xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_initialize.c (revision c5749750a3e052f1194f65a303456224c51dea63)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35 
36 /*
37  * Maximum number of metaslabs per group that can be initialized
38  * simultaneously.
39  */
40 int max_initialize_ms = 3;
41 
42 /*
43  * Value that is written to disk during initialization.
44  */
45 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
46 
47 /* maximum number of I/Os outstanding per leaf vdev */
48 int zfs_initialize_limit = 1;
49 
50 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
51 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
52 
53 static boolean_t
54 vdev_initialize_should_stop(vdev_t *vd)
55 {
56 	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
57 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
58 }
59 
60 static void
61 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
62 {
63 	/*
64 	 * We pass in the guid instead of the vdev_t since the vdev may
65 	 * have been freed prior to the sync task being processed. This
66 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
67 	 * stop the intializing thread, schedule the sync task, and free
68 	 * the vdev. Later when the scheduled sync task is invoked, it would
69 	 * find that the vdev has been freed.
70 	 */
71 	uint64_t guid = *(uint64_t *)arg;
72 	uint64_t txg = dmu_tx_get_txg(tx);
73 	kmem_free(arg, sizeof (uint64_t));
74 
75 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
76 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
77 		return;
78 
79 	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
80 	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
81 
82 	VERIFY(vd->vdev_leaf_zap != 0);
83 
84 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
85 
86 	if (last_offset > 0) {
87 		vd->vdev_initialize_last_offset = last_offset;
88 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
90 		    sizeof (last_offset), 1, &last_offset, tx));
91 	}
92 	if (vd->vdev_initialize_action_time > 0) {
93 		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
94 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
96 		    1, &val, tx));
97 	}
98 
99 	uint64_t initialize_state = vd->vdev_initialize_state;
100 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
101 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
102 	    &initialize_state, tx));
103 }
104 
105 static void
106 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
107 {
108 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
109 	spa_t *spa = vd->vdev_spa;
110 
111 	if (new_state == vd->vdev_initialize_state)
112 		return;
113 
114 	/*
115 	 * Copy the vd's guid, this will be freed by the sync task.
116 	 */
117 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
118 	*guid = vd->vdev_guid;
119 
120 	/*
121 	 * If we're suspending, then preserving the original start time.
122 	 */
123 	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
124 		vd->vdev_initialize_action_time = gethrestime_sec();
125 	}
126 	vd->vdev_initialize_state = new_state;
127 
128 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131 	    guid, 2, ZFS_SPACE_CHECK_RESERVED, tx);
132 
133 	switch (new_state) {
134 	case VDEV_INITIALIZE_ACTIVE:
135 		spa_history_log_internal(spa, "initialize", tx,
136 		    "vdev=%s activated", vd->vdev_path);
137 		break;
138 	case VDEV_INITIALIZE_SUSPENDED:
139 		spa_history_log_internal(spa, "initialize", tx,
140 		    "vdev=%s suspended", vd->vdev_path);
141 		break;
142 	case VDEV_INITIALIZE_CANCELED:
143 		spa_history_log_internal(spa, "initialize", tx,
144 		    "vdev=%s canceled", vd->vdev_path);
145 		break;
146 	case VDEV_INITIALIZE_COMPLETE:
147 		spa_history_log_internal(spa, "initialize", tx,
148 		    "vdev=%s complete", vd->vdev_path);
149 		break;
150 	default:
151 		panic("invalid state %llu", (unsigned long long)new_state);
152 	}
153 
154 	dmu_tx_commit(tx);
155 }
156 
157 static void
158 vdev_initialize_cb(zio_t *zio)
159 {
160 	vdev_t *vd = zio->io_vd;
161 	mutex_enter(&vd->vdev_initialize_io_lock);
162 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
163 		/*
164 		 * The I/O failed because the vdev was unavailable; roll the
165 		 * last offset back. (This works because spa_sync waits on
166 		 * spa_txg_zio before it runs sync tasks.)
167 		 */
168 		uint64_t *off =
169 		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
170 		*off = MIN(*off, zio->io_offset);
171 	} else {
172 		/*
173 		 * Since initializing is best-effort, we ignore I/O errors and
174 		 * rely on vdev_probe to determine if the errors are more
175 		 * critical.
