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
20898  * messages.
20899  */
20900 /* ARGSUSED */
20901 static void
20902 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
20903 {
20904 	conn_t 	*connp = (conn_t *)arg;
20905 	tcp_t	*tcp = connp->conn_tcp;
20906 	queue_t	*q = tcp->tcp_wq;
20907 	struct iocblk	*iocp;
20908 
20909 	ASSERT(DB_TYPE(mp) == M_IOCTL);
20910 	/*
20911 	 * Try and ASSERT the minimum possible references on the
20912 	 * conn early enough. Since we are executing on write side,
20913 	 * the connection is obviously not detached and that means
20914 	 * there is a ref each for TCP and IP. Since we are behind
20915 	 * the squeue, the minimum references needed are 3. If the
20916 	 * conn is in classifier hash list, there should be an
20917 	 * extra ref for that (we check both the possibilities).
20918 	 */
20919 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20920 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20921 
20922 	iocp = (struct iocblk *)mp->b_rptr;
20923 	switch (iocp->ioc_cmd) {
20924 	case TCP_IOC_DEFAULT_Q:
20925 		/* Wants to be the default wq. */
20926 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
20927 			iocp->ioc_error = EPERM;
20928 			iocp->ioc_count = 0;
20929 			mp->b_datap->db_type = M_IOCACK;
20930 			qreply(q, mp);
20931 			return;
20932 		}
20933 		tcp_def_q_set(tcp, mp);
20934 		return;
20935 	case _SIOCSOCKFALLBACK:
20936 		/*
20937 		 * Either sockmod is about to be popped and the socket
20938 		 * would now be treated as a plain stream, or a module
20939 		 * is about to be pushed so we could no longer use read-
20940 		 * side synchronous streams for fused loopback tcp.
20941 		 * Drain any queued data and disable direct sockfs
20942 		 * interface from now on.
20943 		 */
20944 		if (!tcp->tcp_issocket) {
20945 			DB_TYPE(mp) = M_IOCNAK;
20946 			iocp->ioc_error = EINVAL;
20947 		} else {
20948 #ifdef	_ILP32
20949 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
20950 #else
20951 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
20952 #endif
20953 			/*
20954 			 * Insert this socket into the acceptor hash.
20955 			 * We might need it for T_CONN_RES message
20956 			 */
20957 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
20958 
20959 			if (tcp->tcp_fused) {
20960 				/*
20961 				 * This is a fused loopback tcp; disable
20962 				 * read-side synchronous streams interface
20963 				 * and drain any queued data.  It is okay
20964 				 * to do this for non-synchronous streams
20965 				 * fused tcp as well.
20966 				 */
20967 				tcp_fuse_disable_pair(tcp, B_FALSE);
20968 			}
20969 			tcp->tcp_issocket = B_FALSE;
20970 			TCP_STAT(tcp_sock_fallback);
20971 
20972 			DB_TYPE(mp) = M_IOCACK;
20973 			iocp->ioc_error = 0;
20974 		}
20975 		iocp->ioc_count = 0;
20976 		iocp->ioc_rval = 0;
20977 		qreply(q, mp);
20978 		return;
20979 	}
20980 	CALL_IP_WPUT(connp, q, mp);
20981 }
20982 
20983 /*
20984  * This routine is called by tcp_wput() to handle all TPI requests.
20985  */
20986 /* ARGSUSED */
20987 static void
20988 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
20989 {
20990 	conn_t 	*connp = (conn_t *)arg;
20991 	tcp_t	*tcp = connp->conn_tcp;
20992 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
20993 	uchar_t *rptr;
20994 	t_scalar_t type;
20995 	int len;
20996 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
20997 
20998 	/*
20999 	 * Try and ASSERT the minimum possible references on the
21000 	 * conn early enough. Since we are executing on write side,
21001 	 * the connection is obviously not detached and that means
21002 	 * there is a ref each for TCP and IP. Since we are behind
21003 	 * the squeue, the minimum references needed are 3. If the
21004 	 * conn is in classifier hash list, there should be an
21005 	 * extra ref for that (we check both the possibilities).
21006 	 */
21007 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21008 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21009 
21010 	rptr = mp->b_rptr;
21011 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21012 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21013 		type = ((union T_primitives *)rptr)->type;
21014 		if (type == T_EXDATA_REQ) {
21015 			uint32_t msize = msgdsize(mp->b_cont);
21016 
21017 			len = msize - 1;
21018 			if (len < 0) {
21019 				freemsg(mp);
21020 				return;
21021 			}
21022 			/*
21023 			 * Try to force urgent data out on the wire.
21024 			 * Even if we have unsent data this will
21025 			 * at least send the urgent flag.
21026 			 * XXX does not handle more flag correctly.
21027 			 */
21028 			len += tcp->tcp_unsent;
21029 			len += tcp->tcp_snxt;
21030 			tcp->tcp_urg = len;
21031 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21032 
21033 			/* Bypass tcp protocol for fused tcp loopback */
21034 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21035 				return;
21036 		} else if (type != T_DATA_REQ) {
21037 			goto non_urgent_data;
21038 		}
21039 		/* TODO: options, flags, ... from user */
21040 		/* Set length to zero for reclamation below */
21041 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21042 		freeb(mp);
21043 		return;
21044 	} else {
21045 		if (tcp->tcp_debug) {
21046 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21047 			    "tcp_wput_proto, dropping one...");
21048 		}
21049 		freemsg(mp);
21050 		return;
21051 	}
21052 
21053 non_urgent_data:
21054 
21055 	switch ((int)tprim->type) {
21056 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21057 		/*
21058 		 * save the kssl_ent_t from the next block, and convert this
21059 		 * back to a normal bind_req.
21060 		 */
21061 		if (mp->b_cont != NULL) {
21062 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21063 
21064 			if (tcp->tcp_kssl_ent != NULL) {
21065 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21066 				    KSSL_NO_PROXY);
21067 				tcp->tcp_kssl_ent = NULL;
21068 			}
21069 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21070 			    sizeof (kssl_ent_t));
21071 			kssl_hold_ent(tcp->tcp_kssl_ent);
21072 			freemsg(mp->b_cont);
21073 			mp->b_cont = NULL;
21074 		}
21075 		tprim->type = T_BIND_REQ;
21076 
21077 	/* FALLTHROUGH */
21078 	case O_T_BIND_REQ:	/* bind request */
21079 	case T_BIND_REQ:	/* new semantics bind request */
21080 		tcp_bind(tcp, mp);
21081 		break;
21082 	case T_UNBIND_REQ:	/* unbind request */
21083 		tcp_unbind(tcp, mp);
21084 		break;
21085 	case O_T_CONN_RES:	/* old connection response XXX */
21086 	case T_CONN_RES:	/* connection response */
21087 		tcp_accept(tcp, mp);
21088 		break;
21089 	case T_CONN_REQ:	/* connection request */
21090 		tcp_connect(tcp, mp);
21091 		break;
21092 	case T_DISCON_REQ:	/* disconnect request */
21093 		tcp_disconnect(tcp, mp);
21094 		break;
21095 	case T_CAPABILITY_REQ:
21096 		tcp_capability_req(tcp, mp);	/* capability request */
21097 		break;
21098 	case T_INFO_REQ:	/* information request */
21099 		tcp_info_req(tcp, mp);
21100 		break;
21101 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21102 		/* Only IP is allowed to return meaningful value */
21103 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21104 		break;
21105 	case T_OPTMGMT_REQ:
21106 		/*
21107 		 * Note:  no support for snmpcom_req() through new
21108 		 * T_OPTMGMT_REQ. See comments in ip.c
21109 		 */
21110 		/* Only IP is allowed to return meaningful value */
21111 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21112 		break;
21113 
21114 	case T_UNITDATA_REQ:	/* unitdata request */
21115 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21116 		break;
21117 	case T_ORDREL_REQ:	/* orderly release req */
21118 		freemsg(mp);
21119 
21120 		if (tcp->tcp_fused)
21121 			tcp_unfuse(tcp);
21122 
21123 		if (tcp_xmit_end(tcp) != 0) {
21124 			/*
21125 			 * We were crossing FINs and got a reset from
21126 			 * the other side. Just ignore it.
21127 			 */
21128 			if (tcp->tcp_debug) {
21129 				(void) strlog(TCP_MOD_ID, 0, 1,
21130 				    SL_ERROR|SL_TRACE,
21131 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21132 				    "state %s",
21133 				    tcp_display(tcp, NULL,
21134 				    DISP_ADDR_AND_PORT));
21135 			}
21136 		}
21137 		break;
21138 	case T_ADDR_REQ:
21139 		tcp_addr_req(tcp, mp);
21140 		break;
21141 	default:
21142 		if (tcp->tcp_debug) {
21143 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21144 			    "tcp_wput_proto, bogus TPI msg, type %d",
21145 			    tprim->type);
21146 		}
21147 		/*
21148 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21149 		 * to recover.
21150 		 */
21151 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21152 		break;
21153 	}
21154 }
21155 
21156 /*
21157  * The TCP write service routine should never be called...
21158  */
21159 /* ARGSUSED */
21160 static void
21161 tcp_wsrv(queue_t *q)
21162 {
21163 	TCP_STAT(tcp_wsrv_called);
21164 }
21165 
21166 /* Non overlapping byte exchanger */
21167 static void
21168 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21169 {
21170 	uchar_t	uch;
21171 
21172 	while (len-- > 0) {
21173 		uch = a[len];
21174 		a[len] = b[len];
21175 		b[len] = uch;
21176 	}
21177 }
21178 
21179 /*
21180  * Send out a control packet on the tcp connection specified.  This routine
21181  * is typically called where we need a simple ACK or RST generated.
21182  */
21183 static void
21184 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21185 {
21186 	uchar_t		*rptr;
21187 	tcph_t		*tcph;
21188 	ipha_t		*ipha = NULL;
21189 	ip6_t		*ip6h = NULL;
21190 	uint32_t	sum;
21191 	int		tcp_hdr_len;
21192 	int		tcp_ip_hdr_len;
21193 	mblk_t		*mp;
21194 
21195 	/*
21196 	 * Save sum for use in source route later.
21197 	 */
21198 	ASSERT(tcp != NULL);
21199 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21200 	tcp_hdr_len = tcp->tcp_hdr_len;
21201 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21202 
21203 	/* If a text string is passed in with the request, pass it to strlog. */
21204 	if (str != NULL && tcp->tcp_debug) {
21205 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21206 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21207 		    str, seq, ack, ctl);
21208 	}
21209 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21210 	    BPRI_MED);
21211 	if (mp == NULL) {
21212 		return;
21213 	}
21214 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21215 	mp->b_rptr = rptr;
21216 	mp->b_wptr = &rptr[tcp_hdr_len];
21217 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21218 
21219 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21220 		ipha = (ipha_t *)rptr;
21221 		ipha->ipha_length = htons(tcp_hdr_len);
21222 	} else {
21223 		ip6h = (ip6_t *)rptr;
21224 		ASSERT(tcp != NULL);
21225 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21226 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21227 	}
21228 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21229 	tcph->th_flags[0] = (uint8_t)ctl;
21230 	if (ctl & TH_RST) {
21231 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21232 		BUMP_MIB(&tcp_mib, tcpOutControl);
21233 		/*
21234 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21235 		 */
21236 		if (tcp->tcp_snd_ts_ok &&
21237 		    tcp->tcp_state > TCPS_SYN_SENT) {
21238 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21239 			*(mp->b_wptr) = TCPOPT_EOL;
21240 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21241 				ipha->ipha_length = htons(tcp_hdr_len -
21242 				    TCPOPT_REAL_TS_LEN);
21243 			} else {
21244 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21245 				    TCPOPT_REAL_TS_LEN);
21246 			}
21247 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21248 			sum -= TCPOPT_REAL_TS_LEN;
21249 		}
21250 	}
21251 	if (ctl & TH_ACK) {
21252 		if (tcp->tcp_snd_ts_ok) {
21253 			U32_TO_BE32(lbolt,
21254 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21255 			U32_TO_BE32(tcp->tcp_ts_recent,
21256 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21257 		}
21258 
21259 		/* Update the latest receive window size in TCP header. */
21260 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21261 		    tcph->th_win);
21262 		tcp->tcp_rack = ack;
21263 		tcp->tcp_rack_cnt = 0;
21264 		BUMP_MIB(&tcp_mib, tcpOutAck);
21265 	}
21266 	BUMP_LOCAL(tcp->tcp_obsegs);
21267 	U32_TO_BE32(seq, tcph->th_seq);
21268 	U32_TO_BE32(ack, tcph->th_ack);
21269 	/*
21270 	 * Include the adjustment for a source route if any.
21271 	 */
21272 	sum = (sum >> 16) + (sum & 0xFFFF);
21273 	U16_TO_BE16(sum, tcph->th_sum);
21274 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21275 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21276 }
21277 
21278 /*
21279  * If this routine returns B_TRUE, TCP can generate a RST in response
21280  * to a segment.  If it returns B_FALSE, TCP should not respond.
21281  */
21282 static boolean_t
21283 tcp_send_rst_chk(void)
21284 {
21285 	clock_t	now;
21286 
21287 	/*
21288 	 * TCP needs to protect itself from generating too many RSTs.
21289 	 * This can be a DoS attack by sending us random segments
21290 	 * soliciting RSTs.
21291 	 *
21292 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21293 	 * in each 1 second interval.  In this way, TCP still generate
21294 	 * RSTs in normal cases but when under attack, the impact is
21295 	 * limited.
21296 	 */
21297 	if (tcp_rst_sent_rate_enabled != 0) {
21298 		now = lbolt;
21299 		/* lbolt can wrap around. */
21300 		if ((tcp_last_rst_intrvl > now) ||
21301 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21302 			tcp_last_rst_intrvl = now;
21303 			tcp_rst_cnt = 1;
21304 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21305 			return (B_FALSE);
21306 		}
21307 	}
21308 	return (B_TRUE);
21309 }
21310 
21311 /*
21312  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21313  */
21314 static void
21315 tcp_ip_ire_mark_advice(tcp_t *tcp)
21316 {
21317 	mblk_t *mp;
21318 	ipic_t *ipic;
21319 
21320 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21321 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21322 		    &ipic);
21323 	} else {
21324 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21325 		    &ipic);
21326 	}
21327 	if (mp == NULL)
21328 		return;
21329 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21330 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21331 }
21332 
21333 /*
21334  * Return an IP advice ioctl mblk and set ipic to be the pointer
21335  * to the advice structure.
21336  */
21337 static mblk_t *
21338 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21339 {
21340 	struct iocblk *ioc;
21341 	mblk_t *mp, *mp1;
21342 
21343 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21344 	if (mp == NULL)
21345 		return (NULL);
21346 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21347 	*ipic = (ipic_t *)mp->b_rptr;
21348 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21349 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21350 
21351 	bcopy(addr, *ipic + 1, addr_len);
21352 
21353 	(*ipic)->ipic_addr_length = addr_len;
21354 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21355 
21356 	mp1 = mkiocb(IP_IOCTL);
21357 	if (mp1 == NULL) {
21358 		freemsg(mp);
21359 		return (NULL);
21360 	}
21361 	mp1->b_cont = mp;
21362 	ioc = (struct iocblk *)mp1->b_rptr;
21363 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21364 
21365 	return (mp1);
21366 }
21367 
21368 /*
21369  * Generate a reset based on an inbound packet for which there is no active
21370  * tcp state that we can find.
21371  *
21372  * IPSEC NOTE : Try to send the reply with the same protection as it came
21373  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21374  * the packet will go out at the same level of protection as it came in by
21375  * converting the IPSEC_IN to IPSEC_OUT.
