1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35
36 /*
37 * Value that is written to disk during initialization.
38 */
39 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
40
41 /* maximum number of I/Os outstanding per leaf vdev */
42 int zfs_initialize_limit = 1;
43
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
46
47 static boolean_t
vdev_initialize_should_stop(vdev_t * vd)48 vdev_initialize_should_stop(vdev_t *vd)
49 {
50 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51 vd->vdev_detached || vd->vdev_top->vdev_removing);
52 }
53
54 static void
vdev_initialize_zap_update_sync(void * arg,dmu_tx_t * tx)55 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
56 {
57 /*
58 * We pass in the guid instead of the vdev_t since the vdev may
59 * have been freed prior to the sync task being processed. This
60 * happens when a vdev is detached as we call spa_config_vdev_exit(),
61 * stop the initializing thread, schedule the sync task, and free
62 * the vdev. Later when the scheduled sync task is invoked, it would
63 * find that the vdev has been freed.
64 */
65 uint64_t guid = *(uint64_t *)arg;
66 uint64_t txg = dmu_tx_get_txg(tx);
67 kmem_free(arg, sizeof (uint64_t));
68
69 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
70 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
71 return;
72
73 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
74 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
75
76 VERIFY(vd->vdev_leaf_zap != 0);
77
78 objset_t *mos = vd->vdev_spa->spa_meta_objset;
79
80 if (last_offset > 0) {
81 vd->vdev_initialize_last_offset = last_offset;
82 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
83 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
84 sizeof (last_offset), 1, &last_offset, tx));
85 }
86 if (vd->vdev_initialize_action_time > 0) {
87 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
88 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
90 1, &val, tx));
91 }
92
93 uint64_t initialize_state = vd->vdev_initialize_state;
94 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
96 &initialize_state, tx));
97 }
98
99 static void
vdev_initialize_change_state(vdev_t * vd,vdev_initializing_state_t new_state)100 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
101 {
102 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
103 spa_t *spa = vd->vdev_spa;
104
105 if (new_state == vd->vdev_initialize_state)
106 return;
107
108 /*
109 * Copy the vd's guid, this will be freed by the sync task.
110 */
111 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
112 *guid = vd->vdev_guid;
113
114 /*
115 * If we're suspending, then preserving the original start time.
116 */
117 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
118 vd->vdev_initialize_action_time = gethrestime_sec();
119 }
120 vd->vdev_initialize_state = new_state;
121
122 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
123 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
124 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
125 guid, 2, ZFS_SPACE_CHECK_NONE, tx);
126
127 switch (new_state) {
128 case VDEV_INITIALIZE_ACTIVE:
129 spa_history_log_internal(spa, "initialize", tx,
130 "vdev=%s activated", vd->vdev_path);
131 break;
132 case VDEV_INITIALIZE_SUSPENDED:
133 spa_history_log_internal(spa, "initialize", tx,
134 "vdev=%s suspended", vd->vdev_path);
135 break;
136 case VDEV_INITIALIZE_CANCELED:
137 spa_history_log_internal(spa, "initialize", tx,
138 "vdev=%s canceled", vd->vdev_path);
139 break;
140 case VDEV_INITIALIZE_COMPLETE:
141 spa_history_log_internal(spa, "initialize", tx,
142 "vdev=%s complete", vd->vdev_path);
143 break;
144 default:
145 panic("invalid state %llu", (unsigned long long)new_state);
146 }
147
148 dmu_tx_commit(tx);
149 }
150
151 static void
vdev_initialize_cb(zio_t * zio)152 vdev_initialize_cb(zio_t *zio)
153 {
154 vdev_t *vd = zio->io_vd;
155 mutex_enter(&vd->vdev_initialize_io_lock);
156 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
157 /*
158 * The I/O failed because the vdev was unavailable; roll the
159 * last offset back. (This works because spa_sync waits on
160 * spa_txg_zio before it runs sync tasks.)
161 */
162 uint64_t *off =
163 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
164 *off = MIN(*off, zio->io_offset);
165 } else {
166 /*
167 * Since initializing is best-effort, we ignore I/O errors and
168 * rely on vdev_probe to determine if the errors are more
169 * critical.