176 		 */
177 		if (zio->io_error != 0)
178 			vd->vdev_stat.vs_initialize_errors++;
179 
180 		vd->vdev_initialize_bytes_done += zio->io_orig_size;
181 	}
182 	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
183 	vd->vdev_initialize_inflight--;
184 	cv_broadcast(&vd->vdev_initialize_io_cv);
185 	mutex_exit(&vd->vdev_initialize_io_lock);
186 
187 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
188 }
189 
190 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
191 static int
192 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
193 {
194 	spa_t *spa = vd->vdev_spa;
195 
196 	/* Limit inflight initializing I/Os */
197 	mutex_enter(&vd->vdev_initialize_io_lock);
198 	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
199 		cv_wait(&vd->vdev_initialize_io_cv,
200 		    &vd->vdev_initialize_io_lock);
201 	}
202 	vd->vdev_initialize_inflight++;
203 	mutex_exit(&vd->vdev_initialize_io_lock);
204 
205 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
206 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
207 	uint64_t txg = dmu_tx_get_txg(tx);
208 
209 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
210 	mutex_enter(&vd->vdev_initialize_lock);
211 
212 	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
213 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
214 		*guid = vd->vdev_guid;
215 
216 		/* This is the first write of this txg. */
217 		dsl_sync_task_nowait(spa_get_dsl(spa),
218 		    vdev_initialize_zap_update_sync, guid, 2,
219 		    ZFS_SPACE_CHECK_RESERVED, tx);
220 	}
221 
222 	/*
223 	 * We know the vdev struct will still be around since all
224 	 * consumers of vdev_free must stop the initialization first.
225 	 */
226 	if (vdev_initialize_should_stop(vd)) {
227 		mutex_enter(&vd->vdev_initialize_io_lock);
228 		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
229 		vd->vdev_initialize_inflight--;
230 		mutex_exit(&vd->vdev_initialize_io_lock);
231 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232 		mutex_exit(&vd->vdev_initialize_lock);
233 		dmu_tx_commit(tx);
234 		return (SET_ERROR(EINTR));
235 	}
236 	mutex_exit(&vd->vdev_initialize_lock);
237 
238 	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
239 	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
240 	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
241 	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
242 	/* vdev_initialize_cb releases SCL_STATE_ALL */
243 
244 	dmu_tx_commit(tx);
245 
246 	return (0);
247 }
248 
249 /*
250  * Translate a logical range to the physical range for the specified vdev_t.
251  * This function is initially called with a leaf vdev and will walk each
252  * parent vdev until it reaches a top-level vdev. Once the top-level is
253  * reached the physical range is initialized and the recursive function
254  * begins to unwind. As it unwinds it calls the parent's vdev specific
255  * translation function to do the real conversion.
256  */
257 void
258 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
259 {
260 	/*
261 	 * Walk up the vdev tree
262 	 */
263 	if (vd != vd->vdev_top) {
264 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
265 	} else {
266 		/*
267 		 * We've reached the top-level vdev, initialize the
268 		 * physical range to the logical range and start to
269 		 * unwind.
270 		 */
271 		physical_rs->rs_start = logical_rs->rs_start;
272 		physical_rs->rs_end = logical_rs->rs_end;
273 		return;
274 	}
275 
276 	vdev_t *pvd = vd->vdev_parent;
277 	ASSERT3P(pvd, !=, NULL);
278 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
279 
280 	/*
281 	 * As this recursive function unwinds, translate the logical
282 	 * range into its physical components by calling the
283 	 * vdev specific translate function.
284 	 */
285 	range_seg_t intermediate = { 0 };
286 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
287 
288 	physical_rs->rs_start = intermediate.rs_start;
289 	physical_rs->rs_end = intermediate.rs_end;
290 }
291 
292 /*
293  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295  * allocation will guarantee these for us.