21376  */
21377 static void
21378 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21379     uint32_t ack, int ctl, uint_t ip_hdr_len)
21380 {
21381 	ipha_t		*ipha = NULL;
21382 	ip6_t		*ip6h = NULL;
21383 	ushort_t	len;
21384 	tcph_t		*tcph;
21385 	int		i;
21386 	mblk_t		*ipsec_mp;
21387 	boolean_t	mctl_present;
21388 	ipic_t		*ipic;
21389 	ipaddr_t	v4addr;
21390 	in6_addr_t	v6addr;
21391 	int		addr_len;
21392 	void		*addr;
21393 	queue_t		*q = tcp_g_q;
21394 	tcp_t		*tcp = Q_TO_TCP(q);
21395 	cred_t		*cr;
21396 
21397 	if (!tcp_send_rst_chk()) {
21398 		tcp_rst_unsent++;
21399 		freemsg(mp);
21400 		return;
21401 	}
21402 
21403 	if (mp->b_datap->db_type == M_CTL) {
21404 		ipsec_mp = mp;
21405 		mp = mp->b_cont;
21406 		mctl_present = B_TRUE;
21407 	} else {
21408 		ipsec_mp = mp;
21409 		mctl_present = B_FALSE;
21410 	}
21411 
21412 	if (str && q && tcp_dbg) {
21413 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21414 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21415 		    "flags 0x%x",
21416 		    str, seq, ack, ctl);
21417 	}
21418 	if (mp->b_datap->db_ref != 1) {
21419 		mblk_t *mp1 = copyb(mp);
21420 		freemsg(mp);
21421 		mp = mp1;
21422 		if (!mp) {
21423 			if (mctl_present)
21424 				freeb(ipsec_mp);
21425 			return;
21426 		} else {
21427 			if (mctl_present) {
21428 				ipsec_mp->b_cont = mp;
21429 			} else {
21430 				ipsec_mp = mp;
21431 			}
21432 		}
21433 	} else if (mp->b_cont) {
21434 		freemsg(mp->b_cont);
21435 		mp->b_cont = NULL;
21436 	}
21437 	/*
21438 	 * We skip reversing source route here.
21439 	 * (for now we replace all IP options with EOL)
21440 	 */
21441 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21442 		ipha = (ipha_t *)mp->b_rptr;
21443 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21444 			mp->b_rptr[i] = IPOPT_EOL;
21445 		/*
21446 		 * Make sure that src address isn't flagrantly invalid.
21447 		 * Not all broadcast address checking for the src address
21448 		 * is possible, since we don't know the netmask of the src
21449 		 * addr.  No check for destination address is done, since
21450 		 * IP will not pass up a packet with a broadcast dest
21451 		 * address to TCP.  Similar checks are done below for IPv6.
21452 		 */
21453 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21454 		    CLASSD(ipha->ipha_src)) {
21455 			freemsg(ipsec_mp);
21456 			BUMP_MIB(&ip_mib, ipInDiscards);
21457 			return;
21458 		}
21459 	} else {
21460 		ip6h = (ip6_t *)mp->b_rptr;
21461 
21462 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21463 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21464 			freemsg(ipsec_mp);
21465 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21466 			return;
21467 		}
21468 
21469 		/* Remove any extension headers assuming partial overlay */
21470 		if (ip_hdr_len > IPV6_HDR_LEN) {
21471 			uint8_t *to;
21472 
21473 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21474 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21475 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21476 			ip_hdr_len = IPV6_HDR_LEN;
21477 			ip6h = (ip6_t *)mp->b_rptr;
21478 			ip6h->ip6_nxt = IPPROTO_TCP;
21479 		}
21480 	}
21481 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21482 	if (tcph->th_flags[0] & TH_RST) {
21483 		freemsg(ipsec_mp);
21484 		return;
21485 	}
21486 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21487 	len = ip_hdr_len + sizeof (tcph_t);
21488 	mp->b_wptr = &mp->b_rptr[len];
21489 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21490 		ipha->ipha_length = htons(len);
21491 		/* Swap addresses */
21492 		v4addr = ipha->ipha_src;
21493 		ipha->ipha_src = ipha->ipha_dst;
21494 		ipha->ipha_dst = v4addr;
21495 		ipha->ipha_ident = 0;
21496 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21497 		addr_len = IP_ADDR_LEN;
21498 		addr = &v4addr;
21499 	} else {
21500 		/* No ip6i_t in this case */
21501 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21502 		/* Swap addresses */
21503 		v6addr = ip6h->ip6_src;
21504 		ip6h->ip6_src = ip6h->ip6_dst;
21505 		ip6h->ip6_dst = v6addr;
21506 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21507 		addr_len = IPV6_ADDR_LEN;
21508 		addr = &v6addr;
21509 	}
21510 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21511 	U32_TO_BE32(ack, tcph->th_ack);
21512 	U32_TO_BE32(seq, tcph->th_seq);
21513 	U16_TO_BE16(0, tcph->th_win);
21514 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21515 	tcph->th_flags[0] = (uint8_t)ctl;
21516 	if (ctl & TH_RST) {
21517 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21518 		BUMP_MIB(&tcp_mib, tcpOutControl);
21519 	}
21520 
21521 	/* IP trusts us to set up labels when required. */
21522 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
21523 	    crgetlabel(cr) != NULL) {
21524 		int err, adjust;
21525 
21526 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
21527 			err = tsol_check_label(cr, &mp, &adjust,
21528 			    tcp->tcp_connp->conn_mac_exempt);
21529 		else
21530 			err = tsol_check_label_v6(cr, &mp, &adjust,
21531 			    tcp->tcp_connp->conn_mac_exempt);
21532 		if (mctl_present)
21533 			ipsec_mp->b_cont = mp;
21534 		else
21535 			ipsec_mp = mp;
21536 		if (err != 0) {
21537 			freemsg(ipsec_mp);
21538 			return;
21539 		}
21540 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21541 			ipha = (ipha_t *)mp->b_rptr;
21542 			adjust += ntohs(ipha->ipha_length);
21543 			ipha->ipha_length = htons(adjust);
21544 		} else {
21545 			ip6h = (ip6_t *)mp->b_rptr;
21546 		}
21547 	}
21548 
21549 	if (mctl_present) {
21550 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21551 
21552 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21553 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21554 			return;
21555 		}
21556 	}
21557 	/*
21558 	 * NOTE:  one might consider tracing a TCP packet here, but
21559 	 * this function has no active TCP state and no tcp structure
21560 	 * that has a trace buffer.  If we traced here, we would have
21561 	 * to keep a local trace buffer in tcp_record_trace().
21562 	 *
21563 	 * TSol note: The mblk that contains the incoming packet was
21564 	 * reused by tcp_xmit_listener_reset, so it already contains
21565 	 * the right credentials and we don't need to call mblk_setcred.
21566 	 * Also the conn's cred is not right since it is associated
21567 	 * with tcp_g_q.
21568 	 */
21569 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21570 
21571 	/*
21572 	 * Tell IP to mark the IRE used for this destination temporary.
21573 	 * This way, we can limit our exposure to DoS attack because IP
21574 	 * creates an IRE for each destination.  If there are too many,
21575 	 * the time to do any routing lookup will be extremely long.  And
21576 	 * the lookup can be in interrupt context.
21577 	 *
21578 	 * Note that in normal circumstances, this marking should not
21579 	 * affect anything.  It would be nice if only 1 message is
21580 	 * needed to inform IP that the IRE created for this RST should
21581 	 * not be added to the cache table.  But there is currently
21582 	 * not such communication mechanism between TCP and IP.  So
21583 	 * the best we can do now is to send the advice ioctl to IP
21584 	 * to mark the IRE temporary.
21585 	 */
21586 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21587 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21588 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21589 	}
21590 }
21591 
21592 /*
21593  * Initiate closedown sequence on an active connection.  (May be called as
21594  * writer.)  Return value zero for OK return, non-zero for error return.
21595  */
21596 static int
21597 tcp_xmit_end(tcp_t *tcp)
21598 {
21599 	ipic_t	*ipic;
21600 	mblk_t	*mp;
21601 
21602 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21603 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21604 		/*
21605 		 * Invalid state, only states TCPS_SYN_RCVD,
21606 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21607 		 */
21608 		return (-1);
21609 	}
21610 
21611 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21612 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21613 	/*
21614 	 * If there is nothing more unsent, send the FIN now.
21615 	 * Otherwise, it will go out with the last segment.
21616 	 */
21617 	if (tcp->tcp_unsent == 0) {
21618 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21619 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21620 
21621 		if (mp) {
21622 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21623 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21624 		} else {
21625 			/*
21626 			 * Couldn't allocate msg.  Pretend we got it out.
21627 			 * Wait for rexmit timeout.
21628 			 */
21629 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21630 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21631 		}
21632 
21633 		/*
21634 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21635 		 * changed.
21636 		 */
21637 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21638 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21639 		}
21640 	} else {
21641 		/*
21642 		 * If tcp->tcp_cork is set, then the data will not get sent,
21643 		 * so we have to check that and unset it first.
21644 		 */
21645 		if (tcp->tcp_cork)
21646 			tcp->tcp_cork = B_FALSE;
21647 		tcp_wput_data(tcp, NULL, B_FALSE);
21648 	}
21649 
21650 	/*
21651 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21652 	 * is 0, don't update the cache.
21653 	 */
21654 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21655 		return (0);
21656 
21657 	/*
21658 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21659 	 * different from the destination.
21660 	 */
21661 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21662 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21663 			return (0);
21664 		}
21665 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21666 		    &ipic);
21667 	} else {
21668 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21669 		    &tcp->tcp_ip6h->ip6_dst))) {
21670 			return (0);
21671 		}
21672 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21673 		    &ipic);
21674 	}
21675 
21676 	/* Record route attributes in the IRE for use by future connections. */
21677 	if (mp == NULL)
21678 		return (0);
21679 
21680 	/*
21681 	 * We do not have a good algorithm to update ssthresh at this time.
21682 	 * So don't do any update.
21683 	 */
21684 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21685 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21686 
21687 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21688 	return (0);
21689 }
21690 
21691 /*
21692  * Generate a "no listener here" RST in response to an "unknown" segment.
21693  * Note that we are reusing the incoming mp to construct the outgoing
21694  * RST.
21695  */
21696 void
21697 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len)
21698 {
21699 	uchar_t		*rptr;
21700 	uint32_t	seg_len;
21701 	tcph_t		*tcph;
21702 	uint32_t	seg_seq;
21703 	uint32_t	seg_ack;
21704 	uint_t		flags;
21705 	mblk_t		*ipsec_mp;
21706 	ipha_t 		*ipha;
21707 	ip6_t 		*ip6h;
21708 	boolean_t	mctl_present = B_FALSE;
21709 	boolean_t	check = B_TRUE;
21710 	boolean_t	policy_present;
21711 
21712 	TCP_STAT(tcp_no_listener);
21713 
21714 	ipsec_mp = mp;
21715 
21716 	if (mp->b_datap->db_type == M_CTL) {
21717 		ipsec_in_t *ii;
21718 
21719 		mctl_present = B_TRUE;
21720 		mp = mp->b_cont;
21721 
21722 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21723 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21724 		if (ii->ipsec_in_dont_check) {
21725 			check = B_FALSE;
21726 			if (!ii->ipsec_in_secure) {
21727 				freeb(ipsec_mp);
21728 				mctl_present = B_FALSE;
21729 				ipsec_mp = mp;
21730 			}
21731 		}
21732 	}
21733 
21734 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21735 		policy_present = ipsec_inbound_v4_policy_present;
21736 		ipha = (ipha_t *)mp->b_rptr;
21737 		ip6h = NULL;
21738 	} else {
21739 		policy_present = ipsec_inbound_v6_policy_present;
21740 		ipha = NULL;
21741 		ip6h = (ip6_t *)mp->b_rptr;
21742 	}
21743 
21744 	if (check && policy_present) {
21745 		/*
21746 		 * The conn_t parameter is NULL because we already know
21747 		 * nobody's home.
21748 		 */
21749 		ipsec_mp = ipsec_check_global_policy(
21750 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
21751 		if (ipsec_mp == NULL)
21752 			return;
21753 	}
21754 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
21755 		DTRACE_PROBE2(
21756 		    tx__ip__log__error__nolistener__tcp,
21757 		    char *, "Could not reply with RST to mp(1)",
21758 		    mblk_t *, mp);
21759 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
21760 		freemsg(ipsec_mp);
21761 		return;
21762 	}
21763 
21764 	rptr = mp->b_rptr;
21765 
21766 	tcph = (tcph_t *)&rptr[ip_hdr_len];
21767 	seg_seq = BE32_TO_U32(tcph->th_seq);
21768 	seg_ack = BE32_TO_U32(tcph->th_ack);
21769 	flags = tcph->th_flags[0];
21770 
21771 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
21772 	if (flags & TH_RST) {
21773 		freemsg(ipsec_mp);
21774 	} else if (flags & TH_ACK) {
21775 		tcp_xmit_early_reset("no tcp, reset",
21776 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len);
21777 	} else {
21778 		if (flags & TH_SYN) {
21779 			seg_len++;
21780 		} else {
21781 			/*
21782 			 * Here we violate the RFC.  Note that a normal
21783 			 * TCP will never send a segment without the ACK
21784 			 * flag, except for RST or SYN segment.  This
21785 			 * segment is neither.  Just drop it on the
21786 			 * floor.
21787 			 */
21788 			freemsg(ipsec_mp);
21789 			tcp_rst_unsent++;
21790 			return;
21791 		}
21792 
21793 		tcp_xmit_early_reset("no tcp, reset/ack",
21794 		    ipsec_mp, 0, seg_seq + seg_len,
21795 		    TH_RST | TH_ACK, ip_hdr_len);
21796 	}
21797 }
21798 
21799 /*
21800  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
21801  * ip and tcp header ready to pass down to IP.  If the mp passed in is
21802  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
21803  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
21804  * otherwise it will dup partial mblks.)
21805  * Otherwise, an appropriate ACK packet will be generated.  This
21806  * routine is not usually called to send new data for the first time.  It
21807  * is mostly called out of the timer for retransmits, and to generate ACKs.
21808  *
21809  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
21810  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
21811  * of the original mblk chain will be returned in *offset and *end_mp.
21812  */
21813 static mblk_t *
21814 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
21815     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
21816     boolean_t rexmit)
21817 {
21818 	int	data_length;
21819 	int32_t	off = 0;
21820 	uint_t	flags;
21821 	mblk_t	*mp1;
21822 	mblk_t	*mp2;
21823 	uchar_t	*rptr;
21824 	tcph_t	*tcph;
21825 	int32_t	num_sack_blk = 0;
21826 	int32_t	sack_opt_len = 0;
21827 
21828 	/* Allocate for our maximum TCP header + link-level */
21829 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21830 	    BPRI_MED);
21831 	if (!mp1)
21832 		return (NULL);
21833 	data_length = 0;
21834 
21835 	/*
21836 	 * Note that tcp_mss has been adjusted to take into account the
21837 	 * timestamp option if applicable.  Because SACK options do not
21838 	 * appear in every TCP segments and they are of variable lengths,
21839 	 * they cannot be included in tcp_mss.  Thus we need to calculate
21840 	 * the actual segment length when we need to send a segment which
21841 	 * includes SACK options.
21842 	 */
21843 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
21844 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
21845 		    tcp->tcp_num_sack_blk);
21846 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
21847 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
21848 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
21849 			max_to_send -= sack_opt_len;
21850 	}
21851 
21852 	if (offset != NULL) {
21853 		off = *offset;
21854 		/* We use offset as an indicator that end_mp is not NULL. */
21855 		*end_mp = NULL;
21856 	}
21857 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
21858 		/* This could be faster with cooperation from downstream */
21859 		if (mp2 != mp1 && !sendall &&
21860 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
21861 		    max_to_send)
21862 			/*
21863 			 * Don't send the next mblk since the whole mblk
21864 			 * does not fit.
21865 			 */
21866 			break;
21867 		mp2->b_cont = dupb(mp);
21868 		mp2 = mp2->b_cont;
21869 		if (!mp2) {
21870 			freemsg(mp1);
21871 			return (NULL);
21872 		}
21873 		mp2->b_rptr += off;
21874 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
21875 		    (uintptr_t)INT_MAX);
21876 
21877 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
21878 		if (data_length > max_to_send) {
21879 			mp2->b_wptr -= data_length - max_to_send;
21880 			data_length = max_to_send;
21881 			off = mp2->b_wptr - mp->b_rptr;
21882 			break;
21883 		} else {
21884 			off = 0;
21885 		}
21886 	}
21887 	if (offset != NULL) {
21888 		*offset = off;
21889 		*end_mp = mp;
21890 	}
21891 	if (seg_len != NULL) {
21892 		*seg_len = data_length;
21893 	}
21894 
21895 	/* Update the latest receive window size in TCP header. */
21896 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21897 	    tcp->tcp_tcph->th_win);
21898 
21899 	rptr = mp1->b_rptr + tcp_wroff_xtra;
21900 	mp1->b_rptr = rptr;
21901 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
21902 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
21903 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
21904 	U32_TO_ABE32(seq, tcph->th_seq);
21905 
21906 	/*
21907 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
21908 	 * that this function was called from tcp_wput_data. Thus, when called
21909 	 * to retransmit data the setting of the PUSH bit may appear some
21910 	 * what random in that it might get set when it should not. This
21911 	 * should not pose any performance issues.