170 */
171 if (zio->io_error != 0)
172 vd->vdev_stat.vs_initialize_errors++;
173
174 vd->vdev_initialize_bytes_done += zio->io_orig_size;
175 }
176 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
177 vd->vdev_initialize_inflight--;
178 cv_broadcast(&vd->vdev_initialize_io_cv);
179 mutex_exit(&vd->vdev_initialize_io_lock);
180
181 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
182 }
183
184 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
185 static int
vdev_initialize_write(vdev_t * vd,uint64_t start,uint64_t size,abd_t * data)186 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
187 {
188 spa_t *spa = vd->vdev_spa;
189
190 /* Limit inflight initializing I/Os */
191 mutex_enter(&vd->vdev_initialize_io_lock);
192 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
193 cv_wait(&vd->vdev_initialize_io_cv,
194 &vd->vdev_initialize_io_lock);
195 }
196 vd->vdev_initialize_inflight++;
197 mutex_exit(&vd->vdev_initialize_io_lock);
198
199 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
200 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
201 uint64_t txg = dmu_tx_get_txg(tx);
202
203 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
204 mutex_enter(&vd->vdev_initialize_lock);
205
206 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
207 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
208 *guid = vd->vdev_guid;
209
210 /* This is the first write of this txg. */
211 dsl_sync_task_nowait(spa_get_dsl(spa),
212 vdev_initialize_zap_update_sync, guid, 2,
213 ZFS_SPACE_CHECK_RESERVED, tx);
214 }
215
216 /*
217 * We know the vdev struct will still be around since all
218 * consumers of vdev_free must stop the initialization first.
219 */
220 if (vdev_initialize_should_stop(vd)) {
221 mutex_enter(&vd->vdev_initialize_io_lock);
222 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
223 vd->vdev_initialize_inflight--;
224 mutex_exit(&vd->vdev_initialize_io_lock);
225 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
226 mutex_exit(&vd->vdev_initialize_lock);
227 dmu_tx_commit(tx);
228 return (SET_ERROR(EINTR));
229 }
230 mutex_exit(&vd->vdev_initialize_lock);
231
232 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
233 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
234 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
235 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
236 /* vdev_initialize_cb releases SCL_STATE_ALL */
237
238 dmu_tx_commit(tx);
239
240 return (0);
241 }
242
243 /*
244 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
245 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
246 * allocation will guarantee these for us.
247 */
248 /* ARGSUSED */
249 static int
vdev_initialize_block_fill(void * buf,size_t len,void * unused)250 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
251 {
252 ASSERT0(len % sizeof (uint64_t));
253 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
254 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
255 }
256 return (0);
257 }
258
259 static abd_t *
vdev_initialize_block_alloc()260 vdev_initialize_block_alloc()
261 {
262 /* Allocate ABD for filler data */
263 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
264
265 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
266 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
267 vdev_initialize_block_fill, NULL);
268
269 return (data);
270 }
271
272 static void
vdev_initialize_block_free(abd_t * data)273 vdev_initialize_block_free(abd_t *data)
274 {
275 abd_free(data);
276 }
277
278 static int
vdev_initialize_ranges(vdev_t * vd,abd_t * data)279 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
280 {
281 range_tree_t *rt = vd->vdev_initialize_tree;
282 zfs_btree_t *bt = &rt->rt_root;
283 zfs_btree_index_t where;
284
285 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
286 rs = zfs_btree_next(bt, &where, &where)) {
287 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
288
289 /* Split range into legally-sized physical chunks */
290 uint64_t writes_required =
291 ((size - 1) / zfs_initialize_chunk_size) + 1;
292
293 for (uint64_t w = 0; w < writes_required; w++) {
294 int error;
295
296 error = vdev_initialize_write(vd,
297 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
298 (w * zfs_initialize_chunk_size),
299 MIN(size - (w * zfs_initialize_chunk_size),
300 zfs_initialize_chunk_size), data);
301 if (error != 0)
302 return (error);
303 }
304 }
305 return (0);
306 }
307
308 static void
vdev_initialize_calculate_progress(vdev_t * vd)309 vdev_initialize_calculate_progress(vdev_t *vd)
310 {
311 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
312 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
313 ASSERT(vd->vdev_leaf_zap != 0);
314
315 vd->vdev_initialize_bytes_est = 0;
316 vd->vdev_initialize_bytes_done = 0;
317
318 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
319 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
320 mutex_enter(&msp->ms_lock);
321
322 uint64_t ms_free = msp->ms_size -
323 metaslab_allocated_space(msp);
324
325 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
326 ms_free /= vd->vdev_top->vdev_children;
327
328 /*
329 * Convert the metaslab range to a physical range
330 * on our vdev. We use this to determine if we are
331 * in the middle of this metaslab range.