296  */
297 /* ARGSUSED */
298 static int
299 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
300 {
301 	ASSERT0(len % sizeof (uint64_t));
302 	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
303 		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
304 	}
305 	return (0);
306 }
307 
308 static abd_t *
309 vdev_initialize_block_alloc()
310 {
311 	/* Allocate ABD for filler data */
312 	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
313 
314 	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
315 	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
316 	    vdev_initialize_block_fill, NULL);
317 
318 	return (data);
319 }
320 
321 static void
322 vdev_initialize_block_free(abd_t *data)
323 {
324 	abd_free(data);
325 }
326 
327 static int
328 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
329 {
330 	avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
331 
332 	for (range_seg_t *rs = avl_first(rt); rs != NULL;
333 	    rs = AVL_NEXT(rt, rs)) {
334 		uint64_t size = rs->rs_end - rs->rs_start;
335 
336 		/* Split range into legally-sized physical chunks */
337 		uint64_t writes_required =
338 		    ((size - 1) / zfs_initialize_chunk_size) + 1;
339 
340 		for (uint64_t w = 0; w < writes_required; w++) {
341 			int error;
342 
343 			error = vdev_initialize_write(vd,
344 			    VDEV_LABEL_START_SIZE + rs->rs_start +
345 			    (w * zfs_initialize_chunk_size),
346 			    MIN(size - (w * zfs_initialize_chunk_size),
347 			    zfs_initialize_chunk_size), data);
348 			if (error != 0)
349 				return (error);
350 		}
351 	}
352 	return (0);
353 }
354 
355 static void
356 vdev_initialize_ms_load(metaslab_t *msp)
357 {
358 	ASSERT(MUTEX_HELD(&msp->ms_lock));
359 
360 	metaslab_load_wait(msp);
361 	if (!msp->ms_loaded)
362 		VERIFY0(metaslab_load(msp));
363 }
364 
365 static void
366 vdev_initialize_mg_wait(metaslab_group_t *mg)
367 {
368 	ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
369 	while (mg->mg_initialize_updating) {
370 		cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
371 	}
372 }
373 
374 static void
375 vdev_initialize_mg_mark(metaslab_group_t *mg)
376 {
377 	ASSERT(MUTEX_HELD(&mg->mg_ms_initialize_lock));
378 	ASSERT(mg->mg_initialize_updating);
379 
380 	while (mg->mg_ms_initializing >= max_initialize_ms) {
381 		cv_wait(&mg->mg_ms_initialize_cv, &mg->mg_ms_initialize_lock);
382 	}
383 	mg->mg_ms_initializing++;
384 	ASSERT3U(mg->mg_ms_initializing, <=, max_initialize_ms);
385 }
386 
387 /*
388  * Mark the metaslab as being initialized to prevent any allocations
389  * on this metaslab. We must also track how many metaslabs are currently
390  * being initialized within a metaslab group and limit them to prevent
391  * allocation failures from occurring because all metaslabs are being
392  * initialized.
393  */
394 static void
395 vdev_initialize_ms_mark(metaslab_t *msp)
396 {
397 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
398 	metaslab_group_t *mg = msp->ms_group;
399 
400 	mutex_enter(&mg->mg_ms_initialize_lock);
401 
402 	/*
403 	 * To keep an accurate count of how many threads are initializing
404 	 * a specific metaslab group, we only allow one thread to mark
405 	 * the metaslab group at a time. This ensures that the value of
406 	 * ms_initializing will be accurate when we decide to mark a metaslab
407 	 * group as being initialized. To do this we force all other threads
408 	 * to wait till the metaslab's mg_initialize_updating flag is no
409 	 * longer set.