21912 	 */
21913 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
21914 	    tcp->tcp_unsent == data_length)) {
21915 		flags = TH_ACK | TH_PUSH;
21916 	} else {
21917 		flags = TH_ACK;
21918 	}
21919 
21920 	if (tcp->tcp_ecn_ok) {
21921 		if (tcp->tcp_ecn_echo_on)
21922 			flags |= TH_ECE;
21923 
21924 		/*
21925 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
21926 		 * There is no TCP flow control for non-data segments, and
21927 		 * only data segment is transmitted reliably.
21928 		 */
21929 		if (data_length > 0 && !rexmit) {
21930 			SET_ECT(tcp, rptr);
21931 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
21932 				flags |= TH_CWR;
21933 				tcp->tcp_ecn_cwr_sent = B_TRUE;
21934 			}
21935 		}
21936 	}
21937 
21938 	if (tcp->tcp_valid_bits) {
21939 		uint32_t u1;
21940 
21941 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
21942 		    seq == tcp->tcp_iss) {
21943 			uchar_t	*wptr;
21944 
21945 			/*
21946 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
21947 			 * TCP can only be in SYN-SENT, SYN-RCVD or
21948 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
21949 			 * our SYN is not ack'ed but the app closes this
21950 			 * TCP connection.
21951 			 */
21952 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
21953 			    tcp->tcp_state == TCPS_SYN_RCVD ||
21954 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
21955 
21956 			/*
21957 			 * Tack on the MSS option.  It is always needed
21958 			 * for both active and passive open.
21959 			 *
21960 			 * MSS option value should be interface MTU - MIN
21961 			 * TCP/IP header according to RFC 793 as it means
21962 			 * the maximum segment size TCP can receive.  But
21963 			 * to get around some broken middle boxes/end hosts
21964 			 * out there, we allow the option value to be the
21965 			 * same as the MSS option size on the peer side.
21966 			 * In this way, the other side will not send
21967 			 * anything larger than they can receive.
21968 			 *
21969 			 * Note that for SYN_SENT state, the ndd param
21970 			 * tcp_use_smss_as_mss_opt has no effect as we
21971 			 * don't know the peer's MSS option value. So
21972 			 * the only case we need to take care of is in
21973 			 * SYN_RCVD state, which is done later.
21974 			 */
21975 			wptr = mp1->b_wptr;
21976 			wptr[0] = TCPOPT_MAXSEG;
21977 			wptr[1] = TCPOPT_MAXSEG_LEN;
21978 			wptr += 2;
21979 			u1 = tcp->tcp_if_mtu -
21980 			    (tcp->tcp_ipversion == IPV4_VERSION ?
21981 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
21982 			    TCP_MIN_HEADER_LENGTH;
21983 			U16_TO_BE16(u1, wptr);
21984 			mp1->b_wptr = wptr + 2;
21985 			/* Update the offset to cover the additional word */
21986 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
21987 
21988 			/*
21989 			 * Note that the following way of filling in
21990 			 * TCP options are not optimal.  Some NOPs can
21991 			 * be saved.  But there is no need at this time
21992 			 * to optimize it.  When it is needed, we will
21993 			 * do it.
21994 			 */
21995 			switch (tcp->tcp_state) {
21996 			case TCPS_SYN_SENT:
21997 				flags = TH_SYN;
21998 
21999 				if (tcp->tcp_snd_ts_ok) {
22000 					uint32_t llbolt = (uint32_t)lbolt;
22001 
22002 					wptr = mp1->b_wptr;
22003 					wptr[0] = TCPOPT_NOP;
22004 					wptr[1] = TCPOPT_NOP;
22005 					wptr[2] = TCPOPT_TSTAMP;
22006 					wptr[3] = TCPOPT_TSTAMP_LEN;
22007 					wptr += 4;
22008 					U32_TO_BE32(llbolt, wptr);
22009 					wptr += 4;
22010 					ASSERT(tcp->tcp_ts_recent == 0);
22011 					U32_TO_BE32(0L, wptr);
22012 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22013 					tcph->th_offset_and_rsrvd[0] +=
22014 					    (3 << 4);
22015 				}
22016 
22017 				/*
22018 				 * Set up all the bits to tell other side
22019 				 * we are ECN capable.
22020 				 */
22021 				if (tcp->tcp_ecn_ok) {
22022 					flags |= (TH_ECE | TH_CWR);
22023 				}
22024 				break;
22025 			case TCPS_SYN_RCVD:
22026 				flags |= TH_SYN;
22027 
22028 				/*
22029 				 * Reset the MSS option value to be SMSS
22030 				 * We should probably add back the bytes
22031 				 * for timestamp option and IPsec.  We
22032 				 * don't do that as this is a workaround
22033 				 * for broken middle boxes/end hosts, it
22034 				 * is better for us to be more cautious.
22035 				 * They may not take these things into
22036 				 * account in their SMSS calculation.  Thus
22037 				 * the peer's calculated SMSS may be smaller
22038 				 * than what it can be.  This should be OK.
22039 				 */
22040 				if (tcp_use_smss_as_mss_opt) {
22041 					u1 = tcp->tcp_mss;
22042 					U16_TO_BE16(u1, wptr);
22043 				}
22044 
22045 				/*
22046 				 * If the other side is ECN capable, reply
22047 				 * that we are also ECN capable.
22048 				 */
22049 				if (tcp->tcp_ecn_ok)
22050 					flags |= TH_ECE;
22051 				break;
22052 			default:
22053 				/*
22054 				 * The above ASSERT() makes sure that this
22055 				 * must be FIN-WAIT-1 state.  Our SYN has
22056 				 * not been ack'ed so retransmit it.
22057 				 */
22058 				flags |= TH_SYN;
22059 				break;
22060 			}
22061 
22062 			if (tcp->tcp_snd_ws_ok) {
22063 				wptr = mp1->b_wptr;
22064 				wptr[0] =  TCPOPT_NOP;
22065 				wptr[1] =  TCPOPT_WSCALE;
22066 				wptr[2] =  TCPOPT_WS_LEN;
22067 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22068 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22069 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22070 			}
22071 
22072 			if (tcp->tcp_snd_sack_ok) {
22073 				wptr = mp1->b_wptr;
22074 				wptr[0] = TCPOPT_NOP;
22075 				wptr[1] = TCPOPT_NOP;
22076 				wptr[2] = TCPOPT_SACK_PERMITTED;
22077 				wptr[3] = TCPOPT_SACK_OK_LEN;
22078 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22079 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22080 			}
22081 
22082 			/* allocb() of adequate mblk assures space */
22083 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22084 			    (uintptr_t)INT_MAX);
22085 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22086 			/*
22087 			 * Get IP set to checksum on our behalf
22088 			 * Include the adjustment for a source route if any.
22089 			 */
22090 			u1 += tcp->tcp_sum;
22091 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22092 			U16_TO_BE16(u1, tcph->th_sum);
22093 			BUMP_MIB(&tcp_mib, tcpOutControl);
22094 		}
22095 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22096 		    (seq + data_length) == tcp->tcp_fss) {
22097 			if (!tcp->tcp_fin_acked) {
22098 				flags |= TH_FIN;
22099 				BUMP_MIB(&tcp_mib, tcpOutControl);
22100 			}
22101 			if (!tcp->tcp_fin_sent) {
22102 				tcp->tcp_fin_sent = B_TRUE;
22103 				switch (tcp->tcp_state) {
22104 				case TCPS_SYN_RCVD:
22105 				case TCPS_ESTABLISHED:
22106 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22107 					break;
22108 				case TCPS_CLOSE_WAIT:
22109 					tcp->tcp_state = TCPS_LAST_ACK;
22110 					break;
22111 				}
22112 				if (tcp->tcp_suna == tcp->tcp_snxt)
22113 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22114 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22115 			}
22116 		}
22117 		/*
22118 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22119 		 * is smaller than seq, u1 will become a very huge value.
22120 		 * So the comparison will fail.  Also note that tcp_urp
22121 		 * should be positive, see RFC 793 page 17.
22122 		 */
22123 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22124 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22125 		    u1 < (uint32_t)(64 * 1024)) {
22126 			flags |= TH_URG;
22127 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22128 			U32_TO_ABE16(u1, tcph->th_urp);
22129 		}
22130 	}
22131 	tcph->th_flags[0] = (uchar_t)flags;
22132 	tcp->tcp_rack = tcp->tcp_rnxt;
22133 	tcp->tcp_rack_cnt = 0;
22134 
22135 	if (tcp->tcp_snd_ts_ok) {
22136 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22137 			uint32_t llbolt = (uint32_t)lbolt;
22138 
22139 			U32_TO_BE32(llbolt,
22140 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22141 			U32_TO_BE32(tcp->tcp_ts_recent,
22142 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22143 		}
22144 	}
22145 
22146 	if (num_sack_blk > 0) {
22147 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22148 		sack_blk_t *tmp;
22149 		int32_t	i;
22150 
22151 		wptr[0] = TCPOPT_NOP;
22152 		wptr[1] = TCPOPT_NOP;
22153 		wptr[2] = TCPOPT_SACK;
22154 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22155 		    sizeof (sack_blk_t);
22156 		wptr += TCPOPT_REAL_SACK_LEN;
22157 
22158 		tmp = tcp->tcp_sack_list;
22159 		for (i = 0; i < num_sack_blk; i++) {
22160 			U32_TO_BE32(tmp[i].begin, wptr);
22161 			wptr += sizeof (tcp_seq);
22162 			U32_TO_BE32(tmp[i].end, wptr);
22163 			wptr += sizeof (tcp_seq);
22164 		}
22165 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22166 	}
22167 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22168 	data_length += (int)(mp1->b_wptr - rptr);
22169 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22170 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22171 	} else {
22172 		ip6_t *ip6 = (ip6_t *)(rptr +
22173 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22174 		    sizeof (ip6i_t) : 0));
22175 
22176 		ip6->ip6_plen = htons(data_length -
22177 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22178 	}
22179 
22180 	/*
22181 	 * Prime pump for IP
22182 	 * Include the adjustment for a source route if any.
22183 	 */
22184 	data_length -= tcp->tcp_ip_hdr_len;
22185 	data_length += tcp->tcp_sum;
22186 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22187 	U16_TO_ABE16(data_length, tcph->th_sum);
22188 	if (tcp->tcp_ip_forward_progress) {
22189 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22190 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22191 		tcp->tcp_ip_forward_progress = B_FALSE;
22192 	}
22193 	return (mp1);
22194 }
22195 
22196 /* This function handles the push timeout. */
22197 void
22198 tcp_push_timer(void *arg)
22199 {
22200 	conn_t	*connp = (conn_t *)arg;
22201 	tcp_t *tcp = connp->conn_tcp;
22202 
22203 	TCP_DBGSTAT(tcp_push_timer_cnt);
22204 
22205 	ASSERT(tcp->tcp_listener == NULL);
22206 
22207 	/*
22208 	 * We need to stop synchronous streams temporarily to prevent a race
22209 	 * with tcp_fuse_rrw() or tcp_fusion rinfop().  It is safe to access
22210 	 * tcp_rcv_list here because those entry points will return right
22211 	 * away when synchronous streams is stopped.
22212 	 */
22213 	TCP_FUSE_SYNCSTR_STOP(tcp);
22214 	tcp->tcp_push_tid = 0;
22215 	if ((tcp->tcp_rcv_list != NULL) &&
22216 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22217 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22218 	TCP_FUSE_SYNCSTR_RESUME(tcp);
22219 }
22220 
22221 /*
22222  * This function handles delayed ACK timeout.
22223  */
22224 static void
22225 tcp_ack_timer(void *arg)
22226 {
22227 	conn_t	*connp = (conn_t *)arg;
22228 	tcp_t *tcp = connp->conn_tcp;
22229 	mblk_t *mp;
22230 
22231 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22232 
22233 	tcp->tcp_ack_tid = 0;
22234 
22235 	if (tcp->tcp_fused)
22236 		return;
22237 
22238 	/*
22239 	 * Do not send ACK if there is no outstanding unack'ed data.
22240 	 */
22241 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22242 		return;
22243 	}
22244 
22245 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22246 		/*
22247 		 * Make sure we don't allow deferred ACKs to result in
22248 		 * timer-based ACKing.  If we have held off an ACK
22249 		 * when there was more than an mss here, and the timer
22250 		 * goes off, we have to worry about the possibility
22251 		 * that the sender isn't doing slow-start, or is out
22252 		 * of step with us for some other reason.  We fall
22253 		 * permanently back in the direction of
22254 		 * ACK-every-other-packet as suggested in RFC 1122.
22255 		 */
22256 		if (tcp->tcp_rack_abs_max > 2)
22257 			tcp->tcp_rack_abs_max--;
22258 		tcp->tcp_rack_cur_max = 2;
22259 	}
22260 	mp = tcp_ack_mp(tcp);
22261 
22262 	if (mp != NULL) {
22263 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22264 		BUMP_LOCAL(tcp->tcp_obsegs);
22265 		BUMP_MIB(&tcp_mib, tcpOutAck);
22266 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22267 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22268 	}
22269 }
22270 
22271 
22272 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22273 static mblk_t *
22274 tcp_ack_mp(tcp_t *tcp)
22275 {
22276 	uint32_t	seq_no;
22277 
22278 	/*
22279 	 * There are a few cases to be considered while setting the sequence no.
22280 	 * Essentially, we can come here while processing an unacceptable pkt
22281 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22282 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22283 	 * If we are here for a zero window probe, stick with suna. In all
22284 	 * other cases, we check if suna + swnd encompasses snxt and set
22285 	 * the sequence number to snxt, if so. If snxt falls outside the
22286 	 * window (the receiver probably shrunk its window), we will go with
22287 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22288 	 * receiver.
22289 	 */
22290 	if (tcp->tcp_zero_win_probe) {
22291 		seq_no = tcp->tcp_suna;
22292 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22293 		ASSERT(tcp->tcp_swnd == 0);
22294 		seq_no = tcp->tcp_snxt;
22295 	} else {
22296 		seq_no = SEQ_GT(tcp->tcp_snxt,
22297 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22298 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22299 	}
22300 
22301 	if (tcp->tcp_valid_bits) {
22302 		/*
22303 		 * For the complex case where we have to send some
22304 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22305 		 */
22306 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22307 		    NULL, B_FALSE));
22308 	} else {
22309 		/* Generate a simple ACK */
22310 		int	data_length;
22311 		uchar_t	*rptr;
22312 		tcph_t	*tcph;
22313 		mblk_t	*mp1;
22314 		int32_t	tcp_hdr_len;
22315 		int32_t	tcp_tcp_hdr_len;
22316 		int32_t	num_sack_blk = 0;
22317 		int32_t sack_opt_len;
22318 
22319 		/*
22320 		 * Allocate space for TCP + IP headers
22321 		 * and link-level header
22322 		 */
22323 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22324 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22325 			    tcp->tcp_num_sack_blk);
22326 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22327 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22328 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22329 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22330 		} else {
22331 			tcp_hdr_len = tcp->tcp_hdr_len;
22332 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22333 		}
22334 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22335 		if (!mp1)
22336 			return (NULL);
22337 
22338 		/* Update the latest receive window size in TCP header. */
22339 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22340 		    tcp->tcp_tcph->th_win);
22341 		/* copy in prototype TCP + IP header */
22342 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22343 		mp1->b_rptr = rptr;
22344 		mp1->b_wptr = rptr + tcp_hdr_len;
22345 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22346 
22347 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22348 
22349 		/* Set the TCP sequence number. */
22350 		U32_TO_ABE32(seq_no, tcph->th_seq);
22351 
22352 		/* Set up the TCP flag field. */
22353 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22354 		if (tcp->tcp_ecn_echo_on)
22355 			tcph->th_flags[0] |= TH_ECE;
22356 
22357 		tcp->tcp_rack = tcp->tcp_rnxt;
22358 		tcp->tcp_rack_cnt = 0;
22359 
22360 		/* fill in timestamp option if in use */
22361 		if (tcp->tcp_snd_ts_ok) {
22362 			uint32_t llbolt = (uint32_t)lbolt;
22363 
22364 			U32_TO_BE32(llbolt,
22365 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22366 			U32_TO_BE32(tcp->tcp_ts_recent,
22367 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22368 		}
22369 
22370 		/* Fill in SACK options */
22371 		if (num_sack_blk > 0) {
22372 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22373 			sack_blk_t *tmp;
22374 			int32_t	i;
22375 
22376 			wptr[0] = TCPOPT_NOP;
22377 			wptr[1] = TCPOPT_NOP;
22378 			wptr[2] = TCPOPT_SACK;
22379 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22380 			    sizeof (sack_blk_t);
22381 			wptr += TCPOPT_REAL_SACK_LEN;
22382 
22383 			tmp = tcp->tcp_sack_list;
22384 			for (i = 0; i < num_sack_blk; i++) {
22385 				U32_TO_BE32(tmp[i].begin, wptr);
22386 				wptr += sizeof (tcp_seq);
22387 				U32_TO_BE32(tmp[i].end, wptr);
22388 				wptr += sizeof (tcp_seq);
22389 			}
22390 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22391 			    << 4);
22392 		}
22393 
22394 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22395 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22396 		} else {
22397 			/* Check for ip6i_t header in sticky hdrs */
22398 			ip6_t *ip6 = (ip6_t *)(rptr +
22399 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22400 			    sizeof (ip6i_t) : 0));
22401 
22402 			ip6->ip6_plen = htons(tcp_hdr_len -
22403 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22404 		}
22405 
22406 		/*
22407 		 * Prime pump for checksum calculation in IP.  Include the
22408 		 * adjustment for a source route if any.
