1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/priv.h> 58 #include <sys/zone.h> 59 60 #include <sys/errno.h> 61 #include <sys/signal.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/isa_defs.h> 65 #include <sys/md5.h> 66 #include <sys/random.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/mi.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/ipdrop.h> 91 #include <inet/tcp_trace.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <sys/sdt.h> 103 #include <rpc/pmap_prot.h> 104 105 /* 106 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 107 * 108 * (Read the detailed design doc in PSARC case directory) 109 * 110 * The entire tcp state is contained in tcp_t and conn_t structure 111 * which are allocated in tandem using ipcl_conn_create() and passing 112 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 113 * the references on the tcp_t. The tcp_t structure is never compressed 114 * and packets always land on the correct TCP perimeter from the time 115 * eager is created till the time tcp_t dies (as such the old mentat 116 * TCP global queue is not used for detached state and no IPSEC checking 117 * is required). The global queue is still allocated to send out resets 118 * for connection which have no listeners and IP directly calls 119 * tcp_xmit_listeners_reset() which does any policy check. 120 * 121 * Protection and Synchronisation mechanism: 122 * 123 * The tcp data structure does not use any kind of lock for protecting 124 * its state but instead uses 'squeues' for mutual exclusion from various 125 * read and write side threads. To access a tcp member, the thread should 126 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 127 * squeue_fill). Since the squeues allow a direct function call, caller 128 * can pass any tcp function having prototype of edesc_t as argument 129 * (different from traditional STREAMs model where packets come in only 130 * designated entry points). The list of functions that can be directly 131 * called via squeue are listed before the usual function prototype. 132 * 133 * Referencing: 134 * 135 * TCP is MT-Hot and we use a reference based scheme to make sure that the 136 * tcp structure doesn't disappear when its needed. When the application 137 * creates an outgoing connection or accepts an incoming connection, we 138 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 139 * The IP reference is just a symbolic reference since ip_tcpclose() 140 * looks at tcp structure after tcp_close_output() returns which could 141 * have dropped the last TCP reference. So as long as the connection is 142 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 143 * conn_t. The classifier puts its own reference when the connection is 144 * inserted in listen or connected hash. Anytime a thread needs to enter 145 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 146 * on write side or by doing a classify on read side and then puts a 147 * reference on the conn before doing squeue_enter/tryenter/fill. For 148 * read side, the classifier itself puts the reference under fanout lock 149 * to make sure that tcp can't disappear before it gets processed. The 150 * squeue will drop this reference automatically so the called function 151 * doesn't have to do a DEC_REF. 152 * 153 * Opening a new connection: 154 * 155 * The outgoing connection open is pretty simple. ip_tcpopen() does the 156 * work in creating the conn/tcp structure and initializing it. The 157 * squeue assignment is done based on the CPU the application 158 * is running on. So for outbound connections, processing is always done 159 * on application CPU which might be different from the incoming CPU 160 * being interrupted by the NIC. An optimal way would be to figure out 161 * the NIC <-> CPU binding at listen time, and assign the outgoing 162 * connection to the squeue attached to the CPU that will be interrupted 163 * for incoming packets (we know the NIC based on the bind IP address). 164 * This might seem like a problem if more data is going out but the 165 * fact is that in most cases the transmit is ACK driven transmit where 166 * the outgoing data normally sits on TCP's xmit queue waiting to be 167 * transmitted. 168 * 169 * Accepting a connection: 170 * 171 * This is a more interesting case because of various races involved in 172 * establishing a eager in its own perimeter. Read the meta comment on 173 * top of tcp_conn_request(). But briefly, the squeue is picked by 174 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 175 * 176 * Closing a connection: 177 * 178 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 179 * via squeue to do the close and mark the tcp as detached if the connection 180 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 181 * reference but tcp_close() drop IP's reference always. So if tcp was 182 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 183 * and 1 because it is in classifier's connected hash. This is the condition 184 * we use to determine that its OK to clean up the tcp outside of squeue 185 * when time wait expires (check the ref under fanout and conn_lock and 186 * if it is 2, remove it from fanout hash and kill it). 187 * 188 * Although close just drops the necessary references and marks the 189 * tcp_detached state, tcp_close needs to know the tcp_detached has been 190 * set (under squeue) before letting the STREAM go away (because a 191 * inbound packet might attempt to go up the STREAM while the close 192 * has happened and tcp_detached is not set). So a special lock and 193 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 194 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 195 * tcp_detached. 196 * 197 * Special provisions and fast paths: 198 * 199 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 200 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 201 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 202 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 203 * check to send packets directly to tcp_rput_data via squeue. Everyone 204 * else comes through tcp_input() on the read side. 205 * 206 * We also make special provisions for sockfs by marking tcp_issocket 207 * whenever we have only sockfs on top of TCP. This allows us to skip 208 * putting the tcp in acceptor hash since a sockfs listener can never 209 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 210 * since eager has already been allocated and the accept now happens 211 * on acceptor STREAM. There is a big blob of comment on top of 212 * tcp_conn_request explaining the new accept. When socket is POP'd, 213 * sockfs sends us an ioctl to mark the fact and we go back to old 214 * behaviour. Once tcp_issocket is unset, its never set for the 215 * life of that connection. 216 * 217 * IPsec notes : 218 * 219 * Since a packet is always executed on the correct TCP perimeter 220 * all IPsec processing is defered to IP including checking new 221 * connections and setting IPSEC policies for new connection. The 222 * only exception is tcp_xmit_listeners_reset() which is called 223 * directly from IP and needs to policy check to see if TH_RST 224 * can be sent out. 225 */ 226 227 extern major_t TCP6_MAJ; 228 229 /* 230 * Values for squeue switch: 231 * 1: squeue_enter_nodrain 232 * 2: squeue_enter 233 * 3: squeue_fill 234 */ 235 int tcp_squeue_close = 2; 236 int tcp_squeue_wput = 2; 237 238 squeue_func_t tcp_squeue_close_proc; 239 squeue_func_t tcp_squeue_wput_proc; 240 241 /* 242 * This controls how tiny a write must be before we try to copy it 243 * into the the mblk on the tail of the transmit queue. Not much 244 * speedup is observed for values larger than sixteen. Zero will 245 * disable the optimisation. 246 */ 247 int tcp_tx_pull_len = 16; 248 249 /* 250 * TCP Statistics. 251 * 252 * How TCP statistics work. 253 * 254 * There are two types of statistics invoked by two macros. 255 * 256 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 257 * supposed to be used in non MT-hot paths of the code. 258 * 259 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 260 * supposed to be used for DEBUG purposes and may be used on a hot path. 261 * 262 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 263 * (use "kstat tcp" to get them). 264 * 265 * There is also additional debugging facility that marks tcp_clean_death() 266 * instances and saves them in tcp_t structure. It is triggered by 267 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 268 * tcp_clean_death() calls that counts the number of times each tag was hit. It 269 * is triggered by TCP_CLD_COUNTERS define. 270 * 271 * How to add new counters. 272 * 273 * 1) Add a field in the tcp_stat structure describing your counter. 274 * 2) Add a line in tcp_statistics with the name of the counter. 275 * 276 * IMPORTANT!! - make sure that both are in sync !! 277 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 278 * 279 * Please avoid using private counters which are not kstat-exported. 280 * 281 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 282 * in tcp_t structure. 283 * 284 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 285 */ 286 287 #ifndef TCP_DEBUG_COUNTER 288 #ifdef DEBUG 289 #define TCP_DEBUG_COUNTER 1 290 #else 291 #define TCP_DEBUG_COUNTER 0 292 #endif 293 #endif 294 295 #define TCP_CLD_COUNTERS 0 296 297 #define TCP_TAG_CLEAN_DEATH 1 298 #define TCP_MAX_CLEAN_DEATH_TAG 32 299 300 #ifdef lint 301 static int _lint_dummy_; 302 #endif 303 304 #if TCP_CLD_COUNTERS 305 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 306 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 307 #elif defined(lint) 308 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 309 #else 310 #define TCP_CLD_STAT(x) 311 #endif 312 313 #if TCP_DEBUG_COUNTER 314 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 315 #elif defined(lint) 316 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 317 #else 318 #define TCP_DBGSTAT(x) 319 #endif 320 321 tcp_stat_t tcp_statistics = { 322 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 323 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 324 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 325 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 326 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 327 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 328 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 329 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 330 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 331 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 332 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 333 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 334 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 335 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 336 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 337 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 338 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 339 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 340 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 341 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 342 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 343 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 345 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 346 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 347 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 348 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 349 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 351 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 352 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 353 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 354 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 355 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 356 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 357 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 358 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 359 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 360 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 361 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 362 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 363 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 364 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 365 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 366 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 367 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 368 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 369 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 370 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 371 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 372 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 373 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 374 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 375 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 376 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 377 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 378 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 379 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 380 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 381 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 382 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 383 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 403 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 404 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 405 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 406 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 407 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 408 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 409 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 410 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 411 }; 412 413 static kstat_t *tcp_kstat; 414 415 /* 416 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 417 * tcp write side. 418 */ 419 #define CALL_IP_WPUT(connp, q, mp) { \ 420 ASSERT(((q)->q_flag & QREADR) == 0); \ 421 TCP_DBGSTAT(tcp_ip_output); \ 422 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 423 } 424 425 /* Macros for timestamp comparisons */ 426 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 427 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 428 429 /* 430 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 431 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 432 * by adding three components: a time component which grows by 1 every 4096 433 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 434 * a per-connection component which grows by 125000 for every new connection; 435 * and an "extra" component that grows by a random amount centered 436 * approximately on 64000. This causes the the ISS generator to cycle every 437 * 4.89 hours if no TCP connections are made, and faster if connections are 438 * made. 439 * 440 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 441 * components: a time component which grows by 250000 every second; and 442 * a per-connection component which grows by 125000 for every new connections. 443 * 444 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 445 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 446 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 447 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 448 * password. 449 */ 450 #define ISS_INCR 250000 451 #define ISS_NSEC_SHT 12 452 453 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 454 static kmutex_t tcp_iss_key_lock; 455 static MD5_CTX tcp_iss_key; 456 static sin_t sin_null; /* Zero address for quick clears */ 457 static sin6_t sin6_null; /* Zero address for quick clears */ 458 459 /* Packet dropper for TCP IPsec policy drops. */ 460 static ipdropper_t tcp_dropper; 461 462 /* 463 * This implementation follows the 4.3BSD interpretation of the urgent 464 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 465 * incompatible changes in protocols like telnet and rlogin. 466 */ 467 #define TCP_OLD_URP_INTERPRETATION 1 468 469 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 470 (TCP_IS_DETACHED(tcp) && \ 471 (!(tcp)->tcp_hard_binding)) 472 473 /* 474 * TCP reassembly macros. We hide starting and ending sequence numbers in 475 * b_next and b_prev of messages on the reassembly queue. The messages are 476 * chained using b_cont. These macros are used in tcp_reass() so we don't 477 * have to see the ugly casts and assignments. 478 */ 479 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 480 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 481 (mblk_t *)(uintptr_t)(u)) 482 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 483 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 484 (mblk_t *)(uintptr_t)(u)) 485 486 /* 487 * Implementation of TCP Timers. 488 * ============================= 489 * 490 * INTERFACE: 491 * 492 * There are two basic functions dealing with tcp timers: 493 * 494 * timeout_id_t tcp_timeout(connp, func, time) 495 * clock_t tcp_timeout_cancel(connp, timeout_id) 496 * TCP_TIMER_RESTART(tcp, intvl) 497 * 498 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 499 * after 'time' ticks passed. The function called by timeout() must adhere to 500 * the same restrictions as a driver soft interrupt handler - it must not sleep 501 * or call other functions that might sleep. The value returned is the opaque 502 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 503 * cancel the request. The call to tcp_timeout() may fail in which case it 504 * returns zero. This is different from the timeout(9F) function which never 505 * fails. 506 * 507 * The call-back function 'func' always receives 'connp' as its single 508 * argument. It is always executed in the squeue corresponding to the tcp 509 * structure. The tcp structure is guaranteed to be present at the time the 510 * call-back is called. 511 * 512 * NOTE: The call-back function 'func' is never called if tcp is in 513 * the TCPS_CLOSED state. 514 * 515 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 516 * request. locks acquired by the call-back routine should not be held across 517 * the call to tcp_timeout_cancel() or a deadlock may result. 518 * 519 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 520 * Otherwise, it returns an integer value greater than or equal to 0. In 521 * particular, if the call-back function is already placed on the squeue, it can 522 * not be canceled. 523 * 524 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 525 * within squeue context corresponding to the tcp instance. Since the 526 * call-back is also called via the same squeue, there are no race 527 * conditions described in untimeout(9F) manual page since all calls are 528 * strictly serialized. 529 * 530 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 531 * stored in tcp_timer_tid and starts a new one using 532 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 533 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 534 * field. 535 * 536 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 537 * call-back may still be called, so it is possible tcp_timer() will be 538 * called several times. This should not be a problem since tcp_timer() 539 * should always check the tcp instance state. 540 * 541 * 542 * IMPLEMENTATION: 543 * 544 * TCP timers are implemented using three-stage process. The call to 545 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 546 * when the timer expires. The tcp_timer_callback() arranges the call of the 547 * tcp_timer_handler() function via squeue corresponding to the tcp 548 * instance. The tcp_timer_handler() calls actual requested timeout call-back 549 * and passes tcp instance as an argument to it. Information is passed between 550 * stages using the tcp_timer_t structure which contains the connp pointer, the 551 * tcp call-back to call and the timeout id returned by the timeout(9F). 552 * 553 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 554 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 555 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 556 * returns the pointer to this mblk. 557 * 558 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 559 * looks like a normal mblk without actual dblk attached to it. 560 * 561 * To optimize performance each tcp instance holds a small cache of timer 562 * mblocks. In the current implementation it caches up to two timer mblocks per 563 * tcp instance. The cache is preserved over tcp frees and is only freed when 564 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 565 * timer processing happens on a corresponding squeue, the cache manipulation 566 * does not require any locks. Experiments show that majority of timer mblocks 567 * allocations are satisfied from the tcp cache and do not involve kmem calls. 568 * 569 * The tcp_timeout() places a refhold on the connp instance which guarantees 570 * that it will be present at the time the call-back function fires. The 571 * tcp_timer_handler() drops the reference after calling the call-back, so the 572 * call-back function does not need to manipulate the references explicitly. 573 */ 574 575 typedef struct tcp_timer_s { 576 conn_t *connp; 577 void (*tcpt_proc)(void *); 578 timeout_id_t tcpt_tid; 579 } tcp_timer_t; 580 581 static kmem_cache_t *tcp_timercache; 582 kmem_cache_t *tcp_sack_info_cache; 583 kmem_cache_t *tcp_iphc_cache; 584 585 /* 586 * For scalability, we must not run a timer for every TCP connection 587 * in TIME_WAIT state. To see why, consider (for time wait interval of 588 * 4 minutes): 589 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 590 * 591 * This list is ordered by time, so you need only delete from the head 592 * until you get to entries which aren't old enough to delete yet. 593 * The list consists of only the detached TIME_WAIT connections. 594 * 595 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 596 * becomes detached TIME_WAIT (either by changing the state and already 597 * being detached or the other way around). This means that the TIME_WAIT 598 * state can be extended (up to doubled) if the connection doesn't become 599 * detached for a long time. 600 * 601 * The list manipulations (including tcp_time_wait_next/prev) 602 * are protected by the tcp_time_wait_lock. The content of the 603 * detached TIME_WAIT connections is protected by the normal perimeters. 604 */ 605 606 typedef struct tcp_squeue_priv_s { 607 kmutex_t tcp_time_wait_lock; 608 /* Protects the next 3 globals */ 609 timeout_id_t tcp_time_wait_tid; 610 tcp_t *tcp_time_wait_head; 611 tcp_t *tcp_time_wait_tail; 612 tcp_t *tcp_free_list; 613 uint_t tcp_free_list_cnt; 614 } tcp_squeue_priv_t; 615 616 /* 617 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 618 * Running it every 5 seconds seems to give the best results. 619 */ 620 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 621 622 /* 623 * To prevent memory hog, limit the number of entries in tcp_free_list 624 * to 1% of available memory / number of cpus 625 */ 626 uint_t tcp_free_list_max_cnt = 0; 627 628 #define TCP_XMIT_LOWATER 4096 629 #define TCP_XMIT_HIWATER 49152 630 #define TCP_RECV_LOWATER 2048 631 #define TCP_RECV_HIWATER 49152 632 633 /* 634 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 635 */ 636 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 637 638 #define TIDUSZ 4096 /* transport interface data unit size */ 639 640 /* 641 * Bind hash list size and has function. It has to be a power of 2 for 642 * hashing. 643 */ 644 #define TCP_BIND_FANOUT_SIZE 512 645 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 646 /* 647 * Size of listen and acceptor hash list. It has to be a power of 2 for 648 * hashing. 649 */ 650 #define TCP_FANOUT_SIZE 256 651 652 #ifdef _ILP32 653 #define TCP_ACCEPTOR_HASH(accid) \ 654 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 655 #else 656 #define TCP_ACCEPTOR_HASH(accid) \ 657 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 658 #endif /* _ILP32 */ 659 660 #define IP_ADDR_CACHE_SIZE 2048 661 #define IP_ADDR_CACHE_HASH(faddr) \ 662 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 663 664 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 665 #define TCP_HSP_HASH_SIZE 256 666 667 #define TCP_HSP_HASH(addr) \ 668 (((addr>>24) ^ (addr >>16) ^ \ 669 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 670 671 /* 672 * TCP options struct returned from tcp_parse_options. 673 */ 674 typedef struct tcp_opt_s { 675 uint32_t tcp_opt_mss; 676 uint32_t tcp_opt_wscale; 677 uint32_t tcp_opt_ts_val; 678 uint32_t tcp_opt_ts_ecr; 679 tcp_t *tcp; 680 } tcp_opt_t; 681 682 /* 683 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 684 */ 685 686 #ifdef _BIG_ENDIAN 687 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 688 (TCPOPT_TSTAMP << 8) | 10) 689 #else 690 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 691 (TCPOPT_NOP << 8) | TCPOPT_NOP) 692 #endif 693 694 /* 695 * Flags returned from tcp_parse_options. 696 */ 697 #define TCP_OPT_MSS_PRESENT 1 698 #define TCP_OPT_WSCALE_PRESENT 2 699 #define TCP_OPT_TSTAMP_PRESENT 4 700 #define TCP_OPT_SACK_OK_PRESENT 8 701 #define TCP_OPT_SACK_PRESENT 16 702 703 /* TCP option length */ 704 #define TCPOPT_NOP_LEN 1 705 #define TCPOPT_MAXSEG_LEN 4 706 #define TCPOPT_WS_LEN 3 707 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 708 #define TCPOPT_TSTAMP_LEN 10 709 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 710 #define TCPOPT_SACK_OK_LEN 2 711 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 712 #define TCPOPT_REAL_SACK_LEN 4 713 #define TCPOPT_MAX_SACK_LEN 36 714 #define TCPOPT_HEADER_LEN 2 715 716 /* TCP cwnd burst factor. */ 717 #define TCP_CWND_INFINITE 65535 718 #define TCP_CWND_SS 3 719 #define TCP_CWND_NORMAL 5 720 721 /* Maximum TCP initial cwin (start/restart). */ 722 #define TCP_MAX_INIT_CWND 8 723 724 /* 725 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 726 * either tcp_slow_start_initial or tcp_slow_start_after idle 727 * depending on the caller. If the upper layer has not used the 728 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 729 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 730 * If the upper layer has changed set the tcp_init_cwnd, just use 731 * it to calculate the tcp_cwnd. 732 */ 733 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 734 { \ 735 if ((tcp)->tcp_init_cwnd == 0) { \ 736 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 737 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 738 } else { \ 739 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 740 } \ 741 tcp->tcp_cwnd_cnt = 0; \ 742 } 743 744 /* TCP Timer control structure */ 745 typedef struct tcpt_s { 746 pfv_t tcpt_pfv; /* The routine we are to call */ 747 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 748 } tcpt_t; 749 750 /* Host Specific Parameter structure */ 751 typedef struct tcp_hsp { 752 struct tcp_hsp *tcp_hsp_next; 753 in6_addr_t tcp_hsp_addr_v6; 754 in6_addr_t tcp_hsp_subnet_v6; 755 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 756 int32_t tcp_hsp_sendspace; 757 int32_t tcp_hsp_recvspace; 758 int32_t tcp_hsp_tstamp; 759 } tcp_hsp_t; 760 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 761 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 762 763 /* 764 * Functions called directly via squeue having a prototype of edesc_t. 765 */ 766 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 767 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 768 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 769 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 770 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 771 void tcp_input(void *arg, mblk_t *mp, void *arg2); 772 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 773 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 774 void tcp_output(void *arg, mblk_t *mp, void *arg2); 775 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 776 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 777 778 779 /* Prototype for TCP functions */ 780 static void tcp_random_init(void); 781 int tcp_random(void); 782 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 783 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 784 tcp_t *eager); 785 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 786 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 787 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 788 boolean_t user_specified); 789 static void tcp_closei_local(tcp_t *tcp); 790 static void tcp_close_detached(tcp_t *tcp); 791 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 792 mblk_t *idmp, mblk_t **defermp); 793 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 794 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 795 in_port_t dstport, uint_t srcid); 796 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 797 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 798 uint32_t scope_id); 799 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 800 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 801 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 802 static char *tcp_display(tcp_t *tcp, char *, char); 803 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 804 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 805 static void tcp_eager_unlink(tcp_t *tcp); 806 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 807 int unixerr); 808 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 809 int tlierr, int unixerr); 810 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 811 cred_t *cr); 812 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 813 char *value, caddr_t cp, cred_t *cr); 814 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 815 char *value, caddr_t cp, cred_t *cr); 816 static int tcp_tpistate(tcp_t *tcp); 817 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 818 int caller_holds_lock); 819 static void tcp_bind_hash_remove(tcp_t *tcp); 820 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 821 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 822 static void tcp_acceptor_hash_remove(tcp_t *tcp); 823 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 824 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 825 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 826 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 827 static int tcp_header_init_ipv4(tcp_t *tcp); 828 static int tcp_header_init_ipv6(tcp_t *tcp); 829 int tcp_init(tcp_t *tcp, queue_t *q); 830 static int tcp_init_values(tcp_t *tcp); 831 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 832 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 833 t_scalar_t addr_length); 834 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 835 static void tcp_ip_notify(tcp_t *tcp); 836 static mblk_t *tcp_ire_mp(mblk_t *mp); 837 static void tcp_iss_init(tcp_t *tcp); 838 static void tcp_keepalive_killer(void *arg); 839 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 840 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 841 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 842 int *do_disconnectp, int *t_errorp, int *sys_errorp); 843 static boolean_t tcp_allow_connopt_set(int level, int name); 844 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 845 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 846 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 847 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 848 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 849 mblk_t *mblk); 850 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 851 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 852 uchar_t *ptr, uint_t len); 853 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 854 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 855 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 856 caddr_t cp, cred_t *cr); 857 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 858 caddr_t cp, cred_t *cr); 859 static void tcp_iss_key_init(uint8_t *phrase, int len); 860 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 861 caddr_t cp, cred_t *cr); 862 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 863 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 864 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 865 static void tcp_reinit(tcp_t *tcp); 866 static void tcp_reinit_values(tcp_t *tcp); 867 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 868 tcp_t *thisstream, cred_t *cr); 869 870 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 871 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 872 static boolean_t tcp_send_rst_chk(void); 873 static void tcp_ss_rexmit(tcp_t *tcp); 874 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 875 static void tcp_process_options(tcp_t *, tcph_t *); 876 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 877 static void tcp_rsrv(queue_t *q); 878 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 879 static int tcp_snmp_state(tcp_t *tcp); 880 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 881 cred_t *cr); 882 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 883 cred_t *cr); 884 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 885 cred_t *cr); 886 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 887 cred_t *cr); 888 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 889 cred_t *cr); 890 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 891 caddr_t cp, cred_t *cr); 892 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 893 caddr_t cp, cred_t *cr); 894 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 895 cred_t *cr); 896 static void tcp_timer(void *arg); 897 static void tcp_timer_callback(void *); 898 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 899 boolean_t random); 900 static in_port_t tcp_get_next_priv_port(const tcp_t *); 901 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 902 void tcp_wput_accept(queue_t *q, mblk_t *mp); 903 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 904 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 905 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 906 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 907 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 908 const int num_sack_blk, int *usable, uint_t *snxt, 909 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 910 const int mdt_thres); 911 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 912 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 913 const int num_sack_blk, int *usable, uint_t *snxt, 914 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 915 const int mdt_thres); 916 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 917 int num_sack_blk); 918 static void tcp_wsrv(queue_t *q); 919 static int tcp_xmit_end(tcp_t *tcp); 920 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 921 int32_t *offset, mblk_t **end_mp, uint32_t seq, 922 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 923 static void tcp_ack_timer(void *arg); 924 static mblk_t *tcp_ack_mp(tcp_t *tcp); 925 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 926 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 927 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 928 uint32_t ack, int ctl); 929 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 930 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 931 static int setmaxps(queue_t *q, int maxpsz); 932 static void tcp_set_rto(tcp_t *, time_t); 933 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 934 boolean_t, boolean_t); 935 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 936 boolean_t ipsec_mctl); 937 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 938 char *opt, int optlen); 939 static int tcp_build_hdrs(queue_t *, tcp_t *); 940 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 941 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 942 tcph_t *tcph); 943 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 944 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 945 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 946 boolean_t tcp_reserved_port_check(in_port_t); 947 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 948 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 949 static mblk_t *tcp_mdt_info_mp(mblk_t *); 950 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 951 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 952 const boolean_t, const uint32_t, const uint32_t, 953 const uint32_t, const uint32_t); 954 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 955 const uint_t, const uint_t, boolean_t *); 956 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 957 extern mblk_t *tcp_timermp_alloc(int); 958 extern void tcp_timermp_free(tcp_t *); 959 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 960 static void tcp_stop_lingering(tcp_t *tcp); 961 static void tcp_close_linger_timeout(void *arg); 962 void tcp_ddi_init(void); 963 void tcp_ddi_destroy(void); 964 static void tcp_kstat_init(void); 965 static void tcp_kstat_fini(void); 966 static int tcp_kstat_update(kstat_t *kp, int rw); 967 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 968 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 969 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 970 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 971 tcph_t *tcph, mblk_t *idmp); 972 static squeue_func_t tcp_squeue_switch(int); 973 974 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 975 static int tcp_close(queue_t *, int); 976 static int tcpclose_accept(queue_t *); 977 static int tcp_modclose(queue_t *); 978 static void tcp_wput_mod(queue_t *, mblk_t *); 979 980 static void tcp_squeue_add(squeue_t *); 981 static boolean_t tcp_zcopy_check(tcp_t *); 982 static void tcp_zcopy_notify(tcp_t *); 983 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 984 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 985 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 986 987 extern void tcp_kssl_input(tcp_t *, mblk_t *); 988 989 /* 990 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 991 * 992 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 993 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 994 * (defined in tcp.h) needs to be filled in and passed into the kernel 995 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 996 * structure contains the four-tuple of a TCP connection and a range of TCP 997 * states (specified by ac_start and ac_end). The use of wildcard addresses 998 * and ports is allowed. Connections with a matching four tuple and a state 999 * within the specified range will be aborted. The valid states for the 1000 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1001 * inclusive. 1002 * 1003 * An application which has its connection aborted by this ioctl will receive 1004 * an error that is dependent on the connection state at the time of the abort. 1005 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1006 * though a RST packet has been received. If the connection state is equal to 1007 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1008 * and all resources associated with the connection will be freed. 1009 */ 1010 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1011 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1012 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1013 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1014 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1015 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1016 boolean_t); 1017 1018 static struct module_info tcp_rinfo = { 1019 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1020 }; 1021 1022 static struct module_info tcp_winfo = { 1023 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1024 }; 1025 1026 /* 1027 * Entry points for TCP as a module. It only allows SNMP requests 1028 * to pass through. 1029 */ 1030 struct qinit tcp_mod_rinit = { 1031 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1032 }; 1033 1034 struct qinit tcp_mod_winit = { 1035 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1036 &tcp_rinfo 1037 }; 1038 1039 /* 1040 * Entry points for TCP as a device. The normal case which supports 1041 * the TCP functionality. 1042 */ 1043 struct qinit tcp_rinit = { 1044 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1045 }; 1046 1047 struct qinit tcp_winit = { 1048 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1049 }; 1050 1051 /* Initial entry point for TCP in socket mode. */ 1052 struct qinit tcp_sock_winit = { 1053 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1054 }; 1055 1056 /* 1057 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1058 * an accept. Avoid allocating data structures since eager has already 1059 * been created. 1060 */ 1061 struct qinit tcp_acceptor_rinit = { 1062 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1063 }; 1064 1065 struct qinit tcp_acceptor_winit = { 1066 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1067 }; 1068 1069 /* 1070 * Entry points for TCP loopback (read side only) 1071 */ 1072 struct qinit tcp_loopback_rinit = { 1073 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1074 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1075 }; 1076 1077 struct streamtab tcpinfo = { 1078 &tcp_rinit, &tcp_winit 1079 }; 1080 1081 extern squeue_func_t tcp_squeue_wput_proc; 1082 extern squeue_func_t tcp_squeue_timer_proc; 1083 1084 /* Protected by tcp_g_q_lock */ 1085 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1086 kmutex_t tcp_g_q_lock; 1087 1088 /* Protected by tcp_hsp_lock */ 1089 /* 1090 * XXX The host param mechanism should go away and instead we should use 1091 * the metrics associated with the routes to determine the default sndspace 1092 * and rcvspace. 1093 */ 1094 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1095 krwlock_t tcp_hsp_lock; 1096 1097 /* 1098 * Extra privileged ports. In host byte order. 1099 * Protected by tcp_epriv_port_lock. 1100 */ 1101 #define TCP_NUM_EPRIV_PORTS 64 1102 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1103 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1104 kmutex_t tcp_epriv_port_lock; 1105 1106 /* 1107 * The smallest anonymous port in the privileged port range which TCP 1108 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1109 */ 1110 static in_port_t tcp_min_anonpriv_port = 512; 1111 1112 /* Only modified during _init and _fini thus no locking is needed. */ 1113 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1114 1115 /* Hint not protected by any lock */ 1116 static uint_t tcp_next_port_to_try; 1117 1118 1119 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1120 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1121 1122 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1123 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1124 1125 /* 1126 * TCP has a private interface for other kernel modules to reserve a 1127 * port range for them to use. Once reserved, TCP will not use any ports 1128 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1129 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1130 * has to be verified. 1131 * 1132 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1133 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1134 * range is [port a, port b] inclusive. And each port range is between 1135 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1136 * 1137 * Note that the default anonymous port range starts from 32768. There is 1138 * no port "collision" between that and the reserved port range. If there 1139 * is port collision (because the default smallest anonymous port is lowered 1140 * or some apps specifically bind to ports in the reserved port range), the 1141 * system may not be able to reserve a port range even there are enough 1142 * unbound ports as a reserved port range contains consecutive ports . 1143 */ 1144 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1145 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1146 #define TCP_SMALLEST_RESERVED_PORT 10240 1147 #define TCP_LARGEST_RESERVED_PORT 20480 1148 1149 /* Structure to represent those reserved port ranges. */ 1150 typedef struct tcp_rport_s { 1151 in_port_t lo_port; 1152 in_port_t hi_port; 1153 tcp_t **temp_tcp_array; 1154 } tcp_rport_t; 1155 1156 /* The reserved port array. */ 1157 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1158 1159 /* Locks to protect the tcp_reserved_ports array. */ 1160 static krwlock_t tcp_reserved_port_lock; 1161 1162 /* The number of ranges in the array. */ 1163 uint32_t tcp_reserved_port_array_size = 0; 1164 1165 /* 1166 * MIB-2 stuff for SNMP 1167 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1168 */ 1169 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1170 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1171 1172 boolean_t tcp_icmp_source_quench = B_FALSE; 1173 /* 1174 * Following assumes TPI alignment requirements stay along 32 bit 1175 * boundaries 1176 */ 1177 #define ROUNDUP32(x) \ 1178 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1179 1180 /* Template for response to info request. */ 1181 static struct T_info_ack tcp_g_t_info_ack = { 1182 T_INFO_ACK, /* PRIM_type */ 1183 0, /* TSDU_size */ 1184 T_INFINITE, /* ETSDU_size */ 1185 T_INVALID, /* CDATA_size */ 1186 T_INVALID, /* DDATA_size */ 1187 sizeof (sin_t), /* ADDR_size */ 1188 0, /* OPT_size - not initialized here */ 1189 TIDUSZ, /* TIDU_size */ 1190 T_COTS_ORD, /* SERV_type */ 1191 TCPS_IDLE, /* CURRENT_state */ 1192 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1193 }; 1194 1195 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1196 T_INFO_ACK, /* PRIM_type */ 1197 0, /* TSDU_size */ 1198 T_INFINITE, /* ETSDU_size */ 1199 T_INVALID, /* CDATA_size */ 1200 T_INVALID, /* DDATA_size */ 1201 sizeof (sin6_t), /* ADDR_size */ 1202 0, /* OPT_size - not initialized here */ 1203 TIDUSZ, /* TIDU_size */ 1204 T_COTS_ORD, /* SERV_type */ 1205 TCPS_IDLE, /* CURRENT_state */ 1206 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1207 }; 1208 1209 #define MS 1L 1210 #define SECONDS (1000 * MS) 1211 #define MINUTES (60 * SECONDS) 1212 #define HOURS (60 * MINUTES) 1213 #define DAYS (24 * HOURS) 1214 1215 #define PARAM_MAX (~(uint32_t)0) 1216 1217 /* Max size IP datagram is 64k - 1 */ 1218 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1219 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1220 /* Max of the above */ 1221 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1222 1223 /* Largest TCP port number */ 1224 #define TCP_MAX_PORT (64 * 1024 - 1) 1225 1226 /* 1227 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1228 * layer header. It has to be a multiple of 4. 1229 */ 1230 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1231 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1232 1233 /* 1234 * All of these are alterable, within the min/max values given, at run time. 1235 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1236 * per the TCP spec. 1237 */ 1238 /* BEGIN CSTYLED */ 1239 tcpparam_t tcp_param_arr[] = { 1240 /*min max value name */ 1241 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1242 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1243 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1244 { 1, 1024, 1, "tcp_conn_req_min" }, 1245 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1246 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1247 { 0, 10, 0, "tcp_debug" }, 1248 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1249 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1250 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1251 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1252 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1253 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1254 { 1, 255, 64, "tcp_ipv4_ttl"}, 1255 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1256 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1257 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1258 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1259 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1260 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1261 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1262 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1263 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1264 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1265 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1266 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1267 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1268 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1269 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1270 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1271 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1272 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1273 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1274 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1275 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1276 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1277 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1278 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1279 /* 1280 * Question: What default value should I set for tcp_strong_iss? 1281 */ 1282 { 0, 2, 1, "tcp_strong_iss"}, 1283 { 0, 65536, 20, "tcp_rtt_updates"}, 1284 { 0, 1, 1, "tcp_wscale_always"}, 1285 { 0, 1, 0, "tcp_tstamp_always"}, 1286 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1287 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1288 { 0, 16, 2, "tcp_deferred_acks_max"}, 1289 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1290 { 1, 4, 4, "tcp_slow_start_initial"}, 1291 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1292 { 0, 2, 2, "tcp_sack_permitted"}, 1293 { 0, 1, 0, "tcp_trace"}, 1294 { 0, 1, 1, "tcp_compression_enabled"}, 1295 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1296 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1297 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1298 { 0, 1, 0, "tcp_rev_src_routes"}, 1299 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1300 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1301 { 0, 16, 8, "tcp_local_dacks_max"}, 1302 { 0, 2, 1, "tcp_ecn_permitted"}, 1303 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1304 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1305 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1306 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1307 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1308 }; 1309 /* END CSTYLED */ 1310 1311 /* 1312 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1313 * each header fragment in the header buffer. Each parameter value has 1314 * to be a multiple of 4 (32-bit aligned). 1315 */ 1316 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1317 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1318 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1319 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1320 1321 /* 1322 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1323 * the maximum number of payload buffers associated per Multidata. 1324 */ 1325 static tcpparam_t tcp_mdt_max_pbufs_param = 1326 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1327 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1328 1329 /* Round up the value to the nearest mss. */ 1330 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1331 1332 /* 1333 * Set ECN capable transport (ECT) code point in IP header. 1334 * 1335 * Note that there are 2 ECT code points '01' and '10', which are called 1336 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1337 * point ECT(0) for TCP as described in RFC 2481. 1338 */ 1339 #define SET_ECT(tcp, iph) \ 1340 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1341 /* We need to clear the code point first. */ \ 1342 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1343 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1344 } else { \ 1345 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1346 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1347 } 1348 1349 /* 1350 * The format argument to pass to tcp_display(). 1351 * DISP_PORT_ONLY means that the returned string has only port info. 1352 * DISP_ADDR_AND_PORT means that the returned string also contains the 1353 * remote and local IP address. 1354 */ 1355 #define DISP_PORT_ONLY 1 1356 #define DISP_ADDR_AND_PORT 2 1357 1358 /* 1359 * This controls the rate some ndd info report functions can be used 1360 * by non-privileged users. It stores the last time such info is 1361 * requested. When those report functions are called again, this 1362 * is checked with the current time and compare with the ndd param 1363 * tcp_ndd_get_info_interval. 1364 */ 1365 static clock_t tcp_last_ndd_get_info_time = 0; 1366 #define NDD_TOO_QUICK_MSG \ 1367 "ndd get info rate too high for non-privileged users, try again " \ 1368 "later.\n" 1369 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1370 1371 #define IS_VMLOANED_MBLK(mp) \ 1372 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1373 1374 /* 1375 * These two variables control the rate for TCP to generate RSTs in 1376 * response to segments not belonging to any connections. We limit 1377 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1378 * each 1 second interval. This is to protect TCP against DoS attack. 1379 */ 1380 static clock_t tcp_last_rst_intrvl; 1381 static uint32_t tcp_rst_cnt; 1382 1383 /* The number of RST not sent because of the rate limit. */ 1384 static uint32_t tcp_rst_unsent; 1385 1386 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1387 boolean_t tcp_mdt_chain = B_TRUE; 1388 1389 /* 1390 * MDT threshold in the form of effective send MSS multiplier; we take 1391 * the MDT path if the amount of unsent data exceeds the threshold value 1392 * (default threshold is 1*SMSS). 1393 */ 1394 uint_t tcp_mdt_smss_threshold = 1; 1395 1396 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1397 1398 /* 1399 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1400 * tunable settable via NDD. Otherwise, the per-connection behavior is 1401 * determined dynamically during tcp_adapt_ire(), which is the default. 1402 */ 1403 boolean_t tcp_static_maxpsz = B_FALSE; 1404 1405 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1406 uint32_t tcp_random_anon_port = 1; 1407 1408 /* 1409 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1410 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1411 * data, TCP will not respond with an ACK. RFC 793 requires that 1412 * TCP responds with an ACK for such a bogus ACK. By not following 1413 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1414 * an attacker successfully spoofs an acceptable segment to our 1415 * peer; or when our peer is "confused." 1416 */ 1417 uint32_t tcp_drop_ack_unsent_cnt = 10; 1418 1419 /* 1420 * Hook functions to enable cluster networking 1421 * On non-clustered systems these vectors must always be NULL. 1422 */ 1423 1424 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1425 uint8_t *laddrp, in_port_t lport) = NULL; 1426 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1427 uint8_t *laddrp, in_port_t lport) = NULL; 1428 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1429 uint8_t *laddrp, in_port_t lport, 1430 uint8_t *faddrp, in_port_t fport) = NULL; 1431 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1432 uint8_t *laddrp, in_port_t lport, 1433 uint8_t *faddrp, in_port_t fport) = NULL; 1434 1435 /* 1436 * The following are defined in ip.c 1437 */ 1438 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1439 uint8_t *laddrp); 1440 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1441 uint8_t *laddrp, uint8_t *faddrp); 1442 1443 #define CL_INET_CONNECT(tcp) { \ 1444 if (cl_inet_connect != NULL) { \ 1445 /* \ 1446 * Running in cluster mode - register active connection \ 1447 * information \ 1448 */ \ 1449 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1450 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1451 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1452 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1453 (in_port_t)(tcp)->tcp_lport, \ 1454 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1455 (in_port_t)(tcp)->tcp_fport); \ 1456 } \ 1457 } else { \ 1458 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1459 &(tcp)->tcp_ip6h->ip6_src)) {\ 1460 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1461 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1462 (in_port_t)(tcp)->tcp_lport, \ 1463 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1464 (in_port_t)(tcp)->tcp_fport); \ 1465 } \ 1466 } \ 1467 } \ 1468 } 1469 1470 #define CL_INET_DISCONNECT(tcp) { \ 1471 if (cl_inet_disconnect != NULL) { \ 1472 /* \ 1473 * Running in cluster mode - deregister active \ 1474 * connection information \ 1475 */ \ 1476 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1477 if ((tcp)->tcp_ip_src != 0) { \ 1478 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1479 AF_INET, \ 1480 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1481 (in_port_t)(tcp)->tcp_lport, \ 1482 (uint8_t *) \ 1483 (&((tcp)->tcp_ipha->ipha_dst)),\ 1484 (in_port_t)(tcp)->tcp_fport); \ 1485 } \ 1486 } else { \ 1487 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1488 &(tcp)->tcp_ip_src_v6)) { \ 1489 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1490 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1491 (in_port_t)(tcp)->tcp_lport, \ 1492 (uint8_t *) \ 1493 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1494 (in_port_t)(tcp)->tcp_fport); \ 1495 } \ 1496 } \ 1497 } \ 1498 } 1499 1500 /* 1501 * Cluster networking hook for traversing current connection list. 1502 * This routine is used to extract the current list of live connections 1503 * which must continue to to be dispatched to this node. 1504 */ 1505 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1506 1507 /* 1508 * Figure out the value of window scale opton. Note that the rwnd is 1509 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1510 * We cannot find the scale value and then do a round up of tcp_rwnd 1511 * because the scale value may not be correct after that. 1512 * 1513 * Set the compiler flag to make this function inline. 1514 */ 1515 static void 1516 tcp_set_ws_value(tcp_t *tcp) 1517 { 1518 int i; 1519 uint32_t rwnd = tcp->tcp_rwnd; 1520 1521 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1522 i++, rwnd >>= 1) 1523 ; 1524 tcp->tcp_rcv_ws = i; 1525 } 1526 1527 /* 1528 * Remove a connection from the list of detached TIME_WAIT connections. 1529 */ 1530 static void 1531 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1532 { 1533 boolean_t locked = B_FALSE; 1534 1535 if (tcp_time_wait == NULL) { 1536 tcp_time_wait = *((tcp_squeue_priv_t **) 1537 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1538 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1539 locked = B_TRUE; 1540 } 1541 1542 if (tcp->tcp_time_wait_expire == 0) { 1543 ASSERT(tcp->tcp_time_wait_next == NULL); 1544 ASSERT(tcp->tcp_time_wait_prev == NULL); 1545 if (locked) 1546 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1547 return; 1548 } 1549 ASSERT(TCP_IS_DETACHED(tcp)); 1550 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1551 1552 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1553 ASSERT(tcp->tcp_time_wait_prev == NULL); 1554 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1555 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1556 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1557 NULL; 1558 } else { 1559 tcp_time_wait->tcp_time_wait_tail = NULL; 1560 } 1561 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1562 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1563 ASSERT(tcp->tcp_time_wait_next == NULL); 1564 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1565 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1566 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1567 } else { 1568 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1569 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1570 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1571 tcp->tcp_time_wait_next; 1572 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1573 tcp->tcp_time_wait_prev; 1574 } 1575 tcp->tcp_time_wait_next = NULL; 1576 tcp->tcp_time_wait_prev = NULL; 1577 tcp->tcp_time_wait_expire = 0; 1578 1579 if (locked) 1580 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1581 } 1582 1583 /* 1584 * Add a connection to the list of detached TIME_WAIT connections 1585 * and set its time to expire. 1586 */ 1587 static void 1588 tcp_time_wait_append(tcp_t *tcp) 1589 { 1590 tcp_squeue_priv_t *tcp_time_wait = 1591 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1592 SQPRIVATE_TCP)); 1593 1594 tcp_timers_stop(tcp); 1595 1596 /* Freed above */ 1597 ASSERT(tcp->tcp_timer_tid == 0); 1598 ASSERT(tcp->tcp_ack_tid == 0); 1599 1600 /* must have happened at the time of detaching the tcp */ 1601 ASSERT(tcp->tcp_ptpahn == NULL); 1602 ASSERT(tcp->tcp_flow_stopped == 0); 1603 ASSERT(tcp->tcp_time_wait_next == NULL); 1604 ASSERT(tcp->tcp_time_wait_prev == NULL); 1605 ASSERT(tcp->tcp_time_wait_expire == NULL); 1606 ASSERT(tcp->tcp_listener == NULL); 1607 1608 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1609 /* 1610 * The value computed below in tcp->tcp_time_wait_expire may 1611 * appear negative or wrap around. That is ok since our 1612 * interest is only in the difference between the current lbolt 1613 * value and tcp->tcp_time_wait_expire. But the value should not 1614 * be zero, since it means the tcp is not in the TIME_WAIT list. 1615 * The corresponding comparison in tcp_time_wait_collector() uses 1616 * modular arithmetic. 1617 */ 1618 tcp->tcp_time_wait_expire += 1619 drv_usectohz(tcp_time_wait_interval * 1000); 1620 if (tcp->tcp_time_wait_expire == 0) 1621 tcp->tcp_time_wait_expire = 1; 1622 1623 ASSERT(TCP_IS_DETACHED(tcp)); 1624 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1625 ASSERT(tcp->tcp_time_wait_next == NULL); 1626 ASSERT(tcp->tcp_time_wait_prev == NULL); 1627 TCP_DBGSTAT(tcp_time_wait); 1628 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1629 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1630 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1631 tcp_time_wait->tcp_time_wait_head = tcp; 1632 } else { 1633 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1634 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1635 TCPS_TIME_WAIT); 1636 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1637 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1638 } 1639 tcp_time_wait->tcp_time_wait_tail = tcp; 1640 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1641 } 1642 1643 /* ARGSUSED */ 1644 void 1645 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1646 { 1647 conn_t *connp = (conn_t *)arg; 1648 tcp_t *tcp = connp->conn_tcp; 1649 1650 ASSERT(tcp != NULL); 1651 if (tcp->tcp_state == TCPS_CLOSED) { 1652 return; 1653 } 1654 1655 ASSERT((tcp->tcp_family == AF_INET && 1656 tcp->tcp_ipversion == IPV4_VERSION) || 1657 (tcp->tcp_family == AF_INET6 && 1658 (tcp->tcp_ipversion == IPV4_VERSION || 1659 tcp->tcp_ipversion == IPV6_VERSION))); 1660 ASSERT(!tcp->tcp_listener); 1661 1662 TCP_STAT(tcp_time_wait_reap); 1663 ASSERT(TCP_IS_DETACHED(tcp)); 1664 1665 /* 1666 * Because they have no upstream client to rebind or tcp_close() 1667 * them later, we axe the connection here and now. 1668 */ 1669 tcp_close_detached(tcp); 1670 } 1671 1672 void 1673 tcp_cleanup(tcp_t *tcp) 1674 { 1675 mblk_t *mp; 1676 char *tcp_iphc; 1677 int tcp_iphc_len; 1678 int tcp_hdr_grown; 1679 tcp_sack_info_t *tcp_sack_info; 1680 conn_t *connp = tcp->tcp_connp; 1681 1682 tcp_bind_hash_remove(tcp); 1683 tcp_free(tcp); 1684 1685 /* Release any SSL context */ 1686 if (tcp->tcp_kssl_ent != NULL) { 1687 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1688 tcp->tcp_kssl_ent = NULL; 1689 } 1690 1691 if (tcp->tcp_kssl_ctx != NULL) { 1692 kssl_release_ctx(tcp->tcp_kssl_ctx); 1693 tcp->tcp_kssl_ctx = NULL; 1694 } 1695 tcp->tcp_kssl_pending = B_FALSE; 1696 1697 conn_delete_ire(connp, NULL); 1698 if (connp->conn_flags & IPCL_TCPCONN) { 1699 if (connp->conn_latch != NULL) 1700 IPLATCH_REFRELE(connp->conn_latch); 1701 if (connp->conn_policy != NULL) 1702 IPPH_REFRELE(connp->conn_policy); 1703 } 1704 1705 /* 1706 * Since we will bzero the entire structure, we need to 1707 * remove it and reinsert it in global hash list. We 1708 * know the walkers can't get to this conn because we 1709 * had set CONDEMNED flag earlier and checked reference 1710 * under conn_lock so walker won't pick it and when we 1711 * go the ipcl_globalhash_remove() below, no walker 1712 * can get to it. 1713 */ 1714 ipcl_globalhash_remove(connp); 1715 1716 /* Save some state */ 1717 mp = tcp->tcp_timercache; 1718 1719 tcp_sack_info = tcp->tcp_sack_info; 1720 tcp_iphc = tcp->tcp_iphc; 1721 tcp_iphc_len = tcp->tcp_iphc_len; 1722 tcp_hdr_grown = tcp->tcp_hdr_grown; 1723 1724 if (connp->conn_cred != NULL) 1725 crfree(connp->conn_cred); 1726 if (connp->conn_peercred != NULL) 1727 crfree(connp->conn_peercred); 1728 bzero(connp, sizeof (conn_t)); 1729 bzero(tcp, sizeof (tcp_t)); 1730 1731 /* restore the state */ 1732 tcp->tcp_timercache = mp; 1733 1734 tcp->tcp_sack_info = tcp_sack_info; 1735 tcp->tcp_iphc = tcp_iphc; 1736 tcp->tcp_iphc_len = tcp_iphc_len; 1737 tcp->tcp_hdr_grown = tcp_hdr_grown; 1738 1739 1740 tcp->tcp_connp = connp; 1741 1742 connp->conn_tcp = tcp; 1743 connp->conn_flags = IPCL_TCPCONN; 1744 connp->conn_state_flags = CONN_INCIPIENT; 1745 connp->conn_ulp = IPPROTO_TCP; 1746 connp->conn_ref = 1; 1747 1748 ipcl_globalhash_insert(connp); 1749 } 1750 1751 /* 1752 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1753 * is done forwards from the head. 1754 */ 1755 /* ARGSUSED */ 1756 void 1757 tcp_time_wait_collector(void *arg) 1758 { 1759 tcp_t *tcp; 1760 clock_t now; 1761 mblk_t *mp; 1762 conn_t *connp; 1763 kmutex_t *lock; 1764 1765 squeue_t *sqp = (squeue_t *)arg; 1766 tcp_squeue_priv_t *tcp_time_wait = 1767 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1768 1769 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1770 tcp_time_wait->tcp_time_wait_tid = 0; 1771 1772 if (tcp_time_wait->tcp_free_list != NULL && 1773 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1774 TCP_STAT(tcp_freelist_cleanup); 1775 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1776 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1777 CONN_DEC_REF(tcp->tcp_connp); 1778 } 1779 tcp_time_wait->tcp_free_list_cnt = 0; 1780 } 1781 1782 /* 1783 * In order to reap time waits reliably, we should use a 1784 * source of time that is not adjustable by the user -- hence 1785 * the call to ddi_get_lbolt(). 1786 */ 1787 now = ddi_get_lbolt(); 1788 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1789 /* 1790 * Compare times using modular arithmetic, since 1791 * lbolt can wrapover. 1792 */ 1793 if ((now - tcp->tcp_time_wait_expire) < 0) { 1794 break; 1795 } 1796 1797 tcp_time_wait_remove(tcp, tcp_time_wait); 1798 1799 connp = tcp->tcp_connp; 1800 ASSERT(connp->conn_fanout != NULL); 1801 lock = &connp->conn_fanout->connf_lock; 1802 /* 1803 * This is essentially a TW reclaim fast path optimization for 1804 * performance where the timewait collector checks under the 1805 * fanout lock (so that no one else can get access to the 1806 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1807 * the classifier hash list. If ref count is indeed 2, we can 1808 * just remove the conn under the fanout lock and avoid 1809 * cleaning up the conn under the squeue, provided that 1810 * clustering callbacks are not enabled. If clustering is 1811 * enabled, we need to make the clustering callback before 1812 * setting the CONDEMNED flag and after dropping all locks and 1813 * so we forego this optimization and fall back to the slow 1814 * path. Also please see the comments in tcp_closei_local 1815 * regarding the refcnt logic. 1816 * 1817 * Since we are holding the tcp_time_wait_lock, its better 1818 * not to block on the fanout_lock because other connections 1819 * can't add themselves to time_wait list. So we do a 1820 * tryenter instead of mutex_enter. 1821 */ 1822 if (mutex_tryenter(lock)) { 1823 mutex_enter(&connp->conn_lock); 1824 if ((connp->conn_ref == 2) && 1825 (cl_inet_disconnect == NULL)) { 1826 ipcl_hash_remove_locked(connp, 1827 connp->conn_fanout); 1828 /* 1829 * Set the CONDEMNED flag now itself so that 1830 * the refcnt cannot increase due to any 1831 * walker. But we have still not cleaned up 1832 * conn_ire_cache. This is still ok since 1833 * we are going to clean it up in tcp_cleanup 1834 * immediately and any interface unplumb 1835 * thread will wait till the ire is blown away 1836 */ 1837 connp->conn_state_flags |= CONN_CONDEMNED; 1838 mutex_exit(lock); 1839 mutex_exit(&connp->conn_lock); 1840 if (tcp_time_wait->tcp_free_list_cnt < 1841 tcp_free_list_max_cnt) { 1842 /* Add to head of tcp_free_list */ 1843 mutex_exit( 1844 &tcp_time_wait->tcp_time_wait_lock); 1845 tcp_cleanup(tcp); 1846 mutex_enter( 1847 &tcp_time_wait->tcp_time_wait_lock); 1848 tcp->tcp_time_wait_next = 1849 tcp_time_wait->tcp_free_list; 1850 tcp_time_wait->tcp_free_list = tcp; 1851 tcp_time_wait->tcp_free_list_cnt++; 1852 continue; 1853 } else { 1854 /* Do not add to tcp_free_list */ 1855 mutex_exit( 1856 &tcp_time_wait->tcp_time_wait_lock); 1857 tcp_bind_hash_remove(tcp); 1858 conn_delete_ire(tcp->tcp_connp, NULL); 1859 CONN_DEC_REF(tcp->tcp_connp); 1860 } 1861 } else { 1862 CONN_INC_REF_LOCKED(connp); 1863 mutex_exit(lock); 1864 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1865 mutex_exit(&connp->conn_lock); 1866 /* 1867 * We can reuse the closemp here since conn has 1868 * detached (otherwise we wouldn't even be in 1869 * time_wait list). 1870 */ 1871 mp = &tcp->tcp_closemp; 1872 squeue_fill(connp->conn_sqp, mp, 1873 tcp_timewait_output, connp, 1874 SQTAG_TCP_TIMEWAIT); 1875 } 1876 } else { 1877 mutex_enter(&connp->conn_lock); 1878 CONN_INC_REF_LOCKED(connp); 1879 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1880 mutex_exit(&connp->conn_lock); 1881 /* 1882 * We can reuse the closemp here since conn has 1883 * detached (otherwise we wouldn't even be in 1884 * time_wait list). 1885 */ 1886 mp = &tcp->tcp_closemp; 1887 squeue_fill(connp->conn_sqp, mp, 1888 tcp_timewait_output, connp, 0); 1889 } 1890 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1891 } 1892 1893 if (tcp_time_wait->tcp_free_list != NULL) 1894 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1895 1896 tcp_time_wait->tcp_time_wait_tid = 1897 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1898 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1899 } 1900 1901 /* 1902 * Reply to a clients T_CONN_RES TPI message. This function 1903 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1904 * on the acceptor STREAM and processed in tcp_wput_accept(). 1905 * Read the block comment on top of tcp_conn_request(). 1906 */ 1907 static void 1908 tcp_accept(tcp_t *listener, mblk_t *mp) 1909 { 1910 tcp_t *acceptor; 1911 tcp_t *eager; 1912 tcp_t *tcp; 1913 struct T_conn_res *tcr; 1914 t_uscalar_t acceptor_id; 1915 t_scalar_t seqnum; 1916 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1917 mblk_t *ok_mp; 1918 mblk_t *mp1; 1919 1920 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1921 tcp_err_ack(listener, mp, TPROTO, 0); 1922 return; 1923 } 1924 tcr = (struct T_conn_res *)mp->b_rptr; 1925 1926 /* 1927 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1928 * read side queue of the streams device underneath us i.e. the 1929 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1930 * look it up in the queue_hash. Under LP64 it sends down the 1931 * minor_t of the accepting endpoint. 1932 * 1933 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1934 * fanout hash lock is held. 1935 * This prevents any thread from entering the acceptor queue from 1936 * below (since it has not been hard bound yet i.e. any inbound 1937 * packets will arrive on the listener or default tcp queue and 1938 * go through tcp_lookup). 1939 * The CONN_INC_REF will prevent the acceptor from closing. 1940 * 1941 * XXX It is still possible for a tli application to send down data 1942 * on the accepting stream while another thread calls t_accept. 1943 * This should not be a problem for well-behaved applications since 1944 * the T_OK_ACK is sent after the queue swapping is completed. 1945 * 1946 * If the accepting fd is the same as the listening fd, avoid 1947 * queue hash lookup since that will return an eager listener in a 1948 * already established state. 1949 */ 1950 acceptor_id = tcr->ACCEPTOR_id; 1951 mutex_enter(&listener->tcp_eager_lock); 1952 if (listener->tcp_acceptor_id == acceptor_id) { 1953 eager = listener->tcp_eager_next_q; 1954 /* only count how many T_CONN_INDs so don't count q0 */ 1955 if ((listener->tcp_conn_req_cnt_q != 1) || 1956 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1957 mutex_exit(&listener->tcp_eager_lock); 1958 tcp_err_ack(listener, mp, TBADF, 0); 1959 return; 1960 } 1961 if (listener->tcp_conn_req_cnt_q0 != 0) { 1962 /* Throw away all the eagers on q0. */ 1963 tcp_eager_cleanup(listener, 1); 1964 } 1965 if (listener->tcp_syn_defense) { 1966 listener->tcp_syn_defense = B_FALSE; 1967 if (listener->tcp_ip_addr_cache != NULL) { 1968 kmem_free(listener->tcp_ip_addr_cache, 1969 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1970 listener->tcp_ip_addr_cache = NULL; 1971 } 1972 } 1973 /* 1974 * Transfer tcp_conn_req_max to the eager so that when 1975 * a disconnect occurs we can revert the endpoint to the 1976 * listen state. 1977 */ 1978 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1979 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1980 /* 1981 * Get a reference on the acceptor just like the 1982 * tcp_acceptor_hash_lookup below. 1983 */ 1984 acceptor = listener; 1985 CONN_INC_REF(acceptor->tcp_connp); 1986 } else { 1987 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1988 if (acceptor == NULL) { 1989 if (listener->tcp_debug) { 1990 (void) strlog(TCP_MOD_ID, 0, 1, 1991 SL_ERROR|SL_TRACE, 1992 "tcp_accept: did not find acceptor 0x%x\n", 1993 acceptor_id); 1994 } 1995 mutex_exit(&listener->tcp_eager_lock); 1996 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1997 return; 1998 } 1999 /* 2000 * Verify acceptor state. The acceptable states for an acceptor 2001 * include TCPS_IDLE and TCPS_BOUND. 2002 */ 2003 switch (acceptor->tcp_state) { 2004 case TCPS_IDLE: 2005 /* FALLTHRU */ 2006 case TCPS_BOUND: 2007 break; 2008 default: 2009 CONN_DEC_REF(acceptor->tcp_connp); 2010 mutex_exit(&listener->tcp_eager_lock); 2011 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2012 return; 2013 } 2014 } 2015 2016 /* The listener must be in TCPS_LISTEN */ 2017 if (listener->tcp_state != TCPS_LISTEN) { 2018 CONN_DEC_REF(acceptor->tcp_connp); 2019 mutex_exit(&listener->tcp_eager_lock); 2020 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2021 return; 2022 } 2023 2024 /* 2025 * Rendezvous with an eager connection request packet hanging off 2026 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2027 * tcp structure when the connection packet arrived in 2028 * tcp_conn_request(). 2029 */ 2030 seqnum = tcr->SEQ_number; 2031 eager = listener; 2032 do { 2033 eager = eager->tcp_eager_next_q; 2034 if (eager == NULL) { 2035 CONN_DEC_REF(acceptor->tcp_connp); 2036 mutex_exit(&listener->tcp_eager_lock); 2037 tcp_err_ack(listener, mp, TBADSEQ, 0); 2038 return; 2039 } 2040 } while (eager->tcp_conn_req_seqnum != seqnum); 2041 mutex_exit(&listener->tcp_eager_lock); 2042 2043 /* 2044 * At this point, both acceptor and listener have 2 ref 2045 * that they begin with. Acceptor has one additional ref 2046 * we placed in lookup while listener has 3 additional 2047 * ref for being behind the squeue (tcp_accept() is 2048 * done on listener's squeue); being in classifier hash; 2049 * and eager's ref on listener. 2050 */ 2051 ASSERT(listener->tcp_connp->conn_ref >= 5); 2052 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2053 2054 /* 2055 * The eager at this point is set in its own squeue and 2056 * could easily have been killed (tcp_accept_finish will 2057 * deal with that) because of a TH_RST so we can only 2058 * ASSERT for a single ref. 2059 */ 2060 ASSERT(eager->tcp_connp->conn_ref >= 1); 2061 2062 /* Pre allocate the stroptions mblk also */ 2063 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2064 if (opt_mp == NULL) { 2065 CONN_DEC_REF(acceptor->tcp_connp); 2066 CONN_DEC_REF(eager->tcp_connp); 2067 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2068 return; 2069 } 2070 DB_TYPE(opt_mp) = M_SETOPTS; 2071 opt_mp->b_wptr += sizeof (struct stroptions); 2072 2073 /* 2074 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2075 * from listener to acceptor. The message is chained on opt_mp 2076 * which will be sent onto eager's squeue. 2077 */ 2078 if (listener->tcp_bound_if != 0) { 2079 /* allocate optmgmt req */ 2080 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2081 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2082 sizeof (int)); 2083 if (mp1 != NULL) 2084 linkb(opt_mp, mp1); 2085 } 2086 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2087 uint_t on = 1; 2088 2089 /* allocate optmgmt req */ 2090 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2091 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2092 if (mp1 != NULL) 2093 linkb(opt_mp, mp1); 2094 } 2095 2096 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2097 if ((mp1 = copymsg(mp)) == NULL) { 2098 CONN_DEC_REF(acceptor->tcp_connp); 2099 CONN_DEC_REF(eager->tcp_connp); 2100 freemsg(opt_mp); 2101 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2102 return; 2103 } 2104 2105 tcr = (struct T_conn_res *)mp1->b_rptr; 2106 2107 /* 2108 * This is an expanded version of mi_tpi_ok_ack_alloc() 2109 * which allocates a larger mblk and appends the new 2110 * local address to the ok_ack. The address is copied by 2111 * soaccept() for getsockname(). 2112 */ 2113 { 2114 int extra; 2115 2116 extra = (eager->tcp_family == AF_INET) ? 2117 sizeof (sin_t) : sizeof (sin6_t); 2118 2119 /* 2120 * Try to re-use mp, if possible. Otherwise, allocate 2121 * an mblk and return it as ok_mp. In any case, mp 2122 * is no longer usable upon return. 2123 */ 2124 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2125 CONN_DEC_REF(acceptor->tcp_connp); 2126 CONN_DEC_REF(eager->tcp_connp); 2127 freemsg(opt_mp); 2128 /* Original mp has been freed by now, so use mp1 */ 2129 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2130 return; 2131 } 2132 2133 mp = NULL; /* We should never use mp after this point */ 2134 2135 switch (extra) { 2136 case sizeof (sin_t): { 2137 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2138 2139 ok_mp->b_wptr += extra; 2140 sin->sin_family = AF_INET; 2141 sin->sin_port = eager->tcp_lport; 2142 sin->sin_addr.s_addr = 2143 eager->tcp_ipha->ipha_src; 2144 break; 2145 } 2146 case sizeof (sin6_t): { 2147 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2148 2149 ok_mp->b_wptr += extra; 2150 sin6->sin6_family = AF_INET6; 2151 sin6->sin6_port = eager->tcp_lport; 2152 if (eager->tcp_ipversion == IPV4_VERSION) { 2153 sin6->sin6_flowinfo = 0; 2154 IN6_IPADDR_TO_V4MAPPED( 2155 eager->tcp_ipha->ipha_src, 2156 &sin6->sin6_addr); 2157 } else { 2158 ASSERT(eager->tcp_ip6h != NULL); 2159 sin6->sin6_flowinfo = 2160 eager->tcp_ip6h->ip6_vcf & 2161 ~IPV6_VERS_AND_FLOW_MASK; 2162 sin6->sin6_addr = 2163 eager->tcp_ip6h->ip6_src; 2164 } 2165 break; 2166 } 2167 default: 2168 break; 2169 } 2170 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2171 } 2172 2173 /* 2174 * If there are no options we know that the T_CONN_RES will 2175 * succeed. However, we can't send the T_OK_ACK upstream until 2176 * the tcp_accept_swap is done since it would be dangerous to 2177 * let the application start using the new fd prior to the swap. 2178 */ 2179 tcp_accept_swap(listener, acceptor, eager); 2180 2181 /* 2182 * tcp_accept_swap unlinks eager from listener but does not drop 2183 * the eager's reference on the listener. 2184 */ 2185 ASSERT(eager->tcp_listener == NULL); 2186 ASSERT(listener->tcp_connp->conn_ref >= 5); 2187 2188 /* 2189 * The eager is now associated with its own queue. Insert in 2190 * the hash so that the connection can be reused for a future 2191 * T_CONN_RES. 2192 */ 2193 tcp_acceptor_hash_insert(acceptor_id, eager); 2194 2195 /* 2196 * We now do the processing of options with T_CONN_RES. 2197 * We delay till now since we wanted to have queue to pass to 2198 * option processing routines that points back to the right 2199 * instance structure which does not happen until after 2200 * tcp_accept_swap(). 2201 * 2202 * Note: 2203 * The sanity of the logic here assumes that whatever options 2204 * are appropriate to inherit from listner=>eager are done 2205 * before this point, and whatever were to be overridden (or not) 2206 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2207 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2208 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2209 * This may not be true at this point in time but can be fixed 2210 * independently. This option processing code starts with 2211 * the instantiated acceptor instance and the final queue at 2212 * this point. 2213 */ 2214 2215 if (tcr->OPT_length != 0) { 2216 /* Options to process */ 2217 int t_error = 0; 2218 int sys_error = 0; 2219 int do_disconnect = 0; 2220 2221 if (tcp_conprim_opt_process(eager, mp1, 2222 &do_disconnect, &t_error, &sys_error) < 0) { 2223 eager->tcp_accept_error = 1; 2224 if (do_disconnect) { 2225 /* 2226 * An option failed which does not allow 2227 * connection to be accepted. 2228 * 2229 * We allow T_CONN_RES to succeed and 2230 * put a T_DISCON_IND on the eager queue. 2231 */ 2232 ASSERT(t_error == 0 && sys_error == 0); 2233 eager->tcp_send_discon_ind = 1; 2234 } else { 2235 ASSERT(t_error != 0); 2236 freemsg(ok_mp); 2237 /* 2238 * Original mp was either freed or set 2239 * to ok_mp above, so use mp1 instead. 2240 */ 2241 tcp_err_ack(listener, mp1, t_error, sys_error); 2242 goto finish; 2243 } 2244 } 2245 /* 2246 * Most likely success in setting options (except if 2247 * eager->tcp_send_discon_ind set). 2248 * mp1 option buffer represented by OPT_length/offset 2249 * potentially modified and contains results of setting 2250 * options at this point 2251 */ 2252 } 2253 2254 /* We no longer need mp1, since all options processing has passed */ 2255 freemsg(mp1); 2256 2257 putnext(listener->tcp_rq, ok_mp); 2258 2259 mutex_enter(&listener->tcp_eager_lock); 2260 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2261 tcp_t *tail; 2262 mblk_t *conn_ind; 2263 2264 /* 2265 * This path should not be executed if listener and 2266 * acceptor streams are the same. 2267 */ 2268 ASSERT(listener != acceptor); 2269 2270 tcp = listener->tcp_eager_prev_q0; 2271 /* 2272 * listener->tcp_eager_prev_q0 points to the TAIL of the 2273 * deferred T_conn_ind queue. We need to get to the head of 2274 * the queue in order to send up T_conn_ind the same order as 2275 * how the 3WHS is completed. 2276 */ 2277 while (tcp != listener) { 2278 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2279 break; 2280 else 2281 tcp = tcp->tcp_eager_prev_q0; 2282 } 2283 ASSERT(tcp != listener); 2284 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2285 ASSERT(conn_ind != NULL); 2286 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2287 2288 /* Move from q0 to q */ 2289 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2290 listener->tcp_conn_req_cnt_q0--; 2291 listener->tcp_conn_req_cnt_q++; 2292 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2293 tcp->tcp_eager_prev_q0; 2294 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2295 tcp->tcp_eager_next_q0; 2296 tcp->tcp_eager_prev_q0 = NULL; 2297 tcp->tcp_eager_next_q0 = NULL; 2298 tcp->tcp_conn_def_q0 = B_FALSE; 2299 2300 /* 2301 * Insert at end of the queue because sockfs sends 2302 * down T_CONN_RES in chronological order. Leaving 2303 * the older conn indications at front of the queue 2304 * helps reducing search time. 2305 */ 2306 tail = listener->tcp_eager_last_q; 2307 if (tail != NULL) 2308 tail->tcp_eager_next_q = tcp; 2309 else 2310 listener->tcp_eager_next_q = tcp; 2311 listener->tcp_eager_last_q = tcp; 2312 tcp->tcp_eager_next_q = NULL; 2313 mutex_exit(&listener->tcp_eager_lock); 2314 putnext(tcp->tcp_rq, conn_ind); 2315 } else { 2316 mutex_exit(&listener->tcp_eager_lock); 2317 } 2318 2319 /* 2320 * Done with the acceptor - free it 2321 * 2322 * Note: from this point on, no access to listener should be made 2323 * as listener can be equal to acceptor. 2324 */ 2325 finish: 2326 ASSERT(acceptor->tcp_detached); 2327 acceptor->tcp_rq = tcp_g_q; 2328 acceptor->tcp_wq = WR(tcp_g_q); 2329 (void) tcp_clean_death(acceptor, 0, 2); 2330 CONN_DEC_REF(acceptor->tcp_connp); 2331 2332 /* 2333 * In case we already received a FIN we have to make tcp_rput send 2334 * the ordrel_ind. This will also send up a window update if the window 2335 * has opened up. 2336 * 2337 * In the normal case of a successful connection acceptance 2338 * we give the O_T_BIND_REQ to the read side put procedure as an 2339 * indication that this was just accepted. This tells tcp_rput to 2340 * pass up any data queued in tcp_rcv_list. 2341 * 2342 * In the fringe case where options sent with T_CONN_RES failed and 2343 * we required, we would be indicating a T_DISCON_IND to blow 2344 * away this connection. 2345 */ 2346 2347 /* 2348 * XXX: we currently have a problem if XTI application closes the 2349 * acceptor stream in between. This problem exists in on10-gate also 2350 * and is well know but nothing can be done short of major rewrite 2351 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2352 * eager same squeue as listener (we can distinguish non socket 2353 * listeners at the time of handling a SYN in tcp_conn_request) 2354 * and do most of the work that tcp_accept_finish does here itself 2355 * and then get behind the acceptor squeue to access the acceptor 2356 * queue. 2357 */ 2358 /* 2359 * We already have a ref on tcp so no need to do one before squeue_fill 2360 */ 2361 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2362 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2363 } 2364 2365 /* 2366 * Swap information between the eager and acceptor for a TLI/XTI client. 2367 * The sockfs accept is done on the acceptor stream and control goes 2368 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2369 * called. In either case, both the eager and listener are in their own 2370 * perimeter (squeue) and the code has to deal with potential race. 2371 * 2372 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2373 */ 2374 static void 2375 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2376 { 2377 conn_t *econnp, *aconnp; 2378 2379 ASSERT(eager->tcp_rq == listener->tcp_rq); 2380 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2381 ASSERT(!eager->tcp_hard_bound); 2382 ASSERT(!TCP_IS_SOCKET(acceptor)); 2383 ASSERT(!TCP_IS_SOCKET(eager)); 2384 ASSERT(!TCP_IS_SOCKET(listener)); 2385 2386 acceptor->tcp_detached = B_TRUE; 2387 /* 2388 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2389 * the acceptor id. 2390 */ 2391 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2392 2393 /* remove eager from listen list... */ 2394 mutex_enter(&listener->tcp_eager_lock); 2395 tcp_eager_unlink(eager); 2396 ASSERT(eager->tcp_eager_next_q == NULL && 2397 eager->tcp_eager_last_q == NULL); 2398 ASSERT(eager->tcp_eager_next_q0 == NULL && 2399 eager->tcp_eager_prev_q0 == NULL); 2400 mutex_exit(&listener->tcp_eager_lock); 2401 eager->tcp_rq = acceptor->tcp_rq; 2402 eager->tcp_wq = acceptor->tcp_wq; 2403 2404 econnp = eager->tcp_connp; 2405 aconnp = acceptor->tcp_connp; 2406 2407 eager->tcp_rq->q_ptr = econnp; 2408 eager->tcp_wq->q_ptr = econnp; 2409 2410 /* 2411 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2412 * which might be a different squeue from our peer TCP instance. 2413 * For TCP Fusion, the peer expects that whenever tcp_detached is 2414 * clear, our TCP queues point to the acceptor's queues. Thus, use 2415 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2416 * above reach global visibility prior to the clearing of tcp_detached. 2417 */ 2418 membar_producer(); 2419 eager->tcp_detached = B_FALSE; 2420 2421 ASSERT(eager->tcp_ack_tid == 0); 2422 2423 econnp->conn_dev = aconnp->conn_dev; 2424 if (eager->tcp_cred != NULL) 2425 crfree(eager->tcp_cred); 2426 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2427 econnp->conn_zoneid = aconnp->conn_zoneid; 2428 aconnp->conn_cred = NULL; 2429 2430 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2431 aconnp->conn_mac_exempt = B_FALSE; 2432 2433 ASSERT(aconnp->conn_peercred == NULL); 2434 2435 /* Do the IPC initialization */ 2436 CONN_INC_REF(econnp); 2437 2438 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2439 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2440 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2441 econnp->conn_ulp = aconnp->conn_ulp; 2442 2443 /* Done with old IPC. Drop its ref on its connp */ 2444 CONN_DEC_REF(aconnp); 2445 } 2446 2447 2448 /* 2449 * Adapt to the information, such as rtt and rtt_sd, provided from the 2450 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2451 * 2452 * Checks for multicast and broadcast destination address. 2453 * Returns zero on failure; non-zero if ok. 2454 * 2455 * Note that the MSS calculation here is based on the info given in 2456 * the IRE. We do not do any calculation based on TCP options. They 2457 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2458 * knows which options to use. 2459 * 2460 * Note on how TCP gets its parameters for a connection. 2461 * 2462 * When a tcp_t structure is allocated, it gets all the default parameters. 2463 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2464 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2465 * default. But if there is an associated tcp_host_param, it will override 2466 * the metrics. 2467 * 2468 * An incoming SYN with a multicast or broadcast destination address, is dropped 2469 * in 1 of 2 places. 2470 * 2471 * 1. If the packet was received over the wire it is dropped in 2472 * ip_rput_process_broadcast() 2473 * 2474 * 2. If the packet was received through internal IP loopback, i.e. the packet 2475 * was generated and received on the same machine, it is dropped in 2476 * ip_wput_local() 2477 * 2478 * An incoming SYN with a multicast or broadcast source address is always 2479 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2480 * reject an attempt to connect to a broadcast or multicast (destination) 2481 * address. 2482 */ 2483 static int 2484 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2485 { 2486 tcp_hsp_t *hsp; 2487 ire_t *ire; 2488 ire_t *sire = NULL; 2489 iulp_t *ire_uinfo = NULL; 2490 uint32_t mss_max; 2491 uint32_t mss; 2492 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2493 conn_t *connp = tcp->tcp_connp; 2494 boolean_t ire_cacheable = B_FALSE; 2495 zoneid_t zoneid = connp->conn_zoneid; 2496 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2497 MATCH_IRE_SECATTR; 2498 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2499 ill_t *ill = NULL; 2500 boolean_t incoming = (ire_mp == NULL); 2501 2502 ASSERT(connp->conn_ire_cache == NULL); 2503 2504 if (tcp->tcp_ipversion == IPV4_VERSION) { 2505 2506 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2507 BUMP_MIB(&ip_mib, ipInDiscards); 2508 return (0); 2509 } 2510 /* 2511 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2512 * for the destination with the nexthop as gateway. 2513 * ire_ctable_lookup() is used because this particular 2514 * ire, if it exists, will be marked private. 2515 * If that is not available, use the interface ire 2516 * for the nexthop. 2517 * 2518 * TSol: tcp_update_label will detect label mismatches based 2519 * only on the destination's label, but that would not 2520 * detect label mismatches based on the security attributes 2521 * of routes or next hop gateway. Hence we need to pass the 2522 * label to ire_ftable_lookup below in order to locate the 2523 * right prefix (and/or) ire cache. Similarly we also need 2524 * pass the label to the ire_cache_lookup below to locate 2525 * the right ire that also matches on the label. 2526 */ 2527 if (tcp->tcp_connp->conn_nexthop_set) { 2528 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2529 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2530 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2531 if (ire == NULL) { 2532 ire = ire_ftable_lookup( 2533 tcp->tcp_connp->conn_nexthop_v4, 2534 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2535 tsl, match_flags); 2536 if (ire == NULL) 2537 return (0); 2538 } else { 2539 ire_uinfo = &ire->ire_uinfo; 2540 } 2541 } else { 2542 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2543 zoneid, tsl); 2544 if (ire != NULL) { 2545 ire_cacheable = B_TRUE; 2546 ire_uinfo = (ire_mp != NULL) ? 2547 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2548 &ire->ire_uinfo; 2549 2550 } else { 2551 if (ire_mp == NULL) { 2552 ire = ire_ftable_lookup( 2553 tcp->tcp_connp->conn_rem, 2554 0, 0, 0, NULL, &sire, zoneid, 0, 2555 tsl, (MATCH_IRE_RECURSIVE | 2556 MATCH_IRE_DEFAULT)); 2557 if (ire == NULL) 2558 return (0); 2559 ire_uinfo = (sire != NULL) ? 2560 &sire->ire_uinfo : 2561 &ire->ire_uinfo; 2562 } else { 2563 ire = (ire_t *)ire_mp->b_rptr; 2564 ire_uinfo = 2565 &((ire_t *) 2566 ire_mp->b_rptr)->ire_uinfo; 2567 } 2568 } 2569 } 2570 ASSERT(ire != NULL); 2571 2572 if ((ire->ire_src_addr == INADDR_ANY) || 2573 (ire->ire_type & IRE_BROADCAST)) { 2574 /* 2575 * ire->ire_mp is non null when ire_mp passed in is used 2576 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2577 */ 2578 if (ire->ire_mp == NULL) 2579 ire_refrele(ire); 2580 if (sire != NULL) 2581 ire_refrele(sire); 2582 return (0); 2583 } 2584 2585 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2586 ipaddr_t src_addr; 2587 2588 /* 2589 * ip_bind_connected() has stored the correct source 2590 * address in conn_src. 2591 */ 2592 src_addr = tcp->tcp_connp->conn_src; 2593 tcp->tcp_ipha->ipha_src = src_addr; 2594 /* 2595 * Copy of the src addr. in tcp_t is needed 2596 * for the lookup funcs. 2597 */ 2598 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2599 } 2600 /* 2601 * Set the fragment bit so that IP will tell us if the MTU 2602 * should change. IP tells us the latest setting of 2603 * ip_path_mtu_discovery through ire_frag_flag. 2604 */ 2605 if (ip_path_mtu_discovery) { 2606 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2607 htons(IPH_DF); 2608 } 2609 /* 2610 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2611 * for IP_NEXTHOP. No cache ire has been found for the 2612 * destination and we are working with the nexthop's 2613 * interface ire. Since we need to forward all packets 2614 * to the nexthop first, we "blindly" set tcp_localnet 2615 * to false, eventhough the destination may also be 2616 * onlink. 2617 */ 2618 if (ire_uinfo == NULL) 2619 tcp->tcp_localnet = 0; 2620 else 2621 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2622 } else { 2623 /* 2624 * For incoming connection ire_mp = NULL 2625 * For outgoing connection ire_mp != NULL 2626 * Technically we should check conn_incoming_ill 2627 * when ire_mp is NULL and conn_outgoing_ill when 2628 * ire_mp is non-NULL. But this is performance 2629 * critical path and for IPV*_BOUND_IF, outgoing 2630 * and incoming ill are always set to the same value. 2631 */ 2632 ill_t *dst_ill = NULL; 2633 ipif_t *dst_ipif = NULL; 2634 2635 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2636 2637 if (connp->conn_outgoing_ill != NULL) { 2638 /* Outgoing or incoming path */ 2639 int err; 2640 2641 dst_ill = conn_get_held_ill(connp, 2642 &connp->conn_outgoing_ill, &err); 2643 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2644 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2645 return (0); 2646 } 2647 match_flags |= MATCH_IRE_ILL; 2648 dst_ipif = dst_ill->ill_ipif; 2649 } 2650 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2651 0, 0, dst_ipif, zoneid, tsl, match_flags); 2652 2653 if (ire != NULL) { 2654 ire_cacheable = B_TRUE; 2655 ire_uinfo = (ire_mp != NULL) ? 2656 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2657 &ire->ire_uinfo; 2658 } else { 2659 if (ire_mp == NULL) { 2660 ire = ire_ftable_lookup_v6( 2661 &tcp->tcp_connp->conn_remv6, 2662 0, 0, 0, dst_ipif, &sire, zoneid, 2663 0, tsl, match_flags); 2664 if (ire == NULL) { 2665 if (dst_ill != NULL) 2666 ill_refrele(dst_ill); 2667 return (0); 2668 } 2669 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2670 &ire->ire_uinfo; 2671 } else { 2672 ire = (ire_t *)ire_mp->b_rptr; 2673 ire_uinfo = 2674 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2675 } 2676 } 2677 if (dst_ill != NULL) 2678 ill_refrele(dst_ill); 2679 2680 ASSERT(ire != NULL); 2681 ASSERT(ire_uinfo != NULL); 2682 2683 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2684 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2685 /* 2686 * ire->ire_mp is non null when ire_mp passed in is used 2687 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2688 */ 2689 if (ire->ire_mp == NULL) 2690 ire_refrele(ire); 2691 if (sire != NULL) 2692 ire_refrele(sire); 2693 return (0); 2694 } 2695 2696 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2697 in6_addr_t src_addr; 2698 2699 /* 2700 * ip_bind_connected_v6() has stored the correct source 2701 * address per IPv6 addr. selection policy in 2702 * conn_src_v6. 2703 */ 2704 src_addr = tcp->tcp_connp->conn_srcv6; 2705 2706 tcp->tcp_ip6h->ip6_src = src_addr; 2707 /* 2708 * Copy of the src addr. in tcp_t is needed 2709 * for the lookup funcs. 2710 */ 2711 tcp->tcp_ip_src_v6 = src_addr; 2712 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2713 &connp->conn_srcv6)); 2714 } 2715 tcp->tcp_localnet = 2716 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2717 } 2718 2719 /* 2720 * This allows applications to fail quickly when connections are made 2721 * to dead hosts. Hosts can be labeled dead by adding a reject route 2722 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2723 */ 2724 if ((ire->ire_flags & RTF_REJECT) && 2725 (ire->ire_flags & RTF_PRIVATE)) 2726 goto error; 2727 2728 /* 2729 * Make use of the cached rtt and rtt_sd values to calculate the 2730 * initial RTO. Note that they are already initialized in 2731 * tcp_init_values(). 2732 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2733 * IP_NEXTHOP, but instead are using the interface ire for the 2734 * nexthop, then we do not use the ire_uinfo from that ire to 2735 * do any initializations. 2736 */ 2737 if (ire_uinfo != NULL) { 2738 if (ire_uinfo->iulp_rtt != 0) { 2739 clock_t rto; 2740 2741 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2742 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2743 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2744 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2745 2746 if (rto > tcp_rexmit_interval_max) { 2747 tcp->tcp_rto = tcp_rexmit_interval_max; 2748 } else if (rto < tcp_rexmit_interval_min) { 2749 tcp->tcp_rto = tcp_rexmit_interval_min; 2750 } else { 2751 tcp->tcp_rto = rto; 2752 } 2753 } 2754 if (ire_uinfo->iulp_ssthresh != 0) 2755 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2756 else 2757 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2758 if (ire_uinfo->iulp_spipe > 0) { 2759 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2760 tcp_max_buf); 2761 if (tcp_snd_lowat_fraction != 0) 2762 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2763 tcp_snd_lowat_fraction; 2764 (void) tcp_maxpsz_set(tcp, B_TRUE); 2765 } 2766 /* 2767 * Note that up till now, acceptor always inherits receive 2768 * window from the listener. But if there is a metrics 2769 * associated with a host, we should use that instead of 2770 * inheriting it from listener. Thus we need to pass this 2771 * info back to the caller. 