410 	 */
411 	vdev_initialize_mg_wait(mg);
412 	mg->mg_initialize_updating = B_TRUE;
413 	if (msp->ms_initializing == 0) {
414 		vdev_initialize_mg_mark(mg);
415 	}
416 	mutex_enter(&msp->ms_lock);
417 	msp->ms_initializing++;
418 	mutex_exit(&msp->ms_lock);
419 
420 	mg->mg_initialize_updating = B_FALSE;
421 	cv_broadcast(&mg->mg_ms_initialize_cv);
422 	mutex_exit(&mg->mg_ms_initialize_lock);
423 }
424 
425 static void
426 vdev_initialize_ms_unmark(metaslab_t *msp)
427 {
428 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
429 	metaslab_group_t *mg = msp->ms_group;
430 	mutex_enter(&mg->mg_ms_initialize_lock);
431 	mutex_enter(&msp->ms_lock);
432 	if (--msp->ms_initializing == 0) {
433 		mg->mg_ms_initializing--;
434 		cv_broadcast(&mg->mg_ms_initialize_cv);
435 	}
436 	mutex_exit(&msp->ms_lock);
437 	mutex_exit(&mg->mg_ms_initialize_lock);
438 }
439 
440 static void
441 vdev_initialize_calculate_progress(vdev_t *vd)
442 {
443 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
444 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
445 	ASSERT(vd->vdev_leaf_zap != 0);
446 
447 	vd->vdev_initialize_bytes_est = 0;
448 	vd->vdev_initialize_bytes_done = 0;
449 
450 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
451 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
452 		mutex_enter(&msp->ms_lock);
453 
454 		uint64_t ms_free = msp->ms_size -
455 		    space_map_allocated(msp->ms_sm);
456 
457 		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
458 			ms_free /= vd->vdev_top->vdev_children;
459 
460 		/*
461 		 * Convert the metaslab range to a physical range
462 		 * on our vdev. We use this to determine if we are
463 		 * in the middle of this metaslab range.
464 		 */
465 		range_seg_t logical_rs, physical_rs;
466 		logical_rs.rs_start = msp->ms_start;
467 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
468 		vdev_xlate(vd, &logical_rs, &physical_rs);
469 
470 		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
471 			vd->vdev_initialize_bytes_est += ms_free;
472 			mutex_exit(&msp->ms_lock);
473 			continue;
474 		} else if (vd->vdev_initialize_last_offset >
475 		    physical_rs.rs_end) {
476 			vd->vdev_initialize_bytes_done += ms_free;
477 			vd->vdev_initialize_bytes_est += ms_free;
478 			mutex_exit(&msp->ms_lock);
479 			continue;
480 		}
481 
482 		/*
483 		 * If we get here, we're in the middle of initializing this
484 		 * metaslab. Load it and walk the free tree for more accurate
485 		 * progress estimation.
486 		 */
487 		vdev_initialize_ms_load(msp);
488 
489 		for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root); rs;
490 		    rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
491 			logical_rs.rs_start = rs->rs_start;
492 			logical_rs.rs_end = rs->rs_end;
493 			vdev_xlate(vd, &logical_rs, &physical_rs);
494 
495 			uint64_t size = physical_rs.rs_end -
496 			    physical_rs.rs_start;
497 			vd->vdev_initialize_bytes_est += size;
498 			if (vd->vdev_initialize_last_offset >
499 			    physical_rs.rs_end) {
500 				vd->vdev_initialize_bytes_done += size;
501 			} else if (vd->vdev_initialize_last_offset >
502 			    physical_rs.rs_start &&
503 			    vd->vdev_initialize_last_offset <
504 			    physical_rs.rs_end) {
505 				vd->vdev_initialize_bytes_done +=
506 				    vd->vdev_initialize_last_offset -
507 				    physical_rs.rs_start;
508 			}
509 		}
510 		mutex_exit(&msp->ms_lock);
511 	}
512 }
513 
514 static void
515 vdev_initialize_load(vdev_t *vd)
516 {
517 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
518 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
519 	ASSERT(vd->vdev_leaf_zap != 0);
520 
521 	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
522 	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
523 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
524 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
525 		    sizeof (vd->vdev_initialize_last_offset), 1,
526 		    &vd->vdev_initialize_last_offset);
527 		ASSERT(err == 0 || err == ENOENT);
528 	}
529 
530 	vdev_initialize_calculate_progress(vd);
531 }
532 
533 
534 /*
535  * Convert the logical range into a physcial range and add it to our
536  * avl tree.