22409 		 */
22410 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22411 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22412 		U16_TO_ABE16(data_length, tcph->th_sum);
22413 
22414 		if (tcp->tcp_ip_forward_progress) {
22415 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22416 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22417 			tcp->tcp_ip_forward_progress = B_FALSE;
22418 		}
22419 		return (mp1);
22420 	}
22421 }
22422 
22423 /*
22424  * To create a temporary tcp structure for inserting into bind hash list.
22425  * The parameter is assumed to be in network byte order, ready for use.
22426  */
22427 /* ARGSUSED */
22428 static tcp_t *
22429 tcp_alloc_temp_tcp(in_port_t port)
22430 {
22431 	conn_t	*connp;
22432 	tcp_t	*tcp;
22433 
22434 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22435 	if (connp == NULL)
22436 		return (NULL);
22437 
22438 	tcp = connp->conn_tcp;
22439 
22440 	/*
22441 	 * Only initialize the necessary info in those structures.  Note
22442 	 * that since INADDR_ANY is all 0, we do not need to set
22443 	 * tcp_bound_source to INADDR_ANY here.
22444 	 */
22445 	tcp->tcp_state = TCPS_BOUND;
22446 	tcp->tcp_lport = port;
22447 	tcp->tcp_exclbind = 1;
22448 	tcp->tcp_reserved_port = 1;
22449 
22450 	/* Just for place holding... */
22451 	tcp->tcp_ipversion = IPV4_VERSION;
22452 
22453 	return (tcp);
22454 }
22455 
22456 /*
22457  * To remove a port range specified by lo_port and hi_port from the
22458  * reserved port ranges.  This is one of the three public functions of
22459  * the reserved port interface.  Note that a port range has to be removed
22460  * as a whole.  Ports in a range cannot be removed individually.
22461  *
22462  * Params:
22463  *	in_port_t lo_port: the beginning port of the reserved port range to
22464  *		be deleted.
22465  *	in_port_t hi_port: the ending port of the reserved port range to
22466  *		be deleted.
22467  *
22468  * Return:
22469  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22470  */
22471 boolean_t
22472 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22473 {
22474 	int	i, j;
22475 	int	size;
22476 	tcp_t	**temp_tcp_array;
22477 	tcp_t	*tcp;
22478 
22479 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22480 
22481 	/* First make sure that the port ranage is indeed reserved. */
22482 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22483 		if (tcp_reserved_port[i].lo_port == lo_port) {
22484 			hi_port = tcp_reserved_port[i].hi_port;
22485 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22486 			break;
22487 		}
22488 	}
22489 	if (i == tcp_reserved_port_array_size) {
22490 		rw_exit(&tcp_reserved_port_lock);
22491 		return (B_FALSE);
22492 	}
22493 
22494 	/*
22495 	 * Remove the range from the array.  This simple loop is possible
22496 	 * because port ranges are inserted in ascending order.
22497 	 */
22498 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22499 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22500 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22501 		tcp_reserved_port[j].temp_tcp_array =
22502 		    tcp_reserved_port[j+1].temp_tcp_array;
22503 	}
22504 
22505 	/* Remove all the temporary tcp structures. */
22506 	size = hi_port - lo_port + 1;
22507 	while (size > 0) {
22508 		tcp = temp_tcp_array[size - 1];
22509 		ASSERT(tcp != NULL);
22510 		tcp_bind_hash_remove(tcp);
22511 		CONN_DEC_REF(tcp->tcp_connp);
22512 		size--;
22513 	}
22514 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22515 	tcp_reserved_port_array_size--;
22516 	rw_exit(&tcp_reserved_port_lock);
22517 	return (B_TRUE);
22518 }
22519 
22520 /*
22521  * Macro to remove temporary tcp structure from the bind hash list.  The
22522  * first parameter is the list of tcp to be removed.  The second parameter
22523  * is the number of tcps in the array.
22524  */
22525 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22526 { \
22527 	while ((num) > 0) { \
22528 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22529 		tf_t *tbf; \
22530 		tcp_t *tcpnext; \
22531 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22532 		mutex_enter(&tbf->tf_lock); \
22533 		tcpnext = tcp->tcp_bind_hash; \
22534 		if (tcpnext) { \
22535 			tcpnext->tcp_ptpbhn = \
22536 				tcp->tcp_ptpbhn; \
22537 		} \
22538 		*tcp->tcp_ptpbhn = tcpnext; \
22539 		mutex_exit(&tbf->tf_lock); \
22540 		kmem_free(tcp, sizeof (tcp_t)); \
22541 		(tcp_array)[(num) - 1] = NULL; \
22542 		(num)--; \
22543 	} \
22544 }
22545 
22546 /*
22547  * The public interface for other modules to call to reserve a port range
22548  * in TCP.  The caller passes in how large a port range it wants.  TCP
22549  * will try to find a range and return it via lo_port and hi_port.  This is
22550  * used by NCA's nca_conn_init.
22551  * NCA can only be used in the global zone so this only affects the global
22552  * zone's ports.
22553  *
22554  * Params:
22555  *	int size: the size of the port range to be reserved.
22556  *	in_port_t *lo_port (referenced): returns the beginning port of the
22557  *		reserved port range added.
22558  *	in_port_t *hi_port (referenced): returns the ending port of the
22559  *		reserved port range added.
22560  *
22561  * Return:
22562  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22563  */
22564 boolean_t
22565 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22566 {
22567 	tcp_t		*tcp;
22568 	tcp_t		*tmp_tcp;
22569 	tcp_t		**temp_tcp_array;
22570 	tf_t		*tbf;
22571 	in_port_t	net_port;
22572 	in_port_t	port;
22573 	int32_t		cur_size;
22574 	int		i, j;
22575 	boolean_t	used;
22576 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22577 	zoneid_t	zoneid = GLOBAL_ZONEID;
22578 
22579 	/* Sanity check. */
22580 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22581 		return (B_FALSE);
22582 	}
22583 
22584 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22585 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22586 		rw_exit(&tcp_reserved_port_lock);
22587 		return (B_FALSE);
22588 	}
22589 
22590 	/*
22591 	 * Find the starting port to try.  Since the port ranges are ordered
22592 	 * in the reserved port array, we can do a simple search here.
22593 	 */
22594 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22595 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22596 	for (i = 0; i < tcp_reserved_port_array_size;
22597 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22598 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22599 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22600 			break;
22601 		}
22602 	}
22603 	/* No available port range. */
22604 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22605 		rw_exit(&tcp_reserved_port_lock);
22606 		return (B_FALSE);
22607 	}
22608 
22609 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22610 	if (temp_tcp_array == NULL) {
22611 		rw_exit(&tcp_reserved_port_lock);
22612 		return (B_FALSE);
22613 	}
22614 
22615 	/* Go thru the port range to see if some ports are already bound. */
22616 	for (port = *lo_port, cur_size = 0;
22617 	    cur_size < size && port <= *hi_port;
22618 	    cur_size++, port++) {
22619 		used = B_FALSE;
22620 		net_port = htons(port);
22621 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22622 		mutex_enter(&tbf->tf_lock);
22623 		for (tcp = tbf->tf_tcp; tcp != NULL;
22624 		    tcp = tcp->tcp_bind_hash) {
22625 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
22626 			    net_port == tcp->tcp_lport) {
22627 				/*
22628 				 * A port is already bound.  Search again
22629 				 * starting from port + 1.  Release all
22630 				 * temporary tcps.
22631 				 */
22632 				mutex_exit(&tbf->tf_lock);
22633 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22634 				*lo_port = port + 1;
22635 				cur_size = -1;
22636 				used = B_TRUE;
22637 				break;
22638 			}
22639 		}
22640 		if (!used) {
22641 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22642 				/*
22643 				 * Allocation failure.  Just fail the request.
22644 				 * Need to remove all those temporary tcp
22645 				 * structures.
22646 				 */
22647 				mutex_exit(&tbf->tf_lock);
22648 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22649 				rw_exit(&tcp_reserved_port_lock);
22650 				kmem_free(temp_tcp_array,
22651 				    (hi_port - lo_port + 1) *
22652 				    sizeof (tcp_t *));
22653 				return (B_FALSE);
22654 			}
22655 			temp_tcp_array[cur_size] = tmp_tcp;
22656 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22657 			mutex_exit(&tbf->tf_lock);
22658 		}
22659 	}
22660 
22661 	/*
22662 	 * The current range is not large enough.  We can actually do another
22663 	 * search if this search is done between 2 reserved port ranges.  But
22664 	 * for first release, we just stop here and return saying that no port
22665 	 * range is available.
22666 	 */
22667 	if (cur_size < size) {
22668 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22669 		rw_exit(&tcp_reserved_port_lock);
22670 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22671 		return (B_FALSE);
22672 	}
22673 	*hi_port = port - 1;
22674 
22675 	/*
22676 	 * Insert range into array in ascending order.  Since this function
22677 	 * must not be called often, we choose to use the simplest method.
22678 	 * The above array should not consume excessive stack space as
22679 	 * the size must be very small.  If in future releases, we find
22680 	 * that we should provide more reserved port ranges, this function
22681 	 * has to be modified to be more efficient.
22682 	 */
22683 	if (tcp_reserved_port_array_size == 0) {
22684 		tcp_reserved_port[0].lo_port = *lo_port;
22685 		tcp_reserved_port[0].hi_port = *hi_port;
22686 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22687 	} else {
22688 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22689 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22690 				tmp_ports[j].lo_port = *lo_port;
22691 				tmp_ports[j].hi_port = *hi_port;
22692 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22693 				j++;
22694 			}
22695 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22696 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22697 			tmp_ports[j].temp_tcp_array =
22698 			    tcp_reserved_port[i].temp_tcp_array;
22699 		}
22700 		if (j == i) {
22701 			tmp_ports[j].lo_port = *lo_port;
22702 			tmp_ports[j].hi_port = *hi_port;
22703 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22704 		}
22705 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22706 	}
22707 	tcp_reserved_port_array_size++;
22708 	rw_exit(&tcp_reserved_port_lock);
22709 	return (B_TRUE);
22710 }
22711 
22712 /*
22713  * Check to see if a port is in any reserved port range.
22714  *
22715  * Params:
22716  *	in_port_t port: the port to be verified.
22717  *
22718  * Return:
22719  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22720  */
22721 boolean_t
22722 tcp_reserved_port_check(in_port_t port)
22723 {
22724 	int i;
22725 
22726 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22727 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22728 		if (port >= tcp_reserved_port[i].lo_port ||
22729 		    port <= tcp_reserved_port[i].hi_port) {
22730 			rw_exit(&tcp_reserved_port_lock);
22731 			return (B_TRUE);
22732 		}
22733 	}
22734 	rw_exit(&tcp_reserved_port_lock);
22735 	return (B_FALSE);
22736 }
22737 
22738 /*
22739  * To list all reserved port ranges.  This is the function to handle
22740  * ndd tcp_reserved_port_list.
22741  */
22742 /* ARGSUSED */
22743 static int
22744 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22745 {
22746 	int i;
22747 
22748 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22749 	if (tcp_reserved_port_array_size > 0)
22750 		(void) mi_mpprintf(mp, "The following ports are reserved:");
22751 	else
22752 		(void) mi_mpprintf(mp, "No port is reserved.");
22753 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22754 		(void) mi_mpprintf(mp, "%d-%d",
22755 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
22756 	}
22757 	rw_exit(&tcp_reserved_port_lock);
22758 	return (0);
22759 }
22760 
22761 /*
22762  * Hash list insertion routine for tcp_t structures.
22763  * Inserts entries with the ones bound to a specific IP address first
22764  * followed by those bound to INADDR_ANY.
22765  */
22766 static void
22767 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
22768 {
22769 	tcp_t	**tcpp;
22770 	tcp_t	*tcpnext;
22771 
22772 	if (tcp->tcp_ptpbhn != NULL) {
22773 		ASSERT(!caller_holds_lock);
22774 		tcp_bind_hash_remove(tcp);
22775 	}
22776 	tcpp = &tbf->tf_tcp;
22777 	if (!caller_holds_lock) {
22778 		mutex_enter(&tbf->tf_lock);
22779 	} else {
22780 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
22781 	}
22782 	tcpnext = tcpp[0];
22783 	if (tcpnext) {
22784 		/*
22785 		 * If the new tcp bound to the INADDR_ANY address
22786 		 * and the first one in the list is not bound to
22787 		 * INADDR_ANY we skip all entries until we find the
22788 		 * first one bound to INADDR_ANY.
22789 		 * This makes sure that applications binding to a
22790 		 * specific address get preference over those binding to
22791 		 * INADDR_ANY.
22792 		 */
22793 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
22794 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
22795 			while ((tcpnext = tcpp[0]) != NULL &&
22796 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
22797 				tcpp = &(tcpnext->tcp_bind_hash);
22798 			if (tcpnext)
22799 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22800 		} else
22801 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22802 	}
22803 	tcp->tcp_bind_hash = tcpnext;
22804 	tcp->tcp_ptpbhn = tcpp;
22805 	tcpp[0] = tcp;
22806 	if (!caller_holds_lock)
22807 		mutex_exit(&tbf->tf_lock);
22808 }
22809 
22810 /*
22811  * Hash list removal routine for tcp_t structures.
22812  */
22813 static void
22814 tcp_bind_hash_remove(tcp_t *tcp)
22815 {
22816 	tcp_t	*tcpnext;
22817 	kmutex_t *lockp;
22818 
22819 	if (tcp->tcp_ptpbhn == NULL)
22820 		return;
22821 
22822 	/*
22823 	 * Extract the lock pointer in case there are concurrent
22824 	 * hash_remove's for this instance.
22825 	 */
22826 	ASSERT(tcp->tcp_lport != 0);
22827 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
22828 
22829 	ASSERT(lockp != NULL);
22830 	mutex_enter(lockp);
22831 	if (tcp->tcp_ptpbhn) {
22832 		tcpnext = tcp->tcp_bind_hash;
22833 		if (tcpnext) {
22834 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
22835 			tcp->tcp_bind_hash = NULL;
22836 		}
22837 		*tcp->tcp_ptpbhn = tcpnext;
22838 		tcp->tcp_ptpbhn = NULL;
22839 	}
22840 	mutex_exit(lockp);
22841 }
22842 
22843 
22844 /*
22845  * Hash list lookup routine for tcp_t structures.
22846  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
22847  */
22848 static tcp_t *
22849 tcp_acceptor_hash_lookup(t_uscalar_t id)
22850 {
22851 	tf_t	*tf;
22852 	tcp_t	*tcp;
22853 
22854 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22855 	mutex_enter(&tf->tf_lock);
22856 	for (tcp = tf->tf_tcp; tcp != NULL;
22857 	    tcp = tcp->tcp_acceptor_hash) {
22858 		if (tcp->tcp_acceptor_id == id) {
22859 			CONN_INC_REF(tcp->tcp_connp);
22860 			mutex_exit(&tf->tf_lock);
22861 			return (tcp);
22862 		}
22863 	}
22864 	mutex_exit(&tf->tf_lock);
22865 	return (NULL);
22866 }
22867 
22868 
22869 /*
22870  * Hash list insertion routine for tcp_t structures.