2772 */ 2773 if (ire_uinfo->iulp_rpipe > 0) { 2774 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2775 } 2776 2777 if (ire_uinfo->iulp_rtomax > 0) { 2778 tcp->tcp_second_timer_threshold = 2779 ire_uinfo->iulp_rtomax; 2780 } 2781 2782 /* 2783 * Use the metric option settings, iulp_tstamp_ok and 2784 * iulp_wscale_ok, only for active open. What this means 2785 * is that if the other side uses timestamp or window 2786 * scale option, TCP will also use those options. That 2787 * is for passive open. If the application sets a 2788 * large window, window scale is enabled regardless of 2789 * the value in iulp_wscale_ok. This is the behavior 2790 * since 2.6. So we keep it. 2791 * The only case left in passive open processing is the 2792 * check for SACK. 2793 * For ECN, it should probably be like SACK. But the 2794 * current value is binary, so we treat it like the other 2795 * cases. The metric only controls active open.For passive 2796 * open, the ndd param, tcp_ecn_permitted, controls the 2797 * behavior. 2798 */ 2799 if (!tcp_detached) { 2800 /* 2801 * The if check means that the following can only 2802 * be turned on by the metrics only IRE, but not off. 2803 */ 2804 if (ire_uinfo->iulp_tstamp_ok) 2805 tcp->tcp_snd_ts_ok = B_TRUE; 2806 if (ire_uinfo->iulp_wscale_ok) 2807 tcp->tcp_snd_ws_ok = B_TRUE; 2808 if (ire_uinfo->iulp_sack == 2) 2809 tcp->tcp_snd_sack_ok = B_TRUE; 2810 if (ire_uinfo->iulp_ecn_ok) 2811 tcp->tcp_ecn_ok = B_TRUE; 2812 } else { 2813 /* 2814 * Passive open. 2815 * 2816 * As above, the if check means that SACK can only be 2817 * turned on by the metric only IRE. 2818 */ 2819 if (ire_uinfo->iulp_sack > 0) { 2820 tcp->tcp_snd_sack_ok = B_TRUE; 2821 } 2822 } 2823 } 2824 2825 2826 /* 2827 * XXX: Note that currently, ire_max_frag can be as small as 68 2828 * because of PMTUd. So tcp_mss may go to negative if combined 2829 * length of all those options exceeds 28 bytes. But because 2830 * of the tcp_mss_min check below, we may not have a problem if 2831 * tcp_mss_min is of a reasonable value. The default is 1 so 2832 * the negative problem still exists. And the check defeats PMTUd. 2833 * In fact, if PMTUd finds that the MSS should be smaller than 2834 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2835 * value. 2836 * 2837 * We do not deal with that now. All those problems related to 2838 * PMTUd will be fixed later. 2839 */ 2840 ASSERT(ire->ire_max_frag != 0); 2841 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2842 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2843 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2844 mss = MIN(mss, IPV6_MIN_MTU); 2845 } 2846 } 2847 2848 /* Sanity check for MSS value. */ 2849 if (tcp->tcp_ipversion == IPV4_VERSION) 2850 mss_max = tcp_mss_max_ipv4; 2851 else 2852 mss_max = tcp_mss_max_ipv6; 2853 2854 if (tcp->tcp_ipversion == IPV6_VERSION && 2855 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2856 /* 2857 * After receiving an ICMPv6 "packet too big" message with a 2858 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2859 * will insert a 8-byte fragment header in every packet; we 2860 * reduce the MSS by that amount here. 2861 */ 2862 mss -= sizeof (ip6_frag_t); 2863 } 2864 2865 if (tcp->tcp_ipsec_overhead == 0) 2866 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2867 2868 mss -= tcp->tcp_ipsec_overhead; 2869 2870 if (mss < tcp_mss_min) 2871 mss = tcp_mss_min; 2872 if (mss > mss_max) 2873 mss = mss_max; 2874 2875 /* Note that this is the maximum MSS, excluding all options. */ 2876 tcp->tcp_mss = mss; 2877 2878 /* 2879 * Initialize the ISS here now that we have the full connection ID. 2880 * The RFC 1948 method of initial sequence number generation requires 2881 * knowledge of the full connection ID before setting the ISS. 2882 */ 2883 2884 tcp_iss_init(tcp); 2885 2886 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2887 tcp->tcp_loopback = B_TRUE; 2888 2889 if (tcp->tcp_ipversion == IPV4_VERSION) { 2890 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2891 } else { 2892 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2893 } 2894 2895 if (hsp != NULL) { 2896 /* Only modify if we're going to make them bigger */ 2897 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2898 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2899 if (tcp_snd_lowat_fraction != 0) 2900 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2901 tcp_snd_lowat_fraction; 2902 } 2903 2904 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2905 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2906 } 2907 2908 /* Copy timestamp flag only for active open */ 2909 if (!tcp_detached) 2910 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2911 } 2912 2913 if (sire != NULL) 2914 IRE_REFRELE(sire); 2915 2916 /* 2917 * If we got an IRE_CACHE and an ILL, go through their properties; 2918 * otherwise, this is deferred until later when we have an IRE_CACHE. 2919 */ 2920 if (tcp->tcp_loopback || 2921 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2922 /* 2923 * For incoming, see if this tcp may be MDT-capable. For 2924 * outgoing, this process has been taken care of through 2925 * tcp_rput_other. 2926 */ 2927 tcp_ire_ill_check(tcp, ire, ill, incoming); 2928 tcp->tcp_ire_ill_check_done = B_TRUE; 2929 } 2930 2931 mutex_enter(&connp->conn_lock); 2932 /* 2933 * Make sure that conn is not marked incipient 2934 * for incoming connections. A blind 2935 * removal of incipient flag is cheaper than 2936 * check and removal. 2937 */ 2938 connp->conn_state_flags &= ~CONN_INCIPIENT; 2939 2940 /* Must not cache forwarding table routes. */ 2941 if (ire_cacheable) { 2942 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2943 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2944 connp->conn_ire_cache = ire; 2945 IRE_UNTRACE_REF(ire); 2946 rw_exit(&ire->ire_bucket->irb_lock); 2947 mutex_exit(&connp->conn_lock); 2948 return (1); 2949 } 2950 rw_exit(&ire->ire_bucket->irb_lock); 2951 } 2952 mutex_exit(&connp->conn_lock); 2953 2954 if (ire->ire_mp == NULL) 2955 ire_refrele(ire); 2956 return (1); 2957 2958 error: 2959 if (ire->ire_mp == NULL) 2960 ire_refrele(ire); 2961 if (sire != NULL) 2962 ire_refrele(sire); 2963 return (0); 2964 } 2965 2966 /* 2967 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2968 * O_T_BIND_REQ/T_BIND_REQ message. 2969 */ 2970 static void 2971 tcp_bind(tcp_t *tcp, mblk_t *mp) 2972 { 2973 sin_t *sin; 2974 sin6_t *sin6; 2975 mblk_t *mp1; 2976 in_port_t requested_port; 2977 in_port_t allocated_port; 2978 struct T_bind_req *tbr; 2979 boolean_t bind_to_req_port_only; 2980 boolean_t backlog_update = B_FALSE; 2981 boolean_t user_specified; 2982 in6_addr_t v6addr; 2983 ipaddr_t v4addr; 2984 uint_t origipversion; 2985 int err; 2986 queue_t *q = tcp->tcp_wq; 2987 conn_t *connp; 2988 mlp_type_t addrtype, mlptype; 2989 zone_t *zone; 2990 cred_t *cr; 2991 in_port_t mlp_port; 2992 2993 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2994 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2995 if (tcp->tcp_debug) { 2996 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2997 "tcp_bind: bad req, len %u", 2998 (uint_t)(mp->b_wptr - mp->b_rptr)); 2999 } 3000 tcp_err_ack(tcp, mp, TPROTO, 0); 3001 return; 3002 } 3003 /* Make sure the largest address fits */ 3004 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3005 if (mp1 == NULL) { 3006 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3007 return; 3008 } 3009 mp = mp1; 3010 tbr = (struct T_bind_req *)mp->b_rptr; 3011 if (tcp->tcp_state >= TCPS_BOUND) { 3012 if ((tcp->tcp_state == TCPS_BOUND || 3013 tcp->tcp_state == TCPS_LISTEN) && 3014 tcp->tcp_conn_req_max != tbr->CONIND_number && 3015 tbr->CONIND_number > 0) { 3016 /* 3017 * Handle listen() increasing CONIND_number. 3018 * This is more "liberal" then what the TPI spec 3019 * requires but is needed to avoid a t_unbind 3020 * when handling listen() since the port number 3021 * might be "stolen" between the unbind and bind. 3022 */ 3023 backlog_update = B_TRUE; 3024 goto do_bind; 3025 } 3026 if (tcp->tcp_debug) { 3027 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3028 "tcp_bind: bad state, %d", tcp->tcp_state); 3029 } 3030 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3031 return; 3032 } 3033 origipversion = tcp->tcp_ipversion; 3034 3035 switch (tbr->ADDR_length) { 3036 case 0: /* request for a generic port */ 3037 tbr->ADDR_offset = sizeof (struct T_bind_req); 3038 if (tcp->tcp_family == AF_INET) { 3039 tbr->ADDR_length = sizeof (sin_t); 3040 sin = (sin_t *)&tbr[1]; 3041 *sin = sin_null; 3042 sin->sin_family = AF_INET; 3043 mp->b_wptr = (uchar_t *)&sin[1]; 3044 tcp->tcp_ipversion = IPV4_VERSION; 3045 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3046 } else { 3047 ASSERT(tcp->tcp_family == AF_INET6); 3048 tbr->ADDR_length = sizeof (sin6_t); 3049 sin6 = (sin6_t *)&tbr[1]; 3050 *sin6 = sin6_null; 3051 sin6->sin6_family = AF_INET6; 3052 mp->b_wptr = (uchar_t *)&sin6[1]; 3053 tcp->tcp_ipversion = IPV6_VERSION; 3054 V6_SET_ZERO(v6addr); 3055 } 3056 requested_port = 0; 3057 break; 3058 3059 case sizeof (sin_t): /* Complete IPv4 address */ 3060 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3061 sizeof (sin_t)); 3062 if (sin == NULL || !OK_32PTR((char *)sin)) { 3063 if (tcp->tcp_debug) { 3064 (void) strlog(TCP_MOD_ID, 0, 1, 3065 SL_ERROR|SL_TRACE, 3066 "tcp_bind: bad address parameter, " 3067 "offset %d, len %d", 3068 tbr->ADDR_offset, tbr->ADDR_length); 3069 } 3070 tcp_err_ack(tcp, mp, TPROTO, 0); 3071 return; 3072 } 3073 /* 3074 * With sockets sockfs will accept bogus sin_family in 3075 * bind() and replace it with the family used in the socket 3076 * call. 3077 */ 3078 if (sin->sin_family != AF_INET || 3079 tcp->tcp_family != AF_INET) { 3080 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3081 return; 3082 } 3083 requested_port = ntohs(sin->sin_port); 3084 tcp->tcp_ipversion = IPV4_VERSION; 3085 v4addr = sin->sin_addr.s_addr; 3086 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3087 break; 3088 3089 case sizeof (sin6_t): /* Complete IPv6 address */ 3090 sin6 = (sin6_t *)mi_offset_param(mp, 3091 tbr->ADDR_offset, sizeof (sin6_t)); 3092 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3093 if (tcp->tcp_debug) { 3094 (void) strlog(TCP_MOD_ID, 0, 1, 3095 SL_ERROR|SL_TRACE, 3096 "tcp_bind: bad IPv6 address parameter, " 3097 "offset %d, len %d", tbr->ADDR_offset, 3098 tbr->ADDR_length); 3099 } 3100 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3101 return; 3102 } 3103 if (sin6->sin6_family != AF_INET6 || 3104 tcp->tcp_family != AF_INET6) { 3105 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3106 return; 3107 } 3108 requested_port = ntohs(sin6->sin6_port); 3109 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3110 IPV4_VERSION : IPV6_VERSION; 3111 v6addr = sin6->sin6_addr; 3112 break; 3113 3114 default: 3115 if (tcp->tcp_debug) { 3116 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3117 "tcp_bind: bad address length, %d", 3118 tbr->ADDR_length); 3119 } 3120 tcp_err_ack(tcp, mp, TBADADDR, 0); 3121 return; 3122 } 3123 tcp->tcp_bound_source_v6 = v6addr; 3124 3125 /* Check for change in ipversion */ 3126 if (origipversion != tcp->tcp_ipversion) { 3127 ASSERT(tcp->tcp_family == AF_INET6); 3128 err = tcp->tcp_ipversion == IPV6_VERSION ? 3129 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3130 if (err) { 3131 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3132 return; 3133 } 3134 } 3135 3136 /* 3137 * Initialize family specific fields. Copy of the src addr. 3138 * in tcp_t is needed for the lookup funcs. 3139 */ 3140 if (tcp->tcp_ipversion == IPV6_VERSION) { 3141 tcp->tcp_ip6h->ip6_src = v6addr; 3142 } else { 3143 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3144 } 3145 tcp->tcp_ip_src_v6 = v6addr; 3146 3147 /* 3148 * For O_T_BIND_REQ: 3149 * Verify that the target port/addr is available, or choose 3150 * another. 3151 * For T_BIND_REQ: 3152 * Verify that the target port/addr is available or fail. 3153 * In both cases when it succeeds the tcp is inserted in the 3154 * bind hash table. This ensures that the operation is atomic 3155 * under the lock on the hash bucket. 3156 */ 3157 bind_to_req_port_only = requested_port != 0 && 3158 tbr->PRIM_type != O_T_BIND_REQ; 3159 /* 3160 * Get a valid port (within the anonymous range and should not 3161 * be a privileged one) to use if the user has not given a port. 3162 * If multiple threads are here, they may all start with 3163 * with the same initial port. But, it should be fine as long as 3164 * tcp_bindi will ensure that no two threads will be assigned 3165 * the same port. 3166 * 3167 * NOTE: XXX If a privileged process asks for an anonymous port, we 3168 * still check for ports only in the range > tcp_smallest_non_priv_port, 3169 * unless TCP_ANONPRIVBIND option is set. 3170 */ 3171 mlptype = mlptSingle; 3172 mlp_port = requested_port; 3173 if (requested_port == 0) { 3174 requested_port = tcp->tcp_anon_priv_bind ? 3175 tcp_get_next_priv_port(tcp) : 3176 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3177 if (requested_port == 0) { 3178 tcp_err_ack(tcp, mp, TNOADDR, 0); 3179 return; 3180 } 3181 user_specified = B_FALSE; 3182 3183 /* 3184 * If the user went through one of the RPC interfaces to create 3185 * this socket and RPC is MLP in this zone, then give him an 3186 * anonymous MLP. 3187 */ 3188 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3189 connp = tcp->tcp_connp; 3190 if (connp->conn_anon_mlp && is_system_labeled()) { 3191 zone = crgetzone(cr); 3192 addrtype = tsol_mlp_addr_type(zone->zone_id, 3193 IPV6_VERSION, &v6addr); 3194 if (addrtype == mlptSingle) { 3195 tcp_err_ack(tcp, mp, TNOADDR, 0); 3196 return; 3197 } 3198 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3199 PMAPPORT, addrtype); 3200 mlp_port = PMAPPORT; 3201 } 3202 } else { 3203 int i; 3204 boolean_t priv = B_FALSE; 3205 3206 /* 3207 * If the requested_port is in the well-known privileged range, 3208 * verify that the stream was opened by a privileged user. 3209 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3210 * but instead the code relies on: 3211 * - the fact that the address of the array and its size never 3212 * changes 3213 * - the atomic assignment of the elements of the array 3214 */ 3215 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3216 if (requested_port < tcp_smallest_nonpriv_port) { 3217 priv = B_TRUE; 3218 } else { 3219 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3220 if (requested_port == 3221 tcp_g_epriv_ports[i]) { 3222 priv = B_TRUE; 3223 break; 3224 } 3225 } 3226 } 3227 if (priv) { 3228 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3229 if (tcp->tcp_debug) { 3230 (void) strlog(TCP_MOD_ID, 0, 1, 3231 SL_ERROR|SL_TRACE, 3232 "tcp_bind: no priv for port %d", 3233 requested_port); 3234 } 3235 tcp_err_ack(tcp, mp, TACCES, 0); 3236 return; 3237 } 3238 } 3239 user_specified = B_TRUE; 3240 3241 connp = tcp->tcp_connp; 3242 if (is_system_labeled()) { 3243 zone = crgetzone(cr); 3244 addrtype = tsol_mlp_addr_type(zone->zone_id, 3245 IPV6_VERSION, &v6addr); 3246 if (addrtype == mlptSingle) { 3247 tcp_err_ack(tcp, mp, TNOADDR, 0); 3248 return; 3249 } 3250 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3251 requested_port, addrtype); 3252 } 3253 } 3254 3255 if (mlptype != mlptSingle) { 3256 if (secpolicy_net_bindmlp(cr) != 0) { 3257 if (tcp->tcp_debug) { 3258 (void) strlog(TCP_MOD_ID, 0, 1, 3259 SL_ERROR|SL_TRACE, 3260 "tcp_bind: no priv for multilevel port %d", 3261 requested_port); 3262 } 3263 tcp_err_ack(tcp, mp, TACCES, 0); 3264 return; 3265 } 3266 3267 /* 3268 * If we're specifically binding a shared IP address and the 3269 * port is MLP on shared addresses, then check to see if this 3270 * zone actually owns the MLP. Reject if not. 3271 */ 3272 if (mlptype == mlptShared && addrtype == mlptShared) { 3273 zoneid_t mlpzone; 3274 3275 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3276 htons(mlp_port)); 3277 if (connp->conn_zoneid != mlpzone) { 3278 if (tcp->tcp_debug) { 3279 (void) strlog(TCP_MOD_ID, 0, 1, 3280 SL_ERROR|SL_TRACE, 3281 "tcp_bind: attempt to bind port " 3282 "%d on shared addr in zone %d " 3283 "(should be %d)", 3284 mlp_port, connp->conn_zoneid, 3285 mlpzone); 3286 } 3287 tcp_err_ack(tcp, mp, TACCES, 0); 3288 return; 3289 } 3290 } 3291 3292 if (!user_specified) { 3293 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3294 requested_port, B_TRUE); 3295 if (err != 0) { 3296 if (tcp->tcp_debug) { 3297 (void) strlog(TCP_MOD_ID, 0, 1, 3298 SL_ERROR|SL_TRACE, 3299 "tcp_bind: cannot establish anon " 3300 "MLP for port %d", 3301 requested_port); 3302 } 3303 tcp_err_ack(tcp, mp, TSYSERR, err); 3304 return; 3305 } 3306 connp->conn_anon_port = B_TRUE; 3307 } 3308 connp->conn_mlp_type = mlptype; 3309 } 3310 3311 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3312 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3313 3314 if (allocated_port == 0) { 3315 connp->conn_mlp_type = mlptSingle; 3316 if (connp->conn_anon_port) { 3317 connp->conn_anon_port = B_FALSE; 3318 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3319 requested_port, B_FALSE); 3320 } 3321 if (bind_to_req_port_only) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: requested addr busy"); 3326 } 3327 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3328 } else { 3329 /* If we are out of ports, fail the bind. */ 3330 if (tcp->tcp_debug) { 3331 (void) strlog(TCP_MOD_ID, 0, 1, 3332 SL_ERROR|SL_TRACE, 3333 "tcp_bind: out of ports?"); 3334 } 3335 tcp_err_ack(tcp, mp, TNOADDR, 0); 3336 } 3337 return; 3338 } 3339 ASSERT(tcp->tcp_state == TCPS_BOUND); 3340 do_bind: 3341 if (!backlog_update) { 3342 if (tcp->tcp_family == AF_INET) 3343 sin->sin_port = htons(allocated_port); 3344 else 3345 sin6->sin6_port = htons(allocated_port); 3346 } 3347 if (tcp->tcp_family == AF_INET) { 3348 if (tbr->CONIND_number != 0) { 3349 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3350 sizeof (sin_t)); 3351 } else { 3352 /* Just verify the local IP address */ 3353 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3354 } 3355 } else { 3356 if (tbr->CONIND_number != 0) { 3357 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3358 sizeof (sin6_t)); 3359 } else { 3360 /* Just verify the local IP address */ 3361 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3362 IPV6_ADDR_LEN); 3363 } 3364 } 3365 if (mp1 == NULL) { 3366 if (connp->conn_anon_port) { 3367 connp->conn_anon_port = B_FALSE; 3368 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3369 requested_port, B_FALSE); 3370 } 3371 connp->conn_mlp_type = mlptSingle; 3372 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3373 return; 3374 } 3375 3376 tbr->PRIM_type = T_BIND_ACK; 3377 mp->b_datap->db_type = M_PCPROTO; 3378 3379 /* Chain in the reply mp for tcp_rput() */ 3380 mp1->b_cont = mp; 3381 mp = mp1; 3382 3383 tcp->tcp_conn_req_max = tbr->CONIND_number; 3384 if (tcp->tcp_conn_req_max) { 3385 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3386 tcp->tcp_conn_req_max = tcp_conn_req_min; 3387 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3388 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3389 /* 3390 * If this is a listener, do not reset the eager list 3391 * and other stuffs. Note that we don't check if the 3392 * existing eager list meets the new tcp_conn_req_max 3393 * requirement. 3394 */ 3395 if (tcp->tcp_state != TCPS_LISTEN) { 3396 tcp->tcp_state = TCPS_LISTEN; 3397 /* Initialize the chain. Don't need the eager_lock */ 3398 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3399 tcp->tcp_second_ctimer_threshold = 3400 tcp_ip_abort_linterval; 3401 } 3402 } 3403 3404 /* 3405 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3406 * processing continues in tcp_rput_other(). 3407 */ 3408 if (tcp->tcp_family == AF_INET6) { 3409 ASSERT(tcp->tcp_connp->conn_af_isv6); 3410 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3411 } else { 3412 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3413 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3414 } 3415 /* 3416 * If the bind cannot complete immediately 3417 * IP will arrange to call tcp_rput_other 3418 * when the bind completes. 3419 */ 3420 if (mp != NULL) { 3421 tcp_rput_other(tcp, mp); 3422 } else { 3423 /* 3424 * Bind will be resumed later. Need to ensure 3425 * that conn doesn't disappear when that happens. 3426 * This will be decremented in ip_resume_tcp_bind(). 3427 */ 3428 CONN_INC_REF(tcp->tcp_connp); 3429 } 3430 } 3431 3432 3433 /* 3434 * If the "bind_to_req_port_only" parameter is set, if the requested port 3435 * number is available, return it, If not return 0 3436 * 3437 * If "bind_to_req_port_only" parameter is not set and 3438 * If the requested port number is available, return it. If not, return 3439 * the first anonymous port we happen across. If no anonymous ports are 3440 * available, return 0. addr is the requested local address, if any. 3441 * 3442 * In either case, when succeeding update the tcp_t to record the port number 3443 * and insert it in the bind hash table. 3444 * 3445 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3446 * without setting SO_REUSEADDR. This is needed so that they 3447 * can be viewed as two independent transport protocols. 3448 */ 3449 static in_port_t 3450 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3451 int reuseaddr, boolean_t quick_connect, 3452 boolean_t bind_to_req_port_only, boolean_t user_specified) 3453 { 3454 /* number of times we have run around the loop */ 3455 int count = 0; 3456 /* maximum number of times to run around the loop */ 3457 int loopmax; 3458 conn_t *connp = tcp->tcp_connp; 3459 zoneid_t zoneid = connp->conn_zoneid; 3460 3461 /* 3462 * Lookup for free addresses is done in a loop and "loopmax" 3463 * influences how long we spin in the loop 3464 */ 3465 if (bind_to_req_port_only) { 3466 /* 3467 * If the requested port is busy, don't bother to look 3468 * for a new one. Setting loop maximum count to 1 has 3469 * that effect. 3470 */ 3471 loopmax = 1; 3472 } else { 3473 /* 3474 * If the requested port is busy, look for a free one 3475 * in the anonymous port range. 3476 * Set loopmax appropriately so that one does not look 3477 * forever in the case all of the anonymous ports are in use. 3478 */ 3479 if (tcp->tcp_anon_priv_bind) { 3480 /* 3481 * loopmax = 3482 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3483 */ 3484 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3485 } else { 3486 loopmax = (tcp_largest_anon_port - 3487 tcp_smallest_anon_port + 1); 3488 } 3489 } 3490 do { 3491 uint16_t lport; 3492 tf_t *tbf; 3493 tcp_t *ltcp; 3494 conn_t *lconnp; 3495 3496 lport = htons(port); 3497 3498 /* 3499 * Ensure that the tcp_t is not currently in the bind hash. 3500 * Hold the lock on the hash bucket to ensure that 3501 * the duplicate check plus the insertion is an atomic 3502 * operation. 3503 * 3504 * This function does an inline lookup on the bind hash list 3505 * Make sure that we access only members of tcp_t 3506 * and that we don't look at tcp_tcp, since we are not 3507 * doing a CONN_INC_REF. 3508 */ 3509 tcp_bind_hash_remove(tcp); 3510 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3511 mutex_enter(&tbf->tf_lock); 3512 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3513 ltcp = ltcp->tcp_bind_hash) { 3514 boolean_t not_socket; 3515 boolean_t exclbind; 3516 3517 if (lport != ltcp->tcp_lport) 3518 continue; 3519 3520 lconnp = ltcp->tcp_connp; 3521 3522 /* 3523 * On a labeled system, we must treat bindings to ports 3524 * on shared IP addresses by sockets with MAC exemption 3525 * privilege as being in all zones, as there's 3526 * otherwise no way to identify the right receiver. 3527 */ 3528 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3529 !lconnp->conn_mac_exempt && 3530 !connp->conn_mac_exempt) 3531 continue; 3532 3533 /* 3534 * If TCP_EXCLBIND is set for either the bound or 3535 * binding endpoint, the semantics of bind 3536 * is changed according to the following. 3537 * 3538 * spec = specified address (v4 or v6) 3539 * unspec = unspecified address (v4 or v6) 3540 * A = specified addresses are different for endpoints 3541 * 3542 * bound bind to allowed 3543 * ------------------------------------- 3544 * unspec unspec no 3545 * unspec spec no 3546 * spec unspec no 3547 * spec spec yes if A 3548 * 3549 * For labeled systems, SO_MAC_EXEMPT behaves the same 3550 * as TCP_EXCLBIND, except that zoneid is ignored. 3551 * 3552 * Note: 3553 * 3554 * 1. Because of TLI semantics, an endpoint can go 3555 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3556 * TCPS_BOUND, depending on whether it is originally 3557 * a listener or not. That is why we need to check 3558 * for states greater than or equal to TCPS_BOUND 3559 * here. 3560 * 3561 * 2. Ideally, we should only check for state equals 3562 * to TCPS_LISTEN. And the following check should be 3563 * added. 3564 * 3565 * if (ltcp->tcp_state == TCPS_LISTEN || 3566 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3567 * ... 3568 * } 3569 * 3570 * The semantics will be changed to this. If the 3571 * endpoint on the list is in state not equal to 3572 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3573 * set, let the bind succeed. 3574 * 3575 * Because of (1), we cannot do that for TLI 3576 * endpoints. But we can do that for socket endpoints. 3577 * If in future, we can change this going back 3578 * semantics, we can use the above check for TLI also. 3579 */ 3580 not_socket = !(TCP_IS_SOCKET(ltcp) && 3581 TCP_IS_SOCKET(tcp)); 3582 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3583 3584 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3585 (exclbind && (not_socket || 3586 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3587 if (V6_OR_V4_INADDR_ANY( 3588 ltcp->tcp_bound_source_v6) || 3589 V6_OR_V4_INADDR_ANY(*laddr) || 3590 IN6_ARE_ADDR_EQUAL(laddr, 3591 <cp->tcp_bound_source_v6)) { 3592 break; 3593 } 3594 continue; 3595 } 3596 3597 /* 3598 * Check ipversion to allow IPv4 and IPv6 sockets to 3599 * have disjoint port number spaces, if *_EXCLBIND 3600 * is not set and only if the application binds to a 3601 * specific port. We use the same autoassigned port 3602 * number space for IPv4 and IPv6 sockets. 3603 */ 3604 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3605 bind_to_req_port_only) 3606 continue; 3607 3608 /* 3609 * Ideally, we should make sure that the source 3610 * address, remote address, and remote port in the 3611 * four tuple for this tcp-connection is unique. 3612 * However, trying to find out the local source 3613 * address would require too much code duplication 3614 * with IP, since IP needs needs to have that code 3615 * to support userland TCP implementations. 3616 */ 3617 if (quick_connect && 3618 (ltcp->tcp_state > TCPS_LISTEN) && 3619 ((tcp->tcp_fport != ltcp->tcp_fport) || 3620 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3621 <cp->tcp_remote_v6))) 3622 continue; 3623 3624 if (!reuseaddr) { 3625 /* 3626 * No socket option SO_REUSEADDR. 3627 * If existing port is bound to 3628 * a non-wildcard IP address 3629 * and the requesting stream is 3630 * bound to a distinct 3631 * different IP addresses 3632 * (non-wildcard, also), keep 3633 * going. 3634 */ 3635 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3636 !V6_OR_V4_INADDR_ANY( 3637 ltcp->tcp_bound_source_v6) && 3638 !IN6_ARE_ADDR_EQUAL(laddr, 3639 <cp->tcp_bound_source_v6)) 3640 continue; 3641 if (ltcp->tcp_state >= TCPS_BOUND) { 3642 /* 3643 * This port is being used and 3644 * its state is >= TCPS_BOUND, 3645 * so we can't bind to it. 3646 */ 3647 break; 3648 } 3649 } else { 3650 /* 3651 * socket option SO_REUSEADDR is set on the 3652 * binding tcp_t. 3653 * 3654 * If two streams are bound to 3655 * same IP address or both addr 3656 * and bound source are wildcards 3657 * (INADDR_ANY), we want to stop 3658 * searching. 3659 * We have found a match of IP source 3660 * address and source port, which is 3661 * refused regardless of the 3662 * SO_REUSEADDR setting, so we break. 3663 */ 3664 if (IN6_ARE_ADDR_EQUAL(laddr, 3665 <cp->tcp_bound_source_v6) && 3666 (ltcp->tcp_state == TCPS_LISTEN || 3667 ltcp->tcp_state == TCPS_BOUND)) 3668 break; 3669 } 3670 } 3671 if (ltcp != NULL) { 3672 /* The port number is busy */ 3673 mutex_exit(&tbf->tf_lock); 3674 } else { 3675 /* 3676 * This port is ours. Insert in fanout and mark as 3677 * bound to prevent others from getting the port 3678 * number. 3679 */ 3680 tcp->tcp_state = TCPS_BOUND; 3681 tcp->tcp_lport = htons(port); 3682 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3683 3684 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3685 tcp->tcp_lport)] == tbf); 3686 tcp_bind_hash_insert(tbf, tcp, 1); 3687 3688 mutex_exit(&tbf->tf_lock); 3689 3690 /* 3691 * We don't want tcp_next_port_to_try to "inherit" 3692 * a port number supplied by the user in a bind. 3693 */ 3694 if (user_specified) 3695 return (port); 3696 3697 /* 3698 * This is the only place where tcp_next_port_to_try 3699 * is updated. After the update, it may or may not 3700 * be in the valid range. 3701 */ 3702 if (!tcp->tcp_anon_priv_bind) 3703 tcp_next_port_to_try = port + 1; 3704 return (port); 3705 } 3706 3707 if (tcp->tcp_anon_priv_bind) { 3708 port = tcp_get_next_priv_port(tcp); 3709 } else { 3710 if (count == 0 && user_specified) { 3711 /* 3712 * We may have to return an anonymous port. So 3713 * get one to start with. 3714 */ 3715 port = 3716 tcp_update_next_port(tcp_next_port_to_try, 3717 tcp, B_TRUE); 3718 user_specified = B_FALSE; 3719 } else { 3720 port = tcp_update_next_port(port + 1, tcp, 3721 B_FALSE); 3722 } 3723 } 3724 if (port == 0) 3725 break; 3726 3727 /* 3728 * Don't let this loop run forever in the case where 3729 * all of the anonymous ports are in use. 3730 */ 3731 } while (++count < loopmax); 3732 return (0); 3733 } 3734 3735 /* 3736 * We are dying for some reason. Try to do it gracefully. (May be called 3737 * as writer.) 3738 * 3739 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3740 * done by a service procedure). 3741 * TBD - Should the return value distinguish between the tcp_t being 3742 * freed and it being reinitialized? 3743 */ 3744 static int 3745 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3746 { 3747 mblk_t *mp; 3748 queue_t *q; 3749 3750 TCP_CLD_STAT(tag); 3751 3752 #if TCP_TAG_CLEAN_DEATH 3753 tcp->tcp_cleandeathtag = tag; 3754 #endif 3755 3756 if (tcp->tcp_fused) 3757 tcp_unfuse(tcp); 3758 3759 if (tcp->tcp_linger_tid != 0 && 3760 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3761 tcp_stop_lingering(tcp); 3762 } 3763 3764 ASSERT(tcp != NULL); 3765 ASSERT((tcp->tcp_family == AF_INET && 3766 tcp->tcp_ipversion == IPV4_VERSION) || 3767 (tcp->tcp_family == AF_INET6 && 3768 (tcp->tcp_ipversion == IPV4_VERSION || 3769 tcp->tcp_ipversion == IPV6_VERSION))); 3770 3771 if (TCP_IS_DETACHED(tcp)) { 3772 if (tcp->tcp_hard_binding) { 3773 /* 3774 * Its an eager that we are dealing with. We close the 3775 * eager but in case a conn_ind has already gone to the 3776 * listener, let tcp_accept_finish() send a discon_ind 3777 * to the listener and drop the last reference. If the 3778 * listener doesn't even know about the eager i.e. the 3779 * conn_ind hasn't gone up, blow away the eager and drop 3780 * the last reference as well. If the conn_ind has gone 3781 * up, state should be BOUND. tcp_accept_finish 3782 * will figure out that the connection has received a 3783 * RST and will send a DISCON_IND to the application. 3784 */ 3785 tcp_closei_local(tcp); 3786 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3787 CONN_DEC_REF(tcp->tcp_connp); 3788 } else { 3789 tcp->tcp_state = TCPS_BOUND; 3790 } 3791 } else { 3792 tcp_close_detached(tcp); 3793 } 3794 return (0); 3795 } 3796 3797 TCP_STAT(tcp_clean_death_nondetached); 3798 3799 /* 3800 * If T_ORDREL_IND has not been sent yet (done when service routine 3801 * is run) postpone cleaning up the endpoint until service routine 3802 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3803 * client_errno since tcp_close uses the client_errno field. 3804 */ 3805 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3806 if (err != 0) 3807 tcp->tcp_client_errno = err; 3808 3809 tcp->tcp_deferred_clean_death = B_TRUE; 3810 return (-1); 3811 } 3812 3813 q = tcp->tcp_rq; 3814 3815 /* Trash all inbound data */ 3816 flushq(q, FLUSHALL); 3817 3818 /* 3819 * If we are at least part way open and there is error 3820 * (err==0 implies no error) 3821 * notify our client by a T_DISCON_IND. 3822 */ 3823 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3824 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3825 !TCP_IS_SOCKET(tcp)) { 3826 /* 3827 * Send M_FLUSH according to TPI. Because sockets will 3828 * (and must) ignore FLUSHR we do that only for TPI 3829 * endpoints and sockets in STREAMS mode. 3830 */ 3831 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3832 } 3833 if (tcp->tcp_debug) { 3834 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3835 "tcp_clean_death: discon err %d", err); 3836 } 3837 mp = mi_tpi_discon_ind(NULL, err, 0); 3838 if (mp != NULL) { 3839 putnext(q, mp); 3840 } else { 3841 if (tcp->tcp_debug) { 3842 (void) strlog(TCP_MOD_ID, 0, 1, 3843 SL_ERROR|SL_TRACE, 3844 "tcp_clean_death, sending M_ERROR"); 3845 } 3846 (void) putnextctl1(q, M_ERROR, EPROTO); 3847 } 3848 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3849 /* SYN_SENT or SYN_RCVD */ 3850 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3851 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3852 /* ESTABLISHED or CLOSE_WAIT */ 3853 BUMP_MIB(&tcp_mib, tcpEstabResets); 3854 } 3855 } 3856 3857 tcp_reinit(tcp); 3858 return (-1); 3859 } 3860 3861 /* 3862 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3863 * to expire, stop the wait and finish the close. 3864 */ 3865 static void 3866 tcp_stop_lingering(tcp_t *tcp) 3867 { 3868 clock_t delta = 0; 3869 3870 tcp->tcp_linger_tid = 0; 3871 if (tcp->tcp_state > TCPS_LISTEN) { 3872 tcp_acceptor_hash_remove(tcp); 3873 if (tcp->tcp_flow_stopped) { 3874 tcp_clrqfull(tcp); 3875 } 3876 3877 if (tcp->tcp_timer_tid != 0) { 3878 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3879 tcp->tcp_timer_tid = 0; 3880 } 3881 /* 3882 * Need to cancel those timers which will not be used when 3883 * TCP is detached. This has to be done before the tcp_wq 3884 * is set to the global queue. 3885 */ 3886 tcp_timers_stop(tcp); 3887 3888 3889 tcp->tcp_detached = B_TRUE; 3890 tcp->tcp_rq = tcp_g_q; 3891 tcp->tcp_wq = WR(tcp_g_q); 3892 3893 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3894 tcp_time_wait_append(tcp); 3895 TCP_DBGSTAT(tcp_detach_time_wait); 3896 goto finish; 3897 } 3898 3899 /* 3900 * If delta is zero the timer event wasn't executed and was 3901 * successfully canceled. In this case we need to restart it 3902 * with the minimal delta possible. 3903 */ 3904 if (delta >= 0) { 3905 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3906 delta ? delta : 1); 3907 } 3908 } else { 3909 tcp_closei_local(tcp); 3910 CONN_DEC_REF(tcp->tcp_connp); 3911 } 3912 finish: 3913 /* Signal closing thread that it can complete close */ 3914 mutex_enter(&tcp->tcp_closelock); 3915 tcp->tcp_detached = B_TRUE; 3916 tcp->tcp_rq = tcp_g_q; 3917 tcp->tcp_wq = WR(tcp_g_q); 3918 tcp->tcp_closed = 1; 3919 cv_signal(&tcp->tcp_closecv); 3920 mutex_exit(&tcp->tcp_closelock); 3921 } 3922 3923 /* 3924 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3925 * expires. 3926 */ 3927 static void 3928 tcp_close_linger_timeout(void *arg) 3929 { 3930 conn_t *connp = (conn_t *)arg; 3931 tcp_t *tcp = connp->conn_tcp; 3932 3933 tcp->tcp_client_errno = ETIMEDOUT; 3934 tcp_stop_lingering(tcp); 3935 } 3936 3937 static int 3938 tcp_close(queue_t *q, int flags) 3939 { 3940 conn_t *connp = Q_TO_CONN(q); 3941 tcp_t *tcp = connp->conn_tcp; 3942 mblk_t *mp = &tcp->tcp_closemp; 3943 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3944 3945 ASSERT(WR(q)->q_next == NULL); 3946 ASSERT(connp->conn_ref >= 2); 3947 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3948 3949 /* 3950 * We are being closed as /dev/tcp or /dev/tcp6. 3951 * 3952 * Mark the conn as closing. ill_pending_mp_add will not 3953 * add any mp to the pending mp list, after this conn has 3954 * started closing. Same for sq_pending_mp_add 3955 */ 3956 mutex_enter(&connp->conn_lock); 3957 connp->conn_state_flags |= CONN_CLOSING; 3958 if (connp->conn_oper_pending_ill != NULL) 3959 conn_ioctl_cleanup_reqd = B_TRUE; 3960 CONN_INC_REF_LOCKED(connp); 3961 mutex_exit(&connp->conn_lock); 3962 tcp->tcp_closeflags = (uint8_t)flags; 3963 ASSERT(connp->conn_ref >= 3); 3964 3965 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3966 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3967 3968 mutex_enter(&tcp->tcp_closelock); 3969 3970 while (!tcp->tcp_closed) 3971 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3972 mutex_exit(&tcp->tcp_closelock); 3973 /* 3974 * In the case of listener streams that have eagers in the q or q0 3975 * we wait for the eagers to drop their reference to us. tcp_rq and 3976 * tcp_wq of the eagers point to our queues. By waiting for the 3977 * refcnt to drop to 1, we are sure that the eagers have cleaned 3978 * up their queue pointers and also dropped their references to us. 3979 */ 3980 if (tcp->tcp_wait_for_eagers) { 3981 mutex_enter(&connp->conn_lock); 3982 while (connp->conn_ref != 1) { 3983 cv_wait(&connp->conn_cv, &connp->conn_lock); 3984 } 3985 mutex_exit(&connp->conn_lock); 3986 } 3987 /* 3988 * ioctl cleanup. The mp is queued in the 3989 * ill_pending_mp or in the sq_pending_mp. 3990 */ 3991 if (conn_ioctl_cleanup_reqd) 3992 conn_ioctl_cleanup(connp); 3993 3994 qprocsoff(q); 3995 inet_minor_free(ip_minor_arena, connp->conn_dev); 3996 3997 tcp->tcp_cpid = -1; 3998 3999 /* 4000 * Drop IP's reference on the conn. This is the last reference 4001 * on the connp if the state was less than established. If the 4002 * connection has gone into timewait state, then we will have 4003 * one ref for the TCP and one more ref (total of two) for the 4004 * classifier connected hash list (a timewait connections stays 4005 * in connected hash till closed). 4006 * 4007 * We can't assert the references because there might be other 4008 * transient reference places because of some walkers or queued 4009 * packets in squeue for the timewait state. 4010 */ 4011 CONN_DEC_REF(connp); 4012 q->q_ptr = WR(q)->q_ptr = NULL; 4013 return (0); 4014 } 4015 4016 static int 4017 tcpclose_accept(queue_t *q) 4018 { 4019 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4020 4021 /* 4022 * We had opened an acceptor STREAM for sockfs which is 4023 * now being closed due to some error. 4024 */ 4025 qprocsoff(q); 4026 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4027 q->q_ptr = WR(q)->q_ptr = NULL; 4028 return (0); 4029 } 4030 4031 4032 /* 4033 * Called by streams close routine via squeues when our client blows off her 4034 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4035 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4036 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4037 * acked. 4038 * 4039 * NOTE: tcp_close potentially returns error when lingering. 4040 * However, the stream head currently does not pass these errors 4041 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4042 * errors to the application (from tsleep()) and not errors 4043 * like ECONNRESET caused by receiving a reset packet. 4044 */ 4045 4046 /* ARGSUSED */ 4047 static void 4048 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4049 { 4050 char *msg; 4051 conn_t *connp = (conn_t *)arg; 4052 tcp_t *tcp = connp->conn_tcp; 4053 clock_t delta = 0; 4054 4055 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4056 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4057 4058 /* Cancel any pending timeout */ 4059 if (tcp->tcp_ordrelid != 0) { 4060 if (tcp->tcp_timeout) { 4061 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4062 } 4063 tcp->tcp_ordrelid = 0; 4064 tcp->tcp_timeout = B_FALSE; 4065 } 4066 4067 mutex_enter(&tcp->tcp_eager_lock); 4068 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4069 /* Cleanup for listener */ 4070 tcp_eager_cleanup(tcp, 0); 4071 tcp->tcp_wait_for_eagers = 1; 4072 } 4073 mutex_exit(&tcp->tcp_eager_lock); 4074 4075 connp->conn_mdt_ok = B_FALSE; 4076 tcp->tcp_mdt = B_FALSE; 4077 4078 msg = NULL; 4079 switch (tcp->tcp_state) { 4080 case TCPS_CLOSED: 4081 case TCPS_IDLE: 4082 case TCPS_BOUND: 4083 case TCPS_LISTEN: 4084 break; 4085 case TCPS_SYN_SENT: 4086 msg = "tcp_close, during connect"; 4087 break; 4088 case TCPS_SYN_RCVD: 4089 /* 4090 * Close during the connect 3-way handshake 4091 * but here there may or may not be pending data 4092 * already on queue. Process almost same as in 4093 * the ESTABLISHED state. 4094 */ 4095 /* FALLTHRU */ 4096 default: 4097 if (tcp->tcp_fused) 4098 tcp_unfuse(tcp); 4099 4100 /* 4101 * If SO_LINGER has set a zero linger time, abort the 4102 * connection with a reset. 4103 */ 4104 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4105 msg = "tcp_close, zero lingertime"; 4106 break; 4107 } 4108 4109 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4110 /* 4111 * Abort connection if there is unread data queued. 4112 */ 4113 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4114 msg = "tcp_close, unread data"; 4115 break; 4116 } 4117 /* 4118 * tcp_hard_bound is now cleared thus all packets go through 4119 * tcp_lookup. This fact is used by tcp_detach below. 4120 * 4121 * We have done a qwait() above which could have possibly 4122 * drained more messages in turn causing transition to a 4123 * different state. Check whether we have to do the rest 4124 * of the processing or not. 4125 */ 4126 if (tcp->tcp_state <= TCPS_LISTEN) 4127 break; 4128 4129 /* 4130 * Transmit the FIN before detaching the tcp_t. 4131 * After tcp_detach returns this queue/perimeter 4132 * no longer owns the tcp_t thus others can modify it. 4133 */ 4134 (void) tcp_xmit_end(tcp); 4135 4136 /* 4137 * If lingering on close then wait until the fin is acked, 4138 * the SO_LINGER time passes, or a reset is sent/received. 4139 */ 4140 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4141 !(tcp->tcp_fin_acked) && 4142 tcp->tcp_state >= TCPS_ESTABLISHED) { 4143 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4144 tcp->tcp_client_errno = EWOULDBLOCK; 4145 } else if (tcp->tcp_client_errno == 0) { 4146 4147 ASSERT(tcp->tcp_linger_tid == 0); 4148 4149 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4150 tcp_close_linger_timeout, 4151 tcp->tcp_lingertime * hz); 4152 4153 /* tcp_close_linger_timeout will finish close */ 4154 if (tcp->tcp_linger_tid == 0) 4155 tcp->tcp_client_errno = ENOSR; 4156 else 4157 return; 4158 } 4159 4160 /* 4161 * Check if we need to detach or just close 4162 * the instance. 4163 */ 4164 if (tcp->tcp_state <= TCPS_LISTEN) 4165 break; 4166 } 4167 4168 /* 4169 * Make sure that no other thread will access the tcp_rq of 4170 * this instance (through lookups etc.) as tcp_rq will go 4171 * away shortly. 4172 */ 4173 tcp_acceptor_hash_remove(tcp); 4174 4175 if (tcp->tcp_flow_stopped) { 4176 tcp_clrqfull(tcp); 4177 } 4178 4179 if (tcp->tcp_timer_tid != 0) { 4180 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4181 tcp->tcp_timer_tid = 0; 4182 } 4183 /* 4184 * Need to cancel those timers which will not be used when 4185 * TCP is detached. This has to be done before the tcp_wq 4186 * is set to the global queue. 4187 */ 4188 tcp_timers_stop(tcp); 4189 4190 tcp->tcp_detached = B_TRUE; 4191 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4192 tcp_time_wait_append(tcp); 4193 TCP_DBGSTAT(tcp_detach_time_wait); 4194 ASSERT(connp->conn_ref >= 3); 4195 goto finish; 4196 } 4197 4198 /* 4199 * If delta is zero the timer event wasn't executed and was 4200 * successfully canceled. In this case we need to restart it 4201 * with the minimal delta possible. 4202 */ 4203 if (delta >= 0) 4204 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4205 delta ? delta : 1); 4206 4207 ASSERT(connp->conn_ref >= 3); 4208 goto finish; 4209 } 4210 4211 /* Detach did not complete. Still need to remove q from stream. */ 4212 if (msg) { 4213 if (tcp->tcp_state == TCPS_ESTABLISHED || 4214 tcp->tcp_state == TCPS_CLOSE_WAIT) 4215 BUMP_MIB(&tcp_mib, tcpEstabResets); 4216 if (tcp->tcp_state == TCPS_SYN_SENT || 4217 tcp->tcp_state == TCPS_SYN_RCVD) 4218 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4219 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4220 } 4221 4222 tcp_closei_local(tcp); 4223 CONN_DEC_REF(connp); 4224 ASSERT(connp->conn_ref >= 2); 4225 4226 finish: 4227 /* 4228 * Although packets are always processed on the correct 4229 * tcp's perimeter and access is serialized via squeue's, 4230 * IP still needs a queue when sending packets in time_wait 4231 * state so use WR(tcp_g_q) till ip_output() can be 4232 * changed to deal with just connp. For read side, we 4233 * could have set tcp_rq to NULL but there are some cases 4234 * in tcp_rput_data() from early days of this code which 4235 * do a putnext without checking if tcp is closed. Those 4236 * need to be identified before both tcp_rq and tcp_wq 4237 * can be set to NULL and tcp_q_q can disappear forever. 4238 */ 4239 mutex_enter(&tcp->tcp_closelock); 4240 /* 4241 * Don't change the queues in the case of a listener that has 4242 * eagers in its q or q0. It could surprise the eagers. 4243 * Instead wait for the eagers outside the squeue. 4244 */ 4245 if (!tcp->tcp_wait_for_eagers) { 4246 tcp->tcp_detached = B_TRUE; 4247 tcp->tcp_rq = tcp_g_q; 4248 tcp->tcp_wq = WR(tcp_g_q); 4249 } 4250 4251 /* Signal tcp_close() to finish closing. */ 4252 tcp->tcp_closed = 1; 4253 cv_signal(&tcp->tcp_closecv); 4254 mutex_exit(&tcp->tcp_closelock); 4255 } 4256 4257 4258 /* 4259 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4260 * Some stream heads get upset if they see these later on as anything but NULL. 4261 */ 4262 static void 4263 tcp_close_mpp(mblk_t **mpp) 4264 { 4265 mblk_t *mp; 4266 4267 if ((mp = *mpp) != NULL) { 4268 do { 4269 mp->b_next = NULL; 4270 mp->b_prev = NULL; 4271 } while ((mp = mp->b_cont) != NULL); 4272 4273 mp = *mpp; 4274 *mpp = NULL; 4275 freemsg(mp); 4276 } 4277 } 4278 4279 /* Do detached close. */ 4280 static void 4281 tcp_close_detached(tcp_t *tcp) 4282 { 4283 if (tcp->tcp_fused) 4284 tcp_unfuse(tcp); 4285 4286 /* 4287 * Clustering code serializes TCP disconnect callbacks and 4288 * cluster tcp list walks by blocking a TCP disconnect callback 4289 * if a cluster tcp list walk is in progress. This ensures 4290 * accurate accounting of TCPs in the cluster code even though 4291 * the TCP list walk itself is not atomic. 4292 */ 4293 tcp_closei_local(tcp); 4294 CONN_DEC_REF(tcp->tcp_connp); 4295 } 4296 4297 /* 4298 * Stop all TCP timers, and free the timer mblks if requested. 4299 */ 4300 void 4301 tcp_timers_stop(tcp_t *tcp) 4302 { 4303 if (tcp->tcp_timer_tid != 0) { 4304 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4305 tcp->tcp_timer_tid = 0; 4306 } 4307 if (tcp->tcp_ka_tid != 0) { 4308 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4309 tcp->tcp_ka_tid = 0; 4310 } 4311 if (tcp->tcp_ack_tid != 0) { 4312 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4313 tcp->tcp_ack_tid = 0; 4314 } 4315 if (tcp->tcp_push_tid != 0) { 4316 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4317 tcp->tcp_push_tid = 0; 4318 } 4319 } 4320 4321 /* 4322 * The tcp_t is going away. Remove it from all lists and set it 4323 * to TCPS_CLOSED. The freeing up of memory is deferred until 4324 * tcp_inactive. This is needed since a thread in tcp_rput might have 4325 * done a CONN_INC_REF on this structure before it was removed from the 4326 * hashes. 4327 */ 4328 static void 4329 tcp_closei_local(tcp_t *tcp) 4330 { 4331 ire_t *ire; 4332 conn_t *connp = tcp->tcp_connp; 4333 4334 if (!TCP_IS_SOCKET(tcp)) 4335 tcp_acceptor_hash_remove(tcp); 4336 4337 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4338 tcp->tcp_ibsegs = 0; 4339 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4340 tcp->tcp_obsegs = 0; 4341 4342 /* 4343 * If we are an eager connection hanging off a listener that 4344 * hasn't formally accepted the connection yet, get off his 4345 * list and blow off any data that we have accumulated. 4346 */ 4347 if (tcp->tcp_listener != NULL) { 4348 tcp_t *listener = tcp->tcp_listener; 4349 mutex_enter(&listener->tcp_eager_lock); 4350 /* 4351 * tcp_eager_conn_ind == NULL means that the 4352 * conn_ind has already gone to listener. At 4353 * this point, eager will be closed but we 4354 * leave it in listeners eager list so that 4355 * if listener decides to close without doing 4356 * accept, we can clean this up. In tcp_wput_accept 4357 * we take case of the case of accept on closed 4358 * eager. 4359 */ 4360 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4361 tcp_eager_unlink(tcp); 4362 mutex_exit(&listener->tcp_eager_lock); 4363 /* 4364 * We don't want to have any pointers to the 4365 * listener queue, after we have released our 4366 * reference on the listener 4367 */ 4368 tcp->tcp_rq = tcp_g_q; 4369 tcp->tcp_wq = WR(tcp_g_q); 4370 CONN_DEC_REF(listener->tcp_connp); 4371 } else { 4372 mutex_exit(&listener->tcp_eager_lock); 4373 } 4374 } 4375 4376 /* Stop all the timers */ 4377 tcp_timers_stop(tcp); 4378 4379 if (tcp->tcp_state == TCPS_LISTEN) { 4380 if (tcp->tcp_ip_addr_cache) { 4381 kmem_free((void *)tcp->tcp_ip_addr_cache, 4382 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4383 tcp->tcp_ip_addr_cache = NULL; 4384 } 4385 } 4386 if (tcp->tcp_flow_stopped) 4387 tcp_clrqfull(tcp); 4388 4389 tcp_bind_hash_remove(tcp); 4390 /* 4391 * If the tcp_time_wait_collector (which runs outside the squeue) 4392 * is trying to remove this tcp from the time wait list, we will 4393 * block in tcp_time_wait_remove while trying to acquire the 4394 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4395 * requires the ipcl_hash_remove to be ordered after the 4396 * tcp_time_wait_remove for the refcnt checks to work correctly. 4397 */ 4398 if (tcp->tcp_state == TCPS_TIME_WAIT) 4399 tcp_time_wait_remove(tcp, NULL); 4400 CL_INET_DISCONNECT(tcp); 4401 ipcl_hash_remove(connp); 4402 4403 /* 4404 * Delete the cached ire in conn_ire_cache and also mark 4405 * the conn as CONDEMNED 4406 */ 4407 mutex_enter(&connp->conn_lock); 4408 connp->conn_state_flags |= CONN_CONDEMNED; 4409 ire = connp->conn_ire_cache; 4410 connp->conn_ire_cache = NULL; 4411 mutex_exit(&connp->conn_lock); 4412 if (ire != NULL) 4413 IRE_REFRELE_NOTR(ire); 4414 4415 /* Need to cleanup any pending ioctls */ 4416 ASSERT(tcp->tcp_time_wait_next == NULL); 4417 ASSERT(tcp->tcp_time_wait_prev == NULL); 4418 ASSERT(tcp->tcp_time_wait_expire == 0); 4419 tcp->tcp_state = TCPS_CLOSED; 4420 4421 /* Release any SSL context */ 4422 if (tcp->tcp_kssl_ent != NULL) { 4423 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4424 tcp->tcp_kssl_ent = NULL; 4425 } 4426 if (tcp->tcp_kssl_ctx != NULL) { 4427 kssl_release_ctx(tcp->tcp_kssl_ctx); 4428 tcp->tcp_kssl_ctx = NULL; 4429 } 4430 tcp->tcp_kssl_pending = B_FALSE; 4431 } 4432 4433 /* 4434 * tcp is dying (called from ipcl_conn_destroy and error cases). 4435 * Free the tcp_t in either case. 4436 */ 4437 void 4438 tcp_free(tcp_t *tcp) 4439 { 4440 mblk_t *mp; 4441 ip6_pkt_t *ipp; 4442 4443 ASSERT(tcp != NULL); 4444 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4445 4446 tcp->tcp_rq = NULL; 4447 tcp->tcp_wq = NULL; 4448 4449 tcp_close_mpp(&tcp->tcp_xmit_head); 4450 tcp_close_mpp(&tcp->tcp_reass_head); 4451 if (tcp->tcp_rcv_list != NULL) { 4452 /* Free b_next chain */ 4453 tcp_close_mpp(&tcp->tcp_rcv_list); 4454 } 4455 if ((mp = tcp->tcp_urp_mp) != NULL) { 4456 freemsg(mp); 4457 } 4458 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4459 freemsg(mp); 4460 } 4461 4462 if (tcp->tcp_fused_sigurg_mp != NULL) { 4463 freeb(tcp->tcp_fused_sigurg_mp); 4464 tcp->tcp_fused_sigurg_mp = NULL; 4465 } 4466 4467 if (tcp->tcp_sack_info != NULL) { 4468 if (tcp->tcp_notsack_list != NULL) { 4469 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4470 } 4471 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4472 } 4473 4474 if (tcp->tcp_hopopts != NULL) { 4475 mi_free(tcp->tcp_hopopts); 4476 tcp->tcp_hopopts = NULL; 4477 tcp->tcp_hopoptslen = 0; 4478 } 4479 ASSERT(tcp->tcp_hopoptslen == 0); 4480 if (tcp->tcp_dstopts != NULL) { 4481 mi_free(tcp->tcp_dstopts); 4482 tcp->tcp_dstopts = NULL; 4483 tcp->tcp_dstoptslen = 0; 4484 } 4485 ASSERT(tcp->tcp_dstoptslen == 0); 4486 if (tcp->tcp_rtdstopts != NULL) { 4487 mi_free(tcp->tcp_rtdstopts); 4488 tcp->tcp_rtdstopts = NULL; 4489 tcp->tcp_rtdstoptslen = 0; 4490 } 4491 ASSERT(tcp->tcp_rtdstoptslen == 0); 4492 if (tcp->tcp_rthdr != NULL) { 4493 mi_free(tcp->tcp_rthdr); 4494 tcp->tcp_rthdr = NULL; 4495 tcp->tcp_rthdrlen = 0; 4496 } 4497 ASSERT(tcp->tcp_rthdrlen == 0); 4498 4499 ipp = &tcp->tcp_sticky_ipp; 4500 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4501 IPPF_RTHDR)) 4502 ip6_pkt_free(ipp); 4503 4504 /* 4505 * Free memory associated with the tcp/ip header template. 4506 */ 4507 4508 if (tcp->tcp_iphc != NULL) 4509 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4510 4511 /* 4512 * Following is really a blowing away a union. 4513 * It happens to have exactly two members of identical size 4514 * the following code is enough. 4515 */ 4516 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4517 4518 if (tcp->tcp_tracebuf != NULL) { 4519 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4520 tcp->tcp_tracebuf = NULL; 4521 } 4522 } 4523 4524 4525 /* 4526 * Put a connection confirmation message upstream built from the 4527 * address information within 'iph' and 'tcph'. Report our success or failure. 4528 */ 4529 static boolean_t 4530 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4531 mblk_t **defermp) 4532 { 4533 sin_t sin; 4534 sin6_t sin6; 4535 mblk_t *mp; 4536 char *optp = NULL; 4537 int optlen = 0; 4538 cred_t *cr; 4539 4540 if (defermp != NULL) 4541 *defermp = NULL; 4542 4543 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4544 /* 4545 * Return in T_CONN_CON results of option negotiation through 4546 * the T_CONN_REQ. Note: If there is an real end-to-end option 4547 * negotiation, then what is received from remote end needs 4548 * to be taken into account but there is no such thing (yet?) 4549 * in our TCP/IP. 4550 * Note: We do not use mi_offset_param() here as 4551 * tcp_opts_conn_req contents do not directly come from 4552 * an application and are either generated in kernel or 4553 * from user input that was already verified. 4554 */ 4555 mp = tcp->tcp_conn.tcp_opts_conn_req; 4556 optp = (char *)(mp->b_rptr + 4557 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4558 optlen = (int) 4559 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4560 } 4561 4562 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4563 ipha_t *ipha = (ipha_t *)iphdr; 4564 4565 /* packet is IPv4 */ 4566 if (tcp->tcp_family == AF_INET) { 4567 sin = sin_null; 4568 sin.sin_addr.s_addr = ipha->ipha_src; 4569 sin.sin_port = *(uint16_t *)tcph->th_lport; 4570 sin.sin_family = AF_INET; 4571 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4572 (int)sizeof (sin_t), optp, optlen); 4573 } else { 4574 sin6 = sin6_null; 4575 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4576 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4577 sin6.sin6_family = AF_INET6; 4578 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4579 (int)sizeof (sin6_t), optp, optlen); 4580 4581 } 4582 } else { 4583 ip6_t *ip6h = (ip6_t *)iphdr; 4584 4585 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4586 ASSERT(tcp->tcp_family == AF_INET6); 4587 sin6 = sin6_null; 4588 sin6.sin6_addr = ip6h->ip6_src; 4589 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4590 sin6.sin6_family = AF_INET6; 4591 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4592 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4593 (int)sizeof (sin6_t), optp, optlen); 4594 } 4595 4596 if (!mp) 4597 return (B_FALSE); 4598 4599 if ((cr = DB_CRED(idmp)) != NULL) { 4600 mblk_setcred(mp, cr); 4601 DB_CPID(mp) = DB_CPID(idmp); 4602 } 4603 4604 if (defermp == NULL) 4605 putnext(tcp->tcp_rq, mp); 4606 else 4607 *defermp = mp; 4608 4609 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4610 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4611 return (B_TRUE); 4612 } 4613 4614 /* 4615 * Defense for the SYN attack - 4616 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4617 * one that doesn't have the dontdrop bit set. 4618 * 2. Don't drop a SYN request before its first timeout. This gives every 4619 * request at least til the first timeout to complete its 3-way handshake. 4620 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4621 * requests currently on the queue that has timed out. This will be used 4622 * as an indicator of whether an attack is under way, so that appropriate 4623 * actions can be taken. (It's incremented in tcp_timer() and decremented 4624 * either when eager goes into ESTABLISHED, or gets freed up.) 4625 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4626 * # of timeout drops back to <= q0len/32 => SYN alert off 4627 */ 4628 static boolean_t 4629 tcp_drop_q0(tcp_t *tcp) 4630 { 4631 tcp_t *eager; 4632 4633 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4634 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4635 /* 4636 * New one is added after next_q0 so prev_q0 points to the oldest 4637 * Also do not drop any established connections that are deferred on 4638 * q0 due to q being full 4639 */ 4640 4641 eager = tcp->tcp_eager_prev_q0; 4642 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4643 eager = eager->tcp_eager_prev_q0; 4644 if (eager == tcp) { 4645 eager = tcp->tcp_eager_prev_q0; 4646 break; 4647 } 4648 } 4649 if (eager->tcp_syn_rcvd_timeout == 0) 4650 return (B_FALSE); 4651 4652 if (tcp->tcp_debug) { 4653 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4654 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4655 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4656 tcp->tcp_conn_req_cnt_q0, 4657 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4658 } 4659 4660 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4661 4662 /* 4663 * need to do refhold here because the selected eager could 4664 * be removed by someone else if we release the eager lock. 4665 */ 4666 CONN_INC_REF(eager->tcp_connp); 4667 mutex_exit(&tcp->tcp_eager_lock); 4668 4669 /* Mark the IRE created for this SYN request temporary */ 4670 tcp_ip_ire_mark_advice(eager); 4671 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4672 CONN_DEC_REF(eager->tcp_connp); 4673 4674 mutex_enter(&tcp->tcp_eager_lock); 4675 return (B_TRUE); 4676 } 4677 4678 int 4679 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4680 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4681 { 4682 tcp_t *ltcp = lconnp->conn_tcp; 4683 tcp_t *tcp = connp->conn_tcp; 4684 mblk_t *tpi_mp; 4685 ipha_t *ipha; 4686 ip6_t *ip6h; 4687 sin6_t sin6; 4688 in6_addr_t v6dst; 4689 int err; 4690 int ifindex = 0; 4691 cred_t *cr; 4692 4693 if (ipvers == IPV4_VERSION) { 4694 ipha = (ipha_t *)mp->b_rptr; 4695 4696 connp->conn_send = ip_output; 4697 connp->conn_recv = tcp_input; 4698 4699 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4700 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4701 4702 sin6 = sin6_null; 4703 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4704 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4705 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4706 sin6.sin6_family = AF_INET6; 4707 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4708 lconnp->conn_zoneid); 4709 if (tcp->tcp_recvdstaddr) { 4710 sin6_t sin6d; 4711 4712 sin6d = sin6_null; 4713 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4714 &sin6d.sin6_addr); 4715 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4716 sin6d.sin6_family = AF_INET; 4717 tpi_mp = mi_tpi_extconn_ind(NULL, 4718 (char *)&sin6d, sizeof (sin6_t), 4719 (char *)&tcp, 4720 (t_scalar_t)sizeof (intptr_t), 4721 (char *)&sin6d, sizeof (sin6_t), 4722 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4723 } else { 4724 tpi_mp = mi_tpi_conn_ind(NULL, 4725 (char *)&sin6, sizeof (sin6_t), 4726 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4727 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4728 } 4729 } else { 4730 ip6h = (ip6_t *)mp->b_rptr; 4731 4732 connp->conn_send = ip_output_v6; 4733 connp->conn_recv = tcp_input; 4734 4735 connp->conn_srcv6 = ip6h->ip6_dst; 4736 connp->conn_remv6 = ip6h->ip6_src; 4737 4738 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4739 ifindex = (int)DB_CKSUMSTUFF(mp); 4740 DB_CKSUMSTUFF(mp) = 0; 4741 4742 sin6 = sin6_null; 4743 sin6.sin6_addr = ip6h->ip6_src; 4744 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4745 sin6.sin6_family = AF_INET6; 4746 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4747 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4748 lconnp->conn_zoneid); 4749 4750 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4751 /* Pass up the scope_id of remote addr */ 4752 sin6.sin6_scope_id = ifindex; 4753 } else { 4754 sin6.sin6_scope_id = 0; 4755 } 4756 if (tcp->tcp_recvdstaddr) { 4757 sin6_t sin6d; 4758 4759 sin6d = sin6_null; 4760 sin6.sin6_addr = ip6h->ip6_dst; 4761 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4762 sin6d.sin6_family = AF_INET; 4763 tpi_mp = mi_tpi_extconn_ind(NULL, 4764 (char *)&sin6d, sizeof (sin6_t), 4765 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4766 (char *)&sin6d, sizeof (sin6_t), 4767 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4768 } else { 4769 tpi_mp = mi_tpi_conn_ind(NULL, 4770 (char *)&sin6, sizeof (sin6_t), 4771 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4772 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4773 } 4774 } 4775 4776 if (tpi_mp == NULL) 4777 return (ENOMEM); 4778 4779 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4780 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4781 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4782 connp->conn_fully_bound = B_FALSE; 4783 4784 if (tcp_trace) 4785 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4786 4787 /* Inherit information from the "parent" */ 4788 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4789 tcp->tcp_family = ltcp->tcp_family; 4790 tcp->tcp_wq = ltcp->tcp_wq; 4791 tcp->tcp_rq = ltcp->tcp_rq; 4792 tcp->tcp_mss = tcp_mss_def_ipv6; 4793 tcp->tcp_detached = B_TRUE; 4794 if ((err = tcp_init_values(tcp)) != 0) { 4795 freemsg(tpi_mp); 4796 return (err); 4797 } 4798 4799 if (ipvers == IPV4_VERSION) { 4800 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4801 freemsg(tpi_mp); 4802 return (err); 4803 } 4804 ASSERT(tcp->tcp_ipha != NULL); 4805 } else { 4806 /* ifindex must be already set */ 4807 ASSERT(ifindex != 0); 4808 4809 if (ltcp->tcp_bound_if != 0) { 4810 /* 4811 * Set newtcp's bound_if equal to 4812 * listener's value. If ifindex is 4813 * not the same as ltcp->tcp_bound_if, 4814 * it must be a packet for the ipmp group 4815 * of interfaces 4816 */ 4817 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4818 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4819 tcp->tcp_bound_if = ifindex; 4820 } 4821 4822 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4823 tcp->tcp_recvifindex = 0; 4824 tcp->tcp_recvhops = 0xffffffffU; 4825 ASSERT(tcp->tcp_ip6h != NULL); 4826 } 4827 4828 tcp->tcp_lport = ltcp->tcp_lport; 4829 4830 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4831 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4832 /* 4833 * Listener had options of some sort; eager inherits. 4834 * Free up the eager template and allocate one 4835 * of the right size. 4836 */ 4837 if (tcp->tcp_hdr_grown) { 4838 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4839 } else { 4840 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4841 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4842 } 4843 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4844 KM_NOSLEEP); 4845 if (tcp->tcp_iphc == NULL) { 4846 tcp->tcp_iphc_len = 0; 4847 freemsg(tpi_mp); 4848 return (ENOMEM); 4849 } 4850 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4851 tcp->tcp_hdr_grown = B_TRUE; 4852 } 4853 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4854 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4855 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4856 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4857 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4858 4859 /* 4860 * Copy the IP+TCP header template from listener to eager 4861 */ 4862 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4863 if (tcp->tcp_ipversion == IPV6_VERSION) { 4864 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4865 IPPROTO_RAW) { 4866 tcp->tcp_ip6h = 4867 (ip6_t *)(tcp->tcp_iphc + 4868 sizeof (ip6i_t)); 4869 } else { 4870 tcp->tcp_ip6h = 4871 (ip6_t *)(tcp->tcp_iphc); 4872 } 4873 tcp->tcp_ipha = NULL; 4874 } else { 4875 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4876 tcp->tcp_ip6h = NULL; 4877 } 4878 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4879 tcp->tcp_ip_hdr_len); 4880 } else { 4881 /* 4882 * only valid case when ipversion of listener and 4883 * eager differ is when listener is IPv6 and 4884 * eager is IPv4. 4885 * Eager header template has been initialized to the 4886 * maximum v4 header sizes, which includes space for 4887 * TCP and IP options. 4888 */ 4889 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4890 (tcp->tcp_ipversion == IPV4_VERSION)); 4891 ASSERT(tcp->tcp_iphc_len >= 4892 TCP_MAX_COMBINED_HEADER_LENGTH); 4893 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4894 /* copy IP header fields individually */ 4895 tcp->tcp_ipha->ipha_ttl = 4896 ltcp->tcp_ip6h->ip6_hops; 4897 bcopy(ltcp->tcp_tcph->th_lport, 4898 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4899 } 4900 4901 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4902 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4903 sizeof (in_port_t)); 4904 4905 if (ltcp->tcp_lport == 0) { 4906 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4907 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4908 sizeof (in_port_t)); 4909 } 4910 4911 if (tcp->tcp_ipversion == IPV4_VERSION) { 4912 ASSERT(ipha != NULL); 4913 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4914 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4915 4916 /* Source routing option copyover (reverse it) */ 4917 if (tcp_rev_src_routes) 4918 tcp_opt_reverse(tcp, ipha); 4919 } else { 4920 ASSERT(ip6h != NULL); 4921 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4922 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4923 } 4924 4925 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4926 /* 4927 * If the SYN contains a credential, it's a loopback packet; attach 4928 * the credential to the TPI message. 4929 */ 4930 if ((cr = DB_CRED(idmp)) != NULL) { 4931 mblk_setcred(tpi_mp, cr); 4932 DB_CPID(tpi_mp) = DB_CPID(idmp); 4933 } 4934 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4935 4936 /* Inherit the listener's SSL protection state */ 4937 4938 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4939 kssl_hold_ent(tcp->tcp_kssl_ent); 4940 tcp->tcp_kssl_pending = B_TRUE; 4941 } 4942 4943 return (0); 4944 } 4945 4946 4947 int 4948 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4949 tcph_t *tcph, mblk_t *idmp) 4950 { 4951 tcp_t *ltcp = lconnp->conn_tcp; 4952 tcp_t *tcp = connp->conn_tcp; 4953 sin_t sin; 4954 mblk_t *tpi_mp = NULL; 4955 int err; 4956 cred_t *cr; 4957 4958 sin = sin_null; 4959 sin.sin_addr.s_addr = ipha->ipha_src; 4960 sin.sin_port = *(uint16_t *)tcph->th_lport; 4961 sin.sin_family = AF_INET; 4962 if (ltcp->tcp_recvdstaddr) { 4963 sin_t sind; 4964 4965 sind = sin_null; 4966 sind.sin_addr.s_addr = ipha->ipha_dst; 4967 sind.sin_port = *(uint16_t *)tcph->th_fport; 4968 sind.sin_family = AF_INET; 4969 tpi_mp = mi_tpi_extconn_ind(NULL, 4970 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4971 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4972 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4973 } else { 4974 tpi_mp = mi_tpi_conn_ind(NULL, 4975 (char *)&sin, sizeof (sin_t), 4976 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4977 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4978 } 4979 4980 if (tpi_mp == NULL) { 4981 return (ENOMEM); 4982 } 4983 4984 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4985 connp->conn_send = ip_output; 4986 connp->conn_recv = tcp_input; 4987 connp->conn_fully_bound = B_FALSE; 4988 4989 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4990 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4991 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4992 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4993 4994 if (tcp_trace) { 4995 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4996 } 4997 4998 /* Inherit information from the "parent" */ 4999 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5000 tcp->tcp_family = ltcp->tcp_family; 5001 tcp->tcp_wq = ltcp->tcp_wq; 5002 tcp->tcp_rq = ltcp->tcp_rq; 5003 tcp->tcp_mss = tcp_mss_def_ipv4; 5004 tcp->tcp_detached = B_TRUE; 5005 if ((err = tcp_init_values(tcp)) != 0) { 5006 freemsg(tpi_mp); 5007 return (err); 5008 } 5009 5010 /* 5011 * Let's make sure that eager tcp template has enough space to 5012 * copy IPv4 listener's tcp template. Since the conn_t structure is 5013 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5014 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5015 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5016 * extension headers or with ip6i_t struct). Note that bcopy() below 5017 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5018 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5019 */ 5020 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5021 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5022 5023 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5024 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5025 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5026 tcp->tcp_ttl = ltcp->tcp_ttl; 5027 tcp->tcp_tos = ltcp->tcp_tos; 5028 5029 /* Copy the IP+TCP header template from listener to eager */ 5030 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5031 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5032 tcp->tcp_ip6h = NULL; 5033 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5034 tcp->tcp_ip_hdr_len); 5035 5036 /* Initialize the IP addresses and Ports */ 5037 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5038 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5039 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5040 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5041 5042 /* Source routing option copyover (reverse it) */ 5043 if (tcp_rev_src_routes) 5044 tcp_opt_reverse(tcp, ipha); 5045 5046 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5047 5048 /* 5049 * If the SYN contains a credential, it's a loopback packet; attach 5050 * the credential to the TPI message. 5051 */ 5052 if ((cr = DB_CRED(idmp)) != NULL) { 5053 mblk_setcred(tpi_mp, cr); 5054 DB_CPID(tpi_mp) = DB_CPID(idmp); 5055 } 5056 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5057 5058 /* Inherit the listener's SSL protection state */ 5059 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5060 kssl_hold_ent(tcp->tcp_kssl_ent); 5061 tcp->tcp_kssl_pending = B_TRUE; 5062 } 5063 5064 return (0); 5065 } 5066 5067 /* 5068 * sets up conn for ipsec. 5069 * if the first mblk is M_CTL it is consumed and mpp is updated. 5070 * in case of error mpp is freed. 5071 */ 5072 conn_t * 5073 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5074 { 5075 conn_t *connp = tcp->tcp_connp; 5076 conn_t *econnp; 5077 squeue_t *new_sqp; 5078 mblk_t *first_mp = *mpp; 5079 mblk_t *mp = *mpp; 5080 boolean_t mctl_present = B_FALSE; 5081 uint_t ipvers; 5082 5083 econnp = tcp_get_conn(sqp); 5084 if (econnp == NULL) { 5085 freemsg(first_mp); 5086 return (NULL); 5087 } 5088 if (DB_TYPE(mp) == M_CTL) { 5089 if (mp->b_cont == NULL || 5090 mp->b_cont->b_datap->db_type != M_DATA) { 5091 freemsg(first_mp); 5092 return (NULL); 5093 } 5094 mp = mp->b_cont; 5095 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5096 freemsg(first_mp); 5097 return (NULL); 5098 } 5099 5100 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5101 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5102 mctl_present = B_TRUE; 5103 } else { 5104 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5105 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5106 } 5107 5108 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5109 DB_CKSUMSTART(mp) = 0; 5110 5111 ASSERT(OK_32PTR(mp->b_rptr)); 5112 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5113 if (ipvers == IPV4_VERSION) { 5114 uint16_t *up; 5115 uint32_t ports; 5116 ipha_t *ipha; 5117 5118 ipha = (ipha_t *)mp->b_rptr; 5119 up = (uint16_t *)((uchar_t *)ipha + 5120 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5121 ports = *(uint32_t *)up; 5122 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5123 ipha->ipha_dst, ipha->ipha_src, ports); 5124 } else { 5125 uint16_t *up; 5126 uint32_t ports; 5127 uint16_t ip_hdr_len; 5128 uint8_t *nexthdrp; 5129 ip6_t *ip6h; 5130 tcph_t *tcph; 5131 5132 ip6h = (ip6_t *)mp->b_rptr; 5133 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5134 ip_hdr_len = IPV6_HDR_LEN; 5135 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5136 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5137 CONN_DEC_REF(econnp); 5138 freemsg(first_mp); 5139 return (NULL); 5140 } 5141 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5142 up = (uint16_t *)tcph->th_lport; 5143 ports = *(uint32_t *)up; 5144 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5145 ip6h->ip6_dst, ip6h->ip6_src, ports); 5146 } 5147 5148 /* 5149 * The caller already ensured that there is a sqp present. 5150 */ 5151 econnp->conn_sqp = new_sqp; 5152 5153 if (connp->conn_policy != NULL) { 5154 ipsec_in_t *ii; 5155 ii = (ipsec_in_t *)(first_mp->b_rptr); 5156 ASSERT(ii->ipsec_in_policy == NULL); 5157 IPPH_REFHOLD(connp->conn_policy); 5158 ii->ipsec_in_policy = connp->conn_policy; 5159 5160 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5161 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5162 CONN_DEC_REF(econnp); 5163 freemsg(first_mp); 5164 return (NULL); 5165 } 5166 } 5167 5168 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5169 CONN_DEC_REF(econnp); 5170 freemsg(first_mp); 5171 return (NULL); 5172 } 5173 5174 /* 5175 * If we know we have some policy, pass the "IPSEC" 5176 * options size TCP uses this adjust the MSS. 5177 */ 5178 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5179 if (mctl_present) { 5180 freeb(first_mp); 5181 *mpp = mp; 5182 } 5183 5184 return (econnp); 5185 } 5186 5187 /* 5188 * tcp_get_conn/tcp_free_conn 5189 * 5190 * tcp_get_conn is used to get a clean tcp connection structure. 5191 * It tries to reuse the connections put on the freelist by the 5192 * time_wait_collector failing which it goes to kmem_cache. This 5193 * way has two benefits compared to just allocating from and 5194 * freeing to kmem_cache. 5195 * 1) The time_wait_collector can free (which includes the cleanup) 5196 * outside the squeue. So when the interrupt comes, we have a clean 5197 * connection sitting in the freelist. Obviously, this buys us 5198 * performance. 5199 * 5200 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5201 * has multiple disadvantages - tying up the squeue during alloc, and the 5202 * fact that IPSec policy initialization has to happen here which 5203 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5204 * But allocating the conn/tcp in IP land is also not the best since 5205 * we can't check the 'q' and 'q0' which are protected by squeue and 5206 * blindly allocate memory which might have to be freed here if we are 5207 * not allowed to accept the connection. By using the freelist and 5208 * putting the conn/tcp back in freelist, we don't pay a penalty for 5209 * allocating memory without checking 'q/q0' and freeing it if we can't 5210 * accept the connection. 5211 * 5212 * Care should be taken to put the conn back in the same squeue's freelist 5213 * from which it was allocated. Best results are obtained if conn is 5214 * allocated from listener's squeue and freed to the same. Time wait 5215 * collector will free up the freelist is the connection ends up sitting 5216 * there for too long. 5217 */ 5218 void * 5219 tcp_get_conn(void *arg) 5220 { 5221 tcp_t *tcp = NULL; 5222 conn_t *connp = NULL; 5223 squeue_t *sqp = (squeue_t *)arg; 5224 tcp_squeue_priv_t *tcp_time_wait; 5225 5226 tcp_time_wait = 5227 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5228 5229 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5230 tcp = tcp_time_wait->tcp_free_list; 5231 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5232 if (tcp != NULL) { 5233 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5234 tcp_time_wait->tcp_free_list_cnt--; 5235 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5236 tcp->tcp_time_wait_next = NULL; 5237 connp = tcp->tcp_connp; 5238 connp->conn_flags |= IPCL_REUSED; 5239 return ((void *)connp); 5240 } 5241 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5242 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5243 return (NULL); 5244 return ((void *)connp); 5245 } 5246 5247 /* 5248 * Update the cached label for the given tcp_t. This should be called once per 5249 * connection, and before any packets are sent or tcp_process_options is 5250 * invoked. Returns B_FALSE if the correct label could not be constructed. 5251 */ 5252 static boolean_t 5253 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5254 { 5255 conn_t *connp = tcp->tcp_connp; 5256 5257 if (tcp->tcp_ipversion == IPV4_VERSION) { 5258 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5259 int added; 5260 5261 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5262 connp->conn_mac_exempt) != 0) 5263 return (B_FALSE); 5264 5265 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5266 if (added == -1) 5267 return (B_FALSE); 5268 tcp->tcp_hdr_len += added; 5269 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5270 tcp->tcp_ip_hdr_len += added; 5271 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5272 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5273 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5274 tcp->tcp_hdr_len); 5275 if (added == -1) 5276 return (B_FALSE); 5277 tcp->tcp_hdr_len += added; 5278 tcp->tcp_tcph = (tcph_t *) 5279 ((uchar_t *)tcp->tcp_tcph + added); 5280 tcp->tcp_ip_hdr_len += added; 5281 } 5282 } else { 5283 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5284 5285 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5286 connp->conn_mac_exempt) != 0) 5287 return (B_FALSE); 5288 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5289 &tcp->tcp_label_len, optbuf) != 0) 5290 return (B_FALSE); 5291 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5292 return (B_FALSE); 5293 } 5294 5295 connp->conn_ulp_labeled = 1; 5296 5297 return (B_TRUE); 5298 } 5299 5300 /* BEGIN CSTYLED */ 5301 /* 5302 * 5303 * The sockfs ACCEPT path: 5304 * ======================= 5305 * 5306 * The eager is now established in its own perimeter as soon as SYN is 5307 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5308 * completes the accept processing on the acceptor STREAM. The sending 5309 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5310 * listener but a TLI/XTI listener completes the accept processing 5311 * on the listener perimeter. 5312 * 5313 * Common control flow for 3 way handshake: 5314 * ---------------------------------------- 5315 * 5316 * incoming SYN (listener perimeter) -> tcp_rput_data() 5317 * -> tcp_conn_request() 5318 * 5319 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5320 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5321 * 5322 * Sockfs ACCEPT Path: 5323 * ------------------- 5324 * 5325 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5326 * as STREAM entry point) 5327 * 5328 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5329 * 5330 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5331 * association (we are not behind eager's squeue but sockfs is protecting us 5332 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5333 * is changed to point at tcp_wput(). 5334 * 5335 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5336 * listener (done on listener's perimeter). 5337 * 5338 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5339 * accept. 5340 * 5341 * TLI/XTI client ACCEPT path: 5342 * --------------------------- 5343 * 5344 * soaccept() sends T_CONN_RES on the listener STREAM. 5345 * 5346 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5347 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5348 * 5349 * Locks: 5350 * ====== 5351 * 5352 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5353 * and listeners->tcp_eager_next_q. 5354 * 5355 * Referencing: 5356 * ============ 5357 * 5358 * 1) We start out in tcp_conn_request by eager placing a ref on 5359 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5360 * 5361 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5362 * doing so we place a ref on the eager. This ref is finally dropped at the 5363 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5364 * reference is dropped by the squeue framework. 5365 * 5366 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5367 * 5368 * The reference must be released by the same entity that added the reference 5369 * In the above scheme, the eager is the entity that adds and releases the 5370 * references. Note that tcp_accept_finish executes in the squeue of the eager 5371 * (albeit after it is attached to the acceptor stream). Though 1. executes 5372 * in the listener's squeue, the eager is nascent at this point and the 5373 * reference can be considered to have been added on behalf of the eager. 5374 * 5375 * Eager getting a Reset or listener closing: 5376 * ========================================== 5377 * 5378 * Once the listener and eager are linked, the listener never does the unlink. 5379 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5380 * a message on all eager perimeter. The eager then does the unlink, clears 5381 * any pointers to the listener's queue and drops the reference to the 5382 * listener. The listener waits in tcp_close outside the squeue until its 5383 * refcount has dropped to 1. This ensures that the listener has waited for 5384 * all eagers to clear their association with the listener. 5385 * 5386 * Similarly, if eager decides to go away, it can unlink itself and close. 5387 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5388 * the reference to eager is still valid because of the extra ref we put 5389 * in tcp_send_conn_ind. 5390 * 5391 * Listener can always locate the eager under the protection 5392 * of the listener->tcp_eager_lock, and then do a refhold 5393 * on the eager during the accept processing. 5394 * 5395 * The acceptor stream accesses the eager in the accept processing 5396 * based on the ref placed on eager before sending T_conn_ind. 5397 * The only entity that can negate this refhold is a listener close 5398 * which is mutually exclusive with an active acceptor stream. 5399 * 5400 * Eager's reference on the listener 5401 * =================================== 5402 * 5403 * If the accept happens (even on a closed eager) the eager drops its 5404 * reference on the listener at the start of tcp_accept_finish. If the 5405 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5406 * the reference is dropped in tcp_closei_local. If the listener closes, 5407 * the reference is dropped in tcp_eager_kill. In all cases the reference 5408 * is dropped while executing in the eager's context (squeue). 5409 */ 5410 /* END CSTYLED */ 5411 5412 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5413 5414 /* 5415 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5416 * tcp_rput_data will not see any SYN packets. 5417 */ 5418 /* ARGSUSED */ 5419 void 5420 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5421 { 5422 tcph_t *tcph; 5423 uint32_t seg_seq; 5424 tcp_t *eager; 5425 uint_t ipvers; 5426 ipha_t *ipha; 5427 ip6_t *ip6h; 5428 int err; 5429 conn_t *econnp = NULL; 5430 squeue_t *new_sqp; 5431 mblk_t *mp1; 5432 uint_t ip_hdr_len; 5433 conn_t *connp = (conn_t *)arg; 5434 tcp_t *tcp = connp->conn_tcp; 5435 ire_t *ire; 5436 cred_t *credp; 5437 5438 if (tcp->tcp_state != TCPS_LISTEN) 5439 goto error2; 5440 5441 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5442 5443 mutex_enter(&tcp->tcp_eager_lock); 5444 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5445 mutex_exit(&tcp->tcp_eager_lock); 5446 TCP_STAT(tcp_listendrop); 5447 BUMP_MIB(&tcp_mib, tcpListenDrop); 5448 if (tcp->tcp_debug) { 5449 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5450 "tcp_conn_request: listen backlog (max=%d) " 5451 "overflow (%d pending) on %s", 5452 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5453 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5454 } 5455 goto error2; 5456 } 5457 5458 if (tcp->tcp_conn_req_cnt_q0 >= 5459 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5460 /* 5461 * Q0 is full. Drop a pending half-open req from the queue 5462 * to make room for the new SYN req. Also mark the time we 5463 * drop a SYN. 5464 * 5465 * A more aggressive defense against SYN attack will 5466 * be to set the "tcp_syn_defense" flag now. 5467 */ 5468 TCP_STAT(tcp_listendropq0); 5469 tcp->tcp_last_rcv_lbolt = lbolt64; 5470 if (!tcp_drop_q0(tcp)) { 5471 mutex_exit(&tcp->tcp_eager_lock); 5472 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5473 if (tcp->tcp_debug) { 5474 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5475 "tcp_conn_request: listen half-open queue " 5476 "(max=%d) full (%d pending) on %s", 5477 tcp_conn_req_max_q0, 5478 tcp->tcp_conn_req_cnt_q0, 5479 tcp_display(tcp, NULL, 5480 DISP_PORT_ONLY)); 5481 } 5482 goto error2; 5483 } 5484 } 5485 mutex_exit(&tcp->tcp_eager_lock); 5486 5487 /* 5488 * IP adds STRUIO_EAGER and ensures that the received packet is 5489 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5490 * link local address. If IPSec is enabled, db_struioflag has 5491 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5492 * otherwise an error case if neither of them is set. 5493 */ 5494 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5495 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5496 DB_CKSUMSTART(mp) = 0; 5497 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5498 econnp = (conn_t *)tcp_get_conn(arg2); 5499 if (econnp == NULL) 5500 goto error2; 5501 econnp->conn_sqp = new_sqp; 5502 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5503 /* 5504 * mp is updated in tcp_get_ipsec_conn(). 5505 */ 5506 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5507 if (econnp == NULL) { 5508 /* 5509 * mp freed by tcp_get_ipsec_conn. 5510 */ 5511 return; 5512 } 5513 } else { 5514 goto error2; 5515 } 5516 5517 ASSERT(DB_TYPE(mp) == M_DATA); 5518 5519 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5520 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5521 ASSERT(OK_32PTR(mp->b_rptr)); 5522 if (ipvers == IPV4_VERSION) { 5523 ipha = (ipha_t *)mp->b_rptr; 5524 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5525 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5526 } else { 5527 ip6h = (ip6_t *)mp->b_rptr; 5528 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5529 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5530 } 5531 5532 if (tcp->tcp_family == AF_INET) { 5533 ASSERT(ipvers == IPV4_VERSION); 5534 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5535 } else { 5536 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5537 } 5538 5539 if (err) 5540 goto error3; 5541 5542 eager = econnp->conn_tcp; 5543 5544 /* Inherit various TCP parameters from the listener */ 5545 eager->tcp_naglim = tcp->tcp_naglim; 5546 eager->tcp_first_timer_threshold = 5547 tcp->tcp_first_timer_threshold; 5548 eager->tcp_second_timer_threshold = 5549 tcp->tcp_second_timer_threshold; 5550 5551 eager->tcp_first_ctimer_threshold = 5552 tcp->tcp_first_ctimer_threshold; 5553 eager->tcp_second_ctimer_threshold = 5554 tcp->tcp_second_ctimer_threshold; 5555 5556 /* 5557 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5558 * If it does not, the eager's receive window will be set to the 5559 * listener's receive window later in this function. 5560 */ 5561 eager->tcp_rwnd = 0; 5562 5563 /* 5564 * Inherit listener's tcp_init_cwnd. Need to do this before 5565 * calling tcp_process_options() where tcp_mss_set() is called 5566 * to set the initial cwnd. 5567 */ 5568 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5569 5570 /* 5571 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5572 * zone id before the accept is completed in tcp_wput_accept(). 5573 */ 5574 econnp->conn_zoneid = connp->conn_zoneid; 5575 5576 /* Copy nexthop information from listener to eager */ 5577 if (connp->conn_nexthop_set) { 5578 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5579 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5580 } 5581 5582 /* 5583 * TSOL: tsol_input_proc() needs the eager's cred before the 5584 * eager is accepted 5585 */ 5586 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5587 crhold(credp); 5588 5589 /* 5590 * If the caller has the process-wide flag set, then default to MAC 5591 * exempt mode. This allows read-down to unlabeled hosts. 5592 */ 5593 if (getpflags(NET_MAC_AWARE, credp) != 0) 5594 econnp->conn_mac_exempt = B_TRUE; 5595 5596 if (is_system_labeled()) { 5597 cred_t *cr; 5598 5599 if (connp->conn_mlp_type != mlptSingle) { 5600 cr = econnp->conn_peercred = DB_CRED(mp); 5601 if (cr != NULL) 5602 crhold(cr); 5603 else 5604 cr = econnp->conn_cred; 5605 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5606 econnp, cred_t *, cr) 5607 } else { 5608 cr = econnp->conn_cred; 5609 DTRACE_PROBE2(syn_accept, conn_t *, 5610 econnp, cred_t *, cr) 5611 } 5612 5613 if (!tcp_update_label(eager, cr)) { 5614 DTRACE_PROBE3( 5615 tx__ip__log__error__connrequest__tcp, 5616 char *, "eager connp(1) label on SYN mp(2) failed", 5617 conn_t *, econnp, mblk_t *, mp); 5618 goto error3; 5619 } 5620 } 5621 5622 eager->tcp_hard_binding = B_TRUE; 5623 5624 tcp_bind_hash_insert(&tcp_bind_fanout[ 5625 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5626 5627 CL_INET_CONNECT(eager); 5628 5629 /* 5630 * No need to check for multicast destination since ip will only pass 5631 * up multicasts to those that have expressed interest 5632 * TODO: what about rejecting broadcasts? 5633 * Also check that source is not a multicast or broadcast address. 5634 */ 5635 eager->tcp_state = TCPS_SYN_RCVD; 5636 5637 5638 /* 5639 * There should be no ire in the mp as we are being called after 5640 * receiving the SYN. 5641 */ 5642 ASSERT(tcp_ire_mp(mp) == NULL); 5643 5644 /* 5645 * Adapt our mss, ttl, ... according to information provided in IRE. 5646 */ 5647 5648 if (tcp_adapt_ire(eager, NULL) == 0) { 5649 /* Undo the bind_hash_insert */ 5650 tcp_bind_hash_remove(eager); 5651 goto error3; 5652 } 5653 5654 /* Process all TCP options. */ 5655 tcp_process_options(eager, tcph); 5656 5657 /* Is the other end ECN capable? */ 5658 if (tcp_ecn_permitted >= 1 && 5659 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5660 eager->tcp_ecn_ok = B_TRUE; 5661 } 5662 5663 /* 5664 * listener->tcp_rq->q_hiwat should be the default window size or a 5665 * window size changed via SO_RCVBUF option. First round up the 5666 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5667 * scale option value if needed. Call tcp_rwnd_set() to finish the 5668 * setting. 5669 * 5670 * Note if there is a rpipe metric associated with the remote host, 5671 * we should not inherit receive window size from listener. 5672 */ 5673 eager->tcp_rwnd = MSS_ROUNDUP( 5674 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5675 eager->tcp_rwnd), eager->tcp_mss); 5676 if (eager->tcp_snd_ws_ok) 5677 tcp_set_ws_value(eager); 5678 /* 5679 * Note that this is the only place tcp_rwnd_set() is called for 5680 * accepting a connection. We need to call it here instead of 5681 * after the 3-way handshake because we need to tell the other 5682 * side our rwnd in the SYN-ACK segment. 5683 */ 5684 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5685 5686 /* 5687 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5688 * via soaccept()->soinheritoptions() which essentially applies 5689 * all the listener options to the new STREAM. The options that we 5690 * need to take care of are: 5691 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5692 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5693 * SO_SNDBUF, SO_RCVBUF. 5694 * 5695 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5696 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5697 * tcp_maxpsz_set() gets called later from 5698 * tcp_accept_finish(), the option takes effect. 5699 * 5700 */ 5701 /* Set the TCP options */ 5702 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5703 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5704 eager->tcp_oobinline = tcp->tcp_oobinline; 5705 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5706 eager->tcp_broadcast = tcp->tcp_broadcast; 5707 eager->tcp_useloopback = tcp->tcp_useloopback; 5708 eager->tcp_dontroute = tcp->tcp_dontroute; 5709 eager->tcp_linger = tcp->tcp_linger; 5710 eager->tcp_lingertime = tcp->tcp_lingertime; 5711 if (tcp->tcp_ka_enabled) 5712 eager->tcp_ka_enabled = 1; 5713 5714 /* Set the IP options */ 5715 econnp->conn_broadcast = connp->conn_broadcast; 5716 econnp->conn_loopback = connp->conn_loopback; 5717 econnp->conn_dontroute = connp->conn_dontroute; 5718 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5719 5720 /* Put a ref on the listener for the eager. */ 5721 CONN_INC_REF(connp); 5722 mutex_enter(&tcp->tcp_eager_lock); 5723 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5724 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5725 tcp->tcp_eager_next_q0 = eager; 5726 eager->tcp_eager_prev_q0 = tcp; 5727 5728 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5729 eager->tcp_listener = tcp; 5730 eager->tcp_saved_listener = tcp; 5731 5732 /* 5733 * Tag this detached tcp vector for later retrieval 5734 * by our listener client in tcp_accept(). 5735 */ 5736 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5737 tcp->tcp_conn_req_cnt_q0++; 5738 if (++tcp->tcp_conn_req_seqnum == -1) { 5739 /* 5740 * -1 is "special" and defined in TPI as something 5741 * that should never be used in T_CONN_IND 5742 */ 5743 ++tcp->tcp_conn_req_seqnum; 5744 } 5745 mutex_exit(&tcp->tcp_eager_lock); 5746 5747 if (tcp->tcp_syn_defense) { 5748 /* Don't drop the SYN that comes from a good IP source */ 5749 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5750 if (addr_cache != NULL && eager->tcp_remote == 5751 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5752 eager->tcp_dontdrop = B_TRUE; 5753 } 5754 } 5755 5756 /* 5757 * We need to insert the eager in its own perimeter but as soon 5758 * as we do that, we expose the eager to the classifier and 5759 * should not touch any field outside the eager's perimeter. 5760 * So do all the work necessary before inserting the eager 5761 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5762 * will succeed but undo everything if it fails. 5763 */ 5764 seg_seq = ABE32_TO_U32(tcph->th_seq); 5765 eager->tcp_irs = seg_seq; 5766 eager->tcp_rack = seg_seq; 5767 eager->tcp_rnxt = seg_seq + 1; 5768 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5769 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5770 eager->tcp_state = TCPS_SYN_RCVD; 5771 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5772 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5773 if (mp1 == NULL) 5774 goto error1; 5775 DB_CPID(mp1) = tcp->tcp_cpid; 5776 5777 /* 5778 * We need to start the rto timer. In normal case, we start 5779 * the timer after sending the packet on the wire (or at 5780 * least believing that packet was sent by waiting for 5781 * CALL_IP_WPUT() to return). Since this is the first packet 5782 * being sent on the wire for the eager, our initial tcp_rto 5783 * is at least tcp_rexmit_interval_min which is a fairly 5784 * large value to allow the algorithm to adjust slowly to large 5785 * fluctuations of RTT during first few transmissions. 5786 * 5787 * Starting the timer first and then sending the packet in this 5788 * case shouldn't make much difference since tcp_rexmit_interval_min 5789 * is of the order of several 100ms and starting the timer 5790 * first and then sending the packet will result in difference 5791 * of few micro seconds. 5792 * 5793 * Without this optimization, we are forced to hold the fanout 5794 * lock across the ipcl_bind_insert() and sending the packet 5795 * so that we don't race against an incoming packet (maybe RST) 5796 * for this eager. 5797 */ 5798 5799 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5800 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5801 5802 5803 /* 5804 * Insert the eager in its own perimeter now. We are ready to deal 5805 * with any packets on eager. 5806 */ 5807 if (eager->tcp_ipversion == IPV4_VERSION) { 5808 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5809 goto error; 5810 } 5811 } else { 5812 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5813 goto error; 5814 } 5815 } 5816 5817 /* mark conn as fully-bound */ 5818 econnp->conn_fully_bound = B_TRUE; 5819 5820 /* Send the SYN-ACK */ 5821 tcp_send_data(eager, eager->tcp_wq, mp1); 5822 freemsg(mp); 5823 5824 return; 5825 error: 5826 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5827 freemsg(mp1); 5828 error1: 5829 /* Undo what we did above */ 5830 mutex_enter(&tcp->tcp_eager_lock); 5831 tcp_eager_unlink(eager); 5832 mutex_exit(&tcp->tcp_eager_lock); 5833 /* Drop eager's reference on the listener */ 5834 CONN_DEC_REF(connp); 5835 5836 /* 5837 * Delete the cached ire in conn_ire_cache and also mark 5838 * the conn as CONDEMNED 5839 */ 5840 mutex_enter(&econnp->conn_lock); 5841 econnp->conn_state_flags |= CONN_CONDEMNED; 5842 ire = econnp->conn_ire_cache; 5843 econnp->conn_ire_cache = NULL; 5844 mutex_exit(&econnp->conn_lock); 5845 if (ire != NULL) 5846 IRE_REFRELE_NOTR(ire); 5847 5848 /* 5849 * tcp_accept_comm inserts the eager to the bind_hash 5850 * we need to remove it from the hash if ipcl_conn_insert 5851 * fails. 5852 */ 5853 tcp_bind_hash_remove(eager); 5854 /* Drop the eager ref placed in tcp_open_detached */ 5855 CONN_DEC_REF(econnp); 5856 5857 /* 5858 * If a connection already exists, send the mp to that connections so 5859 * that it can be appropriately dealt with. 5860 */ 5861 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5862 if (!IPCL_IS_CONNECTED(econnp)) { 5863 /* 5864 * Something bad happened. ipcl_conn_insert() 5865 * failed because a connection already existed 5866 * in connected hash but we can't find it 5867 * anymore (someone blew it away). Just 5868 * free this message and hopefully remote 5869 * will retransmit at which time the SYN can be 5870 * treated as a new connection or dealth with 5871 * a TH_RST if a connection already exists. 5872 */ 5873 freemsg(mp); 5874 } else { 5875 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5876 econnp, SQTAG_TCP_CONN_REQ); 5877 } 5878 } else { 5879 /* Nobody wants this packet */ 5880 freemsg(mp); 5881 } 5882 return; 5883 error2: 5884 freemsg(mp); 5885 return; 5886 error3: 5887 CONN_DEC_REF(econnp); 5888 freemsg(mp); 5889 } 5890 5891 /* 5892 * In an ideal case of vertical partition in NUMA architecture, its 5893 * beneficial to have the listener and all the incoming connections 5894 * tied to the same squeue. The other constraint is that incoming 5895 * connections should be tied to the squeue attached to interrupted 5896 * CPU for obvious locality reason so this leaves the listener to 5897 * be tied to the same squeue. Our only problem is that when listener 5898 * is binding, the CPU that will get interrupted by the NIC whose 5899 * IP address the listener is binding to is not even known. So 5900 * the code below allows us to change that binding at the time the 5901 * CPU is interrupted by virtue of incoming connection's squeue. 5902 * 5903 * This is usefull only in case of a listener bound to a specific IP 5904 * address. For other kind of listeners, they get bound the 5905 * very first time and there is no attempt to rebind them. 5906 */ 5907 void 5908 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5909 { 5910 conn_t *connp = (conn_t *)arg; 5911 squeue_t *sqp = (squeue_t *)arg2; 5912 squeue_t *new_sqp; 5913 uint32_t conn_flags; 5914 5915 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5916 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5917 } else { 5918 goto done; 5919 } 5920 5921 if (connp->conn_fanout == NULL) 5922 goto done; 5923 5924 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5925 mutex_enter(&connp->conn_fanout->connf_lock); 5926 mutex_enter(&connp->conn_lock); 5927 /* 5928 * No one from read or write side can access us now 5929 * except for already queued packets on this squeue. 