537  */
538 void
539 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
540 {
541 	vdev_t *vd = arg;
542 	range_seg_t logical_rs, physical_rs;
543 	logical_rs.rs_start = start;
544 	logical_rs.rs_end = start + size;
545 
546 	ASSERT(vd->vdev_ops->vdev_op_leaf);
547 	vdev_xlate(vd, &logical_rs, &physical_rs);
548 
549 	IMPLY(vd->vdev_top == vd,
550 	    logical_rs.rs_start == physical_rs.rs_start);
551 	IMPLY(vd->vdev_top == vd,
552 	    logical_rs.rs_end == physical_rs.rs_end);
553 
554 	/* Only add segments that we have not visited yet */
555 	if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
556 		return;
557 
558 	/* Pick up where we left off mid-range. */
559 	if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
560 		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
561 		    "(%llu, %llu)", vd->vdev_path,
562 		    (u_longlong_t)physical_rs.rs_start,
563 		    (u_longlong_t)physical_rs.rs_end,
564 		    (u_longlong_t)vd->vdev_initialize_last_offset,
565 		    (u_longlong_t)physical_rs.rs_end);
566 		ASSERT3U(physical_rs.rs_end, >,
567 		    vd->vdev_initialize_last_offset);
568 		physical_rs.rs_start = vd->vdev_initialize_last_offset;
569 	}
570 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
571 
572 	/*
573 	 * With raidz, it's possible that the logical range does not live on
574 	 * this leaf vdev. We only add the physical range to this vdev's if it
575 	 * has a length greater than 0.
576 	 */
577 	if (physical_rs.rs_end > physical_rs.rs_start) {
578 		range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
579 		    physical_rs.rs_end - physical_rs.rs_start);
580 	} else {
581 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
582 	}
583 }
584 
585 static void
586 vdev_initialize_thread(void *arg)
587 {
588 	vdev_t *vd = arg;
589 	spa_t *spa = vd->vdev_spa;
590 	int error = 0;
591 	uint64_t ms_count = 0;
592 
593 	ASSERT(vdev_is_concrete(vd));
594 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
595 
596 	vd->vdev_initialize_last_offset = 0;
597 	vdev_initialize_load(vd);
598 
599 	abd_t *deadbeef = vdev_initialize_block_alloc();
600 
601 	vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
602 
603 	for (uint64_t i = 0; !vd->vdev_detached &&
604 	    i < vd->vdev_top->vdev_ms_count; i++) {
605 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
606 
607 		/*
608 		 * If we've expanded the top-level vdev or it's our
609 		 * first pass, calculate our progress.
610 		 */
611 		if (vd->vdev_top->vdev_ms_count != ms_count) {
612 			vdev_initialize_calculate_progress(vd);
613 			ms_count = vd->vdev_top->vdev_ms_count;
614 		}
615 
616 		vdev_initialize_ms_mark(msp);
617 		mutex_enter(&msp->ms_lock);
618 		vdev_initialize_ms_load(msp);
619 
620 		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
621 		    vd);
622 		mutex_exit(&msp->ms_lock);
623 
624 		spa_config_exit(spa, SCL_CONFIG, FTAG);
625 		error = vdev_initialize_ranges(vd, deadbeef);
626 		vdev_initialize_ms_unmark(msp);
627 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
628 
629 		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
630 		if (error != 0)
631 			break;
632 	}
633 
634 	spa_config_exit(spa, SCL_CONFIG, FTAG);
635 	mutex_enter(&vd->vdev_initialize_io_lock);
636 	while (vd->vdev_initialize_inflight > 0) {
637 		cv_wait(&vd->vdev_initialize_io_cv,
638 		    &vd->vdev_initialize_io_lock);
639 	}
640 	mutex_exit(&vd->vdev_initialize_io_lock);
641 
642 	range_tree_destroy(vd->vdev_initialize_tree);
643 	vdev_initialize_block_free(deadbeef);
644 	vd->vdev_initialize_tree = NULL;
645 
646 	mutex_enter(&vd->vdev_initialize_lock);
647 	if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
648 		vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
649 	}
650 	ASSERT(vd->vdev_initialize_thread != NULL ||
651 	    vd->vdev_initialize_inflight == 0);
652 
653 	/*
654 	 * Drop the vdev_initialize_lock while we sync out the
655 	 * txg since it's possible that a device might be trying to
656 	 * come online and must check to see if it needs to restart an
657 	 * initialization. That thread will be holding the spa_config_lock
658 	 * which would prevent the txg_wait_synced from completing.