22871  */
22872 void
22873 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
22874 {
22875 	tf_t	*tf;
22876 	tcp_t	**tcpp;
22877 	tcp_t	*tcpnext;
22878 
22879 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22880 
22881 	if (tcp->tcp_ptpahn != NULL)
22882 		tcp_acceptor_hash_remove(tcp);
22883 	tcpp = &tf->tf_tcp;
22884 	mutex_enter(&tf->tf_lock);
22885 	tcpnext = tcpp[0];
22886 	if (tcpnext)
22887 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
22888 	tcp->tcp_acceptor_hash = tcpnext;
22889 	tcp->tcp_ptpahn = tcpp;
22890 	tcpp[0] = tcp;
22891 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
22892 	mutex_exit(&tf->tf_lock);
22893 }
22894 
22895 /*
22896  * Hash list removal routine for tcp_t structures.
22897  */
22898 static void
22899 tcp_acceptor_hash_remove(tcp_t *tcp)
22900 {
22901 	tcp_t	*tcpnext;
22902 	kmutex_t *lockp;
22903 
22904 	/*
22905 	 * Extract the lock pointer in case there are concurrent
22906 	 * hash_remove's for this instance.
22907 	 */
22908 	lockp = tcp->tcp_acceptor_lockp;
22909 
22910 	if (tcp->tcp_ptpahn == NULL)
22911 		return;
22912 
22913 	ASSERT(lockp != NULL);
22914 	mutex_enter(lockp);
22915 	if (tcp->tcp_ptpahn) {
22916 		tcpnext = tcp->tcp_acceptor_hash;
22917 		if (tcpnext) {
22918 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
22919 			tcp->tcp_acceptor_hash = NULL;
22920 		}
22921 		*tcp->tcp_ptpahn = tcpnext;
22922 		tcp->tcp_ptpahn = NULL;
22923 	}
22924 	mutex_exit(lockp);
22925 	tcp->tcp_acceptor_lockp = NULL;
22926 }
22927 
22928 /* ARGSUSED */
22929 static int
22930 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
22931 {
22932 	int error = 0;
22933 	int retval;
22934 	char *end;
22935 
22936 	tcp_hsp_t *hsp;
22937 	tcp_hsp_t *hspprev;
22938 
22939 	ipaddr_t addr = 0;		/* Address we're looking for */
22940 	in6_addr_t v6addr;		/* Address we're looking for */
22941 	uint32_t hash;			/* Hash of that address */
22942 
22943 	/*
22944 	 * If the following variables are still zero after parsing the input
22945 	 * string, the user didn't specify them and we don't change them in
22946 	 * the HSP.
22947 	 */
22948 
22949 	ipaddr_t mask = 0;		/* Subnet mask */
22950 	in6_addr_t v6mask;
22951 	long sendspace = 0;		/* Send buffer size */
22952 	long recvspace = 0;		/* Receive buffer size */
22953 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
22954 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
22955 
22956 	rw_enter(&tcp_hsp_lock, RW_WRITER);
22957 
22958 	/* Parse and validate address */
22959 	if (af == AF_INET) {
22960 		retval = inet_pton(af, value, &addr);
22961 		if (retval == 1)
22962 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
22963 	} else if (af == AF_INET6) {
22964 		retval = inet_pton(af, value, &v6addr);
22965 	} else {
22966 		error = EINVAL;
22967 		goto done;
22968 	}
22969 	if (retval == 0) {
22970 		error = EINVAL;
22971 		goto done;
22972 	}
22973 
22974 	while ((*value) && *value != ' ')
22975 		value++;
22976 
22977 	/* Parse individual keywords, set variables if found */
22978 	while (*value) {
22979 		/* Skip leading blanks */
22980 
22981 		while (*value == ' ' || *value == '\t')
22982 			value++;
22983 
22984 		/* If at end of string, we're done */
22985 
22986 		if (!*value)
22987 			break;
22988 
22989 		/* We have a word, figure out what it is */
22990 
22991 		if (strncmp("mask", value, 4) == 0) {
22992 			value += 4;
22993 			while (*value == ' ' || *value == '\t')
22994 				value++;
22995 			/* Parse subnet mask */
22996 			if (af == AF_INET) {
22997 				retval = inet_pton(af, value, &mask);
22998 				if (retval == 1) {
22999 					V4MASK_TO_V6(mask, v6mask);
23000 				}
23001 			} else if (af == AF_INET6) {
23002 				retval = inet_pton(af, value, &v6mask);
23003 			}
23004 			if (retval != 1) {
23005 				error = EINVAL;
23006 				goto done;
23007 			}
23008 			while ((*value) && *value != ' ')
23009 				value++;
23010 		} else if (strncmp("sendspace", value, 9) == 0) {
23011 			value += 9;
23012 
23013 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23014 			    sendspace < TCP_XMIT_HIWATER ||
23015 			    sendspace >= (1L<<30)) {
23016 				error = EINVAL;
23017 				goto done;
23018 			}
23019 			value = end;
23020 		} else if (strncmp("recvspace", value, 9) == 0) {
23021 			value += 9;
23022 
23023 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23024 			    recvspace < TCP_RECV_HIWATER ||
23025 			    recvspace >= (1L<<30)) {
23026 				error = EINVAL;
23027 				goto done;
23028 			}
23029 			value = end;
23030 		} else if (strncmp("timestamp", value, 9) == 0) {
23031 			value += 9;
23032 
23033 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23034 			    timestamp < 0 || timestamp > 1) {
23035 				error = EINVAL;
23036 				goto done;
23037 			}
23038 
23039 			/*
23040 			 * We increment timestamp so we know it's been set;
23041 			 * this is undone when we put it in the HSP
23042 			 */
23043 			timestamp++;
23044 			value = end;
23045 		} else if (strncmp("delete", value, 6) == 0) {
23046 			value += 6;
23047 			delete = B_TRUE;
23048 		} else {
23049 			error = EINVAL;
23050 			goto done;
23051 		}
23052 	}
23053 
23054 	/* Hash address for lookup */
23055 
23056 	hash = TCP_HSP_HASH(addr);
23057 
23058 	if (delete) {
23059 		/*
23060 		 * Note that deletes don't return an error if the thing
23061 		 * we're trying to delete isn't there.
23062 		 */
23063 		if (tcp_hsp_hash == NULL)
23064 			goto done;
23065 		hsp = tcp_hsp_hash[hash];
23066 
23067 		if (hsp) {
23068 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23069 			    &v6addr)) {
23070 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23071 				mi_free((char *)hsp);
23072 			} else {
23073 				hspprev = hsp;
23074 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23075 					if (IN6_ARE_ADDR_EQUAL(
23076 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23077 						hspprev->tcp_hsp_next =
23078 						    hsp->tcp_hsp_next;
23079 						mi_free((char *)hsp);
23080 						break;
23081 					}
23082 					hspprev = hsp;
23083 				}
23084 			}
23085 		}
23086 	} else {
23087 		/*
23088 		 * We're adding/modifying an HSP.  If we haven't already done
23089 		 * so, allocate the hash table.
23090 		 */
23091 
23092 		if (!tcp_hsp_hash) {
23093 			tcp_hsp_hash = (tcp_hsp_t **)
23094 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23095 			if (!tcp_hsp_hash) {
23096 				error = EINVAL;
23097 				goto done;
23098 			}
23099 		}
23100 
23101 		/* Get head of hash chain */
23102 
23103 		hsp = tcp_hsp_hash[hash];
23104 
23105 		/* Try to find pre-existing hsp on hash chain */
23106 		/* Doesn't handle CIDR prefixes. */
23107 		while (hsp) {
23108 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23109 				break;
23110 			hsp = hsp->tcp_hsp_next;
23111 		}
23112 
23113 		/*
23114 		 * If we didn't, create one with default values and put it
23115 		 * at head of hash chain
23116 		 */
23117 
23118 		if (!hsp) {
23119 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23120 			if (!hsp) {
23121 				error = EINVAL;
23122 				goto done;
23123 			}
23124 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23125 			tcp_hsp_hash[hash] = hsp;
23126 		}
23127 
23128 		/* Set values that the user asked us to change */
23129 
23130 		hsp->tcp_hsp_addr_v6 = v6addr;
23131 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23132 			hsp->tcp_hsp_vers = IPV4_VERSION;
23133 		else
23134 			hsp->tcp_hsp_vers = IPV6_VERSION;
23135 		hsp->tcp_hsp_subnet_v6 = v6mask;
23136 		if (sendspace > 0)
23137 			hsp->tcp_hsp_sendspace = sendspace;
23138 		if (recvspace > 0)
23139 			hsp->tcp_hsp_recvspace = recvspace;
23140 		if (timestamp > 0)
23141 			hsp->tcp_hsp_tstamp = timestamp - 1;
23142 	}
23143 
23144 done:
23145 	rw_exit(&tcp_hsp_lock);
23146 	return (error);
23147 }
23148 
23149 /* Set callback routine passed to nd_load by tcp_param_register. */
23150 /* ARGSUSED */
23151 static int
23152 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23153 {
23154 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23155 }
23156 /* ARGSUSED */
23157 static int
23158 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23159     cred_t *cr)
23160 {
23161 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23162 }
23163 
23164 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23165 /* ARGSUSED */
23166 static int
23167 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23168 {
23169 	tcp_hsp_t *hsp;
23170 	int i;
23171 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23172 
23173 	rw_enter(&tcp_hsp_lock, RW_READER);
23174 	(void) mi_mpprintf(mp,
23175 	    "Hash HSP     " MI_COL_HDRPAD_STR
23176 	    "Address         Subnet Mask     Send       Receive    TStamp");
23177 	if (tcp_hsp_hash) {
23178 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23179 			hsp = tcp_hsp_hash[i];
23180 			while (hsp) {
23181 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23182 					(void) inet_ntop(AF_INET,
23183 					    &hsp->tcp_hsp_addr,
23184 					    addrbuf, sizeof (addrbuf));
23185 					(void) inet_ntop(AF_INET,
23186 					    &hsp->tcp_hsp_subnet,
23187 					    subnetbuf, sizeof (subnetbuf));
23188 				} else {
23189 					(void) inet_ntop(AF_INET6,
23190 					    &hsp->tcp_hsp_addr_v6,
23191 					    addrbuf, sizeof (addrbuf));
23192 					(void) inet_ntop(AF_INET6,
23193 					    &hsp->tcp_hsp_subnet_v6,
23194 					    subnetbuf, sizeof (subnetbuf));
23195 				}
23196 				(void) mi_mpprintf(mp,
23197 				    " %03d " MI_COL_PTRFMT_STR
23198 				    "%s %s %010d %010d      %d",
23199 				    i,
23200 				    (void *)hsp,
23201 				    addrbuf,
23202 				    subnetbuf,
23203 				    hsp->tcp_hsp_sendspace,
23204 				    hsp->tcp_hsp_recvspace,
23205 				    hsp->tcp_hsp_tstamp);
23206 
23207 				hsp = hsp->tcp_hsp_next;
23208 			}
23209 		}
23210 	}
23211 	rw_exit(&tcp_hsp_lock);
23212 	return (0);
23213 }
23214 
23215 
23216 /* Data for fast netmask macro used by tcp_hsp_lookup */
23217 
23218 static ipaddr_t netmasks[] = {
23219 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23220 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23221 };
23222 
23223 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23224 
23225 /*
23226  * XXX This routine should go away and instead we should use the metrics
23227  * associated with the routes to determine the default sndspace and rcvspace.
23228  */
23229 static tcp_hsp_t *
23230 tcp_hsp_lookup(ipaddr_t addr)
23231 {
23232 	tcp_hsp_t *hsp = NULL;
23233 
23234 	/* Quick check without acquiring the lock. */
23235 	if (tcp_hsp_hash == NULL)
23236 		return (NULL);
23237 
23238 	rw_enter(&tcp_hsp_lock, RW_READER);
23239 
23240 	/* This routine finds the best-matching HSP for address addr. */
23241 
23242 	if (tcp_hsp_hash) {
23243 		int i;
23244 		ipaddr_t srchaddr;
23245 		tcp_hsp_t *hsp_net;
23246 
23247 		/* We do three passes: host, network, and subnet. */
23248 
23249 		srchaddr = addr;
23250 
23251 		for (i = 1; i <= 3; i++) {
23252 			/* Look for exact match on srchaddr */
23253 
23254 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23255 			while (hsp) {
23256 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23257 				    hsp->tcp_hsp_addr == srchaddr)
23258 					break;
23259 				hsp = hsp->tcp_hsp_next;
23260 			}
23261 			ASSERT(hsp == NULL ||
23262 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23263 
23264 			/*
23265 			 * If this is the first pass:
23266 			 *   If we found a match, great, return it.
23267 			 *   If not, search for the network on the second pass.
23268 			 */
23269 
23270 			if (i == 1)
23271 				if (hsp)
23272 					break;
23273 				else
23274 				{
23275 					srchaddr = addr & netmask(addr);
23276 					continue;
23277 				}
23278 
23279 			/*
23280 			 * If this is the second pass:
23281 			 *   If we found a match, but there's a subnet mask,
23282 			 *    save the match but try again using the subnet
23283 			 *    mask on the third pass.
23284 			 *   Otherwise, return whatever we found.
23285 			 */
23286 
23287 			if (i == 2) {
23288 				if (hsp && hsp->tcp_hsp_subnet) {
23289 					hsp_net = hsp;
23290 					srchaddr = addr & hsp->tcp_hsp_subnet;
23291 					continue;
23292 				} else {
23293 					break;
23294 				}
23295 			}
23296 
23297 			/*
23298 			 * This must be the third pass.  If we didn't find
23299 			 * anything, return the saved network HSP instead.
23300 			 */
23301 
23302 			if (!hsp)
23303 				hsp = hsp_net;
23304 		}
23305 	}
23306 
23307 	rw_exit(&tcp_hsp_lock);
23308 	return (hsp);
23309 }
23310 
23311 /*
23312  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23313  * match lookup.
23314  */
23315 static tcp_hsp_t *
23316 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23317 {
23318 	tcp_hsp_t *hsp = NULL;
23319 
23320 	/* Quick check without acquiring the lock. */
23321 	if (tcp_hsp_hash == NULL)
23322 		return (NULL);
23323 
23324 	rw_enter(&tcp_hsp_lock, RW_READER);
23325 
23326 	/* This routine finds the best-matching HSP for address addr. */
23327 
23328 	if (tcp_hsp_hash) {
23329 		int i;
23330 		in6_addr_t v6srchaddr;
23331 		tcp_hsp_t *hsp_net;
23332 
23333 		/* We do three passes: host, network, and subnet. */
23334 
23335 		v6srchaddr = *v6addr;
23336 
23337 		for (i = 1; i <= 3; i++) {
23338 			/* Look for exact match on srchaddr */
23339 
23340 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23341 			    V4_PART_OF_V6(v6srchaddr))];
23342 			while (hsp) {
23343 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23344 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23345 				    &v6srchaddr))
23346 					break;
23347 				hsp = hsp->tcp_hsp_next;
23348 			}
23349 
23350 			/*
23351 			 * If this is the first pass:
23352 			 *   If we found a match, great, return it.
23353 			 *   If not, search for the network on the second pass.
23354 			 */
23355 
23356 			if (i == 1)
23357 				if (hsp)
23358 					break;
23359 				else {
23360 					/* Assume a 64 bit mask */
23361 					v6srchaddr.s6_addr32[0] =
23362 					    v6addr->s6_addr32[0];
23363 					v6srchaddr.s6_addr32[1] =
23364 					    v6addr->s6_addr32[1];
23365 					v6srchaddr.s6_addr32[2] = 0;
23366 					v6srchaddr.s6_addr32[3] = 0;
23367 					continue;
23368 				}
23369 
23370 			/*
23371 			 * If this is the second pass:
23372 			 *   If we found a match, but there's a subnet mask,
23373 			 *    save the match but try again using the subnet
23374 			 *    mask on the third pass.
23375 			 *   Otherwise, return whatever we found.
23376 			 */
23377 
23378 			if (i == 2) {
23379 				ASSERT(hsp == NULL ||
23380 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23381 				if (hsp &&
23382 				    !IN6_IS_ADDR_UNSPECIFIED(
23383 				    &hsp->tcp_hsp_subnet_v6)) {
23384 					hsp_net = hsp;
23385 					V6_MASK_COPY(*v6addr,
23386 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23387 					continue;
23388 				} else {
23389 					break;
23390 				}
23391 			}
23392 
23393 			/*
23394 			 * This must be the third pass.  If we didn't find
23395 			 * anything, return the saved network HSP instead.
23396 			 */
23397 
23398 			if (!hsp)
23399 				hsp = hsp_net;
23400 		}
23401 	}
23402 
23403 	rw_exit(&tcp_hsp_lock);
23404 	return (hsp);
23405 }
23406 
23407 /*
23408  * Type three generator adapted from the random() function in 4.4 BSD:
23409  */
23410 
23411 /*
23412  * Copyright (c) 1983, 1993
23413  *	The Regents of the University of California.  All rights reserved.