5930 * But since we haven't changed the squeue yet, they 5931 * can't execute. If they are processed after we have 5932 * changed the squeue, they are sent back to the 5933 * correct squeue down below. 5934 */ 5935 if (connp->conn_sqp != new_sqp) { 5936 while (connp->conn_sqp != new_sqp) 5937 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5938 } 5939 5940 do { 5941 conn_flags = connp->conn_flags; 5942 conn_flags |= IPCL_FULLY_BOUND; 5943 (void) cas32(&connp->conn_flags, connp->conn_flags, 5944 conn_flags); 5945 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5946 5947 mutex_exit(&connp->conn_fanout->connf_lock); 5948 mutex_exit(&connp->conn_lock); 5949 } 5950 5951 done: 5952 if (connp->conn_sqp != sqp) { 5953 CONN_INC_REF(connp); 5954 squeue_fill(connp->conn_sqp, mp, 5955 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5956 } else { 5957 tcp_conn_request(connp, mp, sqp); 5958 } 5959 } 5960 5961 /* 5962 * Successful connect request processing begins when our client passes 5963 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5964 * our T_OK_ACK reply message upstream. The control flow looks like this: 5965 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5966 * upstream <- tcp_rput() <- IP 5967 * After various error checks are completed, tcp_connect() lays 5968 * the target address and port into the composite header template, 5969 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5970 * request followed by an IRE request, and passes the three mblk message 5971 * down to IP looking like this: 5972 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5973 * Processing continues in tcp_rput() when we receive the following message: 5974 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5975 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5976 * to fire off the connection request, and then passes the T_OK_ACK mblk 5977 * upstream that we filled in below. There are, of course, numerous 5978 * error conditions along the way which truncate the processing described 5979 * above. 5980 */ 5981 static void 5982 tcp_connect(tcp_t *tcp, mblk_t *mp) 5983 { 5984 sin_t *sin; 5985 sin6_t *sin6; 5986 queue_t *q = tcp->tcp_wq; 5987 struct T_conn_req *tcr; 5988 ipaddr_t *dstaddrp; 5989 in_port_t dstport; 5990 uint_t srcid; 5991 5992 tcr = (struct T_conn_req *)mp->b_rptr; 5993 5994 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5995 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5996 tcp_err_ack(tcp, mp, TPROTO, 0); 5997 return; 5998 } 5999 6000 /* 6001 * Determine packet type based on type of address passed in 6002 * the request should contain an IPv4 or IPv6 address. 6003 * Make sure that address family matches the type of 6004 * family of the the address passed down 6005 */ 6006 switch (tcr->DEST_length) { 6007 default: 6008 tcp_err_ack(tcp, mp, TBADADDR, 0); 6009 return; 6010 6011 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6012 /* 6013 * XXX: The check for valid DEST_length was not there 6014 * in earlier releases and some buggy 6015 * TLI apps (e.g Sybase) got away with not feeding 6016 * in sin_zero part of address. 6017 * We allow that bug to keep those buggy apps humming. 6018 * Test suites require the check on DEST_length. 6019 * We construct a new mblk with valid DEST_length 6020 * free the original so the rest of the code does 6021 * not have to keep track of this special shorter 6022 * length address case. 6023 */ 6024 mblk_t *nmp; 6025 struct T_conn_req *ntcr; 6026 sin_t *nsin; 6027 6028 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6029 tcr->OPT_length, BPRI_HI); 6030 if (nmp == NULL) { 6031 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6032 return; 6033 } 6034 ntcr = (struct T_conn_req *)nmp->b_rptr; 6035 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6036 ntcr->PRIM_type = T_CONN_REQ; 6037 ntcr->DEST_length = sizeof (sin_t); 6038 ntcr->DEST_offset = sizeof (struct T_conn_req); 6039 6040 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6041 *nsin = sin_null; 6042 /* Get pointer to shorter address to copy from original mp */ 6043 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6044 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6045 if (sin == NULL || !OK_32PTR((char *)sin)) { 6046 freemsg(nmp); 6047 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6048 return; 6049 } 6050 nsin->sin_family = sin->sin_family; 6051 nsin->sin_port = sin->sin_port; 6052 nsin->sin_addr = sin->sin_addr; 6053 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6054 nmp->b_wptr = (uchar_t *)&nsin[1]; 6055 if (tcr->OPT_length != 0) { 6056 ntcr->OPT_length = tcr->OPT_length; 6057 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6058 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6059 (uchar_t *)ntcr + ntcr->OPT_offset, 6060 tcr->OPT_length); 6061 nmp->b_wptr += tcr->OPT_length; 6062 } 6063 freemsg(mp); /* original mp freed */ 6064 mp = nmp; /* re-initialize original variables */ 6065 tcr = ntcr; 6066 } 6067 /* FALLTHRU */ 6068 6069 case sizeof (sin_t): 6070 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6071 sizeof (sin_t)); 6072 if (sin == NULL || !OK_32PTR((char *)sin)) { 6073 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6074 return; 6075 } 6076 if (tcp->tcp_family != AF_INET || 6077 sin->sin_family != AF_INET) { 6078 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6079 return; 6080 } 6081 if (sin->sin_port == 0) { 6082 tcp_err_ack(tcp, mp, TBADADDR, 0); 6083 return; 6084 } 6085 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6086 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6087 return; 6088 } 6089 6090 break; 6091 6092 case sizeof (sin6_t): 6093 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6094 sizeof (sin6_t)); 6095 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6096 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6097 return; 6098 } 6099 if (tcp->tcp_family != AF_INET6 || 6100 sin6->sin6_family != AF_INET6) { 6101 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6102 return; 6103 } 6104 if (sin6->sin6_port == 0) { 6105 tcp_err_ack(tcp, mp, TBADADDR, 0); 6106 return; 6107 } 6108 break; 6109 } 6110 /* 6111 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6112 * should key on their sequence number and cut them loose. 6113 */ 6114 6115 /* 6116 * If options passed in, feed it for verification and handling 6117 */ 6118 if (tcr->OPT_length != 0) { 6119 mblk_t *ok_mp; 6120 mblk_t *discon_mp; 6121 mblk_t *conn_opts_mp; 6122 int t_error, sys_error, do_disconnect; 6123 6124 conn_opts_mp = NULL; 6125 6126 if (tcp_conprim_opt_process(tcp, mp, 6127 &do_disconnect, &t_error, &sys_error) < 0) { 6128 if (do_disconnect) { 6129 ASSERT(t_error == 0 && sys_error == 0); 6130 discon_mp = mi_tpi_discon_ind(NULL, 6131 ECONNREFUSED, 0); 6132 if (!discon_mp) { 6133 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6134 TSYSERR, ENOMEM); 6135 return; 6136 } 6137 ok_mp = mi_tpi_ok_ack_alloc(mp); 6138 if (!ok_mp) { 6139 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6140 TSYSERR, ENOMEM); 6141 return; 6142 } 6143 qreply(q, ok_mp); 6144 qreply(q, discon_mp); /* no flush! */ 6145 } else { 6146 ASSERT(t_error != 0); 6147 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6148 sys_error); 6149 } 6150 return; 6151 } 6152 /* 6153 * Success in setting options, the mp option buffer represented 6154 * by OPT_length/offset has been potentially modified and 6155 * contains results of option processing. We copy it in 6156 * another mp to save it for potentially influencing returning 6157 * it in T_CONN_CONN. 6158 */ 6159 if (tcr->OPT_length != 0) { /* there are resulting options */ 6160 conn_opts_mp = copyb(mp); 6161 if (!conn_opts_mp) { 6162 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6163 TSYSERR, ENOMEM); 6164 return; 6165 } 6166 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6167 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6168 /* 6169 * Note: 6170 * These resulting option negotiation can include any 6171 * end-to-end negotiation options but there no such 6172 * thing (yet?) in our TCP/IP. 6173 */ 6174 } 6175 } 6176 6177 /* 6178 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6179 * make sure that the template IP header in the tcp structure is an 6180 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6181 * need to this before we call tcp_bindi() so that the port lookup 6182 * code will look for ports in the correct port space (IPv4 and 6183 * IPv6 have separate port spaces). 6184 */ 6185 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6186 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6187 int err = 0; 6188 6189 err = tcp_header_init_ipv4(tcp); 6190 if (err != 0) { 6191 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6192 goto connect_failed; 6193 } 6194 if (tcp->tcp_lport != 0) 6195 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6196 } 6197 6198 switch (tcp->tcp_state) { 6199 case TCPS_IDLE: 6200 /* 6201 * We support quick connect, refer to comments in 6202 * tcp_connect_*() 6203 */ 6204 /* FALLTHRU */ 6205 case TCPS_BOUND: 6206 case TCPS_LISTEN: 6207 if (tcp->tcp_family == AF_INET6) { 6208 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6209 tcp_connect_ipv6(tcp, mp, 6210 &sin6->sin6_addr, 6211 sin6->sin6_port, sin6->sin6_flowinfo, 6212 sin6->__sin6_src_id, sin6->sin6_scope_id); 6213 return; 6214 } 6215 /* 6216 * Destination adress is mapped IPv6 address. 6217 * Source bound address should be unspecified or 6218 * IPv6 mapped address as well. 6219 */ 6220 if (!IN6_IS_ADDR_UNSPECIFIED( 6221 &tcp->tcp_bound_source_v6) && 6222 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6223 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6224 EADDRNOTAVAIL); 6225 break; 6226 } 6227 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6228 dstport = sin6->sin6_port; 6229 srcid = sin6->__sin6_src_id; 6230 } else { 6231 dstaddrp = &sin->sin_addr.s_addr; 6232 dstport = sin->sin_port; 6233 srcid = 0; 6234 } 6235 6236 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6237 return; 6238 default: 6239 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6240 break; 6241 } 6242 /* 6243 * Note: Code below is the "failure" case 6244 */ 6245 /* return error ack and blow away saved option results if any */ 6246 connect_failed: 6247 if (mp != NULL) 6248 putnext(tcp->tcp_rq, mp); 6249 else { 6250 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6251 TSYSERR, ENOMEM); 6252 } 6253 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6254 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6255 } 6256 6257 /* 6258 * Handle connect to IPv4 destinations, including connections for AF_INET6 6259 * sockets connecting to IPv4 mapped IPv6 destinations. 6260 */ 6261 static void 6262 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6263 uint_t srcid) 6264 { 6265 tcph_t *tcph; 6266 mblk_t *mp1; 6267 ipaddr_t dstaddr = *dstaddrp; 6268 int32_t oldstate; 6269 uint16_t lport; 6270 6271 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6272 6273 /* Check for attempt to connect to INADDR_ANY */ 6274 if (dstaddr == INADDR_ANY) { 6275 /* 6276 * SunOS 4.x and 4.3 BSD allow an application 6277 * to connect a TCP socket to INADDR_ANY. 6278 * When they do this, the kernel picks the 6279 * address of one interface and uses it 6280 * instead. The kernel usually ends up 6281 * picking the address of the loopback 6282 * interface. This is an undocumented feature. 6283 * However, we provide the same thing here 6284 * in order to have source and binary 6285 * compatibility with SunOS 4.x. 6286 * Update the T_CONN_REQ (sin/sin6) since it is used to 6287 * generate the T_CONN_CON. 6288 */ 6289 dstaddr = htonl(INADDR_LOOPBACK); 6290 *dstaddrp = dstaddr; 6291 } 6292 6293 /* Handle __sin6_src_id if socket not bound to an IP address */ 6294 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6295 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6296 tcp->tcp_connp->conn_zoneid); 6297 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6298 tcp->tcp_ipha->ipha_src); 6299 } 6300 6301 /* 6302 * Don't let an endpoint connect to itself. Note that 6303 * the test here does not catch the case where the 6304 * source IP addr was left unspecified by the user. In 6305 * this case, the source addr is set in tcp_adapt_ire() 6306 * using the reply to the T_BIND message that we send 6307 * down to IP here and the check is repeated in tcp_rput_other. 6308 */ 6309 if (dstaddr == tcp->tcp_ipha->ipha_src && 6310 dstport == tcp->tcp_lport) { 6311 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6312 goto failed; 6313 } 6314 6315 tcp->tcp_ipha->ipha_dst = dstaddr; 6316 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6317 6318 /* 6319 * Massage a source route if any putting the first hop 6320 * in iph_dst. Compute a starting value for the checksum which 6321 * takes into account that the original iph_dst should be 6322 * included in the checksum but that ip will include the 6323 * first hop in the source route in the tcp checksum. 6324 */ 6325 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6326 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6327 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6328 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6329 if ((int)tcp->tcp_sum < 0) 6330 tcp->tcp_sum--; 6331 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6332 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6333 (tcp->tcp_sum >> 16)); 6334 tcph = tcp->tcp_tcph; 6335 *(uint16_t *)tcph->th_fport = dstport; 6336 tcp->tcp_fport = dstport; 6337 6338 oldstate = tcp->tcp_state; 6339 /* 6340 * At this point the remote destination address and remote port fields 6341 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6342 * have to see which state tcp was in so we can take apropriate action. 6343 */ 6344 if (oldstate == TCPS_IDLE) { 6345 /* 6346 * We support a quick connect capability here, allowing 6347 * clients to transition directly from IDLE to SYN_SENT 6348 * tcp_bindi will pick an unused port, insert the connection 6349 * in the bind hash and transition to BOUND state. 6350 */ 6351 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6352 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6353 B_FALSE, B_FALSE); 6354 if (lport == 0) { 6355 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6356 goto failed; 6357 } 6358 } 6359 tcp->tcp_state = TCPS_SYN_SENT; 6360 6361 /* 6362 * TODO: allow data with connect requests 6363 * by unlinking M_DATA trailers here and 6364 * linking them in behind the T_OK_ACK mblk. 6365 * The tcp_rput() bind ack handler would then 6366 * feed them to tcp_wput_data() rather than call 6367 * tcp_timer(). 6368 */ 6369 mp = mi_tpi_ok_ack_alloc(mp); 6370 if (!mp) { 6371 tcp->tcp_state = oldstate; 6372 goto failed; 6373 } 6374 if (tcp->tcp_family == AF_INET) { 6375 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6376 sizeof (ipa_conn_t)); 6377 } else { 6378 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6379 sizeof (ipa6_conn_t)); 6380 } 6381 if (mp1) { 6382 /* Hang onto the T_OK_ACK for later. */ 6383 linkb(mp1, mp); 6384 mblk_setcred(mp1, tcp->tcp_cred); 6385 if (tcp->tcp_family == AF_INET) 6386 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6387 else { 6388 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6389 &tcp->tcp_sticky_ipp); 6390 } 6391 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6392 tcp->tcp_active_open = 1; 6393 /* 6394 * If the bind cannot complete immediately 6395 * IP will arrange to call tcp_rput_other 6396 * when the bind completes. 6397 */ 6398 if (mp1 != NULL) 6399 tcp_rput_other(tcp, mp1); 6400 return; 6401 } 6402 /* Error case */ 6403 tcp->tcp_state = oldstate; 6404 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6405 6406 failed: 6407 /* return error ack and blow away saved option results if any */ 6408 if (mp != NULL) 6409 putnext(tcp->tcp_rq, mp); 6410 else { 6411 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6412 TSYSERR, ENOMEM); 6413 } 6414 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6415 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6416 6417 } 6418 6419 /* 6420 * Handle connect to IPv6 destinations. 6421 */ 6422 static void 6423 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6424 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6425 { 6426 tcph_t *tcph; 6427 mblk_t *mp1; 6428 ip6_rthdr_t *rth; 6429 int32_t oldstate; 6430 uint16_t lport; 6431 6432 ASSERT(tcp->tcp_family == AF_INET6); 6433 6434 /* 6435 * If we're here, it means that the destination address is a native 6436 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6437 * reason why it might not be IPv6 is if the socket was bound to an 6438 * IPv4-mapped IPv6 address. 6439 */ 6440 if (tcp->tcp_ipversion != IPV6_VERSION) { 6441 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6442 goto failed; 6443 } 6444 6445 /* 6446 * Interpret a zero destination to mean loopback. 6447 * Update the T_CONN_REQ (sin/sin6) since it is used to 6448 * generate the T_CONN_CON. 6449 */ 6450 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6451 *dstaddrp = ipv6_loopback; 6452 } 6453 6454 /* Handle __sin6_src_id if socket not bound to an IP address */ 6455 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6456 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6457 tcp->tcp_connp->conn_zoneid); 6458 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6459 } 6460 6461 /* 6462 * Take care of the scope_id now and add ip6i_t 6463 * if ip6i_t is not already allocated through TCP 6464 * sticky options. At this point tcp_ip6h does not 6465 * have dst info, thus use dstaddrp. 6466 */ 6467 if (scope_id != 0 && 6468 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6469 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6470 ip6i_t *ip6i; 6471 6472 ipp->ipp_ifindex = scope_id; 6473 ip6i = (ip6i_t *)tcp->tcp_iphc; 6474 6475 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6476 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6477 /* Already allocated */ 6478 ip6i->ip6i_flags |= IP6I_IFINDEX; 6479 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6480 ipp->ipp_fields |= IPPF_SCOPE_ID; 6481 } else { 6482 int reterr; 6483 6484 ipp->ipp_fields |= IPPF_SCOPE_ID; 6485 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6486 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6487 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6488 if (reterr != 0) 6489 goto failed; 6490 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6491 } 6492 } 6493 6494 /* 6495 * Don't let an endpoint connect to itself. Note that 6496 * the test here does not catch the case where the 6497 * source IP addr was left unspecified by the user. In 6498 * this case, the source addr is set in tcp_adapt_ire() 6499 * using the reply to the T_BIND message that we send 6500 * down to IP here and the check is repeated in tcp_rput_other. 6501 */ 6502 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6503 (dstport == tcp->tcp_lport)) { 6504 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6505 goto failed; 6506 } 6507 6508 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6509 tcp->tcp_remote_v6 = *dstaddrp; 6510 tcp->tcp_ip6h->ip6_vcf = 6511 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6512 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6513 6514 6515 /* 6516 * Massage a routing header (if present) putting the first hop 6517 * in ip6_dst. Compute a starting value for the checksum which 6518 * takes into account that the original ip6_dst should be 6519 * included in the checksum but that ip will include the 6520 * first hop in the source route in the tcp checksum. 6521 */ 6522 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6523 if (rth != NULL) { 6524 6525 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6526 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6527 (tcp->tcp_sum >> 16)); 6528 } else { 6529 tcp->tcp_sum = 0; 6530 } 6531 6532 tcph = tcp->tcp_tcph; 6533 *(uint16_t *)tcph->th_fport = dstport; 6534 tcp->tcp_fport = dstport; 6535 6536 oldstate = tcp->tcp_state; 6537 /* 6538 * At this point the remote destination address and remote port fields 6539 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6540 * have to see which state tcp was in so we can take apropriate action. 6541 */ 6542 if (oldstate == TCPS_IDLE) { 6543 /* 6544 * We support a quick connect capability here, allowing 6545 * clients to transition directly from IDLE to SYN_SENT 6546 * tcp_bindi will pick an unused port, insert the connection 6547 * in the bind hash and transition to BOUND state. 6548 */ 6549 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6550 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6551 B_FALSE, B_FALSE); 6552 if (lport == 0) { 6553 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6554 goto failed; 6555 } 6556 } 6557 tcp->tcp_state = TCPS_SYN_SENT; 6558 /* 6559 * TODO: allow data with connect requests 6560 * by unlinking M_DATA trailers here and 6561 * linking them in behind the T_OK_ACK mblk. 6562 * The tcp_rput() bind ack handler would then 6563 * feed them to tcp_wput_data() rather than call 6564 * tcp_timer(). 6565 */ 6566 mp = mi_tpi_ok_ack_alloc(mp); 6567 if (!mp) { 6568 tcp->tcp_state = oldstate; 6569 goto failed; 6570 } 6571 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6572 if (mp1) { 6573 /* Hang onto the T_OK_ACK for later. */ 6574 linkb(mp1, mp); 6575 mblk_setcred(mp1, tcp->tcp_cred); 6576 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6577 &tcp->tcp_sticky_ipp); 6578 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6579 tcp->tcp_active_open = 1; 6580 /* ip_bind_v6() may return ACK or ERROR */ 6581 if (mp1 != NULL) 6582 tcp_rput_other(tcp, mp1); 6583 return; 6584 } 6585 /* Error case */ 6586 tcp->tcp_state = oldstate; 6587 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6588 6589 failed: 6590 /* return error ack and blow away saved option results if any */ 6591 if (mp != NULL) 6592 putnext(tcp->tcp_rq, mp); 6593 else { 6594 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6595 TSYSERR, ENOMEM); 6596 } 6597 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6598 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6599 } 6600 6601 /* 6602 * We need a stream q for detached closing tcp connections 6603 * to use. Our client hereby indicates that this q is the 6604 * one to use. 6605 */ 6606 static void 6607 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6608 { 6609 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6610 queue_t *q = tcp->tcp_wq; 6611 6612 mp->b_datap->db_type = M_IOCACK; 6613 iocp->ioc_count = 0; 6614 mutex_enter(&tcp_g_q_lock); 6615 if (tcp_g_q != NULL) { 6616 mutex_exit(&tcp_g_q_lock); 6617 iocp->ioc_error = EALREADY; 6618 } else { 6619 mblk_t *mp1; 6620 6621 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6622 if (mp1 == NULL) { 6623 mutex_exit(&tcp_g_q_lock); 6624 iocp->ioc_error = ENOMEM; 6625 } else { 6626 tcp_g_q = tcp->tcp_rq; 6627 mutex_exit(&tcp_g_q_lock); 6628 iocp->ioc_error = 0; 6629 iocp->ioc_rval = 0; 6630 /* 6631 * We are passing tcp_sticky_ipp as NULL 6632 * as it is not useful for tcp_default queue 6633 */ 6634 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6635 if (mp1 != NULL) 6636 tcp_rput_other(tcp, mp1); 6637 } 6638 } 6639 qreply(q, mp); 6640 } 6641 6642 /* 6643 * Our client hereby directs us to reject the connection request 6644 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6645 * of sending the appropriate RST, not an ICMP error. 6646 */ 6647 static void 6648 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6649 { 6650 tcp_t *ltcp = NULL; 6651 t_scalar_t seqnum; 6652 conn_t *connp; 6653 6654 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6655 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6656 tcp_err_ack(tcp, mp, TPROTO, 0); 6657 return; 6658 } 6659 6660 /* 6661 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6662 * when the stream is in BOUND state. Do not send a reset, 6663 * since the destination IP address is not valid, and it can 6664 * be the initialized value of all zeros (broadcast address). 6665 * 6666 * If TCP has sent down a bind request to IP and has not 6667 * received the reply, reject the request. Otherwise, TCP 6668 * will be confused. 6669 */ 6670 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6671 if (tcp->tcp_debug) { 6672 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6673 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6674 } 6675 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6676 return; 6677 } 6678 6679 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6680 6681 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6682 6683 /* 6684 * According to TPI, for non-listeners, ignore seqnum 6685 * and disconnect. 6686 * Following interpretation of -1 seqnum is historical 6687 * and implied TPI ? (TPI only states that for T_CONN_IND, 6688 * a valid seqnum should not be -1). 6689 * 6690 * -1 means disconnect everything 6691 * regardless even on a listener. 6692 */ 6693 6694 int old_state = tcp->tcp_state; 6695 6696 /* 6697 * The connection can't be on the tcp_time_wait_head list 6698 * since it is not detached. 6699 */ 6700 ASSERT(tcp->tcp_time_wait_next == NULL); 6701 ASSERT(tcp->tcp_time_wait_prev == NULL); 6702 ASSERT(tcp->tcp_time_wait_expire == 0); 6703 ltcp = NULL; 6704 /* 6705 * If it used to be a listener, check to make sure no one else 6706 * has taken the port before switching back to LISTEN state. 6707 */ 6708 if (tcp->tcp_ipversion == IPV4_VERSION) { 6709 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6710 tcp->tcp_ipha->ipha_src, 6711 tcp->tcp_connp->conn_zoneid); 6712 if (connp != NULL) 6713 ltcp = connp->conn_tcp; 6714 } else { 6715 /* Allow tcp_bound_if listeners? */ 6716 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6717 &tcp->tcp_ip6h->ip6_src, 0, 6718 tcp->tcp_connp->conn_zoneid); 6719 if (connp != NULL) 6720 ltcp = connp->conn_tcp; 6721 } 6722 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6723 tcp->tcp_state = TCPS_LISTEN; 6724 } else if (old_state > TCPS_BOUND) { 6725 tcp->tcp_conn_req_max = 0; 6726 tcp->tcp_state = TCPS_BOUND; 6727 } 6728 if (ltcp != NULL) 6729 CONN_DEC_REF(ltcp->tcp_connp); 6730 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6731 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6732 } else if (old_state == TCPS_ESTABLISHED || 6733 old_state == TCPS_CLOSE_WAIT) { 6734 BUMP_MIB(&tcp_mib, tcpEstabResets); 6735 } 6736 6737 if (tcp->tcp_fused) 6738 tcp_unfuse(tcp); 6739 6740 mutex_enter(&tcp->tcp_eager_lock); 6741 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6742 (tcp->tcp_conn_req_cnt_q != 0)) { 6743 tcp_eager_cleanup(tcp, 0); 6744 } 6745 mutex_exit(&tcp->tcp_eager_lock); 6746 6747 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6748 tcp->tcp_rnxt, TH_RST | TH_ACK); 6749 6750 tcp_reinit(tcp); 6751 6752 if (old_state >= TCPS_ESTABLISHED) { 6753 /* Send M_FLUSH according to TPI */ 6754 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6755 } 6756 mp = mi_tpi_ok_ack_alloc(mp); 6757 if (mp) 6758 putnext(tcp->tcp_rq, mp); 6759 return; 6760 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6761 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6762 return; 6763 } 6764 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6765 /* Send M_FLUSH according to TPI */ 6766 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6767 } 6768 mp = mi_tpi_ok_ack_alloc(mp); 6769 if (mp) 6770 putnext(tcp->tcp_rq, mp); 6771 } 6772 6773 /* 6774 * Diagnostic routine used to return a string associated with the tcp state. 6775 * Note that if the caller does not supply a buffer, it will use an internal 6776 * static string. This means that if multiple threads call this function at 6777 * the same time, output can be corrupted... Note also that this function 6778 * does not check the size of the supplied buffer. The caller has to make 6779 * sure that it is big enough. 6780 */ 6781 static char * 6782 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6783 { 6784 char buf1[30]; 6785 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6786 char *buf; 6787 char *cp; 6788 in6_addr_t local, remote; 6789 char local_addrbuf[INET6_ADDRSTRLEN]; 6790 char remote_addrbuf[INET6_ADDRSTRLEN]; 6791 6792 if (sup_buf != NULL) 6793 buf = sup_buf; 6794 else 6795 buf = priv_buf; 6796 6797 if (tcp == NULL) 6798 return ("NULL_TCP"); 6799 switch (tcp->tcp_state) { 6800 case TCPS_CLOSED: 6801 cp = "TCP_CLOSED"; 6802 break; 6803 case TCPS_IDLE: 6804 cp = "TCP_IDLE"; 6805 break; 6806 case TCPS_BOUND: 6807 cp = "TCP_BOUND"; 6808 break; 6809 case TCPS_LISTEN: 6810 cp = "TCP_LISTEN"; 6811 break; 6812 case TCPS_SYN_SENT: 6813 cp = "TCP_SYN_SENT"; 6814 break; 6815 case TCPS_SYN_RCVD: 6816 cp = "TCP_SYN_RCVD"; 6817 break; 6818 case TCPS_ESTABLISHED: 6819 cp = "TCP_ESTABLISHED"; 6820 break; 6821 case TCPS_CLOSE_WAIT: 6822 cp = "TCP_CLOSE_WAIT"; 6823 break; 6824 case TCPS_FIN_WAIT_1: 6825 cp = "TCP_FIN_WAIT_1"; 6826 break; 6827 case TCPS_CLOSING: 6828 cp = "TCP_CLOSING"; 6829 break; 6830 case TCPS_LAST_ACK: 6831 cp = "TCP_LAST_ACK"; 6832 break; 6833 case TCPS_FIN_WAIT_2: 6834 cp = "TCP_FIN_WAIT_2"; 6835 break; 6836 case TCPS_TIME_WAIT: 6837 cp = "TCP_TIME_WAIT"; 6838 break; 6839 default: 6840 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6841 cp = buf1; 6842 break; 6843 } 6844 switch (format) { 6845 case DISP_ADDR_AND_PORT: 6846 if (tcp->tcp_ipversion == IPV4_VERSION) { 6847 /* 6848 * Note that we use the remote address in the tcp_b 6849 * structure. This means that it will print out 6850 * the real destination address, not the next hop's 6851 * address if source routing is used. 6852 */ 6853 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6854 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6855 6856 } else { 6857 local = tcp->tcp_ip_src_v6; 6858 remote = tcp->tcp_remote_v6; 6859 } 6860 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6861 sizeof (local_addrbuf)); 6862 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6863 sizeof (remote_addrbuf)); 6864 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6865 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6866 ntohs(tcp->tcp_fport), cp); 6867 break; 6868 case DISP_PORT_ONLY: 6869 default: 6870 (void) mi_sprintf(buf, "[%u, %u] %s", 6871 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6872 break; 6873 } 6874 6875 return (buf); 6876 } 6877 6878 /* 6879 * Called via squeue to get on to eager's perimeter to send a 6880 * TH_RST. The listener wants the eager to disappear either 6881 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6882 * being called. 6883 */ 6884 /* ARGSUSED */ 6885 void 6886 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6887 { 6888 conn_t *econnp = (conn_t *)arg; 6889 tcp_t *eager = econnp->conn_tcp; 6890 tcp_t *listener = eager->tcp_listener; 6891 6892 /* 6893 * We could be called because listener is closing. Since 6894 * the eager is using listener's queue's, its not safe. 6895 * Better use the default queue just to send the TH_RST 6896 * out. 6897 */ 6898 eager->tcp_rq = tcp_g_q; 6899 eager->tcp_wq = WR(tcp_g_q); 6900 6901 if (eager->tcp_state > TCPS_LISTEN) { 6902 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6903 eager, eager->tcp_snxt, 0, TH_RST); 6904 } 6905 6906 /* We are here because listener wants this eager gone */ 6907 if (listener != NULL) { 6908 mutex_enter(&listener->tcp_eager_lock); 6909 tcp_eager_unlink(eager); 6910 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6911 /* 6912 * The eager has sent a conn_ind up to the 6913 * listener but listener decides to close 6914 * instead. We need to drop the extra ref 6915 * placed on eager in tcp_rput_data() before 6916 * sending the conn_ind to listener. 6917 */ 6918 CONN_DEC_REF(econnp); 6919 } 6920 mutex_exit(&listener->tcp_eager_lock); 6921 CONN_DEC_REF(listener->tcp_connp); 6922 } 6923 6924 if (eager->tcp_state > TCPS_BOUND) 6925 tcp_close_detached(eager); 6926 } 6927 6928 /* 6929 * Reset any eager connection hanging off this listener marked 6930 * with 'seqnum' and then reclaim it's resources. 6931 */ 6932 static boolean_t 6933 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6934 { 6935 tcp_t *eager; 6936 mblk_t *mp; 6937 6938 TCP_STAT(tcp_eager_blowoff_calls); 6939 eager = listener; 6940 mutex_enter(&listener->tcp_eager_lock); 6941 do { 6942 eager = eager->tcp_eager_next_q; 6943 if (eager == NULL) { 6944 mutex_exit(&listener->tcp_eager_lock); 6945 return (B_FALSE); 6946 } 6947 } while (eager->tcp_conn_req_seqnum != seqnum); 6948 CONN_INC_REF(eager->tcp_connp); 6949 mutex_exit(&listener->tcp_eager_lock); 6950 mp = &eager->tcp_closemp; 6951 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6952 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6953 return (B_TRUE); 6954 } 6955 6956 /* 6957 * Reset any eager connection hanging off this listener 6958 * and then reclaim it's resources. 6959 */ 6960 static void 6961 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6962 { 6963 tcp_t *eager; 6964 mblk_t *mp; 6965 6966 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6967 6968 if (!q0_only) { 6969 /* First cleanup q */ 6970 TCP_STAT(tcp_eager_blowoff_q); 6971 eager = listener->tcp_eager_next_q; 6972 while (eager != NULL) { 6973 CONN_INC_REF(eager->tcp_connp); 6974 mp = &eager->tcp_closemp; 6975 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6976 tcp_eager_kill, eager->tcp_connp, 6977 SQTAG_TCP_EAGER_CLEANUP); 6978 eager = eager->tcp_eager_next_q; 6979 } 6980 } 6981 /* Then cleanup q0 */ 6982 TCP_STAT(tcp_eager_blowoff_q0); 6983 eager = listener->tcp_eager_next_q0; 6984 while (eager != listener) { 6985 CONN_INC_REF(eager->tcp_connp); 6986 mp = &eager->tcp_closemp; 6987 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6988 tcp_eager_kill, eager->tcp_connp, 6989 SQTAG_TCP_EAGER_CLEANUP_Q0); 6990 eager = eager->tcp_eager_next_q0; 6991 } 6992 } 6993 6994 /* 6995 * If we are an eager connection hanging off a listener that hasn't 6996 * formally accepted the connection yet, get off his list and blow off 6997 * any data that we have accumulated. 6998 */ 6999 static void 7000 tcp_eager_unlink(tcp_t *tcp) 7001 { 7002 tcp_t *listener = tcp->tcp_listener; 7003 7004 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7005 ASSERT(listener != NULL); 7006 if (tcp->tcp_eager_next_q0 != NULL) { 7007 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7008 7009 /* Remove the eager tcp from q0 */ 7010 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7011 tcp->tcp_eager_prev_q0; 7012 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7013 tcp->tcp_eager_next_q0; 7014 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7015 listener->tcp_conn_req_cnt_q0--; 7016 7017 tcp->tcp_eager_next_q0 = NULL; 7018 tcp->tcp_eager_prev_q0 = NULL; 7019 7020 if (tcp->tcp_syn_rcvd_timeout != 0) { 7021 /* we have timed out before */ 7022 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7023 listener->tcp_syn_rcvd_timeout--; 7024 } 7025 } else { 7026 tcp_t **tcpp = &listener->tcp_eager_next_q; 7027 tcp_t *prev = NULL; 7028 7029 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7030 if (tcpp[0] == tcp) { 7031 if (listener->tcp_eager_last_q == tcp) { 7032 /* 7033 * If we are unlinking the last 7034 * element on the list, adjust 7035 * tail pointer. Set tail pointer 7036 * to nil when list is empty. 7037 */ 7038 ASSERT(tcp->tcp_eager_next_q == NULL); 7039 if (listener->tcp_eager_last_q == 7040 listener->tcp_eager_next_q) { 7041 listener->tcp_eager_last_q = 7042 NULL; 7043 } else { 7044 /* 7045 * We won't get here if there 7046 * is only one eager in the 7047 * list. 7048 */ 7049 ASSERT(prev != NULL); 7050 listener->tcp_eager_last_q = 7051 prev; 7052 } 7053 } 7054 tcpp[0] = tcp->tcp_eager_next_q; 7055 tcp->tcp_eager_next_q = NULL; 7056 tcp->tcp_eager_last_q = NULL; 7057 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7058 listener->tcp_conn_req_cnt_q--; 7059 break; 7060 } 7061 prev = tcpp[0]; 7062 } 7063 } 7064 tcp->tcp_listener = NULL; 7065 } 7066 7067 /* Shorthand to generate and send TPI error acks to our client */ 7068 static void 7069 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7070 { 7071 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7072 putnext(tcp->tcp_rq, mp); 7073 } 7074 7075 /* Shorthand to generate and send TPI error acks to our client */ 7076 static void 7077 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7078 int t_error, int sys_error) 7079 { 7080 struct T_error_ack *teackp; 7081 7082 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7083 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7084 teackp = (struct T_error_ack *)mp->b_rptr; 7085 teackp->ERROR_prim = primitive; 7086 teackp->TLI_error = t_error; 7087 teackp->UNIX_error = sys_error; 7088 putnext(tcp->tcp_rq, mp); 7089 } 7090 } 7091 7092 /* 7093 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7094 * but instead the code relies on: 7095 * - the fact that the address of the array and its size never changes 7096 * - the atomic assignment of the elements of the array 7097 */ 7098 /* ARGSUSED */ 7099 static int 7100 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7101 { 7102 int i; 7103 7104 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7105 if (tcp_g_epriv_ports[i] != 0) 7106 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7107 } 7108 return (0); 7109 } 7110 7111 /* 7112 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7113 * threads from changing it at the same time. 7114 */ 7115 /* ARGSUSED */ 7116 static int 7117 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7118 cred_t *cr) 7119 { 7120 long new_value; 7121 int i; 7122 7123 /* 7124 * Fail the request if the new value does not lie within the 7125 * port number limits. 7126 */ 7127 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7128 new_value <= 0 || new_value >= 65536) { 7129 return (EINVAL); 7130 } 7131 7132 mutex_enter(&tcp_epriv_port_lock); 7133 /* Check if the value is already in the list */ 7134 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7135 if (new_value == tcp_g_epriv_ports[i]) { 7136 mutex_exit(&tcp_epriv_port_lock); 7137 return (EEXIST); 7138 } 7139 } 7140 /* Find an empty slot */ 7141 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7142 if (tcp_g_epriv_ports[i] == 0) 7143 break; 7144 } 7145 if (i == tcp_g_num_epriv_ports) { 7146 mutex_exit(&tcp_epriv_port_lock); 7147 return (EOVERFLOW); 7148 } 7149 /* Set the new value */ 7150 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7151 mutex_exit(&tcp_epriv_port_lock); 7152 return (0); 7153 } 7154 7155 /* 7156 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7157 * threads from changing it at the same time. 7158 */ 7159 /* ARGSUSED */ 7160 static int 7161 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7162 cred_t *cr) 7163 { 7164 long new_value; 7165 int i; 7166 7167 /* 7168 * Fail the request if the new value does not lie within the 7169 * port number limits. 7170 */ 7171 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7172 new_value >= 65536) { 7173 return (EINVAL); 7174 } 7175 7176 mutex_enter(&tcp_epriv_port_lock); 7177 /* Check that the value is already in the list */ 7178 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7179 if (tcp_g_epriv_ports[i] == new_value) 7180 break; 7181 } 7182 if (i == tcp_g_num_epriv_ports) { 7183 mutex_exit(&tcp_epriv_port_lock); 7184 return (ESRCH); 7185 } 7186 /* Clear the value */ 7187 tcp_g_epriv_ports[i] = 0; 7188 mutex_exit(&tcp_epriv_port_lock); 7189 return (0); 7190 } 7191 7192 /* Return the TPI/TLI equivalent of our current tcp_state */ 7193 static int 7194 tcp_tpistate(tcp_t *tcp) 7195 { 7196 switch (tcp->tcp_state) { 7197 case TCPS_IDLE: 7198 return (TS_UNBND); 7199 case TCPS_LISTEN: 7200 /* 7201 * Return whether there are outstanding T_CONN_IND waiting 7202 * for the matching T_CONN_RES. Therefore don't count q0. 7203 */ 7204 if (tcp->tcp_conn_req_cnt_q > 0) 7205 return (TS_WRES_CIND); 7206 else 7207 return (TS_IDLE); 7208 case TCPS_BOUND: 7209 return (TS_IDLE); 7210 case TCPS_SYN_SENT: 7211 return (TS_WCON_CREQ); 7212 case TCPS_SYN_RCVD: 7213 /* 7214 * Note: assumption: this has to the active open SYN_RCVD. 7215 * The passive instance is detached in SYN_RCVD stage of 7216 * incoming connection processing so we cannot get request 7217 * for T_info_ack on it. 7218 */ 7219 return (TS_WACK_CRES); 7220 case TCPS_ESTABLISHED: 7221 return (TS_DATA_XFER); 7222 case TCPS_CLOSE_WAIT: 7223 return (TS_WREQ_ORDREL); 7224 case TCPS_FIN_WAIT_1: 7225 return (TS_WIND_ORDREL); 7226 case TCPS_FIN_WAIT_2: 7227 return (TS_WIND_ORDREL); 7228 7229 case TCPS_CLOSING: 7230 case TCPS_LAST_ACK: 7231 case TCPS_TIME_WAIT: 7232 case TCPS_CLOSED: 7233 /* 7234 * Following TS_WACK_DREQ7 is a rendition of "not 7235 * yet TS_IDLE" TPI state. There is no best match to any 7236 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7237 * choose a value chosen that will map to TLI/XTI level 7238 * state of TSTATECHNG (state is process of changing) which 7239 * captures what this dummy state represents. 7240 */ 7241 return (TS_WACK_DREQ7); 7242 default: 7243 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7244 tcp->tcp_state, tcp_display(tcp, NULL, 7245 DISP_PORT_ONLY)); 7246 return (TS_UNBND); 7247 } 7248 } 7249 7250 static void 7251 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7252 { 7253 if (tcp->tcp_family == AF_INET6) 7254 *tia = tcp_g_t_info_ack_v6; 7255 else 7256 *tia = tcp_g_t_info_ack; 7257 tia->CURRENT_state = tcp_tpistate(tcp); 7258 tia->OPT_size = tcp_max_optsize; 7259 if (tcp->tcp_mss == 0) { 7260 /* Not yet set - tcp_open does not set mss */ 7261 if (tcp->tcp_ipversion == IPV4_VERSION) 7262 tia->TIDU_size = tcp_mss_def_ipv4; 7263 else 7264 tia->TIDU_size = tcp_mss_def_ipv6; 7265 } else { 7266 tia->TIDU_size = tcp->tcp_mss; 7267 } 7268 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7269 } 7270 7271 /* 7272 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7273 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7274 * tcp_g_t_info_ack. The current state of the stream is copied from 7275 * tcp_state. 7276 */ 7277 static void 7278 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7279 { 7280 t_uscalar_t cap_bits1; 7281 struct T_capability_ack *tcap; 7282 7283 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7284 freemsg(mp); 7285 return; 7286 } 7287 7288 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7289 7290 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7291 mp->b_datap->db_type, T_CAPABILITY_ACK); 7292 if (mp == NULL) 7293 return; 7294 7295 tcap = (struct T_capability_ack *)mp->b_rptr; 7296 tcap->CAP_bits1 = 0; 7297 7298 if (cap_bits1 & TC1_INFO) { 7299 tcp_copy_info(&tcap->INFO_ack, tcp); 7300 tcap->CAP_bits1 |= TC1_INFO; 7301 } 7302 7303 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7304 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7305 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7306 } 7307 7308 putnext(tcp->tcp_rq, mp); 7309 } 7310 7311 /* 7312 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7313 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7314 * The current state of the stream is copied from tcp_state. 7315 */ 7316 static void 7317 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7318 { 7319 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7320 T_INFO_ACK); 7321 if (!mp) { 7322 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7323 return; 7324 } 7325 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7326 putnext(tcp->tcp_rq, mp); 7327 } 7328 7329 /* Respond to the TPI addr request */ 7330 static void 7331 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7332 { 7333 sin_t *sin; 7334 mblk_t *ackmp; 7335 struct T_addr_ack *taa; 7336 7337 /* Make it large enough for worst case */ 7338 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7339 2 * sizeof (sin6_t), 1); 7340 if (ackmp == NULL) { 7341 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7342 return; 7343 } 7344 7345 if (tcp->tcp_ipversion == IPV6_VERSION) { 7346 tcp_addr_req_ipv6(tcp, ackmp); 7347 return; 7348 } 7349 taa = (struct T_addr_ack *)ackmp->b_rptr; 7350 7351 bzero(taa, sizeof (struct T_addr_ack)); 7352 ackmp->b_wptr = (uchar_t *)&taa[1]; 7353 7354 taa->PRIM_type = T_ADDR_ACK; 7355 ackmp->b_datap->db_type = M_PCPROTO; 7356 7357 /* 7358 * Note: Following code assumes 32 bit alignment of basic 7359 * data structures like sin_t and struct T_addr_ack. 7360 */ 7361 if (tcp->tcp_state >= TCPS_BOUND) { 7362 /* 7363 * Fill in local address 7364 */ 7365 taa->LOCADDR_length = sizeof (sin_t); 7366 taa->LOCADDR_offset = sizeof (*taa); 7367 7368 sin = (sin_t *)&taa[1]; 7369 7370 /* Fill zeroes and then intialize non-zero fields */ 7371 *sin = sin_null; 7372 7373 sin->sin_family = AF_INET; 7374 7375 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7376 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7377 7378 ackmp->b_wptr = (uchar_t *)&sin[1]; 7379 7380 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7381 /* 7382 * Fill in Remote address 7383 */ 7384 taa->REMADDR_length = sizeof (sin_t); 7385 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7386 taa->LOCADDR_length); 7387 7388 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7389 *sin = sin_null; 7390 sin->sin_family = AF_INET; 7391 sin->sin_addr.s_addr = tcp->tcp_remote; 7392 sin->sin_port = tcp->tcp_fport; 7393 7394 ackmp->b_wptr = (uchar_t *)&sin[1]; 7395 } 7396 } 7397 putnext(tcp->tcp_rq, ackmp); 7398 } 7399 7400 /* Assumes that tcp_addr_req gets enough space and alignment */ 7401 static void 7402 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7403 { 7404 sin6_t *sin6; 7405 struct T_addr_ack *taa; 7406 7407 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7408 ASSERT(OK_32PTR(ackmp->b_rptr)); 7409 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7410 2 * sizeof (sin6_t)); 7411 7412 taa = (struct T_addr_ack *)ackmp->b_rptr; 7413 7414 bzero(taa, sizeof (struct T_addr_ack)); 7415 ackmp->b_wptr = (uchar_t *)&taa[1]; 7416 7417 taa->PRIM_type = T_ADDR_ACK; 7418 ackmp->b_datap->db_type = M_PCPROTO; 7419 7420 /* 7421 * Note: Following code assumes 32 bit alignment of basic 7422 * data structures like sin6_t and struct T_addr_ack. 7423 */ 7424 if (tcp->tcp_state >= TCPS_BOUND) { 7425 /* 7426 * Fill in local address 7427 */ 7428 taa->LOCADDR_length = sizeof (sin6_t); 7429 taa->LOCADDR_offset = sizeof (*taa); 7430 7431 sin6 = (sin6_t *)&taa[1]; 7432 *sin6 = sin6_null; 7433 7434 sin6->sin6_family = AF_INET6; 7435 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7436 sin6->sin6_port = tcp->tcp_lport; 7437 7438 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7439 7440 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7441 /* 7442 * Fill in Remote address 7443 */ 7444 taa->REMADDR_length = sizeof (sin6_t); 7445 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7446 taa->LOCADDR_length); 7447 7448 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7449 *sin6 = sin6_null; 7450 sin6->sin6_family = AF_INET6; 7451 sin6->sin6_flowinfo = 7452 tcp->tcp_ip6h->ip6_vcf & 7453 ~IPV6_VERS_AND_FLOW_MASK; 7454 sin6->sin6_addr = tcp->tcp_remote_v6; 7455 sin6->sin6_port = tcp->tcp_fport; 7456 7457 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7458 } 7459 } 7460 putnext(tcp->tcp_rq, ackmp); 7461 } 7462 7463 /* 7464 * Handle reinitialization of a tcp structure. 7465 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7466 */ 7467 static void 7468 tcp_reinit(tcp_t *tcp) 7469 { 7470 mblk_t *mp; 7471 int err; 7472 7473 TCP_STAT(tcp_reinit_calls); 7474 7475 /* tcp_reinit should never be called for detached tcp_t's */ 7476 ASSERT(tcp->tcp_listener == NULL); 7477 ASSERT((tcp->tcp_family == AF_INET && 7478 tcp->tcp_ipversion == IPV4_VERSION) || 7479 (tcp->tcp_family == AF_INET6 && 7480 (tcp->tcp_ipversion == IPV4_VERSION || 7481 tcp->tcp_ipversion == IPV6_VERSION))); 7482 7483 /* Cancel outstanding timers */ 7484 tcp_timers_stop(tcp); 7485 7486 /* 7487 * Reset everything in the state vector, after updating global 7488 * MIB data from instance counters. 7489 */ 7490 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7491 tcp->tcp_ibsegs = 0; 7492 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7493 tcp->tcp_obsegs = 0; 7494 7495 tcp_close_mpp(&tcp->tcp_xmit_head); 7496 if (tcp->tcp_snd_zcopy_aware) 7497 tcp_zcopy_notify(tcp); 7498 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7499 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7500 if (tcp->tcp_flow_stopped && 7501 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7502 tcp_clrqfull(tcp); 7503 } 7504 tcp_close_mpp(&tcp->tcp_reass_head); 7505 tcp->tcp_reass_tail = NULL; 7506 if (tcp->tcp_rcv_list != NULL) { 7507 /* Free b_next chain */ 7508 tcp_close_mpp(&tcp->tcp_rcv_list); 7509 tcp->tcp_rcv_last_head = NULL; 7510 tcp->tcp_rcv_last_tail = NULL; 7511 tcp->tcp_rcv_cnt = 0; 7512 } 7513 tcp->tcp_rcv_last_tail = NULL; 7514 7515 if ((mp = tcp->tcp_urp_mp) != NULL) { 7516 freemsg(mp); 7517 tcp->tcp_urp_mp = NULL; 7518 } 7519 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7520 freemsg(mp); 7521 tcp->tcp_urp_mark_mp = NULL; 7522 } 7523 if (tcp->tcp_fused_sigurg_mp != NULL) { 7524 freeb(tcp->tcp_fused_sigurg_mp); 7525 tcp->tcp_fused_sigurg_mp = NULL; 7526 } 7527 7528 /* 7529 * Following is a union with two members which are 7530 * identical types and size so the following cleanup 7531 * is enough. 7532 */ 7533 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7534 7535 CL_INET_DISCONNECT(tcp); 7536 7537 /* 7538 * The connection can't be on the tcp_time_wait_head list 7539 * since it is not detached. 7540 */ 7541 ASSERT(tcp->tcp_time_wait_next == NULL); 7542 ASSERT(tcp->tcp_time_wait_prev == NULL); 7543 ASSERT(tcp->tcp_time_wait_expire == 0); 7544 7545 if (tcp->tcp_kssl_pending) { 7546 tcp->tcp_kssl_pending = B_FALSE; 7547 7548 /* Don't reset if the initialized by bind. */ 7549 if (tcp->tcp_kssl_ent != NULL) { 7550 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7551 KSSL_NO_PROXY); 7552 } 7553 } 7554 if (tcp->tcp_kssl_ctx != NULL) { 7555 kssl_release_ctx(tcp->tcp_kssl_ctx); 7556 tcp->tcp_kssl_ctx = NULL; 7557 } 7558 7559 /* 7560 * Reset/preserve other values 7561 */ 7562 tcp_reinit_values(tcp); 7563 ipcl_hash_remove(tcp->tcp_connp); 7564 conn_delete_ire(tcp->tcp_connp, NULL); 7565 7566 if (tcp->tcp_conn_req_max != 0) { 7567 /* 7568 * This is the case when a TLI program uses the same 7569 * transport end point to accept a connection. This 7570 * makes the TCP both a listener and acceptor. When 7571 * this connection is closed, we need to set the state 7572 * back to TCPS_LISTEN. Make sure that the eager list 7573 * is reinitialized. 7574 * 7575 * Note that this stream is still bound to the four 7576 * tuples of the previous connection in IP. If a new 7577 * SYN with different foreign address comes in, IP will 7578 * not find it and will send it to the global queue. In 7579 * the global queue, TCP will do a tcp_lookup_listener() 7580 * to find this stream. This works because this stream 7581 * is only removed from connected hash. 7582 * 7583 */ 7584 tcp->tcp_state = TCPS_LISTEN; 7585 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7586 tcp->tcp_connp->conn_recv = tcp_conn_request; 7587 if (tcp->tcp_family == AF_INET6) { 7588 ASSERT(tcp->tcp_connp->conn_af_isv6); 7589 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7590 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7591 } else { 7592 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7593 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7594 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7595 } 7596 } else { 7597 tcp->tcp_state = TCPS_BOUND; 7598 } 7599 7600 /* 7601 * Initialize to default values 7602 * Can't fail since enough header template space already allocated 7603 * at open(). 7604 */ 7605 err = tcp_init_values(tcp); 7606 ASSERT(err == 0); 7607 /* Restore state in tcp_tcph */ 7608 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7609 if (tcp->tcp_ipversion == IPV4_VERSION) 7610 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7611 else 7612 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7613 /* 7614 * Copy of the src addr. in tcp_t is needed in tcp_t 7615 * since the lookup funcs can only lookup on tcp_t 7616 */ 7617 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7618 7619 ASSERT(tcp->tcp_ptpbhn != NULL); 7620 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7621 tcp->tcp_rwnd = tcp_recv_hiwat; 7622 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7623 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7624 } 7625 7626 /* 7627 * Force values to zero that need be zero. 7628 * Do not touch values asociated with the BOUND or LISTEN state 7629 * since the connection will end up in that state after the reinit. 7630 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7631 * structure! 7632 */ 7633 static void 7634 tcp_reinit_values(tcp) 7635 tcp_t *tcp; 7636 { 7637 #ifndef lint 7638 #define DONTCARE(x) 7639 #define PRESERVE(x) 7640 #else 7641 #define DONTCARE(x) ((x) = (x)) 7642 #define PRESERVE(x) ((x) = (x)) 7643 #endif /* lint */ 7644 7645 PRESERVE(tcp->tcp_bind_hash); 7646 PRESERVE(tcp->tcp_ptpbhn); 7647 PRESERVE(tcp->tcp_acceptor_hash); 7648 PRESERVE(tcp->tcp_ptpahn); 7649 7650 /* Should be ASSERT NULL on these with new code! */ 7651 ASSERT(tcp->tcp_time_wait_next == NULL); 7652 ASSERT(tcp->tcp_time_wait_prev == NULL); 7653 ASSERT(tcp->tcp_time_wait_expire == 0); 7654 PRESERVE(tcp->tcp_state); 7655 PRESERVE(tcp->tcp_rq); 7656 PRESERVE(tcp->tcp_wq); 7657 7658 ASSERT(tcp->tcp_xmit_head == NULL); 7659 ASSERT(tcp->tcp_xmit_last == NULL); 7660 ASSERT(tcp->tcp_unsent == 0); 7661 ASSERT(tcp->tcp_xmit_tail == NULL); 7662 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7663 7664 tcp->tcp_snxt = 0; /* Displayed in mib */ 7665 tcp->tcp_suna = 0; /* Displayed in mib */ 7666 tcp->tcp_swnd = 0; 7667 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7668 7669 ASSERT(tcp->tcp_ibsegs == 0); 7670 ASSERT(tcp->tcp_obsegs == 0); 7671 7672 if (tcp->tcp_iphc != NULL) { 7673 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7674 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7675 } 7676 7677 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7678 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7679 DONTCARE(tcp->tcp_ipha); 7680 DONTCARE(tcp->tcp_ip6h); 7681 DONTCARE(tcp->tcp_ip_hdr_len); 7682 DONTCARE(tcp->tcp_tcph); 7683 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7684 tcp->tcp_valid_bits = 0; 7685 7686 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7687 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7688 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7689 tcp->tcp_last_rcv_lbolt = 0; 7690 7691 tcp->tcp_init_cwnd = 0; 7692 7693 tcp->tcp_urp_last_valid = 0; 7694 tcp->tcp_hard_binding = 0; 7695 tcp->tcp_hard_bound = 0; 7696 PRESERVE(tcp->tcp_cred); 7697 PRESERVE(tcp->tcp_cpid); 7698 PRESERVE(tcp->tcp_exclbind); 7699 7700 tcp->tcp_fin_acked = 0; 7701 tcp->tcp_fin_rcvd = 0; 7702 tcp->tcp_fin_sent = 0; 7703 tcp->tcp_ordrel_done = 0; 7704 7705 tcp->tcp_debug = 0; 7706 tcp->tcp_dontroute = 0; 7707 tcp->tcp_broadcast = 0; 7708 7709 tcp->tcp_useloopback = 0; 7710 tcp->tcp_reuseaddr = 0; 7711 tcp->tcp_oobinline = 0; 7712 tcp->tcp_dgram_errind = 0; 7713 7714 tcp->tcp_detached = 0; 7715 tcp->tcp_bind_pending = 0; 7716 tcp->tcp_unbind_pending = 0; 7717 tcp->tcp_deferred_clean_death = 0; 7718 7719 tcp->tcp_snd_ws_ok = B_FALSE; 7720 tcp->tcp_snd_ts_ok = B_FALSE; 7721 tcp->tcp_linger = 0; 7722 tcp->tcp_ka_enabled = 0; 7723 tcp->tcp_zero_win_probe = 0; 7724 7725 tcp->tcp_loopback = 0; 7726 tcp->tcp_localnet = 0; 7727 tcp->tcp_syn_defense = 0; 7728 tcp->tcp_set_timer = 0; 7729 7730 tcp->tcp_active_open = 0; 7731 ASSERT(tcp->tcp_timeout == B_FALSE); 7732 tcp->tcp_rexmit = B_FALSE; 7733 tcp->tcp_xmit_zc_clean = B_FALSE; 7734 7735 tcp->tcp_snd_sack_ok = B_FALSE; 7736 PRESERVE(tcp->tcp_recvdstaddr); 7737 tcp->tcp_hwcksum = B_FALSE; 7738 7739 tcp->tcp_ire_ill_check_done = B_FALSE; 7740 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7741 7742 tcp->tcp_mdt = B_FALSE; 7743 tcp->tcp_mdt_hdr_head = 0; 7744 tcp->tcp_mdt_hdr_tail = 0; 7745 7746 tcp->tcp_conn_def_q0 = 0; 7747 tcp->tcp_ip_forward_progress = B_FALSE; 7748 tcp->tcp_anon_priv_bind = 0; 7749 tcp->tcp_ecn_ok = B_FALSE; 7750 7751 tcp->tcp_cwr = B_FALSE; 7752 tcp->tcp_ecn_echo_on = B_FALSE; 7753 7754 if (tcp->tcp_sack_info != NULL) { 7755 if (tcp->tcp_notsack_list != NULL) { 7756 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7757 } 7758 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7759 tcp->tcp_sack_info = NULL; 7760 } 7761 7762 tcp->tcp_rcv_ws = 0; 7763 tcp->tcp_snd_ws = 0; 7764 tcp->tcp_ts_recent = 0; 7765 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7766 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7767 tcp->tcp_if_mtu = 0; 7768 7769 ASSERT(tcp->tcp_reass_head == NULL); 7770 ASSERT(tcp->tcp_reass_tail == NULL); 7771 7772 tcp->tcp_cwnd_cnt = 0; 7773 7774 ASSERT(tcp->tcp_rcv_list == NULL); 7775 ASSERT(tcp->tcp_rcv_last_head == NULL); 7776 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7777 ASSERT(tcp->tcp_rcv_cnt == 0); 7778 7779 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7780 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7781 tcp->tcp_csuna = 0; 7782 7783 tcp->tcp_rto = 0; /* Displayed in MIB */ 7784 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7785 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7786 tcp->tcp_rtt_update = 0; 7787 7788 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7789 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7790 7791 tcp->tcp_rack = 0; /* Displayed in mib */ 7792 tcp->tcp_rack_cnt = 0; 7793 tcp->tcp_rack_cur_max = 0; 7794 tcp->tcp_rack_abs_max = 0; 7795 7796 tcp->tcp_max_swnd = 0; 7797 7798 ASSERT(tcp->tcp_listener == NULL); 7799 7800 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7801 7802 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7803 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7804 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7805 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7806 7807 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7808 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7809 PRESERVE(tcp->tcp_conn_req_max); 7810 PRESERVE(tcp->tcp_conn_req_seqnum); 7811 7812 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7813 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7814 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7815 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7816 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7817 7818 tcp->tcp_lingertime = 0; 7819 7820 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7821 ASSERT(tcp->tcp_urp_mp == NULL); 7822 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7823 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7824 7825 ASSERT(tcp->tcp_eager_next_q == NULL); 7826 ASSERT(tcp->tcp_eager_last_q == NULL); 7827 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7828 tcp->tcp_eager_prev_q0 == NULL) || 7829 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7830 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7831 7832 tcp->tcp_client_errno = 0; 7833 7834 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7835 7836 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7837 7838 PRESERVE(tcp->tcp_bound_source_v6); 7839 tcp->tcp_last_sent_len = 0; 7840 tcp->tcp_dupack_cnt = 0; 7841 7842 tcp->tcp_fport = 0; /* Displayed in MIB */ 7843 PRESERVE(tcp->tcp_lport); 7844 7845 PRESERVE(tcp->tcp_acceptor_lockp); 7846 7847 ASSERT(tcp->tcp_ordrelid == 0); 7848 PRESERVE(tcp->tcp_acceptor_id); 7849 DONTCARE(tcp->tcp_ipsec_overhead); 7850 7851 /* 7852 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7853 * in tcp structure and now tracing), Re-initialize all 7854 * members of tcp_traceinfo. 7855 */ 7856 if (tcp->tcp_tracebuf != NULL) { 7857 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7858 } 7859 7860 PRESERVE(tcp->tcp_family); 7861 if (tcp->tcp_family == AF_INET6) { 7862 tcp->tcp_ipversion = IPV6_VERSION; 7863 tcp->tcp_mss = tcp_mss_def_ipv6; 7864 } else { 7865 tcp->tcp_ipversion = IPV4_VERSION; 7866 tcp->tcp_mss = tcp_mss_def_ipv4; 7867 } 7868 7869 tcp->tcp_bound_if = 0; 7870 tcp->tcp_ipv6_recvancillary = 0; 7871 tcp->tcp_recvifindex = 0; 7872 tcp->tcp_recvhops = 0; 7873 tcp->tcp_closed = 0; 7874 tcp->tcp_cleandeathtag = 0; 7875 if (tcp->tcp_hopopts != NULL) { 7876 mi_free(tcp->tcp_hopopts); 7877 tcp->tcp_hopopts = NULL; 7878 tcp->tcp_hopoptslen = 0; 7879 } 7880 ASSERT(tcp->tcp_hopoptslen == 0); 7881 if (tcp->tcp_dstopts != NULL) { 7882 mi_free(tcp->tcp_dstopts); 7883 tcp->tcp_dstopts = NULL; 7884 tcp->tcp_dstoptslen = 0; 7885 } 7886 ASSERT(tcp->tcp_dstoptslen == 0); 7887 if (tcp->tcp_rtdstopts != NULL) { 7888 mi_free(tcp->tcp_rtdstopts); 7889 tcp->tcp_rtdstopts = NULL; 7890 tcp->tcp_rtdstoptslen = 0; 7891 } 7892 ASSERT(tcp->tcp_rtdstoptslen == 0); 7893 if (tcp->tcp_rthdr != NULL) { 7894 mi_free(tcp->tcp_rthdr); 7895 tcp->tcp_rthdr = NULL; 7896 tcp->tcp_rthdrlen = 0; 7897 } 7898 ASSERT(tcp->tcp_rthdrlen == 0); 7899 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7900 7901 /* Reset fusion-related fields */ 7902 tcp->tcp_fused = B_FALSE; 7903 tcp->tcp_unfusable = B_FALSE; 7904 tcp->tcp_fused_sigurg = B_FALSE; 7905 tcp->tcp_direct_sockfs = B_FALSE; 7906 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7907 tcp->tcp_loopback_peer = NULL; 7908 tcp->tcp_fuse_rcv_hiwater = 0; 7909 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7910 tcp->tcp_fuse_rcv_unread_cnt = 0; 7911 7912 tcp->tcp_in_ack_unsent = 0; 7913 tcp->tcp_cork = B_FALSE; 7914 7915 PRESERVE(tcp->tcp_squeue_bytes); 7916 7917 ASSERT(tcp->tcp_kssl_ctx == NULL); 7918 ASSERT(!tcp->tcp_kssl_pending); 7919 PRESERVE(tcp->tcp_kssl_ent); 7920 7921 #undef DONTCARE 7922 #undef PRESERVE 7923 } 7924 7925 /* 7926 * Allocate necessary resources and initialize state vector. 7927 * Guaranteed not to fail so that when an error is returned, 7928 * the caller doesn't need to do any additional cleanup. 7929 */ 7930 int 7931 tcp_init(tcp_t *tcp, queue_t *q) 7932 { 7933 int err; 7934 7935 tcp->tcp_rq = q; 7936 tcp->tcp_wq = WR(q); 7937 tcp->tcp_state = TCPS_IDLE; 7938 if ((err = tcp_init_values(tcp)) != 0) 7939 tcp_timers_stop(tcp); 7940 return (err); 7941 } 7942 7943 static int 7944 tcp_init_values(tcp_t *tcp) 7945 { 7946 int err; 7947 7948 ASSERT((tcp->tcp_family == AF_INET && 7949 tcp->tcp_ipversion == IPV4_VERSION) || 7950 (tcp->tcp_family == AF_INET6 && 7951 (tcp->tcp_ipversion == IPV4_VERSION || 7952 tcp->tcp_ipversion == IPV6_VERSION))); 7953 7954 /* 7955 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7956 * will be close to tcp_rexmit_interval_initial. By doing this, we 7957 * allow the algorithm to adjust slowly to large fluctuations of RTT 7958 * during first few transmissions of a connection as seen in slow 7959 * links. 7960 */ 7961 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7962 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7963 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7964 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7965 tcp_conn_grace_period; 7966 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7967 tcp->tcp_rto = tcp_rexmit_interval_min; 7968 tcp->tcp_timer_backoff = 0; 7969 tcp->tcp_ms_we_have_waited = 0; 7970 tcp->tcp_last_recv_time = lbolt; 7971 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7972 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7973 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7974 7975 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7976 7977 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7978 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7979 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7980 /* 7981 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7982 * passive open. 7983 */ 7984 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7985 7986 tcp->tcp_naglim = tcp_naglim_def; 7987 7988 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7989 7990 tcp->tcp_mdt_hdr_head = 0; 7991 tcp->tcp_mdt_hdr_tail = 0; 7992 7993 /* Reset fusion-related fields */ 7994 tcp->tcp_fused = B_FALSE; 7995 tcp->tcp_unfusable = B_FALSE; 7996 tcp->tcp_fused_sigurg = B_FALSE; 7997 tcp->tcp_direct_sockfs = B_FALSE; 7998 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7999 tcp->tcp_loopback_peer = NULL; 8000 tcp->tcp_fuse_rcv_hiwater = 0; 8001 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8002 tcp->tcp_fuse_rcv_unread_cnt = 0; 8003 8004 /* Initialize the header template */ 8005 if (tcp->tcp_ipversion == IPV4_VERSION) { 8006 err = tcp_header_init_ipv4(tcp); 8007 } else { 8008 err = tcp_header_init_ipv6(tcp); 8009 } 8010 if (err) 8011 return (err); 8012 8013 /* 8014 * Init the window scale to the max so tcp_rwnd_set() won't pare 8015 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8016 */ 8017 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8018 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8019 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8020 8021 tcp->tcp_cork = B_FALSE; 8022 /* 8023 * Init the tcp_debug option. This value determines whether TCP 8024 * calls strlog() to print out debug messages. Doing this 8025 * initialization here means that this value is not inherited thru 8026 * tcp_reinit(). 8027 */ 8028 tcp->tcp_debug = tcp_dbg; 8029 8030 tcp->tcp_ka_interval = tcp_keepalive_interval; 8031 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8032 8033 return (0); 8034 } 8035 8036 /* 8037 * Initialize the IPv4 header. Loses any record of any IP options. 8038 */ 8039 static int 8040 tcp_header_init_ipv4(tcp_t *tcp) 8041 { 8042 tcph_t *tcph; 8043 uint32_t sum; 8044 conn_t *connp; 8045 8046 /* 8047 * This is a simple initialization. If there's 8048 * already a template, it should never be too small, 8049 * so reuse it. Otherwise, allocate space for the new one. 8050 */ 8051 if (tcp->tcp_iphc == NULL) { 8052 ASSERT(tcp->tcp_iphc_len == 0); 8053 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8054 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8055 if (tcp->tcp_iphc == NULL) { 8056 tcp->tcp_iphc_len = 0; 8057 return (ENOMEM); 8058 } 8059 } 8060 8061 /* options are gone; may need a new label */ 8062 connp = tcp->tcp_connp; 8063 connp->conn_mlp_type = mlptSingle; 8064 connp->conn_ulp_labeled = !is_system_labeled(); 8065 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8066 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8067 tcp->tcp_ip6h = NULL; 8068 tcp->tcp_ipversion = IPV4_VERSION; 8069 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8070 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8071 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8072 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8073 tcp->tcp_ipha->ipha_version_and_hdr_length 8074 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8075 tcp->tcp_ipha->ipha_ident = 0; 8076 8077 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8078 tcp->tcp_tos = 0; 8079 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8080 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8081 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8082 8083 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8084 tcp->tcp_tcph = tcph; 8085 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8086 /* 8087 * IP wants our header length in the checksum field to 8088 * allow it to perform a single pseudo-header+checksum 8089 * calculation on behalf of TCP. 8090 * Include the adjustment for a source route once IP_OPTIONS is set. 8091 */ 8092 sum = sizeof (tcph_t) + tcp->tcp_sum; 8093 sum = (sum >> 16) + (sum & 0xFFFF); 8094 U16_TO_ABE16(sum, tcph->th_sum); 8095 return (0); 8096 } 8097 8098 /* 8099 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8100 */ 8101 static int 8102 tcp_header_init_ipv6(tcp_t *tcp) 8103 { 8104 tcph_t *tcph; 8105 uint32_t sum; 8106 conn_t *connp; 8107 8108 /* 8109 * This is a simple initialization. If there's 8110 * already a template, it should never be too small, 8111 * so reuse it. Otherwise, allocate space for the new one. 8112 * Ensure that there is enough space to "downgrade" the tcp_t 8113 * to an IPv4 tcp_t. This requires having space for a full load 8114 * of IPv4 options, as well as a full load of TCP options 8115 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8116 * than a v6 header and a TCP header with a full load of TCP options 8117 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8118 * We want to avoid reallocation in the "downgraded" case when 8119 * processing outbound IPv4 options. 8120 */ 8121 if (tcp->tcp_iphc == NULL) { 8122 ASSERT(tcp->tcp_iphc_len == 0); 8123 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8124 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8125 if (tcp->tcp_iphc == NULL) { 8126 tcp->tcp_iphc_len = 0; 8127 return (ENOMEM); 8128 } 8129 } 8130 8131 /* options are gone; may need a new label */ 8132 connp = tcp->tcp_connp; 8133 connp->conn_mlp_type = mlptSingle; 8134 connp->conn_ulp_labeled = !is_system_labeled(); 8135 8136 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8137 tcp->tcp_ipversion = IPV6_VERSION; 8138 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8139 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8140 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8141 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8142 tcp->tcp_ipha = NULL; 8143 8144 /* Initialize the header template */ 8145 8146 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8147 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8148 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8149 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8150 8151 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8152 tcp->tcp_tcph = tcph; 8153 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8154 /* 8155 * IP wants our header length in the checksum field to 8156 * allow it to perform a single psuedo-header+checksum 8157 * calculation on behalf of TCP. 8158 * Include the adjustment for a source route when IPV6_RTHDR is set. 8159 */ 8160 sum = sizeof (tcph_t) + tcp->tcp_sum; 8161 sum = (sum >> 16) + (sum & 0xFFFF); 8162 U16_TO_ABE16(sum, tcph->th_sum); 8163 return (0); 8164 } 8165 8166 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8167 #define ICMP_MIN_TCP_HDR 12 8168 8169 /* 8170 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8171 * passed up by IP. The message is always received on the correct tcp_t. 8172 * Assumes that IP has pulled up everything up to and including the ICMP header. 8173 */ 8174 void 8175 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8176 { 8177 icmph_t *icmph; 8178 ipha_t *ipha; 8179 int iph_hdr_length; 8180 tcph_t *tcph; 8181 boolean_t ipsec_mctl = B_FALSE; 8182 boolean_t secure; 8183 mblk_t *first_mp = mp; 8184 uint32_t new_mss; 8185 uint32_t ratio; 8186 size_t mp_size = MBLKL(mp); 8187 uint32_t seg_ack; 8188 uint32_t seg_seq; 8189 8190 /* Assume IP provides aligned packets - otherwise toss */ 8191 if (!OK_32PTR(mp->b_rptr)) { 8192 freemsg(mp); 8193 return; 8194 } 8195 8196 /* 8197 * Since ICMP errors are normal data marked with M_CTL when sent 8198 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8199 * packets starting with an ipsec_info_t, see ipsec_info.h. 8200 */ 8201 if ((mp_size == sizeof (ipsec_info_t)) && 8202 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8203 ASSERT(mp->b_cont != NULL); 8204 mp = mp->b_cont; 8205 /* IP should have done this */ 8206 ASSERT(OK_32PTR(mp->b_rptr)); 8207 mp_size = MBLKL(mp); 8208 ipsec_mctl = B_TRUE; 8209 } 8210 8211 /* 8212 * Verify that we have a complete outer IP header. If not, drop it. 8213 */ 8214 if (mp_size < sizeof (ipha_t)) { 8215 noticmpv4: 8216 freemsg(first_mp); 8217 return; 8218 } 8219 8220 ipha = (ipha_t *)mp->b_rptr; 8221 /* 8222 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8223 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8224 */ 8225 switch (IPH_HDR_VERSION(ipha)) { 8226 case IPV6_VERSION: 8227 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8228 return; 8229 case IPV4_VERSION: 8230 break; 8231 default: 8232 goto noticmpv4; 8233 } 8234 8235 /* Skip past the outer IP and ICMP headers */ 8236 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8237 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8238 /* 8239 * If we don't have the correct outer IP header length or if the ULP 8240 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8241 * send it upstream. 8242 */ 8243 if (iph_hdr_length < sizeof (ipha_t) || 8244 ipha->ipha_protocol != IPPROTO_ICMP || 8245 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8246 goto noticmpv4; 8247 } 8248 ipha = (ipha_t *)&icmph[1]; 8249 8250 /* Skip past the inner IP and find the ULP header */ 8251 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8252 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8253 /* 8254 * If we don't have the correct inner IP header length or if the ULP 8255 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8256 * bytes of TCP header, drop it. 8257 */ 8258 if (iph_hdr_length < sizeof (ipha_t) || 8259 ipha->ipha_protocol != IPPROTO_TCP || 8260 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8261 goto noticmpv4; 8262 } 8263 8264 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8265 if (ipsec_mctl) { 8266 secure = ipsec_in_is_secure(first_mp); 8267 } else { 8268 secure = B_FALSE; 8269 } 8270 if (secure) { 8271 /* 8272 * If we are willing to accept this in clear 8273 * we don't have to verify policy. 8274 */ 8275 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8276 if (!tcp_check_policy(tcp, first_mp, 8277 ipha, NULL, secure, ipsec_mctl)) { 8278 /* 8279 * tcp_check_policy called 8280 * ip_drop_packet() on failure. 8281 */ 8282 return; 8283 } 8284 } 8285 } 8286 } else if (ipsec_mctl) { 8287 /* 8288 * This is a hard_bound connection. IP has already 8289 * verified policy. We don't have to do it again. 8290 */ 8291 freeb(first_mp); 8292 first_mp = mp; 8293 ipsec_mctl = B_FALSE; 8294 } 8295 8296 seg_ack = ABE32_TO_U32(tcph->th_ack); 8297 seg_seq = ABE32_TO_U32(tcph->th_seq); 8298 /* 8299 * TCP SHOULD check that the TCP sequence number contained in 8300 * payload of the ICMP error message is within the range 8301 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8302 */ 8303 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8304 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8305 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8306 /* 8307 * If the ICMP message is bogus, should we kill the 8308 * connection, or should we just drop the bogus ICMP 8309 * message? It would probably make more sense to just 8310 * drop the message so that if this one managed to get 8311 * in, the real connection should not suffer. 8312 */ 8313 goto noticmpv4; 8314 } 8315 8316 switch (icmph->icmph_type) { 8317 case ICMP_DEST_UNREACHABLE: 8318 switch (icmph->icmph_code) { 8319 case ICMP_FRAGMENTATION_NEEDED: 8320 /* 8321 * Reduce the MSS based on the new MTU. This will 8322 * eliminate any fragmentation locally. 8323 * N.B. There may well be some funny side-effects on 8324 * the local send policy and the remote receive policy. 8325 * Pending further research, we provide 8326 * tcp_ignore_path_mtu just in case this proves 8327 * disastrous somewhere. 8328 * 8329 * After updating the MSS, retransmit part of the 8330 * dropped segment using the new mss by calling 8331 * tcp_wput_data(). Need to adjust all those 8332 * params to make sure tcp_wput_data() work properly. 8333 */ 8334 if (tcp_ignore_path_mtu) 8335 break; 8336 8337 /* 8338 * Decrease the MSS by time stamp options 8339 * IP options and IPSEC options. tcp_hdr_len 8340 * includes time stamp option and IP option 8341 * length. 8342 */ 8343 8344 new_mss = ntohs(icmph->icmph_du_mtu) - 8345 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8346 8347 /* 8348 * Only update the MSS if the new one is 8349 * smaller than the previous one. This is 8350 * to avoid problems when getting multiple 8351 * ICMP errors for the same MTU. 8352 */ 8353 if (new_mss >= tcp->tcp_mss) 8354 break; 8355 8356 /* 8357 * Stop doing PMTU if new_mss is less than 68 8358 * or less than tcp_mss_min. 8359 * The value 68 comes from rfc 1191. 8360 */ 8361 if (new_mss < MAX(68, tcp_mss_min)) 8362 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8363 0; 8364 8365 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8366 ASSERT(ratio >= 1); 8367 tcp_mss_set(tcp, new_mss); 8368 8369 /* 8370 * Make sure we have something to 8371 * send. 8372 */ 8373 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8374 (tcp->tcp_xmit_head != NULL)) { 8375 /* 8376 * Shrink tcp_cwnd in 8377 * proportion to the old MSS/new MSS. 8378 */ 8379 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8380 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8381 (tcp->tcp_unsent == 0)) { 8382 tcp->tcp_rexmit_max = tcp->tcp_fss; 8383 } else { 8384 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8385 } 8386 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8387 tcp->tcp_rexmit = B_TRUE; 8388 tcp->tcp_dupack_cnt = 0; 8389 tcp->tcp_snd_burst = TCP_CWND_SS; 8390 tcp_ss_rexmit(tcp); 8391 } 8392 break; 8393 case ICMP_PORT_UNREACHABLE: 8394 case ICMP_PROTOCOL_UNREACHABLE: 8395 switch (tcp->tcp_state) { 8396 case TCPS_SYN_SENT: 8397 case TCPS_SYN_RCVD: 8398 /* 8399 * ICMP can snipe away incipient 8400 * TCP connections as long as 8401 * seq number is same as initial 8402 * send seq number. 8403 */ 8404 if (seg_seq == tcp->tcp_iss) { 8405 (void) tcp_clean_death(tcp, 8406 ECONNREFUSED, 6); 8407 } 8408 break; 8409 } 8410 break; 8411 case ICMP_HOST_UNREACHABLE: 8412 case ICMP_NET_UNREACHABLE: 8413 /* Record the error in case we finally time out. */ 8414 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8415 tcp->tcp_client_errno = EHOSTUNREACH; 8416 else 8417 tcp->tcp_client_errno = ENETUNREACH; 8418 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8419 if (tcp->tcp_listener != NULL && 8420 tcp->tcp_listener->tcp_syn_defense) { 8421 /* 8422 * Ditch the half-open connection if we 8423 * suspect a SYN attack is under way. 8424 */ 8425 tcp_ip_ire_mark_advice(tcp); 8426 (void) tcp_clean_death(tcp, 8427 tcp->tcp_client_errno, 7); 8428 } 8429 } 8430 break; 8431 default: 8432 break; 8433 } 8434 break; 8435 case ICMP_SOURCE_QUENCH: { 8436 /* 8437 * use a global boolean to control 8438 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8439 * The default is false. 8440 */ 8441 if (tcp_icmp_source_quench) { 8442 /* 8443 * Reduce the sending rate as if we got a 8444 * retransmit timeout 8445 */ 8446 uint32_t npkt; 8447 8448 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8449 tcp->tcp_mss; 8450 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8451 tcp->tcp_cwnd = tcp->tcp_mss; 8452 tcp->tcp_cwnd_cnt = 0; 8453 } 8454 break; 8455 } 8456 } 8457 freemsg(first_mp); 8458 } 8459 8460 /* 8461 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8462 * error messages passed up by IP. 8463 * Assumes that IP has pulled up all the extension headers as well 8464 * as the ICMPv6 header. 8465 */ 8466 static void 8467 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8468 { 8469 icmp6_t *icmp6; 8470 ip6_t *ip6h; 8471 uint16_t iph_hdr_length; 8472 tcpha_t *tcpha; 8473 uint8_t *nexthdrp; 8474 uint32_t new_mss; 8475 uint32_t ratio; 8476 boolean_t secure; 8477 mblk_t *first_mp = mp; 8478 size_t mp_size; 8479 uint32_t seg_ack; 8480 uint32_t seg_seq; 8481 8482 /* 8483 * The caller has determined if this is an IPSEC_IN packet and 8484 * set ipsec_mctl appropriately (see tcp_icmp_error). 8485 */ 8486 if (ipsec_mctl) 8487 mp = mp->b_cont; 8488 8489 mp_size = MBLKL(mp); 8490 8491 /* 8492 * Verify that we have a complete IP header. If not, send it upstream. 8493 */ 8494 if (mp_size < sizeof (ip6_t)) { 8495 noticmpv6: 8496 freemsg(first_mp); 8497 return; 8498 } 8499 8500 /* 8501 * Verify this is an ICMPV6 packet, else send it upstream. 8502 */ 8503 ip6h = (ip6_t *)mp->b_rptr; 8504 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8505 iph_hdr_length = IPV6_HDR_LEN; 8506 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8507 &nexthdrp) || 8508 *nexthdrp != IPPROTO_ICMPV6) { 8509 goto noticmpv6; 8510 } 8511 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8512 ip6h = (ip6_t *)&icmp6[1]; 8513 /* 8514 * Verify if we have a complete ICMP and inner IP header. 8515 */ 8516 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8517 goto noticmpv6; 8518 8519 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8520 goto noticmpv6; 8521 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8522 /* 8523 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8524 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8525 * packet. 8526 */ 8527 if ((*nexthdrp != IPPROTO_TCP) || 8528 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8529 goto noticmpv6; 8530 } 8531 8532 /* 8533 * ICMP errors come on the right queue or come on 8534 * listener/global queue for detached connections and 8535 * get switched to the right queue. If it comes on the 8536 * right queue, policy check has already been done by IP 8537 * and thus free the first_mp without verifying the policy. 8538 * If it has come for a non-hard bound connection, we need 8539 * to verify policy as IP may not have done it. 8540 */ 8541 if (!tcp->tcp_hard_bound) { 8542 if (ipsec_mctl) { 8543 secure = ipsec_in_is_secure(first_mp); 8544 } else { 8545 secure = B_FALSE; 8546 } 8547 if (secure) { 8548 /* 8549 * If we are willing to accept this in clear 8550 * we don't have to verify policy. 8551 */ 8552 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8553 if (!tcp_check_policy(tcp, first_mp, 8554 NULL, ip6h, secure, ipsec_mctl)) { 8555 /* 8556 * tcp_check_policy called 8557 * ip_drop_packet() on failure. 8558 */ 8559 return; 8560 } 8561 } 8562 } 8563 } else if (ipsec_mctl) { 8564 /* 8565 * This is a hard_bound connection. IP has already 8566 * verified policy. We don't have to do it again. 8567 */ 8568 freeb(first_mp); 8569 first_mp = mp; 8570 ipsec_mctl = B_FALSE; 8571 } 8572 8573 seg_ack = ntohl(tcpha->tha_ack); 8574 seg_seq = ntohl(tcpha->tha_seq); 8575 /* 8576 * TCP SHOULD check that the TCP sequence number contained in 8577 * payload of the ICMP error message is within the range 8578 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8579 */ 8580 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8581 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8582 /* 8583 * If the ICMP message is bogus, should we kill the 8584 * connection, or should we just drop the bogus ICMP 8585 * message? It would probably make more sense to just 8586 * drop the message so that if this one managed to get 8587 * in, the real connection should not suffer. 8588 */ 8589 goto noticmpv6; 8590 } 8591 8592 switch (icmp6->icmp6_type) { 8593 case ICMP6_PACKET_TOO_BIG: 8594 /* 8595 * Reduce the MSS based on the new MTU. This will 8596 * eliminate any fragmentation locally. 8597 * N.B. There may well be some funny side-effects on 8598 * the local send policy and the remote receive policy. 8599 * Pending further research, we provide 8600 * tcp_ignore_path_mtu just in case this proves 8601 * disastrous somewhere. 8602 * 8603 * After updating the MSS, retransmit part of the 8604 * dropped segment using the new mss by calling 8605 * tcp_wput_data(). Need to adjust all those 8606 * params to make sure tcp_wput_data() work properly. 8607 */ 8608 if (tcp_ignore_path_mtu) 8609 break; 8610 8611 /* 8612 * Decrease the MSS by time stamp options 8613 * IP options and IPSEC options. tcp_hdr_len 8614 * includes time stamp option and IP option 8615 * length. 8616 */ 8617 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8618 tcp->tcp_ipsec_overhead; 8619 8620 /* 8621 * Only update the MSS if the new one is 8622 * smaller than the previous one. This is 8623 * to avoid problems when getting multiple 8624 * ICMP errors for the same MTU. 8625 */ 8626 if (new_mss >= tcp->tcp_mss) 8627 break; 8628 8629 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8630 ASSERT(ratio >= 1); 8631 tcp_mss_set(tcp, new_mss); 8632 8633 /* 8634 * Make sure we have something to 8635 * send. 8636 */ 8637 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8638 (tcp->tcp_xmit_head != NULL)) { 8639 /* 8640 * Shrink tcp_cwnd in 8641 * proportion to the old MSS/new MSS. 8642 */ 8643 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8644 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8645 (tcp->tcp_unsent == 0)) { 8646 tcp->tcp_rexmit_max = tcp->tcp_fss; 8647 } else { 8648 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8649 } 8650 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8651 tcp->tcp_rexmit = B_TRUE; 8652 tcp->tcp_dupack_cnt = 0; 8653 tcp->tcp_snd_burst = TCP_CWND_SS; 8654 tcp_ss_rexmit(tcp); 8655 } 8656 break; 8657 8658 case ICMP6_DST_UNREACH: 8659 switch (icmp6->icmp6_code) { 8660 case ICMP6_DST_UNREACH_NOPORT: 8661 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8662 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8663 (seg_seq == tcp->tcp_iss)) { 8664 (void) tcp_clean_death(tcp, 8665 ECONNREFUSED, 8); 8666 } 8667 break; 8668 8669 case ICMP6_DST_UNREACH_ADMIN: 8670 case ICMP6_DST_UNREACH_NOROUTE: 8671 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8672 case ICMP6_DST_UNREACH_ADDR: 8673 /* Record the error in case we finally time out. */ 8674 tcp->tcp_client_errno = EHOSTUNREACH; 8675 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8676 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8677 (seg_seq == tcp->tcp_iss)) { 8678 if (tcp->tcp_listener != NULL && 8679 tcp->tcp_listener->tcp_syn_defense) { 8680 /* 8681 * Ditch the half-open connection if we 8682 * suspect a SYN attack is under way. 8683 */ 8684 tcp_ip_ire_mark_advice(tcp); 8685 (void) tcp_clean_death(tcp, 8686 tcp->tcp_client_errno, 9); 8687 } 8688 } 8689 8690 8691 break; 8692 default: 8693 break; 8694 } 8695 break; 8696 8697 case ICMP6_PARAM_PROB: 8698 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8699 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8700 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8701 (uchar_t *)nexthdrp) { 8702 if (tcp->tcp_state == TCPS_SYN_SENT || 8703 tcp->tcp_state == TCPS_SYN_RCVD) { 8704 (void) tcp_clean_death(tcp, 8705 ECONNREFUSED, 10); 8706 } 8707 break; 8708 } 8709 break; 8710 8711 case ICMP6_TIME_EXCEEDED: 8712 default: 8713 break; 8714 } 8715 freemsg(first_mp); 8716 } 8717 8718 /* 8719 * IP recognizes seven kinds of bind requests: 8720 * 8721 * - A zero-length address binds only to the protocol number. 8722 * 8723 * - A 4-byte address is treated as a request to 8724 * validate that the address is a valid local IPv4 8725 * address, appropriate for an application to bind to. 8726 * IP does the verification, but does not make any note 8727 * of the address at this time. 8728 * 8729 * - A 16-byte address contains is treated as a request 8730 * to validate a local IPv6 address, as the 4-byte 8731 * address case above. 8732 * 8733 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8734 * use it for the inbound fanout of packets. 8735 * 8736 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8737 * use it for the inbound fanout of packets. 8738 * 8739 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8740 * information consisting of local and remote addresses 8741 * and ports. In this case, the addresses are both 8742 * validated as appropriate for this operation, and, if 8743 * so, the information is retained for use in the 8744 * inbound fanout. 8745 * 8746 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8747 * fanout information, like the 12-byte case above. 8748 * 8749 * IP will also fill in the IRE request mblk with information 8750 * regarding our peer. In all cases, we notify IP of our protocol 8751 * type by appending a single protocol byte to the bind request. 8752 */ 8753 static mblk_t * 8754 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8755 { 8756 char *cp; 8757 mblk_t *mp; 8758 struct T_bind_req *tbr; 8759 ipa_conn_t *ac; 8760 ipa6_conn_t *ac6; 8761 sin_t *sin; 8762 sin6_t *sin6; 8763 8764 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8765 ASSERT((tcp->tcp_family == AF_INET && 8766 tcp->tcp_ipversion == IPV4_VERSION) || 8767 (tcp->tcp_family == AF_INET6 && 8768 (tcp->tcp_ipversion == IPV4_VERSION || 8769 tcp->tcp_ipversion == IPV6_VERSION))); 8770 8771 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8772 if (!mp) 8773 return (mp); 8774 mp->b_datap->db_type = M_PROTO; 8775 tbr = (struct T_bind_req *)mp->b_rptr; 8776 tbr->PRIM_type = bind_prim; 8777 tbr->ADDR_offset = sizeof (*tbr); 8778 tbr->CONIND_number = 0; 8779 tbr->ADDR_length = addr_length; 8780 cp = (char *)&tbr[1]; 8781 switch (addr_length) { 8782 case sizeof (ipa_conn_t): 8783 ASSERT(tcp->tcp_family == AF_INET); 8784 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8785 8786 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8787 if (mp->b_cont == NULL) { 8788 freemsg(mp); 8789 return (NULL); 8790 } 8791 mp->b_cont->b_wptr += sizeof (ire_t); 8792 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8793 8794 /* cp known to be 32 bit aligned */ 8795 ac = (ipa_conn_t *)cp; 8796 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8797 ac->ac_faddr = tcp->tcp_remote; 8798 ac->ac_fport = tcp->tcp_fport; 8799 ac->ac_lport = tcp->tcp_lport; 8800 tcp->tcp_hard_binding = 1; 8801 break; 8802 8803 case sizeof (ipa6_conn_t): 8804 ASSERT(tcp->tcp_family == AF_INET6); 8805 8806 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8807 if (mp->b_cont == NULL) { 8808 freemsg(mp); 8809 return (NULL); 8810 } 8811 mp->b_cont->b_wptr += sizeof (ire_t); 8812 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8813 8814 /* cp known to be 32 bit aligned */ 8815 ac6 = (ipa6_conn_t *)cp; 8816 if (tcp->tcp_ipversion == IPV4_VERSION) { 8817 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8818 &ac6->ac6_laddr); 8819 } else { 8820 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8821 } 8822 ac6->ac6_faddr = tcp->tcp_remote_v6; 8823 ac6->ac6_fport = tcp->tcp_fport; 8824 ac6->ac6_lport = tcp->tcp_lport; 8825 tcp->tcp_hard_binding = 1; 8826 break; 8827 8828 case sizeof (sin_t): 8829 /* 8830 * NOTE: IPV6_ADDR_LEN also has same size. 8831 * Use family to discriminate. 8832 */ 8833 if (tcp->tcp_family == AF_INET) { 8834 sin = (sin_t *)cp; 8835 8836 *sin = sin_null; 8837 sin->sin_family = AF_INET; 8838 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8839 sin->sin_port = tcp->tcp_lport; 8840 break; 8841 } else { 8842 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8843 } 8844 break; 8845 8846 case sizeof (sin6_t): 8847 ASSERT(tcp->tcp_family == AF_INET6); 8848 sin6 = (sin6_t *)cp; 8849 8850 *sin6 = sin6_null; 8851 sin6->sin6_family = AF_INET6; 8852 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8853 sin6->sin6_port = tcp->tcp_lport; 8854 break; 8855 8856 case IP_ADDR_LEN: 8857 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8858 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8859 break; 8860 8861 } 8862 /* Add protocol number to end */ 8863 cp[addr_length] = (char)IPPROTO_TCP; 8864 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8865 return (mp); 8866 } 8867 8868 /* 8869 * Notify IP that we are having trouble with this connection. IP should 8870 * blow the IRE away and start over. 8871 */ 8872 static void 8873 tcp_ip_notify(tcp_t *tcp) 8874 { 8875 struct iocblk *iocp; 8876 ipid_t *ipid; 8877 mblk_t *mp; 8878 8879 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8880 if (tcp->tcp_ipversion == IPV6_VERSION) 8881 return; 8882 8883 mp = mkiocb(IP_IOCTL); 8884 if (mp == NULL) 8885 return; 8886 8887 iocp = (struct iocblk *)mp->b_rptr; 8888 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8889 8890 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8891 if (!mp->b_cont) { 8892 freeb(mp); 8893 return; 8894 } 8895 8896 ipid = (ipid_t *)mp->b_cont->b_rptr; 8897 mp->b_cont->b_wptr += iocp->ioc_count; 8898 bzero(ipid, sizeof (*ipid)); 8899 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8900 ipid->ipid_ire_type = IRE_CACHE; 8901 ipid->ipid_addr_offset = sizeof (ipid_t); 8902 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8903 /* 8904 * Note: in the case of source routing we want to blow away the 8905 * route to the first source route hop. 8906 */ 8907 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8908 sizeof (tcp->tcp_ipha->ipha_dst)); 8909 8910 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8911 } 8912 8913 /* Unlink and return any mblk that looks like it contains an ire */ 8914 static mblk_t * 8915 tcp_ire_mp(mblk_t *mp) 8916 { 8917 mblk_t *prev_mp; 8918 8919 for (;;) { 8920 prev_mp = mp; 8921 mp = mp->b_cont; 8922 if (mp == NULL) 8923 break; 8924 switch (DB_TYPE(mp)) { 8925 case IRE_DB_TYPE: 8926 case IRE_DB_REQ_TYPE: 8927 if (prev_mp != NULL) 8928 prev_mp->b_cont = mp->b_cont; 8929 mp->b_cont = NULL; 8930 return (mp); 8931 default: 8932 break; 8933 } 8934 } 8935 return (mp); 8936 } 8937 8938 /* 8939 * Timer callback routine for keepalive probe. We do a fake resend of 8940 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8941 * check to see if we have heard anything from the other end for the last 8942 * RTO period. If we have, set the timer to expire for another 8943 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8944 * RTO << 1 and check again when it expires. Keep exponentially increasing 8945 * the timeout if we have not heard from the other side. If for more than 8946 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8947 * kill the connection unless the keepalive abort threshold is 0. In 8948 * that case, we will probe "forever." 8949 */ 8950 static void 8951 tcp_keepalive_killer(void *arg) 8952 { 8953 mblk_t *mp; 8954 conn_t *connp = (conn_t *)arg; 8955 tcp_t *tcp = connp->conn_tcp; 8956 int32_t firetime; 8957 int32_t idletime; 8958 int32_t ka_intrvl; 8959 8960 tcp->tcp_ka_tid = 0; 8961 8962 if (tcp->tcp_fused) 8963 return; 8964 8965 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8966 ka_intrvl = tcp->tcp_ka_interval; 8967 8968 /* 8969 * Keepalive probe should only be sent if the application has not 8970 * done a close on the connection. 8971 */ 8972 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8973 return; 8974 } 8975 /* Timer fired too early, restart it. */ 8976 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8977 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8978 MSEC_TO_TICK(ka_intrvl)); 8979 return; 8980 } 8981 8982 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8983 /* 8984 * If we have not heard from the other side for a long 8985 * time, kill the connection unless the keepalive abort 8986 * threshold is 0. In that case, we will probe "forever." 8987 */ 8988 if (tcp->tcp_ka_abort_thres != 0 && 8989 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8990 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8991 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8992 tcp->tcp_client_errno : ETIMEDOUT, 11); 8993 return; 8994 } 8995 8996 if (tcp->tcp_snxt == tcp->tcp_suna && 8997 idletime >= ka_intrvl) { 8998 /* Fake resend of last ACKed byte. */ 8999 mblk_t *mp1 = allocb(1, BPRI_LO); 9000 9001 if (mp1 != NULL) { 9002 *mp1->b_wptr++ = '\0'; 9003 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9004 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9005 freeb(mp1); 9006 /* 9007 * if allocation failed, fall through to start the 9008 * timer back. 9009 */ 9010 if (mp != NULL) { 9011 TCP_RECORD_TRACE(tcp, mp, 9012 TCP_TRACE_SEND_PKT); 9013 tcp_send_data(tcp, tcp->tcp_wq, mp); 9014 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9015 if (tcp->tcp_ka_last_intrvl != 0) { 9016 /* 9017 * We should probe again at least 9018 * in ka_intrvl, but not more than 9019 * tcp_rexmit_interval_max. 9020 */ 9021 firetime = MIN(ka_intrvl - 1, 9022 tcp->tcp_ka_last_intrvl << 1); 9023 if (firetime > tcp_rexmit_interval_max) 9024 firetime = 9025 tcp_rexmit_interval_max; 9026 } else { 9027 firetime = tcp->tcp_rto; 9028 } 9029 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9030 tcp_keepalive_killer, 9031 MSEC_TO_TICK(firetime)); 9032 tcp->tcp_ka_last_intrvl = firetime; 9033 return; 9034 } 9035 } 9036 } else { 9037 tcp->tcp_ka_last_intrvl = 0; 9038 } 9039 9040 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9041 if ((firetime = ka_intrvl - idletime) < 0) { 9042 firetime = ka_intrvl; 9043 } 9044 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9045 MSEC_TO_TICK(firetime)); 9046 } 9047 9048 int 9049 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9050 { 9051 queue_t *q = tcp->tcp_rq; 9052 int32_t mss = tcp->tcp_mss; 9053 int maxpsz; 9054 9055 if (TCP_IS_DETACHED(tcp)) 9056 return (mss); 9057 9058 if (tcp->tcp_fused) { 9059 maxpsz = tcp_fuse_maxpsz_set(tcp); 9060 mss = INFPSZ; 9061 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 9062 /* 9063 * Set the sd_qn_maxpsz according to the socket send buffer 9064 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9065 * instruct the stream head to copyin user data into contiguous 9066 * kernel-allocated buffers without breaking it up into smaller 9067 * chunks. We round up the buffer size to the nearest SMSS. 9068 */ 9069 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9070 if (tcp->tcp_kssl_ctx == NULL) 9071 mss = INFPSZ; 9072 else 9073 mss = SSL3_MAX_RECORD_LEN; 9074 } else { 9075 /* 9076 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9077 * (and a multiple of the mss). This instructs the stream 9078 * head to break down larger than SMSS writes into SMSS- 9079 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9080 */ 9081 maxpsz = tcp->tcp_maxpsz * mss; 9082 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9083 maxpsz = tcp->tcp_xmit_hiwater/2; 9084 /* Round up to nearest mss */ 9085 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9086 } 9087 } 9088 (void) setmaxps(q, maxpsz); 9089 tcp->tcp_wq->q_maxpsz = maxpsz; 9090 9091 if (set_maxblk) 9092 (void) mi_set_sth_maxblk(q, mss); 9093 9094 return (mss); 9095 } 9096 9097 /* 9098 * Extract option values from a tcp header. We put any found values into the 9099 * tcpopt struct and return a bitmask saying which options were found. 