332 */
333 range_seg64_t logical_rs, physical_rs;
334 logical_rs.rs_start = msp->ms_start;
335 logical_rs.rs_end = msp->ms_start + msp->ms_size;
336 vdev_xlate(vd, &logical_rs, &physical_rs);
337
338 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
339 vd->vdev_initialize_bytes_est += ms_free;
340 mutex_exit(&msp->ms_lock);
341 continue;
342 } else if (vd->vdev_initialize_last_offset >
343 physical_rs.rs_end) {
344 vd->vdev_initialize_bytes_done += ms_free;
345 vd->vdev_initialize_bytes_est += ms_free;
346 mutex_exit(&msp->ms_lock);
347 continue;
348 }
349
350 /*
351 * If we get here, we're in the middle of initializing this
352 * metaslab. Load it and walk the free tree for more accurate
353 * progress estimation.
354 */
355 VERIFY0(metaslab_load(msp));
356
357 zfs_btree_index_t where;
358 range_tree_t *rt = msp->ms_allocatable;
359 for (range_seg_t *rs =
360 zfs_btree_first(&rt->rt_root, &where); rs;
361 rs = zfs_btree_next(&rt->rt_root, &where,
362 &where)) {
363 logical_rs.rs_start = rs_get_start(rs, rt);
364 logical_rs.rs_end = rs_get_end(rs, rt);
365 vdev_xlate(vd, &logical_rs, &physical_rs);
366
367 uint64_t size = physical_rs.rs_end -
368 physical_rs.rs_start;
369 vd->vdev_initialize_bytes_est += size;
370 if (vd->vdev_initialize_last_offset >
371 physical_rs.rs_end) {
372 vd->vdev_initialize_bytes_done += size;
373 } else if (vd->vdev_initialize_last_offset >
374 physical_rs.rs_start &&
375 vd->vdev_initialize_last_offset <
376 physical_rs.rs_end) {
377 vd->vdev_initialize_bytes_done +=
378 vd->vdev_initialize_last_offset -
379 physical_rs.rs_start;
380 }
381 }
382 mutex_exit(&msp->ms_lock);
383 }
384 }
385
386 static int
vdev_initialize_load(vdev_t * vd)387 vdev_initialize_load(vdev_t *vd)
388 {
389 int err = 0;
390 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
391 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
392 ASSERT(vd->vdev_leaf_zap != 0);
393
394 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
395 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
396 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
397 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
398 sizeof (vd->vdev_initialize_last_offset), 1,
399 &vd->vdev_initialize_last_offset);
400 if (err == ENOENT) {
401 vd->vdev_initialize_last_offset = 0;
402 err = 0;
403 }
404 }
405
406 vdev_initialize_calculate_progress(vd);
407 return (err);
408 }
409
410
411 /*
412 * Convert the logical range into a physical range and add it to our
413 * avl tree.
414 */
415 void
vdev_initialize_range_add(void * arg,uint64_t start,uint64_t size)416 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
417 {
418 vdev_t *vd = arg;
419 range_seg64_t logical_rs, physical_rs;
420 logical_rs.rs_start = start;
421 logical_rs.rs_end = start + size;
422
423 ASSERT(vd->vdev_ops->vdev_op_leaf);
424 vdev_xlate(vd, &logical_rs, &physical_rs);
425
426 IMPLY(vd->vdev_top == vd,
427 logical_rs.rs_start == physical_rs.rs_start);
428 IMPLY(vd->vdev_top == vd,
429 logical_rs.rs_end == physical_rs.rs_end);
430
431 /* Only add segments that we have not visited yet */
432 if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
433 return;
434
435 /* Pick up where we left off mid-range. */
436 if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
437 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
438 "(%llu, %llu)", vd->vdev_path,
439 (u_longlong_t)physical_rs.rs_start,
440 (u_longlong_t)physical_rs.rs_end,
441 (u_longlong_t)vd->vdev_initialize_last_offset,
442 (u_longlong_t)physical_rs.rs_end);
443 ASSERT3U(physical_rs.rs_end, >,
444 vd->vdev_initialize_last_offset);
445 physical_rs.rs_start = vd->vdev_initialize_last_offset;
446 }
447 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
448
449 /*
450 * With raidz, it's possible that the logical range does not live on
451 * this leaf vdev. We only add the physical range to this vdev's if it
452 * has a length greater than 0.