659 	 */
660 	mutex_exit(&vd->vdev_initialize_lock);
661 	txg_wait_synced(spa_get_dsl(spa), 0);
662 	mutex_enter(&vd->vdev_initialize_lock);
663 
664 	vd->vdev_initialize_thread = NULL;
665 	cv_broadcast(&vd->vdev_initialize_cv);
666 	mutex_exit(&vd->vdev_initialize_lock);
667 }
668 
669 /*
670  * Initiates a device. Caller must hold vdev_initialize_lock.
671  * Device must be a leaf and not already be initializing.
672  */
673 void
674 vdev_initialize(vdev_t *vd)
675 {
676 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
677 	ASSERT(vd->vdev_ops->vdev_op_leaf);
678 	ASSERT(vdev_is_concrete(vd));
679 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
680 	ASSERT(!vd->vdev_detached);
681 	ASSERT(!vd->vdev_initialize_exit_wanted);
682 	ASSERT(!vd->vdev_top->vdev_removing);
683 
684 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
685 	vd->vdev_initialize_thread = thread_create(NULL, 0,
686 	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
687 }
688 
689 /*
690  * Stop initializng a device, with the resultant initialing state being
691  * tgt_state. Blocks until the initializing thread has exited.
692  * Caller must hold vdev_initialize_lock and must not be writing to the spa
693  * config, as the initializing thread may try to enter the config as a reader
694  * before exiting.
695  */
696 void
697 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state)
698 {
699 	spa_t *spa = vd->vdev_spa;
700 	ASSERT(!spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_WRITER));
701 
702 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
703 	ASSERT(vd->vdev_ops->vdev_op_leaf);
704 	ASSERT(vdev_is_concrete(vd));
705 
706 	/*
707 	 * Allow cancel requests to proceed even if the initialize thread
708 	 * has stopped.
709 	 */
710 	if (vd->vdev_initialize_thread == NULL &&
711 	    tgt_state != VDEV_INITIALIZE_CANCELED) {
712 		return;
713 	}
714 
715 	vdev_initialize_change_state(vd, tgt_state);
716 	vd->vdev_initialize_exit_wanted = B_TRUE;
717 	while (vd->vdev_initialize_thread != NULL)
718 		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
719 
720 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
721 	vd->vdev_initialize_exit_wanted = B_FALSE;
722 }
723 
724 static void
725 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state)
726 {
727 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
728 		mutex_enter(&vd->vdev_initialize_lock);
729 		vdev_initialize_stop(vd, tgt_state);
730 		mutex_exit(&vd->vdev_initialize_lock);
731 		return;
732 	}
733 
734 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
735 		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state);
736 	}
737 }
738 
739 /*
740  * Convenience function to stop initializing of a vdev tree and set all
741  * initialize thread pointers to NULL.
742  */
743 void
744 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
745 {
746 	vdev_initialize_stop_all_impl(vd, tgt_state);
747 
748 	if (vd->vdev_spa->spa_sync_on) {
749 		/* Make sure that our state has been synced to disk */
750 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
751 	}
752 }
753 
754 void
755 vdev_initialize_restart(vdev_t *vd)
756 {
757 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
758 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
759 
760 	if (vd->vdev_leaf_zap != 0) {
761 		mutex_enter(&vd->vdev_initialize_lock);
762 		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
763 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
764 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
765 		    sizeof (initialize_state), 1, &initialize_state);
766 		ASSERT(err == 0 || err == ENOENT);
767 		vd->vdev_initialize_state = initialize_state;
768 
769 		uint64_t timestamp = 0;
770 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
771 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
772 		    sizeof (timestamp), 1, &timestamp);
773 		ASSERT(err == 0 || err == ENOENT);
774 		vd->vdev_initialize_action_time = (time_t)timestamp;
775 
776 		if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
777 		    vd->vdev_offline) {
778 			/* load progress for reporting, but don't resume */
779 			vdev_initialize_load(vd);
780 		} else if (vd->vdev_initialize_state ==
781 		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd)) {
782 			vdev_initialize(vd);
783 		}
784 
785 		mutex_exit(&vd->vdev_initialize_lock);
786 	}
787 
788 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
789 		vdev_initialize_restart(vd->vdev_child[i]);
790 	}
791 }
792