9100 */ 9101 static int 9102 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9103 { 9104 uchar_t *endp; 9105 int len; 9106 uint32_t mss; 9107 uchar_t *up = (uchar_t *)tcph; 9108 int found = 0; 9109 int32_t sack_len; 9110 tcp_seq sack_begin, sack_end; 9111 tcp_t *tcp; 9112 9113 endp = up + TCP_HDR_LENGTH(tcph); 9114 up += TCP_MIN_HEADER_LENGTH; 9115 while (up < endp) { 9116 len = endp - up; 9117 switch (*up) { 9118 case TCPOPT_EOL: 9119 break; 9120 9121 case TCPOPT_NOP: 9122 up++; 9123 continue; 9124 9125 case TCPOPT_MAXSEG: 9126 if (len < TCPOPT_MAXSEG_LEN || 9127 up[1] != TCPOPT_MAXSEG_LEN) 9128 break; 9129 9130 mss = BE16_TO_U16(up+2); 9131 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9132 tcpopt->tcp_opt_mss = mss; 9133 found |= TCP_OPT_MSS_PRESENT; 9134 9135 up += TCPOPT_MAXSEG_LEN; 9136 continue; 9137 9138 case TCPOPT_WSCALE: 9139 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9140 break; 9141 9142 if (up[2] > TCP_MAX_WINSHIFT) 9143 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9144 else 9145 tcpopt->tcp_opt_wscale = up[2]; 9146 found |= TCP_OPT_WSCALE_PRESENT; 9147 9148 up += TCPOPT_WS_LEN; 9149 continue; 9150 9151 case TCPOPT_SACK_PERMITTED: 9152 if (len < TCPOPT_SACK_OK_LEN || 9153 up[1] != TCPOPT_SACK_OK_LEN) 9154 break; 9155 found |= TCP_OPT_SACK_OK_PRESENT; 9156 up += TCPOPT_SACK_OK_LEN; 9157 continue; 9158 9159 case TCPOPT_SACK: 9160 if (len <= 2 || up[1] <= 2 || len < up[1]) 9161 break; 9162 9163 /* If TCP is not interested in SACK blks... */ 9164 if ((tcp = tcpopt->tcp) == NULL) { 9165 up += up[1]; 9166 continue; 9167 } 9168 sack_len = up[1] - TCPOPT_HEADER_LEN; 9169 up += TCPOPT_HEADER_LEN; 9170 9171 /* 9172 * If the list is empty, allocate one and assume 9173 * nothing is sack'ed. 9174 */ 9175 ASSERT(tcp->tcp_sack_info != NULL); 9176 if (tcp->tcp_notsack_list == NULL) { 9177 tcp_notsack_update(&(tcp->tcp_notsack_list), 9178 tcp->tcp_suna, tcp->tcp_snxt, 9179 &(tcp->tcp_num_notsack_blk), 9180 &(tcp->tcp_cnt_notsack_list)); 9181 9182 /* 9183 * Make sure tcp_notsack_list is not NULL. 9184 * This happens when kmem_alloc(KM_NOSLEEP) 9185 * returns NULL. 9186 */ 9187 if (tcp->tcp_notsack_list == NULL) { 9188 up += sack_len; 9189 continue; 9190 } 9191 tcp->tcp_fack = tcp->tcp_suna; 9192 } 9193 9194 while (sack_len > 0) { 9195 if (up + 8 > endp) { 9196 up = endp; 9197 break; 9198 } 9199 sack_begin = BE32_TO_U32(up); 9200 up += 4; 9201 sack_end = BE32_TO_U32(up); 9202 up += 4; 9203 sack_len -= 8; 9204 /* 9205 * Bounds checking. Make sure the SACK 9206 * info is within tcp_suna and tcp_snxt. 9207 * If this SACK blk is out of bound, ignore 9208 * it but continue to parse the following 9209 * blks. 9210 */ 9211 if (SEQ_LEQ(sack_end, sack_begin) || 9212 SEQ_LT(sack_begin, tcp->tcp_suna) || 9213 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9214 continue; 9215 } 9216 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9217 sack_begin, sack_end, 9218 &(tcp->tcp_num_notsack_blk), 9219 &(tcp->tcp_cnt_notsack_list)); 9220 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9221 tcp->tcp_fack = sack_end; 9222 } 9223 } 9224 found |= TCP_OPT_SACK_PRESENT; 9225 continue; 9226 9227 case TCPOPT_TSTAMP: 9228 if (len < TCPOPT_TSTAMP_LEN || 9229 up[1] != TCPOPT_TSTAMP_LEN) 9230 break; 9231 9232 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9233 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9234 9235 found |= TCP_OPT_TSTAMP_PRESENT; 9236 9237 up += TCPOPT_TSTAMP_LEN; 9238 continue; 9239 9240 default: 9241 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9242 break; 9243 up += up[1]; 9244 continue; 9245 } 9246 break; 9247 } 9248 return (found); 9249 } 9250 9251 /* 9252 * Set the mss associated with a particular tcp based on its current value, 9253 * and a new one passed in. Observe minimums and maximums, and reset 9254 * other state variables that we want to view as multiples of mss. 9255 * 9256 * This function is called in various places mainly because 9257 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9258 * other side's SYN/SYN-ACK packet arrives. 9259 * 2) PMTUd may get us a new MSS. 9260 * 3) If the other side stops sending us timestamp option, we need to 9261 * increase the MSS size to use the extra bytes available. 9262 */ 9263 static void 9264 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9265 { 9266 uint32_t mss_max; 9267 9268 if (tcp->tcp_ipversion == IPV4_VERSION) 9269 mss_max = tcp_mss_max_ipv4; 9270 else 9271 mss_max = tcp_mss_max_ipv6; 9272 9273 if (mss < tcp_mss_min) 9274 mss = tcp_mss_min; 9275 if (mss > mss_max) 9276 mss = mss_max; 9277 /* 9278 * Unless naglim has been set by our client to 9279 * a non-mss value, force naglim to track mss. 9280 * This can help to aggregate small writes. 9281 */ 9282 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9283 tcp->tcp_naglim = mss; 9284 /* 9285 * TCP should be able to buffer at least 4 MSS data for obvious 9286 * performance reason. 9287 */ 9288 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9289 tcp->tcp_xmit_hiwater = mss << 2; 9290 9291 /* 9292 * Check if we need to apply the tcp_init_cwnd here. If 9293 * it is set and the MSS gets bigger (should not happen 9294 * normally), we need to adjust the resulting tcp_cwnd properly. 9295 * The new tcp_cwnd should not get bigger. 9296 */ 9297 if (tcp->tcp_init_cwnd == 0) { 9298 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9299 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9300 } else { 9301 if (tcp->tcp_mss < mss) { 9302 tcp->tcp_cwnd = MAX(1, 9303 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9304 } else { 9305 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9306 } 9307 } 9308 tcp->tcp_mss = mss; 9309 tcp->tcp_cwnd_cnt = 0; 9310 (void) tcp_maxpsz_set(tcp, B_TRUE); 9311 } 9312 9313 static int 9314 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9315 { 9316 tcp_t *tcp = NULL; 9317 conn_t *connp; 9318 int err; 9319 dev_t conn_dev; 9320 zoneid_t zoneid = getzoneid(); 9321 9322 /* 9323 * Special case for install: miniroot needs to be able to access files 9324 * via NFS as though it were always in the global zone. 9325 */ 9326 if (credp == kcred && nfs_global_client_only != 0) 9327 zoneid = GLOBAL_ZONEID; 9328 9329 if (q->q_ptr != NULL) 9330 return (0); 9331 9332 if (sflag == MODOPEN) { 9333 /* 9334 * This is a special case. The purpose of a modopen 9335 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9336 * through for MIB browsers. Everything else is failed. 9337 */ 9338 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9339 9340 if (connp == NULL) 9341 return (ENOMEM); 9342 9343 connp->conn_flags |= IPCL_TCPMOD; 9344 connp->conn_cred = credp; 9345 connp->conn_zoneid = zoneid; 9346 q->q_ptr = WR(q)->q_ptr = connp; 9347 crhold(credp); 9348 q->q_qinfo = &tcp_mod_rinit; 9349 WR(q)->q_qinfo = &tcp_mod_winit; 9350 qprocson(q); 9351 return (0); 9352 } 9353 9354 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9355 return (EBUSY); 9356 9357 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9358 9359 if (flag & SO_ACCEPTOR) { 9360 q->q_qinfo = &tcp_acceptor_rinit; 9361 q->q_ptr = (void *)conn_dev; 9362 WR(q)->q_qinfo = &tcp_acceptor_winit; 9363 WR(q)->q_ptr = (void *)conn_dev; 9364 qprocson(q); 9365 return (0); 9366 } 9367 9368 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9369 if (connp == NULL) { 9370 inet_minor_free(ip_minor_arena, conn_dev); 9371 q->q_ptr = NULL; 9372 return (ENOSR); 9373 } 9374 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9375 tcp = connp->conn_tcp; 9376 9377 q->q_ptr = WR(q)->q_ptr = connp; 9378 if (getmajor(*devp) == TCP6_MAJ) { 9379 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9380 connp->conn_send = ip_output_v6; 9381 connp->conn_af_isv6 = B_TRUE; 9382 connp->conn_pkt_isv6 = B_TRUE; 9383 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9384 tcp->tcp_ipversion = IPV6_VERSION; 9385 tcp->tcp_family = AF_INET6; 9386 tcp->tcp_mss = tcp_mss_def_ipv6; 9387 } else { 9388 connp->conn_flags |= IPCL_TCP4; 9389 connp->conn_send = ip_output; 9390 connp->conn_af_isv6 = B_FALSE; 9391 connp->conn_pkt_isv6 = B_FALSE; 9392 tcp->tcp_ipversion = IPV4_VERSION; 9393 tcp->tcp_family = AF_INET; 9394 tcp->tcp_mss = tcp_mss_def_ipv4; 9395 } 9396 9397 /* 9398 * TCP keeps a copy of cred for cache locality reasons but 9399 * we put a reference only once. If connp->conn_cred 9400 * becomes invalid, tcp_cred should also be set to NULL. 9401 */ 9402 tcp->tcp_cred = connp->conn_cred = credp; 9403 crhold(connp->conn_cred); 9404 tcp->tcp_cpid = curproc->p_pid; 9405 connp->conn_zoneid = zoneid; 9406 connp->conn_mlp_type = mlptSingle; 9407 connp->conn_ulp_labeled = !is_system_labeled(); 9408 9409 /* 9410 * If the caller has the process-wide flag set, then default to MAC 9411 * exempt mode. This allows read-down to unlabeled hosts. 9412 */ 9413 if (getpflags(NET_MAC_AWARE, credp) != 0) 9414 connp->conn_mac_exempt = B_TRUE; 9415 9416 connp->conn_dev = conn_dev; 9417 9418 ASSERT(q->q_qinfo == &tcp_rinit); 9419 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9420 9421 if (flag & SO_SOCKSTR) { 9422 /* 9423 * No need to insert a socket in tcp acceptor hash. 9424 * If it was a socket acceptor stream, we dealt with 9425 * it above. A socket listener can never accept a 9426 * connection and doesn't need acceptor_id. 9427 */ 9428 connp->conn_flags |= IPCL_SOCKET; 9429 tcp->tcp_issocket = 1; 9430 WR(q)->q_qinfo = &tcp_sock_winit; 9431 } else { 9432 #ifdef _ILP32 9433 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9434 #else 9435 tcp->tcp_acceptor_id = conn_dev; 9436 #endif /* _ILP32 */ 9437 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9438 } 9439 9440 if (tcp_trace) 9441 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9442 9443 err = tcp_init(tcp, q); 9444 if (err != 0) { 9445 inet_minor_free(ip_minor_arena, connp->conn_dev); 9446 tcp_acceptor_hash_remove(tcp); 9447 CONN_DEC_REF(connp); 9448 q->q_ptr = WR(q)->q_ptr = NULL; 9449 return (err); 9450 } 9451 9452 RD(q)->q_hiwat = tcp_recv_hiwat; 9453 tcp->tcp_rwnd = tcp_recv_hiwat; 9454 9455 /* Non-zero default values */ 9456 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9457 /* 9458 * Put the ref for TCP. Ref for IP was already put 9459 * by ipcl_conn_create. Also Make the conn_t globally 9460 * visible to walkers 9461 */ 9462 mutex_enter(&connp->conn_lock); 9463 CONN_INC_REF_LOCKED(connp); 9464 ASSERT(connp->conn_ref == 2); 9465 connp->conn_state_flags &= ~CONN_INCIPIENT; 9466 mutex_exit(&connp->conn_lock); 9467 9468 qprocson(q); 9469 return (0); 9470 } 9471 9472 /* 9473 * Some TCP options can be "set" by requesting them in the option 9474 * buffer. This is needed for XTI feature test though we do not 9475 * allow it in general. We interpret that this mechanism is more 9476 * applicable to OSI protocols and need not be allowed in general. 9477 * This routine filters out options for which it is not allowed (most) 9478 * and lets through those (few) for which it is. [ The XTI interface 9479 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9480 * ever implemented will have to be allowed here ]. 9481 */ 9482 static boolean_t 9483 tcp_allow_connopt_set(int level, int name) 9484 { 9485 9486 switch (level) { 9487 case IPPROTO_TCP: 9488 switch (name) { 9489 case TCP_NODELAY: 9490 return (B_TRUE); 9491 default: 9492 return (B_FALSE); 9493 } 9494 /*NOTREACHED*/ 9495 default: 9496 return (B_FALSE); 9497 } 9498 /*NOTREACHED*/ 9499 } 9500 9501 /* 9502 * This routine gets default values of certain options whose default 9503 * values are maintained by protocol specific code 9504 */ 9505 /* ARGSUSED */ 9506 int 9507 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9508 { 9509 int32_t *i1 = (int32_t *)ptr; 9510 9511 switch (level) { 9512 case IPPROTO_TCP: 9513 switch (name) { 9514 case TCP_NOTIFY_THRESHOLD: 9515 *i1 = tcp_ip_notify_interval; 9516 break; 9517 case TCP_ABORT_THRESHOLD: 9518 *i1 = tcp_ip_abort_interval; 9519 break; 9520 case TCP_CONN_NOTIFY_THRESHOLD: 9521 *i1 = tcp_ip_notify_cinterval; 9522 break; 9523 case TCP_CONN_ABORT_THRESHOLD: 9524 *i1 = tcp_ip_abort_cinterval; 9525 break; 9526 default: 9527 return (-1); 9528 } 9529 break; 9530 case IPPROTO_IP: 9531 switch (name) { 9532 case IP_TTL: 9533 *i1 = tcp_ipv4_ttl; 9534 break; 9535 default: 9536 return (-1); 9537 } 9538 break; 9539 case IPPROTO_IPV6: 9540 switch (name) { 9541 case IPV6_UNICAST_HOPS: 9542 *i1 = tcp_ipv6_hoplimit; 9543 break; 9544 default: 9545 return (-1); 9546 } 9547 break; 9548 default: 9549 return (-1); 9550 } 9551 return (sizeof (int)); 9552 } 9553 9554 9555 /* 9556 * TCP routine to get the values of options. 9557 */ 9558 int 9559 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9560 { 9561 int *i1 = (int *)ptr; 9562 conn_t *connp = Q_TO_CONN(q); 9563 tcp_t *tcp = connp->conn_tcp; 9564 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9565 9566 switch (level) { 9567 case SOL_SOCKET: 9568 switch (name) { 9569 case SO_LINGER: { 9570 struct linger *lgr = (struct linger *)ptr; 9571 9572 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9573 lgr->l_linger = tcp->tcp_lingertime; 9574 } 9575 return (sizeof (struct linger)); 9576 case SO_DEBUG: 9577 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9578 break; 9579 case SO_KEEPALIVE: 9580 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9581 break; 9582 case SO_DONTROUTE: 9583 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9584 break; 9585 case SO_USELOOPBACK: 9586 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9587 break; 9588 case SO_BROADCAST: 9589 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9590 break; 9591 case SO_REUSEADDR: 9592 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9593 break; 9594 case SO_OOBINLINE: 9595 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9596 break; 9597 case SO_DGRAM_ERRIND: 9598 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9599 break; 9600 case SO_TYPE: 9601 *i1 = SOCK_STREAM; 9602 break; 9603 case SO_SNDBUF: 9604 *i1 = tcp->tcp_xmit_hiwater; 9605 break; 9606 case SO_RCVBUF: 9607 *i1 = RD(q)->q_hiwat; 9608 break; 9609 case SO_SND_COPYAVOID: 9610 *i1 = tcp->tcp_snd_zcopy_on ? 9611 SO_SND_COPYAVOID : 0; 9612 break; 9613 case SO_ALLZONES: 9614 *i1 = connp->conn_allzones ? 1 : 0; 9615 break; 9616 case SO_ANON_MLP: 9617 *i1 = connp->conn_anon_mlp; 9618 break; 9619 case SO_MAC_EXEMPT: 9620 *i1 = connp->conn_mac_exempt; 9621 break; 9622 case SO_EXCLBIND: 9623 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9624 break; 9625 default: 9626 return (-1); 9627 } 9628 break; 9629 case IPPROTO_TCP: 9630 switch (name) { 9631 case TCP_NODELAY: 9632 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9633 break; 9634 case TCP_MAXSEG: 9635 *i1 = tcp->tcp_mss; 9636 break; 9637 case TCP_NOTIFY_THRESHOLD: 9638 *i1 = (int)tcp->tcp_first_timer_threshold; 9639 break; 9640 case TCP_ABORT_THRESHOLD: 9641 *i1 = tcp->tcp_second_timer_threshold; 9642 break; 9643 case TCP_CONN_NOTIFY_THRESHOLD: 9644 *i1 = tcp->tcp_first_ctimer_threshold; 9645 break; 9646 case TCP_CONN_ABORT_THRESHOLD: 9647 *i1 = tcp->tcp_second_ctimer_threshold; 9648 break; 9649 case TCP_RECVDSTADDR: 9650 *i1 = tcp->tcp_recvdstaddr; 9651 break; 9652 case TCP_ANONPRIVBIND: 9653 *i1 = tcp->tcp_anon_priv_bind; 9654 break; 9655 case TCP_EXCLBIND: 9656 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9657 break; 9658 case TCP_INIT_CWND: 9659 *i1 = tcp->tcp_init_cwnd; 9660 break; 9661 case TCP_KEEPALIVE_THRESHOLD: 9662 *i1 = tcp->tcp_ka_interval; 9663 break; 9664 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9665 *i1 = tcp->tcp_ka_abort_thres; 9666 break; 9667 case TCP_CORK: 9668 *i1 = tcp->tcp_cork; 9669 break; 9670 default: 9671 return (-1); 9672 } 9673 break; 9674 case IPPROTO_IP: 9675 if (tcp->tcp_family != AF_INET) 9676 return (-1); 9677 switch (name) { 9678 case IP_OPTIONS: 9679 case T_IP_OPTIONS: { 9680 /* 9681 * This is compatible with BSD in that in only return 9682 * the reverse source route with the final destination 9683 * as the last entry. The first 4 bytes of the option 9684 * will contain the final destination. 9685 */ 9686 int opt_len; 9687 9688 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9689 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9690 ASSERT(opt_len >= 0); 9691 /* Caller ensures enough space */ 9692 if (opt_len > 0) { 9693 /* 9694 * TODO: Do we have to handle getsockopt on an 9695 * initiator as well? 9696 */ 9697 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9698 } 9699 return (0); 9700 } 9701 case IP_TOS: 9702 case T_IP_TOS: 9703 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9704 break; 9705 case IP_TTL: 9706 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9707 break; 9708 case IP_NEXTHOP: 9709 /* Handled at IP level */ 9710 return (-EINVAL); 9711 default: 9712 return (-1); 9713 } 9714 break; 9715 case IPPROTO_IPV6: 9716 /* 9717 * IPPROTO_IPV6 options are only supported for sockets 9718 * that are using IPv6 on the wire. 9719 */ 9720 if (tcp->tcp_ipversion != IPV6_VERSION) { 9721 return (-1); 9722 } 9723 switch (name) { 9724 case IPV6_UNICAST_HOPS: 9725 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9726 break; /* goto sizeof (int) option return */ 9727 case IPV6_BOUND_IF: 9728 /* Zero if not set */ 9729 *i1 = tcp->tcp_bound_if; 9730 break; /* goto sizeof (int) option return */ 9731 case IPV6_RECVPKTINFO: 9732 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9733 *i1 = 1; 9734 else 9735 *i1 = 0; 9736 break; /* goto sizeof (int) option return */ 9737 case IPV6_RECVTCLASS: 9738 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9739 *i1 = 1; 9740 else 9741 *i1 = 0; 9742 break; /* goto sizeof (int) option return */ 9743 case IPV6_RECVHOPLIMIT: 9744 if (tcp->tcp_ipv6_recvancillary & 9745 TCP_IPV6_RECVHOPLIMIT) 9746 *i1 = 1; 9747 else 9748 *i1 = 0; 9749 break; /* goto sizeof (int) option return */ 9750 case IPV6_RECVHOPOPTS: 9751 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9752 *i1 = 1; 9753 else 9754 *i1 = 0; 9755 break; /* goto sizeof (int) option return */ 9756 case IPV6_RECVDSTOPTS: 9757 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9758 *i1 = 1; 9759 else 9760 *i1 = 0; 9761 break; /* goto sizeof (int) option return */ 9762 case _OLD_IPV6_RECVDSTOPTS: 9763 if (tcp->tcp_ipv6_recvancillary & 9764 TCP_OLD_IPV6_RECVDSTOPTS) 9765 *i1 = 1; 9766 else 9767 *i1 = 0; 9768 break; /* goto sizeof (int) option return */ 9769 case IPV6_RECVRTHDR: 9770 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9771 *i1 = 1; 9772 else 9773 *i1 = 0; 9774 break; /* goto sizeof (int) option return */ 9775 case IPV6_RECVRTHDRDSTOPTS: 9776 if (tcp->tcp_ipv6_recvancillary & 9777 TCP_IPV6_RECVRTDSTOPTS) 9778 *i1 = 1; 9779 else 9780 *i1 = 0; 9781 break; /* goto sizeof (int) option return */ 9782 case IPV6_PKTINFO: { 9783 /* XXX assumes that caller has room for max size! */ 9784 struct in6_pktinfo *pkti; 9785 9786 pkti = (struct in6_pktinfo *)ptr; 9787 if (ipp->ipp_fields & IPPF_IFINDEX) 9788 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9789 else 9790 pkti->ipi6_ifindex = 0; 9791 if (ipp->ipp_fields & IPPF_ADDR) 9792 pkti->ipi6_addr = ipp->ipp_addr; 9793 else 9794 pkti->ipi6_addr = ipv6_all_zeros; 9795 return (sizeof (struct in6_pktinfo)); 9796 } 9797 case IPV6_TCLASS: 9798 if (ipp->ipp_fields & IPPF_TCLASS) 9799 *i1 = ipp->ipp_tclass; 9800 else 9801 *i1 = IPV6_FLOW_TCLASS( 9802 IPV6_DEFAULT_VERS_AND_FLOW); 9803 break; /* goto sizeof (int) option return */ 9804 case IPV6_NEXTHOP: { 9805 sin6_t *sin6 = (sin6_t *)ptr; 9806 9807 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9808 return (0); 9809 *sin6 = sin6_null; 9810 sin6->sin6_family = AF_INET6; 9811 sin6->sin6_addr = ipp->ipp_nexthop; 9812 return (sizeof (sin6_t)); 9813 } 9814 case IPV6_HOPOPTS: 9815 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9816 return (0); 9817 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9818 return (0); 9819 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9820 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9821 if (tcp->tcp_label_len > 0) { 9822 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9823 ptr[1] = (ipp->ipp_hopoptslen - 9824 tcp->tcp_label_len + 7) / 8 - 1; 9825 } 9826 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9827 case IPV6_RTHDRDSTOPTS: 9828 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9829 return (0); 9830 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9831 return (ipp->ipp_rtdstoptslen); 9832 case IPV6_RTHDR: 9833 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9834 return (0); 9835 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9836 return (ipp->ipp_rthdrlen); 9837 case IPV6_DSTOPTS: 9838 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9839 return (0); 9840 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9841 return (ipp->ipp_dstoptslen); 9842 case IPV6_SRC_PREFERENCES: 9843 return (ip6_get_src_preferences(connp, 9844 (uint32_t *)ptr)); 9845 case IPV6_PATHMTU: { 9846 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9847 9848 if (tcp->tcp_state < TCPS_ESTABLISHED) 9849 return (-1); 9850 9851 return (ip_fill_mtuinfo(&connp->conn_remv6, 9852 connp->conn_fport, mtuinfo)); 9853 } 9854 default: 9855 return (-1); 9856 } 9857 break; 9858 default: 9859 return (-1); 9860 } 9861 return (sizeof (int)); 9862 } 9863 9864 /* 9865 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9866 * Parameters are assumed to be verified by the caller. 9867 */ 9868 /* ARGSUSED */ 9869 int 9870 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9871 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9872 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9873 { 9874 conn_t *connp = Q_TO_CONN(q); 9875 tcp_t *tcp = connp->conn_tcp; 9876 int *i1 = (int *)invalp; 9877 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9878 boolean_t checkonly; 9879 int reterr; 9880 9881 switch (optset_context) { 9882 case SETFN_OPTCOM_CHECKONLY: 9883 checkonly = B_TRUE; 9884 /* 9885 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9886 * inlen != 0 implies value supplied and 9887 * we have to "pretend" to set it. 9888 * inlen == 0 implies that there is no 9889 * value part in T_CHECK request and just validation 9890 * done elsewhere should be enough, we just return here. 9891 */ 9892 if (inlen == 0) { 9893 *outlenp = 0; 9894 return (0); 9895 } 9896 break; 9897 case SETFN_OPTCOM_NEGOTIATE: 9898 checkonly = B_FALSE; 9899 break; 9900 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9901 case SETFN_CONN_NEGOTIATE: 9902 checkonly = B_FALSE; 9903 /* 9904 * Negotiating local and "association-related" options 9905 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9906 * primitives is allowed by XTI, but we choose 9907 * to not implement this style negotiation for Internet 9908 * protocols (We interpret it is a must for OSI world but 9909 * optional for Internet protocols) for all options. 9910 * [ Will do only for the few options that enable test 9911 * suites that our XTI implementation of this feature 9912 * works for transports that do allow it ] 9913 */ 9914 if (!tcp_allow_connopt_set(level, name)) { 9915 *outlenp = 0; 9916 return (EINVAL); 9917 } 9918 break; 9919 default: 9920 /* 9921 * We should never get here 9922 */ 9923 *outlenp = 0; 9924 return (EINVAL); 9925 } 9926 9927 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9928 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9929 9930 /* 9931 * For TCP, we should have no ancillary data sent down 9932 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9933 * has to be zero. 9934 */ 9935 ASSERT(thisdg_attrs == NULL); 9936 9937 /* 9938 * For fixed length options, no sanity check 9939 * of passed in length is done. It is assumed *_optcom_req() 9940 * routines do the right thing. 9941 */ 9942 9943 switch (level) { 9944 case SOL_SOCKET: 9945 switch (name) { 9946 case SO_LINGER: { 9947 struct linger *lgr = (struct linger *)invalp; 9948 9949 if (!checkonly) { 9950 if (lgr->l_onoff) { 9951 tcp->tcp_linger = 1; 9952 tcp->tcp_lingertime = lgr->l_linger; 9953 } else { 9954 tcp->tcp_linger = 0; 9955 tcp->tcp_lingertime = 0; 9956 } 9957 /* struct copy */ 9958 *(struct linger *)outvalp = *lgr; 9959 } else { 9960 if (!lgr->l_onoff) { 9961 ((struct linger *)outvalp)->l_onoff = 0; 9962 ((struct linger *)outvalp)->l_linger = 0; 9963 } else { 9964 /* struct copy */ 9965 *(struct linger *)outvalp = *lgr; 9966 } 9967 } 9968 *outlenp = sizeof (struct linger); 9969 return (0); 9970 } 9971 case SO_DEBUG: 9972 if (!checkonly) 9973 tcp->tcp_debug = onoff; 9974 break; 9975 case SO_KEEPALIVE: 9976 if (checkonly) { 9977 /* T_CHECK case */ 9978 break; 9979 } 9980 9981 if (!onoff) { 9982 if (tcp->tcp_ka_enabled) { 9983 if (tcp->tcp_ka_tid != 0) { 9984 (void) TCP_TIMER_CANCEL(tcp, 9985 tcp->tcp_ka_tid); 9986 tcp->tcp_ka_tid = 0; 9987 } 9988 tcp->tcp_ka_enabled = 0; 9989 } 9990 break; 9991 } 9992 if (!tcp->tcp_ka_enabled) { 9993 /* Crank up the keepalive timer */ 9994 tcp->tcp_ka_last_intrvl = 0; 9995 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9996 tcp_keepalive_killer, 9997 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9998 tcp->tcp_ka_enabled = 1; 9999 } 10000 break; 10001 case SO_DONTROUTE: 10002 /* 10003 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10004 * only of interest to IP. We track them here only so 10005 * that we can report their current value. 10006 */ 10007 if (!checkonly) { 10008 tcp->tcp_dontroute = onoff; 10009 tcp->tcp_connp->conn_dontroute = onoff; 10010 } 10011 break; 10012 case SO_USELOOPBACK: 10013 if (!checkonly) { 10014 tcp->tcp_useloopback = onoff; 10015 tcp->tcp_connp->conn_loopback = onoff; 10016 } 10017 break; 10018 case SO_BROADCAST: 10019 if (!checkonly) { 10020 tcp->tcp_broadcast = onoff; 10021 tcp->tcp_connp->conn_broadcast = onoff; 10022 } 10023 break; 10024 case SO_REUSEADDR: 10025 if (!checkonly) { 10026 tcp->tcp_reuseaddr = onoff; 10027 tcp->tcp_connp->conn_reuseaddr = onoff; 10028 } 10029 break; 10030 case SO_OOBINLINE: 10031 if (!checkonly) 10032 tcp->tcp_oobinline = onoff; 10033 break; 10034 case SO_DGRAM_ERRIND: 10035 if (!checkonly) 10036 tcp->tcp_dgram_errind = onoff; 10037 break; 10038 case SO_SNDBUF: { 10039 tcp_t *peer_tcp; 10040 10041 if (*i1 > tcp_max_buf) { 10042 *outlenp = 0; 10043 return (ENOBUFS); 10044 } 10045 if (checkonly) 10046 break; 10047 10048 tcp->tcp_xmit_hiwater = *i1; 10049 if (tcp_snd_lowat_fraction != 0) 10050 tcp->tcp_xmit_lowater = 10051 tcp->tcp_xmit_hiwater / 10052 tcp_snd_lowat_fraction; 10053 (void) tcp_maxpsz_set(tcp, B_TRUE); 10054 /* 10055 * If we are flow-controlled, recheck the condition. 10056 * There are apps that increase SO_SNDBUF size when 10057 * flow-controlled (EWOULDBLOCK), and expect the flow 10058 * control condition to be lifted right away. 10059 * 10060 * For the fused tcp loopback case, in order to avoid 10061 * a race with the peer's tcp_fuse_rrw() we need to 10062 * hold its fuse_lock while accessing tcp_flow_stopped. 10063 */ 10064 peer_tcp = tcp->tcp_loopback_peer; 10065 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10066 if (tcp->tcp_fused) 10067 mutex_enter(&peer_tcp->tcp_fuse_lock); 10068 10069 if (tcp->tcp_flow_stopped && 10070 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10071 tcp_clrqfull(tcp); 10072 } 10073 if (tcp->tcp_fused) 10074 mutex_exit(&peer_tcp->tcp_fuse_lock); 10075 break; 10076 } 10077 case SO_RCVBUF: 10078 if (*i1 > tcp_max_buf) { 10079 *outlenp = 0; 10080 return (ENOBUFS); 10081 } 10082 /* Silently ignore zero */ 10083 if (!checkonly && *i1 != 0) { 10084 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10085 (void) tcp_rwnd_set(tcp, *i1); 10086 } 10087 /* 10088 * XXX should we return the rwnd here 10089 * and tcp_opt_get ? 10090 */ 10091 break; 10092 case SO_SND_COPYAVOID: 10093 if (!checkonly) { 10094 /* we only allow enable at most once for now */ 10095 if (tcp->tcp_loopback || 10096 (!tcp->tcp_snd_zcopy_aware && 10097 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10098 *outlenp = 0; 10099 return (EOPNOTSUPP); 10100 } 10101 tcp->tcp_snd_zcopy_aware = 1; 10102 } 10103 break; 10104 case SO_ALLZONES: 10105 /* Handled at the IP level */ 10106 return (-EINVAL); 10107 case SO_ANON_MLP: 10108 if (!checkonly) { 10109 mutex_enter(&connp->conn_lock); 10110 connp->conn_anon_mlp = onoff; 10111 mutex_exit(&connp->conn_lock); 10112 } 10113 break; 10114 case SO_MAC_EXEMPT: 10115 if (secpolicy_net_mac_aware(cr) != 0 || 10116 IPCL_IS_BOUND(connp)) 10117 return (EACCES); 10118 if (!checkonly) { 10119 mutex_enter(&connp->conn_lock); 10120 connp->conn_mac_exempt = onoff; 10121 mutex_exit(&connp->conn_lock); 10122 } 10123 break; 10124 case SO_EXCLBIND: 10125 if (!checkonly) 10126 tcp->tcp_exclbind = onoff; 10127 break; 10128 default: 10129 *outlenp = 0; 10130 return (EINVAL); 10131 } 10132 break; 10133 case IPPROTO_TCP: 10134 switch (name) { 10135 case TCP_NODELAY: 10136 if (!checkonly) 10137 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10138 break; 10139 case TCP_NOTIFY_THRESHOLD: 10140 if (!checkonly) 10141 tcp->tcp_first_timer_threshold = *i1; 10142 break; 10143 case TCP_ABORT_THRESHOLD: 10144 if (!checkonly) 10145 tcp->tcp_second_timer_threshold = *i1; 10146 break; 10147 case TCP_CONN_NOTIFY_THRESHOLD: 10148 if (!checkonly) 10149 tcp->tcp_first_ctimer_threshold = *i1; 10150 break; 10151 case TCP_CONN_ABORT_THRESHOLD: 10152 if (!checkonly) 10153 tcp->tcp_second_ctimer_threshold = *i1; 10154 break; 10155 case TCP_RECVDSTADDR: 10156 if (tcp->tcp_state > TCPS_LISTEN) 10157 return (EOPNOTSUPP); 10158 if (!checkonly) 10159 tcp->tcp_recvdstaddr = onoff; 10160 break; 10161 case TCP_ANONPRIVBIND: 10162 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10163 *outlenp = 0; 10164 return (reterr); 10165 } 10166 if (!checkonly) { 10167 tcp->tcp_anon_priv_bind = onoff; 10168 } 10169 break; 10170 case TCP_EXCLBIND: 10171 if (!checkonly) 10172 tcp->tcp_exclbind = onoff; 10173 break; /* goto sizeof (int) option return */ 10174 case TCP_INIT_CWND: { 10175 uint32_t init_cwnd = *((uint32_t *)invalp); 10176 10177 if (checkonly) 10178 break; 10179 10180 /* 10181 * Only allow socket with network configuration 10182 * privilege to set the initial cwnd to be larger 10183 * than allowed by RFC 3390. 10184 */ 10185 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10186 tcp->tcp_init_cwnd = init_cwnd; 10187 break; 10188 } 10189 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10190 *outlenp = 0; 10191 return (reterr); 10192 } 10193 if (init_cwnd > TCP_MAX_INIT_CWND) { 10194 *outlenp = 0; 10195 return (EINVAL); 10196 } 10197 tcp->tcp_init_cwnd = init_cwnd; 10198 break; 10199 } 10200 case TCP_KEEPALIVE_THRESHOLD: 10201 if (checkonly) 10202 break; 10203 10204 if (*i1 < tcp_keepalive_interval_low || 10205 *i1 > tcp_keepalive_interval_high) { 10206 *outlenp = 0; 10207 return (EINVAL); 10208 } 10209 if (*i1 != tcp->tcp_ka_interval) { 10210 tcp->tcp_ka_interval = *i1; 10211 /* 10212 * Check if we need to restart the 10213 * keepalive timer. 10214 */ 10215 if (tcp->tcp_ka_tid != 0) { 10216 ASSERT(tcp->tcp_ka_enabled); 10217 (void) TCP_TIMER_CANCEL(tcp, 10218 tcp->tcp_ka_tid); 10219 tcp->tcp_ka_last_intrvl = 0; 10220 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10221 tcp_keepalive_killer, 10222 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10223 } 10224 } 10225 break; 10226 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10227 if (!checkonly) { 10228 if (*i1 < tcp_keepalive_abort_interval_low || 10229 *i1 > tcp_keepalive_abort_interval_high) { 10230 *outlenp = 0; 10231 return (EINVAL); 10232 } 10233 tcp->tcp_ka_abort_thres = *i1; 10234 } 10235 break; 10236 case TCP_CORK: 10237 if (!checkonly) { 10238 /* 10239 * if tcp->tcp_cork was set and is now 10240 * being unset, we have to make sure that 10241 * the remaining data gets sent out. Also 10242 * unset tcp->tcp_cork so that tcp_wput_data() 10243 * can send data even if it is less than mss 10244 */ 10245 if (tcp->tcp_cork && onoff == 0 && 10246 tcp->tcp_unsent > 0) { 10247 tcp->tcp_cork = B_FALSE; 10248 tcp_wput_data(tcp, NULL, B_FALSE); 10249 } 10250 tcp->tcp_cork = onoff; 10251 } 10252 break; 10253 default: 10254 *outlenp = 0; 10255 return (EINVAL); 10256 } 10257 break; 10258 case IPPROTO_IP: 10259 if (tcp->tcp_family != AF_INET) { 10260 *outlenp = 0; 10261 return (ENOPROTOOPT); 10262 } 10263 switch (name) { 10264 case IP_OPTIONS: 10265 case T_IP_OPTIONS: 10266 reterr = tcp_opt_set_header(tcp, checkonly, 10267 invalp, inlen); 10268 if (reterr) { 10269 *outlenp = 0; 10270 return (reterr); 10271 } 10272 /* OK return - copy input buffer into output buffer */ 10273 if (invalp != outvalp) { 10274 /* don't trust bcopy for identical src/dst */ 10275 bcopy(invalp, outvalp, inlen); 10276 } 10277 *outlenp = inlen; 10278 return (0); 10279 case IP_TOS: 10280 case T_IP_TOS: 10281 if (!checkonly) { 10282 tcp->tcp_ipha->ipha_type_of_service = 10283 (uchar_t)*i1; 10284 tcp->tcp_tos = (uchar_t)*i1; 10285 } 10286 break; 10287 case IP_TTL: 10288 if (!checkonly) { 10289 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10290 tcp->tcp_ttl = (uchar_t)*i1; 10291 } 10292 break; 10293 case IP_BOUND_IF: 10294 case IP_NEXTHOP: 10295 /* Handled at the IP level */ 10296 return (-EINVAL); 10297 case IP_SEC_OPT: 10298 /* 10299 * We should not allow policy setting after 10300 * we start listening for connections. 10301 */ 10302 if (tcp->tcp_state == TCPS_LISTEN) { 10303 return (EINVAL); 10304 } else { 10305 /* Handled at the IP level */ 10306 return (-EINVAL); 10307 } 10308 default: 10309 *outlenp = 0; 10310 return (EINVAL); 10311 } 10312 break; 10313 case IPPROTO_IPV6: { 10314 ip6_pkt_t *ipp; 10315 10316 /* 10317 * IPPROTO_IPV6 options are only supported for sockets 10318 * that are using IPv6 on the wire. 10319 */ 10320 if (tcp->tcp_ipversion != IPV6_VERSION) { 10321 *outlenp = 0; 10322 return (ENOPROTOOPT); 10323 } 10324 /* 10325 * Only sticky options; no ancillary data 10326 */ 10327 ASSERT(thisdg_attrs == NULL); 10328 ipp = &tcp->tcp_sticky_ipp; 10329 10330 switch (name) { 10331 case IPV6_UNICAST_HOPS: 10332 /* -1 means use default */ 10333 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10334 *outlenp = 0; 10335 return (EINVAL); 10336 } 10337 if (!checkonly) { 10338 if (*i1 == -1) { 10339 tcp->tcp_ip6h->ip6_hops = 10340 ipp->ipp_unicast_hops = 10341 (uint8_t)tcp_ipv6_hoplimit; 10342 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10343 /* Pass modified value to IP. */ 10344 *i1 = tcp->tcp_ip6h->ip6_hops; 10345 } else { 10346 tcp->tcp_ip6h->ip6_hops = 10347 ipp->ipp_unicast_hops = 10348 (uint8_t)*i1; 10349 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10350 } 10351 reterr = tcp_build_hdrs(q, tcp); 10352 if (reterr != 0) 10353 return (reterr); 10354 } 10355 break; 10356 case IPV6_BOUND_IF: 10357 if (!checkonly) { 10358 int error = 0; 10359 10360 tcp->tcp_bound_if = *i1; 10361 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10362 B_TRUE, checkonly, level, name, mblk); 10363 if (error != 0) { 10364 *outlenp = 0; 10365 return (error); 10366 } 10367 } 10368 break; 10369 /* 10370 * Set boolean switches for ancillary data delivery 10371 */ 10372 case IPV6_RECVPKTINFO: 10373 if (!checkonly) { 10374 if (onoff) 10375 tcp->tcp_ipv6_recvancillary |= 10376 TCP_IPV6_RECVPKTINFO; 10377 else 10378 tcp->tcp_ipv6_recvancillary &= 10379 ~TCP_IPV6_RECVPKTINFO; 10380 /* Force it to be sent up with the next msg */ 10381 tcp->tcp_recvifindex = 0; 10382 } 10383 break; 10384 case IPV6_RECVTCLASS: 10385 if (!checkonly) { 10386 if (onoff) 10387 tcp->tcp_ipv6_recvancillary |= 10388 TCP_IPV6_RECVTCLASS; 10389 else 10390 tcp->tcp_ipv6_recvancillary &= 10391 ~TCP_IPV6_RECVTCLASS; 10392 } 10393 break; 10394 case IPV6_RECVHOPLIMIT: 10395 if (!checkonly) { 10396 if (onoff) 10397 tcp->tcp_ipv6_recvancillary |= 10398 TCP_IPV6_RECVHOPLIMIT; 10399 else 10400 tcp->tcp_ipv6_recvancillary &= 10401 ~TCP_IPV6_RECVHOPLIMIT; 10402 /* Force it to be sent up with the next msg */ 10403 tcp->tcp_recvhops = 0xffffffffU; 10404 } 10405 break; 10406 case IPV6_RECVHOPOPTS: 10407 if (!checkonly) { 10408 if (onoff) 10409 tcp->tcp_ipv6_recvancillary |= 10410 TCP_IPV6_RECVHOPOPTS; 10411 else 10412 tcp->tcp_ipv6_recvancillary &= 10413 ~TCP_IPV6_RECVHOPOPTS; 10414 } 10415 break; 10416 case IPV6_RECVDSTOPTS: 10417 if (!checkonly) { 10418 if (onoff) 10419 tcp->tcp_ipv6_recvancillary |= 10420 TCP_IPV6_RECVDSTOPTS; 10421 else 10422 tcp->tcp_ipv6_recvancillary &= 10423 ~TCP_IPV6_RECVDSTOPTS; 10424 } 10425 break; 10426 case _OLD_IPV6_RECVDSTOPTS: 10427 if (!checkonly) { 10428 if (onoff) 10429 tcp->tcp_ipv6_recvancillary |= 10430 TCP_OLD_IPV6_RECVDSTOPTS; 10431 else 10432 tcp->tcp_ipv6_recvancillary &= 10433 ~TCP_OLD_IPV6_RECVDSTOPTS; 10434 } 10435 break; 10436 case IPV6_RECVRTHDR: 10437 if (!checkonly) { 10438 if (onoff) 10439 tcp->tcp_ipv6_recvancillary |= 10440 TCP_IPV6_RECVRTHDR; 10441 else 10442 tcp->tcp_ipv6_recvancillary &= 10443 ~TCP_IPV6_RECVRTHDR; 10444 } 10445 break; 10446 case IPV6_RECVRTHDRDSTOPTS: 10447 if (!checkonly) { 10448 if (onoff) 10449 tcp->tcp_ipv6_recvancillary |= 10450 TCP_IPV6_RECVRTDSTOPTS; 10451 else 10452 tcp->tcp_ipv6_recvancillary &= 10453 ~TCP_IPV6_RECVRTDSTOPTS; 10454 } 10455 break; 10456 case IPV6_PKTINFO: 10457 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10458 return (EINVAL); 10459 if (checkonly) 10460 break; 10461 10462 if (inlen == 0) { 10463 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10464 } else { 10465 struct in6_pktinfo *pkti; 10466 10467 pkti = (struct in6_pktinfo *)invalp; 10468 /* 10469 * RFC 3542 states that ipi6_addr must be 10470 * the unspecified address when setting the 10471 * IPV6_PKTINFO sticky socket option on a 10472 * TCP socket. 10473 */ 10474 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10475 return (EINVAL); 10476 /* 10477 * ip6_set_pktinfo() validates the source 10478 * address and interface index. 10479 */ 10480 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10481 pkti, mblk); 10482 if (reterr != 0) 10483 return (reterr); 10484 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10485 ipp->ipp_addr = pkti->ipi6_addr; 10486 if (ipp->ipp_ifindex != 0) 10487 ipp->ipp_fields |= IPPF_IFINDEX; 10488 else 10489 ipp->ipp_fields &= ~IPPF_IFINDEX; 10490 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10491 ipp->ipp_fields |= IPPF_ADDR; 10492 else 10493 ipp->ipp_fields &= ~IPPF_ADDR; 10494 } 10495 reterr = tcp_build_hdrs(q, tcp); 10496 if (reterr != 0) 10497 return (reterr); 10498 break; 10499 case IPV6_TCLASS: 10500 if (inlen != 0 && inlen != sizeof (int)) 10501 return (EINVAL); 10502 if (checkonly) 10503 break; 10504 10505 if (inlen == 0) { 10506 ipp->ipp_fields &= ~IPPF_TCLASS; 10507 } else { 10508 if (*i1 > 255 || *i1 < -1) 10509 return (EINVAL); 10510 if (*i1 == -1) { 10511 ipp->ipp_tclass = 0; 10512 *i1 = 0; 10513 } else { 10514 ipp->ipp_tclass = *i1; 10515 } 10516 ipp->ipp_fields |= IPPF_TCLASS; 10517 } 10518 reterr = tcp_build_hdrs(q, tcp); 10519 if (reterr != 0) 10520 return (reterr); 10521 break; 10522 case IPV6_NEXTHOP: 10523 /* 10524 * IP will verify that the nexthop is reachable 10525 * and fail for sticky options. 10526 */ 10527 if (inlen != 0 && inlen != sizeof (sin6_t)) 10528 return (EINVAL); 10529 if (checkonly) 10530 break; 10531 10532 if (inlen == 0) { 10533 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10534 } else { 10535 sin6_t *sin6 = (sin6_t *)invalp; 10536 10537 if (sin6->sin6_family != AF_INET6) 10538 return (EAFNOSUPPORT); 10539 if (IN6_IS_ADDR_V4MAPPED( 10540 &sin6->sin6_addr)) 10541 return (EADDRNOTAVAIL); 10542 ipp->ipp_nexthop = sin6->sin6_addr; 10543 if (!IN6_IS_ADDR_UNSPECIFIED( 10544 &ipp->ipp_nexthop)) 10545 ipp->ipp_fields |= IPPF_NEXTHOP; 10546 else 10547 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10548 } 10549 reterr = tcp_build_hdrs(q, tcp); 10550 if (reterr != 0) 10551 return (reterr); 10552 break; 10553 case IPV6_HOPOPTS: { 10554 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10555 10556 /* 10557 * Sanity checks - minimum size, size a multiple of 10558 * eight bytes, and matching size passed in. 10559 */ 10560 if (inlen != 0 && 10561 inlen != (8 * (hopts->ip6h_len + 1))) 10562 return (EINVAL); 10563 10564 if (checkonly) 10565 break; 10566 10567 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10568 (uchar_t **)&ipp->ipp_hopopts, 10569 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10570 if (reterr != 0) 10571 return (reterr); 10572 if (ipp->ipp_hopoptslen == 0) 10573 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10574 else 10575 ipp->ipp_fields |= IPPF_HOPOPTS; 10576 reterr = tcp_build_hdrs(q, tcp); 10577 if (reterr != 0) 10578 return (reterr); 10579 break; 10580 } 10581 case IPV6_RTHDRDSTOPTS: { 10582 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10583 10584 /* 10585 * Sanity checks - minimum size, size a multiple of 10586 * eight bytes, and matching size passed in. 10587 */ 10588 if (inlen != 0 && 10589 inlen != (8 * (dopts->ip6d_len + 1))) 10590 return (EINVAL); 10591 10592 if (checkonly) 10593 break; 10594 10595 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10596 (uchar_t **)&ipp->ipp_rtdstopts, 10597 &ipp->ipp_rtdstoptslen, 0); 10598 if (reterr != 0) 10599 return (reterr); 10600 if (ipp->ipp_rtdstoptslen == 0) 10601 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10602 else 10603 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10604 reterr = tcp_build_hdrs(q, tcp); 10605 if (reterr != 0) 10606 return (reterr); 10607 break; 10608 } 10609 case IPV6_DSTOPTS: { 10610 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10611 10612 /* 10613 * Sanity checks - minimum size, size a multiple of 10614 * eight bytes, and matching size passed in. 10615 */ 10616 if (inlen != 0 && 10617 inlen != (8 * (dopts->ip6d_len + 1))) 10618 return (EINVAL); 10619 10620 if (checkonly) 10621 break; 10622 10623 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10624 (uchar_t **)&ipp->ipp_dstopts, 10625 &ipp->ipp_dstoptslen, 0); 10626 if (reterr != 0) 10627 return (reterr); 10628 if (ipp->ipp_dstoptslen == 0) 10629 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10630 else 10631 ipp->ipp_fields |= IPPF_DSTOPTS; 10632 reterr = tcp_build_hdrs(q, tcp); 10633 if (reterr != 0) 10634 return (reterr); 10635 break; 10636 } 10637 case IPV6_RTHDR: { 10638 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10639 10640 /* 10641 * Sanity checks - minimum size, size a multiple of 10642 * eight bytes, and matching size passed in. 10643 */ 10644 if (inlen != 0 && 10645 inlen != (8 * (rt->ip6r_len + 1))) 10646 return (EINVAL); 10647 10648 if (checkonly) 10649 break; 10650 10651 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10652 (uchar_t **)&ipp->ipp_rthdr, 10653 &ipp->ipp_rthdrlen, 0); 10654 if (reterr != 0) 10655 return (reterr); 10656 if (ipp->ipp_rthdrlen == 0) 10657 ipp->ipp_fields &= ~IPPF_RTHDR; 10658 else 10659 ipp->ipp_fields |= IPPF_RTHDR; 10660 reterr = tcp_build_hdrs(q, tcp); 10661 if (reterr != 0) 10662 return (reterr); 10663 break; 10664 } 10665 case IPV6_V6ONLY: 10666 if (!checkonly) 10667 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10668 break; 10669 case IPV6_USE_MIN_MTU: 10670 if (inlen != sizeof (int)) 10671 return (EINVAL); 10672 10673 if (*i1 < -1 || *i1 > 1) 10674 return (EINVAL); 10675 10676 if (checkonly) 10677 break; 10678 10679 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10680 ipp->ipp_use_min_mtu = *i1; 10681 break; 10682 case IPV6_BOUND_PIF: 10683 /* Handled at the IP level */ 10684 return (-EINVAL); 10685 case IPV6_SEC_OPT: 10686 /* 10687 * We should not allow policy setting after 10688 * we start listening for connections. 10689 */ 10690 if (tcp->tcp_state == TCPS_LISTEN) { 10691 return (EINVAL); 10692 } else { 10693 /* Handled at the IP level */ 10694 return (-EINVAL); 10695 } 10696 case IPV6_SRC_PREFERENCES: 10697 if (inlen != sizeof (uint32_t)) 10698 return (EINVAL); 10699 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10700 *(uint32_t *)invalp); 10701 if (reterr != 0) { 10702 *outlenp = 0; 10703 return (reterr); 10704 } 10705 break; 10706 default: 10707 *outlenp = 0; 10708 return (EINVAL); 10709 } 10710 break; 10711 } /* end IPPROTO_IPV6 */ 10712 default: 10713 *outlenp = 0; 10714 return (EINVAL); 10715 } 10716 /* 10717 * Common case of OK return with outval same as inval 10718 */ 10719 if (invalp != outvalp) { 10720 /* don't trust bcopy for identical src/dst */ 10721 (void) bcopy(invalp, outvalp, inlen); 10722 } 10723 *outlenp = inlen; 10724 return (0); 10725 } 10726 10727 /* 10728 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10729 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10730 * headers, and the maximum size tcp header (to avoid reallocation 10731 * on the fly for additional tcp options). 10732 * Returns failure if can't allocate memory. 10733 */ 10734 static int 10735 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10736 { 10737 char *hdrs; 10738 uint_t hdrs_len; 10739 ip6i_t *ip6i; 10740 char buf[TCP_MAX_HDR_LENGTH]; 10741 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10742 in6_addr_t src, dst; 10743 10744 /* 10745 * save the existing tcp header and source/dest IP addresses 10746 */ 10747 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10748 src = tcp->tcp_ip6h->ip6_src; 10749 dst = tcp->tcp_ip6h->ip6_dst; 10750 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10751 ASSERT(hdrs_len != 0); 10752 if (hdrs_len > tcp->tcp_iphc_len) { 10753 /* Need to reallocate */ 10754 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10755 if (hdrs == NULL) 10756 return (ENOMEM); 10757 if (tcp->tcp_iphc != NULL) { 10758 if (tcp->tcp_hdr_grown) { 10759 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10760 } else { 10761 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10762 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10763 } 10764 tcp->tcp_iphc_len = 0; 10765 } 10766 ASSERT(tcp->tcp_iphc_len == 0); 10767 tcp->tcp_iphc = hdrs; 10768 tcp->tcp_iphc_len = hdrs_len; 10769 tcp->tcp_hdr_grown = B_TRUE; 10770 } 10771 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10772 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10773 10774 /* Set header fields not in ipp */ 10775 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10776 ip6i = (ip6i_t *)tcp->tcp_iphc; 10777 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10778 } else { 10779 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10780 } 10781 /* 10782 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10783 * 10784 * tcp->tcp_tcp_hdr_len doesn't change here. 10785 */ 10786 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10787 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10788 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10789 10790 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10791 10792 tcp->tcp_ip6h->ip6_src = src; 10793 tcp->tcp_ip6h->ip6_dst = dst; 10794 10795 /* 10796 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10797 * the default value for TCP. 10798 */ 10799 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10800 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10801 10802 /* 10803 * If we're setting extension headers after a connection 10804 * has been established, and if we have a routing header 10805 * among the extension headers, call ip_massage_options_v6 to 10806 * manipulate the routing header/ip6_dst set the checksum 10807 * difference in the tcp header template. 10808 * (This happens in tcp_connect_ipv6 if the routing header 10809 * is set prior to the connect.) 10810 * Set the tcp_sum to zero first in case we've cleared a 10811 * routing header or don't have one at all. 10812 */ 10813 tcp->tcp_sum = 0; 10814 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10815 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10816 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10817 (uint8_t *)tcp->tcp_tcph); 10818 if (rth != NULL) { 10819 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10820 rth); 10821 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10822 (tcp->tcp_sum >> 16)); 10823 } 10824 } 10825 10826 /* Try to get everything in a single mblk */ 10827 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10828 return (0); 10829 } 10830 10831 /* 10832 * Transfer any source route option from ipha to buf/dst in reversed form. 10833 */ 10834 static int 10835 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10836 { 10837 ipoptp_t opts; 10838 uchar_t *opt; 10839 uint8_t optval; 10840 uint8_t optlen; 10841 uint32_t len = 0; 10842 10843 for (optval = ipoptp_first(&opts, ipha); 10844 optval != IPOPT_EOL; 10845 optval = ipoptp_next(&opts)) { 10846 opt = opts.ipoptp_cur; 10847 optlen = opts.ipoptp_len; 10848 switch (optval) { 10849 int off1, off2; 10850 case IPOPT_SSRR: 10851 case IPOPT_LSRR: 10852 10853 /* Reverse source route */ 10854 /* 10855 * First entry should be the next to last one in the 10856 * current source route (the last entry is our 10857 * address.) 10858 * The last entry should be the final destination. 10859 */ 10860 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10861 buf[IPOPT_OLEN] = (uint8_t)optlen; 10862 off1 = IPOPT_MINOFF_SR - 1; 10863 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10864 if (off2 < 0) { 10865 /* No entries in source route */ 10866 break; 10867 } 10868 bcopy(opt + off2, dst, IP_ADDR_LEN); 10869 /* 10870 * Note: use src since ipha has not had its src 10871 * and dst reversed (it is in the state it was 10872 * received. 10873 */ 10874 bcopy(&ipha->ipha_src, buf + off2, 10875 IP_ADDR_LEN); 10876 off2 -= IP_ADDR_LEN; 10877 10878 while (off2 > 0) { 10879 bcopy(opt + off2, buf + off1, 10880 IP_ADDR_LEN); 10881 off1 += IP_ADDR_LEN; 10882 off2 -= IP_ADDR_LEN; 10883 } 10884 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10885 buf += optlen; 10886 len += optlen; 10887 break; 10888 } 10889 } 10890 done: 10891 /* Pad the resulting options */ 10892 while (len & 0x3) { 10893 *buf++ = IPOPT_EOL; 10894 len++; 10895 } 10896 return (len); 10897 } 10898 10899 10900 /* 10901 * Extract and revert a source route from ipha (if any) 10902 * and then update the relevant fields in both tcp_t and the standard header. 10903 */ 10904 static void 10905 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10906 { 10907 char buf[TCP_MAX_HDR_LENGTH]; 10908 uint_t tcph_len; 10909 int len; 10910 10911 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10912 len = IPH_HDR_LENGTH(ipha); 10913 if (len == IP_SIMPLE_HDR_LENGTH) 10914 /* Nothing to do */ 10915 return; 10916 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10917 (len & 0x3)) 10918 return; 10919 10920 tcph_len = tcp->tcp_tcp_hdr_len; 10921 bcopy(tcp->tcp_tcph, buf, tcph_len); 10922 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10923 (tcp->tcp_ipha->ipha_dst & 0xffff); 10924 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10925 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10926 len += IP_SIMPLE_HDR_LENGTH; 10927 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10928 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10929 if ((int)tcp->tcp_sum < 0) 10930 tcp->tcp_sum--; 10931 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10932 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10933 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10934 bcopy(buf, tcp->tcp_tcph, tcph_len); 10935 tcp->tcp_ip_hdr_len = len; 10936 tcp->tcp_ipha->ipha_version_and_hdr_length = 10937 (IP_VERSION << 4) | (len >> 2); 10938 len += tcph_len; 10939 tcp->tcp_hdr_len = len; 10940 } 10941 10942 /* 10943 * Copy the standard header into its new location, 10944 * lay in the new options and then update the relevant 10945 * fields in both tcp_t and the standard header. 10946 */ 10947 static int 10948 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10949 { 10950 uint_t tcph_len; 10951 uint8_t *ip_optp; 10952 tcph_t *new_tcph; 10953 10954 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10955 return (EINVAL); 10956 10957 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 10958 return (EINVAL); 10959 10960 if (checkonly) { 10961 /* 10962 * do not really set, just pretend to - T_CHECK 10963 */ 10964 return (0); 10965 } 10966 10967 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10968 if (tcp->tcp_label_len > 0) { 10969 int padlen; 10970 uint8_t opt; 10971 10972 /* convert list termination to no-ops */ 10973 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 10974 ip_optp += ip_optp[IPOPT_OLEN]; 10975 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 10976 while (--padlen >= 0) 10977 *ip_optp++ = opt; 10978 } 10979 tcph_len = tcp->tcp_tcp_hdr_len; 10980 new_tcph = (tcph_t *)(ip_optp + len); 10981 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 10982 tcp->tcp_tcph = new_tcph; 10983 bcopy(ptr, ip_optp, len); 10984 10985 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 10986 10987 tcp->tcp_ip_hdr_len = len; 10988 tcp->tcp_ipha->ipha_version_and_hdr_length = 10989 (IP_VERSION << 4) | (len >> 2); 10990 tcp->tcp_hdr_len = len + tcph_len; 10991 if (!TCP_IS_DETACHED(tcp)) { 10992 /* Always allocate room for all options. */ 10993 (void) mi_set_sth_wroff(tcp->tcp_rq, 10994 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10995 } 10996 return (0); 10997 } 10998 10999 /* Get callback routine passed to nd_load by tcp_param_register */ 11000 /* ARGSUSED */ 11001 static int 11002 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11003 { 11004 tcpparam_t *tcppa = (tcpparam_t *)cp; 11005 11006 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11007 return (0); 11008 } 11009 11010 /* 11011 * Walk through the param array specified registering each element with the 11012 * named dispatch handler. 11013 */ 11014 static boolean_t 11015 tcp_param_register(tcpparam_t *tcppa, int cnt) 11016 { 11017 for (; cnt-- > 0; tcppa++) { 11018 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11019 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11020 tcp_param_get, tcp_param_set, 11021 (caddr_t)tcppa)) { 11022 nd_free(&tcp_g_nd); 11023 return (B_FALSE); 11024 } 11025 } 11026 } 11027 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11028 tcp_param_get, tcp_param_set_aligned, 11029 (caddr_t)&tcp_wroff_xtra_param)) { 11030 nd_free(&tcp_g_nd); 11031 return (B_FALSE); 11032 } 11033 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11034 tcp_param_get, tcp_param_set_aligned, 11035 (caddr_t)&tcp_mdt_head_param)) { 11036 nd_free(&tcp_g_nd); 11037 return (B_FALSE); 11038 } 11039 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11040 tcp_param_get, tcp_param_set_aligned, 11041 (caddr_t)&tcp_mdt_tail_param)) { 11042 nd_free(&tcp_g_nd); 11043 return (B_FALSE); 11044 } 11045 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11046 tcp_param_get, tcp_param_set, 11047 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11048 nd_free(&tcp_g_nd); 11049 return (B_FALSE); 11050 } 11051 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11052 tcp_extra_priv_ports_get, NULL, NULL)) { 11053 nd_free(&tcp_g_nd); 11054 return (B_FALSE); 11055 } 11056 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11057 NULL, tcp_extra_priv_ports_add, NULL)) { 11058 nd_free(&tcp_g_nd); 11059 return (B_FALSE); 11060 } 11061 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11062 NULL, tcp_extra_priv_ports_del, NULL)) { 11063 nd_free(&tcp_g_nd); 11064 return (B_FALSE); 11065 } 11066 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11067 NULL)) { 11068 nd_free(&tcp_g_nd); 11069 return (B_FALSE); 11070 } 11071 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11072 NULL, NULL)) { 11073 nd_free(&tcp_g_nd); 11074 return (B_FALSE); 11075 } 11076 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11077 NULL, NULL)) { 11078 nd_free(&tcp_g_nd); 11079 return (B_FALSE); 11080 } 11081 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11082 NULL, NULL)) { 11083 nd_free(&tcp_g_nd); 11084 return (B_FALSE); 11085 } 11086 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11087 NULL, NULL)) { 11088 nd_free(&tcp_g_nd); 11089 return (B_FALSE); 11090 } 11091 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11092 tcp_host_param_set, NULL)) { 11093 nd_free(&tcp_g_nd); 11094 return (B_FALSE); 11095 } 11096 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11097 tcp_host_param_set_ipv6, NULL)) { 11098 nd_free(&tcp_g_nd); 11099 return (B_FALSE); 11100 } 11101 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11102 NULL)) { 11103 nd_free(&tcp_g_nd); 11104 return (B_FALSE); 11105 } 11106 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11107 tcp_reserved_port_list, NULL, NULL)) { 11108 nd_free(&tcp_g_nd); 11109 return (B_FALSE); 11110 } 11111 /* 11112 * Dummy ndd variables - only to convey obsolescence information 11113 * through printing of their name (no get or set routines) 11114 * XXX Remove in future releases ? 11115 */ 11116 if (!nd_load(&tcp_g_nd, 11117 "tcp_close_wait_interval(obsoleted - " 11118 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11119 nd_free(&tcp_g_nd); 11120 return (B_FALSE); 11121 } 11122 return (B_TRUE); 11123 } 11124 11125 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11126 /* ARGSUSED */ 11127 static int 11128 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11129 cred_t *cr) 11130 { 11131 long new_value; 11132 tcpparam_t *tcppa = (tcpparam_t *)cp; 11133 11134 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11135 new_value < tcppa->tcp_param_min || 11136 new_value > tcppa->tcp_param_max) { 11137 return (EINVAL); 11138 } 11139 /* 11140 * Need to make sure new_value is a multiple of 4. If it is not, 11141 * round it up. For future 64 bit requirement, we actually make it 11142 * a multiple of 8. 11143 */ 11144 if (new_value & 0x7) { 11145 new_value = (new_value & ~0x7) + 0x8; 11146 } 11147 tcppa->tcp_param_val = new_value; 11148 return (0); 11149 } 11150 11151 /* Set callback routine passed to nd_load by tcp_param_register */ 11152 /* ARGSUSED */ 11153 static int 11154 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11155 { 11156 long new_value; 11157 tcpparam_t *tcppa = (tcpparam_t *)cp; 11158 11159 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11160 new_value < tcppa->tcp_param_min || 11161 new_value > tcppa->tcp_param_max) { 11162 return (EINVAL); 11163 } 11164 tcppa->tcp_param_val = new_value; 11165 return (0); 11166 } 11167 11168 /* 11169 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11170 * is filled, return as much as we can. The message passed in may be 11171 * multi-part, chained using b_cont. "start" is the starting sequence 11172 * number for this piece. 11173 */ 11174 static mblk_t * 11175 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11176 { 11177 uint32_t end; 11178 mblk_t *mp1; 11179 mblk_t *mp2; 11180 mblk_t *next_mp; 11181 uint32_t u1; 11182 11183 /* Walk through all the new pieces. */ 11184 do { 11185 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11186 (uintptr_t)INT_MAX); 11187 end = start + (int)(mp->b_wptr - mp->b_rptr); 11188 next_mp = mp->b_cont; 11189 if (start == end) { 11190 /* Empty. Blast it. */ 11191 freeb(mp); 11192 continue; 11193 } 11194 mp->b_cont = NULL; 11195 TCP_REASS_SET_SEQ(mp, start); 11196 TCP_REASS_SET_END(mp, end); 11197 mp1 = tcp->tcp_reass_tail; 11198 if (!mp1) { 11199 tcp->tcp_reass_tail = mp; 11200 tcp->tcp_reass_head = mp; 11201 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11202 UPDATE_MIB(&tcp_mib, 11203 tcpInDataUnorderBytes, end - start); 11204 continue; 11205 } 11206 /* New stuff completely beyond tail? */ 11207 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11208 /* Link it on end. */ 11209 mp1->b_cont = mp; 11210 tcp->tcp_reass_tail = mp; 11211 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11212 UPDATE_MIB(&tcp_mib, 11213 tcpInDataUnorderBytes, end - start); 11214 continue; 11215 } 11216 mp1 = tcp->tcp_reass_head; 11217 u1 = TCP_REASS_SEQ(mp1); 11218 /* New stuff at the front? */ 11219 if (SEQ_LT(start, u1)) { 11220 /* Yes... Check for overlap. */ 11221 mp->b_cont = mp1; 11222 tcp->tcp_reass_head = mp; 11223 tcp_reass_elim_overlap(tcp, mp); 11224 continue; 11225 } 11226 /* 11227 * The new piece fits somewhere between the head and tail. 11228 * We find our slot, where mp1 precedes us and mp2 trails. 11229 */ 11230 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11231 u1 = TCP_REASS_SEQ(mp2); 11232 if (SEQ_LEQ(start, u1)) 11233 break; 11234 } 11235 /* Link ourselves in */ 11236 mp->b_cont = mp2; 11237 mp1->b_cont = mp; 11238 11239 /* Trim overlap with following mblk(s) first */ 11240 tcp_reass_elim_overlap(tcp, mp); 11241 11242 /* Trim overlap with preceding mblk */ 11243 tcp_reass_elim_overlap(tcp, mp1); 11244 11245 } while (start = end, mp = next_mp); 11246 mp1 = tcp->tcp_reass_head; 11247 /* Anything ready to go? */ 11248 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11249 return (NULL); 11250 /* Eat what we can off the queue */ 11251 for (;;) { 11252 mp = mp1->b_cont; 11253 end = TCP_REASS_END(mp1); 11254 TCP_REASS_SET_SEQ(mp1, 0); 11255 TCP_REASS_SET_END(mp1, 0); 11256 if (!mp) { 11257 tcp->tcp_reass_tail = NULL; 11258 break; 11259 } 11260 if (end != TCP_REASS_SEQ(mp)) { 11261 mp1->b_cont = NULL; 11262 break; 11263 } 11264 mp1 = mp; 11265 } 11266 mp1 = tcp->tcp_reass_head; 11267 tcp->tcp_reass_head = mp; 11268 return (mp1); 11269 } 11270 11271 /* Eliminate any overlap that mp may have over later mblks */ 11272 static void 11273 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11274 { 11275 uint32_t end; 11276 mblk_t *mp1; 11277 uint32_t u1; 11278 11279 end = TCP_REASS_END(mp); 11280 while ((mp1 = mp->b_cont) != NULL) { 11281 u1 = TCP_REASS_SEQ(mp1); 11282 if (!SEQ_GT(end, u1)) 11283 break; 11284 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11285 mp->b_wptr -= end - u1; 11286 TCP_REASS_SET_END(mp, u1); 11287 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11288 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11289 break; 11290 } 11291 mp->b_cont = mp1->b_cont; 11292 TCP_REASS_SET_SEQ(mp1, 0); 11293 TCP_REASS_SET_END(mp1, 0); 11294 freeb(mp1); 11295 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11296 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11297 } 11298 if (!mp1) 11299 tcp->tcp_reass_tail = mp; 11300 } 11301 11302 /* 11303 * Send up all messages queued on tcp_rcv_list. 11304 */ 11305 static uint_t 11306 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11307 { 11308 mblk_t *mp; 11309 uint_t ret = 0; 11310 uint_t thwin; 11311 #ifdef DEBUG 11312 uint_t cnt = 0; 11313 #endif 11314 /* Can't drain on an eager connection */ 11315 if (tcp->tcp_listener != NULL) 11316 return (ret); 11317 11318 /* 11319 * Handle two cases here: we are currently fused or we were 11320 * previously fused and have some urgent data to be delivered 11321 * upstream. The latter happens because we either ran out of 11322 * memory or were detached and therefore sending the SIGURG was 11323 * deferred until this point. In either case we pass control 11324 * over to tcp_fuse_rcv_drain() since it may need to complete 11325 * some work. 11326 */ 11327 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11328 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11329 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11330 &tcp->tcp_fused_sigurg_mp)) 11331 return (ret); 11332 } 11333 11334 while ((mp = tcp->tcp_rcv_list) != NULL) { 11335 tcp->tcp_rcv_list = mp->b_next; 11336 mp->b_next = NULL; 11337 #ifdef DEBUG 11338 cnt += msgdsize(mp); 11339 #endif 11340 /* Does this need SSL processing first? */ 11341 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11342 tcp_kssl_input(tcp, mp); 11343 continue; 11344 } 11345 putnext(q, mp); 11346 } 11347 ASSERT(cnt == tcp->tcp_rcv_cnt); 11348 tcp->tcp_rcv_last_head = NULL; 11349 tcp->tcp_rcv_last_tail = NULL; 11350 tcp->tcp_rcv_cnt = 0; 11351 11352 /* Learn the latest rwnd information that we sent to the other side. */ 11353 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11354 << tcp->tcp_rcv_ws; 11355 /* This is peer's calculated send window (our receive window). */ 11356 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11357 /* 11358 * Increase the receive window to max. But we need to do receiver 11359 * SWS avoidance. This means that we need to check the increase of 11360 * of receive window is at least 1 MSS. 11361 */ 11362 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11363 /* 11364 * If the window that the other side knows is less than max 11365 * deferred acks segments, send an update immediately. 11366 */ 11367 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11368 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11369 ret = TH_ACK_NEEDED; 11370 } 11371 tcp->tcp_rwnd = q->q_hiwat; 11372 } 11373 /* No need for the push timer now. */ 11374 if (tcp->tcp_push_tid != 0) { 11375 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11376 tcp->tcp_push_tid = 0; 11377 } 11378 return (ret); 11379 } 11380 11381 /* 11382 * Queue data on tcp_rcv_list which is a b_next chain. 11383 * tcp_rcv_last_head/tail is the last element of this chain. 11384 * Each element of the chain is a b_cont chain. 11385 * 11386 * M_DATA messages are added to the current element. 11387 * Other messages are added as new (b_next) elements. 11388 */ 11389 void 11390 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11391 { 11392 ASSERT(seg_len == msgdsize(mp)); 11393 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11394 11395 if (tcp->tcp_rcv_list == NULL) { 11396 ASSERT(tcp->tcp_rcv_last_head == NULL); 11397 tcp->tcp_rcv_list = mp; 11398 tcp->tcp_rcv_last_head = mp; 11399 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11400 tcp->tcp_rcv_last_tail->b_cont = mp; 11401 } else { 11402 tcp->tcp_rcv_last_head->b_next = mp; 11403 tcp->tcp_rcv_last_head = mp; 11404 } 11405 11406 while (mp->b_cont) 11407 mp = mp->b_cont; 11408 11409 tcp->tcp_rcv_last_tail = mp; 11410 tcp->tcp_rcv_cnt += seg_len; 11411 tcp->tcp_rwnd -= seg_len; 11412 } 11413 11414 /* 11415 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11416 * 11417 * This is the default entry function into TCP on the read side. TCP is 11418 * always entered via squeue i.e. using squeue's for mutual exclusion. 11419 * When classifier does a lookup to find the tcp, it also puts a reference 11420 * on the conn structure associated so the tcp is guaranteed to exist 11421 * when we come here. We still need to check the state because it might 11422 * as well has been closed. The squeue processing function i.e. squeue_enter, 11423 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11424 * CONN_DEC_REF. 11425 * 11426 * Apart from the default entry point, IP also sends packets directly to 11427 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11428 * connections. 11429 */ 11430 void 11431 tcp_input(void *arg, mblk_t *mp, void *arg2) 11432 { 11433 conn_t *connp = (conn_t *)arg; 11434 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11435 11436 /* arg2 is the sqp */ 11437 ASSERT(arg2 != NULL); 11438 ASSERT(mp != NULL); 11439 11440 /* 11441 * Don't accept any input on a closed tcp as this TCP logically does 11442 * not exist on the system. Don't proceed further with this TCP. 11443 * For eg. this packet could trigger another close of this tcp 11444 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11445 * tcp_clean_death / tcp_closei_local must be called at most once 11446 * on a TCP. In this case we need to refeed the packet into the 11447 * classifier and figure out where the packet should go. Need to 11448 * preserve the recv_ill somehow. Until we figure that out, for 11449 * now just drop the packet if we can't classify the packet. 11450 */ 11451 if (tcp->tcp_state == TCPS_CLOSED || 11452 tcp->tcp_state == TCPS_BOUND) { 11453 conn_t *new_connp; 11454 11455 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11456 if (new_connp != NULL) { 11457 tcp_reinput(new_connp, mp, arg2); 11458 return; 11459 } 11460 /* We failed to classify. For now just drop the packet */ 11461 freemsg(mp); 11462 return; 11463 } 11464 11465 if (DB_TYPE(mp) == M_DATA) 11466 tcp_rput_data(connp, mp, arg2); 11467 else 11468 tcp_rput_common(tcp, mp); 11469 } 11470 11471 /* 11472 * The read side put procedure. 11473 * The packets passed up by ip are assume to be aligned according to 11474 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11475 */ 11476 static void 11477 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11478 { 11479 /* 11480 * tcp_rput_data() does not expect M_CTL except for the case 11481 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11482 * type. Need to make sure that any other M_CTLs don't make 11483 * it to tcp_rput_data since it is not expecting any and doesn't 11484 * check for it. 11485 */ 11486 if (DB_TYPE(mp) == M_CTL) { 11487 switch (*(uint32_t *)(mp->b_rptr)) { 11488 case TCP_IOC_ABORT_CONN: 11489 /* 11490 * Handle connection abort request. 11491 */ 11492 tcp_ioctl_abort_handler(tcp, mp); 11493 return; 11494 case IPSEC_IN: 11495 /* 11496 * Only secure icmp arrive in TCP and they 11497 * don't go through data path. 11498 */ 11499 tcp_icmp_error(tcp, mp); 11500 return; 11501 case IN_PKTINFO: 11502 /* 11503 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11504 * sockets that are receiving IPv4 traffic. tcp 11505 */ 11506 ASSERT(tcp->tcp_family == AF_INET6); 11507 ASSERT(tcp->tcp_ipv6_recvancillary & 11508 TCP_IPV6_RECVPKTINFO); 11509 tcp_rput_data(tcp->tcp_connp, mp, 11510 tcp->tcp_connp->conn_sqp); 11511 return; 11512 case MDT_IOC_INFO_UPDATE: 11513 /* 11514 * Handle Multidata information update; the 11515 * following routine will free the message. 11516 */ 11517 if (tcp->tcp_connp->conn_mdt_ok) { 11518 tcp_mdt_update(tcp, 11519 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11520 B_FALSE); 11521 } 11522 freemsg(mp); 11523 return; 11524 default: 11525 break; 11526 } 11527 } 11528 11529 /* No point processing the message if tcp is already closed */ 11530 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11531 freemsg(mp); 11532 return; 11533 } 11534 11535 tcp_rput_other(tcp, mp); 11536 } 11537 11538 11539 /* The minimum of smoothed mean deviation in RTO calculation. */ 11540 #define TCP_SD_MIN 400 11541 11542 /* 11543 * Set RTO for this connection. The formula is from Jacobson and Karels' 11544 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11545 * are the same as those in Appendix A.2 of that paper. 11546 * 11547 * m = new measurement 11548 * sa = smoothed RTT average (8 * average estimates). 11549 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11550 */ 11551 static void 11552 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11553 { 11554 long m = TICK_TO_MSEC(rtt); 11555 clock_t sa = tcp->tcp_rtt_sa; 11556 clock_t sv = tcp->tcp_rtt_sd; 11557 clock_t rto; 11558 11559 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11560 tcp->tcp_rtt_update++; 11561 11562 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11563 if (sa != 0) { 11564 /* 11565 * Update average estimator: 11566 * new rtt = 7/8 old rtt + 1/8 Error 11567 */ 11568 11569 /* m is now Error in estimate. */ 11570 m -= sa >> 3; 11571 if ((sa += m) <= 0) { 11572 /* 11573 * Don't allow the smoothed average to be negative. 11574 * We use 0 to denote reinitialization of the 11575 * variables. 11576 */ 11577 sa = 1; 11578 } 11579 11580 /* 11581 * Update deviation estimator: 11582 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11583 */ 11584 if (m < 0) 11585 m = -m; 11586 m -= sv >> 2; 11587 sv += m; 11588 } else { 11589 /* 11590 * This follows BSD's implementation. So the reinitialized 11591 * RTO is 3 * m. We cannot go less than 2 because if the 11592 * link is bandwidth dominated, doubling the window size 11593 * during slow start means doubling the RTT. We want to be 11594 * more conservative when we reinitialize our estimates. 3 11595 * is just a convenient number. 11596 */ 11597 sa = m << 3; 11598 sv = m << 1; 11599 } 11600 if (sv < TCP_SD_MIN) { 11601 /* 11602 * We do not know that if sa captures the delay ACK 11603 * effect as in a long train of segments, a receiver 11604 * does not delay its ACKs. So set the minimum of sv 11605 * to be TCP_SD_MIN, which is default to 400 ms, twice 11606 * of BSD DATO. That means the minimum of mean 11607 * deviation is 100 ms. 11608 * 11609 */ 11610 sv = TCP_SD_MIN; 11611 } 11612 tcp->tcp_rtt_sa = sa; 11613 tcp->tcp_rtt_sd = sv; 11614 /* 11615 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11616 * 11617 * Add tcp_rexmit_interval extra in case of extreme environment 11618 * where the algorithm fails to work. The default value of 11619 * tcp_rexmit_interval_extra should be 0. 11620 * 11621 * As we use a finer grained clock than BSD and update 11622 * RTO for every ACKs, add in another .25 of RTT to the 11623 * deviation of RTO to accomodate burstiness of 1/4 of 11624 * window size. 11625 */ 11626 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11627 11628 if (rto > tcp_rexmit_interval_max) { 11629 tcp->tcp_rto = tcp_rexmit_interval_max; 11630 } else if (rto < tcp_rexmit_interval_min) { 11631 tcp->tcp_rto = tcp_rexmit_interval_min; 11632 } else { 11633 tcp->tcp_rto = rto; 11634 } 11635 11636 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11637 tcp->tcp_timer_backoff = 0; 11638 } 11639 11640 /* 11641 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11642 * send queue which starts at the given seq. no. 11643 * 11644 * Parameters: 11645 * tcp_t *tcp: the tcp instance pointer. 11646 * uint32_t seq: the starting seq. no of the requested segment. 11647 * int32_t *off: after the execution, *off will be the offset to 11648 * the returned mblk which points to the requested seq no. 11649 * It is the caller's responsibility to send in a non-null off. 11650 * 11651 * Return: 11652 * A mblk_t pointer pointing to the requested segment in send queue. 11653 */ 11654 static mblk_t * 11655 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11656 { 11657 int32_t cnt; 11658 mblk_t *mp; 11659 11660 /* Defensive coding. Make sure we don't send incorrect data. */ 11661 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11662 return (NULL); 11663 11664 cnt = seq - tcp->tcp_suna; 11665 mp = tcp->tcp_xmit_head; 11666 while (cnt > 0 && mp != NULL) { 11667 cnt -= mp->b_wptr - mp->b_rptr; 11668 if (cnt < 0) { 11669 cnt += mp->b_wptr - mp->b_rptr; 11670 break; 11671 } 11672 mp = mp->b_cont; 11673 } 11674 ASSERT(mp != NULL); 11675 *off = cnt; 11676 return (mp); 11677 } 11678 11679 /* 11680 * This function handles all retransmissions if SACK is enabled for this 11681 * connection. First it calculates how many segments can be retransmitted 11682 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11683 * segments. A segment is eligible if sack_cnt for that segment is greater 11684 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11685 * all eligible segments, it checks to see if TCP can send some new segments 11686 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11687 * 11688 * Parameters: 11689 * tcp_t *tcp: the tcp structure of the connection. 11690 * uint_t *flags: in return, appropriate value will be set for 11691 * tcp_rput_data(). 11692 */ 11693 static void 11694 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11695 { 11696 notsack_blk_t *notsack_blk; 11697 int32_t usable_swnd; 11698 int32_t mss; 11699 uint32_t seg_len; 11700 mblk_t *xmit_mp; 11701 11702 ASSERT(tcp->tcp_sack_info != NULL); 11703 ASSERT(tcp->tcp_notsack_list != NULL); 11704 ASSERT(tcp->tcp_rexmit == B_FALSE); 11705 11706 /* Defensive coding in case there is a bug... */ 11707 if (tcp->tcp_notsack_list == NULL) { 11708 return; 11709 } 11710 notsack_blk = tcp->tcp_notsack_list; 11711 mss = tcp->tcp_mss; 11712 11713 /* 11714 * Limit the num of outstanding data in the network to be 11715 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11716 */ 11717 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11718 11719 /* At least retransmit 1 MSS of data. */ 11720 if (usable_swnd <= 0) { 11721 usable_swnd = mss; 11722 } 11723 11724 /* Make sure no new RTT samples will be taken. */ 11725 tcp->tcp_csuna = tcp->tcp_snxt; 11726 11727 notsack_blk = tcp->tcp_notsack_list; 11728 while (usable_swnd > 0) { 11729 mblk_t *snxt_mp, *tmp_mp; 11730 tcp_seq begin = tcp->tcp_sack_snxt; 11731 tcp_seq end; 11732 int32_t off; 11733 11734 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11735 if (SEQ_GT(notsack_blk->end, begin) && 11736 (notsack_blk->sack_cnt >= 11737 tcp_dupack_fast_retransmit)) { 11738 end = notsack_blk->end; 11739 if (SEQ_LT(begin, notsack_blk->begin)) { 11740 begin = notsack_blk->begin; 11741 } 11742 break; 11743 } 11744 } 11745 /* 11746 * All holes are filled. Manipulate tcp_cwnd to send more 11747 * if we can. Note that after the SACK recovery, tcp_cwnd is 11748 * set to tcp_cwnd_ssthresh. 11749 */ 11750 if (notsack_blk == NULL) { 11751 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11752 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11753 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11754 ASSERT(tcp->tcp_cwnd > 0); 11755 return; 11756 } else { 11757 usable_swnd = usable_swnd / mss; 11758 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11759 MAX(usable_swnd * mss, mss); 11760 *flags |= TH_XMIT_NEEDED; 11761 return; 11762 } 11763 } 11764 11765 /* 11766 * Note that we may send more than usable_swnd allows here 11767 * because of round off, but no more than 1 MSS of data. 11768 */ 11769 seg_len = end - begin; 11770 if (seg_len > mss) 11771 seg_len = mss; 11772 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11773 ASSERT(snxt_mp != NULL); 11774 /* This should not happen. Defensive coding again... */ 11775 if (snxt_mp == NULL) { 11776 return; 11777 } 11778 11779 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11780 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11781 if (xmit_mp == NULL) 11782 return; 11783 11784 usable_swnd -= seg_len; 11785 tcp->tcp_pipe += seg_len; 11786 tcp->tcp_sack_snxt = begin + seg_len; 11787 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11788 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11789 11790 /* 11791 * Update the send timestamp to avoid false retransmission. 11792 */ 11793 snxt_mp->b_prev = (mblk_t *)lbolt; 11794 11795 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11796 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11797 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11798 /* 11799 * Update tcp_rexmit_max to extend this SACK recovery phase. 11800 * This happens when new data sent during fast recovery is 11801 * also lost. If TCP retransmits those new data, it needs 11802 * to extend SACK recover phase to avoid starting another 11803 * fast retransmit/recovery unnecessarily. 11804 */ 11805 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11806 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11807 } 11808 } 11809 } 11810 11811 /* 11812 * This function handles policy checking at TCP level for non-hard_bound/ 11813 * detached connections. 11814 */ 11815 static boolean_t 11816 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11817 boolean_t secure, boolean_t mctl_present) 11818 { 11819 ipsec_latch_t *ipl = NULL; 11820 ipsec_action_t *act = NULL; 11821 mblk_t *data_mp; 11822 ipsec_in_t *ii; 11823 const char *reason; 11824 kstat_named_t *counter; 11825 11826 ASSERT(mctl_present || !secure); 11827 11828 ASSERT((ipha == NULL && ip6h != NULL) || 11829 (ip6h == NULL && ipha != NULL)); 11830 11831 /* 11832 * We don't necessarily have an ipsec_in_act action to verify 11833 * policy because of assymetrical policy where we have only 11834 * outbound policy and no inbound policy (possible with global 11835 * policy). 11836 */ 11837 if (!secure) { 11838 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11839 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11840 return (B_TRUE); 11841 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11842 "tcp_check_policy", ipha, ip6h, secure); 11843 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11844 &ipdrops_tcp_clear, &tcp_dropper); 11845 return (B_FALSE); 11846 } 11847 11848 /* 11849 * We have a secure packet. 11850 */ 11851 if (act == NULL) { 11852 ipsec_log_policy_failure(tcp->tcp_wq, 11853 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11854 secure); 11855 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11856 &ipdrops_tcp_secure, &tcp_dropper); 11857 return (B_FALSE); 11858 } 11859 11860 /* 11861 * XXX This whole routine is currently incorrect. ipl should 11862 * be set to the latch pointer, but is currently not set, so 11863 * we initialize it to NULL to avoid picking up random garbage. 11864 */ 11865 if (ipl == NULL) 11866 return (B_TRUE); 11867 11868 data_mp = first_mp->b_cont; 11869 11870 ii = (ipsec_in_t *)first_mp->b_rptr; 11871 11872 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11873 &counter)) { 11874 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11875 return (B_TRUE); 11876 } 11877 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11878 "tcp inbound policy mismatch: %s, packet dropped\n", 11879 reason); 11880 BUMP_MIB(&ip_mib, ipsecInFailed); 11881 11882 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11883 return (B_FALSE); 11884 } 11885 11886 /* 11887 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11888 * retransmission after a timeout. 11889 * 11890 * To limit the number of duplicate segments, we limit the number of segment 11891 * to be sent in one time to tcp_snd_burst, the burst variable. 11892 */ 11893 static void 11894 tcp_ss_rexmit(tcp_t *tcp) 11895 { 11896 uint32_t snxt; 11897 uint32_t smax; 11898 int32_t win; 11899 int32_t mss; 11900 int32_t off; 11901 int32_t burst = tcp->tcp_snd_burst; 11902 mblk_t *snxt_mp; 11903 11904 /* 11905 * Note that tcp_rexmit can be set even though TCP has retransmitted 11906 * all unack'ed segments. 11907 */ 11908 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11909 smax = tcp->tcp_rexmit_max; 11910 snxt = tcp->tcp_rexmit_nxt; 11911 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11912 snxt = tcp->tcp_suna; 11913 } 11914 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11915 win -= snxt - tcp->tcp_suna; 11916 mss = tcp->tcp_mss; 11917 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11918 11919 while (SEQ_LT(snxt, smax) && (win > 0) && 11920 (burst > 0) && (snxt_mp != NULL)) { 11921 mblk_t *xmit_mp; 11922 mblk_t *old_snxt_mp = snxt_mp; 11923 uint32_t cnt = mss; 11924 11925 if (win < cnt) { 11926 cnt = win; 11927 } 11928 if (SEQ_GT(snxt + cnt, smax)) { 11929 cnt = smax - snxt; 11930 } 11931 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11932 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11933 if (xmit_mp == NULL) 11934 return; 11935 11936 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11937 11938 snxt += cnt; 11939 win -= cnt; 11940 /* 11941 * Update the send timestamp to avoid false 11942 * retransmission. 11943 */ 11944 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11945 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11946 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11947 11948 tcp->tcp_rexmit_nxt = snxt; 11949 burst--; 11950 } 11951 /* 11952 * If we have transmitted all we have at the time 11953 * we started the retranmission, we can leave 11954 * the rest of the job to tcp_wput_data(). But we 11955 * need to check the send window first. If the 11956 * win is not 0, go on with tcp_wput_data(). 11957 */ 11958 if (SEQ_LT(snxt, smax) || win == 0) { 11959 return; 11960 } 11961 } 11962 /* Only call tcp_wput_data() if there is data to be sent. */ 11963 if (tcp->tcp_unsent) { 11964 tcp_wput_data(tcp, NULL, B_FALSE); 11965 } 11966 } 11967 11968 /* 11969 * Process all TCP option in SYN segment. Note that this function should 11970 * be called after tcp_adapt_ire() is called so that the necessary info 11971 * from IRE is already set in the tcp structure. 11972 * 11973 * This function sets up the correct tcp_mss value according to the 11974 * MSS option value and our header size. It also sets up the window scale 11975 * and timestamp values, and initialize SACK info blocks. But it does not 11976 * change receive window size after setting the tcp_mss value. The caller 11977 * should do the appropriate change. 11978 */ 11979 void 11980 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11981 { 11982 int options; 11983 tcp_opt_t tcpopt; 11984 uint32_t mss_max; 11985 char *tmp_tcph; 11986 11987 tcpopt.tcp = NULL; 11988 options = tcp_parse_options(tcph, &tcpopt); 11989 11990 /* 11991 * Process MSS option. Note that MSS option value does not account 11992 * for IP or TCP options. This means that it is equal to MTU - minimum 11993 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11994 * IPv6. 11995 */ 11996 if (!(options & TCP_OPT_MSS_PRESENT)) { 11997 if (tcp->tcp_ipversion == IPV4_VERSION) 11998 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11999 else 12000 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12001 } else { 12002 if (tcp->tcp_ipversion == IPV4_VERSION) 12003 mss_max = tcp_mss_max_ipv4; 12004 else 12005 mss_max = tcp_mss_max_ipv6; 12006 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12007 tcpopt.tcp_opt_mss = tcp_mss_min; 12008 else if (tcpopt.tcp_opt_mss > mss_max) 12009 tcpopt.tcp_opt_mss = mss_max; 12010 } 12011 12012 /* Process Window Scale option. */ 12013 if (options & TCP_OPT_WSCALE_PRESENT) { 12014 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12015 tcp->tcp_snd_ws_ok = B_TRUE; 12016 } else { 12017 tcp->tcp_snd_ws = B_FALSE; 12018 tcp->tcp_snd_ws_ok = B_FALSE; 12019 tcp->tcp_rcv_ws = B_FALSE; 12020 } 12021 12022 /* Process Timestamp option. */ 12023 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12024 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12025 tmp_tcph = (char *)tcp->tcp_tcph; 12026 12027 tcp->tcp_snd_ts_ok = B_TRUE; 12028 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12029 tcp->tcp_last_rcv_lbolt = lbolt64; 12030 ASSERT(OK_32PTR(tmp_tcph)); 12031 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12032 12033 /* Fill in our template header with basic timestamp option. */ 12034 tmp_tcph += tcp->tcp_tcp_hdr_len; 12035 tmp_tcph[0] = TCPOPT_NOP; 12036 tmp_tcph[1] = TCPOPT_NOP; 12037 tmp_tcph[2] = TCPOPT_TSTAMP; 12038 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12039 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12040 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12041 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12042 } else { 12043 tcp->tcp_snd_ts_ok = B_FALSE; 12044 } 12045 12046 /* 12047 * Process SACK options. If SACK is enabled for this connection, 12048 * then allocate the SACK info structure. Note the following ways 12049 * when tcp_snd_sack_ok is set to true. 12050 * 12051 * For active connection: in tcp_adapt_ire() called in 12052 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12053 * is checked. 12054 * 12055 * For passive connection: in tcp_adapt_ire() called in 12056 * tcp_accept_comm(). 12057 * 12058 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12059 * That check makes sure that if we did not send a SACK OK option, 12060 * we will not enable SACK for this connection even though the other 12061 * side sends us SACK OK option. For active connection, the SACK 12062 * info structure has already been allocated. So we need to free 12063 * it if SACK is disabled. 12064 */ 12065 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12066 (tcp->tcp_snd_sack_ok || 12067 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12068 /* This should be true only in the passive case. */ 12069 if (tcp->tcp_sack_info == NULL) { 12070 ASSERT(TCP_IS_DETACHED(tcp)); 12071 tcp->tcp_sack_info = 12072 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12073 } 12074 if (tcp->tcp_sack_info == NULL) { 12075 tcp->tcp_snd_sack_ok = B_FALSE; 12076 } else { 12077 tcp->tcp_snd_sack_ok = B_TRUE; 12078 if (tcp->tcp_snd_ts_ok) { 12079 tcp->tcp_max_sack_blk = 3; 12080 } else { 12081 tcp->tcp_max_sack_blk = 4; 12082 } 12083 } 12084 } else { 12085 /* 12086 * Resetting tcp_snd_sack_ok to B_FALSE so that 12087 * no SACK info will be used for this 12088 * connection. This assumes that SACK usage 12089 * permission is negotiated. This may need 12090 * to be changed once this is clarified. 12091 */ 12092 if (tcp->tcp_sack_info != NULL) { 12093 ASSERT(tcp->tcp_notsack_list == NULL); 12094 kmem_cache_free(tcp_sack_info_cache, 12095 tcp->tcp_sack_info); 12096 tcp->tcp_sack_info = NULL; 12097 } 12098 tcp->tcp_snd_sack_ok = B_FALSE; 12099 } 12100 12101 /* 12102 * Now we know the exact TCP/IP header length, subtract 12103 * that from tcp_mss to get our side's MSS. 12104 */ 12105 tcp->tcp_mss -= tcp->tcp_hdr_len; 12106 /* 12107 * Here we assume that the other side's header size will be equal to 12108 * our header size. We calculate the real MSS accordingly. Need to 12109 * take into additional stuffs IPsec puts in. 12110 * 12111 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12112 */ 12113 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12114 ((tcp->tcp_ipversion == IPV4_VERSION ? 12115 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12116 12117 /* 12118 * Set MSS to the smaller one of both ends of the connection. 12119 * We should not have called tcp_mss_set() before, but our 12120 * side of the MSS should have been set to a proper value 12121 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12122 * STREAM head parameters properly. 12123 * 12124 * If we have a larger-than-16-bit window but the other side 12125 * didn't want to do window scale, tcp_rwnd_set() will take 12126 * care of that. 12127 */ 12128 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12129 } 12130 12131 /* 12132 * Sends the T_CONN_IND to the listener. The caller calls this 12133 * functions via squeue to get inside the listener's perimeter 12134 * once the 3 way hand shake is done a T_CONN_IND needs to be 12135 * sent. As an optimization, the caller can call this directly 12136 * if listener's perimeter is same as eager's. 12137 */ 12138 /* ARGSUSED */ 12139 void 12140 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12141 { 12142 conn_t *lconnp = (conn_t *)arg; 12143 tcp_t *listener = lconnp->conn_tcp; 12144 tcp_t *tcp; 12145 struct T_conn_ind *conn_ind; 12146 ipaddr_t *addr_cache; 12147 boolean_t need_send_conn_ind = B_FALSE; 12148 12149 /* retrieve the eager */ 12150 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12151 ASSERT(conn_ind->OPT_offset != 0 && 12152 conn_ind->OPT_length == sizeof (intptr_t)); 12153 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12154 conn_ind->OPT_length); 12155 12156 /* 12157 * TLI/XTI applications will get confused by 12158 * sending eager as an option since it violates 12159 * the option semantics. So remove the eager as 12160 * option since TLI/XTI app doesn't need it anyway. 12161 */ 12162 if (!TCP_IS_SOCKET(listener)) { 12163 conn_ind->OPT_length = 0; 12164 conn_ind->OPT_offset = 0; 12165 } 12166 if (listener->tcp_state == TCPS_CLOSED || 12167 TCP_IS_DETACHED(listener)) { 12168 /* 12169 * If listener has closed, it would have caused a 12170 * a cleanup/blowoff to happen for the eager. We 12171 * just need to return. 12172 */ 12173 freemsg(mp); 12174 return; 12175 } 12176 12177 12178 /* 12179 * if the conn_req_q is full defer passing up the 12180 * T_CONN_IND until space is availabe after t_accept() 12181 * processing 12182 */ 12183 mutex_enter(&listener->tcp_eager_lock); 12184 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12185 tcp_t *tail; 12186 12187 /* 12188 * The eager already has an extra ref put in tcp_rput_data 12189 * so that it stays till accept comes back even though it 12190 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12191 */ 12192 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12193 listener->tcp_conn_req_cnt_q0--; 12194 listener->tcp_conn_req_cnt_q++; 12195 12196 /* Move from SYN_RCVD to ESTABLISHED list */ 12197 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12198 tcp->tcp_eager_prev_q0; 12199 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12200 tcp->tcp_eager_next_q0; 12201 tcp->tcp_eager_prev_q0 = NULL; 12202 tcp->tcp_eager_next_q0 = NULL; 12203 12204 /* 12205 * Insert at end of the queue because sockfs 12206 * sends down T_CONN_RES in chronological 12207 * order. Leaving the older conn indications 12208 * at front of the queue helps reducing search 12209 * time. 12210 */ 12211 tail = listener->tcp_eager_last_q; 12212 if (tail != NULL) 12213 tail->tcp_eager_next_q = tcp; 12214 else 12215 listener->tcp_eager_next_q = tcp; 12216 listener->tcp_eager_last_q = tcp; 12217 tcp->tcp_eager_next_q = NULL; 12218 /* 12219 * Delay sending up the T_conn_ind until we are 12220 * done with the eager. Once we have have sent up 12221 * the T_conn_ind, the accept can potentially complete 12222 * any time and release the refhold we have on the eager. 12223 */ 12224 need_send_conn_ind = B_TRUE; 12225 } else { 12226 /* 12227 * Defer connection on q0 and set deferred 12228 * connection bit true 12229 */ 12230 tcp->tcp_conn_def_q0 = B_TRUE; 12231 12232 /* take tcp out of q0 ... */ 12233 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12234 tcp->tcp_eager_next_q0; 12235 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12236 tcp->tcp_eager_prev_q0; 12237 12238 /* ... and place it at the end of q0 */ 12239 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12240 tcp->tcp_eager_next_q0 = listener; 12241 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12242 listener->tcp_eager_prev_q0 = tcp; 12243 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12244 } 12245 12246 /* we have timed out before */ 12247 if (tcp->tcp_syn_rcvd_timeout != 0) { 12248 tcp->tcp_syn_rcvd_timeout = 0; 12249 listener->tcp_syn_rcvd_timeout--; 12250 if (listener->tcp_syn_defense && 12251 listener->tcp_syn_rcvd_timeout <= 12252 (tcp_conn_req_max_q0 >> 5) && 12253 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12254 listener->tcp_last_rcv_lbolt)) { 12255 /* 12256 * Turn off the defense mode if we 12257 * believe the SYN attack is over. 12258 */ 12259 listener->tcp_syn_defense = B_FALSE; 12260 if (listener->tcp_ip_addr_cache) { 12261 kmem_free((void *)listener->tcp_ip_addr_cache, 12262 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12263 listener->tcp_ip_addr_cache = NULL; 12264 } 12265 } 12266 } 12267 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12268 if (addr_cache != NULL) { 12269 /* 12270 * We have finished a 3-way handshake with this 12271 * remote host. This proves the IP addr is good. 12272 * Cache it! 12273 */ 12274 addr_cache[IP_ADDR_CACHE_HASH( 12275 tcp->tcp_remote)] = tcp->tcp_remote; 12276 } 12277 mutex_exit(&listener->tcp_eager_lock); 12278 if (need_send_conn_ind) 12279 putnext(listener->tcp_rq, mp); 12280 } 12281 12282 mblk_t * 12283 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12284 uint_t *ifindexp, ip6_pkt_t *ippp) 12285 { 12286 in_pktinfo_t *pinfo; 12287 ip6_t *ip6h; 12288 uchar_t *rptr; 12289 mblk_t *first_mp = mp; 12290 boolean_t mctl_present = B_FALSE; 12291 uint_t ifindex = 0; 12292 ip6_pkt_t ipp; 12293 uint_t ipvers; 12294 uint_t ip_hdr_len; 12295 12296 rptr = mp->b_rptr; 12297 ASSERT(OK_32PTR(rptr)); 12298 ASSERT(tcp != NULL); 12299 ipp.ipp_fields = 0; 12300 12301 switch DB_TYPE(mp) { 12302 case M_CTL: 12303 mp = mp->b_cont; 12304 if (mp == NULL) { 12305 freemsg(first_mp); 12306 return (NULL); 12307 } 12308 if (DB_TYPE(mp) != M_DATA) { 12309 freemsg(first_mp); 12310 return (NULL); 12311 } 12312 mctl_present = B_TRUE; 12313 break; 12314 case M_DATA: 12315 break; 12316 default: 12317 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12318 freemsg(mp); 12319 return (NULL); 12320 } 12321 ipvers = IPH_HDR_VERSION(rptr); 12322 if (ipvers == IPV4_VERSION) { 12323 if (tcp == NULL) { 12324 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12325 goto done; 12326 } 12327 12328 ipp.ipp_fields |= IPPF_HOPLIMIT; 12329 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12330 12331 /* 12332 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12333 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12334 */ 12335 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12336 mctl_present) { 12337 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12338 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12339 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12340 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12341 ipp.ipp_fields |= IPPF_IFINDEX; 12342 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12343 ifindex = pinfo->in_pkt_ifindex; 12344 } 12345 freeb(first_mp); 12346 mctl_present = B_FALSE; 12347 } 12348 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12349 } else { 12350 ip6h = (ip6_t *)rptr; 12351 12352 ASSERT(ipvers == IPV6_VERSION); 12353 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12354 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12355 ipp.ipp_hoplimit = ip6h->ip6_hops; 12356 12357 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12358 uint8_t nexthdrp; 12359 12360 /* Look for ifindex information */ 12361 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12362 ip6i_t *ip6i = (ip6i_t *)ip6h; 12363 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12364 BUMP_MIB(&ip_mib, tcpInErrs); 12365 freemsg(first_mp); 12366 return (NULL); 12367 } 12368 12369 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12370 ASSERT(ip6i->ip6i_ifindex != 0); 12371 ipp.ipp_fields |= IPPF_IFINDEX; 12372 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12373 ifindex = ip6i->ip6i_ifindex; 12374 } 12375 rptr = (uchar_t *)&ip6i[1]; 12376 mp->b_rptr = rptr; 12377 if (rptr == mp->b_wptr) { 12378 mblk_t *mp1; 12379 mp1 = mp->b_cont; 12380 freeb(mp); 12381 mp = mp1; 12382 rptr = mp->b_rptr; 12383 } 12384 if (MBLKL(mp) < IPV6_HDR_LEN + 12385 sizeof (tcph_t)) { 12386 BUMP_MIB(&ip_mib, tcpInErrs); 12387 freemsg(first_mp); 12388 return (NULL); 12389 } 12390 ip6h = (ip6_t *)rptr; 12391 } 12392 12393 /* 12394 * Find any potentially interesting extension headers 12395 * as well as the length of the IPv6 + extension 12396 * headers. 12397 */ 12398 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12399 /* Verify if this is a TCP packet */ 12400 if (nexthdrp != IPPROTO_TCP) { 12401 BUMP_MIB(&ip_mib, tcpInErrs); 12402 freemsg(first_mp); 12403 return (NULL); 12404 } 12405 } else { 12406 ip_hdr_len = IPV6_HDR_LEN; 12407 } 12408 } 12409 12410 done: 12411 if (ipversp != NULL) 12412 *ipversp = ipvers; 12413 if (ip_hdr_lenp != NULL) 12414 *ip_hdr_lenp = ip_hdr_len; 12415 if (ippp != NULL) 12416 *ippp = ipp; 12417 if (ifindexp != NULL) 12418 *ifindexp = ifindex; 12419 if (mctl_present) { 12420 freeb(first_mp); 12421 } 12422 return (mp); 12423 } 12424 12425 /* 12426 * Handle M_DATA messages from IP. Its called directly from IP via 12427 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12428 * in this path. 12429 * 12430 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12431 * v4 and v6), we are called through tcp_input() and a M_CTL can 12432 * be present for options but tcp_find_pktinfo() deals with it. We 12433 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12434 * 12435 * The first argument is always the connp/tcp to which the mp belongs. 12436 * There are no exceptions to this rule. The caller has already put 12437 * a reference on this connp/tcp and once tcp_rput_data() returns, 12438 * the squeue will do the refrele. 12439 * 12440 * The TH_SYN for the listener directly go to tcp_conn_request via 12441 * squeue. 12442 * 12443 * sqp: NULL = recursive, sqp != NULL means called from squeue 12444 */ 12445 void 12446 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12447 { 12448 int32_t bytes_acked; 12449 int32_t gap; 12450 mblk_t *mp1; 12451 uint_t flags; 12452 uint32_t new_swnd = 0; 12453 uchar_t *iphdr; 12454 uchar_t *rptr; 12455 int32_t rgap; 12456 uint32_t seg_ack; 12457 int seg_len; 12458 uint_t ip_hdr_len; 12459 uint32_t seg_seq; 12460 tcph_t *tcph; 12461 int urp; 12462 tcp_opt_t tcpopt; 12463 uint_t ipvers; 12464 ip6_pkt_t ipp; 12465 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12466 uint32_t cwnd; 12467 uint32_t add; 12468 int npkt; 12469 int mss; 12470 conn_t *connp = (conn_t *)arg; 12471 squeue_t *sqp = (squeue_t *)arg2; 12472 tcp_t *tcp = connp->conn_tcp; 12473 12474 /* 12475 * RST from fused tcp loopback peer should trigger an unfuse. 12476 */ 12477 if (tcp->tcp_fused) { 12478 TCP_STAT(tcp_fusion_aborted); 12479 tcp_unfuse(tcp); 12480 } 12481 12482 iphdr = mp->b_rptr; 12483 rptr = mp->b_rptr; 12484 ASSERT(OK_32PTR(rptr)); 12485 12486 /* 12487 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12488 * processing here. For rest call tcp_find_pktinfo to fill up the 12489 * necessary information. 12490 */ 12491 if (IPCL_IS_TCP4(connp)) { 12492 ipvers = IPV4_VERSION; 12493 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12494 } else { 12495 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12496 NULL, &ipp); 12497 if (mp == NULL) { 12498 TCP_STAT(tcp_rput_v6_error); 12499 return; 12500 } 12501 iphdr = mp->b_rptr; 12502 rptr = mp->b_rptr; 12503 } 12504 ASSERT(DB_TYPE(mp) == M_DATA); 12505 12506 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12507 seg_seq = ABE32_TO_U32(tcph->th_seq); 12508 seg_ack = ABE32_TO_U32(tcph->th_ack); 12509 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12510 seg_len = (int)(mp->b_wptr - rptr) - 12511 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12512 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12513 do { 12514 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12515 (uintptr_t)INT_MAX); 12516 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12517 } while ((mp1 = mp1->b_cont) != NULL && 12518 mp1->b_datap->db_type == M_DATA); 12519 } 12520 12521 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12522 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12523 seg_len, tcph); 12524 return; 12525 } 12526 12527 if (sqp != NULL) { 12528 /* 12529 * This is the correct place to update tcp_last_recv_time. Note 12530 * that it is also updated for tcp structure that belongs to 12531 * global and listener queues which do not really need updating. 12532 * But that should not cause any harm. And it is updated for 12533 * all kinds of incoming segments, not only for data segments. 