23414  *
23415  * Redistribution and use in source and binary forms, with or without
23416  * modification, are permitted provided that the following conditions
23417  * are met:
23418  * 1. Redistributions of source code must retain the above copyright
23419  *    notice, this list of conditions and the following disclaimer.
23420  * 2. Redistributions in binary form must reproduce the above copyright
23421  *    notice, this list of conditions and the following disclaimer in the
23422  *    documentation and/or other materials provided with the distribution.
23423  * 3. All advertising materials mentioning features or use of this software
23424  *    must display the following acknowledgement:
23425  *	This product includes software developed by the University of
23426  *	California, Berkeley and its contributors.
23427  * 4. Neither the name of the University nor the names of its contributors
23428  *    may be used to endorse or promote products derived from this software
23429  *    without specific prior written permission.
23430  *
23431  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23432  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23433  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23434  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23435  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23436  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23437  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23438  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23439  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23440  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23441  * SUCH DAMAGE.
23442  */
23443 
23444 /* Type 3 -- x**31 + x**3 + 1 */
23445 #define	DEG_3		31
23446 #define	SEP_3		3
23447 
23448 
23449 /* Protected by tcp_random_lock */
23450 static int tcp_randtbl[DEG_3 + 1];
23451 
23452 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23453 static int *tcp_random_rptr = &tcp_randtbl[1];
23454 
23455 static int *tcp_random_state = &tcp_randtbl[1];
23456 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23457 
23458 kmutex_t tcp_random_lock;
23459 
23460 void
23461 tcp_random_init(void)
23462 {
23463 	int i;
23464 	hrtime_t hrt;
23465 	time_t wallclock;
23466 	uint64_t result;
23467 
23468 	/*
23469 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23470 	 * a longlong, which may contain resolution down to nanoseconds.
23471 	 * The current time will either be a 32-bit or a 64-bit quantity.
23472 	 * XOR the two together in a 64-bit result variable.
23473 	 * Convert the result to a 32-bit value by multiplying the high-order
23474 	 * 32-bits by the low-order 32-bits.
23475 	 */
23476 
23477 	hrt = gethrtime();
23478 	(void) drv_getparm(TIME, &wallclock);
23479 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23480 	mutex_enter(&tcp_random_lock);
23481 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23482 	    (result & 0xffffffff);
23483 
23484 	for (i = 1; i < DEG_3; i++)
23485 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23486 			+ 12345;
23487 	tcp_random_fptr = &tcp_random_state[SEP_3];
23488 	tcp_random_rptr = &tcp_random_state[0];
23489 	mutex_exit(&tcp_random_lock);
23490 	for (i = 0; i < 10 * DEG_3; i++)
23491 		(void) tcp_random();
23492 }
23493 
23494 /*
23495  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23496  * This range is selected to be approximately centered on TCP_ISS / 2,
23497  * and easy to compute. We get this value by generating a 32-bit random
23498  * number, selecting out the high-order 17 bits, and then adding one so
23499  * that we never return zero.
23500  */
23501 int
23502 tcp_random(void)
23503 {
23504 	int i;
23505 
23506 	mutex_enter(&tcp_random_lock);
23507 	*tcp_random_fptr += *tcp_random_rptr;
23508 
23509 	/*
23510 	 * The high-order bits are more random than the low-order bits,
23511 	 * so we select out the high-order 17 bits and add one so that
23512 	 * we never return zero.
23513 	 */
23514 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23515 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23516 		tcp_random_fptr = tcp_random_state;
23517 		++tcp_random_rptr;
23518 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23519 		tcp_random_rptr = tcp_random_state;
23520 
23521 	mutex_exit(&tcp_random_lock);
23522 	return (i);
23523 }
23524 
23525 /*
23526  * XXX This will go away when TPI is extended to send
23527  * info reqs to sockfs/timod .....
23528  * Given a queue, set the max packet size for the write
23529  * side of the queue below stream head.  This value is
23530  * cached on the stream head.
23531  * Returns 1 on success, 0 otherwise.
23532  */
23533 static int
23534 setmaxps(queue_t *q, int maxpsz)
23535 {
23536 	struct stdata	*stp;
23537 	queue_t		*wq;
23538 	stp = STREAM(q);
23539 
23540 	/*
23541 	 * At this point change of a queue parameter is not allowed
23542 	 * when a multiplexor is sitting on top.
23543 	 */
23544 	if (stp->sd_flag & STPLEX)
23545 		return (0);
23546 
23547 	claimstr(stp->sd_wrq);
23548 	wq = stp->sd_wrq->q_next;
23549 	ASSERT(wq != NULL);
23550 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23551 	releasestr(stp->sd_wrq);
23552 	return (1);
23553 }
23554 
23555 static int
23556 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23557     int *t_errorp, int *sys_errorp)
23558 {
23559 	int error;
23560 	int is_absreq_failure;
23561 	t_scalar_t *opt_lenp;
23562 	t_scalar_t opt_offset;
23563 	int prim_type;
23564 	struct T_conn_req *tcreqp;
23565 	struct T_conn_res *tcresp;
23566 	cred_t *cr;
23567 
23568 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23569 
23570 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23571 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23572 	    prim_type == T_CONN_RES);
23573 
23574 	switch (prim_type) {
23575 	case T_CONN_REQ:
23576 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23577 		opt_offset = tcreqp->OPT_offset;
23578 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23579 		break;
23580 	case O_T_CONN_RES:
23581 	case T_CONN_RES:
23582 		tcresp = (struct T_conn_res *)mp->b_rptr;
23583 		opt_offset = tcresp->OPT_offset;
23584 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23585 		break;
23586 	}
23587 
23588 	*t_errorp = 0;
23589 	*sys_errorp = 0;
23590 	*do_disconnectp = 0;
23591 
23592 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23593 	    opt_offset, cr, &tcp_opt_obj,
23594 	    NULL, &is_absreq_failure);
23595 
23596 	switch (error) {
23597 	case  0:		/* no error */
23598 		ASSERT(is_absreq_failure == 0);
23599 		return (0);
23600 	case ENOPROTOOPT:
23601 		*t_errorp = TBADOPT;
23602 		break;
23603 	case EACCES:
23604 		*t_errorp = TACCES;
23605 		break;
23606 	default:
23607 		*t_errorp = TSYSERR; *sys_errorp = error;
23608 		break;
23609 	}
23610 	if (is_absreq_failure != 0) {
23611 		/*
23612 		 * The connection request should get the local ack
23613 		 * T_OK_ACK and then a T_DISCON_IND.
23614 		 */
23615 		*do_disconnectp = 1;
23616 	}
23617 	return (-1);
23618 }
23619 
23620 /*
23621  * Split this function out so that if the secret changes, I'm okay.
23622  *
23623  * Initialize the tcp_iss_cookie and tcp_iss_key.
23624  */
23625 
23626 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23627 
23628 static void
23629 tcp_iss_key_init(uint8_t *phrase, int len)
23630 {
23631 	struct {
23632 		int32_t current_time;
23633 		uint32_t randnum;
23634 		uint16_t pad;
23635 		uint8_t ether[6];
23636 		uint8_t passwd[PASSWD_SIZE];
23637 	} tcp_iss_cookie;
23638 	time_t t;
23639 
23640 	/*
23641 	 * Start with the current absolute time.
23642 	 */
23643 	(void) drv_getparm(TIME, &t);
23644 	tcp_iss_cookie.current_time = t;
23645 
23646 	/*
23647 	 * XXX - Need a more random number per RFC 1750, not this crap.
23648 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23649 	 */
23650 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23651 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23652 
23653 	/*
23654 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23655 	 * as a good template.
23656 	 */
23657 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23658 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23659 
23660 	/*
23661 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23662 	 */
23663 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23664 
23665 	/*
23666 	 * See 4010593 if this section becomes a problem again,
23667 	 * but the local ethernet address is useful here.
23668 	 */
23669 	(void) localetheraddr(NULL,
23670 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23671 
23672 	/*
23673 	 * Hash 'em all together.  The MD5Final is called per-connection.
23674 	 */
23675 	mutex_enter(&tcp_iss_key_lock);
23676 	MD5Init(&tcp_iss_key);
23677 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23678 	    sizeof (tcp_iss_cookie));
23679 	mutex_exit(&tcp_iss_key_lock);
23680 }
23681 
23682 /*
23683  * Set the RFC 1948 pass phrase
23684  */
23685 /* ARGSUSED */
23686 static int
23687 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23688     cred_t *cr)
23689 {
23690 	/*
23691 	 * Basically, value contains a new pass phrase.  Pass it along!
23692 	 */
23693 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23694 	return (0);
23695 }
23696 
23697 /* ARGSUSED */
23698 static int
23699 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23700 {
23701 	bzero(buf, sizeof (tcp_sack_info_t));
23702 	return (0);
23703 }
23704 
23705 /* ARGSUSED */
23706 static int
23707 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23708 {
23709 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23710 	return (0);
23711 }
23712 
23713 void
23714 tcp_ddi_init(void)
23715 {
23716 	int i;
23717 
23718 	/* Initialize locks */
23719 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23720 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23721 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23722 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23723 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23724 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23725 
23726 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23727 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23728 		    MUTEX_DEFAULT, NULL);
23729 	}
23730 
23731 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23732 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23733 		    MUTEX_DEFAULT, NULL);
23734 	}
23735 
23736 	/* TCP's IPsec code calls the packet dropper. */
23737 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
23738 
23739 	if (!tcp_g_nd) {
23740 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
23741 			nd_free(&tcp_g_nd);
23742 		}
23743 	}
23744 
23745 	/*
23746 	 * Note: To really walk the device tree you need the devinfo
23747 	 * pointer to your device which is only available after probe/attach.
23748 	 * The following is safe only because it uses ddi_root_node()
23749 	 */
23750 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23751 	    tcp_opt_obj.odb_opt_arr_cnt);
23752 
23753 	tcp_timercache = kmem_cache_create("tcp_timercache",
23754 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23755 	    NULL, NULL, NULL, NULL, NULL, 0);
23756 
23757 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23758 	    sizeof (tcp_sack_info_t), 0,
23759 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23760 
23761 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23762 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23763 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23764 
23765 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
23766 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
23767 
23768 	ip_squeue_init(tcp_squeue_add);
23769 
23770 	/* Initialize the random number generator */
23771 	tcp_random_init();
23772 
23773 	/*
23774 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23775 	 * by the boot scripts.
23776 	 *
23777 	 * Use NULL name, as the name is caught by the new lockstats.
23778 	 *
23779 	 * Initialize with some random, non-guessable string, like the global
23780 	 * T_INFO_ACK.
23781 	 */
23782 
23783 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23784 	    sizeof (tcp_g_t_info_ack));
23785 
23786 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
23787 		"net", KSTAT_TYPE_NAMED,
23788 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
23789 		KSTAT_FLAG_VIRTUAL)) != NULL) {
23790 		tcp_kstat->ks_data = &tcp_statistics;
23791 		kstat_install(tcp_kstat);
23792 	}
23793 
23794 	tcp_kstat_init();
23795 }
23796 
23797 void
23798 tcp_ddi_destroy(void)
23799 {
23800 	int i;
23801 
23802 	nd_free(&tcp_g_nd);
23803 
23804 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23805 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
23806 	}
23807 
23808 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23809 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
23810 	}
23811 
23812 	mutex_destroy(&tcp_iss_key_lock);
23813 	rw_destroy(&tcp_hsp_lock);
23814 	mutex_destroy(&tcp_g_q_lock);
23815 	mutex_destroy(&tcp_random_lock);
23816 	mutex_destroy(&tcp_epriv_port_lock);
23817 	rw_destroy(&tcp_reserved_port_lock);
23818 
23819 	ip_drop_unregister(&tcp_dropper);
23820 
23821 	kmem_cache_destroy(tcp_timercache);
23822 	kmem_cache_destroy(tcp_sack_info_cache);
23823 	kmem_cache_destroy(tcp_iphc_cache);
23824 
23825 	tcp_kstat_fini();
23826 }
23827 
23828 /*
23829  * Generate ISS, taking into account NDD changes may happen halfway through.
23830  * (If the iss is not zero, set it.)
23831  */
23832 
23833 static void
23834 tcp_iss_init(tcp_t *tcp)
23835 {
23836 	MD5_CTX context;
23837 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23838 	uint32_t answer[4];
23839 
23840 	tcp_iss_incr_extra += (ISS_INCR >> 1);
23841 	tcp->tcp_iss = tcp_iss_incr_extra;
23842 	switch (tcp_strong_iss) {
23843 	case 2:
23844 		mutex_enter(&tcp_iss_key_lock);
23845 		context = tcp_iss_key;
23846 		mutex_exit(&tcp_iss_key_lock);
23847 		arg.ports = tcp->tcp_ports;
23848 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23849 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23850 			    &arg.src);
23851 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23852 			    &arg.dst);
23853 		} else {
23854 			arg.src = tcp->tcp_ip6h->ip6_src;
23855 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23856 		}
23857 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23858 		MD5Final((uchar_t *)answer, &context);
23859 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23860 		/*
23861 		 * Now that we've hashed into a unique per-connection sequence
23862 		 * space, add a random increment per strong_iss == 1.  So I
23863 		 * guess we'll have to...
23864 		 */
23865 		/* FALLTHRU */
23866 	case 1:
23867 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23868 		break;
23869 	default:
23870 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23871 		break;
23872 	}
23873 	tcp->tcp_valid_bits = TCP_ISS_VALID;
23874 	tcp->tcp_fss = tcp->tcp_iss - 1;
23875 	tcp->tcp_suna = tcp->tcp_iss;
23876 	tcp->tcp_snxt = tcp->tcp_iss + 1;
23877 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23878 	tcp->tcp_csuna = tcp->tcp_snxt;
23879 }
23880 
23881 /*
23882  * Exported routine for extracting active tcp connection status.
23883  *
23884  * This is used by the Solaris Cluster Networking software to
23885  * gather a list of connections that need to be forwarded to
23886  * specific nodes in the cluster when configuration changes occur.
23887  *
23888  * The callback is invoked for each tcp_t structure. Returning
23889  * non-zero from the callback routine terminates the search.
23890  */
23891 int
23892 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
23893 {
23894 	tcp_t *tcp;
23895 	cl_tcp_info_t	cl_tcpi;
23896 	connf_t	*connfp;
23897 	conn_t	*connp;
23898 	int	i;
23899 
23900 	ASSERT(callback != NULL);
23901 
23902 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
23903 
23904 		connfp = &ipcl_globalhash_fanout[i];
23905 		connp = NULL;
23906 
23907 		while ((connp =
23908 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
23909 
23910 			tcp = connp->conn_tcp;
23911 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
23912 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
23913 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
23914 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
23915 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
23916 			/*
23917 			 * The macros tcp_laddr and tcp_faddr give the IPv4
23918 			 * addresses. They are copied implicitly below as
23919 			 * mapped addresses.
23920 			 */
23921 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
23922 			if (tcp->tcp_ipversion == IPV4_VERSION) {
23923 				cl_tcpi.cl_tcpi_faddr =
23924 				    tcp->tcp_ipha->ipha_dst;
23925 			} else {
23926 				cl_tcpi.cl_tcpi_faddr_v6 =
23927 				    tcp->tcp_ip6h->ip6_dst;
23928 			}
23929 
23930 			/*
23931 			 * If the callback returns non-zero
23932 			 * we terminate the traversal.
23933 			 */
23934 			if ((*callback)(&cl_tcpi, arg) != 0) {
23935 				CONN_DEC_REF(tcp->tcp_connp);
23936 				return (1);
23937 			}
23938 		}
23939 	}
23940 
23941 	return (0);
23942 }
23943 
23944 /*
23945  * Macros used for accessing the different types of sockaddr
23946  * structures inside a tcp_ioc_abort_conn_t.
23947  */
23948 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
23949 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
23950 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
23951 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
23952 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
23953 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
23954 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
23955 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
23956 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
23957 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
23958 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
23959 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
23960 
23961 /*
23962  * Return the correct error code to mimic the behavior
23963  * of a connection reset.