12534 */ 12535 tcp->tcp_last_recv_time = lbolt; 12536 } 12537 12538 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12539 12540 BUMP_LOCAL(tcp->tcp_ibsegs); 12541 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12542 12543 if ((flags & TH_URG) && sqp != NULL) { 12544 /* 12545 * TCP can't handle urgent pointers that arrive before 12546 * the connection has been accept()ed since it can't 12547 * buffer OOB data. Discard segment if this happens. 12548 * 12549 * Nor can it reassemble urgent pointers, so discard 12550 * if it's not the next segment expected. 12551 * 12552 * Otherwise, collapse chain into one mblk (discard if 12553 * that fails). This makes sure the headers, retransmitted 12554 * data, and new data all are in the same mblk. 12555 */ 12556 ASSERT(mp != NULL); 12557 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12558 freemsg(mp); 12559 return; 12560 } 12561 /* Update pointers into message */ 12562 iphdr = rptr = mp->b_rptr; 12563 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12564 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12565 /* 12566 * Since we can't handle any data with this urgent 12567 * pointer that is out of sequence, we expunge 12568 * the data. This allows us to still register 12569 * the urgent mark and generate the M_PCSIG, 12570 * which we can do. 12571 */ 12572 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12573 seg_len = 0; 12574 } 12575 } 12576 12577 switch (tcp->tcp_state) { 12578 case TCPS_SYN_SENT: 12579 if (flags & TH_ACK) { 12580 /* 12581 * Note that our stack cannot send data before a 12582 * connection is established, therefore the 12583 * following check is valid. Otherwise, it has 12584 * to be changed. 12585 */ 12586 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12587 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12588 freemsg(mp); 12589 if (flags & TH_RST) 12590 return; 12591 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12592 tcp, seg_ack, 0, TH_RST); 12593 return; 12594 } 12595 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12596 } 12597 if (flags & TH_RST) { 12598 freemsg(mp); 12599 if (flags & TH_ACK) 12600 (void) tcp_clean_death(tcp, 12601 ECONNREFUSED, 13); 12602 return; 12603 } 12604 if (!(flags & TH_SYN)) { 12605 freemsg(mp); 12606 return; 12607 } 12608 12609 /* Process all TCP options. */ 12610 tcp_process_options(tcp, tcph); 12611 /* 12612 * The following changes our rwnd to be a multiple of the 12613 * MIN(peer MSS, our MSS) for performance reason. 12614 */ 12615 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12616 tcp->tcp_mss)); 12617 12618 /* Is the other end ECN capable? */ 12619 if (tcp->tcp_ecn_ok) { 12620 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12621 tcp->tcp_ecn_ok = B_FALSE; 12622 } 12623 } 12624 /* 12625 * Clear ECN flags because it may interfere with later 12626 * processing. 12627 */ 12628 flags &= ~(TH_ECE|TH_CWR); 12629 12630 tcp->tcp_irs = seg_seq; 12631 tcp->tcp_rack = seg_seq; 12632 tcp->tcp_rnxt = seg_seq + 1; 12633 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12634 if (!TCP_IS_DETACHED(tcp)) { 12635 /* Allocate room for SACK options if needed. */ 12636 if (tcp->tcp_snd_sack_ok) { 12637 (void) mi_set_sth_wroff(tcp->tcp_rq, 12638 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12639 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12640 } else { 12641 (void) mi_set_sth_wroff(tcp->tcp_rq, 12642 tcp->tcp_hdr_len + 12643 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12644 } 12645 } 12646 if (flags & TH_ACK) { 12647 /* 12648 * If we can't get the confirmation upstream, pretend 12649 * we didn't even see this one. 12650 * 12651 * XXX: how can we pretend we didn't see it if we 12652 * have updated rnxt et. al. 12653 * 12654 * For loopback we defer sending up the T_CONN_CON 12655 * until after some checks below. 12656 */ 12657 mp1 = NULL; 12658 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12659 tcp->tcp_loopback ? &mp1 : NULL)) { 12660 freemsg(mp); 12661 return; 12662 } 12663 /* SYN was acked - making progress */ 12664 if (tcp->tcp_ipversion == IPV6_VERSION) 12665 tcp->tcp_ip_forward_progress = B_TRUE; 12666 12667 /* One for the SYN */ 12668 tcp->tcp_suna = tcp->tcp_iss + 1; 12669 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12670 tcp->tcp_state = TCPS_ESTABLISHED; 12671 12672 /* 12673 * If SYN was retransmitted, need to reset all 12674 * retransmission info. This is because this 12675 * segment will be treated as a dup ACK. 12676 */ 12677 if (tcp->tcp_rexmit) { 12678 tcp->tcp_rexmit = B_FALSE; 12679 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12680 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12681 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12682 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12683 tcp->tcp_ms_we_have_waited = 0; 12684 12685 /* 12686 * Set tcp_cwnd back to 1 MSS, per 12687 * recommendation from 12688 * draft-floyd-incr-init-win-01.txt, 12689 * Increasing TCP's Initial Window. 12690 */ 12691 tcp->tcp_cwnd = tcp->tcp_mss; 12692 } 12693 12694 tcp->tcp_swl1 = seg_seq; 12695 tcp->tcp_swl2 = seg_ack; 12696 12697 new_swnd = BE16_TO_U16(tcph->th_win); 12698 tcp->tcp_swnd = new_swnd; 12699 if (new_swnd > tcp->tcp_max_swnd) 12700 tcp->tcp_max_swnd = new_swnd; 12701 12702 /* 12703 * Always send the three-way handshake ack immediately 12704 * in order to make the connection complete as soon as 12705 * possible on the accepting host. 12706 */ 12707 flags |= TH_ACK_NEEDED; 12708 12709 /* 12710 * Special case for loopback. At this point we have 12711 * received SYN-ACK from the remote endpoint. In 12712 * order to ensure that both endpoints reach the 12713 * fused state prior to any data exchange, the final 12714 * ACK needs to be sent before we indicate T_CONN_CON 12715 * to the module upstream. 12716 */ 12717 if (tcp->tcp_loopback) { 12718 mblk_t *ack_mp; 12719 12720 ASSERT(!tcp->tcp_unfusable); 12721 ASSERT(mp1 != NULL); 12722 /* 12723 * For loopback, we always get a pure SYN-ACK 12724 * and only need to send back the final ACK 12725 * with no data (this is because the other 12726 * tcp is ours and we don't do T/TCP). This 12727 * final ACK triggers the passive side to 12728 * perform fusion in ESTABLISHED state. 12729 */ 12730 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12731 if (tcp->tcp_ack_tid != 0) { 12732 (void) TCP_TIMER_CANCEL(tcp, 12733 tcp->tcp_ack_tid); 12734 tcp->tcp_ack_tid = 0; 12735 } 12736 TCP_RECORD_TRACE(tcp, ack_mp, 12737 TCP_TRACE_SEND_PKT); 12738 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12739 BUMP_LOCAL(tcp->tcp_obsegs); 12740 BUMP_MIB(&tcp_mib, tcpOutAck); 12741 12742 /* Send up T_CONN_CON */ 12743 putnext(tcp->tcp_rq, mp1); 12744 12745 freemsg(mp); 12746 return; 12747 } 12748 /* 12749 * Forget fusion; we need to handle more 12750 * complex cases below. Send the deferred 12751 * T_CONN_CON message upstream and proceed 12752 * as usual. Mark this tcp as not capable 12753 * of fusion. 12754 */ 12755 TCP_STAT(tcp_fusion_unfusable); 12756 tcp->tcp_unfusable = B_TRUE; 12757 putnext(tcp->tcp_rq, mp1); 12758 } 12759 12760 /* 12761 * Check to see if there is data to be sent. If 12762 * yes, set the transmit flag. Then check to see 12763 * if received data processing needs to be done. 12764 * If not, go straight to xmit_check. This short 12765 * cut is OK as we don't support T/TCP. 12766 */ 12767 if (tcp->tcp_unsent) 12768 flags |= TH_XMIT_NEEDED; 12769 12770 if (seg_len == 0 && !(flags & TH_URG)) { 12771 freemsg(mp); 12772 goto xmit_check; 12773 } 12774 12775 flags &= ~TH_SYN; 12776 seg_seq++; 12777 break; 12778 } 12779 tcp->tcp_state = TCPS_SYN_RCVD; 12780 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12781 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12782 if (mp1) { 12783 DB_CPID(mp1) = tcp->tcp_cpid; 12784 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12785 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12786 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12787 } 12788 freemsg(mp); 12789 return; 12790 case TCPS_SYN_RCVD: 12791 if (flags & TH_ACK) { 12792 /* 12793 * In this state, a SYN|ACK packet is either bogus 12794 * because the other side must be ACKing our SYN which 12795 * indicates it has seen the ACK for their SYN and 12796 * shouldn't retransmit it or we're crossing SYNs 12797 * on active open. 12798 */ 12799 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12800 freemsg(mp); 12801 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12802 tcp, seg_ack, 0, TH_RST); 12803 return; 12804 } 12805 /* 12806 * NOTE: RFC 793 pg. 72 says this should be 12807 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12808 * but that would mean we have an ack that ignored 12809 * our SYN. 12810 */ 12811 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12812 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12813 freemsg(mp); 12814 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12815 tcp, seg_ack, 0, TH_RST); 12816 return; 12817 } 12818 } 12819 break; 12820 case TCPS_LISTEN: 12821 /* 12822 * Only a TLI listener can come through this path when a 12823 * acceptor is going back to be a listener and a packet 12824 * for the acceptor hits the classifier. For a socket 12825 * listener, this can never happen because a listener 12826 * can never accept connection on itself and hence a 12827 * socket acceptor can not go back to being a listener. 12828 */ 12829 ASSERT(!TCP_IS_SOCKET(tcp)); 12830 /*FALLTHRU*/ 12831 case TCPS_CLOSED: 12832 case TCPS_BOUND: { 12833 conn_t *new_connp; 12834 12835 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12836 if (new_connp != NULL) { 12837 tcp_reinput(new_connp, mp, connp->conn_sqp); 12838 return; 12839 } 12840 /* We failed to classify. For now just drop the packet */ 12841 freemsg(mp); 12842 return; 12843 } 12844 case TCPS_IDLE: 12845 /* 12846 * Handle the case where the tcp_clean_death() has happened 12847 * on a connection (application hasn't closed yet) but a packet 12848 * was already queued on squeue before tcp_clean_death() 12849 * was processed. Calling tcp_clean_death() twice on same 12850 * connection can result in weird behaviour. 12851 */ 12852 freemsg(mp); 12853 return; 12854 default: 12855 break; 12856 } 12857 12858 /* 12859 * Already on the correct queue/perimeter. 12860 * If this is a detached connection and not an eager 12861 * connection hanging off a listener then new data 12862 * (past the FIN) will cause a reset. 12863 * We do a special check here where it 12864 * is out of the main line, rather than check 12865 * if we are detached every time we see new 12866 * data down below. 12867 */ 12868 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12869 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12870 BUMP_MIB(&tcp_mib, tcpInClosed); 12871 TCP_RECORD_TRACE(tcp, 12872 mp, TCP_TRACE_RECV_PKT); 12873 12874 freemsg(mp); 12875 /* 12876 * This could be an SSL closure alert. We're detached so just 12877 * acknowledge it this last time. 12878 */ 12879 if (tcp->tcp_kssl_ctx != NULL) { 12880 kssl_release_ctx(tcp->tcp_kssl_ctx); 12881 tcp->tcp_kssl_ctx = NULL; 12882 12883 tcp->tcp_rnxt += seg_len; 12884 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12885 flags |= TH_ACK_NEEDED; 12886 goto ack_check; 12887 } 12888 12889 tcp_xmit_ctl("new data when detached", tcp, 12890 tcp->tcp_snxt, 0, TH_RST); 12891 (void) tcp_clean_death(tcp, EPROTO, 12); 12892 return; 12893 } 12894 12895 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12896 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12897 new_swnd = BE16_TO_U16(tcph->th_win) << 12898 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12899 mss = tcp->tcp_mss; 12900 12901 if (tcp->tcp_snd_ts_ok) { 12902 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12903 /* 12904 * This segment is not acceptable. 12905 * Drop it and send back an ACK. 12906 */ 12907 freemsg(mp); 12908 flags |= TH_ACK_NEEDED; 12909 goto ack_check; 12910 } 12911 } else if (tcp->tcp_snd_sack_ok) { 12912 ASSERT(tcp->tcp_sack_info != NULL); 12913 tcpopt.tcp = tcp; 12914 /* 12915 * SACK info in already updated in tcp_parse_options. Ignore 12916 * all other TCP options... 12917 */ 12918 (void) tcp_parse_options(tcph, &tcpopt); 12919 } 12920 try_again:; 12921 gap = seg_seq - tcp->tcp_rnxt; 12922 rgap = tcp->tcp_rwnd - (gap + seg_len); 12923 /* 12924 * gap is the amount of sequence space between what we expect to see 12925 * and what we got for seg_seq. A positive value for gap means 12926 * something got lost. A negative value means we got some old stuff. 12927 */ 12928 if (gap < 0) { 12929 /* Old stuff present. Is the SYN in there? */ 12930 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12931 (seg_len != 0)) { 12932 flags &= ~TH_SYN; 12933 seg_seq++; 12934 urp--; 12935 /* Recompute the gaps after noting the SYN. */ 12936 goto try_again; 12937 } 12938 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12939 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12940 (seg_len > -gap ? -gap : seg_len)); 12941 /* Remove the old stuff from seg_len. */ 12942 seg_len += gap; 12943 /* 12944 * Anything left? 12945 * Make sure to check for unack'd FIN when rest of data 12946 * has been previously ack'd. 12947 */ 12948 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12949 /* 12950 * Resets are only valid if they lie within our offered 12951 * window. If the RST bit is set, we just ignore this 12952 * segment. 12953 */ 12954 if (flags & TH_RST) { 12955 freemsg(mp); 12956 return; 12957 } 12958 12959 /* 12960 * The arriving of dup data packets indicate that we 12961 * may have postponed an ack for too long, or the other 12962 * side's RTT estimate is out of shape. Start acking 12963 * more often. 12964 */ 12965 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12966 tcp->tcp_rack_cnt >= 1 && 12967 tcp->tcp_rack_abs_max > 2) { 12968 tcp->tcp_rack_abs_max--; 12969 } 12970 tcp->tcp_rack_cur_max = 1; 12971 12972 /* 12973 * This segment is "unacceptable". None of its 12974 * sequence space lies within our advertized window. 12975 * 12976 * Adjust seg_len to the original value for tracing. 12977 */ 12978 seg_len -= gap; 12979 if (tcp->tcp_debug) { 12980 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12981 "tcp_rput: unacceptable, gap %d, rgap %d, " 12982 "flags 0x%x, seg_seq %u, seg_ack %u, " 12983 "seg_len %d, rnxt %u, snxt %u, %s", 12984 gap, rgap, flags, seg_seq, seg_ack, 12985 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12986 tcp_display(tcp, NULL, 12987 DISP_ADDR_AND_PORT)); 12988 } 12989 12990 /* 12991 * Arrange to send an ACK in response to the 12992 * unacceptable segment per RFC 793 page 69. There 12993 * is only one small difference between ours and the 12994 * acceptability test in the RFC - we accept ACK-only 12995 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12996 * will be generated. 12997 * 12998 * Note that we have to ACK an ACK-only packet at least 12999 * for stacks that send 0-length keep-alives with 13000 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13001 * section 4.2.3.6. As long as we don't ever generate 13002 * an unacceptable packet in response to an incoming 13003 * packet that is unacceptable, it should not cause 13004 * "ACK wars". 13005 */ 13006 flags |= TH_ACK_NEEDED; 13007 13008 /* 13009 * Continue processing this segment in order to use the 13010 * ACK information it contains, but skip all other 13011 * sequence-number processing. Processing the ACK 13012 * information is necessary in order to 13013 * re-synchronize connections that may have lost 13014 * synchronization. 13015 * 13016 * We clear seg_len and flag fields related to 13017 * sequence number processing as they are not 13018 * to be trusted for an unacceptable segment. 13019 */ 13020 seg_len = 0; 13021 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13022 goto process_ack; 13023 } 13024 13025 /* Fix seg_seq, and chew the gap off the front. */ 13026 seg_seq = tcp->tcp_rnxt; 13027 urp += gap; 13028 do { 13029 mblk_t *mp2; 13030 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13031 (uintptr_t)UINT_MAX); 13032 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13033 if (gap > 0) { 13034 mp->b_rptr = mp->b_wptr - gap; 13035 break; 13036 } 13037 mp2 = mp; 13038 mp = mp->b_cont; 13039 freeb(mp2); 13040 } while (gap < 0); 13041 /* 13042 * If the urgent data has already been acknowledged, we 13043 * should ignore TH_URG below 13044 */ 13045 if (urp < 0) 13046 flags &= ~TH_URG; 13047 } 13048 /* 13049 * rgap is the amount of stuff received out of window. A negative 13050 * value is the amount out of window. 13051 */ 13052 if (rgap < 0) { 13053 mblk_t *mp2; 13054 13055 if (tcp->tcp_rwnd == 0) { 13056 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13057 } else { 13058 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13059 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13060 } 13061 13062 /* 13063 * seg_len does not include the FIN, so if more than 13064 * just the FIN is out of window, we act like we don't 13065 * see it. (If just the FIN is out of window, rgap 13066 * will be zero and we will go ahead and acknowledge 13067 * the FIN.) 13068 */ 13069 flags &= ~TH_FIN; 13070 13071 /* Fix seg_len and make sure there is something left. */ 13072 seg_len += rgap; 13073 if (seg_len <= 0) { 13074 /* 13075 * Resets are only valid if they lie within our offered 13076 * window. If the RST bit is set, we just ignore this 13077 * segment. 13078 */ 13079 if (flags & TH_RST) { 13080 freemsg(mp); 13081 return; 13082 } 13083 13084 /* Per RFC 793, we need to send back an ACK. */ 13085 flags |= TH_ACK_NEEDED; 13086 13087 /* 13088 * Send SIGURG as soon as possible i.e. even 13089 * if the TH_URG was delivered in a window probe 13090 * packet (which will be unacceptable). 13091 * 13092 * We generate a signal if none has been generated 13093 * for this connection or if this is a new urgent 13094 * byte. Also send a zero-length "unmarked" message 13095 * to inform SIOCATMARK that this is not the mark. 13096 * 13097 * tcp_urp_last_valid is cleared when the T_exdata_ind 13098 * is sent up. This plus the check for old data 13099 * (gap >= 0) handles the wraparound of the sequence 13100 * number space without having to always track the 13101 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13102 * this max in its rcv_up variable). 13103 * 13104 * This prevents duplicate SIGURGS due to a "late" 13105 * zero-window probe when the T_EXDATA_IND has already 13106 * been sent up. 13107 */ 13108 if ((flags & TH_URG) && 13109 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13110 tcp->tcp_urp_last))) { 13111 mp1 = allocb(0, BPRI_MED); 13112 if (mp1 == NULL) { 13113 freemsg(mp); 13114 return; 13115 } 13116 if (!TCP_IS_DETACHED(tcp) && 13117 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13118 SIGURG)) { 13119 /* Try again on the rexmit. */ 13120 freemsg(mp1); 13121 freemsg(mp); 13122 return; 13123 } 13124 /* 13125 * If the next byte would be the mark 13126 * then mark with MARKNEXT else mark 13127 * with NOTMARKNEXT. 13128 */ 13129 if (gap == 0 && urp == 0) 13130 mp1->b_flag |= MSGMARKNEXT; 13131 else 13132 mp1->b_flag |= MSGNOTMARKNEXT; 13133 freemsg(tcp->tcp_urp_mark_mp); 13134 tcp->tcp_urp_mark_mp = mp1; 13135 flags |= TH_SEND_URP_MARK; 13136 tcp->tcp_urp_last_valid = B_TRUE; 13137 tcp->tcp_urp_last = urp + seg_seq; 13138 } 13139 /* 13140 * If this is a zero window probe, continue to 13141 * process the ACK part. But we need to set seg_len 13142 * to 0 to avoid data processing. Otherwise just 13143 * drop the segment and send back an ACK. 13144 */ 13145 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13146 flags &= ~(TH_SYN | TH_URG); 13147 seg_len = 0; 13148 goto process_ack; 13149 } else { 13150 freemsg(mp); 13151 goto ack_check; 13152 } 13153 } 13154 /* Pitch out of window stuff off the end. */ 13155 rgap = seg_len; 13156 mp2 = mp; 13157 do { 13158 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13159 (uintptr_t)INT_MAX); 13160 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13161 if (rgap < 0) { 13162 mp2->b_wptr += rgap; 13163 if ((mp1 = mp2->b_cont) != NULL) { 13164 mp2->b_cont = NULL; 13165 freemsg(mp1); 13166 } 13167 break; 13168 } 13169 } while ((mp2 = mp2->b_cont) != NULL); 13170 } 13171 ok:; 13172 /* 13173 * TCP should check ECN info for segments inside the window only. 13174 * Therefore the check should be done here. 13175 */ 13176 if (tcp->tcp_ecn_ok) { 13177 if (flags & TH_CWR) { 13178 tcp->tcp_ecn_echo_on = B_FALSE; 13179 } 13180 /* 13181 * Note that both ECN_CE and CWR can be set in the 13182 * same segment. In this case, we once again turn 13183 * on ECN_ECHO. 13184 */ 13185 if (tcp->tcp_ipversion == IPV4_VERSION) { 13186 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13187 13188 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13189 tcp->tcp_ecn_echo_on = B_TRUE; 13190 } 13191 } else { 13192 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13193 13194 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13195 htonl(IPH_ECN_CE << 20)) { 13196 tcp->tcp_ecn_echo_on = B_TRUE; 13197 } 13198 } 13199 } 13200 13201 /* 13202 * Check whether we can update tcp_ts_recent. This test is 13203 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13204 * Extensions for High Performance: An Update", Internet Draft. 13205 */ 13206 if (tcp->tcp_snd_ts_ok && 13207 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13208 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13209 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13210 tcp->tcp_last_rcv_lbolt = lbolt64; 13211 } 13212 13213 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13214 /* 13215 * FIN in an out of order segment. We record this in 13216 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13217 * Clear the FIN so that any check on FIN flag will fail. 13218 * Remember that FIN also counts in the sequence number 13219 * space. So we need to ack out of order FIN only segments. 13220 */ 13221 if (flags & TH_FIN) { 13222 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13223 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13224 flags &= ~TH_FIN; 13225 flags |= TH_ACK_NEEDED; 13226 } 13227 if (seg_len > 0) { 13228 /* Fill in the SACK blk list. */ 13229 if (tcp->tcp_snd_sack_ok) { 13230 ASSERT(tcp->tcp_sack_info != NULL); 13231 tcp_sack_insert(tcp->tcp_sack_list, 13232 seg_seq, seg_seq + seg_len, 13233 &(tcp->tcp_num_sack_blk)); 13234 } 13235 13236 /* 13237 * Attempt reassembly and see if we have something 13238 * ready to go. 13239 */ 13240 mp = tcp_reass(tcp, mp, seg_seq); 13241 /* Always ack out of order packets */ 13242 flags |= TH_ACK_NEEDED | TH_PUSH; 13243 if (mp) { 13244 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13245 (uintptr_t)INT_MAX); 13246 seg_len = mp->b_cont ? msgdsize(mp) : 13247 (int)(mp->b_wptr - mp->b_rptr); 13248 seg_seq = tcp->tcp_rnxt; 13249 /* 13250 * A gap is filled and the seq num and len 13251 * of the gap match that of a previously 13252 * received FIN, put the FIN flag back in. 13253 */ 13254 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13255 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13256 flags |= TH_FIN; 13257 tcp->tcp_valid_bits &= 13258 ~TCP_OFO_FIN_VALID; 13259 } 13260 } else { 13261 /* 13262 * Keep going even with NULL mp. 13263 * There may be a useful ACK or something else 13264 * we don't want to miss. 13265 * 13266 * But TCP should not perform fast retransmit 13267 * because of the ack number. TCP uses 13268 * seg_len == 0 to determine if it is a pure 13269 * ACK. And this is not a pure ACK. 13270 */ 13271 seg_len = 0; 13272 ofo_seg = B_TRUE; 13273 } 13274 } 13275 } else if (seg_len > 0) { 13276 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13277 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13278 /* 13279 * If an out of order FIN was received before, and the seq 13280 * num and len of the new segment match that of the FIN, 13281 * put the FIN flag back in. 13282 */ 13283 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13284 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13285 flags |= TH_FIN; 13286 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13287 } 13288 } 13289 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13290 if (flags & TH_RST) { 13291 freemsg(mp); 13292 switch (tcp->tcp_state) { 13293 case TCPS_SYN_RCVD: 13294 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13295 break; 13296 case TCPS_ESTABLISHED: 13297 case TCPS_FIN_WAIT_1: 13298 case TCPS_FIN_WAIT_2: 13299 case TCPS_CLOSE_WAIT: 13300 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13301 break; 13302 case TCPS_CLOSING: 13303 case TCPS_LAST_ACK: 13304 (void) tcp_clean_death(tcp, 0, 16); 13305 break; 13306 default: 13307 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13308 (void) tcp_clean_death(tcp, ENXIO, 17); 13309 break; 13310 } 13311 return; 13312 } 13313 if (flags & TH_SYN) { 13314 /* 13315 * See RFC 793, Page 71 13316 * 13317 * The seq number must be in the window as it should 13318 * be "fixed" above. If it is outside window, it should 13319 * be already rejected. Note that we allow seg_seq to be 13320 * rnxt + rwnd because we want to accept 0 window probe. 13321 */ 13322 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13323 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13324 freemsg(mp); 13325 /* 13326 * If the ACK flag is not set, just use our snxt as the 13327 * seq number of the RST segment. 13328 */ 13329 if (!(flags & TH_ACK)) { 13330 seg_ack = tcp->tcp_snxt; 13331 } 13332 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13333 TH_RST|TH_ACK); 13334 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13335 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13336 return; 13337 } 13338 /* 13339 * urp could be -1 when the urp field in the packet is 0 13340 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13341 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13342 */ 13343 if (flags & TH_URG && urp >= 0) { 13344 if (!tcp->tcp_urp_last_valid || 13345 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13346 /* 13347 * If we haven't generated the signal yet for this 13348 * urgent pointer value, do it now. Also, send up a 13349 * zero-length M_DATA indicating whether or not this is 13350 * the mark. The latter is not needed when a 13351 * T_EXDATA_IND is sent up. However, if there are 13352 * allocation failures this code relies on the sender 13353 * retransmitting and the socket code for determining 13354 * the mark should not block waiting for the peer to 13355 * transmit. Thus, for simplicity we always send up the 13356 * mark indication. 13357 */ 13358 mp1 = allocb(0, BPRI_MED); 13359 if (mp1 == NULL) { 13360 freemsg(mp); 13361 return; 13362 } 13363 if (!TCP_IS_DETACHED(tcp) && 13364 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13365 /* Try again on the rexmit. */ 13366 freemsg(mp1); 13367 freemsg(mp); 13368 return; 13369 } 13370 /* 13371 * Mark with NOTMARKNEXT for now. 13372 * The code below will change this to MARKNEXT 13373 * if we are at the mark. 13374 * 13375 * If there are allocation failures (e.g. in dupmsg 13376 * below) the next time tcp_rput_data sees the urgent 13377 * segment it will send up the MSG*MARKNEXT message. 13378 */ 13379 mp1->b_flag |= MSGNOTMARKNEXT; 13380 freemsg(tcp->tcp_urp_mark_mp); 13381 tcp->tcp_urp_mark_mp = mp1; 13382 flags |= TH_SEND_URP_MARK; 13383 #ifdef DEBUG 13384 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13385 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13386 "last %x, %s", 13387 seg_seq, urp, tcp->tcp_urp_last, 13388 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13389 #endif /* DEBUG */ 13390 tcp->tcp_urp_last_valid = B_TRUE; 13391 tcp->tcp_urp_last = urp + seg_seq; 13392 } else if (tcp->tcp_urp_mark_mp != NULL) { 13393 /* 13394 * An allocation failure prevented the previous 13395 * tcp_rput_data from sending up the allocated 13396 * MSG*MARKNEXT message - send it up this time 13397 * around. 13398 */ 13399 flags |= TH_SEND_URP_MARK; 13400 } 13401 13402 /* 13403 * If the urgent byte is in this segment, make sure that it is 13404 * all by itself. This makes it much easier to deal with the 13405 * possibility of an allocation failure on the T_exdata_ind. 13406 * Note that seg_len is the number of bytes in the segment, and 13407 * urp is the offset into the segment of the urgent byte. 13408 * urp < seg_len means that the urgent byte is in this segment. 13409 */ 13410 if (urp < seg_len) { 13411 if (seg_len != 1) { 13412 uint32_t tmp_rnxt; 13413 /* 13414 * Break it up and feed it back in. 13415 * Re-attach the IP header. 13416 */ 13417 mp->b_rptr = iphdr; 13418 if (urp > 0) { 13419 /* 13420 * There is stuff before the urgent 13421 * byte. 13422 */ 13423 mp1 = dupmsg(mp); 13424 if (!mp1) { 13425 /* 13426 * Trim from urgent byte on. 13427 * The rest will come back. 13428 */ 13429 (void) adjmsg(mp, 13430 urp - seg_len); 13431 tcp_rput_data(connp, 13432 mp, NULL); 13433 return; 13434 } 13435 (void) adjmsg(mp1, urp - seg_len); 13436 /* Feed this piece back in. */ 13437 tmp_rnxt = tcp->tcp_rnxt; 13438 tcp_rput_data(connp, mp1, NULL); 13439 /* 13440 * If the data passed back in was not 13441 * processed (ie: bad ACK) sending 13442 * the remainder back in will cause a 13443 * loop. In this case, drop the 13444 * packet and let the sender try 13445 * sending a good packet. 13446 */ 13447 if (tmp_rnxt == tcp->tcp_rnxt) { 13448 freemsg(mp); 13449 return; 13450 } 13451 } 13452 if (urp != seg_len - 1) { 13453 uint32_t tmp_rnxt; 13454 /* 13455 * There is stuff after the urgent 13456 * byte. 13457 */ 13458 mp1 = dupmsg(mp); 13459 if (!mp1) { 13460 /* 13461 * Trim everything beyond the 13462 * urgent byte. The rest will 13463 * come back. 13464 */ 13465 (void) adjmsg(mp, 13466 urp + 1 - seg_len); 13467 tcp_rput_data(connp, 13468 mp, NULL); 13469 return; 13470 } 13471 (void) adjmsg(mp1, urp + 1 - seg_len); 13472 tmp_rnxt = tcp->tcp_rnxt; 13473 tcp_rput_data(connp, mp1, NULL); 13474 /* 13475 * If the data passed back in was not 13476 * processed (ie: bad ACK) sending 13477 * the remainder back in will cause a 13478 * loop. In this case, drop the 13479 * packet and let the sender try 13480 * sending a good packet. 13481 */ 13482 if (tmp_rnxt == tcp->tcp_rnxt) { 13483 freemsg(mp); 13484 return; 13485 } 13486 } 13487 tcp_rput_data(connp, mp, NULL); 13488 return; 13489 } 13490 /* 13491 * This segment contains only the urgent byte. We 13492 * have to allocate the T_exdata_ind, if we can. 13493 */ 13494 if (!tcp->tcp_urp_mp) { 13495 struct T_exdata_ind *tei; 13496 mp1 = allocb(sizeof (struct T_exdata_ind), 13497 BPRI_MED); 13498 if (!mp1) { 13499 /* 13500 * Sigh... It'll be back. 13501 * Generate any MSG*MARK message now. 13502 */ 13503 freemsg(mp); 13504 seg_len = 0; 13505 if (flags & TH_SEND_URP_MARK) { 13506 13507 13508 ASSERT(tcp->tcp_urp_mark_mp); 13509 tcp->tcp_urp_mark_mp->b_flag &= 13510 ~MSGNOTMARKNEXT; 13511 tcp->tcp_urp_mark_mp->b_flag |= 13512 MSGMARKNEXT; 13513 } 13514 goto ack_check; 13515 } 13516 mp1->b_datap->db_type = M_PROTO; 13517 tei = (struct T_exdata_ind *)mp1->b_rptr; 13518 tei->PRIM_type = T_EXDATA_IND; 13519 tei->MORE_flag = 0; 13520 mp1->b_wptr = (uchar_t *)&tei[1]; 13521 tcp->tcp_urp_mp = mp1; 13522 #ifdef DEBUG 13523 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13524 "tcp_rput: allocated exdata_ind %s", 13525 tcp_display(tcp, NULL, 13526 DISP_PORT_ONLY)); 13527 #endif /* DEBUG */ 13528 /* 13529 * There is no need to send a separate MSG*MARK 13530 * message since the T_EXDATA_IND will be sent 13531 * now. 13532 */ 13533 flags &= ~TH_SEND_URP_MARK; 13534 freemsg(tcp->tcp_urp_mark_mp); 13535 tcp->tcp_urp_mark_mp = NULL; 13536 } 13537 /* 13538 * Now we are all set. On the next putnext upstream, 13539 * tcp_urp_mp will be non-NULL and will get prepended 13540 * to what has to be this piece containing the urgent 13541 * byte. If for any reason we abort this segment below, 13542 * if it comes back, we will have this ready, or it 13543 * will get blown off in close. 13544 */ 13545 } else if (urp == seg_len) { 13546 /* 13547 * The urgent byte is the next byte after this sequence 13548 * number. If there is data it is marked with 13549 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13550 * since it is not needed. Otherwise, if the code 13551 * above just allocated a zero-length tcp_urp_mark_mp 13552 * message, that message is tagged with MSGMARKNEXT. 13553 * Sending up these MSGMARKNEXT messages makes 13554 * SIOCATMARK work correctly even though 13555 * the T_EXDATA_IND will not be sent up until the 13556 * urgent byte arrives. 13557 */ 13558 if (seg_len != 0) { 13559 flags |= TH_MARKNEXT_NEEDED; 13560 freemsg(tcp->tcp_urp_mark_mp); 13561 tcp->tcp_urp_mark_mp = NULL; 13562 flags &= ~TH_SEND_URP_MARK; 13563 } else if (tcp->tcp_urp_mark_mp != NULL) { 13564 flags |= TH_SEND_URP_MARK; 13565 tcp->tcp_urp_mark_mp->b_flag &= 13566 ~MSGNOTMARKNEXT; 13567 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13568 } 13569 #ifdef DEBUG 13570 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13571 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13572 seg_len, flags, 13573 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13574 #endif /* DEBUG */ 13575 } else { 13576 /* Data left until we hit mark */ 13577 #ifdef DEBUG 13578 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13579 "tcp_rput: URP %d bytes left, %s", 13580 urp - seg_len, tcp_display(tcp, NULL, 13581 DISP_PORT_ONLY)); 13582 #endif /* DEBUG */ 13583 } 13584 } 13585 13586 process_ack: 13587 if (!(flags & TH_ACK)) { 13588 freemsg(mp); 13589 goto xmit_check; 13590 } 13591 } 13592 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13593 13594 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13595 tcp->tcp_ip_forward_progress = B_TRUE; 13596 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13597 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13598 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13599 /* 3-way handshake complete - pass up the T_CONN_IND */ 13600 tcp_t *listener = tcp->tcp_listener; 13601 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13602 13603 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13604 /* 13605 * We are here means eager is fine but it can 13606 * get a TH_RST at any point between now and till 13607 * accept completes and disappear. We need to 13608 * ensure that reference to eager is valid after 13609 * we get out of eager's perimeter. So we do 13610 * an extra refhold. 13611 */ 13612 CONN_INC_REF(connp); 13613 13614 /* 13615 * The listener also exists because of the refhold 13616 * done in tcp_conn_request. Its possible that it 13617 * might have closed. We will check that once we 13618 * get inside listeners context. 13619 */ 13620 CONN_INC_REF(listener->tcp_connp); 13621 if (listener->tcp_connp->conn_sqp == 13622 connp->conn_sqp) { 13623 tcp_send_conn_ind(listener->tcp_connp, mp, 13624 listener->tcp_connp->conn_sqp); 13625 CONN_DEC_REF(listener->tcp_connp); 13626 } else if (!tcp->tcp_loopback) { 13627 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13628 tcp_send_conn_ind, 13629 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13630 } else { 13631 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13632 tcp_send_conn_ind, listener->tcp_connp, 13633 SQTAG_TCP_CONN_IND); 13634 } 13635 } 13636 13637 if (tcp->tcp_active_open) { 13638 /* 13639 * We are seeing the final ack in the three way 13640 * hand shake of a active open'ed connection 13641 * so we must send up a T_CONN_CON 13642 */ 13643 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13644 freemsg(mp); 13645 return; 13646 } 13647 /* 13648 * Don't fuse the loopback endpoints for 13649 * simultaneous active opens. 13650 */ 13651 if (tcp->tcp_loopback) { 13652 TCP_STAT(tcp_fusion_unfusable); 13653 tcp->tcp_unfusable = B_TRUE; 13654 } 13655 } 13656 13657 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13658 bytes_acked--; 13659 /* SYN was acked - making progress */ 13660 if (tcp->tcp_ipversion == IPV6_VERSION) 13661 tcp->tcp_ip_forward_progress = B_TRUE; 13662 13663 /* 13664 * If SYN was retransmitted, need to reset all 13665 * retransmission info as this segment will be 13666 * treated as a dup ACK. 13667 */ 13668 if (tcp->tcp_rexmit) { 13669 tcp->tcp_rexmit = B_FALSE; 13670 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13671 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13672 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13673 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13674 tcp->tcp_ms_we_have_waited = 0; 13675 tcp->tcp_cwnd = mss; 13676 } 13677 13678 /* 13679 * We set the send window to zero here. 13680 * This is needed if there is data to be 13681 * processed already on the queue. 13682 * Later (at swnd_update label), the 13683 * "new_swnd > tcp_swnd" condition is satisfied 13684 * the XMIT_NEEDED flag is set in the current 13685 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13686 * called if there is already data on queue in 13687 * this state. 13688 */ 13689 tcp->tcp_swnd = 0; 13690 13691 if (new_swnd > tcp->tcp_max_swnd) 13692 tcp->tcp_max_swnd = new_swnd; 13693 tcp->tcp_swl1 = seg_seq; 13694 tcp->tcp_swl2 = seg_ack; 13695 tcp->tcp_state = TCPS_ESTABLISHED; 13696 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13697 13698 /* Fuse when both sides are in ESTABLISHED state */ 13699 if (tcp->tcp_loopback && do_tcp_fusion) 13700 tcp_fuse(tcp, iphdr, tcph); 13701 13702 } 13703 /* This code follows 4.4BSD-Lite2 mostly. */ 13704 if (bytes_acked < 0) 13705 goto est; 13706 13707 /* 13708 * If TCP is ECN capable and the congestion experience bit is 13709 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13710 * done once per window (or more loosely, per RTT). 13711 */ 13712 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13713 tcp->tcp_cwr = B_FALSE; 13714 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13715 if (!tcp->tcp_cwr) { 13716 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13717 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13718 tcp->tcp_cwnd = npkt * mss; 13719 /* 13720 * If the cwnd is 0, use the timer to clock out 13721 * new segments. This is required by the ECN spec. 13722 */ 13723 if (npkt == 0) { 13724 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13725 /* 13726 * This makes sure that when the ACK comes 13727 * back, we will increase tcp_cwnd by 1 MSS. 13728 */ 13729 tcp->tcp_cwnd_cnt = 0; 13730 } 13731 tcp->tcp_cwr = B_TRUE; 13732 /* 13733 * This marks the end of the current window of in 13734 * flight data. That is why we don't use 13735 * tcp_suna + tcp_swnd. Only data in flight can 13736 * provide ECN info. 13737 */ 13738 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13739 tcp->tcp_ecn_cwr_sent = B_FALSE; 13740 } 13741 } 13742 13743 mp1 = tcp->tcp_xmit_head; 13744 if (bytes_acked == 0) { 13745 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13746 int dupack_cnt; 13747 13748 BUMP_MIB(&tcp_mib, tcpInDupAck); 13749 /* 13750 * Fast retransmit. When we have seen exactly three 13751 * identical ACKs while we have unacked data 13752 * outstanding we take it as a hint that our peer 13753 * dropped something. 13754 * 13755 * If TCP is retransmitting, don't do fast retransmit. 13756 */ 13757 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13758 ! tcp->tcp_rexmit) { 13759 /* Do Limited Transmit */ 13760 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13761 tcp_dupack_fast_retransmit) { 13762 /* 13763 * RFC 3042 13764 * 13765 * What we need to do is temporarily 13766 * increase tcp_cwnd so that new 13767 * data can be sent if it is allowed 13768 * by the receive window (tcp_rwnd). 13769 * tcp_wput_data() will take care of 13770 * the rest. 13771 * 13772 * If the connection is SACK capable, 13773 * only do limited xmit when there 13774 * is SACK info. 13775 * 13776 * Note how tcp_cwnd is incremented. 13777 * The first dup ACK will increase 13778 * it by 1 MSS. The second dup ACK 13779 * will increase it by 2 MSS. This 13780 * means that only 1 new segment will 13781 * be sent for each dup ACK. 13782 */ 13783 if (tcp->tcp_unsent > 0 && 13784 (!tcp->tcp_snd_sack_ok || 13785 (tcp->tcp_snd_sack_ok && 13786 tcp->tcp_notsack_list != NULL))) { 13787 tcp->tcp_cwnd += mss << 13788 (tcp->tcp_dupack_cnt - 1); 13789 flags |= TH_LIMIT_XMIT; 13790 } 13791 } else if (dupack_cnt == 13792 tcp_dupack_fast_retransmit) { 13793 13794 /* 13795 * If we have reduced tcp_ssthresh 13796 * because of ECN, do not reduce it again 13797 * unless it is already one window of data 13798 * away. After one window of data, tcp_cwr 13799 * should then be cleared. Note that 13800 * for non ECN capable connection, tcp_cwr 13801 * should always be false. 13802 * 13803 * Adjust cwnd since the duplicate 13804 * ack indicates that a packet was 13805 * dropped (due to congestion.) 13806 */ 13807 if (!tcp->tcp_cwr) { 13808 npkt = ((tcp->tcp_snxt - 13809 tcp->tcp_suna) >> 1) / mss; 13810 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13811 mss; 13812 tcp->tcp_cwnd = (npkt + 13813 tcp->tcp_dupack_cnt) * mss; 13814 } 13815 if (tcp->tcp_ecn_ok) { 13816 tcp->tcp_cwr = B_TRUE; 13817 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13818 tcp->tcp_ecn_cwr_sent = B_FALSE; 13819 } 13820 13821 /* 13822 * We do Hoe's algorithm. Refer to her 13823 * paper "Improving the Start-up Behavior 13824 * of a Congestion Control Scheme for TCP," 13825 * appeared in SIGCOMM'96. 13826 * 13827 * Save highest seq no we have sent so far. 13828 * Be careful about the invisible FIN byte. 13829 */ 13830 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13831 (tcp->tcp_unsent == 0)) { 13832 tcp->tcp_rexmit_max = tcp->tcp_fss; 13833 } else { 13834 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13835 } 13836 13837 /* 13838 * Do not allow bursty traffic during. 13839 * fast recovery. Refer to Fall and Floyd's 13840 * paper "Simulation-based Comparisons of 13841 * Tahoe, Reno and SACK TCP" (in CCR?) 13842 * This is a best current practise. 13843 */ 13844 tcp->tcp_snd_burst = TCP_CWND_SS; 13845 13846 /* 13847 * For SACK: 13848 * Calculate tcp_pipe, which is the 13849 * estimated number of bytes in 13850 * network. 13851 * 13852 * tcp_fack is the highest sack'ed seq num 13853 * TCP has received. 13854 * 13855 * tcp_pipe is explained in the above quoted 13856 * Fall and Floyd's paper. tcp_fack is 13857 * explained in Mathis and Mahdavi's 13858 * "Forward Acknowledgment: Refining TCP 13859 * Congestion Control" in SIGCOMM '96. 13860 */ 13861 if (tcp->tcp_snd_sack_ok) { 13862 ASSERT(tcp->tcp_sack_info != NULL); 13863 if (tcp->tcp_notsack_list != NULL) { 13864 tcp->tcp_pipe = tcp->tcp_snxt - 13865 tcp->tcp_fack; 13866 tcp->tcp_sack_snxt = seg_ack; 13867 flags |= TH_NEED_SACK_REXMIT; 13868 } else { 13869 /* 13870 * Always initialize tcp_pipe 13871 * even though we don't have 13872 * any SACK info. If later 13873 * we get SACK info and 13874 * tcp_pipe is not initialized, 13875 * funny things will happen. 13876 */ 13877 tcp->tcp_pipe = 13878 tcp->tcp_cwnd_ssthresh; 13879 } 13880 } else { 13881 flags |= TH_REXMIT_NEEDED; 13882 } /* tcp_snd_sack_ok */ 13883 13884 } else { 13885 /* 13886 * Here we perform congestion 13887 * avoidance, but NOT slow start. 13888 * This is known as the Fast 13889 * Recovery Algorithm. 13890 */ 13891 if (tcp->tcp_snd_sack_ok && 13892 tcp->tcp_notsack_list != NULL) { 13893 flags |= TH_NEED_SACK_REXMIT; 13894 tcp->tcp_pipe -= mss; 13895 if (tcp->tcp_pipe < 0) 13896 tcp->tcp_pipe = 0; 13897 } else { 13898 /* 13899 * We know that one more packet has 13900 * left the pipe thus we can update 13901 * cwnd. 13902 */ 13903 cwnd = tcp->tcp_cwnd + mss; 13904 if (cwnd > tcp->tcp_cwnd_max) 13905 cwnd = tcp->tcp_cwnd_max; 13906 tcp->tcp_cwnd = cwnd; 13907 if (tcp->tcp_unsent > 0) 13908 flags |= TH_XMIT_NEEDED; 13909 } 13910 } 13911 } 13912 } else if (tcp->tcp_zero_win_probe) { 13913 /* 13914 * If the window has opened, need to arrange 13915 * to send additional data. 13916 */ 13917 if (new_swnd != 0) { 13918 /* tcp_suna != tcp_snxt */ 13919 /* Packet contains a window update */ 13920 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13921 tcp->tcp_zero_win_probe = 0; 13922 tcp->tcp_timer_backoff = 0; 13923 tcp->tcp_ms_we_have_waited = 0; 13924 13925 /* 13926 * Transmit starting with tcp_suna since 13927 * the one byte probe is not ack'ed. 13928 * If TCP has sent more than one identical 13929 * probe, tcp_rexmit will be set. That means 13930 * tcp_ss_rexmit() will send out the one 13931 * byte along with new data. Otherwise, 13932 * fake the retransmission. 13933 */ 13934 flags |= TH_XMIT_NEEDED; 13935 if (!tcp->tcp_rexmit) { 13936 tcp->tcp_rexmit = B_TRUE; 13937 tcp->tcp_dupack_cnt = 0; 13938 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13939 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13940 } 13941 } 13942 } 13943 goto swnd_update; 13944 } 13945 13946 /* 13947 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13948 * If the ACK value acks something that we have not yet sent, it might 13949 * be an old duplicate segment. Send an ACK to re-synchronize the 13950 * other side. 13951 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13952 * state is handled above, so we can always just drop the segment and 13953 * send an ACK here. 13954 * 13955 * Should we send ACKs in response to ACK only segments? 13956 */ 13957 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13958 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13959 /* drop the received segment */ 13960 freemsg(mp); 13961 13962 /* 13963 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13964 * greater than 0, check if the number of such 13965 * bogus ACks is greater than that count. If yes, 13966 * don't send back any ACK. This prevents TCP from 13967 * getting into an ACK storm if somehow an attacker 13968 * successfully spoofs an acceptable segment to our 13969 * peer. 13970 */ 13971 if (tcp_drop_ack_unsent_cnt > 0 && 13972 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13973 TCP_STAT(tcp_in_ack_unsent_drop); 13974 return; 13975 } 13976 mp = tcp_ack_mp(tcp); 13977 if (mp != NULL) { 13978 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13979 BUMP_LOCAL(tcp->tcp_obsegs); 13980 BUMP_MIB(&tcp_mib, tcpOutAck); 13981 tcp_send_data(tcp, tcp->tcp_wq, mp); 13982 } 13983 return; 13984 } 13985 13986 /* 13987 * TCP gets a new ACK, update the notsack'ed list to delete those 13988 * blocks that are covered by this ACK. 13989 */ 13990 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13991 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13992 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13993 } 13994 13995 /* 13996 * If we got an ACK after fast retransmit, check to see 13997 * if it is a partial ACK. If it is not and the congestion 13998 * window was inflated to account for the other side's 13999 * cached packets, retract it. If it is, do Hoe's algorithm. 14000 */ 14001 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14002 ASSERT(tcp->tcp_rexmit == B_FALSE); 14003 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14004 tcp->tcp_dupack_cnt = 0; 14005 /* 14006 * Restore the orig tcp_cwnd_ssthresh after 14007 * fast retransmit phase. 14008 */ 14009 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14010 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14011 } 14012 tcp->tcp_rexmit_max = seg_ack; 14013 tcp->tcp_cwnd_cnt = 0; 14014 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14015 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14016 14017 /* 14018 * Remove all notsack info to avoid confusion with 14019 * the next fast retrasnmit/recovery phase. 14020 */ 14021 if (tcp->tcp_snd_sack_ok && 14022 tcp->tcp_notsack_list != NULL) { 14023 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14024 } 14025 } else { 14026 if (tcp->tcp_snd_sack_ok && 14027 tcp->tcp_notsack_list != NULL) { 14028 flags |= TH_NEED_SACK_REXMIT; 14029 tcp->tcp_pipe -= mss; 14030 if (tcp->tcp_pipe < 0) 14031 tcp->tcp_pipe = 0; 14032 } else { 14033 /* 14034 * Hoe's algorithm: 14035 * 14036 * Retransmit the unack'ed segment and 14037 * restart fast recovery. Note that we 14038 * need to scale back tcp_cwnd to the 14039 * original value when we started fast 14040 * recovery. This is to prevent overly 14041 * aggressive behaviour in sending new 14042 * segments. 14043 */ 14044 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14045 tcp_dupack_fast_retransmit * mss; 14046 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14047 flags |= TH_REXMIT_NEEDED; 14048 } 14049 } 14050 } else { 14051 tcp->tcp_dupack_cnt = 0; 14052 if (tcp->tcp_rexmit) { 14053 /* 14054 * TCP is retranmitting. If the ACK ack's all 14055 * outstanding data, update tcp_rexmit_max and 14056 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14057 * to the correct value. 14058 * 14059 * Note that SEQ_LEQ() is used. This is to avoid 14060 * unnecessary fast retransmit caused by dup ACKs 14061 * received when TCP does slow start retransmission 14062 * after a time out. During this phase, TCP may 14063 * send out segments which are already received. 14064 * This causes dup ACKs to be sent back. 14065 */ 14066 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14067 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14068 tcp->tcp_rexmit_nxt = seg_ack; 14069 } 14070 if (seg_ack != tcp->tcp_rexmit_max) { 14071 flags |= TH_XMIT_NEEDED; 14072 } 14073 } else { 14074 tcp->tcp_rexmit = B_FALSE; 14075 tcp->tcp_xmit_zc_clean = B_FALSE; 14076 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14077 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14078 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14079 } 14080 tcp->tcp_ms_we_have_waited = 0; 14081 } 14082 } 14083 14084 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14085 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14086 tcp->tcp_suna = seg_ack; 14087 if (tcp->tcp_zero_win_probe != 0) { 14088 tcp->tcp_zero_win_probe = 0; 14089 tcp->tcp_timer_backoff = 0; 14090 } 14091 14092 /* 14093 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14094 * Note that it cannot be the SYN being ack'ed. The code flow 14095 * will not reach here. 14096 */ 14097 if (mp1 == NULL) { 14098 goto fin_acked; 14099 } 14100 14101 /* 14102 * Update the congestion window. 14103 * 14104 * If TCP is not ECN capable or TCP is ECN capable but the 14105 * congestion experience bit is not set, increase the tcp_cwnd as 14106 * usual. 14107 */ 14108 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14109 cwnd = tcp->tcp_cwnd; 14110 add = mss; 14111 14112 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14113 /* 14114 * This is to prevent an increase of less than 1 MSS of 14115 * tcp_cwnd. With partial increase, tcp_wput_data() 14116 * may send out tinygrams in order to preserve mblk 14117 * boundaries. 14118 * 14119 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14120 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14121 * increased by 1 MSS for every RTTs. 14122 */ 14123 if (tcp->tcp_cwnd_cnt <= 0) { 14124 tcp->tcp_cwnd_cnt = cwnd + add; 14125 } else { 14126 tcp->tcp_cwnd_cnt -= add; 14127 add = 0; 14128 } 14129 } 14130 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14131 } 14132 14133 /* See if the latest urgent data has been acknowledged */ 14134 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14135 SEQ_GT(seg_ack, tcp->tcp_urg)) 14136 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14137 14138 /* Can we update the RTT estimates? */ 14139 if (tcp->tcp_snd_ts_ok) { 14140 /* Ignore zero timestamp echo-reply. */ 14141 if (tcpopt.tcp_opt_ts_ecr != 0) { 14142 tcp_set_rto(tcp, (int32_t)lbolt - 14143 (int32_t)tcpopt.tcp_opt_ts_ecr); 14144 } 14145 14146 /* If needed, restart the timer. */ 14147 if (tcp->tcp_set_timer == 1) { 14148 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14149 tcp->tcp_set_timer = 0; 14150 } 14151 /* 14152 * Update tcp_csuna in case the other side stops sending 14153 * us timestamps. 14154 */ 14155 tcp->tcp_csuna = tcp->tcp_snxt; 14156 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14157 /* 14158 * An ACK sequence we haven't seen before, so get the RTT 14159 * and update the RTO. But first check if the timestamp is 14160 * valid to use. 14161 */ 14162 if ((mp1->b_next != NULL) && 14163 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14164 tcp_set_rto(tcp, (int32_t)lbolt - 14165 (int32_t)(intptr_t)mp1->b_prev); 14166 else 14167 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14168 14169 /* Remeber the last sequence to be ACKed */ 14170 tcp->tcp_csuna = seg_ack; 14171 if (tcp->tcp_set_timer == 1) { 14172 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14173 tcp->tcp_set_timer = 0; 14174 } 14175 } else { 14176 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14177 } 14178 14179 /* Eat acknowledged bytes off the xmit queue. */ 14180 for (;;) { 14181 mblk_t *mp2; 14182 uchar_t *wptr; 14183 14184 wptr = mp1->b_wptr; 14185 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14186 bytes_acked -= (int)(wptr - mp1->b_rptr); 14187 if (bytes_acked < 0) { 14188 mp1->b_rptr = wptr + bytes_acked; 14189 /* 14190 * Set a new timestamp if all the bytes timed by the 14191 * old timestamp have been ack'ed. 14192 */ 14193 if (SEQ_GT(seg_ack, 14194 (uint32_t)(uintptr_t)(mp1->b_next))) { 14195 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14196 mp1->b_next = NULL; 14197 } 14198 break; 14199 } 14200 mp1->b_next = NULL; 14201 mp1->b_prev = NULL; 14202 mp2 = mp1; 14203 mp1 = mp1->b_cont; 14204 14205 /* 14206 * This notification is required for some zero-copy 14207 * clients to maintain a copy semantic. After the data 14208 * is ack'ed, client is safe to modify or reuse the buffer. 14209 */ 14210 if (tcp->tcp_snd_zcopy_aware && 14211 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14212 tcp_zcopy_notify(tcp); 14213 freeb(mp2); 14214 if (bytes_acked == 0) { 14215 if (mp1 == NULL) { 14216 /* Everything is ack'ed, clear the tail. */ 14217 tcp->tcp_xmit_tail = NULL; 14218 /* 14219 * Cancel the timer unless we are still 14220 * waiting for an ACK for the FIN packet. 14221 */ 14222 if (tcp->tcp_timer_tid != 0 && 14223 tcp->tcp_snxt == tcp->tcp_suna) { 14224 (void) TCP_TIMER_CANCEL(tcp, 14225 tcp->tcp_timer_tid); 14226 tcp->tcp_timer_tid = 0; 14227 } 14228 goto pre_swnd_update; 14229 } 14230 if (mp2 != tcp->tcp_xmit_tail) 14231 break; 14232 tcp->tcp_xmit_tail = mp1; 14233 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14234 (uintptr_t)INT_MAX); 14235 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14236 mp1->b_rptr); 14237 break; 14238 } 14239 if (mp1 == NULL) { 14240 /* 14241 * More was acked but there is nothing more 14242 * outstanding. This means that the FIN was 14243 * just acked or that we're talking to a clown. 14244 */ 14245 fin_acked: 14246 ASSERT(tcp->tcp_fin_sent); 14247 tcp->tcp_xmit_tail = NULL; 14248 if (tcp->tcp_fin_sent) { 14249 /* FIN was acked - making progress */ 14250 if (tcp->tcp_ipversion == IPV6_VERSION && 14251 !tcp->tcp_fin_acked) 14252 tcp->tcp_ip_forward_progress = B_TRUE; 14253 tcp->tcp_fin_acked = B_TRUE; 14254 if (tcp->tcp_linger_tid != 0 && 14255 TCP_TIMER_CANCEL(tcp, 14256 tcp->tcp_linger_tid) >= 0) { 14257 tcp_stop_lingering(tcp); 14258 } 14259 } else { 14260 /* 14261 * We should never get here because 14262 * we have already checked that the 14263 * number of bytes ack'ed should be 14264 * smaller than or equal to what we 14265 * have sent so far (it is the 14266 * acceptability check of the ACK). 14267 * We can only get here if the send 14268 * queue is corrupted. 14269 * 14270 * Terminate the connection and 14271 * panic the system. It is better 14272 * for us to panic instead of 14273 * continuing to avoid other disaster. 14274 */ 14275 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14276 tcp->tcp_rnxt, TH_RST|TH_ACK); 14277 panic("Memory corruption " 14278 "detected for connection %s.", 14279 tcp_display(tcp, NULL, 14280 DISP_ADDR_AND_PORT)); 14281 /*NOTREACHED*/ 14282 } 14283 goto pre_swnd_update; 14284 } 14285 ASSERT(mp2 != tcp->tcp_xmit_tail); 14286 } 14287 if (tcp->tcp_unsent) { 14288 flags |= TH_XMIT_NEEDED; 14289 } 14290 pre_swnd_update: 14291 tcp->tcp_xmit_head = mp1; 14292 swnd_update: 14293 /* 14294 * The following check is different from most other implementations. 14295 * For bi-directional transfer, when segments are dropped, the 14296 * "normal" check will not accept a window update in those 14297 * retransmitted segemnts. Failing to do that, TCP may send out 14298 * segments which are outside receiver's window. As TCP accepts 14299 * the ack in those retransmitted segments, if the window update in 14300 * the same segment is not accepted, TCP will incorrectly calculates 14301 * that it can send more segments. This can create a deadlock 14302 * with the receiver if its window becomes zero. 14303 */ 14304 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14305 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14306 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14307 /* 14308 * The criteria for update is: 14309 * 14310 * 1. the segment acknowledges some data. Or 14311 * 2. the segment is new, i.e. it has a higher seq num. Or 14312 * 3. the segment is not old and the advertised window is 14313 * larger than the previous advertised window. 14314 */ 14315 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14316 flags |= TH_XMIT_NEEDED; 14317 tcp->tcp_swnd = new_swnd; 14318 if (new_swnd > tcp->tcp_max_swnd) 14319 tcp->tcp_max_swnd = new_swnd; 14320 tcp->tcp_swl1 = seg_seq; 14321 tcp->tcp_swl2 = seg_ack; 14322 } 14323 est: 14324 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14325 14326 switch (tcp->tcp_state) { 14327 case TCPS_FIN_WAIT_1: 14328 if (tcp->tcp_fin_acked) { 14329 tcp->tcp_state = TCPS_FIN_WAIT_2; 14330 /* 14331 * We implement the non-standard BSD/SunOS 14332 * FIN_WAIT_2 flushing algorithm. 14333 * If there is no user attached to this 14334 * TCP endpoint, then this TCP struct 14335 * could hang around forever in FIN_WAIT_2 14336 * state if the peer forgets to send us 14337 * a FIN. To prevent this, we wait only 14338 * 2*MSL (a convenient time value) for 14339 * the FIN to arrive. If it doesn't show up, 14340 * we flush the TCP endpoint. This algorithm, 14341 * though a violation of RFC-793, has worked 14342 * for over 10 years in BSD systems. 14343 * Note: SunOS 4.x waits 675 seconds before 14344 * flushing the FIN_WAIT_2 connection. 14345 */ 14346 TCP_TIMER_RESTART(tcp, 14347 tcp_fin_wait_2_flush_interval); 14348 } 14349 break; 14350 case TCPS_FIN_WAIT_2: 14351 break; /* Shutdown hook? */ 14352 case TCPS_LAST_ACK: 14353 freemsg(mp); 14354 if (tcp->tcp_fin_acked) { 14355 (void) tcp_clean_death(tcp, 0, 19); 14356 return; 14357 } 14358 goto xmit_check; 14359 case TCPS_CLOSING: 14360 if (tcp->tcp_fin_acked) { 14361 tcp->tcp_state = TCPS_TIME_WAIT; 14362 /* 14363 * Unconditionally clear the exclusive binding 14364 * bit so this TIME-WAIT connection won't 14365 * interfere with new ones. 14366 */ 14367 tcp->tcp_exclbind = 0; 14368 if (!TCP_IS_DETACHED(tcp)) { 14369 TCP_TIMER_RESTART(tcp, 14370 tcp_time_wait_interval); 14371 } else { 14372 tcp_time_wait_append(tcp); 14373 TCP_DBGSTAT(tcp_rput_time_wait); 14374 } 14375 } 14376 /*FALLTHRU*/ 14377 case TCPS_CLOSE_WAIT: 14378 freemsg(mp); 14379 goto xmit_check; 14380 default: 14381 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14382 break; 14383 } 14384 } 14385 if (flags & TH_FIN) { 14386 /* Make sure we ack the fin */ 14387 flags |= TH_ACK_NEEDED; 14388 if (!tcp->tcp_fin_rcvd) { 14389 tcp->tcp_fin_rcvd = B_TRUE; 14390 tcp->tcp_rnxt++; 14391 tcph = tcp->tcp_tcph; 14392 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14393 14394 /* 14395 * Generate the ordrel_ind at the end unless we 14396 * are an eager guy. 14397 * In the eager case tcp_rsrv will do this when run 14398 * after tcp_accept is done. 14399 */ 14400 if (tcp->tcp_listener == NULL && 14401 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14402 flags |= TH_ORDREL_NEEDED; 14403 switch (tcp->tcp_state) { 14404 case TCPS_SYN_RCVD: 14405 case TCPS_ESTABLISHED: 14406 tcp->tcp_state = TCPS_CLOSE_WAIT; 14407 /* Keepalive? */ 14408 break; 14409 case TCPS_FIN_WAIT_1: 14410 if (!tcp->tcp_fin_acked) { 14411 tcp->tcp_state = TCPS_CLOSING; 14412 break; 14413 } 14414 /* FALLTHRU */ 14415 case TCPS_FIN_WAIT_2: 14416 tcp->tcp_state = TCPS_TIME_WAIT; 14417 /* 14418 * Unconditionally clear the exclusive binding 14419 * bit so this TIME-WAIT connection won't 14420 * interfere with new ones. 14421 */ 14422 tcp->tcp_exclbind = 0; 14423 if (!TCP_IS_DETACHED(tcp)) { 14424 TCP_TIMER_RESTART(tcp, 14425 tcp_time_wait_interval); 14426 } else { 14427 tcp_time_wait_append(tcp); 14428 TCP_DBGSTAT(tcp_rput_time_wait); 14429 } 14430 if (seg_len) { 14431 /* 14432 * implies data piggybacked on FIN. 14433 * break to handle data. 14434 */ 14435 break; 14436 } 14437 freemsg(mp); 14438 goto ack_check; 14439 } 14440 } 14441 } 14442 if (mp == NULL) 14443 goto xmit_check; 14444 if (seg_len == 0) { 14445 freemsg(mp); 14446 goto xmit_check; 14447 } 14448 if (mp->b_rptr == mp->b_wptr) { 14449 /* 14450 * The header has been consumed, so we remove the 14451 * zero-length mblk here. 14452 */ 14453 mp1 = mp; 14454 mp = mp->b_cont; 14455 freeb(mp1); 14456 } 14457 tcph = tcp->tcp_tcph; 14458 tcp->tcp_rack_cnt++; 14459 { 14460 uint32_t cur_max; 14461 14462 cur_max = tcp->tcp_rack_cur_max; 14463 if (tcp->tcp_rack_cnt >= cur_max) { 14464 /* 14465 * We have more unacked data than we should - send 14466 * an ACK now. 14467 */ 14468 flags |= TH_ACK_NEEDED; 14469 cur_max++; 14470 if (cur_max > tcp->tcp_rack_abs_max) 14471 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14472 else 14473 tcp->tcp_rack_cur_max = cur_max; 14474 } else if (TCP_IS_DETACHED(tcp)) { 14475 /* We don't have an ACK timer for detached TCP. */ 14476 flags |= TH_ACK_NEEDED; 14477 } else if (seg_len < mss) { 14478 /* 14479 * If we get a segment that is less than an mss, and we 14480 * already have unacknowledged data, and the amount 14481 * unacknowledged is not a multiple of mss, then we 14482 * better generate an ACK now. Otherwise, this may be 14483 * the tail piece of a transaction, and we would rather 14484 * wait for the response. 14485 */ 14486 uint32_t udif; 14487 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14488 (uintptr_t)INT_MAX); 14489 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14490 if (udif && (udif % mss)) 14491 flags |= TH_ACK_NEEDED; 14492 else 14493 flags |= TH_ACK_TIMER_NEEDED; 14494 } else { 14495 /* Start delayed ack timer */ 14496 flags |= TH_ACK_TIMER_NEEDED; 14497 } 14498 } 14499 tcp->tcp_rnxt += seg_len; 14500 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14501 14502 /* Update SACK list */ 14503 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14504 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14505 &(tcp->tcp_num_sack_blk)); 14506 } 14507 14508 if (tcp->tcp_urp_mp) { 14509 tcp->tcp_urp_mp->b_cont = mp; 14510 mp = tcp->tcp_urp_mp; 14511 tcp->tcp_urp_mp = NULL; 14512 /* Ready for a new signal. */ 14513 tcp->tcp_urp_last_valid = B_FALSE; 14514 #ifdef DEBUG 14515 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14516 "tcp_rput: sending exdata_ind %s", 14517 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14518 #endif /* DEBUG */ 14519 } 14520 14521 /* 14522 * Check for ancillary data changes compared to last segment. 14523 */ 14524 if (tcp->tcp_ipv6_recvancillary != 0) { 14525 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14526 if (mp == NULL) 14527 return; 14528 } 14529 14530 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14531 /* 14532 * Side queue inbound data until the accept happens. 14533 * tcp_accept/tcp_rput drains this when the accept happens. 14534 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14535 * T_EXDATA_IND) it is queued on b_next. 14536 * XXX Make urgent data use this. Requires: 14537 * Removing tcp_listener check for TH_URG 14538 * Making M_PCPROTO and MARK messages skip the eager case 14539 */ 14540 14541 if (tcp->tcp_kssl_pending) { 14542 tcp_kssl_input(tcp, mp); 14543 } else { 14544 tcp_rcv_enqueue(tcp, mp, seg_len); 14545 } 14546 } else { 14547 if (mp->b_datap->db_type != M_DATA || 14548 (flags & TH_MARKNEXT_NEEDED)) { 14549 if (tcp->tcp_rcv_list != NULL) { 14550 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14551 } 14552 ASSERT(tcp->tcp_rcv_list == NULL || 14553 tcp->tcp_fused_sigurg); 14554 if (flags & TH_MARKNEXT_NEEDED) { 14555 #ifdef DEBUG 14556 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14557 "tcp_rput: sending MSGMARKNEXT %s", 14558 tcp_display(tcp, NULL, 14559 DISP_PORT_ONLY)); 14560 #endif /* DEBUG */ 14561 mp->b_flag |= MSGMARKNEXT; 14562 flags &= ~TH_MARKNEXT_NEEDED; 14563 } 14564 14565 /* Does this need SSL processing first? */ 14566 if ((tcp->tcp_kssl_ctx != NULL) && 14567 (DB_TYPE(mp) == M_DATA)) { 14568 tcp_kssl_input(tcp, mp); 14569 } else { 14570 putnext(tcp->tcp_rq, mp); 14571 if (!canputnext(tcp->tcp_rq)) 14572 tcp->tcp_rwnd -= seg_len; 14573 } 14574 } else if ((flags & (TH_PUSH|TH_FIN)) || 14575 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14576 if (tcp->tcp_rcv_list != NULL) { 14577 /* 14578 * Enqueue the new segment first and then 14579 * call tcp_rcv_drain() to send all data 14580 * up. The other way to do this is to 14581 * send all queued data up and then call 14582 * putnext() to send the new segment up. 14583 * This way can remove the else part later 14584 * on. 14585 * 14586 * We don't this to avoid one more call to 14587 * canputnext() as tcp_rcv_drain() needs to 14588 * call canputnext(). 14589 */ 14590 tcp_rcv_enqueue(tcp, mp, seg_len); 14591 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14592 } else { 14593 /* Does this need SSL processing first? */ 14594 if ((tcp->tcp_kssl_ctx != NULL) && 14595 (DB_TYPE(mp) == M_DATA)) { 14596 tcp_kssl_input(tcp, mp); 14597 } else { 14598 putnext(tcp->tcp_rq, mp); 14599 if (!canputnext(tcp->tcp_rq)) 14600 tcp->tcp_rwnd -= seg_len; 14601 } 14602 } 14603 } else { 14604 /* 14605 * Enqueue all packets when processing an mblk 14606 * from the co queue and also enqueue normal packets. 14607 */ 14608 tcp_rcv_enqueue(tcp, mp, seg_len); 14609 } 14610 /* 14611 * Make sure the timer is running if we have data waiting 14612 * for a push bit. This provides resiliency against 14613 * implementations that do not correctly generate push bits. 14614 */ 14615 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14616 /* 14617 * The connection may be closed at this point, so don't 14618 * do anything for a detached tcp. 14619 */ 14620 if (!TCP_IS_DETACHED(tcp)) 14621 tcp->tcp_push_tid = TCP_TIMER(tcp, 14622 tcp_push_timer, 14623 MSEC_TO_TICK(tcp_push_timer_interval)); 14624 } 14625 } 14626 xmit_check: 14627 /* Is there anything left to do? */ 14628 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14629 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14630 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14631 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14632 goto done; 14633 14634 /* Any transmit work to do and a non-zero window? */ 14635 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14636 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14637 if (flags & TH_REXMIT_NEEDED) { 14638 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14639 14640 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14641 if (snd_size > mss) 14642 snd_size = mss; 14643 if (snd_size > tcp->tcp_swnd) 14644 snd_size = tcp->tcp_swnd; 14645 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14646 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14647 B_TRUE); 14648 14649 if (mp1 != NULL) { 14650 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14651 tcp->tcp_csuna = tcp->tcp_snxt; 14652 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14653 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14654 TCP_RECORD_TRACE(tcp, mp1, 14655 TCP_TRACE_SEND_PKT); 14656 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14657 } 14658 } 14659 if (flags & TH_NEED_SACK_REXMIT) { 14660 tcp_sack_rxmit(tcp, &flags); 14661 } 14662 /* 14663 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14664 * out new segment. Note that tcp_rexmit should not be 14665 * set, otherwise TH_LIMIT_XMIT should not be set. 14666 */ 14667 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14668 if (!tcp->tcp_rexmit) { 14669 tcp_wput_data(tcp, NULL, B_FALSE); 14670 } else { 14671 tcp_ss_rexmit(tcp); 14672 } 14673 } 14674 /* 14675 * Adjust tcp_cwnd back to normal value after sending 14676 * new data segments. 14677 */ 14678 if (flags & TH_LIMIT_XMIT) { 14679 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14680 /* 14681 * This will restart the timer. Restarting the 14682 * timer is used to avoid a timeout before the 14683 * limited transmitted segment's ACK gets back. 14684 */ 14685 if (tcp->tcp_xmit_head != NULL) 14686 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14687 } 14688 14689 /* Anything more to do? */ 14690 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14691 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14692 goto done; 14693 } 14694 ack_check: 14695 if (flags & TH_SEND_URP_MARK) { 14696 ASSERT(tcp->tcp_urp_mark_mp); 14697 /* 14698 * Send up any queued data and then send the mark message 14699 */ 14700 if (tcp->tcp_rcv_list != NULL) { 14701 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14702 } 14703 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14704 14705 mp1 = tcp->tcp_urp_mark_mp; 14706 tcp->tcp_urp_mark_mp = NULL; 14707 #ifdef DEBUG 14708 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14709 "tcp_rput: sending zero-length %s %s", 14710 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14711 "MSGNOTMARKNEXT"), 14712 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14713 #endif /* DEBUG */ 14714 putnext(tcp->tcp_rq, mp1); 14715 flags &= ~TH_SEND_URP_MARK; 14716 } 14717 if (flags & TH_ACK_NEEDED) { 14718 /* 14719 * Time to send an ack for some reason. 14720 */ 14721 mp1 = tcp_ack_mp(tcp); 14722 14723 if (mp1 != NULL) { 14724 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14725 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14726 BUMP_LOCAL(tcp->tcp_obsegs); 14727 BUMP_MIB(&tcp_mib, tcpOutAck); 14728 } 14729 if (tcp->tcp_ack_tid != 0) { 14730 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14731 tcp->tcp_ack_tid = 0; 14732 } 14733 } 14734 if (flags & TH_ACK_TIMER_NEEDED) { 14735 /* 14736 * Arrange for deferred ACK or push wait timeout. 14737 * Start timer if it is not already running. 14738 */ 14739 if (tcp->tcp_ack_tid == 0) { 14740 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14741 MSEC_TO_TICK(tcp->tcp_localnet ? 14742 (clock_t)tcp_local_dack_interval : 14743 (clock_t)tcp_deferred_ack_interval)); 14744 } 14745 } 14746 if (flags & TH_ORDREL_NEEDED) { 14747 /* 14748 * Send up the ordrel_ind unless we are an eager guy. 14749 * In the eager case tcp_rsrv will do this when run 14750 * after tcp_accept is done. 14751 */ 14752 ASSERT(tcp->tcp_listener == NULL); 14753 if (tcp->tcp_rcv_list != NULL) { 14754 /* 14755 * Push any mblk(s) enqueued from co processing. 14756 */ 14757 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14758 } 14759 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14760 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14761 tcp->tcp_ordrel_done = B_TRUE; 14762 putnext(tcp->tcp_rq, mp1); 14763 if (tcp->tcp_deferred_clean_death) { 14764 /* 14765 * tcp_clean_death was deferred 14766 * for T_ORDREL_IND - do it now 14767 */ 14768 (void) tcp_clean_death(tcp, 14769 tcp->tcp_client_errno, 20); 14770 tcp->tcp_deferred_clean_death = B_FALSE; 14771 } 14772 } else { 14773 /* 14774 * Run the orderly release in the 14775 * service routine. 14776 */ 14777 qenable(tcp->tcp_rq); 14778 /* 14779 * Caveat(XXX): The machine may be so 14780 * overloaded that tcp_rsrv() is not scheduled 14781 * until after the endpoint has transitioned 14782 * to TCPS_TIME_WAIT 14783 * and tcp_time_wait_interval expires. Then 14784 * tcp_timer() will blow away state in tcp_t 14785 * and T_ORDREL_IND will never be delivered 14786 * upstream. Unlikely but potentially 14787 * a problem. 14788 */ 14789 } 14790 } 14791 done: 14792 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14793 } 14794 14795 /* 14796 * This function does PAWS protection check. Returns B_TRUE if the 14797 * segment passes the PAWS test, else returns B_FALSE. 14798 */ 14799 boolean_t 14800 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14801 { 14802 uint8_t flags; 14803 int options; 14804 uint8_t *up; 14805 14806 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14807 /* 14808 * If timestamp option is aligned nicely, get values inline, 14809 * otherwise call general routine to parse. Only do that 14810 * if timestamp is the only option. 14811 */ 14812 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14813 TCPOPT_REAL_TS_LEN && 14814 OK_32PTR((up = ((uint8_t *)tcph) + 14815 TCP_MIN_HEADER_LENGTH)) && 14816 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14817 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14818 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14819 14820 options = TCP_OPT_TSTAMP_PRESENT; 14821 } else { 14822 if (tcp->tcp_snd_sack_ok) { 14823 tcpoptp->tcp = tcp; 14824 } else { 14825 tcpoptp->tcp = NULL; 14826 } 14827 options = tcp_parse_options(tcph, tcpoptp); 14828 } 14829 14830 if (options & TCP_OPT_TSTAMP_PRESENT) { 14831 /* 14832 * Do PAWS per RFC 1323 section 4.2. Accept RST 14833 * regardless of the timestamp, page 18 RFC 1323.bis. 14834 */ 14835 if ((flags & TH_RST) == 0 && 14836 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14837 tcp->tcp_ts_recent)) { 14838 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14839 PAWS_TIMEOUT)) { 14840 /* This segment is not acceptable. */ 14841 return (B_FALSE); 14842 } else { 14843 /* 14844 * Connection has been idle for 14845 * too long. Reset the timestamp 14846 * and assume the segment is valid. 14847 */ 14848 tcp->tcp_ts_recent = 14849 tcpoptp->tcp_opt_ts_val; 14850 } 14851 } 14852 } else { 14853 /* 14854 * If we don't get a timestamp on every packet, we 14855 * figure we can't really trust 'em, so we stop sending 14856 * and parsing them. 14857 */ 14858 tcp->tcp_snd_ts_ok = B_FALSE; 14859 14860 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14861 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14862 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14863 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14864 if (tcp->tcp_snd_sack_ok) { 14865 ASSERT(tcp->tcp_sack_info != NULL); 14866 tcp->tcp_max_sack_blk = 4; 14867 } 14868 } 14869 return (B_TRUE); 14870 } 14871 14872 /* 14873 * Attach ancillary data to a received TCP segments for the 14874 * ancillary pieces requested by the application that are 14875 * different than they were in the previous data segment. 14876 * 14877 * Save the "current" values once memory allocation is ok so that 14878 * when memory allocation fails we can just wait for the next data segment. 14879 */ 14880 static mblk_t * 14881 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14882 { 14883 struct T_optdata_ind *todi; 14884 int optlen; 14885 uchar_t *optptr; 14886 struct T_opthdr *toh; 14887 uint_t addflag; /* Which pieces to add */ 14888 mblk_t *mp1; 14889 14890 optlen = 0; 14891 addflag = 0; 14892 /* If app asked for pktinfo and the index has changed ... */ 14893 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14894 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14895 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14896 optlen += sizeof (struct T_opthdr) + 14897 sizeof (struct in6_pktinfo); 14898 addflag |= TCP_IPV6_RECVPKTINFO; 14899 } 14900 /* If app asked for hoplimit and it has changed ... */ 14901 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14902 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14903 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14904 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14905 addflag |= TCP_IPV6_RECVHOPLIMIT; 14906 } 14907 /* If app asked for tclass and it has changed ... */ 14908 if ((ipp->ipp_fields & IPPF_TCLASS) && 14909 ipp->ipp_tclass != tcp->tcp_recvtclass && 14910 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14911 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14912 addflag |= TCP_IPV6_RECVTCLASS; 14913 } 14914 /* 14915 * If app asked for hopbyhop headers and it has changed ... 14916 * For security labels, note that (1) security labels can't change on 14917 * a connected socket at all, (2) we're connected to at most one peer, 14918 * (3) if anything changes, then it must be some other extra option. 14919 */ 14920 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14921 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14922 (ipp->ipp_fields & IPPF_HOPOPTS), 14923 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14924 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 14925 tcp->tcp_label_len; 14926 addflag |= TCP_IPV6_RECVHOPOPTS; 14927 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 14928 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 14929 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14930 return (mp); 14931 } 14932 /* If app asked for dst headers before routing headers ... */ 14933 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14934 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14935 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14936 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14937 optlen += sizeof (struct T_opthdr) + 14938 ipp->ipp_rtdstoptslen; 14939 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14940 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 14941 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 14942 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14943 return (mp); 14944 } 14945 /* If app asked for routing headers and it has changed ... */ 14946 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14947 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14948 (ipp->ipp_fields & IPPF_RTHDR), 14949 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14950 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14951 addflag |= TCP_IPV6_RECVRTHDR; 14952 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 14953 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 14954 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14955 return (mp); 14956 } 14957 /* If app asked for dest headers and it has changed ... */ 14958 if ((tcp->tcp_ipv6_recvancillary & 14959 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14960 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14961 (ipp->ipp_fields & IPPF_DSTOPTS), 14962 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14963 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14964 addflag |= TCP_IPV6_RECVDSTOPTS; 14965 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 14966 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 14967 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14968 return (mp); 14969 } 14970 14971 if (optlen == 0) { 14972 /* Nothing to add */ 14973 return (mp); 14974 } 14975 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14976 if (mp1 == NULL) { 14977 /* 14978 * Defer sending ancillary data until the next TCP segment 14979 * arrives. 14980 */ 14981 return (mp); 14982 } 14983 mp1->b_cont = mp; 14984 mp = mp1; 14985 mp->b_wptr += sizeof (*todi) + optlen; 14986 mp->b_datap->db_type = M_PROTO; 14987 todi = (struct T_optdata_ind *)mp->b_rptr; 14988 todi->PRIM_type = T_OPTDATA_IND; 14989 todi->DATA_flag = 1; /* MORE data */ 14990 todi->OPT_length = optlen; 14991 todi->OPT_offset = sizeof (*todi); 14992 optptr = (uchar_t *)&todi[1]; 14993 /* 14994 * If app asked for pktinfo and the index has changed ... 14995 * Note that the local address never changes for the connection. 14996 */ 14997 if (addflag & TCP_IPV6_RECVPKTINFO) { 14998 struct in6_pktinfo *pkti; 14999 15000 toh = (struct T_opthdr *)optptr; 15001 toh->level = IPPROTO_IPV6; 15002 toh->name = IPV6_PKTINFO; 15003 toh->len = sizeof (*toh) + sizeof (*pkti); 15004 toh->status = 0; 15005 optptr += sizeof (*toh); 15006 pkti = (struct in6_pktinfo *)optptr; 15007 if (tcp->tcp_ipversion == IPV6_VERSION) 15008 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15009 else 15010 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15011 &pkti->ipi6_addr); 15012 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15013 optptr += sizeof (*pkti); 15014 ASSERT(OK_32PTR(optptr)); 15015 /* Save as "last" value */ 15016 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15017 } 15018 /* If app asked for hoplimit and it has changed ... */ 15019 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15020 toh = (struct T_opthdr *)optptr; 15021 toh->level = IPPROTO_IPV6; 15022 toh->name = IPV6_HOPLIMIT; 15023 toh->len = sizeof (*toh) + sizeof (uint_t); 15024 toh->status = 0; 15025 optptr += sizeof (*toh); 15026 *(uint_t *)optptr = ipp->ipp_hoplimit; 15027 optptr += sizeof (uint_t); 15028 ASSERT(OK_32PTR(optptr)); 15029 /* Save as "last" value */ 15030 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15031 } 15032 /* If app asked for tclass and it has changed ... */ 15033 if (addflag & TCP_IPV6_RECVTCLASS) { 15034 toh = (struct T_opthdr *)optptr; 15035 toh->level = IPPROTO_IPV6; 15036 toh->name = IPV6_TCLASS; 15037 toh->len = sizeof (*toh) + sizeof (uint_t); 15038 toh->status = 0; 15039 optptr += sizeof (*toh); 15040 *(uint_t *)optptr = ipp->ipp_tclass; 15041 optptr += sizeof (uint_t); 15042 ASSERT(OK_32PTR(optptr)); 15043 /* Save as "last" value */ 15044 tcp->tcp_recvtclass = ipp->ipp_tclass; 15045 } 15046 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15047 toh = (struct T_opthdr *)optptr; 15048 toh->level = IPPROTO_IPV6; 15049 toh->name = IPV6_HOPOPTS; 15050 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15051 tcp->tcp_label_len; 15052 toh->status = 0; 15053 optptr += sizeof (*toh); 15054 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15055 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15056 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15057 ASSERT(OK_32PTR(optptr)); 15058 /* Save as last value */ 15059 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15060 (ipp->ipp_fields & IPPF_HOPOPTS), 15061 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15062 } 15063 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15064 toh = (struct T_opthdr *)optptr; 15065 toh->level = IPPROTO_IPV6; 15066 toh->name = IPV6_RTHDRDSTOPTS; 15067 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15068 toh->status = 0; 15069 optptr += sizeof (*toh); 15070 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15071 optptr += ipp->ipp_rtdstoptslen; 15072 ASSERT(OK_32PTR(optptr)); 15073 /* Save as last value */ 15074 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15075 &tcp->tcp_rtdstoptslen, 15076 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15077 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15078 } 15079 if (addflag & TCP_IPV6_RECVRTHDR) { 15080 toh = (struct T_opthdr *)optptr; 15081 toh->level = IPPROTO_IPV6; 15082 toh->name = IPV6_RTHDR; 15083 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15084 toh->status = 0; 15085 optptr += sizeof (*toh); 15086 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15087 optptr += ipp->ipp_rthdrlen; 15088 ASSERT(OK_32PTR(optptr)); 15089 /* Save as last value */ 15090 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15091 (ipp->ipp_fields & IPPF_RTHDR), 15092 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15093 } 15094 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15095 toh = (struct T_opthdr *)optptr; 15096 toh->level = IPPROTO_IPV6; 15097 toh->name = IPV6_DSTOPTS; 15098 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15099 toh->status = 0; 15100 optptr += sizeof (*toh); 15101 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15102 optptr += ipp->ipp_dstoptslen; 15103 ASSERT(OK_32PTR(optptr)); 15104 /* Save as last value */ 15105 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15106 (ipp->ipp_fields & IPPF_DSTOPTS), 15107 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15108 } 15109 ASSERT(optptr == mp->b_wptr); 15110 return (mp); 15111 } 15112 15113 15114 /* 15115 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15116 * or a "bad" IRE detected by tcp_adapt_ire. 15117 * We can't tell if the failure was due to the laddr or the faddr 15118 * thus we clear out all addresses and ports. 15119 */ 15120 static void 15121 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15122 { 15123 queue_t *q = tcp->tcp_rq; 15124 tcph_t *tcph; 15125 struct T_error_ack *tea; 15126 conn_t *connp = tcp->tcp_connp; 15127 15128 15129 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15130 15131 if (mp->b_cont) { 15132 freemsg(mp->b_cont); 15133 mp->b_cont = NULL; 15134 } 15135 tea = (struct T_error_ack *)mp->b_rptr; 15136 switch (tea->PRIM_type) { 15137 case T_BIND_ACK: 15138 /* 15139 * Need to unbind with classifier since we were just told that 15140 * our bind succeeded. 15141 */ 15142 tcp->tcp_hard_bound = B_FALSE; 15143 tcp->tcp_hard_binding = B_FALSE; 15144 15145 ipcl_hash_remove(connp); 15146 /* Reuse the mblk if possible */ 15147 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15148 sizeof (*tea)); 15149 mp->b_rptr = mp->b_datap->db_base; 15150 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15151 tea = (struct T_error_ack *)mp->b_rptr; 15152 tea->PRIM_type = T_ERROR_ACK; 15153 tea->TLI_error = TSYSERR; 15154 tea->UNIX_error = error; 15155 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15156 tea->ERROR_prim = T_CONN_REQ; 15157 } else { 15158 tea->ERROR_prim = O_T_BIND_REQ; 15159 } 15160 break; 15161 15162 case T_ERROR_ACK: 15163 if (tcp->tcp_state >= TCPS_SYN_SENT) 15164 tea->ERROR_prim = T_CONN_REQ; 15165 break; 15166 default: 15167 panic("tcp_bind_failed: unexpected TPI type"); 15168 /*NOTREACHED*/ 15169 } 15170 15171 tcp->tcp_state = TCPS_IDLE; 15172 if (tcp->tcp_ipversion == IPV4_VERSION) 15173 tcp->tcp_ipha->ipha_src = 0; 15174 else 15175 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15176 /* 15177 * Copy of the src addr. in tcp_t is needed since 15178 * the lookup funcs. can only look at tcp_t 15179 */ 15180 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15181 15182 tcph = tcp->tcp_tcph; 15183 tcph->th_lport[0] = 0; 15184 tcph->th_lport[1] = 0; 15185 tcp_bind_hash_remove(tcp); 15186 bzero(&connp->u_port, sizeof (connp->u_port)); 15187 /* blow away saved option results if any */ 15188 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15189 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15190 15191 conn_delete_ire(tcp->tcp_connp, NULL); 15192 putnext(q, mp); 15193 } 15194 15195 /* 15196 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15197 * messages. 15198 */ 15199 void 15200 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15201 { 15202 mblk_t *mp1; 15203 uchar_t *rptr = mp->b_rptr; 15204 queue_t *q = tcp->tcp_rq; 15205 struct T_error_ack *tea; 15206 uint32_t mss; 15207 mblk_t *syn_mp; 15208 mblk_t *mdti; 15209 int retval; 15210 mblk_t *ire_mp; 15211 15212 switch (mp->b_datap->db_type) { 15213 case M_PROTO: 15214 case M_PCPROTO: 15215 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15216 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15217 break; 15218 tea = (struct T_error_ack *)rptr; 15219 switch (tea->PRIM_type) { 15220 case T_BIND_ACK: 15221 /* 15222 * Adapt Multidata information, if any. The 15223 * following tcp_mdt_update routine will free 15224 * the message. 15225 */ 15226 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15227 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15228 b_rptr)->mdt_capab, B_TRUE); 15229 freemsg(mdti); 15230 } 15231 15232 /* Get the IRE, if we had requested for it */ 15233 ire_mp = tcp_ire_mp(mp); 15234 15235 if (tcp->tcp_hard_binding) { 15236 tcp->tcp_hard_binding = B_FALSE; 15237 tcp->tcp_hard_bound = B_TRUE; 15238 CL_INET_CONNECT(tcp); 15239 } else { 15240 if (ire_mp != NULL) 15241 freeb(ire_mp); 15242 goto after_syn_sent; 15243 } 15244 15245 retval = tcp_adapt_ire(tcp, ire_mp); 15246 if (ire_mp != NULL) 15247 freeb(ire_mp); 15248 if (retval == 0) { 15249 tcp_bind_failed(tcp, mp, 15250 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15251 ENETUNREACH : EADDRNOTAVAIL)); 15252 return; 15253 } 15254 /* 15255 * Don't let an endpoint connect to itself. 15256 * Also checked in tcp_connect() but that 15257 * check can't handle the case when the 15258 * local IP address is INADDR_ANY. 15259 */ 15260 if (tcp->tcp_ipversion == IPV4_VERSION) { 15261 if ((tcp->tcp_ipha->ipha_dst == 15262 tcp->tcp_ipha->ipha_src) && 15263 (BE16_EQL(tcp->tcp_tcph->th_lport, 15264 tcp->tcp_tcph->th_fport))) { 15265 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15266 return; 15267 } 15268 } else { 15269 if (IN6_ARE_ADDR_EQUAL( 15270 &tcp->tcp_ip6h->ip6_dst, 15271 &tcp->tcp_ip6h->ip6_src) && 15272 (BE16_EQL(tcp->tcp_tcph->th_lport, 15273 tcp->tcp_tcph->th_fport))) { 15274 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15275 return; 15276 } 15277 } 15278 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15279 /* 15280 * This should not be possible! Just for 15281 * defensive coding... 15282 */ 15283 if (tcp->tcp_state != TCPS_SYN_SENT) 15284 goto after_syn_sent; 15285 15286 if (is_system_labeled() && 15287 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15288 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15289 return; 15290 } 15291 15292 ASSERT(q == tcp->tcp_rq); 15293 /* 15294 * tcp_adapt_ire() does not adjust 15295 * for TCP/IP header length. 15296 */ 15297 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15298 15299 /* 15300 * Just make sure our rwnd is at 15301 * least tcp_recv_hiwat_mss * MSS 15302 * large, and round up to the nearest 15303 * MSS. 15304 * 15305 * We do the round up here because 15306 * we need to get the interface 15307 * MTU first before we can do the 15308 * round up. 15309 */ 15310 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15311 tcp_recv_hiwat_minmss * mss); 15312 q->q_hiwat = tcp->tcp_rwnd; 15313 tcp_set_ws_value(tcp); 15314 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15315 tcp->tcp_tcph->th_win); 15316 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15317 tcp->tcp_snd_ws_ok = B_TRUE; 15318 15319 /* 15320 * Set tcp_snd_ts_ok to true 15321 * so that tcp_xmit_mp will 15322 * include the timestamp 15323 * option in the SYN segment. 15324 */ 15325 if (tcp_tstamp_always || 15326 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15327 tcp->tcp_snd_ts_ok = B_TRUE; 15328 } 15329 15330 /* 15331 * tcp_snd_sack_ok can be set in 15332 * tcp_adapt_ire() if the sack metric 15333 * is set. So check it here also. 15334 */ 15335 if (tcp_sack_permitted == 2 || 15336 tcp->tcp_snd_sack_ok) { 15337 if (tcp->tcp_sack_info == NULL) { 15338 tcp->tcp_sack_info = 15339 kmem_cache_alloc(tcp_sack_info_cache, 15340 KM_SLEEP); 15341 } 15342 tcp->tcp_snd_sack_ok = B_TRUE; 15343 } 15344 15345 /* 15346 * Should we use ECN? Note that the current 15347 * default value (SunOS 5.9) of tcp_ecn_permitted 15348 * is 1. The reason for doing this is that there 15349 * are equipments out there that will drop ECN 15350 * enabled IP packets. Setting it to 1 avoids 15351 * compatibility problems. 15352 */ 15353 if (tcp_ecn_permitted == 2) 15354 tcp->tcp_ecn_ok = B_TRUE; 15355 15356 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15357 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15358 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15359 if (syn_mp) { 15360 cred_t *cr; 15361 pid_t pid; 15362 15363 /* 15364 * Obtain the credential from the 15365 * thread calling connect(); the credential 15366 * lives on in the second mblk which 15367 * originated from T_CONN_REQ and is echoed 15368 * with the T_BIND_ACK from ip. If none 15369 * can be found, default to the creator 15370 * of the socket. 15371 */ 15372 if (mp->b_cont == NULL || 15373 (cr = DB_CRED(mp->b_cont)) == NULL) { 15374 cr = tcp->tcp_cred; 15375 pid = tcp->tcp_cpid; 15376 } else { 15377 pid = DB_CPID(mp->b_cont); 15378 } 15379 15380 TCP_RECORD_TRACE(tcp, syn_mp, 15381 TCP_TRACE_SEND_PKT); 15382 mblk_setcred(syn_mp, cr); 15383 DB_CPID(syn_mp) = pid; 15384 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15385 } 15386 after_syn_sent: 15387 /* 15388 * A trailer mblk indicates a waiting client upstream. 15389 * We complete here the processing begun in 15390 * either tcp_bind() or tcp_connect() by passing 15391 * upstream the reply message they supplied. 15392 */ 15393 mp1 = mp; 15394 mp = mp->b_cont; 15395 freeb(mp1); 15396 if (mp) 15397 break; 15398 return; 15399 case T_ERROR_ACK: 15400 if (tcp->tcp_debug) { 15401 (void) strlog(TCP_MOD_ID, 0, 1, 15402 SL_TRACE|SL_ERROR, 15403 "tcp_rput_other: case T_ERROR_ACK, " 15404 "ERROR_prim == %d", 15405 tea->ERROR_prim); 15406 } 15407 switch (tea->ERROR_prim) { 15408 case O_T_BIND_REQ: 15409 case T_BIND_REQ: 15410 tcp_bind_failed(tcp, mp, 15411 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15412 ENETUNREACH : EADDRNOTAVAIL)); 15413 return; 15414 case T_UNBIND_REQ: 15415 tcp->tcp_hard_binding = B_FALSE; 15416 tcp->tcp_hard_bound = B_FALSE; 15417 if (mp->b_cont) { 15418 freemsg(mp->b_cont); 15419 mp->b_cont = NULL; 15420 } 15421 if (tcp->tcp_unbind_pending) 15422 tcp->tcp_unbind_pending = 0; 15423 else { 15424 /* From tcp_ip_unbind() - free */ 15425 freemsg(mp); 15426 return; 15427 } 15428 break; 15429 case T_SVR4_OPTMGMT_REQ: 15430 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15431 /* T_OPTMGMT_REQ generated by TCP */ 15432 printf("T_SVR4_OPTMGMT_REQ failed " 15433 "%d/%d - dropped (cnt %d)\n", 15434 tea->TLI_error, tea->UNIX_error, 15435 tcp->tcp_drop_opt_ack_cnt); 15436 freemsg(mp); 15437 tcp->tcp_drop_opt_ack_cnt--; 15438 return; 15439 } 15440 break; 15441 } 15442 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15443 tcp->tcp_drop_opt_ack_cnt > 0) { 15444 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15445 "- dropped (cnt %d)\n", 15446 tea->TLI_error, tea->UNIX_error, 15447 tcp->tcp_drop_opt_ack_cnt); 15448 freemsg(mp); 15449 tcp->tcp_drop_opt_ack_cnt--; 15450 return; 15451 } 15452 break; 15453 case T_OPTMGMT_ACK: 15454 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15455 /* T_OPTMGMT_REQ generated by TCP */ 15456 freemsg(mp); 15457 tcp->tcp_drop_opt_ack_cnt--; 15458 return; 15459 } 15460 break; 15461 default: 15462 break; 15463 } 15464 break; 15465 case M_CTL: 15466 /* 15467 * ICMP messages. 15468 */ 15469 tcp_icmp_error(tcp, mp); 15470 return; 15471 case M_FLUSH: 15472 if (*rptr & FLUSHR) 15473 flushq(q, FLUSHDATA); 15474 break; 15475 default: 15476 break; 15477 } 15478 /* 15479 * Make sure we set this bit before sending the ACK for 15480 * bind. Otherwise accept could possibly run and free 15481 * this tcp struct. 15482 */ 15483 putnext(q, mp); 15484 } 15485 15486 /* 15487 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15488 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15489 * tcp_rsrv() try again. 15490 */ 15491 static void 15492 tcp_ordrel_kick(void *arg) 15493 { 15494 conn_t *connp = (conn_t *)arg; 15495 tcp_t *tcp = connp->conn_tcp; 15496 15497 tcp->tcp_ordrelid = 0; 15498 tcp->tcp_timeout = B_FALSE; 15499 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15500 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15501 qenable(tcp->tcp_rq); 15502 } 15503 } 15504 15505 /* ARGSUSED */ 15506 static void 15507 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15508 { 15509 conn_t *connp = (conn_t *)arg; 15510 tcp_t *tcp = connp->conn_tcp; 15511 queue_t *q = tcp->tcp_rq; 15512 uint_t thwin; 15513 15514 freeb(mp); 15515 15516 TCP_STAT(tcp_rsrv_calls); 15517 15518 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15519 return; 15520 } 15521 15522 if (tcp->tcp_fused) { 15523 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15524 15525 ASSERT(tcp->tcp_fused); 15526 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15527 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15528 ASSERT(!TCP_IS_DETACHED(tcp)); 15529 ASSERT(tcp->tcp_connp->conn_sqp == 15530 peer_tcp->tcp_connp->conn_sqp); 15531 15532 /* 15533 * Normally we would not get backenabled in synchronous 15534 * streams mode, but in case this happens, we need to stop 15535 * synchronous streams temporarily to prevent a race with 15536 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15537 * tcp_rcv_list here because those entry points will return 15538 * right away when synchronous streams is stopped. 15539 */ 15540 TCP_FUSE_SYNCSTR_STOP(tcp); 15541 if (tcp->tcp_rcv_list != NULL) 15542 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15543 15544 tcp_clrqfull(peer_tcp); 15545 TCP_FUSE_SYNCSTR_RESUME(tcp); 15546 TCP_STAT(tcp_fusion_backenabled); 15547 return; 15548 } 15549 15550 if (canputnext(q)) { 15551 tcp->tcp_rwnd = q->q_hiwat; 15552 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15553 << tcp->tcp_rcv_ws; 15554 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15555 /* 15556 * Send back a window update immediately if TCP is above 15557 * ESTABLISHED state and the increase of the rcv window 15558 * that the other side knows is at least 1 MSS after flow 15559 * control is lifted. 15560 */ 15561 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15562 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15563 tcp_xmit_ctl(NULL, tcp, 15564 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15565 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15566 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15567 } 15568 } 15569 /* Handle a failure to allocate a T_ORDREL_IND here */ 15570 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15571 ASSERT(tcp->tcp_listener == NULL); 15572 if (tcp->tcp_rcv_list != NULL) { 15573 (void) tcp_rcv_drain(q, tcp); 15574 } 15575 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15576 mp = mi_tpi_ordrel_ind(); 15577 if (mp) { 15578 tcp->tcp_ordrel_done = B_TRUE; 15579 putnext(q, mp); 15580 if (tcp->tcp_deferred_clean_death) { 15581 /* 15582 * tcp_clean_death was deferred for 15583 * T_ORDREL_IND - do it now 15584 */ 15585 tcp->tcp_deferred_clean_death = B_FALSE; 15586 (void) tcp_clean_death(tcp, 15587 tcp->tcp_client_errno, 22); 15588 } 15589 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15590 /* 15591 * If there isn't already a timer running 15592 * start one. Use a 4 second 15593 * timer as a fallback since it can't fail. 15594 */ 15595 tcp->tcp_timeout = B_TRUE; 15596 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15597 MSEC_TO_TICK(4000)); 15598 } 15599 } 15600 } 15601 15602 /* 15603 * The read side service routine is called mostly when we get back-enabled as a 15604 * result of flow control relief. Since we don't actually queue anything in 15605 * TCP, we have no data to send out of here. What we do is clear the receive 15606 * window, and send out a window update. 15607 * This routine is also called to drive an orderly release message upstream 15608 * if the attempt in tcp_rput failed. 15609 */ 15610 static void 15611 tcp_rsrv(queue_t *q) 15612 { 15613 conn_t *connp = Q_TO_CONN(q); 15614 tcp_t *tcp = connp->conn_tcp; 15615 mblk_t *mp; 15616 15617 /* No code does a putq on the read side */ 15618 ASSERT(q->q_first == NULL); 15619 15620 /* Nothing to do for the default queue */ 15621 if (q == tcp_g_q) { 15622 return; 15623 } 15624 15625 mp = allocb(0, BPRI_HI); 15626 if (mp == NULL) { 15627 /* 15628 * We are under memory pressure. Return for now and we 15629 * we will be called again later. 15630 */ 15631 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15632 /* 15633 * If there isn't already a timer running 15634 * start one. Use a 4 second 15635 * timer as a fallback since it can't fail. 15636 */ 15637 tcp->tcp_timeout = B_TRUE; 15638 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15639 MSEC_TO_TICK(4000)); 15640 } 15641 return; 15642 } 15643 CONN_INC_REF(connp); 15644 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15645 SQTAG_TCP_RSRV); 15646 } 15647 15648 /* 15649 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15650 * We do not allow the receive window to shrink. After setting rwnd, 15651 * set the flow control hiwat of the stream. 15652 * 15653 * This function is called in 2 cases: 15654 * 15655 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15656 * connection (passive open) and in tcp_rput_data() for active connect. 15657 * This is called after tcp_mss_set() when the desired MSS value is known. 15658 * This makes sure that our window size is a mutiple of the other side's 15659 * MSS. 15660 * 2) Handling SO_RCVBUF option. 15661 * 15662 * It is ASSUMED that the requested size is a multiple of the current MSS. 15663 * 15664 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15665 * user requests so. 15666 */ 15667 static int 15668 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15669 { 15670 uint32_t mss = tcp->tcp_mss; 15671 uint32_t old_max_rwnd; 15672 uint32_t max_transmittable_rwnd; 15673 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15674 15675 if (tcp->tcp_fused) { 15676 size_t sth_hiwat; 15677 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15678 15679 ASSERT(peer_tcp != NULL); 15680 /* 15681 * Record the stream head's high water mark for 15682 * this endpoint; this is used for flow-control 15683 * purposes in tcp_fuse_output(). 15684 */ 15685 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15686 if (!tcp_detached) 15687 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15688 15689 /* 15690 * In the fusion case, the maxpsz stream head value of 15691 * our peer is set according to its send buffer size 15692 * and our receive buffer size; since the latter may 15693 * have changed we need to update the peer's maxpsz. 15694 */ 15695 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15696 return (rwnd); 15697 } 15698 15699 if (tcp_detached) 15700 old_max_rwnd = tcp->tcp_rwnd; 15701 else 15702 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15703 15704 /* 15705 * Insist on a receive window that is at least 15706 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15707 * funny TCP interactions of Nagle algorithm, SWS avoidance 15708 * and delayed acknowledgement. 15709 */ 15710 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15711 15712 /* 15713 * If window size info has already been exchanged, TCP should not 15714 * shrink the window. Shrinking window is doable if done carefully. 15715 * We may add that support later. But so far there is not a real 15716 * need to do that. 15717 */ 15718 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15719 /* MSS may have changed, do a round up again. */ 15720 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15721 } 15722 15723 /* 15724 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15725 * can be applied even before the window scale option is decided. 15726 */ 15727 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15728 if (rwnd > max_transmittable_rwnd) { 15729 rwnd = max_transmittable_rwnd - 15730 (max_transmittable_rwnd % mss); 15731 if (rwnd < mss) 15732 rwnd = max_transmittable_rwnd; 15733 /* 15734 * If we're over the limit we may have to back down tcp_rwnd. 15735 * The increment below won't work for us. So we set all three 15736 * here and the increment below will have no effect. 15737 */ 15738 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15739 } 15740 if (tcp->tcp_localnet) { 15741 tcp->tcp_rack_abs_max = 15742 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15743 } else { 15744 /* 15745 * For a remote host on a different subnet (through a router), 15746 * we ack every other packet to be conforming to RFC1122. 15747 * tcp_deferred_acks_max is default to 2. 15748 */ 15749 tcp->tcp_rack_abs_max = 15750 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15751 } 15752 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15753 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15754 else 15755 tcp->tcp_rack_cur_max = 0; 15756 /* 15757 * Increment the current rwnd by the amount the maximum grew (we 15758 * can not overwrite it since we might be in the middle of a 15759 * connection.) 15760 */ 15761 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15762 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15763 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15764 tcp->tcp_cwnd_max = rwnd; 15765 15766 if (tcp_detached) 15767 return (rwnd); 15768 /* 15769 * We set the maximum receive window into rq->q_hiwat. 15770 * This is not actually used for flow control. 15771 */ 15772 tcp->tcp_rq->q_hiwat = rwnd; 15773 /* 15774 * Set the Stream head high water mark. This doesn't have to be 15775 * here, since we are simply using default values, but we would 15776 * prefer to choose these values algorithmically, with a likely 15777 * relationship to rwnd. 15778 */ 15779 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15780 return (rwnd); 15781 } 15782 15783 /* 15784 * Return SNMP stuff in buffer in mpdata. 15785 */ 15786 int 15787 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15788 { 15789 mblk_t *mpdata; 15790 mblk_t *mp_conn_ctl = NULL; 15791 mblk_t *mp_conn_tail; 15792 mblk_t *mp_attr_ctl = NULL; 15793 mblk_t *mp_attr_tail; 15794 mblk_t *mp6_conn_ctl = NULL; 15795 mblk_t *mp6_conn_tail; 15796 mblk_t *mp6_attr_ctl = NULL; 15797 mblk_t *mp6_attr_tail; 15798 struct opthdr *optp; 15799 mib2_tcpConnEntry_t tce; 15800 mib2_tcp6ConnEntry_t tce6; 15801 mib2_transportMLPEntry_t mlp; 15802 connf_t *connfp; 15803 conn_t *connp; 15804 int i; 15805 boolean_t ispriv; 15806 zoneid_t zoneid; 15807 int v4_conn_idx; 15808 int v6_conn_idx; 15809 15810 if (mpctl == NULL || 15811 (mpdata = mpctl->b_cont) == NULL || 15812 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15813 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15814 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15815 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15816 freemsg(mp_conn_ctl); 15817 freemsg(mp_attr_ctl); 15818 freemsg(mp6_conn_ctl); 15819 freemsg(mp6_attr_ctl); 15820 return (0); 15821 } 15822 15823 /* build table of connections -- need count in fixed part */ 15824 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15825 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15826 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15827 SET_MIB(tcp_mib.tcpMaxConn, -1); 15828 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15829 15830 ispriv = 15831 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15832 zoneid = Q_TO_CONN(q)->conn_zoneid; 15833 15834 v4_conn_idx = v6_conn_idx = 0; 15835 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15836 15837 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15838 15839 connfp = &ipcl_globalhash_fanout[i]; 15840 15841 connp = NULL; 15842 15843 while ((connp = 15844 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15845 tcp_t *tcp; 15846 boolean_t needattr; 15847 15848 if (connp->conn_zoneid != zoneid) 15849 continue; /* not in this zone */ 15850 15851 tcp = connp->conn_tcp; 15852 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15853 tcp->tcp_ibsegs = 0; 15854 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15855 tcp->tcp_obsegs = 0; 15856 15857 tce6.tcp6ConnState = tce.tcpConnState = 15858 tcp_snmp_state(tcp); 15859 if (tce.tcpConnState == MIB2_TCP_established || 15860 tce.tcpConnState == MIB2_TCP_closeWait) 15861 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15862 15863 needattr = B_FALSE; 15864 bzero(&mlp, sizeof (mlp)); 15865 if (connp->conn_mlp_type != mlptSingle) { 15866 if (connp->conn_mlp_type == mlptShared || 15867 connp->conn_mlp_type == mlptBoth) 15868 mlp.tme_flags |= MIB2_TMEF_SHARED; 15869 if (connp->conn_mlp_type == mlptPrivate || 15870 connp->conn_mlp_type == mlptBoth) 15871 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15872 needattr = B_TRUE; 15873 } 15874 if (connp->conn_peercred != NULL) { 15875 ts_label_t *tsl; 15876 15877 tsl = crgetlabel(connp->conn_peercred); 15878 mlp.tme_doi = label2doi(tsl); 15879 mlp.tme_label = *label2bslabel(tsl); 15880 needattr = B_TRUE; 15881 } 15882 15883 /* Create a message to report on IPv6 entries */ 15884 if (tcp->tcp_ipversion == IPV6_VERSION) { 15885 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15886 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15887 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15888 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15889 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15890 /* Don't want just anybody seeing these... */ 15891 if (ispriv) { 15892 tce6.tcp6ConnEntryInfo.ce_snxt = 15893 tcp->tcp_snxt; 15894 tce6.tcp6ConnEntryInfo.ce_suna = 15895 tcp->tcp_suna; 15896 tce6.tcp6ConnEntryInfo.ce_rnxt = 15897 tcp->tcp_rnxt; 15898 tce6.tcp6ConnEntryInfo.ce_rack = 15899 tcp->tcp_rack; 15900 } else { 15901 /* 15902 * Netstat, unfortunately, uses this to 15903 * get send/receive queue sizes. How to fix? 15904 * Why not compute the difference only? 15905 */ 15906 tce6.tcp6ConnEntryInfo.ce_snxt = 15907 tcp->tcp_snxt - tcp->tcp_suna; 15908 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15909 tce6.tcp6ConnEntryInfo.ce_rnxt = 15910 tcp->tcp_rnxt - tcp->tcp_rack; 15911 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15912 } 15913 15914 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15915 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15916 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15917 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15918 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15919 15920 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 15921 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 15922 15923 mlp.tme_connidx = v6_conn_idx++; 15924 if (needattr) 15925 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 15926 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 15927 } 15928 /* 15929 * Create an IPv4 table entry for IPv4 entries and also 15930 * for IPv6 entries which are bound to in6addr_any 15931 * but don't have IPV6_V6ONLY set. 15932 * (i.e. anything an IPv4 peer could connect to) 15933 */ 15934 if (tcp->tcp_ipversion == IPV4_VERSION || 15935 (tcp->tcp_state <= TCPS_LISTEN && 15936 !tcp->tcp_connp->conn_ipv6_v6only && 15937 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15938 if (tcp->tcp_ipversion == IPV6_VERSION) { 15939 tce.tcpConnRemAddress = INADDR_ANY; 15940 tce.tcpConnLocalAddress = INADDR_ANY; 15941 } else { 15942 tce.tcpConnRemAddress = 15943 tcp->tcp_remote; 15944 tce.tcpConnLocalAddress = 15945 tcp->tcp_ip_src; 15946 } 15947 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15948 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15949 /* Don't want just anybody seeing these... */ 15950 if (ispriv) { 15951 tce.tcpConnEntryInfo.ce_snxt = 15952 tcp->tcp_snxt; 15953 tce.tcpConnEntryInfo.ce_suna = 15954 tcp->tcp_suna; 15955 tce.tcpConnEntryInfo.ce_rnxt = 15956 tcp->tcp_rnxt; 15957 tce.tcpConnEntryInfo.ce_rack = 15958 tcp->tcp_rack; 15959 } else { 15960 /* 15961 * Netstat, unfortunately, uses this to 15962 * get send/receive queue sizes. How 15963 * to fix? 15964 * Why not compute the difference only? 15965 */ 15966 tce.tcpConnEntryInfo.ce_snxt = 15967 tcp->tcp_snxt - tcp->tcp_suna; 15968 tce.tcpConnEntryInfo.ce_suna = 0; 15969 tce.tcpConnEntryInfo.ce_rnxt = 15970 tcp->tcp_rnxt - tcp->tcp_rack; 15971 tce.tcpConnEntryInfo.ce_rack = 0; 15972 } 15973 15974 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15975 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15976 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15977 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15978 tce.tcpConnEntryInfo.ce_state = 15979 tcp->tcp_state; 15980 15981 (void) snmp_append_data2(mp_conn_ctl->b_cont, 15982 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15983 15984 mlp.tme_connidx = v4_conn_idx++; 15985 if (needattr) 15986 (void) snmp_append_data2( 15987 mp_attr_ctl->b_cont, 15988 &mp_attr_tail, (char *)&mlp, 15989 sizeof (mlp)); 15990 } 15991 } 15992 } 15993 15994 /* fixed length structure for IPv4 and IPv6 counters */ 15995 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15996 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15997 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15998 optp->level = MIB2_TCP; 15999 optp->name = 0; 16000 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16001 optp->len = msgdsize(mpdata); 16002 qreply(q, mpctl); 16003 16004 /* table of connections... */ 16005 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16006 sizeof (struct T_optmgmt_ack)]; 16007 optp->level = MIB2_TCP; 16008 optp->name = MIB2_TCP_CONN; 16009 optp->len = msgdsize(mp_conn_ctl->b_cont); 16010 qreply(q, mp_conn_ctl); 16011 16012 /* table of MLP attributes... */ 16013 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16014 sizeof (struct T_optmgmt_ack)]; 16015 optp->level = MIB2_TCP; 16016 optp->name = EXPER_XPORT_MLP; 16017 optp->len = msgdsize(mp_attr_ctl->b_cont); 16018 if (optp->len == 0) 16019 freemsg(mp_attr_ctl); 16020 else 16021 qreply(q, mp_attr_ctl); 16022 16023 /* table of IPv6 connections... */ 16024 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16025 sizeof (struct T_optmgmt_ack)]; 16026 optp->level = MIB2_TCP6; 16027 optp->name = MIB2_TCP6_CONN; 16028 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16029 qreply(q, mp6_conn_ctl); 16030 16031 /* table of IPv6 MLP attributes... */ 16032 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16033 sizeof (struct T_optmgmt_ack)]; 16034 optp->level = MIB2_TCP6; 16035 optp->name = EXPER_XPORT_MLP; 16036 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16037 if (optp->len == 0) 16038 freemsg(mp6_attr_ctl); 16039 else 16040 qreply(q, mp6_attr_ctl); 16041 return (1); 16042 } 16043 16044 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16045 /* ARGSUSED */ 16046 int 16047 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16048 { 16049 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16050 16051 switch (level) { 16052 case MIB2_TCP: 16053 switch (name) { 16054 case 13: 16055 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16056 return (0); 16057 /* TODO: delete entry defined by tce */ 16058 return (1); 16059 default: 16060 return (0); 16061 } 16062 default: 16063 return (1); 16064 } 16065 } 16066 16067 /* Translate TCP state to MIB2 TCP state. */ 16068 static int 16069 tcp_snmp_state(tcp_t *tcp) 16070 { 16071 if (tcp == NULL) 16072 return (0); 16073 16074 switch (tcp->tcp_state) { 16075 case TCPS_CLOSED: 16076 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16077 case TCPS_BOUND: 16078 return (MIB2_TCP_closed); 16079 case TCPS_LISTEN: 16080 return (MIB2_TCP_listen); 16081 case TCPS_SYN_SENT: 16082 return (MIB2_TCP_synSent); 16083 case TCPS_SYN_RCVD: 16084 return (MIB2_TCP_synReceived); 16085 case TCPS_ESTABLISHED: 16086 return (MIB2_TCP_established); 16087 case TCPS_CLOSE_WAIT: 16088 return (MIB2_TCP_closeWait); 16089 case TCPS_FIN_WAIT_1: 16090 return (MIB2_TCP_finWait1); 16091 case TCPS_CLOSING: 16092 return (MIB2_TCP_closing); 16093 case TCPS_LAST_ACK: 16094 return (MIB2_TCP_lastAck); 16095 case TCPS_FIN_WAIT_2: 16096 return (MIB2_TCP_finWait2); 16097 case TCPS_TIME_WAIT: 16098 return (MIB2_TCP_timeWait); 16099 default: 16100 return (0); 16101 } 16102 } 16103 16104 static char tcp_report_header[] = 16105 "TCP " MI_COL_HDRPAD_STR 16106 "zone dest snxt suna " 16107 "swnd rnxt rack rwnd rto mss w sw rw t " 16108 "recent [lport,fport] state"; 16109 16110 /* 16111 * TCP status report triggered via the Named Dispatch mechanism. 16112 */ 16113 /* ARGSUSED */ 16114 static void 16115 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16116 cred_t *cr) 16117 { 16118 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16119 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16120 char cflag; 16121 in6_addr_t v6dst; 16122 char buf[80]; 16123 uint_t print_len, buf_len; 16124 16125 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16126 if (buf_len <= 0) 16127 return; 16128 16129 if (hashval >= 0) 16130 (void) sprintf(hash, "%03d ", hashval); 16131 else 16132 hash[0] = '\0'; 16133 16134 /* 16135 * Note that we use the remote address in the tcp_b structure. 16136 * This means that it will print out the real destination address, 16137 * not the next hop's address if source routing is used. This 16138 * avoid the confusion on the output because user may not 16139 * know that source routing is used for a connection. 16140 */ 16141 if (tcp->tcp_ipversion == IPV4_VERSION) { 16142 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16143 } else { 16144 v6dst = tcp->tcp_remote_v6; 16145 } 16146 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16147 /* 16148 * the ispriv checks are so that normal users cannot determine 16149 * sequence number information using NDD. 16150 */ 16151 16152 if (TCP_IS_DETACHED(tcp)) 16153 cflag = '*'; 16154 else 16155 cflag = ' '; 16156 print_len = snprintf((char *)mp->b_wptr, buf_len, 16157 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16158 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16159 hash, 16160 (void *)tcp, 16161 tcp->tcp_connp->conn_zoneid, 16162 addrbuf, 16163 (ispriv) ? tcp->tcp_snxt : 0, 16164 (ispriv) ? tcp->tcp_suna : 0, 16165 tcp->tcp_swnd, 16166 (ispriv) ? tcp->tcp_rnxt : 0, 16167 (ispriv) ? tcp->tcp_rack : 0, 16168 tcp->tcp_rwnd, 16169 tcp->tcp_rto, 16170 tcp->tcp_mss, 16171 tcp->tcp_snd_ws_ok, 16172 tcp->tcp_snd_ws, 16173 tcp->tcp_rcv_ws, 16174 tcp->tcp_snd_ts_ok, 16175 tcp->tcp_ts_recent, 16176 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16177 if (print_len < buf_len) { 16178 ((mblk_t *)mp)->b_wptr += print_len; 16179 } else { 16180 ((mblk_t *)mp)->b_wptr += buf_len; 16181 } 16182 } 16183 16184 /* 16185 * TCP status report (for listeners only) triggered via the Named Dispatch 16186 * mechanism. 16187 */ 16188 /* ARGSUSED */ 16189 static void 16190 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16191 { 16192 char addrbuf[INET6_ADDRSTRLEN]; 16193 in6_addr_t v6dst; 16194 uint_t print_len, buf_len; 16195 16196 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16197 if (buf_len <= 0) 16198 return; 16199 16200 if (tcp->tcp_ipversion == IPV4_VERSION) { 16201 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16202 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16203 } else { 16204 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16205 addrbuf, sizeof (addrbuf)); 16206 } 16207 print_len = snprintf((char *)mp->b_wptr, buf_len, 16208 "%03d " 16209 MI_COL_PTRFMT_STR 16210 "%d %s %05u %08u %d/%d/%d%c\n", 16211 hashval, (void *)tcp, 16212 tcp->tcp_connp->conn_zoneid, 16213 addrbuf, 16214 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16215 tcp->tcp_conn_req_seqnum, 16216 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16217 tcp->tcp_conn_req_max, 16218 tcp->tcp_syn_defense ? '*' : ' '); 16219 if (print_len < buf_len) { 16220 ((mblk_t *)mp)->b_wptr += print_len; 16221 } else { 16222 ((mblk_t *)mp)->b_wptr += buf_len; 16223 } 16224 } 16225 16226 /* TCP status report triggered via the Named Dispatch mechanism. */ 16227 /* ARGSUSED */ 16228 static int 16229 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16230 { 16231 tcp_t *tcp; 16232 int i; 16233 conn_t *connp; 16234 connf_t *connfp; 16235 zoneid_t zoneid; 16236 16237 /* 16238 * Because of the ndd constraint, at most we can have 64K buffer 16239 * to put in all TCP info. So to be more efficient, just 16240 * allocate a 64K buffer here, assuming we need that large buffer. 16241 * This may be a problem as any user can read tcp_status. Therefore 16242 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16243 * This should be OK as normal users should not do this too often. 16244 */ 16245 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16246 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16247 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16248 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16249 return (0); 16250 } 16251 } 16252 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16253 /* The following may work even if we cannot get a large buf. */ 16254 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16255 return (0); 16256 } 16257 16258 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16259 16260 zoneid = Q_TO_CONN(q)->conn_zoneid; 16261 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16262 16263 connfp = &ipcl_globalhash_fanout[i]; 16264 16265 connp = NULL; 16266 16267 while ((connp = 16268 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16269 tcp = connp->conn_tcp; 16270 if (zoneid != GLOBAL_ZONEID && 16271 zoneid != connp->conn_zoneid) 16272 continue; 16273 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16274 cr); 16275 } 16276 16277 } 16278 16279 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16280 return (0); 16281 } 16282 16283 /* TCP status report triggered via the Named Dispatch mechanism. */ 16284 /* ARGSUSED */ 16285 static int 16286 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16287 { 16288 tf_t *tbf; 16289 tcp_t *tcp; 16290 int i; 16291 zoneid_t zoneid; 16292 16293 /* Refer to comments in tcp_status_report(). */ 16294 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16295 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16296 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16297 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16298 return (0); 16299 } 16300 } 16301 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16302 /* The following may work even if we cannot get a large buf. */ 16303 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16304 return (0); 16305 } 16306 16307 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16308 16309 zoneid = Q_TO_CONN(q)->conn_zoneid; 16310 16311 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16312 tbf = &tcp_bind_fanout[i]; 16313 mutex_enter(&tbf->tf_lock); 16314 for (tcp = tbf->tf_tcp; tcp != NULL; 16315 tcp = tcp->tcp_bind_hash) { 16316 if (zoneid != GLOBAL_ZONEID && 16317 zoneid != tcp->tcp_connp->conn_zoneid) 16318 continue; 16319 CONN_INC_REF(tcp->tcp_connp); 16320 tcp_report_item(mp->b_cont, tcp, i, 16321 Q_TO_TCP(q), cr); 16322 CONN_DEC_REF(tcp->tcp_connp); 16323 } 16324 mutex_exit(&tbf->tf_lock); 16325 } 16326 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16327 return (0); 16328 } 16329 16330 /* TCP status report triggered via the Named Dispatch mechanism. */ 16331 /* ARGSUSED */ 16332 static int 16333 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16334 { 16335 connf_t *connfp; 16336 conn_t *connp; 16337 tcp_t *tcp; 16338 int i; 16339 zoneid_t zoneid; 16340 16341 /* Refer to comments in tcp_status_report(). */ 16342 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16343 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16344 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16345 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16346 return (0); 16347 } 16348 } 16349 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16350 /* The following may work even if we cannot get a large buf. */ 16351 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16352 return (0); 16353 } 16354 16355 (void) mi_mpprintf(mp, 16356 " TCP " MI_COL_HDRPAD_STR 16357 "zone IP addr port seqnum backlog (q0/q/max)"); 16358 16359 zoneid = Q_TO_CONN(q)->conn_zoneid; 16360 16361 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16362 connfp = &ipcl_bind_fanout[i]; 16363 connp = NULL; 16364 while ((connp = 16365 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16366 tcp = connp->conn_tcp; 16367 if (zoneid != GLOBAL_ZONEID && 16368 zoneid != connp->conn_zoneid) 16369 continue; 16370 tcp_report_listener(mp->b_cont, tcp, i); 16371 } 16372 } 16373 16374 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16375 return (0); 16376 } 16377 16378 /* TCP status report triggered via the Named Dispatch mechanism. */ 16379 /* ARGSUSED */ 16380 static int 16381 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16382 { 16383 connf_t *connfp; 16384 conn_t *connp; 16385 tcp_t *tcp; 16386 int i; 16387 zoneid_t zoneid; 16388 16389 /* Refer to comments in tcp_status_report(). */ 16390 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16391 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16392 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16393 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16394 return (0); 16395 } 16396 } 16397 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16398 /* The following may work even if we cannot get a large buf. */ 16399 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16400 return (0); 16401 } 16402 16403 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16404 ipcl_conn_fanout_size); 16405 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16406 16407 zoneid = Q_TO_CONN(q)->conn_zoneid; 16408 16409 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16410 connfp = &ipcl_conn_fanout[i]; 16411 connp = NULL; 16412 while ((connp = 16413 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16414 tcp = connp->conn_tcp; 16415 if (zoneid != GLOBAL_ZONEID && 16416 zoneid != connp->conn_zoneid) 16417 continue; 16418 tcp_report_item(mp->b_cont, tcp, i, 16419 Q_TO_TCP(q), cr); 16420 } 16421 } 16422 16423 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16424 return (0); 16425 } 16426 16427 /* TCP status report triggered via the Named Dispatch mechanism. */ 16428 /* ARGSUSED */ 16429 static int 16430 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16431 { 16432 tf_t *tf; 16433 tcp_t *tcp; 16434 int i; 16435 zoneid_t zoneid; 16436 16437 /* Refer to comments in tcp_status_report(). */ 16438 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16439 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16440 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16441 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16442 return (0); 16443 } 16444 } 16445 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16446 /* The following may work even if we cannot get a large buf. */ 16447 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16448 return (0); 16449 } 16450 16451 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16452 16453 zoneid = Q_TO_CONN(q)->conn_zoneid; 16454 16455 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16456 tf = &tcp_acceptor_fanout[i]; 16457 mutex_enter(&tf->tf_lock); 16458 for (tcp = tf->tf_tcp; tcp != NULL; 16459 tcp = tcp->tcp_acceptor_hash) { 16460 if (zoneid != GLOBAL_ZONEID && 16461 zoneid != tcp->tcp_connp->conn_zoneid) 16462 continue; 16463 tcp_report_item(mp->b_cont, tcp, i, 16464 Q_TO_TCP(q), cr); 16465 } 16466 mutex_exit(&tf->tf_lock); 16467 } 16468 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16469 return (0); 16470 } 16471 16472 /* 16473 * tcp_timer is the timer service routine. It handles the retransmission, 16474 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16475 * from the state of the tcp instance what kind of action needs to be done 16476 * at the time it is called. 16477 */ 16478 static void 16479 tcp_timer(void *arg) 16480 { 16481 mblk_t *mp; 16482 clock_t first_threshold; 16483 clock_t second_threshold; 16484 clock_t ms; 16485 uint32_t mss; 16486 conn_t *connp = (conn_t *)arg; 16487 tcp_t *tcp = connp->conn_tcp; 16488 16489 tcp->tcp_timer_tid = 0; 16490 16491 if (tcp->tcp_fused) 16492 return; 16493 16494 first_threshold = tcp->tcp_first_timer_threshold; 16495 second_threshold = tcp->tcp_second_timer_threshold; 16496 switch (tcp->tcp_state) { 16497 case TCPS_IDLE: 16498 case TCPS_BOUND: 16499 case TCPS_LISTEN: 16500 return; 16501 case TCPS_SYN_RCVD: { 16502 tcp_t *listener = tcp->tcp_listener; 16503 16504 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16505 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16506 /* it's our first timeout */ 16507 tcp->tcp_syn_rcvd_timeout = 1; 16508 mutex_enter(&listener->tcp_eager_lock); 16509 listener->tcp_syn_rcvd_timeout++; 16510 if (!listener->tcp_syn_defense && 16511 (listener->tcp_syn_rcvd_timeout > 16512 (tcp_conn_req_max_q0 >> 2)) && 16513 (tcp_conn_req_max_q0 > 200)) { 16514 /* We may be under attack. Put on a defense. */ 16515 listener->tcp_syn_defense = B_TRUE; 16516 cmn_err(CE_WARN, "High TCP connect timeout " 16517 "rate! System (port %d) may be under a " 16518 "SYN flood attack!", 16519 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16520 16521 listener->tcp_ip_addr_cache = kmem_zalloc( 16522 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16523 KM_NOSLEEP); 16524 } 16525 mutex_exit(&listener->tcp_eager_lock); 16526 } 16527 } 16528 /* FALLTHRU */ 16529 case TCPS_SYN_SENT: 16530 first_threshold = tcp->tcp_first_ctimer_threshold; 16531 second_threshold = tcp->tcp_second_ctimer_threshold; 16532 break; 16533 case TCPS_ESTABLISHED: 16534 case TCPS_FIN_WAIT_1: 16535 case TCPS_CLOSING: 16536 case TCPS_CLOSE_WAIT: 16537 case TCPS_LAST_ACK: 16538 /* If we have data to rexmit */ 16539 if (tcp->tcp_suna != tcp->tcp_snxt) { 16540 clock_t time_to_wait; 16541 16542 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16543 if (!tcp->tcp_xmit_head) 16544 break; 16545 time_to_wait = lbolt - 16546 (clock_t)tcp->tcp_xmit_head->b_prev; 16547 time_to_wait = tcp->tcp_rto - 16548 TICK_TO_MSEC(time_to_wait); 16549 /* 16550 * If the timer fires too early, 1 clock tick earlier, 16551 * restart the timer. 16552 */ 16553 if (time_to_wait > msec_per_tick) { 16554 TCP_STAT(tcp_timer_fire_early); 16555 TCP_TIMER_RESTART(tcp, time_to_wait); 16556 return; 16557 } 16558 /* 16559 * When we probe zero windows, we force the swnd open. 16560 * If our peer acks with a closed window swnd will be 16561 * set to zero by tcp_rput(). As long as we are 16562 * receiving acks tcp_rput will 16563 * reset 'tcp_ms_we_have_waited' so as not to trip the 16564 * first and second interval actions. NOTE: the timer 16565 * interval is allowed to continue its exponential 16566 * backoff. 16567 */ 16568 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16569 if (tcp->tcp_debug) { 16570 (void) strlog(TCP_MOD_ID, 0, 1, 16571 SL_TRACE, "tcp_timer: zero win"); 16572 } 16573 } else { 16574 /* 16575 * After retransmission, we need to do 16576 * slow start. Set the ssthresh to one 16577 * half of current effective window and 16578 * cwnd to one MSS. Also reset 16579 * tcp_cwnd_cnt. 16580 * 16581 * Note that if tcp_ssthresh is reduced because 16582 * of ECN, do not reduce it again unless it is 16583 * already one window of data away (tcp_cwr 16584 * should then be cleared) or this is a 16585 * timeout for a retransmitted segment. 16586 */ 16587 uint32_t npkt; 16588 16589 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16590 npkt = ((tcp->tcp_timer_backoff ? 16591 tcp->tcp_cwnd_ssthresh : 16592 tcp->tcp_snxt - 16593 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16594 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16595 tcp->tcp_mss; 16596 } 16597 tcp->tcp_cwnd = tcp->tcp_mss; 16598 tcp->tcp_cwnd_cnt = 0; 16599 if (tcp->tcp_ecn_ok) { 16600 tcp->tcp_cwr = B_TRUE; 16601 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16602 tcp->tcp_ecn_cwr_sent = B_FALSE; 16603 } 16604 } 16605 break; 16606 } 16607 /* 16608 * We have something to send yet we cannot send. The 16609 * reason can be: 16610 * 16611 * 1. Zero send window: we need to do zero window probe. 16612 * 2. Zero cwnd: because of ECN, we need to "clock out 16613 * segments. 16614 * 3. SWS avoidance: receiver may have shrunk window, 16615 * reset our knowledge. 16616 * 16617 * Note that condition 2 can happen with either 1 or 16618 * 3. But 1 and 3 are exclusive. 16619 */ 16620 if (tcp->tcp_unsent != 0) { 16621 if (tcp->tcp_cwnd == 0) { 16622 /* 16623 * Set tcp_cwnd to 1 MSS so that a 16624 * new segment can be sent out. We 16625 * are "clocking out" new data when 16626 * the network is really congested. 16627 */ 16628 ASSERT(tcp->tcp_ecn_ok); 16629 tcp->tcp_cwnd = tcp->tcp_mss; 16630 } 16631 if (tcp->tcp_swnd == 0) { 16632 /* Extend window for zero window probe */ 16633 tcp->tcp_swnd++; 16634 tcp->tcp_zero_win_probe = B_TRUE; 16635 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16636 } else { 16637 /* 16638 * Handle timeout from sender SWS avoidance. 16639 * Reset our knowledge of the max send window 16640 * since the receiver might have reduced its 16641 * receive buffer. Avoid setting tcp_max_swnd 16642 * to one since that will essentially disable 16643 * the SWS checks. 16644 * 16645 * Note that since we don't have a SWS 16646 * state variable, if the timeout is set 16647 * for ECN but not for SWS, this 16648 * code will also be executed. This is 16649 * fine as tcp_max_swnd is updated 16650 * constantly and it will not affect 16651 * anything. 16652 */ 16653 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16654 } 16655 tcp_wput_data(tcp, NULL, B_FALSE); 16656 return; 16657 } 16658 /* Is there a FIN that needs to be to re retransmitted? */ 16659 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16660 !tcp->tcp_fin_acked) 16661 break; 16662 /* Nothing to do, return without restarting timer. */ 16663 TCP_STAT(tcp_timer_fire_miss); 16664 return; 16665 case TCPS_FIN_WAIT_2: 16666 /* 16667 * User closed the TCP endpoint and peer ACK'ed our FIN. 16668 * We waited some time for for peer's FIN, but it hasn't 16669 * arrived. We flush the connection now to avoid 16670 * case where the peer has rebooted. 16671 */ 16672 if (TCP_IS_DETACHED(tcp)) { 16673 (void) tcp_clean_death(tcp, 0, 23); 16674 } else { 16675 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16676 } 16677 return; 16678 case TCPS_TIME_WAIT: 16679 (void) tcp_clean_death(tcp, 0, 24); 16680 return; 16681 default: 16682 if (tcp->tcp_debug) { 16683 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16684 "tcp_timer: strange state (%d) %s", 16685 tcp->tcp_state, tcp_display(tcp, NULL, 16686 DISP_PORT_ONLY)); 16687 } 16688 return; 16689 } 16690 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16691 /* 16692 * For zero window probe, we need to send indefinitely, 16693 * unless we have not heard from the other side for some 16694 * time... 16695 */ 16696 if ((tcp->tcp_zero_win_probe == 0) || 16697 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16698 second_threshold)) { 16699 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16700 /* 16701 * If TCP is in SYN_RCVD state, send back a 16702 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16703 * should be zero in TCPS_SYN_RCVD state. 16704 */ 16705 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16706 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16707 "in SYN_RCVD", 16708 tcp, tcp->tcp_snxt, 16709 tcp->tcp_rnxt, TH_RST | TH_ACK); 16710 } 16711 (void) tcp_clean_death(tcp, 16712 tcp->tcp_client_errno ? 16713 tcp->tcp_client_errno : ETIMEDOUT, 25); 16714 return; 16715 } else { 16716 /* 16717 * Set tcp_ms_we_have_waited to second_threshold 16718 * so that in next timeout, we will do the above 16719 * check (lbolt - tcp_last_recv_time). This is 16720 * also to avoid overflow. 16721 * 16722 * We don't need to decrement tcp_timer_backoff 16723 * to avoid overflow because it will be decremented 16724 * later if new timeout value is greater than 16725 * tcp_rexmit_interval_max. In the case when 16726 * tcp_rexmit_interval_max is greater than 16727 * second_threshold, it means that we will wait 16728 * longer than second_threshold to send the next 16729 * window probe. 16730 */ 16731 tcp->tcp_ms_we_have_waited = second_threshold; 16732 } 16733 } else if (ms > first_threshold) { 16734 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16735 tcp->tcp_xmit_head != NULL) { 16736 tcp->tcp_xmit_head = 16737 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16738 } 16739 /* 16740 * We have been retransmitting for too long... The RTT 16741 * we calculated is probably incorrect. Reinitialize it. 16742 * Need to compensate for 0 tcp_rtt_sa. Reset 16743 * tcp_rtt_update so that we won't accidentally cache a 16744 * bad value. But only do this if this is not a zero 16745 * window probe. 16746 */ 16747 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16748 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16749 (tcp->tcp_rtt_sa >> 5); 16750 tcp->tcp_rtt_sa = 0; 16751 tcp_ip_notify(tcp); 16752 tcp->tcp_rtt_update = 0; 16753 } 16754 } 16755 tcp->tcp_timer_backoff++; 16756 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16757 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16758 tcp_rexmit_interval_min) { 16759 /* 16760 * This means the original RTO is tcp_rexmit_interval_min. 16761 * So we will use tcp_rexmit_interval_min as the RTO value 16762 * and do the backoff. 16763 */ 16764 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16765 } else { 16766 ms <<= tcp->tcp_timer_backoff; 16767 } 16768 if (ms > tcp_rexmit_interval_max) { 16769 ms = tcp_rexmit_interval_max; 16770 /* 16771 * ms is at max, decrement tcp_timer_backoff to avoid 16772 * overflow. 16773 */ 16774 tcp->tcp_timer_backoff--; 16775 } 16776 tcp->tcp_ms_we_have_waited += ms; 16777 if (tcp->tcp_zero_win_probe == 0) { 16778 tcp->tcp_rto = ms; 16779 } 16780 TCP_TIMER_RESTART(tcp, ms); 16781 /* 16782 * This is after a timeout and tcp_rto is backed off. Set 16783 * tcp_set_timer to 1 so that next time RTO is updated, we will 16784 * restart the timer with a correct value. 16785 */ 16786 tcp->tcp_set_timer = 1; 16787 mss = tcp->tcp_snxt - tcp->tcp_suna; 16788 if (mss > tcp->tcp_mss) 16789 mss = tcp->tcp_mss; 16790 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16791 mss = tcp->tcp_swnd; 16792 16793 if ((mp = tcp->tcp_xmit_head) != NULL) 16794 mp->b_prev = (mblk_t *)lbolt; 16795 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16796 B_TRUE); 16797 16798 /* 16799 * When slow start after retransmission begins, start with 16800 * this seq no. tcp_rexmit_max marks the end of special slow 16801 * start phase. tcp_snd_burst controls how many segments 16802 * can be sent because of an ack. 16803 */ 16804 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16805 tcp->tcp_snd_burst = TCP_CWND_SS; 16806 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16807 (tcp->tcp_unsent == 0)) { 16808 tcp->tcp_rexmit_max = tcp->tcp_fss; 16809 } else { 16810 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16811 } 16812 tcp->tcp_rexmit = B_TRUE; 16813 tcp->tcp_dupack_cnt = 0; 16814 16815 /* 16816 * Remove all rexmit SACK blk to start from fresh. 16817 */ 16818 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16819 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16820 tcp->tcp_num_notsack_blk = 0; 16821 tcp->tcp_cnt_notsack_list = 0; 16822 } 16823 if (mp == NULL) { 16824 return; 16825 } 16826 /* Attach credentials to retransmitted initial SYNs. */ 16827 if (tcp->tcp_state == TCPS_SYN_SENT) { 16828 mblk_setcred(mp, tcp->tcp_cred); 16829 DB_CPID(mp) = tcp->tcp_cpid; 16830 } 16831 16832 tcp->tcp_csuna = tcp->tcp_snxt; 16833 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16834 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16835 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16836 tcp_send_data(tcp, tcp->tcp_wq, mp); 16837 16838 } 16839 16840 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16841 static void 16842 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16843 { 16844 conn_t *connp; 16845 16846 switch (tcp->tcp_state) { 16847 case TCPS_BOUND: 16848 case TCPS_LISTEN: 16849 break; 16850 default: 16851 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16852 return; 16853 } 16854 16855 /* 16856 * Need to clean up all the eagers since after the unbind, segments 16857 * will no longer be delivered to this listener stream. 16858 */ 16859 mutex_enter(&tcp->tcp_eager_lock); 16860 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16861 tcp_eager_cleanup(tcp, 0); 16862 } 16863 mutex_exit(&tcp->tcp_eager_lock); 16864 16865 if (tcp->tcp_ipversion == IPV4_VERSION) { 16866 tcp->tcp_ipha->ipha_src = 0; 16867 } else { 16868 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16869 } 16870 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16871 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16872 tcp_bind_hash_remove(tcp); 16873 tcp->tcp_state = TCPS_IDLE; 16874 tcp->tcp_mdt = B_FALSE; 16875 /* Send M_FLUSH according to TPI */ 16876 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16877 connp = tcp->tcp_connp; 16878 connp->conn_mdt_ok = B_FALSE; 16879 ipcl_hash_remove(connp); 16880 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16881 mp = mi_tpi_ok_ack_alloc(mp); 16882 putnext(tcp->tcp_rq, mp); 16883 } 16884 16885 /* 16886 * Don't let port fall into the privileged range. 16887 * Since the extra privileged ports can be arbitrary we also 16888 * ensure that we exclude those from consideration. 16889 * tcp_g_epriv_ports is not sorted thus we loop over it until 16890 * there are no changes. 16891 * 16892 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16893 * but instead the code relies on: 16894 * - the fact that the address of the array and its size never changes 16895 * - the atomic assignment of the elements of the array 16896 * 16897 * Returns 0 if there are no more ports available. 16898 * 16899 * TS note: skip multilevel ports. 16900 */ 16901 static in_port_t 16902 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16903 { 16904 int i; 16905 boolean_t restart = B_FALSE; 16906 16907 if (random && tcp_random_anon_port != 0) { 16908 (void) random_get_pseudo_bytes((uint8_t *)&port, 16909 sizeof (in_port_t)); 16910 /* 16911 * Unless changed by a sys admin, the smallest anon port 16912 * is 32768 and the largest anon port is 65535. It is 16913 * very likely (50%) for the random port to be smaller 16914 * than the smallest anon port. When that happens, 16915 * add port % (anon port range) to the smallest anon 16916 * port to get the random port. It should fall into the 16917 * valid anon port range. 16918 */ 16919 if (port < tcp_smallest_anon_port) { 16920 port = tcp_smallest_anon_port + 16921 port % (tcp_largest_anon_port - 16922 tcp_smallest_anon_port); 16923 } 16924 } 16925 16926 retry: 16927 if (port < tcp_smallest_anon_port) 16928 port = (in_port_t)tcp_smallest_anon_port; 16929 16930 if (port > tcp_largest_anon_port) { 16931 if (restart) 16932 return (0); 16933 restart = B_TRUE; 16934 port = (in_port_t)tcp_smallest_anon_port; 16935 } 16936 16937 if (port < tcp_smallest_nonpriv_port) 16938 port = (in_port_t)tcp_smallest_nonpriv_port; 16939 16940 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16941 if (port == tcp_g_epriv_ports[i]) { 16942 port++; 16943 /* 16944 * Make sure whether the port is in the 16945 * valid range. 16946 */ 16947 goto retry; 16948 } 16949 } 16950 if (is_system_labeled() && 16951 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16952 IPPROTO_TCP, B_TRUE)) != 0) { 16953 port = i; 16954 goto retry; 16955 } 16956 return (port); 16957 } 16958 16959 /* 16960 * Return the next anonymous port in the privileged port range for 16961 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16962 * downwards. This is the same behavior as documented in the userland 16963 * library call rresvport(3N). 16964 * 16965 * TS note: skip multilevel ports. 16966 */ 16967 static in_port_t 16968 tcp_get_next_priv_port(const tcp_t *tcp) 16969 { 16970 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16971 in_port_t nextport; 16972 boolean_t restart = B_FALSE; 16973 16974 retry: 16975 if (next_priv_port < tcp_min_anonpriv_port || 16976 next_priv_port >= IPPORT_RESERVED) { 16977 next_priv_port = IPPORT_RESERVED - 1; 16978 if (restart) 16979 return (0); 16980 restart = B_TRUE; 16981 } 16982 if (is_system_labeled() && 16983 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16984 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16985 next_priv_port = nextport; 16986 goto retry; 16987 } 16988 return (next_priv_port--); 16989 } 16990 16991 /* The write side r/w procedure. */ 16992 16993 #if CCS_STATS 16994 struct { 16995 struct { 16996 int64_t count, bytes; 16997 } tot, hit; 16998 } wrw_stats; 16999 #endif 17000 17001 /* 17002 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17003 * messages. 17004 */ 17005 /* ARGSUSED */ 17006 static void 17007 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17008 { 17009 conn_t *connp = (conn_t *)arg; 17010 tcp_t *tcp = connp->conn_tcp; 17011 queue_t *q = tcp->tcp_wq; 17012 17013 ASSERT(DB_TYPE(mp) != M_IOCTL); 17014 /* 17015 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17016 * Once the close starts, streamhead and sockfs will not let any data 17017 * packets come down (close ensures that there are no threads using the 17018 * queue and no new threads will come down) but since qprocsoff() 17019 * hasn't happened yet, a M_FLUSH or some non data message might 17020 * get reflected back (in response to our own FLUSHRW) and get 17021 * processed after tcp_close() is done. The conn would still be valid 17022 * because a ref would have added but we need to check the state 17023 * before actually processing the packet. 17024 */ 17025 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17026 freemsg(mp); 17027 return; 17028 } 17029 17030 switch (DB_TYPE(mp)) { 17031 case M_IOCDATA: 17032 tcp_wput_iocdata(tcp, mp); 17033 break; 17034 case M_FLUSH: 17035 tcp_wput_flush(tcp, mp); 17036 break; 17037 default: 17038 CALL_IP_WPUT(connp, q, mp); 17039 break; 17040 } 17041 } 17042 17043 /* 17044 * The TCP fast path write put procedure. 17045 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17046 */ 17047 /* ARGSUSED */ 17048 void 17049 tcp_output(void *arg, mblk_t *mp, void *arg2) 17050 { 17051 int len; 17052 int hdrlen; 17053 int plen; 17054 mblk_t *mp1; 17055 uchar_t *rptr; 17056 uint32_t snxt; 17057 tcph_t *tcph; 17058 struct datab *db; 17059 uint32_t suna; 17060 uint32_t mss; 17061 ipaddr_t *dst; 17062 ipaddr_t *src; 17063 uint32_t sum; 17064 int usable; 17065 conn_t *connp = (conn_t *)arg; 17066 tcp_t *tcp = connp->conn_tcp; 17067 uint32_t msize; 17068 17069 /* 17070 * Try and ASSERT the minimum possible references on the 17071 * conn early enough. Since we are executing on write side, 17072 * the connection is obviously not detached and that means 17073 * there is a ref each for TCP and IP. Since we are behind 17074 * the squeue, the minimum references needed are 3. If the 17075 * conn is in classifier hash list, there should be an 17076 * extra ref for that (we check both the possibilities). 17077 */ 17078 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17079 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17080 17081 ASSERT(DB_TYPE(mp) == M_DATA); 17082 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17083 17084 mutex_enter(&connp->conn_lock); 17085 tcp->tcp_squeue_bytes -= msize; 17086 mutex_exit(&connp->conn_lock); 17087 17088 /* Bypass tcp protocol for fused tcp loopback */ 17089 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17090 return; 17091 17092 mss = tcp->tcp_mss; 17093 if (tcp->tcp_xmit_zc_clean) 17094 mp = tcp_zcopy_backoff(tcp, mp, 0); 17095 17096 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17097 len = (int)(mp->b_wptr - mp->b_rptr); 17098 17099 /* 17100 * Criteria for fast path: 17101 * 17102 * 1. no unsent data 17103 * 2. single mblk in request 17104 * 3. connection established 17105 * 4. data in mblk 17106 * 5. len <= mss 17107 * 6. no tcp_valid bits 17108 */ 17109 if ((tcp->tcp_unsent != 0) || 17110 (tcp->tcp_cork) || 17111 (mp->b_cont != NULL) || 17112 (tcp->tcp_state != TCPS_ESTABLISHED) || 17113 (len == 0) || 17114 (len > mss) || 17115 (tcp->tcp_valid_bits != 0)) { 17116 tcp_wput_data(tcp, mp, B_FALSE); 17117 return; 17118 } 17119 17120 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17121 ASSERT(tcp->tcp_fin_sent == 0); 17122 17123 /* queue new packet onto retransmission queue */ 17124 if (tcp->tcp_xmit_head == NULL) { 17125 tcp->tcp_xmit_head = mp; 17126 } else { 17127 tcp->tcp_xmit_last->b_cont = mp; 17128 } 17129 tcp->tcp_xmit_last = mp; 17130 tcp->tcp_xmit_tail = mp; 17131 17132 /* find out how much we can send */ 17133 /* BEGIN CSTYLED */ 17134 /* 17135 * un-acked usable 17136 * |--------------|-----------------| 17137 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17138 */ 17139 /* END CSTYLED */ 17140 17141 /* start sending from tcp_snxt */ 17142 snxt = tcp->tcp_snxt; 17143 17144 /* 17145 * Check to see if this connection has been idled for some 17146 * time and no ACK is expected. If it is, we need to slow 17147 * start again to get back the connection's "self-clock" as 17148 * described in VJ's paper. 17149 * 17150 * Refer to the comment in tcp_mss_set() for the calculation 17151 * of tcp_cwnd after idle. 17152 */ 17153 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17154 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17155 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17156 } 17157 17158 usable = tcp->tcp_swnd; /* tcp window size */ 17159 if (usable > tcp->tcp_cwnd) 17160 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17161 usable -= snxt; /* subtract stuff already sent */ 17162 suna = tcp->tcp_suna; 17163 usable += suna; 17164 /* usable can be < 0 if the congestion window is smaller */ 17165 if (len > usable) { 17166 /* Can't send complete M_DATA in one shot */ 17167 goto slow; 17168 } 17169 17170 if (tcp->tcp_flow_stopped && 17171 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17172 tcp_clrqfull(tcp); 17173 } 17174 17175 /* 17176 * determine if anything to send (Nagle). 17177 * 17178 * 1. len < tcp_mss (i.e. small) 17179 * 2. unacknowledged data present 17180 * 3. len < nagle limit 17181 * 4. last packet sent < nagle limit (previous packet sent) 17182 */ 17183 if ((len < mss) && (snxt != suna) && 17184 (len < (int)tcp->tcp_naglim) && 17185 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17186 /* 17187 * This was the first unsent packet and normally 17188 * mss < xmit_hiwater so there is no need to worry 17189 * about flow control. The next packet will go 17190 * through the flow control check in tcp_wput_data(). 17191 */ 17192 /* leftover work from above */ 17193 tcp->tcp_unsent = len; 17194 tcp->tcp_xmit_tail_unsent = len; 17195 17196 return; 17197 } 17198 17199 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17200 17201 if (snxt == suna) { 17202 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17203 } 17204 17205 /* we have always sent something */ 17206 tcp->tcp_rack_cnt = 0; 17207 17208 tcp->tcp_snxt = snxt + len; 17209 tcp->tcp_rack = tcp->tcp_rnxt; 17210 17211 if ((mp1 = dupb(mp)) == 0) 17212 goto no_memory; 17213 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17214 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17215 17216 /* adjust tcp header information */ 17217 tcph = tcp->tcp_tcph; 17218 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17219 17220 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17221 sum = (sum >> 16) + (sum & 0xFFFF); 17222 U16_TO_ABE16(sum, tcph->th_sum); 17223 17224 U32_TO_ABE32(snxt, tcph->th_seq); 17225 17226 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17227 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17228 BUMP_LOCAL(tcp->tcp_obsegs); 17229 17230 /* Update the latest receive window size in TCP header. */ 17231 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17232 tcph->th_win); 17233 17234 tcp->tcp_last_sent_len = (ushort_t)len; 17235 17236 plen = len + tcp->tcp_hdr_len; 17237 17238 if (tcp->tcp_ipversion == IPV4_VERSION) { 17239 tcp->tcp_ipha->ipha_length = htons(plen); 17240 } else { 17241 tcp->tcp_ip6h->ip6_plen = htons(plen - 17242 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17243 } 17244 17245 /* see if we need to allocate a mblk for the headers */ 17246 hdrlen = tcp->tcp_hdr_len; 17247 rptr = mp1->b_rptr - hdrlen; 17248 db = mp1->b_datap; 17249 if ((db->db_ref != 2) || rptr < db->db_base || 17250 (!OK_32PTR(rptr))) { 17251 /* NOTE: we assume allocb returns an OK_32PTR */ 17252 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17253 tcp_wroff_xtra, BPRI_MED); 17254 if (!mp) { 17255 freemsg(mp1); 17256 goto no_memory; 17257 } 17258 mp->b_cont = mp1; 17259 mp1 = mp; 17260 /* Leave room for Link Level header */ 17261 /* hdrlen = tcp->tcp_hdr_len; */ 17262 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17263 mp1->b_wptr = &rptr[hdrlen]; 17264 } 17265 mp1->b_rptr = rptr; 17266 17267 /* Fill in the timestamp option. */ 17268 if (tcp->tcp_snd_ts_ok) { 17269 U32_TO_BE32((uint32_t)lbolt, 17270 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17271 U32_TO_BE32(tcp->tcp_ts_recent, 17272 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17273 } else { 17274 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17275 } 17276 17277 /* copy header into outgoing packet */ 17278 dst = (ipaddr_t *)rptr; 17279 src = (ipaddr_t *)tcp->tcp_iphc; 17280 dst[0] = src[0]; 17281 dst[1] = src[1]; 17282 dst[2] = src[2]; 17283 dst[3] = src[3]; 17284 dst[4] = src[4]; 17285 dst[5] = src[5]; 17286 dst[6] = src[6]; 17287 dst[7] = src[7]; 17288 dst[8] = src[8]; 17289 dst[9] = src[9]; 17290 if (hdrlen -= 40) { 17291 hdrlen >>= 2; 17292 dst += 10; 17293 src += 10; 17294 do { 17295 *dst++ = *src++; 17296 } while (--hdrlen); 17297 } 17298 17299 /* 17300 * Set the ECN info in the TCP header. Note that this 17301 * is not the template header. 17302 */ 17303 if (tcp->tcp_ecn_ok) { 17304 SET_ECT(tcp, rptr); 17305 17306 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17307 if (tcp->tcp_ecn_echo_on) 17308 tcph->th_flags[0] |= TH_ECE; 17309 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17310 tcph->th_flags[0] |= TH_CWR; 17311 tcp->tcp_ecn_cwr_sent = B_TRUE; 17312 } 17313 } 17314 17315 if (tcp->tcp_ip_forward_progress) { 17316 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17317 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17318 tcp->tcp_ip_forward_progress = B_FALSE; 17319 } 17320 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17321 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17322 return; 17323 17324 /* 17325 * If we ran out of memory, we pretend to have sent the packet 17326 * and that it was lost on the wire. 17327 */ 17328 no_memory: 17329 return; 17330 17331 slow: 17332 /* leftover work from above */ 17333 tcp->tcp_unsent = len; 17334 tcp->tcp_xmit_tail_unsent = len; 17335 tcp_wput_data(tcp, NULL, B_FALSE); 17336 } 17337 17338 /* 17339 * The function called through squeue to get behind eager's perimeter to 17340 * finish the accept processing. 17341 */ 17342 /* ARGSUSED */ 17343 void 17344 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17345 { 17346 conn_t *connp = (conn_t *)arg; 17347 tcp_t *tcp = connp->conn_tcp; 17348 queue_t *q = tcp->tcp_rq; 17349 mblk_t *mp1; 17350 mblk_t *stropt_mp = mp; 17351 struct stroptions *stropt; 17352 uint_t thwin; 17353 17354 /* 17355 * Drop the eager's ref on the listener, that was placed when 17356 * this eager began life in tcp_conn_request. 17357 */ 17358 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17359 17360 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17361 /* 17362 * Someone blewoff the eager before we could finish 17363 * the accept. 17364 * 17365 * The only reason eager exists it because we put in 17366 * a ref on it when conn ind went up. We need to send 17367 * a disconnect indication up while the last reference 17368 * on the eager will be dropped by the squeue when we 17369 * return. 17370 */ 17371 ASSERT(tcp->tcp_listener == NULL); 17372 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17373 struct T_discon_ind *tdi; 17374 17375 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17376 /* 17377 * Let us reuse the incoming mblk to avoid memory 17378 * allocation failure problems. We know that the 17379 * size of the incoming mblk i.e. stroptions is greater 17380 * than sizeof T_discon_ind. So the reallocb below 17381 * can't fail. 17382 */ 17383 freemsg(mp->b_cont); 17384 mp->b_cont = NULL; 17385 ASSERT(DB_REF(mp) == 1); 17386 mp = reallocb(mp, sizeof (struct T_discon_ind), 17387 B_FALSE); 17388 ASSERT(mp != NULL); 17389 DB_TYPE(mp) = M_PROTO; 17390 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17391 tdi = (struct T_discon_ind *)mp->b_rptr; 17392 if (tcp->tcp_issocket) { 17393 tdi->DISCON_reason = ECONNREFUSED; 17394 tdi->SEQ_number = 0; 17395 } else { 17396 tdi->DISCON_reason = ENOPROTOOPT; 17397 tdi->SEQ_number = 17398 tcp->tcp_conn_req_seqnum; 17399 } 17400 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17401 putnext(q, mp); 17402 } else { 17403 freemsg(mp); 17404 } 17405 if (tcp->tcp_hard_binding) { 17406 tcp->tcp_hard_binding = B_FALSE; 17407 tcp->tcp_hard_bound = B_TRUE; 17408 } 17409 tcp->tcp_detached = B_FALSE; 17410 return; 17411 } 17412 17413 mp1 = stropt_mp->b_cont; 17414 stropt_mp->b_cont = NULL; 17415 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17416 stropt = (struct stroptions *)stropt_mp->b_rptr; 17417 17418 while (mp1 != NULL) { 17419 mp = mp1; 17420 mp1 = mp1->b_cont; 17421 mp->b_cont = NULL; 17422 tcp->tcp_drop_opt_ack_cnt++; 17423 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17424 } 17425 mp = NULL; 17426 17427 /* 17428 * For a loopback connection with tcp_direct_sockfs on, note that 17429 * we don't have to protect tcp_rcv_list yet because synchronous 17430 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17431 * possibly race with us. 17432 */ 17433 17434 /* 17435 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17436 * properly. This is the first time we know of the acceptor' 17437 * queue. So we do it here. 17438 */ 17439 if (tcp->tcp_rcv_list == NULL) { 17440 /* 17441 * Recv queue is empty, tcp_rwnd should not have changed. 17442 * That means it should be equal to the listener's tcp_rwnd. 17443 */ 17444 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17445 } else { 17446 #ifdef DEBUG 17447 uint_t cnt = 0; 17448 17449 mp1 = tcp->tcp_rcv_list; 17450 while ((mp = mp1) != NULL) { 17451 mp1 = mp->b_next; 17452 cnt += msgdsize(mp); 17453 } 17454 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17455 #endif 17456 /* There is some data, add them back to get the max. */ 17457 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17458 } 17459 17460 stropt->so_flags = SO_HIWAT; 17461 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17462 17463 stropt->so_flags |= SO_MAXBLK; 17464 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17465 17466 /* 17467 * This is the first time we run on the correct 17468 * queue after tcp_accept. So fix all the q parameters 17469 * here. 17470 */ 17471 /* Allocate room for SACK options if needed. */ 17472 stropt->so_flags |= SO_WROFF; 17473 if (tcp->tcp_fused) { 17474 ASSERT(tcp->tcp_loopback); 17475 ASSERT(tcp->tcp_loopback_peer != NULL); 17476 /* 17477 * For fused tcp loopback, set the stream head's write 17478 * offset value to zero since we won't be needing any room 17479 * for TCP/IP headers. This would also improve performance 17480 * since it would reduce the amount of work done by kmem. 17481 * Non-fused tcp loopback case is handled separately below. 17482 */ 17483 stropt->so_wroff = 0; 17484 /* 17485 * Record the stream head's high water mark for this endpoint; 17486 * this is used for flow-control purposes in tcp_fuse_output(). 17487 */ 17488 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17489 /* 17490 * Update the peer's transmit parameters according to 17491 * our recently calculated high water mark value. 17492 */ 17493 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17494 } else if (tcp->tcp_snd_sack_ok) { 17495 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17496 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17497 } else { 17498 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17499 tcp_wroff_xtra); 17500 } 17501 17502 /* 17503 * If this is endpoint is handling SSL, then reserve extra 17504 * offset and space at the end. 17505 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17506 * overriding the previous setting. The extra cost of signing and 17507 * encrypting multiple MSS-size records (12 of them with Ethernet), 17508 * instead of a single contiguous one by the stream head 17509 * largely outweighs the statistical reduction of ACKs, when 17510 * applicable. The peer will also save on decyption and verification 17511 * costs. 17512 */ 17513 if (tcp->tcp_kssl_ctx != NULL) { 17514 stropt->so_wroff += SSL3_WROFFSET; 17515 17516 stropt->so_flags |= SO_TAIL; 17517 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17518 17519 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17520 } 17521 17522 /* Send the options up */ 17523 putnext(q, stropt_mp); 17524 17525 /* 17526 * Pass up any data and/or a fin that has been received. 17527 * 17528 * Adjust receive window in case it had decreased 17529 * (because there is data <=> tcp_rcv_list != NULL) 17530 * while the connection was detached. Note that 17531 * in case the eager was flow-controlled, w/o this 17532 * code, the rwnd may never open up again! 17533 */ 17534 if (tcp->tcp_rcv_list != NULL) { 17535 /* We drain directly in case of fused tcp loopback */ 17536 if (!tcp->tcp_fused && canputnext(q)) { 17537 tcp->tcp_rwnd = q->q_hiwat; 17538 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17539 << tcp->tcp_rcv_ws; 17540 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17541 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17542 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17543 tcp_xmit_ctl(NULL, 17544 tcp, (tcp->tcp_swnd == 0) ? 17545 tcp->tcp_suna : tcp->tcp_snxt, 17546 tcp->tcp_rnxt, TH_ACK); 17547 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17548 } 17549 17550 } 17551 (void) tcp_rcv_drain(q, tcp); 17552 17553 /* 17554 * For fused tcp loopback, back-enable peer endpoint 17555 * if it's currently flow-controlled. 17556 */ 17557 if (tcp->tcp_fused && 17558 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17559 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17560 17561 ASSERT(peer_tcp != NULL); 17562 ASSERT(peer_tcp->tcp_fused); 17563 17564 tcp_clrqfull(peer_tcp); 17565 TCP_STAT(tcp_fusion_backenabled); 17566 } 17567 } 17568 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17569 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17570 mp = mi_tpi_ordrel_ind(); 17571 if (mp) { 17572 tcp->tcp_ordrel_done = B_TRUE; 17573 putnext(q, mp); 17574 if (tcp->tcp_deferred_clean_death) { 17575 /* 17576 * tcp_clean_death was deferred 17577 * for T_ORDREL_IND - do it now 17578 */ 17579 (void) tcp_clean_death(tcp, 17580 tcp->tcp_client_errno, 21); 17581 tcp->tcp_deferred_clean_death = B_FALSE; 17582 } 17583 } else { 17584 /* 17585 * Run the orderly release in the 17586 * service routine. 17587 */ 17588 qenable(q); 17589 } 17590 } 17591 if (tcp->tcp_hard_binding) { 17592 tcp->tcp_hard_binding = B_FALSE; 17593 tcp->tcp_hard_bound = B_TRUE; 17594 } 17595 17596 tcp->tcp_detached = B_FALSE; 17597 17598 /* We can enable synchronous streams now */ 17599 if (tcp->tcp_fused) { 17600 tcp_fuse_syncstr_enable_pair(tcp); 17601 } 17602 17603 if (tcp->tcp_ka_enabled) { 17604 tcp->tcp_ka_last_intrvl = 0; 17605 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17606 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17607 } 17608 17609 /* 17610 * At this point, eager is fully established and will 17611 * have the following references - 17612 * 17613 * 2 references for connection to exist (1 for TCP and 1 for IP). 17614 * 1 reference for the squeue which will be dropped by the squeue as 17615 * soon as this function returns. 17616 * There will be 1 additonal reference for being in classifier 17617 * hash list provided something bad hasn't happened. 17618 */ 17619 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17620 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17621 } 17622 17623 /* 17624 * The function called through squeue to get behind listener's perimeter to 17625 * send a deffered conn_ind. 17626 */ 17627 /* ARGSUSED */ 17628 void 17629 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17630 { 17631 conn_t *connp = (conn_t *)arg; 17632 tcp_t *listener = connp->conn_tcp; 17633 17634 if (listener->tcp_state == TCPS_CLOSED || 17635 TCP_IS_DETACHED(listener)) { 17636 /* 17637 * If listener has closed, it would have caused a 17638 * a cleanup/blowoff to happen for the eager. 17639 */ 17640 tcp_t *tcp; 17641 struct T_conn_ind *conn_ind; 17642 17643 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17644 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17645 conn_ind->OPT_length); 17646 /* 17647 * We need to drop the ref on eager that was put 17648 * tcp_rput_data() before trying to send the conn_ind 17649 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17650 * and tcp_wput_accept() is sending this deferred conn_ind but 17651 * listener is closed so we drop the ref. 17652 */ 17653 CONN_DEC_REF(tcp->tcp_connp); 17654 freemsg(mp); 17655 return; 17656 } 17657 putnext(listener->tcp_rq, mp); 17658 } 17659 17660 17661 /* 17662 * This is the STREAMS entry point for T_CONN_RES coming down on 17663 * Acceptor STREAM when sockfs listener does accept processing. 17664 * Read the block comment on top pf tcp_conn_request(). 17665 */ 17666 void 17667 tcp_wput_accept(queue_t *q, mblk_t *mp) 17668 { 17669 queue_t *rq = RD(q); 17670 struct T_conn_res *conn_res; 17671 tcp_t *eager; 17672 tcp_t *listener; 17673 struct T_ok_ack *ok; 17674 t_scalar_t PRIM_type; 17675 mblk_t *opt_mp; 17676 conn_t *econnp; 17677 17678 ASSERT(DB_TYPE(mp) == M_PROTO); 17679 17680 conn_res = (struct T_conn_res *)mp->b_rptr; 17681 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17682 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17683 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17684 if (mp != NULL) 17685 putnext(rq, mp); 17686 return; 17687 } 17688 switch (conn_res->PRIM_type) { 17689 case O_T_CONN_RES: 17690 case T_CONN_RES: 17691 /* 17692 * We pass up an err ack if allocb fails. This will 17693 * cause sockfs to issue a T_DISCON_REQ which will cause 17694 * tcp_eager_blowoff to be called. sockfs will then call 17695 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17696 * we need to do the allocb up here because we have to 17697 * make sure rq->q_qinfo->qi_qclose still points to the 17698 * correct function (tcpclose_accept) in case allocb 17699 * fails. 17700 */ 17701 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17702 if (opt_mp == NULL) { 17703 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17704 if (mp != NULL) 17705 putnext(rq, mp); 17706 return; 17707 } 17708 17709 bcopy(mp->b_rptr + conn_res->OPT_offset, 17710 &eager, conn_res->OPT_length); 17711 PRIM_type = conn_res->PRIM_type; 17712 mp->b_datap->db_type = M_PCPROTO; 17713 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17714 ok = (struct T_ok_ack *)mp->b_rptr; 17715 ok->PRIM_type = T_OK_ACK; 17716 ok->CORRECT_prim = PRIM_type; 17717 econnp = eager->tcp_connp; 17718 econnp->conn_dev = (dev_t)q->q_ptr; 17719 eager->tcp_rq = rq; 17720 eager->tcp_wq = q; 17721 rq->q_ptr = econnp; 17722 rq->q_qinfo = &tcp_rinit; 17723 q->q_ptr = econnp; 17724 q->q_qinfo = &tcp_winit; 17725 listener = eager->tcp_listener; 17726 eager->tcp_issocket = B_TRUE; 17727 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17728 17729 /* Put the ref for IP */ 17730 CONN_INC_REF(econnp); 17731 17732 /* 17733 * We should have minimum of 3 references on the conn 17734 * at this point. One each for TCP and IP and one for 17735 * the T_conn_ind that was sent up when the 3-way handshake 17736 * completed. In the normal case we would also have another 17737 * reference (making a total of 4) for the conn being in the 17738 * classifier hash list. However the eager could have received 17739 * an RST subsequently and tcp_closei_local could have removed 17740 * the eager from the classifier hash list, hence we can't 17741 * assert that reference. 17742 */ 17743 ASSERT(econnp->conn_ref >= 3); 17744 17745 /* 17746 * Send the new local address also up to sockfs. There 17747 * should already be enough space in the mp that came 17748 * down from soaccept(). 17749 */ 17750 if (eager->tcp_family == AF_INET) { 17751 sin_t *sin; 17752 17753 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17754 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17755 sin = (sin_t *)mp->b_wptr; 17756 mp->b_wptr += sizeof (sin_t); 17757 sin->sin_family = AF_INET; 17758 sin->sin_port = eager->tcp_lport; 17759 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17760 } else { 17761 sin6_t *sin6; 17762 17763 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17764 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17765 sin6 = (sin6_t *)mp->b_wptr; 17766 mp->b_wptr += sizeof (sin6_t); 17767 sin6->sin6_family = AF_INET6; 17768 sin6->sin6_port = eager->tcp_lport; 17769 if (eager->tcp_ipversion == IPV4_VERSION) { 17770 sin6->sin6_flowinfo = 0; 17771 IN6_IPADDR_TO_V4MAPPED( 17772 eager->tcp_ipha->ipha_src, 17773 &sin6->sin6_addr); 17774 } else { 17775 ASSERT(eager->tcp_ip6h != NULL); 17776 sin6->sin6_flowinfo = 17777 eager->tcp_ip6h->ip6_vcf & 17778 ~IPV6_VERS_AND_FLOW_MASK; 17779 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17780 } 17781 sin6->sin6_scope_id = 0; 17782 sin6->__sin6_src_id = 0; 17783 } 17784 17785 putnext(rq, mp); 17786 17787 opt_mp->b_datap->db_type = M_SETOPTS; 17788 opt_mp->b_wptr += sizeof (struct stroptions); 17789 17790 /* 17791 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17792 * from listener to acceptor. The message is chained on the 17793 * bind_mp which tcp_rput_other will send down to IP. 17794 */ 17795 if (listener->tcp_bound_if != 0) { 17796 /* allocate optmgmt req */ 17797 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17798 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17799 sizeof (int)); 17800 if (mp != NULL) 17801 linkb(opt_mp, mp); 17802 } 17803 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17804 uint_t on = 1; 17805 17806 /* allocate optmgmt req */ 17807 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17808 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17809 if (mp != NULL) 17810 linkb(opt_mp, mp); 17811 } 17812 17813 17814 mutex_enter(&listener->tcp_eager_lock); 17815 17816 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17817 17818 tcp_t *tail; 17819 tcp_t *tcp; 17820 mblk_t *mp1; 17821 17822 tcp = listener->tcp_eager_prev_q0; 17823 /* 17824 * listener->tcp_eager_prev_q0 points to the TAIL of the 17825 * deferred T_conn_ind queue. We need to get to the head 17826 * of the queue in order to send up T_conn_ind the same 17827 * order as how the 3WHS is completed. 17828 */ 17829 while (tcp != listener) { 17830 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17831 !tcp->tcp_kssl_pending) 17832 break; 17833 else 17834 tcp = tcp->tcp_eager_prev_q0; 17835 } 17836 /* None of the pending eagers can be sent up now */ 17837 if (tcp == listener) 17838 goto no_more_eagers; 17839 17840 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17841 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17842 /* Move from q0 to q */ 17843 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17844 listener->tcp_conn_req_cnt_q0--; 17845 listener->tcp_conn_req_cnt_q++; 17846 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17847 tcp->tcp_eager_prev_q0; 17848 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17849 tcp->tcp_eager_next_q0; 17850 tcp->tcp_eager_prev_q0 = NULL; 17851 tcp->tcp_eager_next_q0 = NULL; 17852 tcp->tcp_conn_def_q0 = B_FALSE; 17853 17854 /* 17855 * Insert at end of the queue because sockfs sends 17856 * down T_CONN_RES in chronological order. Leaving 17857 * the older conn indications at front of the queue 17858 * helps reducing search time. 17859 */ 17860 tail = listener->tcp_eager_last_q; 17861 if (tail != NULL) { 17862 tail->tcp_eager_next_q = tcp; 17863 } else { 17864 listener->tcp_eager_next_q = tcp; 17865 } 17866 listener->tcp_eager_last_q = tcp; 17867 tcp->tcp_eager_next_q = NULL; 17868 17869 /* Need to get inside the listener perimeter */ 17870 CONN_INC_REF(listener->tcp_connp); 17871 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17872 tcp_send_pending, listener->tcp_connp, 17873 SQTAG_TCP_SEND_PENDING); 17874 } 17875 no_more_eagers: 17876 tcp_eager_unlink(eager); 17877 mutex_exit(&listener->tcp_eager_lock); 17878 17879 /* 17880 * At this point, the eager is detached from the listener 17881 * but we still have an extra refs on eager (apart from the 17882 * usual tcp references). The ref was placed in tcp_rput_data 17883 * before sending the conn_ind in tcp_send_conn_ind. 17884 * The ref will be dropped in tcp_accept_finish(). 17885 */ 17886 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17887 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17888 return; 17889 default: 17890 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17891 if (mp != NULL) 17892 putnext(rq, mp); 17893 return; 17894 } 17895 } 17896 17897 void 17898 tcp_wput(queue_t *q, mblk_t *mp) 17899 { 17900 conn_t *connp = Q_TO_CONN(q); 17901 tcp_t *tcp; 17902 void (*output_proc)(); 17903 t_scalar_t type; 17904 uchar_t *rptr; 17905 struct iocblk *iocp; 17906 uint32_t msize; 17907 17908 ASSERT(connp->conn_ref >= 2); 17909 17910 switch (DB_TYPE(mp)) { 17911 case M_DATA: 17912 tcp = connp->conn_tcp; 17913 ASSERT(tcp != NULL); 17914 17915 msize = msgdsize(mp); 17916 17917 mutex_enter(&connp->conn_lock); 17918 CONN_INC_REF_LOCKED(connp); 17919 17920 tcp->tcp_squeue_bytes += msize; 17921 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17922 mutex_exit(&connp->conn_lock); 17923 tcp_setqfull(tcp); 17924 } else 17925 mutex_exit(&connp->conn_lock); 17926 17927 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17928 tcp_output, connp, SQTAG_TCP_OUTPUT); 17929 return; 17930 case M_PROTO: 17931 case M_PCPROTO: 17932 /* 17933 * if it is a snmp message, don't get behind the squeue 17934 */ 17935 tcp = connp->conn_tcp; 17936 rptr = mp->b_rptr; 17937 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17938 type = ((union T_primitives *)rptr)->type; 17939 } else { 17940 if (tcp->tcp_debug) { 17941 (void) strlog(TCP_MOD_ID, 0, 1, 17942 SL_ERROR|SL_TRACE, 17943 "tcp_wput_proto, dropping one..."); 17944 } 17945 freemsg(mp); 17946 return; 17947 } 17948 if (type == T_SVR4_OPTMGMT_REQ) { 17949 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 17950 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17951 cr)) { 17952 /* 17953 * This was a SNMP request 17954 */ 17955 return; 17956 } else { 17957 output_proc = tcp_wput_proto; 17958 } 17959 } else { 17960 output_proc = tcp_wput_proto; 17961 } 17962 break; 17963 case M_IOCTL: 17964 /* 17965 * Most ioctls can be processed right away without going via 17966 * squeues - process them right here. Those that do require 17967 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17968 * are processed by tcp_wput_ioctl(). 17969 */ 17970 iocp = (struct iocblk *)mp->b_rptr; 17971 tcp = connp->conn_tcp; 17972 17973 switch (iocp->ioc_cmd) { 17974 case TCP_IOC_ABORT_CONN: 17975 tcp_ioctl_abort_conn(q, mp); 17976 return; 17977 case TI_GETPEERNAME: 17978 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17979 iocp->ioc_error = ENOTCONN; 17980 iocp->ioc_count = 0; 17981 mp->b_datap->db_type = M_IOCACK; 17982 qreply(q, mp); 17983 return; 17984 } 17985 /* FALLTHRU */ 17986 case TI_GETMYNAME: 17987 mi_copyin(q, mp, NULL, 17988 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17989 return; 17990 case ND_SET: 17991 /* nd_getset does the necessary checks */ 17992 case ND_GET: 17993 if (!nd_getset(q, tcp_g_nd, mp)) { 17994 CALL_IP_WPUT(connp, q, mp); 17995 return; 17996 } 17997 qreply(q, mp); 17998 return; 17999 case TCP_IOC_DEFAULT_Q: 18000 /* 18001 * Wants to be the default wq. Check the credentials 18002 * first, the rest is executed via squeue. 18003 */ 18004 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18005 iocp->ioc_error = EPERM; 18006 iocp->ioc_count = 0; 18007 mp->b_datap->db_type = M_IOCACK; 18008 qreply(q, mp); 18009 return; 18010 } 18011 output_proc = tcp_wput_ioctl; 18012 break; 18013 default: 18014 output_proc = tcp_wput_ioctl; 18015 break; 18016 } 18017 break; 18018 default: 18019 output_proc = tcp_wput_nondata; 18020 break; 18021 } 18022 18023 CONN_INC_REF(connp); 18024 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18025 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18026 } 18027 18028 /* 18029 * Initial STREAMS write side put() procedure for sockets. It tries to 18030 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18031 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18032 * are handled by tcp_wput() as usual. 18033 * 18034 * All further messages will also be handled by tcp_wput() because we cannot 18035 * be sure that the above short cut is safe later. 18036 */ 18037 static void 18038 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18039 { 18040 conn_t *connp = Q_TO_CONN(wq); 18041 tcp_t *tcp = connp->conn_tcp; 18042 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18043 18044 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18045 wq->q_qinfo = &tcp_winit; 18046 18047 ASSERT(IPCL_IS_TCP(connp)); 18048 ASSERT(TCP_IS_SOCKET(tcp)); 18049 18050 if (DB_TYPE(mp) == M_PCPROTO && 18051 MBLKL(mp) == sizeof (struct T_capability_req) && 18052 car->PRIM_type == T_CAPABILITY_REQ) { 18053 tcp_capability_req(tcp, mp); 18054 return; 18055 } 18056 18057 tcp_wput(wq, mp); 18058 } 18059 18060 static boolean_t 18061 tcp_zcopy_check(tcp_t *tcp) 18062 { 18063 conn_t *connp = tcp->tcp_connp; 18064 ire_t *ire; 18065 boolean_t zc_enabled = B_FALSE; 18066 18067 if (do_tcpzcopy == 2) 18068 zc_enabled = B_TRUE; 18069 else if (tcp->tcp_ipversion == IPV4_VERSION && 18070 IPCL_IS_CONNECTED(connp) && 18071 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18072 connp->conn_dontroute == 0 && 18073 !connp->conn_nexthop_set && 18074 connp->conn_xmit_if_ill == NULL && 18075 connp->conn_nofailover_ill == NULL && 18076 do_tcpzcopy == 1) { 18077 /* 18078 * the checks above closely resemble the fast path checks 18079 * in tcp_send_data(). 18080 */ 18081 mutex_enter(&connp->conn_lock); 18082 ire = connp->conn_ire_cache; 18083 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18084 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18085 IRE_REFHOLD(ire); 18086 if (ire->ire_stq != NULL) { 18087 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18088 18089 zc_enabled = ill && (ill->ill_capabilities & 18090 ILL_CAPAB_ZEROCOPY) && 18091 (ill->ill_zerocopy_capab-> 18092 ill_zerocopy_flags != 0); 18093 } 18094 IRE_REFRELE(ire); 18095 } 18096 mutex_exit(&connp->conn_lock); 18097 } 18098 tcp->tcp_snd_zcopy_on = zc_enabled; 18099 if (!TCP_IS_DETACHED(tcp)) { 18100 if (zc_enabled) { 18101 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18102 TCP_STAT(tcp_zcopy_on); 18103 } else { 18104 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18105 TCP_STAT(tcp_zcopy_off); 18106 } 18107 } 18108 return (zc_enabled); 18109 } 18110 18111 static mblk_t * 18112 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18113 { 18114 if (do_tcpzcopy == 2) 18115 return (bp); 18116 else if (tcp->tcp_snd_zcopy_on) { 18117 tcp->tcp_snd_zcopy_on = B_FALSE; 18118 if (!TCP_IS_DETACHED(tcp)) { 18119 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18120 TCP_STAT(tcp_zcopy_disable); 18121 } 18122 } 18123 return (tcp_zcopy_backoff(tcp, bp, 0)); 18124 } 18125 18126 /* 18127 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18128 * the original desballoca'ed segmapped mblk. 18129 */ 18130 static mblk_t * 18131 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18132 { 18133 mblk_t *head, *tail, *nbp; 18134 if (IS_VMLOANED_MBLK(bp)) { 18135 TCP_STAT(tcp_zcopy_backoff); 18136 if ((head = copyb(bp)) == NULL) { 18137 /* fail to backoff; leave it for the next backoff */ 18138 tcp->tcp_xmit_zc_clean = B_FALSE; 18139 return (bp); 18140 } 18141 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18142 if (fix_xmitlist) 18143 tcp_zcopy_notify(tcp); 18144 else 18145 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18146 } 18147 nbp = bp->b_cont; 18148 if (fix_xmitlist) { 18149 head->b_prev = bp->b_prev; 18150 head->b_next = bp->b_next; 18151 if (tcp->tcp_xmit_tail == bp) 18152 tcp->tcp_xmit_tail = head; 18153 } 18154 bp->b_next = NULL; 18155 bp->b_prev = NULL; 18156 freeb(bp); 18157 } else { 18158 head = bp; 18159 nbp = bp->b_cont; 18160 } 18161 tail = head; 18162 while (nbp) { 18163 if (IS_VMLOANED_MBLK(nbp)) { 18164 TCP_STAT(tcp_zcopy_backoff); 18165 if ((tail->b_cont = copyb(nbp)) == NULL) { 18166 tcp->tcp_xmit_zc_clean = B_FALSE; 18167 tail->b_cont = nbp; 18168 return (head); 18169 } 18170 tail = tail->b_cont; 18171 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18172 if (fix_xmitlist) 18173 tcp_zcopy_notify(tcp); 18174 else 18175 tail->b_datap->db_struioflag |= 18176 STRUIO_ZCNOTIFY; 18177 } 18178 bp = nbp; 18179 nbp = nbp->b_cont; 18180 if (fix_xmitlist) { 18181 tail->b_prev = bp->b_prev; 18182 tail->b_next = bp->b_next; 18183 if (tcp->tcp_xmit_tail == bp) 18184 tcp->tcp_xmit_tail = tail; 18185 } 18186 bp->b_next = NULL; 18187 bp->b_prev = NULL; 18188 freeb(bp); 18189 } else { 18190 tail->b_cont = nbp; 18191 tail = nbp; 18192 nbp = nbp->b_cont; 18193 } 18194 } 18195 if (fix_xmitlist) { 18196 tcp->tcp_xmit_last = tail; 18197 tcp->tcp_xmit_zc_clean = B_TRUE; 18198 } 18199 return (head); 18200 } 18201 18202 static void 18203 tcp_zcopy_notify(tcp_t *tcp) 18204 { 18205 struct stdata *stp; 18206 18207 if (tcp->tcp_detached) 18208 return; 18209 stp = STREAM(tcp->tcp_rq); 18210 mutex_enter(&stp->sd_lock); 18211 stp->sd_flag |= STZCNOTIFY; 18212 cv_broadcast(&stp->sd_zcopy_wait); 18213 mutex_exit(&stp->sd_lock); 18214 } 18215 18216 static void 18217 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18218 { 18219 ipha_t *ipha; 18220 ipaddr_t src; 18221 ipaddr_t dst; 18222 uint32_t cksum; 18223 ire_t *ire; 18224 uint16_t *up; 18225 ill_t *ill; 18226 conn_t *connp = tcp->tcp_connp; 18227 uint32_t hcksum_txflags = 0; 18228 mblk_t *ire_fp_mp; 18229 uint_t ire_fp_mp_len; 18230 18231 ASSERT(DB_TYPE(mp) == M_DATA); 18232 18233 if (DB_CRED(mp) == NULL) 18234 mblk_setcred(mp, CONN_CRED(connp)); 18235 18236 ipha = (ipha_t *)mp->b_rptr; 18237 src = ipha->ipha_src; 18238 dst = ipha->ipha_dst; 18239 18240 /* 18241 * Drop off fast path for IPv6 and also if options are present or 18242 * we need to resolve a TS label. 18243 */ 18244 if (tcp->tcp_ipversion != IPV4_VERSION || 18245 !IPCL_IS_CONNECTED(connp) || 18246 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18247 connp->conn_dontroute || 18248 connp->conn_nexthop_set || 18249 connp->conn_xmit_if_ill != NULL || 18250 connp->conn_nofailover_ill != NULL || 18251 !connp->conn_ulp_labeled || 18252 ipha->ipha_ident == IP_HDR_INCLUDED || 18253 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18254 IPP_ENABLED(IPP_LOCAL_OUT)) { 18255 if (tcp->tcp_snd_zcopy_aware) 18256 mp = tcp_zcopy_disable(tcp, mp); 18257 TCP_STAT(tcp_ip_send); 18258 CALL_IP_WPUT(connp, q, mp); 18259 return; 18260 } 18261 18262 mutex_enter(&connp->conn_lock); 18263 ire = connp->conn_ire_cache; 18264 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18265 if (ire != NULL && ire->ire_addr == dst && 18266 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18267 IRE_REFHOLD(ire); 18268 mutex_exit(&connp->conn_lock); 18269 } else { 18270 boolean_t cached = B_FALSE; 18271 18272 /* force a recheck later on */ 18273 tcp->tcp_ire_ill_check_done = B_FALSE; 18274 18275 TCP_DBGSTAT(tcp_ire_null1); 18276 connp->conn_ire_cache = NULL; 18277 mutex_exit(&connp->conn_lock); 18278 if (ire != NULL) 18279 IRE_REFRELE_NOTR(ire); 18280 ire = ire_cache_lookup(dst, connp->conn_zoneid, 18281 MBLK_GETLABEL(mp)); 18282 if (ire == NULL) { 18283 if (tcp->tcp_snd_zcopy_aware) 18284 mp = tcp_zcopy_backoff(tcp, mp, 0); 18285 TCP_STAT(tcp_ire_null); 18286 CALL_IP_WPUT(connp, q, mp); 18287 return; 18288 } 18289 IRE_REFHOLD_NOTR(ire); 18290 /* 18291 * Since we are inside the squeue, there cannot be another 18292 * thread in TCP trying to set the conn_ire_cache now. The 18293 * check for IRE_MARK_CONDEMNED ensures that an interface 18294 * unplumb thread has not yet started cleaning up the conns. 18295 * Hence we don't need to grab the conn lock. 18296 */ 18297 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18298 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18299 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18300 connp->conn_ire_cache = ire; 18301 cached = B_TRUE; 18302 } 18303 rw_exit(&ire->ire_bucket->irb_lock); 18304 } 18305 18306 /* 18307 * We can continue to use the ire but since it was 18308 * not cached, we should drop the extra reference. 18309 */ 18310 if (!cached) 18311 IRE_REFRELE_NOTR(ire); 18312 18313 /* 18314 * Rampart note: no need to select a new label here, since 18315 * labels are not allowed to change during the life of a TCP 18316 * connection. 18317 */ 18318 } 18319 18320 /* 18321 * The following if case identifies whether or not 18322 * we are forced to take the slowpath. 18323 */ 18324 if (ire->ire_flags & RTF_MULTIRT || 18325 ire->ire_stq == NULL || 18326 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18327 (ire->ire_nce != NULL && 18328 (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18329 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18330 if (tcp->tcp_snd_zcopy_aware) 18331 mp = tcp_zcopy_disable(tcp, mp); 18332 TCP_STAT(tcp_ip_ire_send); 18333 IRE_REFRELE(ire); 18334 CALL_IP_WPUT(connp, q, mp); 18335 return; 18336 } 18337 18338 ill = ire_to_ill(ire); 18339 if (connp->conn_outgoing_ill != NULL) { 18340 ill_t *conn_outgoing_ill = NULL; 18341 /* 18342 * Choose a good ill in the group to send the packets on. 18343 */ 18344 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18345 ill = ire_to_ill(ire); 18346 } 18347 ASSERT(ill != NULL); 18348 18349 if (!tcp->tcp_ire_ill_check_done) { 18350 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18351 tcp->tcp_ire_ill_check_done = B_TRUE; 18352 } 18353 18354 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18355 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18356 #ifndef _BIG_ENDIAN 18357 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18358 #endif 18359 18360 /* 18361 * Check to see if we need to re-enable MDT for this connection 18362 * because it was previously disabled due to changes in the ill; 18363 * note that by doing it here, this re-enabling only applies when 18364 * the packet is not dispatched through CALL_IP_WPUT(). 18365 * 18366 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18367 * case, since that's how we ended up here. For IPv6, we do the 18368 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18369 */ 18370 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18371 /* 18372 * Restore MDT for this connection, so that next time around 18373 * it is eligible to go through tcp_multisend() path again. 18374 */ 18375 TCP_STAT(tcp_mdt_conn_resumed1); 18376 tcp->tcp_mdt = B_TRUE; 18377 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18378 "interface %s\n", (void *)connp, ill->ill_name)); 18379 } 18380 18381 if (tcp->tcp_snd_zcopy_aware) { 18382 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18383 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18384 mp = tcp_zcopy_disable(tcp, mp); 18385 /* 18386 * we shouldn't need to reset ipha as the mp containing 18387 * ipha should never be a zero-copy mp. 18388 */ 18389 } 18390 18391 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18392 ASSERT(ill->ill_hcksum_capab != NULL); 18393 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18394 } 18395 18396 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18397 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18398 18399 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18400 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18401 18402 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18403 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18404 18405 /* Software checksum? */ 18406 if (DB_CKSUMFLAGS(mp) == 0) { 18407 TCP_STAT(tcp_out_sw_cksum); 18408 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18409 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18410 } 18411 18412 ipha->ipha_fragment_offset_and_flags |= 18413 (uint32_t)htons(ire->ire_frag_flag); 18414 18415 /* Calculate IP header checksum if hardware isn't capable */ 18416 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18417 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18418 ((uint16_t *)ipha)[4]); 18419 } 18420 18421 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18422 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18423 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18424 18425 UPDATE_OB_PKT_COUNT(ire); 18426 ire->ire_last_used_time = lbolt; 18427 BUMP_MIB(&ip_mib, ipOutRequests); 18428 18429 if (ILL_DLS_CAPABLE(ill)) { 18430 /* 18431 * Send the packet directly to DLD, where it may be queued 18432 * depending on the availability of transmit resources at 18433 * the media layer. 18434 */ 18435 IP_DLS_ILL_TX(ill, mp); 18436 } else { 18437 putnext(ire->ire_stq, mp); 18438 } 18439 IRE_REFRELE(ire); 18440 } 18441 18442 /* 18443 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18444 * if the receiver shrinks the window, i.e. moves the right window to the 18445 * left, the we should not send new data, but should retransmit normally the 18446 * old unacked data between suna and suna + swnd. We might has sent data 18447 * that is now outside the new window, pretend that we didn't send it. 18448 */ 18449 static void 18450 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18451 { 18452 uint32_t snxt = tcp->tcp_snxt; 18453 mblk_t *xmit_tail; 18454 int32_t offset; 18455 18456 ASSERT(shrunk_count > 0); 18457 18458 /* Pretend we didn't send the data outside the window */ 18459 snxt -= shrunk_count; 18460 18461 /* Get the mblk and the offset in it per the shrunk window */ 18462 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18463 18464 ASSERT(xmit_tail != NULL); 18465 18466 /* Reset all the values per the now shrunk window */ 18467 tcp->tcp_snxt = snxt; 18468 tcp->tcp_xmit_tail = xmit_tail; 18469 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18470 offset; 18471 tcp->tcp_unsent += shrunk_count; 18472 18473 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18474 /* 18475 * Make sure the timer is running so that we will probe a zero 18476 * window. 18477 */ 18478 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18479 } 18480 18481 18482 /* 18483 * The TCP normal data output path. 18484 * NOTE: the logic of the fast path is duplicated from this function. 18485 */ 18486 static void 18487 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18488 { 18489 int len; 18490 mblk_t *local_time; 18491 mblk_t *mp1; 18492 uint32_t snxt; 18493 int tail_unsent; 18494 int tcpstate; 18495 int usable = 0; 18496 mblk_t *xmit_tail; 18497 queue_t *q = tcp->tcp_wq; 18498 int32_t mss; 18499 int32_t num_sack_blk = 0; 18500 int32_t tcp_hdr_len; 18501 int32_t tcp_tcp_hdr_len; 18502 int mdt_thres; 18503 int rc; 18504 18505 tcpstate = tcp->tcp_state; 18506 if (mp == NULL) { 18507 /* 18508 * tcp_wput_data() with NULL mp should only be called when 18509 * there is unsent data. 18510 */ 18511 ASSERT(tcp->tcp_unsent > 0); 18512 /* Really tacky... but we need this for detached closes. */ 18513 len = tcp->tcp_unsent; 18514 goto data_null; 18515 } 18516 18517 #if CCS_STATS 18518 wrw_stats.tot.count++; 18519 wrw_stats.tot.bytes += msgdsize(mp); 18520 #endif 18521 ASSERT(mp->b_datap->db_type == M_DATA); 18522 /* 18523 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18524 * or before a connection attempt has begun. 18525 */ 18526 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18527 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18528 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18529 #ifdef DEBUG 18530 cmn_err(CE_WARN, 18531 "tcp_wput_data: data after ordrel, %s", 18532 tcp_display(tcp, NULL, 18533 DISP_ADDR_AND_PORT)); 18534 #else 18535 if (tcp->tcp_debug) { 18536 (void) strlog(TCP_MOD_ID, 0, 1, 18537 SL_TRACE|SL_ERROR, 18538 "tcp_wput_data: data after ordrel, %s\n", 18539 tcp_display(tcp, NULL, 18540 DISP_ADDR_AND_PORT)); 18541 } 18542 #endif /* DEBUG */ 18543 } 18544 if (tcp->tcp_snd_zcopy_aware && 18545 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18546 tcp_zcopy_notify(tcp); 18547 freemsg(mp); 18548 if (tcp->tcp_flow_stopped && 18549 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18550 tcp_clrqfull(tcp); 18551 } 18552 return; 18553 } 18554 18555 /* Strip empties */ 18556 for (;;) { 18557 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18558 (uintptr_t)INT_MAX); 18559 len = (int)(mp->b_wptr - mp->b_rptr); 18560 if (len > 0) 18561 break; 18562 mp1 = mp; 18563 mp = mp->b_cont; 18564 freeb(mp1); 18565 if (!mp) { 18566 return; 18567 } 18568 } 18569 18570 /* If we are the first on the list ... */ 18571 if (tcp->tcp_xmit_head == NULL) { 18572 tcp->tcp_xmit_head = mp; 18573 tcp->tcp_xmit_tail = mp; 18574 tcp->tcp_xmit_tail_unsent = len; 18575 } else { 18576 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18577 struct datab *dp; 18578 18579 mp1 = tcp->tcp_xmit_last; 18580 if (len < tcp_tx_pull_len && 18581 (dp = mp1->b_datap)->db_ref == 1 && 18582 dp->db_lim - mp1->b_wptr >= len) { 18583 ASSERT(len > 0); 18584 ASSERT(!mp1->b_cont); 18585 if (len == 1) { 18586 *mp1->b_wptr++ = *mp->b_rptr; 18587 } else { 18588 bcopy(mp->b_rptr, mp1->b_wptr, len); 18589 mp1->b_wptr += len; 18590 } 18591 if (mp1 == tcp->tcp_xmit_tail) 18592 tcp->tcp_xmit_tail_unsent += len; 18593 mp1->b_cont = mp->b_cont; 18594 if (tcp->tcp_snd_zcopy_aware && 18595 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18596 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18597 freeb(mp); 18598 mp = mp1; 18599 } else { 18600 tcp->tcp_xmit_last->b_cont = mp; 18601 } 18602 len += tcp->tcp_unsent; 18603 } 18604 18605 /* Tack on however many more positive length mblks we have */ 18606 if ((mp1 = mp->b_cont) != NULL) { 18607 do { 18608 int tlen; 18609 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18610 (uintptr_t)INT_MAX); 18611 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18612 if (tlen <= 0) { 18613 mp->b_cont = mp1->b_cont; 18614 freeb(mp1); 18615 } else { 18616 len += tlen; 18617 mp = mp1; 18618 } 18619 } while ((mp1 = mp->b_cont) != NULL); 18620 } 18621 tcp->tcp_xmit_last = mp; 18622 tcp->tcp_unsent = len; 18623 18624 if (urgent) 18625 usable = 1; 18626 18627 data_null: 18628 snxt = tcp->tcp_snxt; 18629 xmit_tail = tcp->tcp_xmit_tail; 18630 tail_unsent = tcp->tcp_xmit_tail_unsent; 18631 18632 /* 18633 * Note that tcp_mss has been adjusted to take into account the 18634 * timestamp option if applicable. Because SACK options do not 18635 * appear in every TCP segments and they are of variable lengths, 18636 * they cannot be included in tcp_mss. Thus we need to calculate 18637 * the actual segment length when we need to send a segment which 18638 * includes SACK options. 18639 */ 18640 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18641 int32_t opt_len; 18642 18643 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18644 tcp->tcp_num_sack_blk); 18645 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18646 2 + TCPOPT_HEADER_LEN; 18647 mss = tcp->tcp_mss - opt_len; 18648 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18649 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18650 } else { 18651 mss = tcp->tcp_mss; 18652 tcp_hdr_len = tcp->tcp_hdr_len; 18653 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18654 } 18655 18656 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18657 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18658 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18659 } 18660 if (tcpstate == TCPS_SYN_RCVD) { 18661 /* 18662 * The three-way connection establishment handshake is not 18663 * complete yet. We want to queue the data for transmission 18664 * after entering ESTABLISHED state (RFC793). A jump to 18665 * "done" label effectively leaves data on the queue. 18666 */ 18667 goto done; 18668 } else { 18669 int usable_r; 18670 18671 /* 18672 * In the special case when cwnd is zero, which can only 18673 * happen if the connection is ECN capable, return now. 18674 * New segments is sent using tcp_timer(). The timer 18675 * is set in tcp_rput_data(). 18676 */ 18677 if (tcp->tcp_cwnd == 0) { 18678 /* 18679 * Note that tcp_cwnd is 0 before 3-way handshake is 18680 * finished. 18681 */ 18682 ASSERT(tcp->tcp_ecn_ok || 18683 tcp->tcp_state < TCPS_ESTABLISHED); 18684 return; 18685 } 18686 18687 /* NOTE: trouble if xmitting while SYN not acked? */ 18688 usable_r = snxt - tcp->tcp_suna; 18689 usable_r = tcp->tcp_swnd - usable_r; 18690 18691 /* 18692 * Check if the receiver has shrunk the window. If 18693 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18694 * cannot be set as there is unsent data, so FIN cannot 18695 * be sent out. Otherwise, we need to take into account 18696 * of FIN as it consumes an "invisible" sequence number. 18697 */ 18698 ASSERT(tcp->tcp_fin_sent == 0); 18699 if (usable_r < 0) { 18700 /* 18701 * The receiver has shrunk the window and we have sent 18702 * -usable_r date beyond the window, re-adjust. 18703 * 18704 * If TCP window scaling is enabled, there can be 18705 * round down error as the advertised receive window 18706 * is actually right shifted n bits. This means that 18707 * the lower n bits info is wiped out. It will look 18708 * like the window is shrunk. Do a check here to 18709 * see if the shrunk amount is actually within the 18710 * error in window calculation. If it is, just 18711 * return. Note that this check is inside the 18712 * shrunk window check. This makes sure that even 18713 * though tcp_process_shrunk_swnd() is not called, 18714 * we will stop further processing. 18715 */ 18716 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18717 tcp_process_shrunk_swnd(tcp, -usable_r); 18718 } 18719 return; 18720 } 18721 18722 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18723 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18724 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18725 18726 /* usable = MIN(usable, unsent) */ 18727 if (usable_r > len) 18728 usable_r = len; 18729 18730 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18731 if (usable_r > 0) { 18732 usable = usable_r; 18733 } else { 18734 /* Bypass all other unnecessary processing. */ 18735 goto done; 18736 } 18737 } 18738 18739 local_time = (mblk_t *)lbolt; 18740 18741 /* 18742 * "Our" Nagle Algorithm. This is not the same as in the old 18743 * BSD. This is more in line with the true intent of Nagle. 18744 * 18745 * The conditions are: 18746 * 1. The amount of unsent data (or amount of data which can be 18747 * sent, whichever is smaller) is less than Nagle limit. 18748 * 2. The last sent size is also less than Nagle limit. 18749 * 3. There is unack'ed data. 18750 * 4. Urgent pointer is not set. Send urgent data ignoring the 18751 * Nagle algorithm. This reduces the probability that urgent 18752 * bytes get "merged" together. 18753 * 5. The app has not closed the connection. This eliminates the 18754 * wait time of the receiving side waiting for the last piece of 18755 * (small) data. 18756 * 18757 * If all are satisified, exit without sending anything. Note 18758 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18759 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18760 * 4095). 18761 */ 18762 if (usable < (int)tcp->tcp_naglim && 18763 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18764 snxt != tcp->tcp_suna && 18765 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18766 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18767 goto done; 18768 } 18769 18770 if (tcp->tcp_cork) { 18771 /* 18772 * if the tcp->tcp_cork option is set, then we have to force 18773 * TCP not to send partial segment (smaller than MSS bytes). 18774 * We are calculating the usable now based on full mss and 18775 * will save the rest of remaining data for later. 18776 */ 18777 if (usable < mss) 18778 goto done; 18779 usable = (usable / mss) * mss; 18780 } 18781 18782 /* Update the latest receive window size in TCP header. */ 18783 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18784 tcp->tcp_tcph->th_win); 18785 18786 /* 18787 * Determine if it's worthwhile to attempt MDT, based on: 18788 * 18789 * 1. Simple TCP/IP{v4,v6} (no options). 18790 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18791 * 3. If the TCP connection is in ESTABLISHED state. 18792 * 4. The TCP is not detached. 18793 * 18794 * If any of the above conditions have changed during the 18795 * connection, stop using MDT and restore the stream head 18796 * parameters accordingly. 