23964  */
23965 #define	TCP_AC_GET_ERRCODE(state, err) {	\
23966 		switch ((state)) {		\
23967 		case TCPS_SYN_SENT:		\
23968 		case TCPS_SYN_RCVD:		\
23969 			(err) = ECONNREFUSED;	\
23970 			break;			\
23971 		case TCPS_ESTABLISHED:		\
23972 		case TCPS_FIN_WAIT_1:		\
23973 		case TCPS_FIN_WAIT_2:		\
23974 		case TCPS_CLOSE_WAIT:		\
23975 			(err) = ECONNRESET;	\
23976 			break;			\
23977 		case TCPS_CLOSING:		\
23978 		case TCPS_LAST_ACK:		\
23979 		case TCPS_TIME_WAIT:		\
23980 			(err) = 0;		\
23981 			break;			\
23982 		default:			\
23983 			(err) = ENXIO;		\
23984 		}				\
23985 	}
23986 
23987 /*
23988  * Check if a tcp structure matches the info in acp.
23989  */
23990 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
23991 	(((acp)->ac_local.ss_family == AF_INET) ?		\
23992 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
23993 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
23994 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
23995 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
23996 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
23997 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
23998 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
23999 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24000 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24001 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24002 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24003 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24004 	&(tcp)->tcp_ip_src_v6)) &&				\
24005 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24006 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24007 	&(tcp)->tcp_remote_v6)) &&				\
24008 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24009 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24010 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24011 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24012 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24013 	(acp)->ac_end >= (tcp)->tcp_state))
24014 
24015 #define	TCP_AC_MATCH(acp, tcp)					\
24016 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24017 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24018 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24019 
24020 /*
24021  * Build a message containing a tcp_ioc_abort_conn_t structure
24022  * which is filled in with information from acp and tp.
24023  */
24024 static mblk_t *
24025 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24026 {
24027 	mblk_t *mp;
24028 	tcp_ioc_abort_conn_t *tacp;
24029 
24030 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24031 	if (mp == NULL)
24032 		return (NULL);
24033 
24034 	mp->b_datap->db_type = M_CTL;
24035 
24036 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24037 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24038 		sizeof (uint32_t));
24039 
24040 	tacp->ac_start = acp->ac_start;
24041 	tacp->ac_end = acp->ac_end;
24042 	tacp->ac_zoneid = acp->ac_zoneid;
24043 
24044 	if (acp->ac_local.ss_family == AF_INET) {
24045 		tacp->ac_local.ss_family = AF_INET;
24046 		tacp->ac_remote.ss_family = AF_INET;
24047 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24048 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24049 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24050 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24051 	} else {
24052 		tacp->ac_local.ss_family = AF_INET6;
24053 		tacp->ac_remote.ss_family = AF_INET6;
24054 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24055 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24056 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24057 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24058 	}
24059 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24060 	return (mp);
24061 }
24062 
24063 /*
24064  * Print a tcp_ioc_abort_conn_t structure.
24065  */
24066 static void
24067 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24068 {
24069 	char lbuf[128];
24070 	char rbuf[128];
24071 	sa_family_t af;
24072 	in_port_t lport, rport;
24073 	ushort_t logflags;
24074 
24075 	af = acp->ac_local.ss_family;
24076 
24077 	if (af == AF_INET) {
24078 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24079 				lbuf, 128);
24080 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24081 				rbuf, 128);
24082 		lport = ntohs(TCP_AC_V4LPORT(acp));
24083 		rport = ntohs(TCP_AC_V4RPORT(acp));
24084 	} else {
24085 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24086 				lbuf, 128);
24087 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24088 				rbuf, 128);
24089 		lport = ntohs(TCP_AC_V6LPORT(acp));
24090 		rport = ntohs(TCP_AC_V6RPORT(acp));
24091 	}
24092 
24093 	logflags = SL_TRACE | SL_NOTE;
24094 	/*
24095 	 * Don't print this message to the console if the operation was done
24096 	 * to a non-global zone.
24097 	 */
24098 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24099 		logflags |= SL_CONSOLE;
24100 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24101 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24102 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24103 		acp->ac_start, acp->ac_end);
24104 }
24105 
24106 /*
24107  * Called inside tcp_rput when a message built using
24108  * tcp_ioctl_abort_build_msg is put into a queue.
24109  * Note that when we get here there is no wildcard in acp any more.
24110  */
24111 static void
24112 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24113 {
24114 	tcp_ioc_abort_conn_t *acp;
24115 
24116 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24117 	if (tcp->tcp_state <= acp->ac_end) {
24118 		/*
24119 		 * If we get here, we are already on the correct
24120 		 * squeue. This ioctl follows the following path
24121 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24122 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24123 		 * different squeue)
24124 		 */
24125 		int errcode;
24126 
24127 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24128 		(void) tcp_clean_death(tcp, errcode, 26);
24129 	}
24130 	freemsg(mp);
24131 }
24132 
24133 /*
24134  * Abort all matching connections on a hash chain.
24135  */
24136 static int
24137 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24138     boolean_t exact)
24139 {
24140 	int nmatch, err = 0;
24141 	tcp_t *tcp;
24142 	MBLKP mp, last, listhead = NULL;
24143 	conn_t	*tconnp;
24144 	connf_t	*connfp = &ipcl_conn_fanout[index];
24145 
24146 startover:
24147 	nmatch = 0;
24148 
24149 	mutex_enter(&connfp->connf_lock);
24150 	for (tconnp = connfp->connf_head; tconnp != NULL;
24151 	    tconnp = tconnp->conn_next) {
24152 		tcp = tconnp->conn_tcp;
24153 		if (TCP_AC_MATCH(acp, tcp)) {
24154 			CONN_INC_REF(tcp->tcp_connp);
24155 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24156 			if (mp == NULL) {
24157 				err = ENOMEM;
24158 				CONN_DEC_REF(tcp->tcp_connp);
24159 				break;
24160 			}
24161 			mp->b_prev = (mblk_t *)tcp;
24162 
24163 			if (listhead == NULL) {
24164 				listhead = mp;
24165 				last = mp;
24166 			} else {
24167 				last->b_next = mp;
24168 				last = mp;
24169 			}
24170 			nmatch++;
24171 			if (exact)
24172 				break;
24173 		}
24174 
24175 		/* Avoid holding lock for too long. */
24176 		if (nmatch >= 500)
24177 			break;
24178 	}
24179 	mutex_exit(&connfp->connf_lock);
24180 
24181 	/* Pass mp into the correct tcp */
24182 	while ((mp = listhead) != NULL) {
24183 		listhead = listhead->b_next;
24184 		tcp = (tcp_t *)mp->b_prev;
24185 		mp->b_next = mp->b_prev = NULL;
24186 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24187 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24188 	}
24189 
24190 	*count += nmatch;
24191 	if (nmatch >= 500 && err == 0)
24192 		goto startover;
24193 	return (err);
24194 }
24195 
24196 /*
24197  * Abort all connections that matches the attributes specified in acp.
24198  */
24199 static int
24200 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24201 {
24202 	sa_family_t af;
24203 	uint32_t  ports;
24204 	uint16_t *pports;
24205 	int err = 0, count = 0;
24206 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24207 	int index = -1;
24208 	ushort_t logflags;
24209 
24210 	af = acp->ac_local.ss_family;
24211 
24212 	if (af == AF_INET) {
24213 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24214 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24215 			pports = (uint16_t *)&ports;
24216 			pports[1] = TCP_AC_V4LPORT(acp);
24217 			pports[0] = TCP_AC_V4RPORT(acp);
24218 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24219 		}
24220 	} else {
24221 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24222 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24223 			pports = (uint16_t *)&ports;
24224 			pports[1] = TCP_AC_V6LPORT(acp);
24225 			pports[0] = TCP_AC_V6RPORT(acp);
24226 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24227 		}
24228 	}
24229 
24230 	/*
24231 	 * For cases where remote addr, local port, and remote port are non-
24232 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24233 	 */
24234 	if (index != -1) {
24235 		err = tcp_ioctl_abort_bucket(acp, index,
24236 			    &count, exact);
24237 	} else {
24238 		/*
24239 		 * loop through all entries for wildcard case
24240 		 */
24241 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24242 			err = tcp_ioctl_abort_bucket(acp, index,
24243 			    &count, exact);
24244 			if (err != 0)
24245 				break;
24246 		}
24247 	}
24248 
24249 	logflags = SL_TRACE | SL_NOTE;
24250 	/*
24251 	 * Don't print this message to the console if the operation was done
24252 	 * to a non-global zone.
24253 	 */
24254 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24255 		logflags |= SL_CONSOLE;
24256 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24257 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24258 	if (err == 0 && count == 0)
24259 		err = ENOENT;
24260 	return (err);
24261 }
24262 
24263 /*
24264  * Process the TCP_IOC_ABORT_CONN ioctl request.
24265  */
24266 static void
24267 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24268 {
24269 	int	err;
24270 	IOCP    iocp;
24271 	MBLKP   mp1;
24272 	sa_family_t laf, raf;
24273 	tcp_ioc_abort_conn_t *acp;
24274 	zone_t *zptr;
24275 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24276 
24277 	iocp = (IOCP)mp->b_rptr;
24278 
24279 	if ((mp1 = mp->b_cont) == NULL ||
24280 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24281 		err = EINVAL;
24282 		goto out;
24283 	}
24284 
24285 	/* check permissions */
24286 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24287 		err = EPERM;
24288 		goto out;
24289 	}
24290 
24291 	if (mp1->b_cont != NULL) {
24292 		freemsg(mp1->b_cont);
24293 		mp1->b_cont = NULL;
24294 	}
24295 
24296 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24297 	laf = acp->ac_local.ss_family;
24298 	raf = acp->ac_remote.ss_family;
24299 
24300 	/* check that a zone with the supplied zoneid exists */
24301 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24302 		zptr = zone_find_by_id(zoneid);
24303 		if (zptr != NULL) {
24304 			zone_rele(zptr);
24305 		} else {
24306 			err = EINVAL;
24307 			goto out;
24308 		}
24309 	}
24310 
24311 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24312 	    acp->ac_start > acp->ac_end || laf != raf ||
24313 	    (laf != AF_INET && laf != AF_INET6)) {
24314 		err = EINVAL;
24315 		goto out;
24316 	}
24317 
24318 	tcp_ioctl_abort_dump(acp);
24319 	err = tcp_ioctl_abort(acp);
24320 
24321 out:
24322 	if (mp1 != NULL) {
24323 		freemsg(mp1);
24324 		mp->b_cont = NULL;
24325 	}
24326 
24327 	if (err != 0)
24328 		miocnak(q, mp, 0, err);
24329 	else
24330 		miocack(q, mp, 0, 0);
24331 }
24332 
24333 /*
24334  * tcp_time_wait_processing() handles processing of incoming packets when
24335  * the tcp is in the TIME_WAIT state.
24336  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24337  * on the time wait list.
24338  */
24339 void
24340 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24341     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24342 {
24343 	int32_t		bytes_acked;
24344 	int32_t		gap;
24345 	int32_t		rgap;
24346 	tcp_opt_t	tcpopt;
24347 	uint_t		flags;
24348 	uint32_t	new_swnd = 0;
24349 	conn_t		*connp;
24350 
24351 	BUMP_LOCAL(tcp->tcp_ibsegs);
24352 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24353 
24354 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24355 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24356 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24357 	if (tcp->tcp_snd_ts_ok) {
24358 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24359 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24360 			    tcp->tcp_rnxt, TH_ACK);
24361 			goto done;
24362 		}
24363 	}
24364 	gap = seg_seq - tcp->tcp_rnxt;
24365 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24366 	if (gap < 0) {
24367 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24368 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24369 		    (seg_len > -gap ? -gap : seg_len));
24370 		seg_len += gap;
24371 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24372 			if (flags & TH_RST) {
24373 				goto done;
24374 			}
24375 			if ((flags & TH_FIN) && seg_len == -1) {
24376 				/*
24377 				 * When TCP receives a duplicate FIN in
24378 				 * TIME_WAIT state, restart the 2 MSL timer.
24379 				 * See page 73 in RFC 793. Make sure this TCP
24380 				 * is already on the TIME_WAIT list. If not,
24381 				 * just restart the timer.
24382 				 */
24383 				if (TCP_IS_DETACHED(tcp)) {
24384 					tcp_time_wait_remove(tcp, NULL);
24385 					tcp_time_wait_append(tcp);
24386 					TCP_DBGSTAT(tcp_rput_time_wait);
24387 				} else {
24388 					ASSERT(tcp != NULL);
24389 					TCP_TIMER_RESTART(tcp,
24390 					    tcp_time_wait_interval);
24391 				}
24392 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24393 				    tcp->tcp_rnxt, TH_ACK);
24394 				goto done;
24395 			}
24396 			flags |=  TH_ACK_NEEDED;
24397 			seg_len = 0;
24398 			goto process_ack;
24399 		}
24400 
24401 		/* Fix seg_seq, and chew the gap off the front. */
24402 		seg_seq = tcp->tcp_rnxt;
24403 	}
24404 
24405 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24406 		/*
24407 		 * Make sure that when we accept the connection, pick
24408 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24409 		 * old connection.
24410 		 *
24411 		 * The next ISS generated is equal to tcp_iss_incr_extra
24412 		 * + ISS_INCR/2 + other components depending on the
24413 		 * value of tcp_strong_iss.  We pre-calculate the new
24414 		 * ISS here and compare with tcp_snxt to determine if
24415 		 * we need to make adjustment to tcp_iss_incr_extra.
24416 		 *
24417 		 * The above calculation is ugly and is a
24418 		 * waste of CPU cycles...
24419 		 */
24420 		uint32_t new_iss = tcp_iss_incr_extra;
24421 		int32_t adj;
24422 
24423 		switch (tcp_strong_iss) {
24424 		case 2: {
24425 			/* Add time and MD5 components. */
24426 			uint32_t answer[4];
24427 			struct {
24428 				uint32_t ports;
24429 				in6_addr_t src;
24430 				in6_addr_t dst;
24431 			} arg;
24432 			MD5_CTX context;
24433 
24434 			mutex_enter(&tcp_iss_key_lock);
24435 			context = tcp_iss_key;
24436 			mutex_exit(&tcp_iss_key_lock);
24437 			arg.ports = tcp->tcp_ports;
24438 			/* We use MAPPED addresses in tcp_iss_init */
24439 			arg.src = tcp->tcp_ip_src_v6;
24440 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24441 				IN6_IPADDR_TO_V4MAPPED(
24442 					tcp->tcp_ipha->ipha_dst,
24443 					    &arg.dst);
24444 			} else {
24445 				arg.dst =
24446 				    tcp->tcp_ip6h->ip6_dst;
24447 			}
24448 			MD5Update(&context, (uchar_t *)&arg,
24449 			    sizeof (arg));
24450 			MD5Final((uchar_t *)answer, &context);
24451 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24452 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24453 			break;
24454 		}
24455 		case 1:
24456 			/* Add time component and min random (i.e. 1). */
24457 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24458 			break;
24459 		default:
24460 			/* Add only time component. */
24461 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24462 			break;
24463 		}
24464 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24465 			/*
24466 			 * New ISS not guaranteed to be ISS_INCR/2
24467 			 * ahead of the current tcp_snxt, so add the
24468 			 * difference to tcp_iss_incr_extra.
24469 			 */
24470 			tcp_iss_incr_extra += adj;
24471 		}
24472 		/*
24473 		 * If tcp_clean_death() can not perform the task now,
24474 		 * drop the SYN packet and let the other side re-xmit.
24475 		 * Otherwise pass the SYN packet back in, since the
24476 		 * old tcp state has been cleaned up or freed.
24477 		 */
24478 		if (tcp_clean_death(tcp, 0, 27) == -1)
24479 			goto done;
24480 		/*
24481 		 * We will come back to tcp_rput_data
24482 		 * on the global queue. Packets destined
24483 		 * for the global queue will be checked
24484 		 * with global policy. But the policy for
24485 		 * this packet has already been checked as
24486 		 * this was destined for the detached
24487 		 * connection. We need to bypass policy
24488 		 * check this time by attaching a dummy
24489 		 * ipsec_in with ipsec_in_dont_check set.
24490 		 */
24491 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24492 		    NULL) {
24493 			TCP_STAT(tcp_time_wait_syn_success);
24494 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24495 			return;
24496 		}
24497 		goto done;
24498 	}
24499 
24500 	/*
24501 	 * rgap is the amount of stuff received out of window.  A negative
24502 	 * value is the amount out of window.
24503 	 */
24504 	if (rgap < 0) {
24505 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24506 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24507 		/* Fix seg_len and make sure there is something left. */
24508 		seg_len += rgap;
24509 		if (seg_len <= 0) {
24510 			if (flags & TH_RST) {
24511 				goto done;
24512 			}
24513 			flags |=  TH_ACK_NEEDED;
24514 			seg_len = 0;
24515 			goto process_ack;
24516 		}
24517 	}
24518 	/*
24519 	 * Check whether we can update tcp_ts_recent.  This test is
24520 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24521 	 * Extensions for High Performance: An Update", Internet Draft.