18797 */ 18798 if (tcp->tcp_mdt && 18799 ((tcp->tcp_ipversion == IPV4_VERSION && 18800 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18801 (tcp->tcp_ipversion == IPV6_VERSION && 18802 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18803 tcp->tcp_state != TCPS_ESTABLISHED || 18804 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18805 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18806 IPP_ENABLED(IPP_LOCAL_OUT))) { 18807 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18808 tcp->tcp_mdt = B_FALSE; 18809 18810 /* Anything other than detached is considered pathological */ 18811 if (!TCP_IS_DETACHED(tcp)) { 18812 TCP_STAT(tcp_mdt_conn_halted1); 18813 (void) tcp_maxpsz_set(tcp, B_TRUE); 18814 } 18815 } 18816 18817 /* Use MDT if sendable amount is greater than the threshold */ 18818 if (tcp->tcp_mdt && 18819 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18820 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18821 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18822 (tcp->tcp_valid_bits == 0 || 18823 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18824 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18825 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18826 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18827 local_time, mdt_thres); 18828 } else { 18829 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18830 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18831 local_time, INT_MAX); 18832 } 18833 18834 /* Pretend that all we were trying to send really got sent */ 18835 if (rc < 0 && tail_unsent < 0) { 18836 do { 18837 xmit_tail = xmit_tail->b_cont; 18838 xmit_tail->b_prev = local_time; 18839 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18840 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18841 tail_unsent += (int)(xmit_tail->b_wptr - 18842 xmit_tail->b_rptr); 18843 } while (tail_unsent < 0); 18844 } 18845 done:; 18846 tcp->tcp_xmit_tail = xmit_tail; 18847 tcp->tcp_xmit_tail_unsent = tail_unsent; 18848 len = tcp->tcp_snxt - snxt; 18849 if (len) { 18850 /* 18851 * If new data was sent, need to update the notsack 18852 * list, which is, afterall, data blocks that have 18853 * not been sack'ed by the receiver. New data is 18854 * not sack'ed. 18855 */ 18856 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18857 /* len is a negative value. */ 18858 tcp->tcp_pipe -= len; 18859 tcp_notsack_update(&(tcp->tcp_notsack_list), 18860 tcp->tcp_snxt, snxt, 18861 &(tcp->tcp_num_notsack_blk), 18862 &(tcp->tcp_cnt_notsack_list)); 18863 } 18864 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18865 tcp->tcp_rack = tcp->tcp_rnxt; 18866 tcp->tcp_rack_cnt = 0; 18867 if ((snxt + len) == tcp->tcp_suna) { 18868 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18869 } 18870 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18871 /* 18872 * Didn't send anything. Make sure the timer is running 18873 * so that we will probe a zero window. 18874 */ 18875 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18876 } 18877 /* Note that len is the amount we just sent but with a negative sign */ 18878 tcp->tcp_unsent += len; 18879 if (tcp->tcp_flow_stopped) { 18880 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18881 tcp_clrqfull(tcp); 18882 } 18883 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18884 tcp_setqfull(tcp); 18885 } 18886 } 18887 18888 /* 18889 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18890 * outgoing TCP header with the template header, as well as other 18891 * options such as time-stamp, ECN and/or SACK. 18892 */ 18893 static void 18894 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18895 { 18896 tcph_t *tcp_tmpl, *tcp_h; 18897 uint32_t *dst, *src; 18898 int hdrlen; 18899 18900 ASSERT(OK_32PTR(rptr)); 18901 18902 /* Template header */ 18903 tcp_tmpl = tcp->tcp_tcph; 18904 18905 /* Header of outgoing packet */ 18906 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18907 18908 /* dst and src are opaque 32-bit fields, used for copying */ 18909 dst = (uint32_t *)rptr; 18910 src = (uint32_t *)tcp->tcp_iphc; 18911 hdrlen = tcp->tcp_hdr_len; 18912 18913 /* Fill time-stamp option if needed */ 18914 if (tcp->tcp_snd_ts_ok) { 18915 U32_TO_BE32((uint32_t)now, 18916 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18917 U32_TO_BE32(tcp->tcp_ts_recent, 18918 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18919 } else { 18920 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18921 } 18922 18923 /* 18924 * Copy the template header; is this really more efficient than 18925 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18926 * but perhaps not for other scenarios. 18927 */ 18928 dst[0] = src[0]; 18929 dst[1] = src[1]; 18930 dst[2] = src[2]; 18931 dst[3] = src[3]; 18932 dst[4] = src[4]; 18933 dst[5] = src[5]; 18934 dst[6] = src[6]; 18935 dst[7] = src[7]; 18936 dst[8] = src[8]; 18937 dst[9] = src[9]; 18938 if (hdrlen -= 40) { 18939 hdrlen >>= 2; 18940 dst += 10; 18941 src += 10; 18942 do { 18943 *dst++ = *src++; 18944 } while (--hdrlen); 18945 } 18946 18947 /* 18948 * Set the ECN info in the TCP header if it is not a zero 18949 * window probe. Zero window probe is only sent in 18950 * tcp_wput_data() and tcp_timer(). 18951 */ 18952 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18953 SET_ECT(tcp, rptr); 18954 18955 if (tcp->tcp_ecn_echo_on) 18956 tcp_h->th_flags[0] |= TH_ECE; 18957 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18958 tcp_h->th_flags[0] |= TH_CWR; 18959 tcp->tcp_ecn_cwr_sent = B_TRUE; 18960 } 18961 } 18962 18963 /* Fill in SACK options */ 18964 if (num_sack_blk > 0) { 18965 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18966 sack_blk_t *tmp; 18967 int32_t i; 18968 18969 wptr[0] = TCPOPT_NOP; 18970 wptr[1] = TCPOPT_NOP; 18971 wptr[2] = TCPOPT_SACK; 18972 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18973 sizeof (sack_blk_t); 18974 wptr += TCPOPT_REAL_SACK_LEN; 18975 18976 tmp = tcp->tcp_sack_list; 18977 for (i = 0; i < num_sack_blk; i++) { 18978 U32_TO_BE32(tmp[i].begin, wptr); 18979 wptr += sizeof (tcp_seq); 18980 U32_TO_BE32(tmp[i].end, wptr); 18981 wptr += sizeof (tcp_seq); 18982 } 18983 tcp_h->th_offset_and_rsrvd[0] += 18984 ((num_sack_blk * 2 + 1) << 4); 18985 } 18986 } 18987 18988 /* 18989 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18990 * the destination address and SAP attribute, and if necessary, the 18991 * hardware checksum offload attribute to a Multidata message. 18992 */ 18993 static int 18994 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18995 const uint32_t start, const uint32_t stuff, const uint32_t end, 18996 const uint32_t flags) 18997 { 18998 /* Add global destination address & SAP attribute */ 18999 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19000 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19001 "destination address+SAP\n")); 19002 19003 if (dlmp != NULL) 19004 TCP_STAT(tcp_mdt_allocfail); 19005 return (-1); 19006 } 19007 19008 /* Add global hwcksum attribute */ 19009 if (hwcksum && 19010 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19011 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19012 "checksum attribute\n")); 19013 19014 TCP_STAT(tcp_mdt_allocfail); 19015 return (-1); 19016 } 19017 19018 return (0); 19019 } 19020 19021 /* 19022 * Smaller and private version of pdescinfo_t used specifically for TCP, 19023 * which allows for only two payload spans per packet. 19024 */ 19025 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19026 19027 /* 19028 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19029 * scheme, and returns one the following: 19030 * 19031 * -1 = failed allocation. 19032 * 0 = success; burst count reached, or usable send window is too small, 19033 * and that we'd rather wait until later before sending again. 19034 */ 19035 static int 19036 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19037 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19038 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19039 const int mdt_thres) 19040 { 19041 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19042 multidata_t *mmd; 19043 uint_t obsegs, obbytes, hdr_frag_sz; 19044 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19045 int num_burst_seg, max_pld; 19046 pdesc_t *pkt; 19047 tcp_pdescinfo_t tcp_pkt_info; 19048 pdescinfo_t *pkt_info; 19049 int pbuf_idx, pbuf_idx_nxt; 19050 int seg_len, len, spill, af; 19051 boolean_t add_buffer, zcopy, clusterwide; 19052 boolean_t rconfirm = B_FALSE; 19053 boolean_t done = B_FALSE; 19054 uint32_t cksum; 19055 uint32_t hwcksum_flags; 19056 ire_t *ire; 19057 ill_t *ill; 19058 ipha_t *ipha; 19059 ip6_t *ip6h; 19060 ipaddr_t src, dst; 19061 ill_zerocopy_capab_t *zc_cap = NULL; 19062 uint16_t *up; 19063 int err; 19064 conn_t *connp; 19065 19066 #ifdef _BIG_ENDIAN 19067 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19068 #else 19069 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19070 #endif 19071 19072 #define PREP_NEW_MULTIDATA() { \ 19073 mmd = NULL; \ 19074 md_mp = md_hbuf = NULL; \ 19075 cur_hdr_off = 0; \ 19076 max_pld = tcp->tcp_mdt_max_pld; \ 19077 pbuf_idx = pbuf_idx_nxt = -1; \ 19078 add_buffer = B_TRUE; \ 19079 zcopy = B_FALSE; \ 19080 } 19081 19082 #define PREP_NEW_PBUF() { \ 19083 md_pbuf = md_pbuf_nxt = NULL; \ 19084 pbuf_idx = pbuf_idx_nxt = -1; \ 19085 cur_pld_off = 0; \ 19086 first_snxt = *snxt; \ 19087 ASSERT(*tail_unsent > 0); \ 19088 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19089 } 19090 19091 ASSERT(mdt_thres >= mss); 19092 ASSERT(*usable > 0 && *usable > mdt_thres); 19093 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19094 ASSERT(!TCP_IS_DETACHED(tcp)); 19095 ASSERT(tcp->tcp_valid_bits == 0 || 19096 tcp->tcp_valid_bits == TCP_FSS_VALID); 19097 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19098 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19099 (tcp->tcp_ipversion == IPV6_VERSION && 19100 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19101 19102 connp = tcp->tcp_connp; 19103 ASSERT(connp != NULL); 19104 ASSERT(CONN_IS_MD_FASTPATH(connp)); 19105 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19106 19107 /* 19108 * Note that tcp will only declare at most 2 payload spans per 19109 * packet, which is much lower than the maximum allowable number 19110 * of packet spans per Multidata. For this reason, we use the 19111 * privately declared and smaller descriptor info structure, in 19112 * order to save some stack space. 19113 */ 19114 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19115 19116 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19117 if (af == AF_INET) { 19118 dst = tcp->tcp_ipha->ipha_dst; 19119 src = tcp->tcp_ipha->ipha_src; 19120 ASSERT(!CLASSD(dst)); 19121 } 19122 ASSERT(af == AF_INET || 19123 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19124 19125 obsegs = obbytes = 0; 19126 num_burst_seg = tcp->tcp_snd_burst; 19127 md_mp_head = NULL; 19128 PREP_NEW_MULTIDATA(); 19129 19130 /* 19131 * Before we go on further, make sure there is an IRE that we can 19132 * use, and that the ILL supports MDT. Otherwise, there's no point 19133 * in proceeding any further, and we should just hand everything 19134 * off to the legacy path. 19135 */ 19136 mutex_enter(&connp->conn_lock); 19137 ire = connp->conn_ire_cache; 19138 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19139 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 19140 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 19141 &tcp->tcp_ip6h->ip6_dst))) && 19142 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19143 IRE_REFHOLD(ire); 19144 mutex_exit(&connp->conn_lock); 19145 } else { 19146 boolean_t cached = B_FALSE; 19147 ts_label_t *tsl; 19148 19149 /* force a recheck later on */ 19150 tcp->tcp_ire_ill_check_done = B_FALSE; 19151 19152 TCP_DBGSTAT(tcp_ire_null1); 19153 connp->conn_ire_cache = NULL; 19154 mutex_exit(&connp->conn_lock); 19155 19156 /* Release the old ire */ 19157 if (ire != NULL) 19158 IRE_REFRELE_NOTR(ire); 19159 19160 tsl = crgetlabel(CONN_CRED(connp)); 19161 ire = (af == AF_INET) ? 19162 ire_cache_lookup(dst, connp->conn_zoneid, tsl) : 19163 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19164 connp->conn_zoneid, tsl); 19165 19166 if (ire == NULL) { 19167 TCP_STAT(tcp_ire_null); 19168 goto legacy_send_no_md; 19169 } 19170 19171 IRE_REFHOLD_NOTR(ire); 19172 /* 19173 * Since we are inside the squeue, there cannot be another 19174 * thread in TCP trying to set the conn_ire_cache now. The 19175 * check for IRE_MARK_CONDEMNED ensures that an interface 19176 * unplumb thread has not yet started cleaning up the conns. 19177 * Hence we don't need to grab the conn lock. 19178 */ 19179 if (!(connp->conn_state_flags & CONN_CLOSING)) { 19180 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19181 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19182 connp->conn_ire_cache = ire; 19183 cached = B_TRUE; 19184 } 19185 rw_exit(&ire->ire_bucket->irb_lock); 19186 } 19187 19188 /* 19189 * We can continue to use the ire but since it was not 19190 * cached, we should drop the extra reference. 19191 */ 19192 if (!cached) 19193 IRE_REFRELE_NOTR(ire); 19194 } 19195 19196 ASSERT(ire != NULL); 19197 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19198 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19199 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19200 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19201 /* 19202 * If we do support loopback for MDT (which requires modifications 19203 * to the receiving paths), the following assertions should go away, 19204 * and we would be sending the Multidata to loopback conn later on. 19205 */ 19206 ASSERT(!IRE_IS_LOCAL(ire)); 19207 ASSERT(ire->ire_stq != NULL); 19208 19209 ill = ire_to_ill(ire); 19210 ASSERT(ill != NULL); 19211 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19212 19213 if (!tcp->tcp_ire_ill_check_done) { 19214 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19215 tcp->tcp_ire_ill_check_done = B_TRUE; 19216 } 19217 19218 /* 19219 * If the underlying interface conditions have changed, or if the 19220 * new interface does not support MDT, go back to legacy path. 19221 */ 19222 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19223 /* don't go through this path anymore for this connection */ 19224 TCP_STAT(tcp_mdt_conn_halted2); 19225 tcp->tcp_mdt = B_FALSE; 19226 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19227 "interface %s\n", (void *)connp, ill->ill_name)); 19228 /* IRE will be released prior to returning */ 19229 goto legacy_send_no_md; 19230 } 19231 19232 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19233 zc_cap = ill->ill_zerocopy_capab; 19234 19235 /* 19236 * Check if we can take tcp fast-path. Note that "incomplete" 19237 * ire's (where the link-layer for next hop is not resolved 19238 * or where the fast-path header in nce_fp_mp is not available 19239 * yet) are sent down the legacy (slow) path. 19240 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19241 */ 19242 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19243 /* IRE will be released prior to returning */ 19244 goto legacy_send_no_md; 19245 } 19246 19247 /* go to legacy path if interface doesn't support zerocopy */ 19248 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19249 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19250 /* IRE will be released prior to returning */ 19251 goto legacy_send_no_md; 19252 } 19253 19254 /* does the interface support hardware checksum offload? */ 19255 hwcksum_flags = 0; 19256 if (ILL_HCKSUM_CAPABLE(ill) && 19257 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19258 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19259 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19260 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19261 HCKSUM_IPHDRCKSUM) 19262 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19263 19264 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19265 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19266 hwcksum_flags |= HCK_FULLCKSUM; 19267 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19268 HCKSUM_INET_PARTIAL) 19269 hwcksum_flags |= HCK_PARTIALCKSUM; 19270 } 19271 19272 /* 19273 * Each header fragment consists of the leading extra space, 19274 * followed by the TCP/IP header, and the trailing extra space. 19275 * We make sure that each header fragment begins on a 32-bit 19276 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19277 * aligned in tcp_mdt_update). 19278 */ 19279 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19280 tcp->tcp_mdt_hdr_tail), 4); 19281 19282 /* are we starting from the beginning of data block? */ 19283 if (*tail_unsent == 0) { 19284 *xmit_tail = (*xmit_tail)->b_cont; 19285 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19286 *tail_unsent = (int)MBLKL(*xmit_tail); 19287 } 19288 19289 /* 19290 * Here we create one or more Multidata messages, each made up of 19291 * one header buffer and up to N payload buffers. This entire 19292 * operation is done within two loops: 19293 * 19294 * The outer loop mostly deals with creating the Multidata message, 19295 * as well as the header buffer that gets added to it. It also 19296 * links the Multidata messages together such that all of them can 19297 * be sent down to the lower layer in a single putnext call; this 19298 * linking behavior depends on the tcp_mdt_chain tunable. 19299 * 19300 * The inner loop takes an existing Multidata message, and adds 19301 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19302 * packetizes those buffers by filling up the corresponding header 19303 * buffer fragments with the proper IP and TCP headers, and by 19304 * describing the layout of each packet in the packet descriptors 19305 * that get added to the Multidata. 19306 */ 19307 do { 19308 /* 19309 * If usable send window is too small, or data blocks in 19310 * transmit list are smaller than our threshold (i.e. app 19311 * performs large writes followed by small ones), we hand 19312 * off the control over to the legacy path. Note that we'll 19313 * get back the control once it encounters a large block. 19314 */ 19315 if (*usable < mss || (*tail_unsent <= mdt_thres && 19316 (*xmit_tail)->b_cont != NULL && 19317 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19318 /* send down what we've got so far */ 19319 if (md_mp_head != NULL) { 19320 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19321 obsegs, obbytes, &rconfirm); 19322 } 19323 /* 19324 * Pass control over to tcp_send(), but tell it to 19325 * return to us once a large-size transmission is 19326 * possible. 19327 */ 19328 TCP_STAT(tcp_mdt_legacy_small); 19329 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19330 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19331 tail_unsent, xmit_tail, local_time, 19332 mdt_thres)) <= 0) { 19333 /* burst count reached, or alloc failed */ 19334 IRE_REFRELE(ire); 19335 return (err); 19336 } 19337 19338 /* tcp_send() may have sent everything, so check */ 19339 if (*usable <= 0) { 19340 IRE_REFRELE(ire); 19341 return (0); 19342 } 19343 19344 TCP_STAT(tcp_mdt_legacy_ret); 19345 /* 19346 * We may have delivered the Multidata, so make sure 19347 * to re-initialize before the next round. 19348 */ 19349 md_mp_head = NULL; 19350 obsegs = obbytes = 0; 19351 num_burst_seg = tcp->tcp_snd_burst; 19352 PREP_NEW_MULTIDATA(); 19353 19354 /* are we starting from the beginning of data block? */ 19355 if (*tail_unsent == 0) { 19356 *xmit_tail = (*xmit_tail)->b_cont; 19357 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19358 (uintptr_t)INT_MAX); 19359 *tail_unsent = (int)MBLKL(*xmit_tail); 19360 } 19361 } 19362 19363 /* 19364 * max_pld limits the number of mblks in tcp's transmit 19365 * queue that can be added to a Multidata message. Once 19366 * this counter reaches zero, no more additional mblks 19367 * can be added to it. What happens afterwards depends 19368 * on whether or not we are set to chain the Multidata 19369 * messages. If we are to link them together, reset 19370 * max_pld to its original value (tcp_mdt_max_pld) and 19371 * prepare to create a new Multidata message which will 19372 * get linked to md_mp_head. Else, leave it alone and 19373 * let the inner loop break on its own. 19374 */ 19375 if (tcp_mdt_chain && max_pld == 0) 19376 PREP_NEW_MULTIDATA(); 19377 19378 /* adding a payload buffer; re-initialize values */ 19379 if (add_buffer) 19380 PREP_NEW_PBUF(); 19381 19382 /* 19383 * If we don't have a Multidata, either because we just 19384 * (re)entered this outer loop, or after we branched off 19385 * to tcp_send above, setup the Multidata and header 19386 * buffer to be used. 19387 */ 19388 if (md_mp == NULL) { 19389 int md_hbuflen; 19390 uint32_t start, stuff; 19391 19392 /* 19393 * Calculate Multidata header buffer size large enough 19394 * to hold all of the headers that can possibly be 19395 * sent at this moment. We'd rather over-estimate 19396 * the size than running out of space; this is okay 19397 * since this buffer is small anyway. 19398 */ 19399 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19400 19401 /* 19402 * Start and stuff offset for partial hardware 19403 * checksum offload; these are currently for IPv4. 19404 * For full checksum offload, they are set to zero. 19405 */ 19406 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19407 if (af == AF_INET) { 19408 start = IP_SIMPLE_HDR_LENGTH; 19409 stuff = IP_SIMPLE_HDR_LENGTH + 19410 TCP_CHECKSUM_OFFSET; 19411 } else { 19412 start = IPV6_HDR_LEN; 19413 stuff = IPV6_HDR_LEN + 19414 TCP_CHECKSUM_OFFSET; 19415 } 19416 } else { 19417 start = stuff = 0; 19418 } 19419 19420 /* 19421 * Create the header buffer, Multidata, as well as 19422 * any necessary attributes (destination address, 19423 * SAP and hardware checksum offload) that should 19424 * be associated with the Multidata message. 19425 */ 19426 ASSERT(cur_hdr_off == 0); 19427 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19428 ((md_hbuf->b_wptr += md_hbuflen), 19429 (mmd = mmd_alloc(md_hbuf, &md_mp, 19430 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19431 /* fastpath mblk */ 19432 ire->ire_nce->nce_res_mp, 19433 /* hardware checksum enabled */ 19434 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19435 /* hardware checksum offsets */ 19436 start, stuff, 0, 19437 /* hardware checksum flag */ 19438 hwcksum_flags) != 0)) { 19439 legacy_send: 19440 if (md_mp != NULL) { 19441 /* Unlink message from the chain */ 19442 if (md_mp_head != NULL) { 19443 err = (intptr_t)rmvb(md_mp_head, 19444 md_mp); 19445 /* 19446 * We can't assert that rmvb 19447 * did not return -1, since we 19448 * may get here before linkb 19449 * happens. We do, however, 19450 * check if we just removed the 19451 * only element in the list. 19452 */ 19453 if (err == 0) 19454 md_mp_head = NULL; 19455 } 19456 /* md_hbuf gets freed automatically */ 19457 TCP_STAT(tcp_mdt_discarded); 19458 freeb(md_mp); 19459 } else { 19460 /* Either allocb or mmd_alloc failed */ 19461 TCP_STAT(tcp_mdt_allocfail); 19462 if (md_hbuf != NULL) 19463 freeb(md_hbuf); 19464 } 19465 19466 /* send down what we've got so far */ 19467 if (md_mp_head != NULL) { 19468 tcp_multisend_data(tcp, ire, ill, 19469 md_mp_head, obsegs, obbytes, 19470 &rconfirm); 19471 } 19472 legacy_send_no_md: 19473 if (ire != NULL) 19474 IRE_REFRELE(ire); 19475 /* 19476 * Too bad; let the legacy path handle this. 19477 * We specify INT_MAX for the threshold, since 19478 * we gave up with the Multidata processings 19479 * and let the old path have it all. 19480 */ 19481 TCP_STAT(tcp_mdt_legacy_all); 19482 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19483 tcp_tcp_hdr_len, num_sack_blk, usable, 19484 snxt, tail_unsent, xmit_tail, local_time, 19485 INT_MAX)); 19486 } 19487 19488 /* link to any existing ones, if applicable */ 19489 TCP_STAT(tcp_mdt_allocd); 19490 if (md_mp_head == NULL) { 19491 md_mp_head = md_mp; 19492 } else if (tcp_mdt_chain) { 19493 TCP_STAT(tcp_mdt_linked); 19494 linkb(md_mp_head, md_mp); 19495 } 19496 } 19497 19498 ASSERT(md_mp_head != NULL); 19499 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19500 ASSERT(md_mp != NULL && mmd != NULL); 19501 ASSERT(md_hbuf != NULL); 19502 19503 /* 19504 * Packetize the transmittable portion of the data block; 19505 * each data block is essentially added to the Multidata 19506 * as a payload buffer. We also deal with adding more 19507 * than one payload buffers, which happens when the remaining 19508 * packetized portion of the current payload buffer is less 19509 * than MSS, while the next data block in transmit queue 19510 * has enough data to make up for one. This "spillover" 19511 * case essentially creates a split-packet, where portions 19512 * of the packet's payload fragments may span across two 19513 * virtually discontiguous address blocks. 19514 */ 19515 seg_len = mss; 19516 do { 19517 len = seg_len; 19518 19519 ASSERT(len > 0); 19520 ASSERT(max_pld >= 0); 19521 ASSERT(!add_buffer || cur_pld_off == 0); 19522 19523 /* 19524 * First time around for this payload buffer; note 19525 * in the case of a spillover, the following has 19526 * been done prior to adding the split-packet 19527 * descriptor to Multidata, and we don't want to 19528 * repeat the process. 19529 */ 19530 if (add_buffer) { 19531 ASSERT(mmd != NULL); 19532 ASSERT(md_pbuf == NULL); 19533 ASSERT(md_pbuf_nxt == NULL); 19534 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19535 19536 /* 19537 * Have we reached the limit? We'd get to 19538 * this case when we're not chaining the 19539 * Multidata messages together, and since 19540 * we're done, terminate this loop. 19541 */ 19542 if (max_pld == 0) 19543 break; /* done */ 19544 19545 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19546 TCP_STAT(tcp_mdt_allocfail); 19547 goto legacy_send; /* out_of_mem */ 19548 } 19549 19550 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19551 zc_cap != NULL) { 19552 if (!ip_md_zcopy_attr(mmd, NULL, 19553 zc_cap->ill_zerocopy_flags)) { 19554 freeb(md_pbuf); 19555 TCP_STAT(tcp_mdt_allocfail); 19556 /* out_of_mem */ 19557 goto legacy_send; 19558 } 19559 zcopy = B_TRUE; 19560 } 19561 19562 md_pbuf->b_rptr += base_pld_off; 19563 19564 /* 19565 * Add a payload buffer to the Multidata; this 19566 * operation must not fail, or otherwise our 19567 * logic in this routine is broken. There 19568 * is no memory allocation done by the 19569 * routine, so any returned failure simply 19570 * tells us that we've done something wrong. 19571 * 19572 * A failure tells us that either we're adding 19573 * the same payload buffer more than once, or 19574 * we're trying to add more buffers than 19575 * allowed (max_pld calculation is wrong). 19576 * None of the above cases should happen, and 19577 * we panic because either there's horrible 19578 * heap corruption, and/or programming mistake. 19579 */ 19580 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19581 if (pbuf_idx < 0) { 19582 cmn_err(CE_PANIC, "tcp_multisend: " 19583 "payload buffer logic error " 19584 "detected for tcp %p mmd %p " 19585 "pbuf %p (%d)\n", 19586 (void *)tcp, (void *)mmd, 19587 (void *)md_pbuf, pbuf_idx); 19588 } 19589 19590 ASSERT(max_pld > 0); 19591 --max_pld; 19592 add_buffer = B_FALSE; 19593 } 19594 19595 ASSERT(md_mp_head != NULL); 19596 ASSERT(md_pbuf != NULL); 19597 ASSERT(md_pbuf_nxt == NULL); 19598 ASSERT(pbuf_idx != -1); 19599 ASSERT(pbuf_idx_nxt == -1); 19600 ASSERT(*usable > 0); 19601 19602 /* 19603 * We spillover to the next payload buffer only 19604 * if all of the following is true: 19605 * 19606 * 1. There is not enough data on the current 19607 * payload buffer to make up `len', 19608 * 2. We are allowed to send `len', 19609 * 3. The next payload buffer length is large 19610 * enough to accomodate `spill'. 19611 */ 19612 if ((spill = len - *tail_unsent) > 0 && 19613 *usable >= len && 19614 MBLKL((*xmit_tail)->b_cont) >= spill && 19615 max_pld > 0) { 19616 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19617 if (md_pbuf_nxt == NULL) { 19618 TCP_STAT(tcp_mdt_allocfail); 19619 goto legacy_send; /* out_of_mem */ 19620 } 19621 19622 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19623 zc_cap != NULL) { 19624 if (!ip_md_zcopy_attr(mmd, NULL, 19625 zc_cap->ill_zerocopy_flags)) { 19626 freeb(md_pbuf_nxt); 19627 TCP_STAT(tcp_mdt_allocfail); 19628 /* out_of_mem */ 19629 goto legacy_send; 19630 } 19631 zcopy = B_TRUE; 19632 } 19633 19634 /* 19635 * See comments above on the first call to 19636 * mmd_addpldbuf for explanation on the panic. 19637 */ 19638 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19639 if (pbuf_idx_nxt < 0) { 19640 panic("tcp_multisend: " 19641 "next payload buffer logic error " 19642 "detected for tcp %p mmd %p " 19643 "pbuf %p (%d)\n", 19644 (void *)tcp, (void *)mmd, 19645 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19646 } 19647 19648 ASSERT(max_pld > 0); 19649 --max_pld; 19650 } else if (spill > 0) { 19651 /* 19652 * If there's a spillover, but the following 19653 * xmit_tail couldn't give us enough octets 19654 * to reach "len", then stop the current 19655 * Multidata creation and let the legacy 19656 * tcp_send() path take over. We don't want 19657 * to send the tiny segment as part of this 19658 * Multidata for performance reasons; instead, 19659 * we let the legacy path deal with grouping 19660 * it with the subsequent small mblks. 19661 */ 19662 if (*usable >= len && 19663 MBLKL((*xmit_tail)->b_cont) < spill) { 19664 max_pld = 0; 19665 break; /* done */ 19666 } 19667 19668 /* 19669 * We can't spillover, and we are near 19670 * the end of the current payload buffer, 19671 * so send what's left. 19672 */ 19673 ASSERT(*tail_unsent > 0); 19674 len = *tail_unsent; 19675 } 19676 19677 /* tail_unsent is negated if there is a spillover */ 19678 *tail_unsent -= len; 19679 *usable -= len; 19680 ASSERT(*usable >= 0); 19681 19682 if (*usable < mss) 19683 seg_len = *usable; 19684 /* 19685 * Sender SWS avoidance; see comments in tcp_send(); 19686 * everything else is the same, except that we only 19687 * do this here if there is no more data to be sent 19688 * following the current xmit_tail. We don't check 19689 * for 1-byte urgent data because we shouldn't get 19690 * here if TCP_URG_VALID is set. 19691 */ 19692 if (*usable > 0 && *usable < mss && 19693 ((md_pbuf_nxt == NULL && 19694 (*xmit_tail)->b_cont == NULL) || 19695 (md_pbuf_nxt != NULL && 19696 (*xmit_tail)->b_cont->b_cont == NULL)) && 19697 seg_len < (tcp->tcp_max_swnd >> 1) && 19698 (tcp->tcp_unsent - 19699 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19700 !tcp->tcp_zero_win_probe) { 19701 if ((*snxt + len) == tcp->tcp_snxt && 19702 (*snxt + len) == tcp->tcp_suna) { 19703 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19704 } 19705 done = B_TRUE; 19706 } 19707 19708 /* 19709 * Prime pump for IP's checksumming on our behalf; 19710 * include the adjustment for a source route if any. 19711 * Do this only for software/partial hardware checksum 19712 * offload, as this field gets zeroed out later for 19713 * the full hardware checksum offload case. 19714 */ 19715 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19716 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19717 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19718 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19719 } 19720 19721 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19722 *snxt += len; 19723 19724 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19725 /* 19726 * We set the PUSH bit only if TCP has no more buffered 19727 * data to be transmitted (or if sender SWS avoidance 19728 * takes place), as opposed to setting it for every 19729 * last packet in the burst. 19730 */ 19731 if (done || 19732 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19733 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19734 19735 /* 19736 * Set FIN bit if this is our last segment; snxt 19737 * already includes its length, and it will not 19738 * be adjusted after this point. 19739 */ 19740 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19741 *snxt == tcp->tcp_fss) { 19742 if (!tcp->tcp_fin_acked) { 19743 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19744 BUMP_MIB(&tcp_mib, tcpOutControl); 19745 } 19746 if (!tcp->tcp_fin_sent) { 19747 tcp->tcp_fin_sent = B_TRUE; 19748 /* 19749 * tcp state must be ESTABLISHED 19750 * in order for us to get here in 19751 * the first place. 19752 */ 19753 tcp->tcp_state = TCPS_FIN_WAIT_1; 19754 19755 /* 19756 * Upon returning from this routine, 19757 * tcp_wput_data() will set tcp_snxt 19758 * to be equal to snxt + tcp_fin_sent. 19759 * This is essentially the same as 19760 * setting it to tcp_fss + 1. 19761 */ 19762 } 19763 } 19764 19765 tcp->tcp_last_sent_len = (ushort_t)len; 19766 19767 len += tcp_hdr_len; 19768 if (tcp->tcp_ipversion == IPV4_VERSION) 19769 tcp->tcp_ipha->ipha_length = htons(len); 19770 else 19771 tcp->tcp_ip6h->ip6_plen = htons(len - 19772 ((char *)&tcp->tcp_ip6h[1] - 19773 tcp->tcp_iphc)); 19774 19775 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19776 19777 /* setup header fragment */ 19778 PDESC_HDR_ADD(pkt_info, 19779 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19780 tcp->tcp_mdt_hdr_head, /* head room */ 19781 tcp_hdr_len, /* len */ 19782 tcp->tcp_mdt_hdr_tail); /* tail room */ 19783 19784 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19785 hdr_frag_sz); 19786 ASSERT(MBLKIN(md_hbuf, 19787 (pkt_info->hdr_base - md_hbuf->b_rptr), 19788 PDESC_HDRSIZE(pkt_info))); 19789 19790 /* setup first payload fragment */ 19791 PDESC_PLD_INIT(pkt_info); 19792 PDESC_PLD_SPAN_ADD(pkt_info, 19793 pbuf_idx, /* index */ 19794 md_pbuf->b_rptr + cur_pld_off, /* start */ 19795 tcp->tcp_last_sent_len); /* len */ 19796 19797 /* create a split-packet in case of a spillover */ 19798 if (md_pbuf_nxt != NULL) { 19799 ASSERT(spill > 0); 19800 ASSERT(pbuf_idx_nxt > pbuf_idx); 19801 ASSERT(!add_buffer); 19802 19803 md_pbuf = md_pbuf_nxt; 19804 md_pbuf_nxt = NULL; 19805 pbuf_idx = pbuf_idx_nxt; 19806 pbuf_idx_nxt = -1; 19807 cur_pld_off = spill; 19808 19809 /* trim out first payload fragment */ 19810 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19811 19812 /* setup second payload fragment */ 19813 PDESC_PLD_SPAN_ADD(pkt_info, 19814 pbuf_idx, /* index */ 19815 md_pbuf->b_rptr, /* start */ 19816 spill); /* len */ 19817 19818 if ((*xmit_tail)->b_next == NULL) { 19819 /* 19820 * Store the lbolt used for RTT 19821 * estimation. We can only record one 19822 * timestamp per mblk so we do it when 19823 * we reach the end of the payload 19824 * buffer. Also we only take a new 19825 * timestamp sample when the previous 19826 * timed data from the same mblk has 19827 * been ack'ed. 19828 */ 19829 (*xmit_tail)->b_prev = local_time; 19830 (*xmit_tail)->b_next = 19831 (mblk_t *)(uintptr_t)first_snxt; 19832 } 19833 19834 first_snxt = *snxt - spill; 19835 19836 /* 19837 * Advance xmit_tail; usable could be 0 by 19838 * the time we got here, but we made sure 19839 * above that we would only spillover to 19840 * the next data block if usable includes 19841 * the spilled-over amount prior to the 19842 * subtraction. Therefore, we are sure 19843 * that xmit_tail->b_cont can't be NULL. 19844 */ 19845 ASSERT((*xmit_tail)->b_cont != NULL); 19846 *xmit_tail = (*xmit_tail)->b_cont; 19847 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19848 (uintptr_t)INT_MAX); 19849 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19850 } else { 19851 cur_pld_off += tcp->tcp_last_sent_len; 19852 } 19853 19854 /* 19855 * Fill in the header using the template header, and 19856 * add options such as time-stamp, ECN and/or SACK, 19857 * as needed. 19858 */ 19859 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19860 (clock_t)local_time, num_sack_blk); 19861 19862 /* take care of some IP header businesses */ 19863 if (af == AF_INET) { 19864 ipha = (ipha_t *)pkt_info->hdr_rptr; 19865 19866 ASSERT(OK_32PTR((uchar_t *)ipha)); 19867 ASSERT(PDESC_HDRL(pkt_info) >= 19868 IP_SIMPLE_HDR_LENGTH); 19869 ASSERT(ipha->ipha_version_and_hdr_length == 19870 IP_SIMPLE_HDR_VERSION); 19871 19872 /* 19873 * Assign ident value for current packet; see 19874 * related comments in ip_wput_ire() about the 19875 * contract private interface with clustering 19876 * group. 19877 */ 19878 clusterwide = B_FALSE; 19879 if (cl_inet_ipident != NULL) { 19880 ASSERT(cl_inet_isclusterwide != NULL); 19881 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19882 AF_INET, 19883 (uint8_t *)(uintptr_t)src)) { 19884 ipha->ipha_ident = 19885 (*cl_inet_ipident) 19886 (IPPROTO_IP, AF_INET, 19887 (uint8_t *)(uintptr_t)src, 19888 (uint8_t *)(uintptr_t)dst); 19889 clusterwide = B_TRUE; 19890 } 19891 } 19892 19893 if (!clusterwide) { 19894 ipha->ipha_ident = (uint16_t) 19895 atomic_add_32_nv( 19896 &ire->ire_ident, 1); 19897 } 19898 #ifndef _BIG_ENDIAN 19899 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19900 (ipha->ipha_ident >> 8); 19901 #endif 19902 } else { 19903 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19904 19905 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19906 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19907 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19908 ASSERT(PDESC_HDRL(pkt_info) >= 19909 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19910 TCP_CHECKSUM_SIZE)); 19911 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19912 19913 if (tcp->tcp_ip_forward_progress) { 19914 rconfirm = B_TRUE; 19915 tcp->tcp_ip_forward_progress = B_FALSE; 19916 } 19917 } 19918 19919 /* at least one payload span, and at most two */ 19920 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19921 19922 /* add the packet descriptor to Multidata */ 19923 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19924 KM_NOSLEEP)) == NULL) { 19925 /* 19926 * Any failure other than ENOMEM indicates 19927 * that we have passed in invalid pkt_info 19928 * or parameters to mmd_addpdesc, which must 19929 * not happen. 19930 * 19931 * EINVAL is a result of failure on boundary 19932 * checks against the pkt_info contents. It 19933 * should not happen, and we panic because 19934 * either there's horrible heap corruption, 19935 * and/or programming mistake. 19936 */ 19937 if (err != ENOMEM) { 19938 cmn_err(CE_PANIC, "tcp_multisend: " 19939 "pdesc logic error detected for " 19940 "tcp %p mmd %p pinfo %p (%d)\n", 19941 (void *)tcp, (void *)mmd, 19942 (void *)pkt_info, err); 19943 } 19944 TCP_STAT(tcp_mdt_addpdescfail); 19945 goto legacy_send; /* out_of_mem */ 19946 } 19947 ASSERT(pkt != NULL); 19948 19949 /* calculate IP header and TCP checksums */ 19950 if (af == AF_INET) { 19951 /* calculate pseudo-header checksum */ 19952 cksum = (dst >> 16) + (dst & 0xFFFF) + 19953 (src >> 16) + (src & 0xFFFF); 19954 19955 /* offset for TCP header checksum */ 19956 up = IPH_TCPH_CHECKSUMP(ipha, 19957 IP_SIMPLE_HDR_LENGTH); 19958 } else { 19959 up = (uint16_t *)&ip6h->ip6_src; 19960 19961 /* calculate pseudo-header checksum */ 19962 cksum = up[0] + up[1] + up[2] + up[3] + 19963 up[4] + up[5] + up[6] + up[7] + 19964 up[8] + up[9] + up[10] + up[11] + 19965 up[12] + up[13] + up[14] + up[15]; 19966 19967 /* Fold the initial sum */ 19968 cksum = (cksum & 0xffff) + (cksum >> 16); 19969 19970 up = (uint16_t *)(((uchar_t *)ip6h) + 19971 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19972 } 19973 19974 if (hwcksum_flags & HCK_FULLCKSUM) { 19975 /* clear checksum field for hardware */ 19976 *up = 0; 19977 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19978 uint32_t sum; 19979 19980 /* pseudo-header checksumming */ 19981 sum = *up + cksum + IP_TCP_CSUM_COMP; 19982 sum = (sum & 0xFFFF) + (sum >> 16); 19983 *up = (sum & 0xFFFF) + (sum >> 16); 19984 } else { 19985 /* software checksumming */ 19986 TCP_STAT(tcp_out_sw_cksum); 19987 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19988 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19989 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19990 cksum + IP_TCP_CSUM_COMP); 19991 if (*up == 0) 19992 *up = 0xFFFF; 19993 } 19994 19995 /* IPv4 header checksum */ 19996 if (af == AF_INET) { 19997 ipha->ipha_fragment_offset_and_flags |= 19998 (uint32_t)htons(ire->ire_frag_flag); 19999 20000 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20001 ipha->ipha_hdr_checksum = 0; 20002 } else { 20003 IP_HDR_CKSUM(ipha, cksum, 20004 ((uint32_t *)ipha)[0], 20005 ((uint16_t *)ipha)[4]); 20006 } 20007 } 20008 20009 /* advance header offset */ 20010 cur_hdr_off += hdr_frag_sz; 20011 20012 obbytes += tcp->tcp_last_sent_len; 20013 ++obsegs; 20014 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20015 *tail_unsent > 0); 20016 20017 if ((*xmit_tail)->b_next == NULL) { 20018 /* 20019 * Store the lbolt used for RTT estimation. We can only 20020 * record one timestamp per mblk so we do it when we 20021 * reach the end of the payload buffer. Also we only 20022 * take a new timestamp sample when the previous timed 20023 * data from the same mblk has been ack'ed. 20024 */ 20025 (*xmit_tail)->b_prev = local_time; 20026 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20027 } 20028 20029 ASSERT(*tail_unsent >= 0); 20030 if (*tail_unsent > 0) { 20031 /* 20032 * We got here because we broke out of the above 20033 * loop due to of one of the following cases: 20034 * 20035 * 1. len < adjusted MSS (i.e. small), 20036 * 2. Sender SWS avoidance, 20037 * 3. max_pld is zero. 20038 * 20039 * We are done for this Multidata, so trim our 20040 * last payload buffer (if any) accordingly. 20041 */ 20042 if (md_pbuf != NULL) 20043 md_pbuf->b_wptr -= *tail_unsent; 20044 } else if (*usable > 0) { 20045 *xmit_tail = (*xmit_tail)->b_cont; 20046 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20047 (uintptr_t)INT_MAX); 20048 *tail_unsent = (int)MBLKL(*xmit_tail); 20049 add_buffer = B_TRUE; 20050 } 20051 } while (!done && *usable > 0 && num_burst_seg > 0 && 20052 (tcp_mdt_chain || max_pld > 0)); 20053 20054 /* send everything down */ 20055 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20056 &rconfirm); 20057 20058 #undef PREP_NEW_MULTIDATA 20059 #undef PREP_NEW_PBUF 20060 #undef IPVER 20061 20062 IRE_REFRELE(ire); 20063 return (0); 20064 } 20065 20066 /* 20067 * A wrapper function for sending one or more Multidata messages down to 20068 * the module below ip; this routine does not release the reference of the 20069 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20070 */ 20071 static void 20072 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20073 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20074 { 20075 uint64_t delta; 20076 nce_t *nce; 20077 20078 ASSERT(ire != NULL && ill != NULL); 20079 ASSERT(ire->ire_stq != NULL); 20080 ASSERT(md_mp_head != NULL); 20081 ASSERT(rconfirm != NULL); 20082 20083 /* adjust MIBs and IRE timestamp */ 20084 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20085 tcp->tcp_obsegs += obsegs; 20086 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20087 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20088 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20089 20090 if (tcp->tcp_ipversion == IPV4_VERSION) { 20091 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20092 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20093 } else { 20094 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20095 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20096 } 20097 20098 ire->ire_ob_pkt_count += obsegs; 20099 if (ire->ire_ipif != NULL) 20100 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20101 ire->ire_last_used_time = lbolt; 20102 20103 /* send it down */ 20104 putnext(ire->ire_stq, md_mp_head); 20105 20106 /* we're done for TCP/IPv4 */ 20107 if (tcp->tcp_ipversion == IPV4_VERSION) 20108 return; 20109 20110 nce = ire->ire_nce; 20111 20112 ASSERT(nce != NULL); 20113 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20114 ASSERT(nce->nce_state != ND_INCOMPLETE); 20115 20116 /* reachability confirmation? */ 20117 if (*rconfirm) { 20118 nce->nce_last = TICK_TO_MSEC(lbolt64); 20119 if (nce->nce_state != ND_REACHABLE) { 20120 mutex_enter(&nce->nce_lock); 20121 nce->nce_state = ND_REACHABLE; 20122 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20123 mutex_exit(&nce->nce_lock); 20124 (void) untimeout(nce->nce_timeout_id); 20125 if (ip_debug > 2) { 20126 /* ip1dbg */ 20127 pr_addr_dbg("tcp_multisend_data: state " 20128 "for %s changed to REACHABLE\n", 20129 AF_INET6, &ire->ire_addr_v6); 20130 } 20131 } 20132 /* reset transport reachability confirmation */ 20133 *rconfirm = B_FALSE; 20134 } 20135 20136 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20137 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20138 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20139 20140 if (delta > (uint64_t)ill->ill_reachable_time) { 20141 mutex_enter(&nce->nce_lock); 20142 switch (nce->nce_state) { 20143 case ND_REACHABLE: 20144 case ND_STALE: 20145 /* 20146 * ND_REACHABLE is identical to ND_STALE in this 20147 * specific case. If reachable time has expired for 20148 * this neighbor (delta is greater than reachable 20149 * time), conceptually, the neighbor cache is no 20150 * longer in REACHABLE state, but already in STALE 20151 * state. So the correct transition here is to 20152 * ND_DELAY. 20153 */ 20154 nce->nce_state = ND_DELAY; 20155 mutex_exit(&nce->nce_lock); 20156 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20157 if (ip_debug > 3) { 20158 /* ip2dbg */ 20159 pr_addr_dbg("tcp_multisend_data: state " 20160 "for %s changed to DELAY\n", 20161 AF_INET6, &ire->ire_addr_v6); 20162 } 20163 break; 20164 case ND_DELAY: 20165 case ND_PROBE: 20166 mutex_exit(&nce->nce_lock); 20167 /* Timers have already started */ 20168 break; 20169 case ND_UNREACHABLE: 20170 /* 20171 * ndp timer has detected that this nce is 20172 * unreachable and initiated deleting this nce 20173 * and all its associated IREs. This is a race 20174 * where we found the ire before it was deleted 20175 * and have just sent out a packet using this 20176 * unreachable nce. 20177 */ 20178 mutex_exit(&nce->nce_lock); 20179 break; 20180 default: 20181 ASSERT(0); 20182 } 20183 } 20184 } 20185 20186 /* 20187 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20188 * scheme, and returns one of the following: 20189 * 20190 * -1 = failed allocation. 20191 * 0 = success; burst count reached, or usable send window is too small, 20192 * and that we'd rather wait until later before sending again. 20193 * 1 = success; we are called from tcp_multisend(), and both usable send 20194 * window and tail_unsent are greater than the MDT threshold, and thus 20195 * Multidata Transmit should be used instead. 20196 */ 20197 static int 20198 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20199 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20200 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20201 const int mdt_thres) 20202 { 20203 int num_burst_seg = tcp->tcp_snd_burst; 20204 20205 for (;;) { 20206 struct datab *db; 20207 tcph_t *tcph; 20208 uint32_t sum; 20209 mblk_t *mp, *mp1; 20210 uchar_t *rptr; 20211 int len; 20212 20213 /* 20214 * If we're called by tcp_multisend(), and the amount of 20215 * sendable data as well as the size of current xmit_tail 20216 * is beyond the MDT threshold, return to the caller and 20217 * let the large data transmit be done using MDT. 20218 */ 20219 if (*usable > 0 && *usable > mdt_thres && 20220 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20221 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20222 ASSERT(tcp->tcp_mdt); 20223 return (1); /* success; do large send */ 20224 } 20225 20226 if (num_burst_seg-- == 0) 20227 break; /* success; burst count reached */ 20228 20229 len = mss; 20230 if (len > *usable) { 20231 len = *usable; 20232 if (len <= 0) { 20233 /* Terminate the loop */ 20234 break; /* success; too small */ 20235 } 20236 /* 20237 * Sender silly-window avoidance. 20238 * Ignore this if we are going to send a 20239 * zero window probe out. 20240 * 20241 * TODO: force data into microscopic window? 20242 * ==> (!pushed || (unsent > usable)) 20243 */ 20244 if (len < (tcp->tcp_max_swnd >> 1) && 20245 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20246 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20247 len == 1) && (! tcp->tcp_zero_win_probe)) { 20248 /* 20249 * If the retransmit timer is not running 20250 * we start it so that we will retransmit 20251 * in the case when the the receiver has 20252 * decremented the window. 20253 */ 20254 if (*snxt == tcp->tcp_snxt && 20255 *snxt == tcp->tcp_suna) { 20256 /* 20257 * We are not supposed to send 20258 * anything. So let's wait a little 20259 * bit longer before breaking SWS 20260 * avoidance. 20261 * 20262 * What should the value be? 20263 * Suggestion: MAX(init rexmit time, 20264 * tcp->tcp_rto) 20265 */ 20266 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20267 } 20268 break; /* success; too small */ 20269 } 20270 } 20271 20272 tcph = tcp->tcp_tcph; 20273 20274 *usable -= len; /* Approximate - can be adjusted later */ 20275 if (*usable > 0) 20276 tcph->th_flags[0] = TH_ACK; 20277 else 20278 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20279 20280 /* 20281 * Prime pump for IP's checksumming on our behalf 20282 * Include the adjustment for a source route if any. 20283 */ 20284 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20285 sum = (sum >> 16) + (sum & 0xFFFF); 20286 U16_TO_ABE16(sum, tcph->th_sum); 20287 20288 U32_TO_ABE32(*snxt, tcph->th_seq); 20289 20290 /* 20291 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20292 * set. For the case when TCP_FSS_VALID is the only valid 20293 * bit (normal active close), branch off only when we think 20294 * that the FIN flag needs to be set. Note for this case, 20295 * that (snxt + len) may not reflect the actual seg_len, 20296 * as len may be further reduced in tcp_xmit_mp(). If len 20297 * gets modified, we will end up here again. 20298 */ 20299 if (tcp->tcp_valid_bits != 0 && 20300 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20301 ((*snxt + len) == tcp->tcp_fss))) { 20302 uchar_t *prev_rptr; 20303 uint32_t prev_snxt = tcp->tcp_snxt; 20304 20305 if (*tail_unsent == 0) { 20306 ASSERT((*xmit_tail)->b_cont != NULL); 20307 *xmit_tail = (*xmit_tail)->b_cont; 20308 prev_rptr = (*xmit_tail)->b_rptr; 20309 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20310 (*xmit_tail)->b_rptr); 20311 } else { 20312 prev_rptr = (*xmit_tail)->b_rptr; 20313 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20314 *tail_unsent; 20315 } 20316 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20317 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20318 /* Restore tcp_snxt so we get amount sent right. */ 20319 tcp->tcp_snxt = prev_snxt; 20320 if (prev_rptr == (*xmit_tail)->b_rptr) { 20321 /* 20322 * If the previous timestamp is still in use, 20323 * don't stomp on it. 20324 */ 20325 if ((*xmit_tail)->b_next == NULL) { 20326 (*xmit_tail)->b_prev = local_time; 20327 (*xmit_tail)->b_next = 20328 (mblk_t *)(uintptr_t)(*snxt); 20329 } 20330 } else 20331 (*xmit_tail)->b_rptr = prev_rptr; 20332 20333 if (mp == NULL) 20334 return (-1); 20335 mp1 = mp->b_cont; 20336 20337 tcp->tcp_last_sent_len = (ushort_t)len; 20338 while (mp1->b_cont) { 20339 *xmit_tail = (*xmit_tail)->b_cont; 20340 (*xmit_tail)->b_prev = local_time; 20341 (*xmit_tail)->b_next = 20342 (mblk_t *)(uintptr_t)(*snxt); 20343 mp1 = mp1->b_cont; 20344 } 20345 *snxt += len; 20346 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20347 BUMP_LOCAL(tcp->tcp_obsegs); 20348 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20349 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20350 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20351 tcp_send_data(tcp, q, mp); 20352 continue; 20353 } 20354 20355 *snxt += len; /* Adjust later if we don't send all of len */ 20356 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20357 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20358 20359 if (*tail_unsent) { 20360 /* Are the bytes above us in flight? */ 20361 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20362 if (rptr != (*xmit_tail)->b_rptr) { 20363 *tail_unsent -= len; 20364 tcp->tcp_last_sent_len = (ushort_t)len; 20365 len += tcp_hdr_len; 20366 if (tcp->tcp_ipversion == IPV4_VERSION) 20367 tcp->tcp_ipha->ipha_length = htons(len); 20368 else 20369 tcp->tcp_ip6h->ip6_plen = 20370 htons(len - 20371 ((char *)&tcp->tcp_ip6h[1] - 20372 tcp->tcp_iphc)); 20373 mp = dupb(*xmit_tail); 20374 if (!mp) 20375 return (-1); /* out_of_mem */ 20376 mp->b_rptr = rptr; 20377 /* 20378 * If the old timestamp is no longer in use, 20379 * sample a new timestamp now. 20380 */ 20381 if ((*xmit_tail)->b_next == NULL) { 20382 (*xmit_tail)->b_prev = local_time; 20383 (*xmit_tail)->b_next = 20384 (mblk_t *)(uintptr_t)(*snxt-len); 20385 } 20386 goto must_alloc; 20387 } 20388 } else { 20389 *xmit_tail = (*xmit_tail)->b_cont; 20390 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20391 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20392 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20393 (*xmit_tail)->b_rptr); 20394 } 20395 20396 (*xmit_tail)->b_prev = local_time; 20397 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20398 20399 *tail_unsent -= len; 20400 tcp->tcp_last_sent_len = (ushort_t)len; 20401 20402 len += tcp_hdr_len; 20403 if (tcp->tcp_ipversion == IPV4_VERSION) 20404 tcp->tcp_ipha->ipha_length = htons(len); 20405 else 20406 tcp->tcp_ip6h->ip6_plen = htons(len - 20407 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20408 20409 mp = dupb(*xmit_tail); 20410 if (!mp) 20411 return (-1); /* out_of_mem */ 20412 20413 len = tcp_hdr_len; 20414 /* 20415 * There are four reasons to allocate a new hdr mblk: 20416 * 1) The bytes above us are in use by another packet 20417 * 2) We don't have good alignment 20418 * 3) The mblk is being shared 20419 * 4) We don't have enough room for a header 20420 */ 20421 rptr = mp->b_rptr - len; 20422 if (!OK_32PTR(rptr) || 20423 ((db = mp->b_datap), db->db_ref != 2) || 20424 rptr < db->db_base) { 20425 /* NOTE: we assume allocb returns an OK_32PTR */ 20426 20427 must_alloc:; 20428 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20429 tcp_wroff_xtra, BPRI_MED); 20430 if (!mp1) { 20431 freemsg(mp); 20432 return (-1); /* out_of_mem */ 20433 } 20434 mp1->b_cont = mp; 20435 mp = mp1; 20436 /* Leave room for Link Level header */ 20437 len = tcp_hdr_len; 20438 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20439 mp->b_wptr = &rptr[len]; 20440 } 20441 20442 /* 20443 * Fill in the header using the template header, and add 20444 * options such as time-stamp, ECN and/or SACK, as needed. 20445 */ 20446 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20447 20448 mp->b_rptr = rptr; 20449 20450 if (*tail_unsent) { 20451 int spill = *tail_unsent; 20452 20453 mp1 = mp->b_cont; 20454 if (!mp1) 20455 mp1 = mp; 20456 20457 /* 20458 * If we're a little short, tack on more mblks until 20459 * there is no more spillover. 20460 */ 20461 while (spill < 0) { 20462 mblk_t *nmp; 20463 int nmpsz; 20464 20465 nmp = (*xmit_tail)->b_cont; 20466 nmpsz = MBLKL(nmp); 20467 20468 /* 20469 * Excess data in mblk; can we split it? 20470 * If MDT is enabled for the connection, 20471 * keep on splitting as this is a transient 20472 * send path. 20473 */ 20474 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20475 /* 20476 * Don't split if stream head was 20477 * told to break up larger writes 20478 * into smaller ones. 20479 */ 20480 if (tcp->tcp_maxpsz > 0) 20481 break; 20482 20483 /* 20484 * Next mblk is less than SMSS/2 20485 * rounded up to nearest 64-byte; 20486 * let it get sent as part of the 20487 * next segment. 20488 */ 20489 if (tcp->tcp_localnet && 20490 !tcp->tcp_cork && 20491 (nmpsz < roundup((mss >> 1), 64))) 20492 break; 20493 } 20494 20495 *xmit_tail = nmp; 20496 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20497 /* Stash for rtt use later */ 20498 (*xmit_tail)->b_prev = local_time; 20499 (*xmit_tail)->b_next = 20500 (mblk_t *)(uintptr_t)(*snxt - len); 20501 mp1->b_cont = dupb(*xmit_tail); 20502 mp1 = mp1->b_cont; 20503 20504 spill += nmpsz; 20505 if (mp1 == NULL) { 20506 *tail_unsent = spill; 20507 freemsg(mp); 20508 return (-1); /* out_of_mem */ 20509 } 20510 } 20511 20512 /* Trim back any surplus on the last mblk */ 20513 if (spill >= 0) { 20514 mp1->b_wptr -= spill; 20515 *tail_unsent = spill; 20516 } else { 20517 /* 20518 * We did not send everything we could in 20519 * order to remain within the b_cont limit. 20520 */ 20521 *usable -= spill; 20522 *snxt += spill; 20523 tcp->tcp_last_sent_len += spill; 20524 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20525 /* 20526 * Adjust the checksum 20527 */ 20528 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20529 sum += spill; 20530 sum = (sum >> 16) + (sum & 0xFFFF); 20531 U16_TO_ABE16(sum, tcph->th_sum); 20532 if (tcp->tcp_ipversion == IPV4_VERSION) { 20533 sum = ntohs( 20534 ((ipha_t *)rptr)->ipha_length) + 20535 spill; 20536 ((ipha_t *)rptr)->ipha_length = 20537 htons(sum); 20538 } else { 20539 sum = ntohs( 20540 ((ip6_t *)rptr)->ip6_plen) + 20541 spill; 20542 ((ip6_t *)rptr)->ip6_plen = 20543 htons(sum); 20544 } 20545 *tail_unsent = 0; 20546 } 20547 } 20548 if (tcp->tcp_ip_forward_progress) { 20549 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20550 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20551 tcp->tcp_ip_forward_progress = B_FALSE; 20552 } 20553 20554 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20555 tcp_send_data(tcp, q, mp); 20556 BUMP_LOCAL(tcp->tcp_obsegs); 20557 } 20558 20559 return (0); 20560 } 20561 20562 /* Unlink and return any mblk that looks like it contains a MDT info */ 20563 static mblk_t * 20564 tcp_mdt_info_mp(mblk_t *mp) 20565 { 20566 mblk_t *prev_mp; 20567 20568 for (;;) { 20569 prev_mp = mp; 20570 /* no more to process? */ 20571 if ((mp = mp->b_cont) == NULL) 20572 break; 20573 20574 switch (DB_TYPE(mp)) { 20575 case M_CTL: 20576 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20577 continue; 20578 ASSERT(prev_mp != NULL); 20579 prev_mp->b_cont = mp->b_cont; 20580 mp->b_cont = NULL; 20581 return (mp); 20582 default: 20583 break; 20584 } 20585 } 20586 return (mp); 20587 } 20588 20589 /* MDT info update routine, called when IP notifies us about MDT */ 20590 static void 20591 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20592 { 20593 boolean_t prev_state; 20594 20595 /* 20596 * IP is telling us to abort MDT on this connection? We know 20597 * this because the capability is only turned off when IP 20598 * encounters some pathological cases, e.g. link-layer change 20599 * where the new driver doesn't support MDT, or in situation 20600 * where MDT usage on the link-layer has been switched off. 20601 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20602 * if the link-layer doesn't support MDT, and if it does, it 20603 * will indicate that the feature is to be turned on. 20604 */ 20605 prev_state = tcp->tcp_mdt; 20606 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20607 if (!tcp->tcp_mdt && !first) { 20608 TCP_STAT(tcp_mdt_conn_halted3); 20609 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20610 (void *)tcp->tcp_connp)); 20611 } 20612 20613 /* 20614 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20615 * so disable MDT otherwise. The checks are done here 20616 * and in tcp_wput_data(). 20617 */ 20618 if (tcp->tcp_mdt && 20619 (tcp->tcp_ipversion == IPV4_VERSION && 20620 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20621 (tcp->tcp_ipversion == IPV6_VERSION && 20622 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20623 tcp->tcp_mdt = B_FALSE; 20624 20625 if (tcp->tcp_mdt) { 20626 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20627 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20628 "version (%d), expected version is %d", 20629 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20630 tcp->tcp_mdt = B_FALSE; 20631 return; 20632 } 20633 20634 /* 20635 * We need the driver to be able to handle at least three 20636 * spans per packet in order for tcp MDT to be utilized. 20637 * The first is for the header portion, while the rest are 20638 * needed to handle a packet that straddles across two 20639 * virtually non-contiguous buffers; a typical tcp packet 20640 * therefore consists of only two spans. Note that we take 20641 * a zero as "don't care". 20642 */ 20643 if (mdt_capab->ill_mdt_span_limit > 0 && 20644 mdt_capab->ill_mdt_span_limit < 3) { 20645 tcp->tcp_mdt = B_FALSE; 20646 return; 20647 } 20648 20649 /* a zero means driver wants default value */ 20650 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20651 tcp_mdt_max_pbufs); 20652 if (tcp->tcp_mdt_max_pld == 0) 20653 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20654 20655 /* ensure 32-bit alignment */ 20656 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20657 mdt_capab->ill_mdt_hdr_head), 4); 20658 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20659 mdt_capab->ill_mdt_hdr_tail), 4); 20660 20661 if (!first && !prev_state) { 20662 TCP_STAT(tcp_mdt_conn_resumed2); 20663 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20664 (void *)tcp->tcp_connp)); 20665 } 20666 } 20667 } 20668 20669 static void 20670 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20671 { 20672 conn_t *connp = tcp->tcp_connp; 20673 20674 ASSERT(ire != NULL); 20675 20676 /* 20677 * We may be in the fastpath here, and although we essentially do 20678 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20679 * we try to keep things as brief as possible. After all, these 20680 * are only best-effort checks, and we do more thorough ones prior 20681 * to calling tcp_multisend(). 20682 */ 20683 if (ip_multidata_outbound && check_mdt && 20684 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20685 ill != NULL && ILL_MDT_CAPABLE(ill) && 20686 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20687 !(ire->ire_flags & RTF_MULTIRT) && 20688 !IPP_ENABLED(IPP_LOCAL_OUT) && 20689 CONN_IS_MD_FASTPATH(connp)) { 20690 /* Remember the result */ 20691 connp->conn_mdt_ok = B_TRUE; 20692 20693 ASSERT(ill->ill_mdt_capab != NULL); 20694 if (!ill->ill_mdt_capab->ill_mdt_on) { 20695 /* 20696 * If MDT has been previously turned off in the past, 20697 * and we currently can do MDT (due to IPQoS policy 20698 * removal, etc.) then enable it for this interface. 20699 */ 20700 ill->ill_mdt_capab->ill_mdt_on = 1; 20701 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20702 "interface %s\n", (void *)connp, ill->ill_name)); 20703 } 20704 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20705 } 20706 20707 /* 20708 * The goal is to reduce the number of generated tcp segments by 20709 * setting the maxpsz multiplier to 0; this will have an affect on 20710 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20711 * into each packet, up to SMSS bytes. Doing this reduces the number 20712 * of outbound segments and incoming ACKs, thus allowing for better 20713 * network and system performance. In contrast the legacy behavior 20714 * may result in sending less than SMSS size, because the last mblk 20715 * for some packets may have more data than needed to make up SMSS, 20716 * and the legacy code refused to "split" it. 20717 * 20718 * We apply the new behavior on following situations: 20719 * 20720 * 1) Loopback connections, 20721 * 2) Connections in which the remote peer is not on local subnet, 20722 * 3) Local subnet connections over the bge interface (see below). 20723 * 20724 * Ideally, we would like this behavior to apply for interfaces other 20725 * than bge. However, doing so would negatively impact drivers which 20726 * perform dynamic mapping and unmapping of DMA resources, which are 20727 * increased by setting the maxpsz multiplier to 0 (more mblks per 20728 * packet will be generated by tcp). The bge driver does not suffer 20729 * from this, as it copies the mblks into pre-mapped buffers, and 20730 * therefore does not require more I/O resources than before. 20731 * 20732 * Otherwise, this behavior is present on all network interfaces when 20733 * the destination endpoint is non-local, since reducing the number 20734 * of packets in general is good for the network. 20735 * 20736 * TODO We need to remove this hard-coded conditional for bge once 20737 * a better "self-tuning" mechanism, or a way to comprehend 20738 * the driver transmit strategy is devised. Until the solution 20739 * is found and well understood, we live with this hack. 20740 */ 20741 if (!tcp_static_maxpsz && 20742 (tcp->tcp_loopback || !tcp->tcp_localnet || 20743 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20744 /* override the default value */ 20745 tcp->tcp_maxpsz = 0; 20746 20747 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20748 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20749 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20750 } 20751 20752 /* set the stream head parameters accordingly */ 20753 (void) tcp_maxpsz_set(tcp, B_TRUE); 20754 } 20755 20756 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20757 static void 20758 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20759 { 20760 uchar_t fval = *mp->b_rptr; 20761 mblk_t *tail; 20762 queue_t *q = tcp->tcp_wq; 20763 20764 /* TODO: How should flush interact with urgent data? */ 20765 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20766 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20767 /* 20768 * Flush only data that has not yet been put on the wire. If 20769 * we flush data that we have already transmitted, life, as we 20770 * know it, may come to an end. 20771 */ 20772 tail = tcp->tcp_xmit_tail; 20773 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20774 tcp->tcp_xmit_tail_unsent = 0; 20775 tcp->tcp_unsent = 0; 20776 if (tail->b_wptr != tail->b_rptr) 20777 tail = tail->b_cont; 20778 if (tail) { 20779 mblk_t **excess = &tcp->tcp_xmit_head; 20780 for (;;) { 20781 mblk_t *mp1 = *excess; 20782 if (mp1 == tail) 20783 break; 20784 tcp->tcp_xmit_tail = mp1; 20785 tcp->tcp_xmit_last = mp1; 20786 excess = &mp1->b_cont; 20787 } 20788 *excess = NULL; 20789 tcp_close_mpp(&tail); 20790 if (tcp->tcp_snd_zcopy_aware) 20791 tcp_zcopy_notify(tcp); 20792 } 20793 /* 20794 * We have no unsent data, so unsent must be less than 20795 * tcp_xmit_lowater, so re-enable flow. 20796 */ 20797 if (tcp->tcp_flow_stopped) { 20798 tcp_clrqfull(tcp); 20799 } 20800 } 20801 /* 20802 * TODO: you can't just flush these, you have to increase rwnd for one 20803 * thing. For another, how should urgent data interact? 20804 */ 20805 if (fval & FLUSHR) { 20806 *mp->b_rptr = fval & ~FLUSHW; 20807 /* XXX */ 20808 qreply(q, mp); 20809 return; 20810 } 20811 freemsg(mp); 20812 } 20813 20814 /* 20815 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20816 * messages. 20817 */ 20818 static void 20819 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20820 { 20821 mblk_t *mp1; 20822 STRUCT_HANDLE(strbuf, sb); 20823 uint16_t port; 20824 queue_t *q = tcp->tcp_wq; 20825 in6_addr_t v6addr; 20826 ipaddr_t v4addr; 20827 uint32_t flowinfo = 0; 20828 int addrlen; 20829 20830 /* Make sure it is one of ours. */ 20831 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20832 case TI_GETMYNAME: 20833 case TI_GETPEERNAME: 20834 break; 20835 default: 20836 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20837 return; 20838 } 20839 switch (mi_copy_state(q, mp, &mp1)) { 20840 case -1: 20841 return; 20842 case MI_COPY_CASE(MI_COPY_IN, 1): 20843 break; 20844 case MI_COPY_CASE(MI_COPY_OUT, 1): 20845 /* Copy out the strbuf. */ 20846 mi_copyout(q, mp); 20847 return; 20848 case MI_COPY_CASE(MI_COPY_OUT, 2): 20849 /* All done. */ 20850 mi_copy_done(q, mp, 0); 20851 return; 20852 default: 20853 mi_copy_done(q, mp, EPROTO); 20854 return; 20855 } 20856 /* Check alignment of the strbuf */ 20857 if (!OK_32PTR(mp1->b_rptr)) { 20858 mi_copy_done(q, mp, EINVAL); 20859 return; 20860 } 20861 20862 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20863 (void *)mp1->b_rptr); 20864 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20865 20866 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20867 mi_copy_done(q, mp, EINVAL); 20868 return; 20869 } 20870 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20871 case TI_GETMYNAME: 20872 if (tcp->tcp_family == AF_INET) { 20873 if (tcp->tcp_ipversion == IPV4_VERSION) { 20874 v4addr = tcp->tcp_ipha->ipha_src; 20875 } else { 20876 /* can't return an address in this case */ 20877 v4addr = 0; 20878 } 20879 } else { 20880 /* tcp->tcp_family == AF_INET6 */ 20881 if (tcp->tcp_ipversion == IPV4_VERSION) { 20882 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20883 &v6addr); 20884 } else { 20885 v6addr = tcp->tcp_ip6h->ip6_src; 20886 } 20887 } 20888 port = tcp->tcp_lport; 20889 break; 20890 case TI_GETPEERNAME: 20891 if (tcp->tcp_family == AF_INET) { 20892 if (tcp->tcp_ipversion == IPV4_VERSION) { 20893 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20894 v4addr); 20895 } else { 20896 /* can't return an address in this case */ 20897 v4addr = 0; 20898 } 20899 } else { 20900 /* tcp->tcp_family == AF_INET6) */ 20901 v6addr = tcp->tcp_remote_v6; 20902 if (tcp->tcp_ipversion == IPV6_VERSION) { 20903 /* 20904 * No flowinfo if tcp->tcp_ipversion is v4. 20905 * 20906 * flowinfo was already initialized to zero 20907 * where it was declared above, so only 20908 * set it if ipversion is v6. 20909 */ 20910 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20911 ~IPV6_VERS_AND_FLOW_MASK; 20912 } 20913 } 20914 port = tcp->tcp_fport; 20915 break; 20916 default: 20917 mi_copy_done(q, mp, EPROTO); 20918 return; 20919 } 20920 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20921 if (!mp1) 20922 return; 20923 20924 if (tcp->tcp_family == AF_INET) { 20925 sin_t *sin; 20926 20927 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20928 sin = (sin_t *)mp1->b_rptr; 20929 mp1->b_wptr = (uchar_t *)&sin[1]; 20930 *sin = sin_null; 20931 sin->sin_family = AF_INET; 20932 sin->sin_addr.s_addr = v4addr; 20933 sin->sin_port = port; 20934 } else { 20935 /* tcp->tcp_family == AF_INET6 */ 20936 sin6_t *sin6; 20937 20938 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20939 sin6 = (sin6_t *)mp1->b_rptr; 20940 mp1->b_wptr = (uchar_t *)&sin6[1]; 20941 *sin6 = sin6_null; 20942 sin6->sin6_family = AF_INET6; 20943 sin6->sin6_flowinfo = flowinfo; 20944 sin6->sin6_addr = v6addr; 20945 sin6->sin6_port = port; 20946 } 20947 /* Copy out the address */ 20948 mi_copyout(q, mp); 20949 } 20950 20951 /* 20952 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20953 * messages. 20954 */ 20955 /* ARGSUSED */ 20956 static void 20957 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20958 { 20959 conn_t *connp = (conn_t *)arg; 20960 tcp_t *tcp = connp->conn_tcp; 20961 queue_t *q = tcp->tcp_wq; 20962 struct iocblk *iocp; 20963 20964 ASSERT(DB_TYPE(mp) == M_IOCTL); 20965 /* 20966 * Try and ASSERT the minimum possible references on the 20967 * conn early enough. Since we are executing on write side, 20968 * the connection is obviously not detached and that means 20969 * there is a ref each for TCP and IP. Since we are behind 20970 * the squeue, the minimum references needed are 3. If the 20971 * conn is in classifier hash list, there should be an 20972 * extra ref for that (we check both the possibilities). 20973 */ 20974 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20975 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20976 20977 iocp = (struct iocblk *)mp->b_rptr; 20978 switch (iocp->ioc_cmd) { 20979 case TCP_IOC_DEFAULT_Q: 20980 /* Wants to be the default wq. */ 20981 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20982 iocp->ioc_error = EPERM; 20983 iocp->ioc_count = 0; 20984 mp->b_datap->db_type = M_IOCACK; 20985 qreply(q, mp); 20986 return; 20987 } 20988 tcp_def_q_set(tcp, mp); 20989 return; 20990 case _SIOCSOCKFALLBACK: 20991 /* 20992 * Either sockmod is about to be popped and the socket 20993 * would now be treated as a plain stream, or a module 20994 * is about to be pushed so we could no longer use read- 20995 * side synchronous streams for fused loopback tcp. 20996 * Drain any queued data and disable direct sockfs 20997 * interface from now on. 20998 */ 20999 if (!tcp->tcp_issocket) { 21000 DB_TYPE(mp) = M_IOCNAK; 21001 iocp->ioc_error = EINVAL; 21002 } else { 21003 #ifdef _ILP32 21004 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21005 #else 21006 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21007 #endif 21008 /* 21009 * Insert this socket into the acceptor hash. 21010 * We might need it for T_CONN_RES message 21011 */ 21012 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21013 21014 if (tcp->tcp_fused) { 21015 /* 21016 * This is a fused loopback tcp; disable 21017 * read-side synchronous streams interface 21018 * and drain any queued data. It is okay 21019 * to do this for non-synchronous streams 21020 * fused tcp as well. 21021 */ 21022 tcp_fuse_disable_pair(tcp, B_FALSE); 21023 } 21024 tcp->tcp_issocket = B_FALSE; 21025 TCP_STAT(tcp_sock_fallback); 21026 21027 DB_TYPE(mp) = M_IOCACK; 21028 iocp->ioc_error = 0; 21029 } 21030 iocp->ioc_count = 0; 21031 iocp->ioc_rval = 0; 21032 qreply(q, mp); 21033 return; 21034 } 21035 CALL_IP_WPUT(connp, q, mp); 21036 } 21037 21038 /* 21039 * This routine is called by tcp_wput() to handle all TPI requests. 21040 */ 21041 /* ARGSUSED */ 21042 static void 21043 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21044 { 21045 conn_t *connp = (conn_t *)arg; 21046 tcp_t *tcp = connp->conn_tcp; 21047 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21048 uchar_t *rptr; 21049 t_scalar_t type; 21050 int len; 21051 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21052 21053 /* 21054 * Try and ASSERT the minimum possible references on the 21055 * conn early enough. Since we are executing on write side, 21056 * the connection is obviously not detached and that means 21057 * there is a ref each for TCP and IP. Since we are behind 21058 * the squeue, the minimum references needed are 3. If the 21059 * conn is in classifier hash list, there should be an 21060 * extra ref for that (we check both the possibilities). 21061 */ 21062 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21063 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21064 21065 rptr = mp->b_rptr; 21066 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21067 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21068 type = ((union T_primitives *)rptr)->type; 21069 if (type == T_EXDATA_REQ) { 21070 uint32_t msize = msgdsize(mp->b_cont); 21071 21072 len = msize - 1; 21073 if (len < 0) { 21074 freemsg(mp); 21075 return; 21076 } 21077 /* 21078 * Try to force urgent data out on the wire. 21079 * Even if we have unsent data this will 21080 * at least send the urgent flag. 21081 * XXX does not handle more flag correctly. 21082 */ 21083 len += tcp->tcp_unsent; 21084 len += tcp->tcp_snxt; 21085 tcp->tcp_urg = len; 21086 tcp->tcp_valid_bits |= TCP_URG_VALID; 21087 21088 /* Bypass tcp protocol for fused tcp loopback */ 21089 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21090 return; 21091 } else if (type != T_DATA_REQ) { 21092 goto non_urgent_data; 21093 } 21094 /* TODO: options, flags, ... from user */ 21095 /* Set length to zero for reclamation below */ 21096 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21097 freeb(mp); 21098 return; 21099 } else { 21100 if (tcp->tcp_debug) { 21101 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21102 "tcp_wput_proto, dropping one..."); 21103 } 21104 freemsg(mp); 21105 return; 21106 } 21107 21108 non_urgent_data: 21109 21110 switch ((int)tprim->type) { 21111 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21112 /* 21113 * save the kssl_ent_t from the next block, and convert this 21114 * back to a normal bind_req. 21115 */ 21116 if (mp->b_cont != NULL) { 21117 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21118 21119 if (tcp->tcp_kssl_ent != NULL) { 21120 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21121 KSSL_NO_PROXY); 21122 tcp->tcp_kssl_ent = NULL; 21123 } 21124 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21125 sizeof (kssl_ent_t)); 21126 kssl_hold_ent(tcp->tcp_kssl_ent); 21127 freemsg(mp->b_cont); 21128 mp->b_cont = NULL; 21129 } 21130 tprim->type = T_BIND_REQ; 21131 21132 /* FALLTHROUGH */ 21133 case O_T_BIND_REQ: /* bind request */ 21134 case T_BIND_REQ: /* new semantics bind request */ 21135 tcp_bind(tcp, mp); 21136 break; 21137 case T_UNBIND_REQ: /* unbind request */ 21138 tcp_unbind(tcp, mp); 21139 break; 21140 case O_T_CONN_RES: /* old connection response XXX */ 21141 case T_CONN_RES: /* connection response */ 21142 tcp_accept(tcp, mp); 21143 break; 21144 case T_CONN_REQ: /* connection request */ 21145 tcp_connect(tcp, mp); 21146 break; 21147 case T_DISCON_REQ: /* disconnect request */ 21148 tcp_disconnect(tcp, mp); 21149 break; 21150 case T_CAPABILITY_REQ: 21151 tcp_capability_req(tcp, mp); /* capability request */ 21152 break; 21153 case T_INFO_REQ: /* information request */ 21154 tcp_info_req(tcp, mp); 21155 break; 21156 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21157 /* Only IP is allowed to return meaningful value */ 21158 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21159 break; 21160 case T_OPTMGMT_REQ: 21161 /* 21162 * Note: no support for snmpcom_req() through new 21163 * T_OPTMGMT_REQ. See comments in ip.c 21164 */ 21165 /* Only IP is allowed to return meaningful value */ 21166 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21167 break; 21168 21169 case T_UNITDATA_REQ: /* unitdata request */ 21170 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21171 break; 21172 case T_ORDREL_REQ: /* orderly release req */ 21173 freemsg(mp); 21174 21175 if (tcp->tcp_fused) 21176 tcp_unfuse(tcp); 21177 21178 if (tcp_xmit_end(tcp) != 0) { 21179 /* 21180 * We were crossing FINs and got a reset from 21181 * the other side. Just ignore it. 21182 */ 21183 if (tcp->tcp_debug) { 21184 (void) strlog(TCP_MOD_ID, 0, 1, 21185 SL_ERROR|SL_TRACE, 21186 "tcp_wput_proto, T_ORDREL_REQ out of " 21187 "state %s", 21188 tcp_display(tcp, NULL, 21189 DISP_ADDR_AND_PORT)); 21190 } 21191 } 21192 break; 21193 case T_ADDR_REQ: 21194 tcp_addr_req(tcp, mp); 21195 break; 21196 default: 21197 if (tcp->tcp_debug) { 21198 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21199 "tcp_wput_proto, bogus TPI msg, type %d", 21200 tprim->type); 21201 } 21202 /* 21203 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21204 * to recover. 21205 */ 21206 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21207 break; 21208 } 21209 } 21210 21211 /* 21212 * The TCP write service routine should never be called... 21213 */ 21214 /* ARGSUSED */ 21215 static void 21216 tcp_wsrv(queue_t *q) 21217 { 21218 TCP_STAT(tcp_wsrv_called); 21219 } 21220 21221 /* Non overlapping byte exchanger */ 21222 static void 21223 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21224 { 21225 uchar_t uch; 21226 21227 while (len-- > 0) { 21228 uch = a[len]; 21229 a[len] = b[len]; 21230 b[len] = uch; 21231 } 21232 } 21233 21234 /* 21235 * Send out a control packet on the tcp connection specified. This routine 21236 * is typically called where we need a simple ACK or RST generated. 21237 */ 21238 static void 21239 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21240 { 21241 uchar_t *rptr; 21242 tcph_t *tcph; 21243 ipha_t *ipha = NULL; 21244 ip6_t *ip6h = NULL; 21245 uint32_t sum; 21246 int tcp_hdr_len; 21247 int tcp_ip_hdr_len; 21248 mblk_t *mp; 21249 21250 /* 21251 * Save sum for use in source route later. 21252 */ 21253 ASSERT(tcp != NULL); 21254 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21255 tcp_hdr_len = tcp->tcp_hdr_len; 21256 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21257 21258 /* If a text string is passed in with the request, pass it to strlog. */ 21259 if (str != NULL && tcp->tcp_debug) { 21260 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21261 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21262 str, seq, ack, ctl); 21263 } 21264 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21265 BPRI_MED); 21266 if (mp == NULL) { 21267 return; 21268 } 21269 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21270 mp->b_rptr = rptr; 21271 mp->b_wptr = &rptr[tcp_hdr_len]; 21272 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21273 21274 if (tcp->tcp_ipversion == IPV4_VERSION) { 21275 ipha = (ipha_t *)rptr; 21276 ipha->ipha_length = htons(tcp_hdr_len); 21277 } else { 21278 ip6h = (ip6_t *)rptr; 21279 ASSERT(tcp != NULL); 21280 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21281 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21282 } 21283 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21284 tcph->th_flags[0] = (uint8_t)ctl; 21285 if (ctl & TH_RST) { 21286 BUMP_MIB(&tcp_mib, tcpOutRsts); 21287 BUMP_MIB(&tcp_mib, tcpOutControl); 21288 /* 21289 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21290 */ 21291 if (tcp->tcp_snd_ts_ok && 21292 tcp->tcp_state > TCPS_SYN_SENT) { 21293 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21294 *(mp->b_wptr) = TCPOPT_EOL; 21295 if (tcp->tcp_ipversion == IPV4_VERSION) { 21296 ipha->ipha_length = htons(tcp_hdr_len - 21297 TCPOPT_REAL_TS_LEN); 21298 } else { 21299 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21300 TCPOPT_REAL_TS_LEN); 21301 } 21302 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21303 sum -= TCPOPT_REAL_TS_LEN; 21304 } 21305 } 21306 if (ctl & TH_ACK) { 21307 if (tcp->tcp_snd_ts_ok) { 21308 U32_TO_BE32(lbolt, 21309 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21310 U32_TO_BE32(tcp->tcp_ts_recent, 21311 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21312 } 21313 21314 /* Update the latest receive window size in TCP header. */ 21315 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21316 tcph->th_win); 21317 tcp->tcp_rack = ack; 21318 tcp->tcp_rack_cnt = 0; 21319 BUMP_MIB(&tcp_mib, tcpOutAck); 21320 } 21321 BUMP_LOCAL(tcp->tcp_obsegs); 21322 U32_TO_BE32(seq, tcph->th_seq); 21323 U32_TO_BE32(ack, tcph->th_ack); 21324 /* 21325 * Include the adjustment for a source route if any. 21326 */ 21327 sum = (sum >> 16) + (sum & 0xFFFF); 21328 U16_TO_BE16(sum, tcph->th_sum); 21329 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21330 tcp_send_data(tcp, tcp->tcp_wq, mp); 21331 } 21332 21333 /* 21334 * If this routine returns B_TRUE, TCP can generate a RST in response 21335 * to a segment. If it returns B_FALSE, TCP should not respond. 21336 */ 21337 static boolean_t 21338 tcp_send_rst_chk(void) 21339 { 21340 clock_t now; 21341 21342 /* 21343 * TCP needs to protect itself from generating too many RSTs. 21344 * This can be a DoS attack by sending us random segments 21345 * soliciting RSTs. 21346 * 21347 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21348 * in each 1 second interval. In this way, TCP still generate 21349 * RSTs in normal cases but when under attack, the impact is 21350 * limited. 21351 */ 21352 if (tcp_rst_sent_rate_enabled != 0) { 21353 now = lbolt; 21354 /* lbolt can wrap around. */ 21355 if ((tcp_last_rst_intrvl > now) || 21356 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21357 tcp_last_rst_intrvl = now; 21358 tcp_rst_cnt = 1; 21359 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21360 return (B_FALSE); 21361 } 21362 } 21363 return (B_TRUE); 21364 } 21365 21366 /* 21367 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21368 */ 21369 static void 21370 tcp_ip_ire_mark_advice(tcp_t *tcp) 21371 { 21372 mblk_t *mp; 21373 ipic_t *ipic; 21374 21375 if (tcp->tcp_ipversion == IPV4_VERSION) { 21376 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21377 &ipic); 21378 } else { 21379 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21380 &ipic); 21381 } 21382 if (mp == NULL) 21383 return; 21384 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21385 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21386 } 21387 21388 /* 21389 * Return an IP advice ioctl mblk and set ipic to be the pointer 21390 * to the advice structure. 21391 */ 21392 static mblk_t * 21393 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21394 { 21395 struct iocblk *ioc; 21396 mblk_t *mp, *mp1; 21397 21398 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21399 if (mp == NULL) 21400 return (NULL); 21401 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21402 *ipic = (ipic_t *)mp->b_rptr; 21403 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21404 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21405 21406 bcopy(addr, *ipic + 1, addr_len); 21407 21408 (*ipic)->ipic_addr_length = addr_len; 21409 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21410 21411 mp1 = mkiocb(IP_IOCTL); 21412 if (mp1 == NULL) { 21413 freemsg(mp); 21414 return (NULL); 21415 } 21416 mp1->b_cont = mp; 21417 ioc = (struct iocblk *)mp1->b_rptr; 21418 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21419 21420 return (mp1); 21421 } 21422 21423 /* 21424 * Generate a reset based on an inbound packet for which there is no active 21425 * tcp state that we can find. 21426 * 21427 * IPSEC NOTE : Try to send the reply with the same protection as it came 21428 * in. We still have the ipsec_mp that the packet was attached to. Thus 21429 * the packet will go out at the same level of protection as it came in by 21430 * converting the IPSEC_IN to IPSEC_OUT. 21431 */ 21432 static void 21433 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21434 uint32_t ack, int ctl, uint_t ip_hdr_len) 21435 { 21436 ipha_t *ipha = NULL; 21437 ip6_t *ip6h = NULL; 21438 ushort_t len; 21439 tcph_t *tcph; 21440 int i; 21441 mblk_t *ipsec_mp; 21442 boolean_t mctl_present; 21443 ipic_t *ipic; 21444 ipaddr_t v4addr; 21445 in6_addr_t v6addr; 21446 int addr_len; 21447 void *addr; 21448 queue_t *q = tcp_g_q; 21449 tcp_t *tcp = Q_TO_TCP(q); 21450 cred_t *cr; 21451 21452 if (!tcp_send_rst_chk()) { 21453 tcp_rst_unsent++; 21454 freemsg(mp); 21455 return; 21456 } 21457 21458 if (mp->b_datap->db_type == M_CTL) { 21459 ipsec_mp = mp; 21460 mp = mp->b_cont; 21461 mctl_present = B_TRUE; 21462 } else { 21463 ipsec_mp = mp; 21464 mctl_present = B_FALSE; 21465 } 21466 21467 if (str && q && tcp_dbg) { 21468 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21469 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21470 "flags 0x%x", 21471 str, seq, ack, ctl); 21472 } 21473 if (mp->b_datap->db_ref != 1) { 21474 mblk_t *mp1 = copyb(mp); 21475 freemsg(mp); 21476 mp = mp1; 21477 if (!mp) { 21478 if (mctl_present) 21479 freeb(ipsec_mp); 21480 return; 21481 } else { 21482 if (mctl_present) { 21483 ipsec_mp->b_cont = mp; 21484 } else { 21485 ipsec_mp = mp; 21486 } 21487 } 21488 } else if (mp->b_cont) { 21489 freemsg(mp->b_cont); 21490 mp->b_cont = NULL; 21491 } 21492 /* 21493 * We skip reversing source route here. 21494 * (for now we replace all IP options with EOL) 21495 */ 21496 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21497 ipha = (ipha_t *)mp->b_rptr; 21498 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21499 mp->b_rptr[i] = IPOPT_EOL; 21500 /* 21501 * Make sure that src address isn't flagrantly invalid. 21502 * Not all broadcast address checking for the src address 21503 * is possible, since we don't know the netmask of the src 21504 * addr. No check for destination address is done, since 21505 * IP will not pass up a packet with a broadcast dest 21506 * address to TCP. Similar checks are done below for IPv6. 21507 */ 21508 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21509 CLASSD(ipha->ipha_src)) { 21510 freemsg(ipsec_mp); 21511 BUMP_MIB(&ip_mib, ipInDiscards); 21512 return; 21513 } 21514 } else { 21515 ip6h = (ip6_t *)mp->b_rptr; 21516 21517 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21518 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21519 freemsg(ipsec_mp); 21520 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21521 return; 21522 } 21523 21524 /* Remove any extension headers assuming partial overlay */ 21525 if (ip_hdr_len > IPV6_HDR_LEN) { 21526 uint8_t *to; 21527 21528 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21529 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21530 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21531 ip_hdr_len = IPV6_HDR_LEN; 21532 ip6h = (ip6_t *)mp->b_rptr; 21533 ip6h->ip6_nxt = IPPROTO_TCP; 21534 } 21535 } 21536 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21537 if (tcph->th_flags[0] & TH_RST) { 21538 freemsg(ipsec_mp); 21539 return; 21540 } 21541 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21542 len = ip_hdr_len + sizeof (tcph_t); 21543 mp->b_wptr = &mp->b_rptr[len]; 21544 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21545 ipha->ipha_length = htons(len); 21546 /* Swap addresses */ 21547 v4addr = ipha->ipha_src; 21548 ipha->ipha_src = ipha->ipha_dst; 21549 ipha->ipha_dst = v4addr; 21550 ipha->ipha_ident = 0; 21551 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21552 addr_len = IP_ADDR_LEN; 21553 addr = &v4addr; 21554 } else { 21555 /* No ip6i_t in this case */ 21556 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21557 /* Swap addresses */ 21558 v6addr = ip6h->ip6_src; 21559 ip6h->ip6_src = ip6h->ip6_dst; 21560 ip6h->ip6_dst = v6addr; 21561 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21562 addr_len = IPV6_ADDR_LEN; 21563 addr = &v6addr; 21564 } 21565 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21566 U32_TO_BE32(ack, tcph->th_ack); 21567 U32_TO_BE32(seq, tcph->th_seq); 21568 U16_TO_BE16(0, tcph->th_win); 21569 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21570 tcph->th_flags[0] = (uint8_t)ctl; 21571 if (ctl & TH_RST) { 21572 BUMP_MIB(&tcp_mib, tcpOutRsts); 21573 BUMP_MIB(&tcp_mib, tcpOutControl); 21574 } 21575 21576 /* IP trusts us to set up labels when required. */ 21577 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 21578 crgetlabel(cr) != NULL) { 21579 int err, adjust; 21580 21581 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 21582 err = tsol_check_label(cr, &mp, &adjust, 21583 tcp->tcp_connp->conn_mac_exempt); 21584 else 21585 err = tsol_check_label_v6(cr, &mp, &adjust, 21586 tcp->tcp_connp->conn_mac_exempt); 21587 if (mctl_present) 21588 ipsec_mp->b_cont = mp; 21589 else 21590 ipsec_mp = mp; 21591 if (err != 0) { 21592 freemsg(ipsec_mp); 21593 return; 21594 } 21595 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21596 ipha = (ipha_t *)mp->b_rptr; 21597 adjust += ntohs(ipha->ipha_length); 21598 ipha->ipha_length = htons(adjust); 21599 } else { 21600 ip6h = (ip6_t *)mp->b_rptr; 21601 } 21602 } 21603 21604 if (mctl_present) { 21605 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21606 21607 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21608 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21609 return; 21610 } 21611 } 21612 /* 21613 * NOTE: one might consider tracing a TCP packet here, but 21614 * this function has no active TCP state and no tcp structure 21615 * that has a trace buffer. If we traced here, we would have 21616 * to keep a local trace buffer in tcp_record_trace(). 21617 * 21618 * TSol note: The mblk that contains the incoming packet was 21619 * reused by tcp_xmit_listener_reset, so it already contains 21620 * the right credentials and we don't need to call mblk_setcred. 21621 * Also the conn's cred is not right since it is associated 21622 * with tcp_g_q. 21623 */ 21624 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21625 21626 /* 21627 * Tell IP to mark the IRE used for this destination temporary. 21628 * This way, we can limit our exposure to DoS attack because IP 21629 * creates an IRE for each destination. If there are too many, 21630 * the time to do any routing lookup will be extremely long. And 21631 * the lookup can be in interrupt context. 21632 * 21633 * Note that in normal circumstances, this marking should not 21634 * affect anything. It would be nice if only 1 message is 21635 * needed to inform IP that the IRE created for this RST should 21636 * not be added to the cache table. But there is currently 21637 * not such communication mechanism between TCP and IP. So 21638 * the best we can do now is to send the advice ioctl to IP 21639 * to mark the IRE temporary. 21640 */ 21641 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21642 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21643 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21644 } 21645 } 21646 21647 /* 21648 * Initiate closedown sequence on an active connection. (May be called as 21649 * writer.) Return value zero for OK return, non-zero for error return. 21650 */ 21651 static int 21652 tcp_xmit_end(tcp_t *tcp) 21653 { 21654 ipic_t *ipic; 21655 mblk_t *mp; 21656 21657 if (tcp->tcp_state < TCPS_SYN_RCVD || 21658 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21659 /* 21660 * Invalid state, only states TCPS_SYN_RCVD, 21661 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21662 */ 21663 return (-1); 21664 } 21665 21666 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21667 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21668 /* 21669 * If there is nothing more unsent, send the FIN now. 21670 * Otherwise, it will go out with the last segment. 21671 */ 21672 if (tcp->tcp_unsent == 0) { 21673 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21674 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21675 21676 if (mp) { 21677 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21678 tcp_send_data(tcp, tcp->tcp_wq, mp); 21679 } else { 21680 /* 21681 * Couldn't allocate msg. Pretend we got it out. 21682 * Wait for rexmit timeout. 21683 */ 21684 tcp->tcp_snxt = tcp->tcp_fss + 1; 21685 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21686 } 21687 21688 /* 21689 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21690 * changed. 21691 */ 21692 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21693 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21694 } 21695 } else { 21696 /* 21697 * If tcp->tcp_cork is set, then the data will not get sent, 21698 * so we have to check that and unset it first. 21699 */ 21700 if (tcp->tcp_cork) 21701 tcp->tcp_cork = B_FALSE; 21702 tcp_wput_data(tcp, NULL, B_FALSE); 21703 } 21704 21705 /* 21706 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21707 * is 0, don't update the cache. 21708 */ 21709 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21710 return (0); 21711 21712 /* 21713 * NOTE: should not update if source routes i.e. if tcp_remote if 21714 * different from the destination. 21715 */ 21716 if (tcp->tcp_ipversion == IPV4_VERSION) { 21717 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21718 return (0); 21719 } 21720 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21721 &ipic); 21722 } else { 21723 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21724 &tcp->tcp_ip6h->ip6_dst))) { 21725 return (0); 21726 } 21727 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21728 &ipic); 21729 } 21730 21731 /* Record route attributes in the IRE for use by future connections. */ 21732 if (mp == NULL) 21733 return (0); 21734 21735 /* 21736 * We do not have a good algorithm to update ssthresh at this time. 21737 * So don't do any update. 21738 */ 21739 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21740 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21741 21742 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21743 return (0); 21744 } 21745 21746 /* 21747 * Generate a "no listener here" RST in response to an "unknown" segment. 21748 * Note that we are reusing the incoming mp to construct the outgoing 21749 * RST. 21750 */ 21751 void 21752 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21753 { 21754 uchar_t *rptr; 21755 uint32_t seg_len; 21756 tcph_t *tcph; 21757 uint32_t seg_seq; 21758 uint32_t seg_ack; 21759 uint_t flags; 21760 mblk_t *ipsec_mp; 21761 ipha_t *ipha; 21762 ip6_t *ip6h; 21763 boolean_t mctl_present = B_FALSE; 21764 boolean_t check = B_TRUE; 21765 boolean_t policy_present; 21766 21767 TCP_STAT(tcp_no_listener); 21768 21769 ipsec_mp = mp; 21770 21771 if (mp->b_datap->db_type == M_CTL) { 21772 ipsec_in_t *ii; 21773 21774 mctl_present = B_TRUE; 21775 mp = mp->b_cont; 21776 21777 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21778 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21779 if (ii->ipsec_in_dont_check) { 21780 check = B_FALSE; 21781 if (!ii->ipsec_in_secure) { 21782 freeb(ipsec_mp); 21783 mctl_present = B_FALSE; 21784 ipsec_mp = mp; 21785 } 21786 } 21787 } 21788 21789 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21790 policy_present = ipsec_inbound_v4_policy_present; 21791 ipha = (ipha_t *)mp->b_rptr; 21792 ip6h = NULL; 21793 } else { 21794 policy_present = ipsec_inbound_v6_policy_present; 21795 ipha = NULL; 21796 ip6h = (ip6_t *)mp->b_rptr; 21797 } 21798 21799 if (check && policy_present) { 21800 /* 21801 * The conn_t parameter is NULL because we already know 21802 * nobody's home. 21803 */ 21804 ipsec_mp = ipsec_check_global_policy( 21805 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21806 if (ipsec_mp == NULL) 21807 return; 21808 } 21809 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 21810 DTRACE_PROBE2( 21811 tx__ip__log__error__nolistener__tcp, 21812 char *, "Could not reply with RST to mp(1)", 21813 mblk_t *, mp); 21814 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 21815 freemsg(ipsec_mp); 21816 return; 21817 } 21818 21819 rptr = mp->b_rptr; 21820 21821 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21822 seg_seq = BE32_TO_U32(tcph->th_seq); 21823 seg_ack = BE32_TO_U32(tcph->th_ack); 21824 flags = tcph->th_flags[0]; 21825 21826 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21827 if (flags & TH_RST) { 21828 freemsg(ipsec_mp); 21829 } else if (flags & TH_ACK) { 21830 tcp_xmit_early_reset("no tcp, reset", 21831 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21832 } else { 21833 if (flags & TH_SYN) { 21834 seg_len++; 21835 } else { 21836 /* 21837 * Here we violate the RFC. Note that a normal 21838 * TCP will never send a segment without the ACK 21839 * flag, except for RST or SYN segment. This 21840 * segment is neither. Just drop it on the 21841 * floor. 21842 */ 21843 freemsg(ipsec_mp); 21844 tcp_rst_unsent++; 21845 return; 21846 } 21847 21848 tcp_xmit_early_reset("no tcp, reset/ack", 21849 ipsec_mp, 0, seg_seq + seg_len, 21850 TH_RST | TH_ACK, ip_hdr_len); 21851 } 21852 } 21853 21854 /* 21855 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21856 * ip and tcp header ready to pass down to IP. If the mp passed in is 21857 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21858 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21859 * otherwise it will dup partial mblks.) 21860 * Otherwise, an appropriate ACK packet will be generated. This 21861 * routine is not usually called to send new data for the first time. It 21862 * is mostly called out of the timer for retransmits, and to generate ACKs. 21863 * 21864 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21865 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21866 * of the original mblk chain will be returned in *offset and *end_mp. 21867 */ 21868 static mblk_t * 21869 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21870 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21871 boolean_t rexmit) 21872 { 21873 int data_length; 21874 int32_t off = 0; 21875 uint_t flags; 21876 mblk_t *mp1; 21877 mblk_t *mp2; 21878 uchar_t *rptr; 21879 tcph_t *tcph; 21880 int32_t num_sack_blk = 0; 21881 int32_t sack_opt_len = 0; 21882 21883 /* Allocate for our maximum TCP header + link-level */ 21884 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21885 BPRI_MED); 21886 if (!mp1) 21887 return (NULL); 21888 data_length = 0; 21889 21890 /* 21891 * Note that tcp_mss has been adjusted to take into account the 21892 * timestamp option if applicable. Because SACK options do not 21893 * appear in every TCP segments and they are of variable lengths, 21894 * they cannot be included in tcp_mss. Thus we need to calculate 21895 * the actual segment length when we need to send a segment which 21896 * includes SACK options. 21897 */ 21898 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21899 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21900 tcp->tcp_num_sack_blk); 21901 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21902 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21903 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21904 max_to_send -= sack_opt_len; 21905 } 21906 21907 if (offset != NULL) { 21908 off = *offset; 21909 /* We use offset as an indicator that end_mp is not NULL. */ 21910 *end_mp = NULL; 21911 } 21912 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21913 /* This could be faster with cooperation from downstream */ 21914 if (mp2 != mp1 && !sendall && 21915 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21916 max_to_send) 21917 /* 21918 * Don't send the next mblk since the whole mblk 21919 * does not fit. 21920 */ 21921 break; 21922 mp2->b_cont = dupb(mp); 21923 mp2 = mp2->b_cont; 21924 if (!mp2) { 21925 freemsg(mp1); 21926 return (NULL); 21927 } 21928 mp2->b_rptr += off; 21929 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21930 (uintptr_t)INT_MAX); 21931 21932 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21933 if (data_length > max_to_send) { 21934 mp2->b_wptr -= data_length - max_to_send; 21935 data_length = max_to_send; 21936 off = mp2->b_wptr - mp->b_rptr; 21937 break; 21938 } else { 21939 off = 0; 21940 } 21941 } 21942 if (offset != NULL) { 21943 *offset = off; 21944 *end_mp = mp; 21945 } 21946 if (seg_len != NULL) { 21947 *seg_len = data_length; 21948 } 21949 21950 /* Update the latest receive window size in TCP header. */ 21951 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21952 tcp->tcp_tcph->th_win); 21953 21954 rptr = mp1->b_rptr + tcp_wroff_xtra; 21955 mp1->b_rptr = rptr; 21956 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21957 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21958 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21959 U32_TO_ABE32(seq, tcph->th_seq); 21960 21961 /* 21962 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21963 * that this function was called from tcp_wput_data. Thus, when called 21964 * to retransmit data the setting of the PUSH bit may appear some 21965 * what random in that it might get set when it should not. This 21966 * should not pose any performance issues. 21967 */ 21968 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21969 tcp->tcp_unsent == data_length)) { 21970 flags = TH_ACK | TH_PUSH; 21971 } else { 21972 flags = TH_ACK; 21973 } 21974 21975 if (tcp->tcp_ecn_ok) { 21976 if (tcp->tcp_ecn_echo_on) 21977 flags |= TH_ECE; 21978 21979 /* 21980 * Only set ECT bit and ECN_CWR if a segment contains new data. 21981 * There is no TCP flow control for non-data segments, and 21982 * only data segment is transmitted reliably. 21983 */ 21984 if (data_length > 0 && !rexmit) { 21985 SET_ECT(tcp, rptr); 21986 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21987 flags |= TH_CWR; 21988 tcp->tcp_ecn_cwr_sent = B_TRUE; 21989 } 21990 } 21991 } 21992 21993 if (tcp->tcp_valid_bits) { 21994 uint32_t u1; 21995 21996 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21997 seq == tcp->tcp_iss) { 21998 uchar_t *wptr; 21999 22000 /* 22001 * If TCP_ISS_VALID and the seq number is tcp_iss, 22002 * TCP can only be in SYN-SENT, SYN-RCVD or 22003 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22004 * our SYN is not ack'ed but the app closes this 22005 * TCP connection. 22006 */ 22007 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22008 tcp->tcp_state == TCPS_SYN_RCVD || 22009 tcp->tcp_state == TCPS_FIN_WAIT_1); 22010 22011 /* 22012 * Tack on the MSS option. It is always needed 22013 * for both active and passive open. 22014 * 22015 * MSS option value should be interface MTU - MIN 22016 * TCP/IP header according to RFC 793 as it means 22017 * the maximum segment size TCP can receive. But 22018 * to get around some broken middle boxes/end hosts 22019 * out there, we allow the option value to be the 22020 * same as the MSS option size on the peer side. 22021 * In this way, the other side will not send 22022 * anything larger than they can receive. 22023 * 22024 * Note that for SYN_SENT state, the ndd param 22025 * tcp_use_smss_as_mss_opt has no effect as we 22026 * don't know the peer's MSS option value. So 22027 * the only case we need to take care of is in 22028 * SYN_RCVD state, which is done later. 22029 */ 22030 wptr = mp1->b_wptr; 22031 wptr[0] = TCPOPT_MAXSEG; 22032 wptr[1] = TCPOPT_MAXSEG_LEN; 22033 wptr += 2; 22034 u1 = tcp->tcp_if_mtu - 22035 (tcp->tcp_ipversion == IPV4_VERSION ? 22036 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22037 TCP_MIN_HEADER_LENGTH; 22038 U16_TO_BE16(u1, wptr); 22039 mp1->b_wptr = wptr + 2; 22040 /* Update the offset to cover the additional word */ 22041 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22042 22043 /* 22044 * Note that the following way of filling in 22045 * TCP options are not optimal. Some NOPs can 22046 * be saved. But there is no need at this time 22047 * to optimize it. When it is needed, we will 22048 * do it. 22049 */ 22050 switch (tcp->tcp_state) { 22051 case TCPS_SYN_SENT: 22052 flags = TH_SYN; 22053 22054 if (tcp->tcp_snd_ts_ok) { 22055 uint32_t llbolt = (uint32_t)lbolt; 22056 22057 wptr = mp1->b_wptr; 22058 wptr[0] = TCPOPT_NOP; 22059 wptr[1] = TCPOPT_NOP; 22060 wptr[2] = TCPOPT_TSTAMP; 22061 wptr[3] = TCPOPT_TSTAMP_LEN; 22062 wptr += 4; 22063 U32_TO_BE32(llbolt, wptr); 22064 wptr += 4; 22065 ASSERT(tcp->tcp_ts_recent == 0); 22066 U32_TO_BE32(0L, wptr); 22067 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22068 tcph->th_offset_and_rsrvd[0] += 22069 (3 << 4); 22070 } 22071 22072 /* 22073 * Set up all the bits to tell other side 22074 * we are ECN capable. 22075 */ 22076 if (tcp->tcp_ecn_ok) { 22077 flags |= (TH_ECE | TH_CWR); 22078 } 22079 break; 22080 case TCPS_SYN_RCVD: 22081 flags |= TH_SYN; 22082 22083 /* 22084 * Reset the MSS option value to be SMSS 22085 * We should probably add back the bytes 22086 * for timestamp option and IPsec. We 22087 * don't do that as this is a workaround 22088 * for broken middle boxes/end hosts, it 22089 * is better for us to be more cautious. 22090 * They may not take these things into 22091 * account in their SMSS calculation. Thus 22092 * the peer's calculated SMSS may be smaller 22093 * than what it can be. This should be OK. 22094 */ 22095 if (tcp_use_smss_as_mss_opt) { 22096 u1 = tcp->tcp_mss; 22097 U16_TO_BE16(u1, wptr); 22098 } 22099 22100 /* 22101 * If the other side is ECN capable, reply 22102 * that we are also ECN capable. 22103 */ 22104 if (tcp->tcp_ecn_ok) 22105 flags |= TH_ECE; 22106 break; 22107 default: 22108 /* 22109 * The above ASSERT() makes sure that this 22110 * must be FIN-WAIT-1 state. Our SYN has 22111 * not been ack'ed so retransmit it. 22112 */ 22113 flags |= TH_SYN; 22114 break; 22115 } 22116 22117 if (tcp->tcp_snd_ws_ok) { 22118 wptr = mp1->b_wptr; 22119 wptr[0] = TCPOPT_NOP; 22120 wptr[1] = TCPOPT_WSCALE; 22121 wptr[2] = TCPOPT_WS_LEN; 22122 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22123 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22124 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22125 } 22126 22127 if (tcp->tcp_snd_sack_ok) { 22128 wptr = mp1->b_wptr; 22129 wptr[0] = TCPOPT_NOP; 22130 wptr[1] = TCPOPT_NOP; 22131 wptr[2] = TCPOPT_SACK_PERMITTED; 22132 wptr[3] = TCPOPT_SACK_OK_LEN; 22133 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22134 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22135 } 22136 22137 /* allocb() of adequate mblk assures space */ 22138 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22139 (uintptr_t)INT_MAX); 22140 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22141 /* 22142 * Get IP set to checksum on our behalf 22143 * Include the adjustment for a source route if any. 22144 */ 22145 u1 += tcp->tcp_sum; 22146 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22147 U16_TO_BE16(u1, tcph->th_sum); 22148 BUMP_MIB(&tcp_mib, tcpOutControl); 22149 } 22150 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22151 (seq + data_length) == tcp->tcp_fss) { 22152 if (!tcp->tcp_fin_acked) { 22153 flags |= TH_FIN; 22154 BUMP_MIB(&tcp_mib, tcpOutControl); 22155 } 22156 if (!tcp->tcp_fin_sent) { 22157 tcp->tcp_fin_sent = B_TRUE; 22158 switch (tcp->tcp_state) { 22159 case TCPS_SYN_RCVD: 22160 case TCPS_ESTABLISHED: 22161 tcp->tcp_state = TCPS_FIN_WAIT_1; 22162 break; 22163 case TCPS_CLOSE_WAIT: 22164 tcp->tcp_state = TCPS_LAST_ACK; 22165 break; 22166 } 22167 if (tcp->tcp_suna == tcp->tcp_snxt) 22168 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22169 tcp->tcp_snxt = tcp->tcp_fss + 1; 22170 } 22171 } 22172 /* 22173 * Note the trick here. u1 is unsigned. When tcp_urg 22174 * is smaller than seq, u1 will become a very huge value. 22175 * So the comparison will fail. Also note that tcp_urp 22176 * should be positive, see RFC 793 page 17. 22177 */ 22178 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22179 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22180 u1 < (uint32_t)(64 * 1024)) { 22181 flags |= TH_URG; 22182 BUMP_MIB(&tcp_mib, tcpOutUrg); 22183 U32_TO_ABE16(u1, tcph->th_urp); 22184 } 22185 } 22186 tcph->th_flags[0] = (uchar_t)flags; 22187 tcp->tcp_rack = tcp->tcp_rnxt; 22188 tcp->tcp_rack_cnt = 0; 22189 22190 if (tcp->tcp_snd_ts_ok) { 22191 if (tcp->tcp_state != TCPS_SYN_SENT) { 22192 uint32_t llbolt = (uint32_t)lbolt; 22193 22194 U32_TO_BE32(llbolt, 22195 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22196 U32_TO_BE32(tcp->tcp_ts_recent, 22197 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22198 } 22199 } 22200 22201 if (num_sack_blk > 0) { 22202 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22203 sack_blk_t *tmp; 22204 int32_t i; 22205 22206 wptr[0] = TCPOPT_NOP; 22207 wptr[1] = TCPOPT_NOP; 22208 wptr[2] = TCPOPT_SACK; 22209 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22210 sizeof (sack_blk_t); 22211 wptr += TCPOPT_REAL_SACK_LEN; 22212 22213 tmp = tcp->tcp_sack_list; 22214 for (i = 0; i < num_sack_blk; i++) { 22215 U32_TO_BE32(tmp[i].begin, wptr); 22216 wptr += sizeof (tcp_seq); 22217 U32_TO_BE32(tmp[i].end, wptr); 22218 wptr += sizeof (tcp_seq); 22219 } 22220 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22221 } 22222 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22223 data_length += (int)(mp1->b_wptr - rptr); 22224 if (tcp->tcp_ipversion == IPV4_VERSION) { 22225 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22226 } else { 22227 ip6_t *ip6 = (ip6_t *)(rptr + 22228 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22229 sizeof (ip6i_t) : 0)); 22230 22231 ip6->ip6_plen = htons(data_length - 22232 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22233 } 22234 22235 /* 22236 * Prime pump for IP 22237 * Include the adjustment for a source route if any. 22238 */ 22239 data_length -= tcp->tcp_ip_hdr_len; 22240 data_length += tcp->tcp_sum; 22241 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22242 U16_TO_ABE16(data_length, tcph->th_sum); 22243 if (tcp->tcp_ip_forward_progress) { 22244 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22245 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22246 tcp->tcp_ip_forward_progress = B_FALSE; 22247 } 22248 return (mp1); 22249 } 22250 22251 /* This function handles the push timeout. */ 22252 void 22253 tcp_push_timer(void *arg) 22254 { 22255 conn_t *connp = (conn_t *)arg; 22256 tcp_t *tcp = connp->conn_tcp; 22257 22258 TCP_DBGSTAT(tcp_push_timer_cnt); 22259 22260 ASSERT(tcp->tcp_listener == NULL); 22261 22262 /* 22263 * We need to stop synchronous streams temporarily to prevent a race 22264 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 22265 * tcp_rcv_list here because those entry points will return right 22266 * away when synchronous streams is stopped. 22267 */ 22268 TCP_FUSE_SYNCSTR_STOP(tcp); 22269 tcp->tcp_push_tid = 0; 22270 if ((tcp->tcp_rcv_list != NULL) && 22271 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22272 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22273 TCP_FUSE_SYNCSTR_RESUME(tcp); 22274 } 22275 22276 /* 22277 * This function handles delayed ACK timeout. 22278 */ 22279 static void 22280 tcp_ack_timer(void *arg) 22281 { 22282 conn_t *connp = (conn_t *)arg; 22283 tcp_t *tcp = connp->conn_tcp; 22284 mblk_t *mp; 22285 22286 TCP_DBGSTAT(tcp_ack_timer_cnt); 22287 22288 tcp->tcp_ack_tid = 0; 22289 22290 if (tcp->tcp_fused) 22291 return; 22292 22293 /* 22294 * Do not send ACK if there is no outstanding unack'ed data. 22295 */ 22296 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22297 return; 22298 } 22299 22300 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22301 /* 22302 * Make sure we don't allow deferred ACKs to result in 22303 * timer-based ACKing. If we have held off an ACK 22304 * when there was more than an mss here, and the timer 22305 * goes off, we have to worry about the possibility 22306 * that the sender isn't doing slow-start, or is out 22307 * of step with us for some other reason. We fall 22308 * permanently back in the direction of 22309 * ACK-every-other-packet as suggested in RFC 1122. 22310 */ 22311 if (tcp->tcp_rack_abs_max > 2) 22312 tcp->tcp_rack_abs_max--; 22313 tcp->tcp_rack_cur_max = 2; 22314 } 22315 mp = tcp_ack_mp(tcp); 22316 22317 if (mp != NULL) { 22318 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22319 BUMP_LOCAL(tcp->tcp_obsegs); 22320 BUMP_MIB(&tcp_mib, tcpOutAck); 22321 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 22322 tcp_send_data(tcp, tcp->tcp_wq, mp); 22323 } 22324 } 22325 22326 22327 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22328 static mblk_t * 22329 tcp_ack_mp(tcp_t *tcp) 22330 { 22331 uint32_t seq_no; 22332 22333 /* 22334 * There are a few cases to be considered while setting the sequence no. 22335 * Essentially, we can come here while processing an unacceptable pkt 22336 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22337 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22338 * If we are here for a zero window probe, stick with suna. In all 22339 * other cases, we check if suna + swnd encompasses snxt and set 22340 * the sequence number to snxt, if so. If snxt falls outside the 22341 * window (the receiver probably shrunk its window), we will go with 22342 * suna + swnd, otherwise the sequence no will be unacceptable to the 22343 * receiver. 22344 */ 22345 if (tcp->tcp_zero_win_probe) { 22346 seq_no = tcp->tcp_suna; 22347 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22348 ASSERT(tcp->tcp_swnd == 0); 22349 seq_no = tcp->tcp_snxt; 22350 } else { 22351 seq_no = SEQ_GT(tcp->tcp_snxt, 22352 (tcp->tcp_suna + tcp->tcp_swnd)) ? 22353 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 22354 } 22355 22356 if (tcp->tcp_valid_bits) { 22357 /* 22358 * For the complex case where we have to send some 22359 * controls (FIN or SYN), let tcp_xmit_mp do it. 22360 */ 22361 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22362 NULL, B_FALSE)); 22363 } else { 22364 /* Generate a simple ACK */ 22365 int data_length; 22366 uchar_t *rptr; 22367 tcph_t *tcph; 22368 mblk_t *mp1; 22369 int32_t tcp_hdr_len; 22370 int32_t tcp_tcp_hdr_len; 22371 int32_t num_sack_blk = 0; 22372 int32_t sack_opt_len; 22373 22374 /* 22375 * Allocate space for TCP + IP headers 22376 * and link-level header 22377 */ 22378 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22379 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22380 tcp->tcp_num_sack_blk); 22381 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22382 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22383 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22384 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22385 } else { 22386 tcp_hdr_len = tcp->tcp_hdr_len; 22387 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22388 } 22389 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22390 if (!mp1) 22391 return (NULL); 22392 22393 /* Update the latest receive window size in TCP header. */ 22394 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22395 tcp->tcp_tcph->th_win); 22396 /* copy in prototype TCP + IP header */ 22397 rptr = mp1->b_rptr + tcp_wroff_xtra; 22398 mp1->b_rptr = rptr; 22399 mp1->b_wptr = rptr + tcp_hdr_len; 22400 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22401 22402 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22403 22404 /* Set the TCP sequence number. */ 22405 U32_TO_ABE32(seq_no, tcph->th_seq); 22406 22407 /* Set up the TCP flag field. */ 22408 tcph->th_flags[0] = (uchar_t)TH_ACK; 22409 if (tcp->tcp_ecn_echo_on) 22410 tcph->th_flags[0] |= TH_ECE; 22411 22412 tcp->tcp_rack = tcp->tcp_rnxt; 22413 tcp->tcp_rack_cnt = 0; 22414 22415 /* fill in timestamp option if in use */ 22416 if (tcp->tcp_snd_ts_ok) { 22417 uint32_t llbolt = (uint32_t)lbolt; 22418 22419 U32_TO_BE32(llbolt, 22420 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22421 U32_TO_BE32(tcp->tcp_ts_recent, 22422 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22423 } 22424 22425 /* Fill in SACK options */ 22426 if (num_sack_blk > 0) { 22427 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22428 sack_blk_t *tmp; 22429 int32_t i; 22430 22431 wptr[0] = TCPOPT_NOP; 22432 wptr[1] = TCPOPT_NOP; 22433 wptr[2] = TCPOPT_SACK; 22434 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22435 sizeof (sack_blk_t); 22436 wptr += TCPOPT_REAL_SACK_LEN; 22437 22438 tmp = tcp->tcp_sack_list; 22439 for (i = 0; i < num_sack_blk; i++) { 22440 U32_TO_BE32(tmp[i].begin, wptr); 22441 wptr += sizeof (tcp_seq); 22442 U32_TO_BE32(tmp[i].end, wptr); 22443 wptr += sizeof (tcp_seq); 22444 } 22445 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22446 << 4); 22447 } 22448 22449 if (tcp->tcp_ipversion == IPV4_VERSION) { 22450 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22451 } else { 22452 /* Check for ip6i_t header in sticky hdrs */ 22453 ip6_t *ip6 = (ip6_t *)(rptr + 22454 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22455 sizeof (ip6i_t) : 0)); 22456 22457 ip6->ip6_plen = htons(tcp_hdr_len - 22458 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22459 } 22460 22461 /* 22462 * Prime pump for checksum calculation in IP. Include the 22463 * adjustment for a source route if any. 22464 */ 22465 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22466 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22467 U16_TO_ABE16(data_length, tcph->th_sum); 22468 22469 if (tcp->tcp_ip_forward_progress) { 22470 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22471 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22472 tcp->tcp_ip_forward_progress = B_FALSE; 22473 } 22474 return (mp1); 22475 } 22476 } 22477 22478 /* 22479 * To create a temporary tcp structure for inserting into bind hash list. 22480 * The parameter is assumed to be in network byte order, ready for use. 22481 */ 22482 /* ARGSUSED */ 22483 static tcp_t * 22484 tcp_alloc_temp_tcp(in_port_t port) 22485 { 22486 conn_t *connp; 22487 tcp_t *tcp; 22488 22489 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22490 if (connp == NULL) 22491 return (NULL); 22492 22493 tcp = connp->conn_tcp; 22494 22495 /* 22496 * Only initialize the necessary info in those structures. Note 22497 * that since INADDR_ANY is all 0, we do not need to set 22498 * tcp_bound_source to INADDR_ANY here. 22499 */ 22500 tcp->tcp_state = TCPS_BOUND; 22501 tcp->tcp_lport = port; 22502 tcp->tcp_exclbind = 1; 22503 tcp->tcp_reserved_port = 1; 22504 22505 /* Just for place holding... */ 22506 tcp->tcp_ipversion = IPV4_VERSION; 22507 22508 return (tcp); 22509 } 22510 22511 /* 22512 * To remove a port range specified by lo_port and hi_port from the 22513 * reserved port ranges. This is one of the three public functions of 22514 * the reserved port interface. Note that a port range has to be removed 22515 * as a whole. Ports in a range cannot be removed individually. 22516 * 22517 * Params: 22518 * in_port_t lo_port: the beginning port of the reserved port range to 22519 * be deleted. 22520 * in_port_t hi_port: the ending port of the reserved port range to 22521 * be deleted. 22522 * 22523 * Return: 22524 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22525 */ 22526 boolean_t 22527 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22528 { 22529 int i, j; 22530 int size; 22531 tcp_t **temp_tcp_array; 22532 tcp_t *tcp; 22533 22534 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22535 22536 /* First make sure that the port ranage is indeed reserved. */ 22537 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22538 if (tcp_reserved_port[i].lo_port == lo_port) { 22539 hi_port = tcp_reserved_port[i].hi_port; 22540 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22541 break; 22542 } 22543 } 22544 if (i == tcp_reserved_port_array_size) { 22545 rw_exit(&tcp_reserved_port_lock); 22546 return (B_FALSE); 22547 } 22548 22549 /* 22550 * Remove the range from the array. This simple loop is possible 22551 * because port ranges are inserted in ascending order. 22552 */ 22553 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22554 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22555 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22556 tcp_reserved_port[j].temp_tcp_array = 22557 tcp_reserved_port[j+1].temp_tcp_array; 22558 } 22559 22560 /* Remove all the temporary tcp structures. */ 22561 size = hi_port - lo_port + 1; 22562 while (size > 0) { 22563 tcp = temp_tcp_array[size - 1]; 22564 ASSERT(tcp != NULL); 22565 tcp_bind_hash_remove(tcp); 22566 CONN_DEC_REF(tcp->tcp_connp); 22567 size--; 22568 } 22569 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22570 tcp_reserved_port_array_size--; 22571 rw_exit(&tcp_reserved_port_lock); 22572 return (B_TRUE); 22573 } 22574 22575 /* 22576 * Macro to remove temporary tcp structure from the bind hash list. The 22577 * first parameter is the list of tcp to be removed. The second parameter 22578 * is the number of tcps in the array. 22579 */ 22580 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22581 { \ 22582 while ((num) > 0) { \ 22583 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22584 tf_t *tbf; \ 22585 tcp_t *tcpnext; \ 22586 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22587 mutex_enter(&tbf->tf_lock); \ 22588 tcpnext = tcp->tcp_bind_hash; \ 22589 if (tcpnext) { \ 22590 tcpnext->tcp_ptpbhn = \ 22591 tcp->tcp_ptpbhn; \ 22592 } \ 22593 *tcp->tcp_ptpbhn = tcpnext; \ 22594 mutex_exit(&tbf->tf_lock); \ 22595 kmem_free(tcp, sizeof (tcp_t)); \ 22596 (tcp_array)[(num) - 1] = NULL; \ 22597 (num)--; \ 22598 } \ 22599 } 22600 22601 /* 22602 * The public interface for other modules to call to reserve a port range 22603 * in TCP. The caller passes in how large a port range it wants. TCP 22604 * will try to find a range and return it via lo_port and hi_port. This is 22605 * used by NCA's nca_conn_init. 22606 * NCA can only be used in the global zone so this only affects the global 22607 * zone's ports. 22608 * 22609 * Params: 22610 * int size: the size of the port range to be reserved. 22611 * in_port_t *lo_port (referenced): returns the beginning port of the 22612 * reserved port range added. 22613 * in_port_t *hi_port (referenced): returns the ending port of the 22614 * reserved port range added. 22615 * 22616 * Return: 22617 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22618 */ 22619 boolean_t 22620 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22621 { 22622 tcp_t *tcp; 22623 tcp_t *tmp_tcp; 22624 tcp_t **temp_tcp_array; 22625 tf_t *tbf; 22626 in_port_t net_port; 22627 in_port_t port; 22628 int32_t cur_size; 22629 int i, j; 22630 boolean_t used; 22631 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22632 zoneid_t zoneid = GLOBAL_ZONEID; 22633 22634 /* Sanity check. */ 22635 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22636 return (B_FALSE); 22637 } 22638 22639 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22640 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22641 rw_exit(&tcp_reserved_port_lock); 22642 return (B_FALSE); 22643 } 22644 22645 /* 22646 * Find the starting port to try. Since the port ranges are ordered 22647 * in the reserved port array, we can do a simple search here. 22648 */ 22649 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22650 *hi_port = TCP_LARGEST_RESERVED_PORT; 22651 for (i = 0; i < tcp_reserved_port_array_size; 22652 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22653 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22654 *hi_port = tcp_reserved_port[i].lo_port - 1; 22655 break; 22656 } 22657 } 22658 /* No available port range. */ 22659 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22660 rw_exit(&tcp_reserved_port_lock); 22661 return (B_FALSE); 22662 } 22663 22664 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22665 if (temp_tcp_array == NULL) { 22666 rw_exit(&tcp_reserved_port_lock); 22667 return (B_FALSE); 22668 } 22669 22670 /* Go thru the port range to see if some ports are already bound. */ 22671 for (port = *lo_port, cur_size = 0; 22672 cur_size < size && port <= *hi_port; 22673 cur_size++, port++) { 22674 used = B_FALSE; 22675 net_port = htons(port); 22676 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22677 mutex_enter(&tbf->tf_lock); 22678 for (tcp = tbf->tf_tcp; tcp != NULL; 22679 tcp = tcp->tcp_bind_hash) { 22680 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 22681 net_port == tcp->tcp_lport) { 22682 /* 22683 * A port is already bound. Search again 22684 * starting from port + 1. Release all 22685 * temporary tcps. 22686 */ 22687 mutex_exit(&tbf->tf_lock); 22688 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22689 *lo_port = port + 1; 22690 cur_size = -1; 22691 used = B_TRUE; 22692 break; 22693 } 22694 } 22695 if (!used) { 22696 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22697 /* 22698 * Allocation failure. Just fail the request. 22699 * Need to remove all those temporary tcp 22700 * structures. 22701 */ 22702 mutex_exit(&tbf->tf_lock); 22703 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22704 rw_exit(&tcp_reserved_port_lock); 22705 kmem_free(temp_tcp_array, 22706 (hi_port - lo_port + 1) * 22707 sizeof (tcp_t *)); 22708 return (B_FALSE); 22709 } 22710 temp_tcp_array[cur_size] = tmp_tcp; 22711 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22712 mutex_exit(&tbf->tf_lock); 22713 } 22714 } 22715 22716 /* 22717 * The current range is not large enough. We can actually do another 22718 * search if this search is done between 2 reserved port ranges. But 22719 * for first release, we just stop here and return saying that no port 22720 * range is available. 22721 */ 22722 if (cur_size < size) { 22723 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22724 rw_exit(&tcp_reserved_port_lock); 22725 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22726 return (B_FALSE); 22727 } 22728 *hi_port = port - 1; 22729 22730 /* 22731 * Insert range into array in ascending order. Since this function 22732 * must not be called often, we choose to use the simplest method. 22733 * The above array should not consume excessive stack space as 22734 * the size must be very small. If in future releases, we find 22735 * that we should provide more reserved port ranges, this function 22736 * has to be modified to be more efficient. 22737 */ 22738 if (tcp_reserved_port_array_size == 0) { 22739 tcp_reserved_port[0].lo_port = *lo_port; 22740 tcp_reserved_port[0].hi_port = *hi_port; 22741 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22742 } else { 22743 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22744 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22745 tmp_ports[j].lo_port = *lo_port; 22746 tmp_ports[j].hi_port = *hi_port; 22747 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22748 j++; 22749 } 22750 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22751 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22752 tmp_ports[j].temp_tcp_array = 22753 tcp_reserved_port[i].temp_tcp_array; 22754 } 22755 if (j == i) { 22756 tmp_ports[j].lo_port = *lo_port; 22757 tmp_ports[j].hi_port = *hi_port; 22758 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22759 } 22760 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22761 } 22762 tcp_reserved_port_array_size++; 22763 rw_exit(&tcp_reserved_port_lock); 22764 return (B_TRUE); 22765 } 22766 22767 /* 22768 * Check to see if a port is in any reserved port range. 22769 * 22770 * Params: 22771 * in_port_t port: the port to be verified. 22772 * 22773 * Return: 22774 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22775 */ 22776 boolean_t 22777 tcp_reserved_port_check(in_port_t port) 22778 { 22779 int i; 22780 22781 rw_enter(&tcp_reserved_port_lock, RW_READER); 22782 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22783 if (port >= tcp_reserved_port[i].lo_port || 22784 port <= tcp_reserved_port[i].hi_port) { 22785 rw_exit(&tcp_reserved_port_lock); 22786 return (B_TRUE); 22787 } 22788 } 22789 rw_exit(&tcp_reserved_port_lock); 22790 return (B_FALSE); 22791 } 22792 22793 /* 22794 * To list all reserved port ranges. This is the function to handle 22795 * ndd tcp_reserved_port_list. 22796 */ 22797 /* ARGSUSED */ 22798 static int 22799 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22800 { 22801 int i; 22802 22803 rw_enter(&tcp_reserved_port_lock, RW_READER); 22804 if (tcp_reserved_port_array_size > 0) 22805 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22806 else 22807 (void) mi_mpprintf(mp, "No port is reserved."); 22808 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22809 (void) mi_mpprintf(mp, "%d-%d", 22810 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22811 } 22812 rw_exit(&tcp_reserved_port_lock); 22813 return (0); 22814 } 22815 22816 /* 22817 * Hash list insertion routine for tcp_t structures. 22818 * Inserts entries with the ones bound to a specific IP address first 22819 * followed by those bound to INADDR_ANY. 22820 */ 22821 static void 22822 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22823 { 22824 tcp_t **tcpp; 22825 tcp_t *tcpnext; 22826 22827 if (tcp->tcp_ptpbhn != NULL) { 22828 ASSERT(!caller_holds_lock); 22829 tcp_bind_hash_remove(tcp); 22830 } 22831 tcpp = &tbf->tf_tcp; 22832 if (!caller_holds_lock) { 22833 mutex_enter(&tbf->tf_lock); 22834 } else { 22835 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22836 } 22837 tcpnext = tcpp[0]; 22838 if (tcpnext) { 22839 /* 22840 * If the new tcp bound to the INADDR_ANY address 22841 * and the first one in the list is not bound to 22842 * INADDR_ANY we skip all entries until we find the 22843 * first one bound to INADDR_ANY. 22844 * This makes sure that applications binding to a 22845 * specific address get preference over those binding to 22846 * INADDR_ANY. 22847 */ 22848 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22849 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22850 while ((tcpnext = tcpp[0]) != NULL && 22851 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22852 tcpp = &(tcpnext->tcp_bind_hash); 22853 if (tcpnext) 22854 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22855 } else 22856 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22857 } 22858 tcp->tcp_bind_hash = tcpnext; 22859 tcp->tcp_ptpbhn = tcpp; 22860 tcpp[0] = tcp; 22861 if (!caller_holds_lock) 22862 mutex_exit(&tbf->tf_lock); 22863 } 22864 22865 /* 22866 * Hash list removal routine for tcp_t structures. 22867 */ 22868 static void 22869 tcp_bind_hash_remove(tcp_t *tcp) 22870 { 22871 tcp_t *tcpnext; 22872 kmutex_t *lockp; 22873 22874 if (tcp->tcp_ptpbhn == NULL) 22875 return; 22876 22877 /* 22878 * Extract the lock pointer in case there are concurrent 22879 * hash_remove's for this instance. 22880 */ 22881 ASSERT(tcp->tcp_lport != 0); 22882 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22883 22884 ASSERT(lockp != NULL); 22885 mutex_enter(lockp); 22886 if (tcp->tcp_ptpbhn) { 22887 tcpnext = tcp->tcp_bind_hash; 22888 if (tcpnext) { 22889 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22890 tcp->tcp_bind_hash = NULL; 22891 } 22892 *tcp->tcp_ptpbhn = tcpnext; 22893 tcp->tcp_ptpbhn = NULL; 22894 } 22895 mutex_exit(lockp); 22896 } 22897 22898 22899 /* 22900 * Hash list lookup routine for tcp_t structures. 22901 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22902 */ 22903 static tcp_t * 22904 tcp_acceptor_hash_lookup(t_uscalar_t id) 22905 { 22906 tf_t *tf; 22907 tcp_t *tcp; 22908 22909 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22910 mutex_enter(&tf->tf_lock); 22911 for (tcp = tf->tf_tcp; tcp != NULL; 22912 tcp = tcp->tcp_acceptor_hash) { 22913 if (tcp->tcp_acceptor_id == id) { 22914 CONN_INC_REF(tcp->tcp_connp); 22915 mutex_exit(&tf->tf_lock); 22916 return (tcp); 22917 } 22918 } 22919 mutex_exit(&tf->tf_lock); 22920 return (NULL); 22921 } 22922 22923 22924 /* 22925 * Hash list insertion routine for tcp_t structures. 22926 */ 22927 void 22928 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22929 { 22930 tf_t *tf; 22931 tcp_t **tcpp; 22932 tcp_t *tcpnext; 22933 22934 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22935 22936 if (tcp->tcp_ptpahn != NULL) 22937 tcp_acceptor_hash_remove(tcp); 22938 tcpp = &tf->tf_tcp; 22939 mutex_enter(&tf->tf_lock); 22940 tcpnext = tcpp[0]; 22941 if (tcpnext) 22942 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22943 tcp->tcp_acceptor_hash = tcpnext; 22944 tcp->tcp_ptpahn = tcpp; 22945 tcpp[0] = tcp; 22946 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22947 mutex_exit(&tf->tf_lock); 22948 } 22949 22950 /* 22951 * Hash list removal routine for tcp_t structures. 22952 */ 22953 static void 22954 tcp_acceptor_hash_remove(tcp_t *tcp) 22955 { 22956 tcp_t *tcpnext; 22957 kmutex_t *lockp; 22958 22959 /* 22960 * Extract the lock pointer in case there are concurrent 22961 * hash_remove's for this instance. 22962 */ 22963 lockp = tcp->tcp_acceptor_lockp; 22964 22965 if (tcp->tcp_ptpahn == NULL) 22966 return; 22967 22968 ASSERT(lockp != NULL); 22969 mutex_enter(lockp); 22970 if (tcp->tcp_ptpahn) { 22971 tcpnext = tcp->tcp_acceptor_hash; 22972 if (tcpnext) { 22973 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22974 tcp->tcp_acceptor_hash = NULL; 22975 } 22976 *tcp->tcp_ptpahn = tcpnext; 22977 tcp->tcp_ptpahn = NULL; 22978 } 22979 mutex_exit(lockp); 22980 tcp->tcp_acceptor_lockp = NULL; 22981 } 22982 22983 /* ARGSUSED */ 22984 static int 22985 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22986 { 22987 int error = 0; 22988 int retval; 22989 char *end; 22990 22991 tcp_hsp_t *hsp; 22992 tcp_hsp_t *hspprev; 22993 22994 ipaddr_t addr = 0; /* Address we're looking for */ 22995 in6_addr_t v6addr; /* Address we're looking for */ 22996 uint32_t hash; /* Hash of that address */ 22997 22998 /* 22999 * If the following variables are still zero after parsing the input 23000 * string, the user didn't specify them and we don't change them in 23001 * the HSP. 23002 */ 23003 23004 ipaddr_t mask = 0; /* Subnet mask */ 23005 in6_addr_t v6mask; 23006 long sendspace = 0; /* Send buffer size */ 23007 long recvspace = 0; /* Receive buffer size */ 23008 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23009 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23010 23011 rw_enter(&tcp_hsp_lock, RW_WRITER); 23012 23013 /* Parse and validate address */ 23014 if (af == AF_INET) { 23015 retval = inet_pton(af, value, &addr); 23016 if (retval == 1) 23017 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23018 } else if (af == AF_INET6) { 23019 retval = inet_pton(af, value, &v6addr); 23020 } else { 23021 error = EINVAL; 23022 goto done; 23023 } 23024 if (retval == 0) { 23025 error = EINVAL; 23026 goto done; 23027 } 23028 23029 while ((*value) && *value != ' ') 23030 value++; 23031 23032 /* Parse individual keywords, set variables if found */ 23033 while (*value) { 23034 /* Skip leading blanks */ 23035 23036 while (*value == ' ' || *value == '\t') 23037 value++; 23038 23039 /* If at end of string, we're done */ 23040 23041 if (!*value) 23042 break; 23043 23044 /* We have a word, figure out what it is */ 23045 23046 if (strncmp("mask", value, 4) == 0) { 23047 value += 4; 23048 while (*value == ' ' || *value == '\t') 23049 value++; 23050 /* Parse subnet mask */ 23051 if (af == AF_INET) { 23052 retval = inet_pton(af, value, &mask); 23053 if (retval == 1) { 23054 V4MASK_TO_V6(mask, v6mask); 23055 } 23056 } else if (af == AF_INET6) { 23057 retval = inet_pton(af, value, &v6mask); 23058 } 23059 if (retval != 1) { 23060 error = EINVAL; 23061 goto done; 23062 } 23063 while ((*value) && *value != ' ') 23064 value++; 23065 } else if (strncmp("sendspace", value, 9) == 0) { 23066 value += 9; 23067 23068 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23069 sendspace < TCP_XMIT_HIWATER || 23070 sendspace >= (1L<<30)) { 23071 error = EINVAL; 23072 goto done; 23073 } 23074 value = end; 23075 } else if (strncmp("recvspace", value, 9) == 0) { 23076 value += 9; 23077 23078 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23079 recvspace < TCP_RECV_HIWATER || 23080 recvspace >= (1L<<30)) { 23081 error = EINVAL; 23082 goto done; 23083 } 23084 value = end; 23085 } else if (strncmp("timestamp", value, 9) == 0) { 23086 value += 9; 23087 23088 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23089 timestamp < 0 || timestamp > 1) { 23090 error = EINVAL; 23091 goto done; 23092 } 23093 23094 /* 23095 * We increment timestamp so we know it's been set; 23096 * this is undone when we put it in the HSP 23097 */ 23098 timestamp++; 23099 value = end; 23100 } else if (strncmp("delete", value, 6) == 0) { 23101 value += 6; 23102 delete = B_TRUE; 23103 } else { 23104 error = EINVAL; 23105 goto done; 23106 } 23107 } 23108 23109 /* Hash address for lookup */ 23110 23111 hash = TCP_HSP_HASH(addr); 23112 23113 if (delete) { 23114 /* 23115 * Note that deletes don't return an error if the thing 23116 * we're trying to delete isn't there. 23117 */ 23118 if (tcp_hsp_hash == NULL) 23119 goto done; 23120 hsp = tcp_hsp_hash[hash]; 23121 23122 if (hsp) { 23123 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23124 &v6addr)) { 23125 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23126 mi_free((char *)hsp); 23127 } else { 23128 hspprev = hsp; 23129 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23130 if (IN6_ARE_ADDR_EQUAL( 23131 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23132 hspprev->tcp_hsp_next = 23133 hsp->tcp_hsp_next; 23134 mi_free((char *)hsp); 23135 break; 23136 } 23137 hspprev = hsp; 23138 } 23139 } 23140 } 23141 } else { 23142 /* 23143 * We're adding/modifying an HSP. If we haven't already done 23144 * so, allocate the hash table. 23145 */ 23146 23147 if (!tcp_hsp_hash) { 23148 tcp_hsp_hash = (tcp_hsp_t **) 23149 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23150 if (!tcp_hsp_hash) { 23151 error = EINVAL; 23152 goto done; 23153 } 23154 } 23155 23156 /* Get head of hash chain */ 23157 23158 hsp = tcp_hsp_hash[hash]; 23159 23160 /* Try to find pre-existing hsp on hash chain */ 23161 /* Doesn't handle CIDR prefixes. */ 23162 while (hsp) { 23163 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23164 break; 23165 hsp = hsp->tcp_hsp_next; 23166 } 23167 23168 /* 23169 * If we didn't, create one with default values and put it 23170 * at head of hash chain 23171 */ 23172 23173 if (!hsp) { 23174 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23175 if (!hsp) { 23176 error = EINVAL; 23177 goto done; 23178 } 23179 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23180 tcp_hsp_hash[hash] = hsp; 23181 } 23182 23183 /* Set values that the user asked us to change */ 23184 23185 hsp->tcp_hsp_addr_v6 = v6addr; 23186 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23187 hsp->tcp_hsp_vers = IPV4_VERSION; 23188 else 23189 hsp->tcp_hsp_vers = IPV6_VERSION; 23190 hsp->tcp_hsp_subnet_v6 = v6mask; 23191 if (sendspace > 0) 23192 hsp->tcp_hsp_sendspace = sendspace; 23193 if (recvspace > 0) 23194 hsp->tcp_hsp_recvspace = recvspace; 23195 if (timestamp > 0) 23196 hsp->tcp_hsp_tstamp = timestamp - 1; 23197 } 23198 23199 done: 23200 rw_exit(&tcp_hsp_lock); 23201 return (error); 23202 } 23203 23204 /* Set callback routine passed to nd_load by tcp_param_register. */ 23205 /* ARGSUSED */ 23206 static int 23207 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23208 { 23209 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23210 } 23211 /* ARGSUSED */ 23212 static int 23213 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23214 cred_t *cr) 23215 { 23216 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23217 } 23218 23219 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23220 /* ARGSUSED */ 23221 static int 23222 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23223 { 23224 tcp_hsp_t *hsp; 23225 int i; 23226 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23227 23228 rw_enter(&tcp_hsp_lock, RW_READER); 23229 (void) mi_mpprintf(mp, 23230 "Hash HSP " MI_COL_HDRPAD_STR 23231 "Address Subnet Mask Send Receive TStamp"); 23232 if (tcp_hsp_hash) { 23233 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23234 hsp = tcp_hsp_hash[i]; 23235 while (hsp) { 23236 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23237 (void) inet_ntop(AF_INET, 23238 &hsp->tcp_hsp_addr, 23239 addrbuf, sizeof (addrbuf)); 23240 (void) inet_ntop(AF_INET, 23241 &hsp->tcp_hsp_subnet, 23242 subnetbuf, sizeof (subnetbuf)); 23243 } else { 23244 (void) inet_ntop(AF_INET6, 23245 &hsp->tcp_hsp_addr_v6, 23246 addrbuf, sizeof (addrbuf)); 23247 (void) inet_ntop(AF_INET6, 23248 &hsp->tcp_hsp_subnet_v6, 23249 subnetbuf, sizeof (subnetbuf)); 23250 } 23251 (void) mi_mpprintf(mp, 23252 " %03d " MI_COL_PTRFMT_STR 23253 "%s %s %010d %010d %d", 23254 i, 23255 (void *)hsp, 23256 addrbuf, 23257 subnetbuf, 23258 hsp->tcp_hsp_sendspace, 23259 hsp->tcp_hsp_recvspace, 23260 hsp->tcp_hsp_tstamp); 23261 23262 hsp = hsp->tcp_hsp_next; 23263 } 23264 } 23265 } 23266 rw_exit(&tcp_hsp_lock); 23267 return (0); 23268 } 23269 23270 23271 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23272 23273 static ipaddr_t netmasks[] = { 23274 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23275 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23276 }; 23277 23278 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 23279 23280 /* 23281 * XXX This routine should go away and instead we should use the metrics 23282 * associated with the routes to determine the default sndspace and rcvspace. 23283 */ 23284 static tcp_hsp_t * 23285 tcp_hsp_lookup(ipaddr_t addr) 23286 { 23287 tcp_hsp_t *hsp = NULL; 23288 23289 /* Quick check without acquiring the lock. */ 23290 if (tcp_hsp_hash == NULL) 23291 return (NULL); 23292 23293 rw_enter(&tcp_hsp_lock, RW_READER); 23294 23295 /* This routine finds the best-matching HSP for address addr. */ 23296 23297 if (tcp_hsp_hash) { 23298 int i; 23299 ipaddr_t srchaddr; 23300 tcp_hsp_t *hsp_net; 23301 23302 /* We do three passes: host, network, and subnet. */ 23303 23304 srchaddr = addr; 23305 23306 for (i = 1; i <= 3; i++) { 23307 /* Look for exact match on srchaddr */ 23308 23309 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 23310 while (hsp) { 23311 if (hsp->tcp_hsp_vers == IPV4_VERSION && 23312 hsp->tcp_hsp_addr == srchaddr) 23313 break; 23314 hsp = hsp->tcp_hsp_next; 23315 } 23316 ASSERT(hsp == NULL || 23317 hsp->tcp_hsp_vers == IPV4_VERSION); 23318 23319 /* 23320 * If this is the first pass: 23321 * If we found a match, great, return it. 23322 * If not, search for the network on the second pass. 23323 */ 23324 23325 if (i == 1) 23326 if (hsp) 23327 break; 23328 else 23329 { 23330 srchaddr = addr & netmask(addr); 23331 continue; 23332 } 23333 23334 /* 23335 * If this is the second pass: 23336 * If we found a match, but there's a subnet mask, 23337 * save the match but try again using the subnet 23338 * mask on the third pass. 23339 * Otherwise, return whatever we found. 23340 */ 23341 23342 if (i == 2) { 23343 if (hsp && hsp->tcp_hsp_subnet) { 23344 hsp_net = hsp; 23345 srchaddr = addr & hsp->tcp_hsp_subnet; 23346 continue; 23347 } else { 23348 break; 23349 } 23350 } 23351 23352 /* 23353 * This must be the third pass. If we didn't find 23354 * anything, return the saved network HSP instead. 23355 */ 23356 23357 if (!hsp) 23358 hsp = hsp_net; 23359 } 23360 } 23361 23362 rw_exit(&tcp_hsp_lock); 23363 return (hsp); 23364 } 23365 23366 /* 23367 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23368 * match lookup. 23369 */ 23370 static tcp_hsp_t * 23371 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23372 { 23373 tcp_hsp_t *hsp = NULL; 23374 23375 /* Quick check without acquiring the lock. */ 23376 if (tcp_hsp_hash == NULL) 23377 return (NULL); 23378 23379 rw_enter(&tcp_hsp_lock, RW_READER); 23380 23381 /* This routine finds the best-matching HSP for address addr. */ 23382 23383 if (tcp_hsp_hash) { 23384 int i; 23385 in6_addr_t v6srchaddr; 23386 tcp_hsp_t *hsp_net; 23387 23388 /* We do three passes: host, network, and subnet. */ 23389 23390 v6srchaddr = *v6addr; 23391 23392 for (i = 1; i <= 3; i++) { 23393 /* Look for exact match on srchaddr */ 23394 23395 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23396 V4_PART_OF_V6(v6srchaddr))]; 23397 while (hsp) { 23398 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23399 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23400 &v6srchaddr)) 23401 break; 23402 hsp = hsp->tcp_hsp_next; 23403 } 23404 23405 /* 23406 * If this is the first pass: 23407 * If we found a match, great, return it. 23408 * If not, search for the network on the second pass. 23409 */ 23410 23411 if (i == 1) 23412 if (hsp) 23413 break; 23414 else { 23415 /* Assume a 64 bit mask */ 23416 v6srchaddr.s6_addr32[0] = 23417 v6addr->s6_addr32[0]; 23418 v6srchaddr.s6_addr32[1] = 23419 v6addr->s6_addr32[1]; 23420 v6srchaddr.s6_addr32[2] = 0; 23421 v6srchaddr.s6_addr32[3] = 0; 23422 continue; 23423 } 23424 23425 /* 23426 * If this is the second pass: 23427 * If we found a match, but there's a subnet mask, 23428 * save the match but try again using the subnet 23429 * mask on the third pass. 23430 * Otherwise, return whatever we found. 23431 */ 23432 23433 if (i == 2) { 23434 ASSERT(hsp == NULL || 23435 hsp->tcp_hsp_vers == IPV6_VERSION); 23436 if (hsp && 23437 !IN6_IS_ADDR_UNSPECIFIED( 23438 &hsp->tcp_hsp_subnet_v6)) { 23439 hsp_net = hsp; 23440 V6_MASK_COPY(*v6addr, 23441 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23442 continue; 23443 } else { 23444 break; 23445 } 23446 } 23447 23448 /* 23449 * This must be the third pass. If we didn't find 23450 * anything, return the saved network HSP instead. 23451 */ 23452 23453 if (!hsp) 23454 hsp = hsp_net; 23455 } 23456 } 23457 23458 rw_exit(&tcp_hsp_lock); 23459 return (hsp); 23460 } 23461 23462 /* 23463 * Type three generator adapted from the random() function in 4.4 BSD: 23464 */ 23465 23466 /* 23467 * Copyright (c) 1983, 1993 23468 * The Regents of the University of California. All rights reserved. 23469 * 23470 * Redistribution and use in source and binary forms, with or without 23471 * modification, are permitted provided that the following conditions 23472 * are met: 23473 * 1. Redistributions of source code must retain the above copyright 23474 * notice, this list of conditions and the following disclaimer. 23475 * 2. Redistributions in binary form must reproduce the above copyright 23476 * notice, this list of conditions and the following disclaimer in the 23477 * documentation and/or other materials provided with the distribution. 23478 * 3. All advertising materials mentioning features or use of this software 23479 * must display the following acknowledgement: 23480 * This product includes software developed by the University of 23481 * California, Berkeley and its contributors. 23482 * 4. Neither the name of the University nor the names of its contributors 23483 * may be used to endorse or promote products derived from this software 23484 * without specific prior written permission. 23485 * 23486 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23487 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23488 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23489 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23490 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23491 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23492 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23493 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23494 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23495 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23496 * SUCH DAMAGE. 23497 */ 23498 23499 /* Type 3 -- x**31 + x**3 + 1 */ 23500 #define DEG_3 31 23501 #define SEP_3 3 23502 23503 23504 /* Protected by tcp_random_lock */ 23505 static int tcp_randtbl[DEG_3 + 1]; 23506 23507 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23508 static int *tcp_random_rptr = &tcp_randtbl[1]; 23509 23510 static int *tcp_random_state = &tcp_randtbl[1]; 23511 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23512 23513 kmutex_t tcp_random_lock; 23514 23515 void 23516 tcp_random_init(void) 23517 { 23518 int i; 23519 hrtime_t hrt; 23520 time_t wallclock; 23521 uint64_t result; 23522 23523 /* 23524 * Use high-res timer and current time for seed. Gethrtime() returns 23525 * a longlong, which may contain resolution down to nanoseconds. 23526 * The current time will either be a 32-bit or a 64-bit quantity. 23527 * XOR the two together in a 64-bit result variable. 23528 * Convert the result to a 32-bit value by multiplying the high-order 23529 * 32-bits by the low-order 32-bits. 23530 */ 23531 23532 hrt = gethrtime(); 23533 (void) drv_getparm(TIME, &wallclock); 23534 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23535 mutex_enter(&tcp_random_lock); 23536 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23537 (result & 0xffffffff); 23538 23539 for (i = 1; i < DEG_3; i++) 23540 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23541 + 12345; 23542 tcp_random_fptr = &tcp_random_state[SEP_3]; 23543 tcp_random_rptr = &tcp_random_state[0]; 23544 mutex_exit(&tcp_random_lock); 23545 for (i = 0; i < 10 * DEG_3; i++) 23546 (void) tcp_random(); 23547 } 23548 23549 /* 23550 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23551 * This range is selected to be approximately centered on TCP_ISS / 2, 23552 * and easy to compute. We get this value by generating a 32-bit random 23553 * number, selecting out the high-order 17 bits, and then adding one so 23554 * that we never return zero. 23555 */ 23556 int 23557 tcp_random(void) 23558 { 23559 int i; 23560 23561 mutex_enter(&tcp_random_lock); 23562 *tcp_random_fptr += *tcp_random_rptr; 23563 23564 /* 23565 * The high-order bits are more random than the low-order bits, 23566 * so we select out the high-order 17 bits and add one so that 23567 * we never return zero. 23568 */ 23569 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23570 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23571 tcp_random_fptr = tcp_random_state; 23572 ++tcp_random_rptr; 23573 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23574 tcp_random_rptr = tcp_random_state; 23575 23576 mutex_exit(&tcp_random_lock); 23577 return (i); 23578 } 23579 23580 /* 23581 * XXX This will go away when TPI is extended to send 23582 * info reqs to sockfs/timod ..... 23583 * Given a queue, set the max packet size for the write 23584 * side of the queue below stream head. This value is 23585 * cached on the stream head. 23586 * Returns 1 on success, 0 otherwise. 23587 */ 23588 static int 23589 setmaxps(queue_t *q, int maxpsz) 23590 { 23591 struct stdata *stp; 23592 queue_t *wq; 23593 stp = STREAM(q); 23594 23595 /* 23596 * At this point change of a queue parameter is not allowed 23597 * when a multiplexor is sitting on top. 23598 */ 23599 if (stp->sd_flag & STPLEX) 23600 return (0); 23601 23602 claimstr(stp->sd_wrq); 23603 wq = stp->sd_wrq->q_next; 23604 ASSERT(wq != NULL); 23605 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23606 releasestr(stp->sd_wrq); 23607 return (1); 23608 } 23609 23610 static int 23611 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23612 int *t_errorp, int *sys_errorp) 23613 { 23614 int error; 23615 int is_absreq_failure; 23616 t_scalar_t *opt_lenp; 23617 t_scalar_t opt_offset; 23618 int prim_type; 23619 struct T_conn_req *tcreqp; 23620 struct T_conn_res *tcresp; 23621 cred_t *cr; 23622 23623 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23624 23625 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23626 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23627 prim_type == T_CONN_RES); 23628 23629 switch (prim_type) { 23630 case T_CONN_REQ: 23631 tcreqp = (struct T_conn_req *)mp->b_rptr; 23632 opt_offset = tcreqp->OPT_offset; 23633 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23634 break; 23635 case O_T_CONN_RES: 23636 case T_CONN_RES: 23637 tcresp = (struct T_conn_res *)mp->b_rptr; 23638 opt_offset = tcresp->OPT_offset; 23639 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23640 break; 23641 } 23642 23643 *t_errorp = 0; 23644 *sys_errorp = 0; 23645 *do_disconnectp = 0; 23646 23647 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23648 opt_offset, cr, &tcp_opt_obj, 23649 NULL, &is_absreq_failure); 23650 23651 switch (error) { 23652 case 0: /* no error */ 23653 ASSERT(is_absreq_failure == 0); 23654 return (0); 23655 case ENOPROTOOPT: 23656 *t_errorp = TBADOPT; 23657 break; 23658 case EACCES: 23659 *t_errorp = TACCES; 23660 break; 23661 default: 23662 *t_errorp = TSYSERR; *sys_errorp = error; 23663 break; 23664 } 23665 if (is_absreq_failure != 0) { 23666 /* 23667 * The connection request should get the local ack 23668 * T_OK_ACK and then a T_DISCON_IND. 23669 */ 23670 *do_disconnectp = 1; 23671 } 23672 return (-1); 23673 } 23674 23675 /* 23676 * Split this function out so that if the secret changes, I'm okay. 23677 * 23678 * Initialize the tcp_iss_cookie and tcp_iss_key. 23679 */ 23680 23681 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23682 23683 static void 23684 tcp_iss_key_init(uint8_t *phrase, int len) 23685 { 23686 struct { 23687 int32_t current_time; 23688 uint32_t randnum; 23689 uint16_t pad; 23690 uint8_t ether[6]; 23691 uint8_t passwd[PASSWD_SIZE]; 23692 } tcp_iss_cookie; 23693 time_t t; 23694 23695 /* 23696 * Start with the current absolute time. 23697 */ 23698 (void) drv_getparm(TIME, &t); 23699 tcp_iss_cookie.current_time = t; 23700 23701 /* 23702 * XXX - Need a more random number per RFC 1750, not this crap. 23703 * OTOH, if what follows is pretty random, then I'm in better shape. 23704 */ 23705 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23706 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23707 23708 /* 23709 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23710 * as a good template. 23711 */ 23712 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23713 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23714 23715 /* 23716 * The pass-phrase. Normally this is supplied by user-called NDD. 23717 */ 23718 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23719 23720 /* 23721 * See 4010593 if this section becomes a problem again, 23722 * but the local ethernet address is useful here. 23723 */ 23724 (void) localetheraddr(NULL, 23725 (struct ether_addr *)&tcp_iss_cookie.ether); 23726 23727 /* 23728 * Hash 'em all together. The MD5Final is called per-connection. 23729 */ 23730 mutex_enter(&tcp_iss_key_lock); 23731 MD5Init(&tcp_iss_key); 23732 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23733 sizeof (tcp_iss_cookie)); 23734 mutex_exit(&tcp_iss_key_lock); 23735 } 23736 23737 /* 23738 * Set the RFC 1948 pass phrase 23739 */ 23740 /* ARGSUSED */ 23741 static int 23742 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23743 cred_t *cr) 23744 { 23745 /* 23746 * Basically, value contains a new pass phrase. Pass it along! 23747 */ 23748 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23749 return (0); 23750 } 23751 23752 /* ARGSUSED */ 23753 static int 23754 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23755 { 23756 bzero(buf, sizeof (tcp_sack_info_t)); 23757 return (0); 23758 } 23759 23760 /* ARGSUSED */ 23761 static int 23762 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23763 { 23764 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23765 return (0); 23766 } 23767 23768 void 23769 tcp_ddi_init(void) 23770 { 23771 int i; 23772 23773 /* Initialize locks */ 23774 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23775 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23776 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23777 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23778 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23779 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23780 23781 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23782 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23783 MUTEX_DEFAULT, NULL); 23784 } 23785 23786 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23787 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23788 MUTEX_DEFAULT, NULL); 23789 } 23790 23791 /* TCP's IPsec code calls the packet dropper. */ 23792 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23793 23794 if (!tcp_g_nd) { 23795 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23796 nd_free(&tcp_g_nd); 23797 } 23798 } 23799 23800 /* 23801 * Note: To really walk the device tree you need the devinfo 23802 * pointer to your device which is only available after probe/attach. 23803 * The following is safe only because it uses ddi_root_node() 23804 */ 23805 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23806 tcp_opt_obj.odb_opt_arr_cnt); 23807 23808 tcp_timercache = kmem_cache_create("tcp_timercache", 23809 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23810 NULL, NULL, NULL, NULL, NULL, 0); 23811 23812 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23813 sizeof (tcp_sack_info_t), 0, 23814 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23815 23816 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23817 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23818 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23819 23820 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23821 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23822 23823 ip_squeue_init(tcp_squeue_add); 23824 23825 /* Initialize the random number generator */ 23826 tcp_random_init(); 23827 23828 /* 23829 * Initialize RFC 1948 secret values. This will probably be reset once 23830 * by the boot scripts. 23831 * 23832 * Use NULL name, as the name is caught by the new lockstats. 23833 * 23834 * Initialize with some random, non-guessable string, like the global 23835 * T_INFO_ACK. 23836 */ 23837 23838 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23839 sizeof (tcp_g_t_info_ack)); 23840 23841 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23842 "net", KSTAT_TYPE_NAMED, 23843 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23844 KSTAT_FLAG_VIRTUAL)) != NULL) { 23845 tcp_kstat->ks_data = &tcp_statistics; 23846 kstat_install(tcp_kstat); 23847 } 23848 23849 tcp_kstat_init(); 23850 } 23851 23852 void 23853 tcp_ddi_destroy(void) 23854 { 23855 int i; 23856 23857 nd_free(&tcp_g_nd); 23858 23859 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23860 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23861 } 23862 23863 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23864 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23865 } 23866 23867 mutex_destroy(&tcp_iss_key_lock); 23868 rw_destroy(&tcp_hsp_lock); 23869 mutex_destroy(&tcp_g_q_lock); 23870 mutex_destroy(&tcp_random_lock); 23871 mutex_destroy(&tcp_epriv_port_lock); 23872 rw_destroy(&tcp_reserved_port_lock); 23873 23874 ip_drop_unregister(&tcp_dropper); 23875 23876 kmem_cache_destroy(tcp_timercache); 23877 kmem_cache_destroy(tcp_sack_info_cache); 23878 kmem_cache_destroy(tcp_iphc_cache); 23879 23880 tcp_kstat_fini(); 23881 } 23882 23883 /* 23884 * Generate ISS, taking into account NDD changes may happen halfway through. 23885 * (If the iss is not zero, set it.) 23886 */ 23887 23888 static void 23889 tcp_iss_init(tcp_t *tcp) 23890 { 23891 MD5_CTX context; 23892 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23893 uint32_t answer[4]; 23894 23895 tcp_iss_incr_extra += (ISS_INCR >> 1); 23896 tcp->tcp_iss = tcp_iss_incr_extra; 23897 switch (tcp_strong_iss) { 23898 case 2: 23899 mutex_enter(&tcp_iss_key_lock); 23900 context = tcp_iss_key; 23901 mutex_exit(&tcp_iss_key_lock); 23902 arg.ports = tcp->tcp_ports; 23903 if (tcp->tcp_ipversion == IPV4_VERSION) { 23904 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23905 &arg.src); 23906 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23907 &arg.dst); 23908 } else { 23909 arg.src = tcp->tcp_ip6h->ip6_src; 23910 arg.dst = tcp->tcp_ip6h->ip6_dst; 23911 } 23912 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23913 MD5Final((uchar_t *)answer, &context); 23914 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23915 /* 23916 * Now that we've hashed into a unique per-connection sequence 23917 * space, add a random increment per strong_iss == 1. So I 23918 * guess we'll have to... 23919 */ 23920 /* FALLTHRU */ 23921 case 1: 23922 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23923 break; 23924 default: 23925 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23926 break; 23927 } 23928 tcp->tcp_valid_bits = TCP_ISS_VALID; 23929 tcp->tcp_fss = tcp->tcp_iss - 1; 23930 tcp->tcp_suna = tcp->tcp_iss; 23931 tcp->tcp_snxt = tcp->tcp_iss + 1; 23932 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23933 tcp->tcp_csuna = tcp->tcp_snxt; 23934 } 23935 23936 /* 23937 * Exported routine for extracting active tcp connection status. 23938 * 23939 * This is used by the Solaris Cluster Networking software to 23940 * gather a list of connections that need to be forwarded to 23941 * specific nodes in the cluster when configuration changes occur. 23942 * 23943 * The callback is invoked for each tcp_t structure. Returning 23944 * non-zero from the callback routine terminates the search. 23945 */ 23946 int 23947 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23948 { 23949 tcp_t *tcp; 23950 cl_tcp_info_t cl_tcpi; 23951 connf_t *connfp; 23952 conn_t *connp; 23953 int i; 23954 23955 ASSERT(callback != NULL); 23956 23957 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23958 23959 connfp = &ipcl_globalhash_fanout[i]; 23960 connp = NULL; 23961 23962 while ((connp = 23963 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23964 23965 tcp = connp->conn_tcp; 23966 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23967 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23968 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23969 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23970 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23971 /* 23972 * The macros tcp_laddr and tcp_faddr give the IPv4 23973 * addresses. They are copied implicitly below as 23974 * mapped addresses. 23975 */ 23976 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23977 if (tcp->tcp_ipversion == IPV4_VERSION) { 23978 cl_tcpi.cl_tcpi_faddr = 23979 tcp->tcp_ipha->ipha_dst; 23980 } else { 23981 cl_tcpi.cl_tcpi_faddr_v6 = 23982 tcp->tcp_ip6h->ip6_dst; 23983 } 23984 23985 /* 23986 * If the callback returns non-zero 23987 * we terminate the traversal. 23988 */ 23989 if ((*callback)(&cl_tcpi, arg) != 0) { 23990 CONN_DEC_REF(tcp->tcp_connp); 23991 return (1); 23992 } 23993 } 23994 } 23995 23996 return (0); 23997 } 23998 23999 /* 24000 * Macros used for accessing the different types of sockaddr 24001 * structures inside a tcp_ioc_abort_conn_t. 24002 */ 24003 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24004 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24005 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24006 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24007 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24008 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24009 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24010 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24011 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24012 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24013 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24014 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24015 24016 /* 24017 * Return the correct error code to mimic the behavior 24018 * of a connection reset. 24019 */ 24020 #define TCP_AC_GET_ERRCODE(state, err) { \ 24021 switch ((state)) { \ 24022 case TCPS_SYN_SENT: \ 24023 case TCPS_SYN_RCVD: \ 24024 (err) = ECONNREFUSED; \ 24025 break; \ 24026 case TCPS_ESTABLISHED: \ 24027 case TCPS_FIN_WAIT_1: \ 24028 case TCPS_FIN_WAIT_2: \ 24029 case TCPS_CLOSE_WAIT: \ 24030 (err) = ECONNRESET; \ 24031 break; \ 24032 case TCPS_CLOSING: \ 24033 case TCPS_LAST_ACK: \ 24034 case TCPS_TIME_WAIT: \ 24035 (err) = 0; \ 24036 break; \ 24037 default: \ 24038 (err) = ENXIO; \ 24039 } \ 24040 } 24041 24042 /* 24043 * Check if a tcp structure matches the info in acp. 24044 */ 24045 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24046 (((acp)->ac_local.ss_family == AF_INET) ? \ 24047 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24048 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24049 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24050 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24051 (TCP_AC_V4LPORT((acp)) == 0 || \ 24052 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24053 (TCP_AC_V4RPORT((acp)) == 0 || \ 24054 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24055 (acp)->ac_start <= (tcp)->tcp_state && \ 24056 (acp)->ac_end >= (tcp)->tcp_state) : \ 24057 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24058 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24059 &(tcp)->tcp_ip_src_v6)) && \ 24060 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24061 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24062 &(tcp)->tcp_remote_v6)) && \ 24063 (TCP_AC_V6LPORT((acp)) == 0 || \ 24064 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24065 (TCP_AC_V6RPORT((acp)) == 0 || \ 24066 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24067 (acp)->ac_start <= (tcp)->tcp_state && \ 24068 (acp)->ac_end >= (tcp)->tcp_state)) 24069 24070 #define TCP_AC_MATCH(acp, tcp) \ 24071 (((acp)->ac_zoneid == ALL_ZONES || \ 24072 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24073 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24074 24075 /* 24076 * Build a message containing a tcp_ioc_abort_conn_t structure 24077 * which is filled in with information from acp and tp. 24078 */ 24079 static mblk_t * 24080 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24081 { 24082 mblk_t *mp; 24083 tcp_ioc_abort_conn_t *tacp; 24084 24085 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24086 if (mp == NULL) 24087 return (NULL); 24088 24089 mp->b_datap->db_type = M_CTL; 24090 24091 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24092 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24093 sizeof (uint32_t)); 24094 24095 tacp->ac_start = acp->ac_start; 24096 tacp->ac_end = acp->ac_end; 24097 tacp->ac_zoneid = acp->ac_zoneid; 24098 24099 if (acp->ac_local.ss_family == AF_INET) { 24100 tacp->ac_local.ss_family = AF_INET; 24101 tacp->ac_remote.ss_family = AF_INET; 24102 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24103 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24104 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24105 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24106 } else { 24107 tacp->ac_local.ss_family = AF_INET6; 24108 tacp->ac_remote.ss_family = AF_INET6; 24109 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24110 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24111 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24112 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24113 } 24114 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24115 return (mp); 24116 } 24117 24118 /* 24119 * Print a tcp_ioc_abort_conn_t structure. 24120 */ 24121 static void 24122 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24123 { 24124 char lbuf[128]; 24125 char rbuf[128]; 24126 sa_family_t af; 24127 in_port_t lport, rport; 24128 ushort_t logflags; 24129 24130 af = acp->ac_local.ss_family; 24131 24132 if (af == AF_INET) { 24133 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24134 lbuf, 128); 24135 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24136 rbuf, 128); 24137 lport = ntohs(TCP_AC_V4LPORT(acp)); 24138 rport = ntohs(TCP_AC_V4RPORT(acp)); 24139 } else { 24140 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24141 lbuf, 128); 24142 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24143 rbuf, 128); 24144 lport = ntohs(TCP_AC_V6LPORT(acp)); 24145 rport = ntohs(TCP_AC_V6RPORT(acp)); 24146 } 24147 24148 logflags = SL_TRACE | SL_NOTE; 24149 /* 24150 * Don't print this message to the console if the operation was done 24151 * to a non-global zone. 24152 */ 24153 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24154 logflags |= SL_CONSOLE; 24155 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24156 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24157 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24158 acp->ac_start, acp->ac_end); 24159 } 24160 24161 /* 24162 * Called inside tcp_rput when a message built using 24163 * tcp_ioctl_abort_build_msg is put into a queue. 24164 * Note that when we get here there is no wildcard in acp any more. 24165 */ 24166 static void 24167 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24168 { 24169 tcp_ioc_abort_conn_t *acp; 24170 24171 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24172 if (tcp->tcp_state <= acp->ac_end) { 24173 /* 24174 * If we get here, we are already on the correct 24175 * squeue. This ioctl follows the following path 24176 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24177 * ->tcp_ioctl_abort->squeue_fill (if on a 24178 * different squeue) 24179 */ 24180 int errcode; 24181 24182 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24183 (void) tcp_clean_death(tcp, errcode, 26); 24184 } 24185 freemsg(mp); 24186 } 24187 24188 /* 24189 * Abort all matching connections on a hash chain. 24190 */ 24191 static int 24192 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24193 boolean_t exact) 24194 { 24195 int nmatch, err = 0; 24196 tcp_t *tcp; 24197 MBLKP mp, last, listhead = NULL; 24198 conn_t *tconnp; 24199 connf_t *connfp = &ipcl_conn_fanout[index]; 24200 24201 startover: 24202 nmatch = 0; 24203 24204 mutex_enter(&connfp->connf_lock); 24205 for (tconnp = connfp->connf_head; tconnp != NULL; 24206 tconnp = tconnp->conn_next) { 24207 tcp = tconnp->conn_tcp; 24208 if (TCP_AC_MATCH(acp, tcp)) { 24209 CONN_INC_REF(tcp->tcp_connp); 24210 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24211 if (mp == NULL) { 24212 err = ENOMEM; 24213 CONN_DEC_REF(tcp->tcp_connp); 24214 break; 24215 } 24216 mp->b_prev = (mblk_t *)tcp; 24217 24218 if (listhead == NULL) { 24219 listhead = mp; 24220 last = mp; 24221 } else { 24222 last->b_next = mp; 24223 last = mp; 24224 } 24225 nmatch++; 24226 if (exact) 24227 break; 24228 } 24229 24230 /* Avoid holding lock for too long. */ 24231 if (nmatch >= 500) 24232 break; 24233 } 24234 mutex_exit(&connfp->connf_lock); 24235 24236 /* Pass mp into the correct tcp */ 24237 while ((mp = listhead) != NULL) { 24238 listhead = listhead->b_next; 24239 tcp = (tcp_t *)mp->b_prev; 24240 mp->b_next = mp->b_prev = NULL; 24241 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24242 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24243 } 24244 24245 *count += nmatch; 24246 if (nmatch >= 500 && err == 0) 24247 goto startover; 24248 return (err); 24249 } 24250 24251 /* 24252 * Abort all connections that matches the attributes specified in acp. 24253 */ 24254 static int 24255 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24256 { 24257 sa_family_t af; 24258 uint32_t ports; 24259 uint16_t *pports; 24260 int err = 0, count = 0; 24261 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24262 int index = -1; 24263 ushort_t logflags; 24264 24265 af = acp->ac_local.ss_family; 24266 24267 if (af == AF_INET) { 24268 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24269 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24270 pports = (uint16_t *)&ports; 24271 pports[1] = TCP_AC_V4LPORT(acp); 24272 pports[0] = TCP_AC_V4RPORT(acp); 24273 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24274 } 24275 } else { 24276 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24277 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24278 pports = (uint16_t *)&ports; 24279 pports[1] = TCP_AC_V6LPORT(acp); 24280 pports[0] = TCP_AC_V6RPORT(acp); 24281 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24282 } 24283 } 24284 24285 /* 24286 * For cases where remote addr, local port, and remote port are non- 24287 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24288 */ 24289 if (index != -1) { 24290 err = tcp_ioctl_abort_bucket(acp, index, 24291 &count, exact); 24292 } else { 24293 /* 24294 * loop through all entries for wildcard case 24295 */ 24296 for (index = 0; index < ipcl_conn_fanout_size; index++) { 24297 err = tcp_ioctl_abort_bucket(acp, index, 24298 &count, exact); 24299 if (err != 0) 24300 break; 24301 } 24302 } 24303 24304 logflags = SL_TRACE | SL_NOTE; 24305 /* 24306 * Don't print this message to the console if the operation was done 24307 * to a non-global zone. 24308 */ 24309 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24310 logflags |= SL_CONSOLE; 24311 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24312 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24313 if (err == 0 && count == 0) 24314 err = ENOENT; 24315 return (err); 24316 } 24317 24318 /* 24319 * Process the TCP_IOC_ABORT_CONN ioctl request. 24320 */ 24321 static void 24322 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24323 { 24324 int err; 24325 IOCP iocp; 24326 MBLKP mp1; 24327 sa_family_t laf, raf; 24328 tcp_ioc_abort_conn_t *acp; 24329 zone_t *zptr; 24330 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 24331 24332 iocp = (IOCP)mp->b_rptr; 24333 24334 if ((mp1 = mp->b_cont) == NULL || 24335 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24336 err = EINVAL; 24337 goto out; 24338 } 24339 24340 /* check permissions */ 24341 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 24342 err = EPERM; 24343 goto out; 24344 } 24345 24346 if (mp1->b_cont != NULL) { 24347 freemsg(mp1->b_cont); 24348 mp1->b_cont = NULL; 24349 } 24350 24351 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24352 laf = acp->ac_local.ss_family; 24353 raf = acp->ac_remote.ss_family; 24354 24355 /* check that a zone with the supplied zoneid exists */ 24356 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24357 zptr = zone_find_by_id(zoneid); 24358 if (zptr != NULL) { 24359 zone_rele(zptr); 24360 } else { 24361 err = EINVAL; 24362 goto out; 24363 } 24364 } 24365 24366 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24367 acp->ac_start > acp->ac_end || laf != raf || 24368 (laf != AF_INET && laf != AF_INET6)) { 24369 err = EINVAL; 24370 goto out; 24371 } 24372 24373 tcp_ioctl_abort_dump(acp); 24374 err = tcp_ioctl_abort(acp); 24375 24376 out: 24377 if (mp1 != NULL) { 24378 freemsg(mp1); 24379 mp->b_cont = NULL; 24380 } 24381 24382 if (err != 0) 24383 miocnak(q, mp, 0, err); 24384 else 24385 miocack(q, mp, 0, 0); 24386 } 24387 24388 /* 24389 * tcp_time_wait_processing() handles processing of incoming packets when 24390 * the tcp is in the TIME_WAIT state. 24391 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24392 * on the time wait list. 24393 */ 24394 void 24395 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24396 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24397 { 24398 int32_t bytes_acked; 24399 int32_t gap; 24400 int32_t rgap; 24401 tcp_opt_t tcpopt; 24402 uint_t flags; 24403 uint32_t new_swnd = 0; 24404 conn_t *connp; 24405 24406 BUMP_LOCAL(tcp->tcp_ibsegs); 24407 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24408 24409 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24410 new_swnd = BE16_TO_U16(tcph->th_win) << 24411 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24412 if (tcp->tcp_snd_ts_ok) { 24413 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24414 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24415 tcp->tcp_rnxt, TH_ACK); 24416 goto done; 24417 } 24418 } 24419 gap = seg_seq - tcp->tcp_rnxt; 24420 rgap = tcp->tcp_rwnd - (gap + seg_len); 24421 if (gap < 0) { 24422 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24423 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24424 (seg_len > -gap ? -gap : seg_len)); 24425 seg_len += gap; 24426 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24427 if (flags & TH_RST) { 24428 goto done; 24429 } 24430 if ((flags & TH_FIN) && seg_len == -1) { 24431 /* 24432 * When TCP receives a duplicate FIN in 24433 * TIME_WAIT state, restart the 2 MSL timer. 24434 * See page 73 in RFC 793. Make sure this TCP 24435 * is already on the TIME_WAIT list. If not, 24436 * just restart the timer. 24437 */ 24438 if (TCP_IS_DETACHED(tcp)) { 24439 tcp_time_wait_remove(tcp, NULL); 24440 tcp_time_wait_append(tcp); 24441 TCP_DBGSTAT(tcp_rput_time_wait); 24442 } else { 24443 ASSERT(tcp != NULL); 24444 TCP_TIMER_RESTART(tcp, 24445 tcp_time_wait_interval); 24446 } 24447 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24448 tcp->tcp_rnxt, TH_ACK); 24449 goto done; 24450 } 24451 flags |= TH_ACK_NEEDED; 24452 seg_len = 0; 24453 goto process_ack; 24454 } 24455 24456 /* Fix seg_seq, and chew the gap off the front. */ 24457 seg_seq = tcp->tcp_rnxt; 24458 } 24459 24460 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24461 /* 24462 * Make sure that when we accept the connection, pick 24463 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24464 * old connection. 24465 * 24466 * The next ISS generated is equal to tcp_iss_incr_extra 24467 * + ISS_INCR/2 + other components depending on the 24468 * value of tcp_strong_iss. We pre-calculate the new 24469 * ISS here and compare with tcp_snxt to determine if 24470 * we need to make adjustment to tcp_iss_incr_extra. 24471 * 24472 * The above calculation is ugly and is a 24473 * waste of CPU cycles... 24474 */ 24475 uint32_t new_iss = tcp_iss_incr_extra; 24476 int32_t adj; 24477 24478 switch (tcp_strong_iss) { 24479 case 2: { 24480 /* Add time and MD5 components. */ 24481 uint32_t answer[4]; 24482 struct { 24483 uint32_t ports; 24484 in6_addr_t src; 24485 in6_addr_t dst; 24486 } arg; 24487 MD5_CTX context; 24488 24489 mutex_enter(&tcp_iss_key_lock); 24490 context = tcp_iss_key; 24491 mutex_exit(&tcp_iss_key_lock); 24492 arg.ports = tcp->tcp_ports; 24493 /* We use MAPPED addresses in tcp_iss_init */ 24494 arg.src = tcp->tcp_ip_src_v6; 24495 if (tcp->tcp_ipversion == IPV4_VERSION) { 24496 IN6_IPADDR_TO_V4MAPPED( 24497 tcp->tcp_ipha->ipha_dst, 24498 &arg.dst); 24499 } else { 24500 arg.dst = 24501 tcp->tcp_ip6h->ip6_dst; 24502 } 24503 MD5Update(&context, (uchar_t *)&arg, 24504 sizeof (arg)); 24505 MD5Final((uchar_t *)answer, &context); 24506 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24507 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24508 break; 24509 } 24510 case 1: 24511 /* Add time component and min random (i.e. 1). */ 24512 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24513 break; 24514 default: 24515 /* Add only time component. */ 24516 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24517 break; 24518 } 24519 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24520 /* 24521 * New ISS not guaranteed to be ISS_INCR/2 24522 * ahead of the current tcp_snxt, so add the 24523 * difference to tcp_iss_incr_extra. 24524 */ 24525 tcp_iss_incr_extra += adj; 24526 } 24527 /* 24528 * If tcp_clean_death() can not perform the task now, 24529 * drop the SYN packet and let the other side re-xmit. 24530 * Otherwise pass the SYN packet back in, since the 24531 * old tcp state has been cleaned up or freed. 24532 */ 24533 if (tcp_clean_death(tcp, 0, 27) == -1) 24534 goto done; 24535 /* 24536 * We will come back to tcp_rput_data 24537 * on the global queue. Packets destined 24538 * for the global queue will be checked 24539 * with global policy. But the policy for 24540 * this packet has already been checked as 24541 * this was destined for the detached 24542 * connection. We need to bypass policy 24543 * check this time by attaching a dummy 24544 * ipsec_in with ipsec_in_dont_check set. 24545 */ 24546 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24547 NULL) { 24548 TCP_STAT(tcp_time_wait_syn_success); 24549 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24550 return; 24551 } 24552 goto done; 24553 } 24554 24555 /* 24556 * rgap is the amount of stuff received out of window. A negative 24557 * value is the amount out of window. 24558 */ 24559 if (rgap < 0) { 24560 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24561 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24562 /* Fix seg_len and make sure there is something left. */ 24563 seg_len += rgap; 24564 if (seg_len <= 0) { 24565 if (flags & TH_RST) { 24566 goto done; 24567 } 24568 flags |= TH_ACK_NEEDED; 24569 seg_len = 0; 24570 goto process_ack; 24571 } 24572 } 24573 /* 24574 * Check whether we can update tcp_ts_recent. This test is 24575 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24576 * Extensions for High Performance: An Update", Internet Draft. 24577 */ 24578 if (tcp->tcp_snd_ts_ok && 24579 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24580 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24581 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24582 tcp->tcp_last_rcv_lbolt = lbolt64; 24583 } 24584 24585 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24586 /* Always ack out of order packets */ 24587 flags |= TH_ACK_NEEDED; 24588 seg_len = 0; 24589 } else if (seg_len > 0) { 24590 BUMP_MIB(&tcp_mib, tcpInClosed); 24591 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24592 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24593 } 24594 if (flags & TH_RST) { 24595 (void) tcp_clean_death(tcp, 0, 28); 24596 goto done; 24597 } 24598 if (flags & TH_SYN) { 24599 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24600 TH_RST|TH_ACK); 24601 /* 24602 * Do not delete the TCP structure if it is in 24603 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24604 */ 24605 goto done; 24606 } 24607 process_ack: 24608 if (flags & TH_ACK) { 24609 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24610 if (bytes_acked <= 0) { 24611 if (bytes_acked == 0 && seg_len == 0 && 24612 new_swnd == tcp->tcp_swnd) 24613 BUMP_MIB(&tcp_mib, tcpInDupAck); 24614 } else { 24615 /* Acks something not sent */ 24616 flags |= TH_ACK_NEEDED; 24617 } 24618 } 24619 if (flags & TH_ACK_NEEDED) { 24620 /* 24621 * Time to send an ack for some reason. 24622 */ 24623 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24624 tcp->tcp_rnxt, TH_ACK); 24625 } 24626 done: 24627 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24628 DB_CKSUMSTART(mp) = 0; 24629 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24630 TCP_STAT(tcp_time_wait_syn_fail); 24631 } 24632 freemsg(mp); 24633 } 24634 24635 /* 24636 * Allocate a T_SVR4_OPTMGMT_REQ. 24637 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24638 * that tcp_rput_other can drop the acks. 24639 */ 24640 static mblk_t * 24641 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24642 { 24643 mblk_t *mp; 24644 struct T_optmgmt_req *tor; 24645 struct opthdr *oh; 24646 uint_t size; 24647 char *optptr; 24648 24649 size = sizeof (*tor) + sizeof (*oh) + optlen; 24650 mp = allocb(size, BPRI_MED); 24651 if (mp == NULL) 24652 return (NULL); 24653 24654 mp->b_wptr += size; 24655 mp->b_datap->db_type = M_PROTO; 24656 tor = (struct T_optmgmt_req *)mp->b_rptr; 24657 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24658 tor->MGMT_flags = T_NEGOTIATE; 24659 tor->OPT_length = sizeof (*oh) + optlen; 24660 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24661 24662 oh = (struct opthdr *)&tor[1]; 24663 oh->level = level; 24664 oh->name = cmd; 24665 oh->len = optlen; 24666 if (optlen != 0) { 24667 optptr = (char *)&oh[1]; 24668 bcopy(opt, optptr, optlen); 24669 } 24670 return (mp); 24671 } 24672 24673 /* 24674 * TCP Timers Implementation. 24675 */ 24676 timeout_id_t 24677 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24678 { 24679 mblk_t *mp; 24680 tcp_timer_t *tcpt; 24681 tcp_t *tcp = connp->conn_tcp; 24682 24683 ASSERT(connp->conn_sqp != NULL); 24684 24685 TCP_DBGSTAT(tcp_timeout_calls); 24686 24687 if (tcp->tcp_timercache == NULL) { 24688 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24689 } else { 24690 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24691 mp = tcp->tcp_timercache; 24692 tcp->tcp_timercache = mp->b_next; 24693 mp->b_next = NULL; 24694 ASSERT(mp->b_wptr == NULL); 24695 } 24696 24697 CONN_INC_REF(connp); 24698 tcpt = (tcp_timer_t *)mp->b_rptr; 24699 tcpt->connp = connp; 24700 tcpt->tcpt_proc = f; 24701 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24702 return ((timeout_id_t)mp); 24703 } 24704 24705 static void 24706 tcp_timer_callback(void *arg) 24707 { 24708 mblk_t *mp = (mblk_t *)arg; 24709 tcp_timer_t *tcpt; 24710 conn_t *connp; 24711 24712 tcpt = (tcp_timer_t *)mp->b_rptr; 24713 connp = tcpt->connp; 24714 squeue_fill(connp->conn_sqp, mp, 24715 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24716 } 24717 24718 static void 24719 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24720 { 24721 tcp_timer_t *tcpt; 24722 conn_t *connp = (conn_t *)arg; 24723 tcp_t *tcp = connp->conn_tcp; 24724 24725 tcpt = (tcp_timer_t *)mp->b_rptr; 24726 ASSERT(connp == tcpt->connp); 24727 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24728 24729 /* 24730 * If the TCP has reached the closed state, don't proceed any 24731 * further. This TCP logically does not exist on the system. 24732 * tcpt_proc could for example access queues, that have already 24733 * been qprocoff'ed off. Also see comments at the start of tcp_input 24734 */ 24735 if (tcp->tcp_state != TCPS_CLOSED) { 24736 (*tcpt->tcpt_proc)(connp); 24737 } else { 24738 tcp->tcp_timer_tid = 0; 24739 } 24740 tcp_timer_free(connp->conn_tcp, mp); 24741 } 24742 24743 /* 24744 * There is potential race with untimeout and the handler firing at the same 24745 * time. The mblock may be freed by the handler while we are trying to use 24746 * it. But since both should execute on the same squeue, this race should not 24747 * occur. 24748 */ 24749 clock_t 24750 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24751 { 24752 mblk_t *mp = (mblk_t *)id; 24753 tcp_timer_t *tcpt; 24754 clock_t delta; 24755 24756 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24757 24758 if (mp == NULL) 24759 return (-1); 24760 24761 tcpt = (tcp_timer_t *)mp->b_rptr; 24762 ASSERT(tcpt->connp == connp); 24763 24764 delta = untimeout(tcpt->tcpt_tid); 24765 24766 if (delta >= 0) { 24767 TCP_DBGSTAT(tcp_timeout_canceled); 24768 tcp_timer_free(connp->conn_tcp, mp); 24769 CONN_DEC_REF(connp); 24770 } 24771 24772 return (delta); 24773 } 24774 24775 /* 24776 * Allocate space for the timer event. The allocation looks like mblk, but it is 24777 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24778 * 24779 * Dealing with failures: If we can't allocate from the timer cache we try 24780 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24781 * points to b_rptr. 24782 * If we can't allocate anything using allocb_tryhard(), we perform a last 24783 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24784 * save the actual allocation size in b_datap. 24785 */ 24786 mblk_t * 24787 tcp_timermp_alloc(int kmflags) 24788 { 24789 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24790 kmflags & ~KM_PANIC); 24791 24792 if (mp != NULL) { 24793 mp->b_next = mp->b_prev = NULL; 24794 mp->b_rptr = (uchar_t *)(&mp[1]); 24795 mp->b_wptr = NULL; 24796 mp->b_datap = NULL; 24797 mp->b_queue = NULL; 24798 } else if (kmflags & KM_PANIC) { 24799 /* 24800 * Failed to allocate memory for the timer. Try allocating from 24801 * dblock caches. 24802 */ 24803 TCP_STAT(tcp_timermp_allocfail); 24804 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24805 if (mp == NULL) { 24806 size_t size = 0; 24807 /* 24808 * Memory is really low. Try tryhard allocation. 24809 */ 24810 TCP_STAT(tcp_timermp_allocdblfail); 24811 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24812 sizeof (tcp_timer_t), &size, kmflags); 24813 mp->b_rptr = (uchar_t *)(&mp[1]); 24814 mp->b_next = mp->b_prev = NULL; 24815 mp->b_wptr = (uchar_t *)-1; 24816 mp->b_datap = (dblk_t *)size; 24817 mp->b_queue = NULL; 24818 } 24819 ASSERT(mp->b_wptr != NULL); 24820 } 24821 TCP_DBGSTAT(tcp_timermp_alloced); 24822 24823 return (mp); 24824 } 24825 24826 /* 24827 * Free per-tcp timer cache. 24828 * It can only contain entries from tcp_timercache. 24829 */ 24830 void 24831 tcp_timermp_free(tcp_t *tcp) 24832 { 24833 mblk_t *mp; 24834 24835 while ((mp = tcp->tcp_timercache) != NULL) { 24836 ASSERT(mp->b_wptr == NULL); 24837 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24838 kmem_cache_free(tcp_timercache, mp); 24839 } 24840 } 24841 24842 /* 24843 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24844 * events there already (currently at most two events are cached). 24845 * If the event is not allocated from the timer cache, free it right away. 24846 */ 24847 static void 24848 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24849 { 24850 mblk_t *mp1 = tcp->tcp_timercache; 24851 24852 if (mp->b_wptr != NULL) { 24853 /* 24854 * This allocation is not from a timer cache, free it right 24855 * away. 24856 */ 24857 if (mp->b_wptr != (uchar_t *)-1) 24858 freeb(mp); 24859 else 24860 kmem_free(mp, (size_t)mp->b_datap); 24861 } else if (mp1 == NULL || mp1->b_next == NULL) { 24862 /* Cache this timer block for future allocations */ 24863 mp->b_rptr = (uchar_t *)(&mp[1]); 24864 mp->b_next = mp1; 24865 tcp->tcp_timercache = mp; 24866 } else { 24867 kmem_cache_free(tcp_timercache, mp); 24868 TCP_DBGSTAT(tcp_timermp_freed); 24869 } 24870 } 24871 24872 /* 24873 * End of TCP Timers implementation. 24874 */ 24875 24876 /* 24877 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24878 * on the specified backing STREAMS q. Note, the caller may make the 24879 * decision to call based on the tcp_t.tcp_flow_stopped value which 24880 * when check outside the q's lock is only an advisory check ... 24881 */ 24882 24883 void 24884 tcp_setqfull(tcp_t *tcp) 24885 { 24886 queue_t *q = tcp->tcp_wq; 24887 24888 if (!(q->q_flag & QFULL)) { 24889 mutex_enter(QLOCK(q)); 24890 if (!(q->q_flag & QFULL)) { 24891 /* still need to set QFULL */ 24892 q->q_flag |= QFULL; 24893 tcp->tcp_flow_stopped = B_TRUE; 24894 mutex_exit(QLOCK(q)); 24895 TCP_STAT(tcp_flwctl_on); 24896 } else { 24897 mutex_exit(QLOCK(q)); 24898 } 24899 } 24900 } 24901 24902 void 24903 tcp_clrqfull(tcp_t *tcp) 24904 { 24905 queue_t *q = tcp->tcp_wq; 24906 24907 if (q->q_flag & QFULL) { 24908 mutex_enter(QLOCK(q)); 24909 if (q->q_flag & QFULL) { 24910 q->q_flag &= ~QFULL; 24911 tcp->tcp_flow_stopped = B_FALSE; 24912 mutex_exit(QLOCK(q)); 24913 if (q->q_flag & QWANTW) 24914 qbackenable(q, 0); 24915 } else { 24916 mutex_exit(QLOCK(q)); 24917 } 24918 } 24919 } 24920 24921 /* 24922 * TCP Kstats implementation 24923 */ 24924 static void 24925 tcp_kstat_init(void) 24926 { 24927 tcp_named_kstat_t template = { 24928 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24929 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24930 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24931 { "maxConn", KSTAT_DATA_INT32, 0 }, 24932 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24933 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24934 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24935 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24936 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24937 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24938 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24939 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24940 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24941 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24942 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24943 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24944 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24945 { "outAck", KSTAT_DATA_UINT32, 0 }, 24946 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24947 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24948 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24949 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24950 { "outControl", KSTAT_DATA_UINT32, 0 }, 24951 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24952 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24953 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24954 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24955 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24956 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24957 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24958 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24959 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24960 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24961 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24962 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24963 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24964 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24965 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24966 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24967 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24968 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24969 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24970 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24971 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24972 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24973 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24974 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24975 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24976 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24977 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24978 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24979 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24980 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24981 }; 24982 24983 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24984 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24985 24986 if (tcp_mibkp == NULL) 24987 return; 24988 24989 template.rtoAlgorithm.value.ui32 = 4; 24990 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24991 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24992 template.maxConn.value.i32 = -1; 24993 24994 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24995 24996 tcp_mibkp->ks_update = tcp_kstat_update; 24997 24998 kstat_install(tcp_mibkp); 24999 } 25000 25001 static void 25002 tcp_kstat_fini(void) 25003 { 25004 25005 if (tcp_mibkp != NULL) { 25006 kstat_delete(tcp_mibkp); 25007 tcp_mibkp = NULL; 25008 } 25009 } 25010 25011 static int 25012 tcp_kstat_update(kstat_t *kp, int rw) 25013 { 25014 tcp_named_kstat_t *tcpkp; 25015 tcp_t *tcp; 25016 connf_t *connfp; 25017 conn_t *connp; 25018 int i; 25019 25020 if (!kp || !kp->ks_data) 25021 return (EIO); 25022 25023 if (rw == KSTAT_WRITE) 25024 return (EACCES); 25025 25026 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25027 25028 tcpkp->currEstab.value.ui32 = 0; 25029 25030 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25031 connfp = &ipcl_globalhash_fanout[i]; 25032 connp = NULL; 25033 while ((connp = 25034 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25035 tcp = connp->conn_tcp; 25036 switch (tcp_snmp_state(tcp)) { 25037 case MIB2_TCP_established: 25038 case MIB2_TCP_closeWait: 25039 tcpkp->currEstab.value.ui32++; 25040 break; 25041 } 25042 } 25043 } 25044 25045 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25046 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25047 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25048 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25049 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25050 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25051 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25052 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25053 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25054 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25055 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25056 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25057 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25058 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25059 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25060 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25061 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25062 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25063 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25064 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25065 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25066 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25067 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25068 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25069 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25070 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25071 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25072 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25073 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25074 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25075 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25076 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25077 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25078 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25079 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25080 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25081 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25082 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25083 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25084 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25085 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25086 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25087 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25088 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25089 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25090 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25091 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25092 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25093 25094 return (0); 25095 } 25096 25097 void 25098 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25099 { 25100 uint16_t hdr_len; 25101 ipha_t *ipha; 25102 uint8_t *nexthdrp; 25103 tcph_t *tcph; 25104 25105 /* Already has an eager */ 25106 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25107 TCP_STAT(tcp_reinput_syn); 25108 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25109 connp, SQTAG_TCP_REINPUT_EAGER); 25110 return; 25111 } 25112 25113 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25114 case IPV4_VERSION: 25115 ipha = (ipha_t *)mp->b_rptr; 25116 hdr_len = IPH_HDR_LENGTH(ipha); 25117 break; 25118 case IPV6_VERSION: 25119 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25120 &hdr_len, &nexthdrp)) { 25121 CONN_DEC_REF(connp); 25122 freemsg(mp); 25123 return; 25124 } 25125 break; 25126 } 25127 25128 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25129 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25130 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25131 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25132 } 25133 25134 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25135 SQTAG_TCP_REINPUT); 25136 } 25137 25138 static squeue_func_t 25139 tcp_squeue_switch(int val) 25140 { 25141 squeue_func_t rval = squeue_fill; 25142 25143 switch (val) { 25144 case 1: 25145 rval = squeue_enter_nodrain; 25146 break; 25147 case 2: 25148 rval = squeue_enter; 25149 break; 25150 default: 25151 break; 25152 } 25153 return (rval); 25154 } 25155 25156 static void 25157 tcp_squeue_add(squeue_t *sqp) 25158 { 25159 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25160 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25161 25162 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25163 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25164 sqp, TCP_TIME_WAIT_DELAY); 25165 if (tcp_free_list_max_cnt == 0) { 25166 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25167 max_ncpus : boot_max_ncpus); 25168 25169 /* 25170 * Limit number of entries to 1% of availble memory / tcp_ncpus 25171 */ 25172 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25173 (tcp_ncpus * sizeof (tcp_t) * 100); 25174 } 25175 tcp_time_wait->tcp_free_list_cnt = 0; 25176 } 25177