24522 	 */
24523 	if (tcp->tcp_snd_ts_ok &&
24524 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24525 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24526 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24527 		tcp->tcp_last_rcv_lbolt = lbolt64;
24528 	}
24529 
24530 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24531 		/* Always ack out of order packets */
24532 		flags |= TH_ACK_NEEDED;
24533 		seg_len = 0;
24534 	} else if (seg_len > 0) {
24535 		BUMP_MIB(&tcp_mib, tcpInClosed);
24536 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24537 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24538 	}
24539 	if (flags & TH_RST) {
24540 		(void) tcp_clean_death(tcp, 0, 28);
24541 		goto done;
24542 	}
24543 	if (flags & TH_SYN) {
24544 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24545 		    TH_RST|TH_ACK);
24546 		/*
24547 		 * Do not delete the TCP structure if it is in
24548 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24549 		 */
24550 		goto done;
24551 	}
24552 process_ack:
24553 	if (flags & TH_ACK) {
24554 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24555 		if (bytes_acked <= 0) {
24556 			if (bytes_acked == 0 && seg_len == 0 &&
24557 			    new_swnd == tcp->tcp_swnd)
24558 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24559 		} else {
24560 			/* Acks something not sent */
24561 			flags |= TH_ACK_NEEDED;
24562 		}
24563 	}
24564 	if (flags & TH_ACK_NEEDED) {
24565 		/*
24566 		 * Time to send an ack for some reason.
24567 		 */
24568 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24569 		    tcp->tcp_rnxt, TH_ACK);
24570 	}
24571 done:
24572 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24573 		DB_CKSUMSTART(mp) = 0;
24574 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24575 		TCP_STAT(tcp_time_wait_syn_fail);
24576 	}
24577 	freemsg(mp);
24578 }
24579 
24580 /*
24581  * Allocate a T_SVR4_OPTMGMT_REQ.
24582  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24583  * that tcp_rput_other can drop the acks.
24584  */
24585 static mblk_t *
24586 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24587 {
24588 	mblk_t *mp;
24589 	struct T_optmgmt_req *tor;
24590 	struct opthdr *oh;
24591 	uint_t size;
24592 	char *optptr;
24593 
24594 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24595 	mp = allocb(size, BPRI_MED);
24596 	if (mp == NULL)
24597 		return (NULL);
24598 
24599 	mp->b_wptr += size;
24600 	mp->b_datap->db_type = M_PROTO;
24601 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24602 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24603 	tor->MGMT_flags = T_NEGOTIATE;
24604 	tor->OPT_length = sizeof (*oh) + optlen;
24605 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24606 
24607 	oh = (struct opthdr *)&tor[1];
24608 	oh->level = level;
24609 	oh->name = cmd;
24610 	oh->len = optlen;
24611 	if (optlen != 0) {
24612 		optptr = (char *)&oh[1];
24613 		bcopy(opt, optptr, optlen);
24614 	}
24615 	return (mp);
24616 }
24617 
24618 /*
24619  * TCP Timers Implementation.
24620  */
24621 timeout_id_t
24622 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24623 {
24624 	mblk_t *mp;
24625 	tcp_timer_t *tcpt;
24626 	tcp_t *tcp = connp->conn_tcp;
24627 
24628 	ASSERT(connp->conn_sqp != NULL);
24629 
24630 	TCP_DBGSTAT(tcp_timeout_calls);
24631 
24632 	if (tcp->tcp_timercache == NULL) {
24633 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24634 	} else {
24635 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24636 		mp = tcp->tcp_timercache;
24637 		tcp->tcp_timercache = mp->b_next;
24638 		mp->b_next = NULL;
24639 		ASSERT(mp->b_wptr == NULL);
24640 	}
24641 
24642 	CONN_INC_REF(connp);
24643 	tcpt = (tcp_timer_t *)mp->b_rptr;
24644 	tcpt->connp = connp;
24645 	tcpt->tcpt_proc = f;
24646 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24647 	return ((timeout_id_t)mp);
24648 }
24649 
24650 static void
24651 tcp_timer_callback(void *arg)
24652 {
24653 	mblk_t *mp = (mblk_t *)arg;
24654 	tcp_timer_t *tcpt;
24655 	conn_t	*connp;
24656 
24657 	tcpt = (tcp_timer_t *)mp->b_rptr;
24658 	connp = tcpt->connp;
24659 	squeue_fill(connp->conn_sqp, mp,
24660 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24661 }
24662 
24663 static void
24664 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24665 {
24666 	tcp_timer_t *tcpt;
24667 	conn_t *connp = (conn_t *)arg;
24668 	tcp_t *tcp = connp->conn_tcp;
24669 
24670 	tcpt = (tcp_timer_t *)mp->b_rptr;
24671 	ASSERT(connp == tcpt->connp);
24672 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24673 
24674 	/*
24675 	 * If the TCP has reached the closed state, don't proceed any
24676 	 * further. This TCP logically does not exist on the system.
24677 	 * tcpt_proc could for example access queues, that have already
24678 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24679 	 */
24680 	if (tcp->tcp_state != TCPS_CLOSED) {
24681 		(*tcpt->tcpt_proc)(connp);
24682 	} else {
24683 		tcp->tcp_timer_tid = 0;
24684 	}
24685 	tcp_timer_free(connp->conn_tcp, mp);
24686 }
24687 
24688 /*
24689  * There is potential race with untimeout and the handler firing at the same
24690  * time. The mblock may be freed by the handler while we are trying to use
24691  * it. But since both should execute on the same squeue, this race should not
24692  * occur.
24693  */
24694 clock_t
24695 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24696 {
24697 	mblk_t	*mp = (mblk_t *)id;
24698 	tcp_timer_t *tcpt;
24699 	clock_t delta;
24700 
24701 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
24702 
24703 	if (mp == NULL)
24704 		return (-1);
24705 
24706 	tcpt = (tcp_timer_t *)mp->b_rptr;
24707 	ASSERT(tcpt->connp == connp);
24708 
24709 	delta = untimeout(tcpt->tcpt_tid);
24710 
24711 	if (delta >= 0) {
24712 		TCP_DBGSTAT(tcp_timeout_canceled);
24713 		tcp_timer_free(connp->conn_tcp, mp);
24714 		CONN_DEC_REF(connp);
24715 	}
24716 
24717 	return (delta);
24718 }
24719 
24720 /*
24721  * Allocate space for the timer event. The allocation looks like mblk, but it is
24722  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24723  *
24724  * Dealing with failures: If we can't allocate from the timer cache we try
24725  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24726  * points to b_rptr.
24727  * If we can't allocate anything using allocb_tryhard(), we perform a last
24728  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24729  * save the actual allocation size in b_datap.
24730  */
24731 mblk_t *
24732 tcp_timermp_alloc(int kmflags)
24733 {
24734 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24735 	    kmflags & ~KM_PANIC);
24736 
24737 	if (mp != NULL) {
24738 		mp->b_next = mp->b_prev = NULL;
24739 		mp->b_rptr = (uchar_t *)(&mp[1]);
24740 		mp->b_wptr = NULL;
24741 		mp->b_datap = NULL;
24742 		mp->b_queue = NULL;
24743 	} else if (kmflags & KM_PANIC) {
24744 		/*
24745 		 * Failed to allocate memory for the timer. Try allocating from
24746 		 * dblock caches.
24747 		 */
24748 		TCP_STAT(tcp_timermp_allocfail);
24749 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24750 		if (mp == NULL) {
24751 			size_t size = 0;
24752 			/*
24753 			 * Memory is really low. Try tryhard allocation.
24754 			 */
24755 			TCP_STAT(tcp_timermp_allocdblfail);
24756 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24757 			    sizeof (tcp_timer_t), &size, kmflags);
24758 			mp->b_rptr = (uchar_t *)(&mp[1]);
24759 			mp->b_next = mp->b_prev = NULL;
24760 			mp->b_wptr = (uchar_t *)-1;
24761 			mp->b_datap = (dblk_t *)size;
24762 			mp->b_queue = NULL;
24763 		}
24764 		ASSERT(mp->b_wptr != NULL);
24765 	}
24766 	TCP_DBGSTAT(tcp_timermp_alloced);
24767 
24768 	return (mp);
24769 }
24770 
24771 /*
24772  * Free per-tcp timer cache.
24773  * It can only contain entries from tcp_timercache.
24774  */
24775 void
24776 tcp_timermp_free(tcp_t *tcp)
24777 {
24778 	mblk_t *mp;
24779 
24780 	while ((mp = tcp->tcp_timercache) != NULL) {
24781 		ASSERT(mp->b_wptr == NULL);
24782 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24783 		kmem_cache_free(tcp_timercache, mp);
24784 	}
24785 }
24786 
24787 /*
24788  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24789  * events there already (currently at most two events are cached).
24790  * If the event is not allocated from the timer cache, free it right away.
24791  */
24792 static void
24793 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24794 {
24795 	mblk_t *mp1 = tcp->tcp_timercache;
24796 
24797 	if (mp->b_wptr != NULL) {
24798 		/*
24799 		 * This allocation is not from a timer cache, free it right
24800 		 * away.
24801 		 */
24802 		if (mp->b_wptr != (uchar_t *)-1)
24803 			freeb(mp);
24804 		else
24805 			kmem_free(mp, (size_t)mp->b_datap);
24806 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24807 		/* Cache this timer block for future allocations */
24808 		mp->b_rptr = (uchar_t *)(&mp[1]);
24809 		mp->b_next = mp1;
24810 		tcp->tcp_timercache = mp;
24811 	} else {
24812 		kmem_cache_free(tcp_timercache, mp);
24813 		TCP_DBGSTAT(tcp_timermp_freed);
24814 	}
24815 }
24816 
24817 /*
24818  * End of TCP Timers implementation.
24819  */
24820 
24821 /*
24822  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24823  * on the specified backing STREAMS q. Note, the caller may make the
24824  * decision to call based on the tcp_t.tcp_flow_stopped value which
24825  * when check outside the q's lock is only an advisory check ...
24826  */
24827 
24828 void
24829 tcp_setqfull(tcp_t *tcp)
24830 {
24831 	queue_t *q = tcp->tcp_wq;
24832 
24833 	if (!(q->q_flag & QFULL)) {
24834 		mutex_enter(QLOCK(q));
24835 		if (!(q->q_flag & QFULL)) {
24836 			/* still need to set QFULL */
24837 			q->q_flag |= QFULL;
24838 			tcp->tcp_flow_stopped = B_TRUE;
24839 			mutex_exit(QLOCK(q));
24840 			TCP_STAT(tcp_flwctl_on);
24841 		} else {
24842 			mutex_exit(QLOCK(q));
24843 		}
24844 	}
24845 }
24846 
24847 void
24848 tcp_clrqfull(tcp_t *tcp)
24849 {
24850 	queue_t *q = tcp->tcp_wq;
24851 
24852 	if (q->q_flag & QFULL) {
24853 		mutex_enter(QLOCK(q));
24854 		if (q->q_flag & QFULL) {
24855 			q->q_flag &= ~QFULL;
24856 			tcp->tcp_flow_stopped = B_FALSE;
24857 			mutex_exit(QLOCK(q));
24858 			if (q->q_flag & QWANTW)
24859 				qbackenable(q, 0);
24860 		} else {
24861 			mutex_exit(QLOCK(q));
24862 		}
24863 	}
24864 }
24865 
24866 /*
24867  * TCP Kstats implementation
24868  */
24869 static void
24870 tcp_kstat_init(void)
24871 {
24872 	tcp_named_kstat_t template = {
24873 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
24874 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
24875 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
24876 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
24877 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
24878 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
24879 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
24880 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
24881 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
24882 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
24883 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
24884 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
24885 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
24886 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
24887 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
24888 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
24889 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
24890 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
24891 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
24892 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
24893 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
24894 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
24895 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
24896 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
24897 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
24898 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
24899 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
24900 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
24901 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
24902 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
24903 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
24904 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
24905 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
24906 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
24907 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
24908 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
24909 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
24910 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
24911 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
24912 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
24913 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
24914 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
24915 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
24916 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
24917 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
24918 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
24919 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
24920 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
24921 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
24922 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
24923 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
24924 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
24925 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
24926 	};
24927 
24928 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
24929 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
24930 
24931 	if (tcp_mibkp == NULL)
24932 		return;
24933 
24934 	template.rtoAlgorithm.value.ui32 = 4;
24935 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
24936 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
24937 	template.maxConn.value.i32 = -1;
24938 
24939 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
24940 
24941 	tcp_mibkp->ks_update = tcp_kstat_update;
24942 
24943 	kstat_install(tcp_mibkp);
24944 }
24945 
24946 static void
24947 tcp_kstat_fini(void)
24948 {
24949 
24950 	if (tcp_mibkp != NULL) {
24951 		kstat_delete(tcp_mibkp);
24952 		tcp_mibkp = NULL;
24953 	}
24954 }
24955 
24956 static int
24957 tcp_kstat_update(kstat_t *kp, int rw)
24958 {
24959 	tcp_named_kstat_t	*tcpkp;
24960 	tcp_t			*tcp;
24961 	connf_t			*connfp;
24962 	conn_t			*connp;
24963 	int 			i;
24964 
24965 	if (!kp || !kp->ks_data)
24966 		return (EIO);
24967 
24968 	if (rw == KSTAT_WRITE)
24969 		return (EACCES);
24970 
24971 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
24972 
24973 	tcpkp->currEstab.value.ui32 = 0;
24974 
24975 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24976 		connfp = &ipcl_globalhash_fanout[i];
24977 		connp = NULL;
24978 		while ((connp =
24979 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24980 			tcp = connp->conn_tcp;
24981 			switch (tcp_snmp_state(tcp)) {
24982 			case MIB2_TCP_established:
24983 			case MIB2_TCP_closeWait:
24984 				tcpkp->currEstab.value.ui32++;
24985 				break;
24986 			}
24987 		}
24988 	}
24989 
24990 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
24991 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
24992 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
24993 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
24994 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
24995 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
24996 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
24997 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
24998 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
24999 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25000 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25001 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25002 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25003 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25004 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25005 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25006 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25007 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25008 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25009 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25010 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25011 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25012 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25013 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25014 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25015 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25016 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25017 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25018 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25019 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25020 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25021 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25022 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25023 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25024 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25025 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25026 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25027 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25028 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25029 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25030 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25031 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25032 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25033 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25034 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25035 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25036 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25037 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25038 
25039 	return (0);
25040 }
25041 
25042 void
25043 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25044 {
25045 	uint16_t	hdr_len;
25046 	ipha_t		*ipha;
25047 	uint8_t		*nexthdrp;
25048 	tcph_t		*tcph;
25049 
25050 	/* Already has an eager */
25051 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25052 		TCP_STAT(tcp_reinput_syn);
25053 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25054 		    connp, SQTAG_TCP_REINPUT_EAGER);
25055 		return;
25056 	}
25057 
25058 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25059 	case IPV4_VERSION:
25060 		ipha = (ipha_t *)mp->b_rptr;
25061 		hdr_len = IPH_HDR_LENGTH(ipha);
25062 		break;
25063 	case IPV6_VERSION:
25064 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25065 		    &hdr_len, &nexthdrp)) {
25066 			CONN_DEC_REF(connp);
25067 			freemsg(mp);
25068 			return;
25069 		}
25070 		break;
25071 	}
25072 
25073 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25074 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25075 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25076 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25077 	}
25078 
25079 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25080 	    SQTAG_TCP_REINPUT);
25081 }
25082 
25083 static squeue_func_t
25084 tcp_squeue_switch(int val)
25085 {
25086 	squeue_func_t rval = squeue_fill;
25087 
25088 	switch (val) {
25089 	case 1:
25090 		rval = squeue_enter_nodrain;
25091 		break;
25092 	case 2:
25093 		rval = squeue_enter;
25094 		break;
25095 	default:
25096 		break;
25097 	}
25098 	return (rval);
25099 }
25100 
25101 static void
25102 tcp_squeue_add(squeue_t *sqp)
25103 {
25104 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25105 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25106 
25107 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25108 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25109 	    sqp, TCP_TIME_WAIT_DELAY);
25110 	if (tcp_free_list_max_cnt == 0) {
25111 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25112 			max_ncpus : boot_max_ncpus);
25113 
25114 		/*
25115 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25116 		 */
25117 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25118 			(tcp_ncpus * sizeof (tcp_t) * 100);
25119 	}
25120 	tcp_time_wait->tcp_free_list_cnt = 0;
25121 }
25122