453 */
454 if (physical_rs.rs_end > physical_rs.rs_start) {
455 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
456 physical_rs.rs_end - physical_rs.rs_start);
457 } else {
458 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
459 }
460 }
461
462 static void
vdev_initialize_thread(void * arg)463 vdev_initialize_thread(void *arg)
464 {
465 vdev_t *vd = arg;
466 spa_t *spa = vd->vdev_spa;
467 int error = 0;
468 uint64_t ms_count = 0;
469
470 ASSERT(vdev_is_concrete(vd));
471 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
472
473 vd->vdev_initialize_last_offset = 0;
474 VERIFY0(vdev_initialize_load(vd));
475
476 abd_t *deadbeef = vdev_initialize_block_alloc();
477
478 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
479 0, 0);
480
481 for (uint64_t i = 0; !vd->vdev_detached &&
482 i < vd->vdev_top->vdev_ms_count; i++) {
483 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
484 boolean_t unload_when_done = B_FALSE;
485
486 /*
487 * If we've expanded the top-level vdev or it's our
488 * first pass, calculate our progress.
489 */
490 if (vd->vdev_top->vdev_ms_count != ms_count) {
491 vdev_initialize_calculate_progress(vd);
492 ms_count = vd->vdev_top->vdev_ms_count;
493 }
494
495 spa_config_exit(spa, SCL_CONFIG, FTAG);
496 metaslab_disable(msp);
497 mutex_enter(&msp->ms_lock);
498 if (!msp->ms_loaded && !msp->ms_loading)
499 unload_when_done = B_TRUE;
500 VERIFY0(metaslab_load(msp));
501
502 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
503 vd);
504 mutex_exit(&msp->ms_lock);
505
506 error = vdev_initialize_ranges(vd, deadbeef);
507 metaslab_enable(msp, B_TRUE, unload_when_done);
508 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
509
510 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
511 if (error != 0)
512 break;
513 }
514
515 spa_config_exit(spa, SCL_CONFIG, FTAG);
516 mutex_enter(&vd->vdev_initialize_io_lock);
517 while (vd->vdev_initialize_inflight > 0) {
518 cv_wait(&vd->vdev_initialize_io_cv,
519 &vd->vdev_initialize_io_lock);
520 }
521 mutex_exit(&vd->vdev_initialize_io_lock);
522
523 range_tree_destroy(vd->vdev_initialize_tree);
524 vdev_initialize_block_free(deadbeef);
525 vd->vdev_initialize_tree = NULL;
526
527 mutex_enter(&vd->vdev_initialize_lock);
528 if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
529 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
530 }
531 ASSERT(vd->vdev_initialize_thread != NULL ||
532 vd->vdev_initialize_inflight == 0);
533
534 /*
535 * Drop the vdev_initialize_lock while we sync out the
536 * txg since it's possible that a device might be trying to
537 * come online and must check to see if it needs to restart an
538 * initialization. That thread will be holding the spa_config_lock
539 * which would prevent the txg_wait_synced from completing.
540 */
541 mutex_exit(&vd->vdev_initialize_lock);
542 txg_wait_synced(spa_get_dsl(spa), 0);
543 mutex_enter(&vd->vdev_initialize_lock);
544
545 vd->vdev_initialize_thread = NULL;
546 cv_broadcast(&vd->vdev_initialize_cv);
547 mutex_exit(&vd->vdev_initialize_lock);
548 }
549
550 /*
551 * Initiates a device. Caller must hold vdev_initialize_lock.
552 * Device must be a leaf and not already be initializing.
553 */
554 void
vdev_initialize(vdev_t * vd)555 vdev_initialize(vdev_t *vd)
556 {
557 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
558 ASSERT(vd->vdev_ops->vdev_op_leaf);
559 ASSERT(vdev_is_concrete(vd));
560 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
561 ASSERT(!vd->vdev_detached);
562 ASSERT(!vd->vdev_initialize_exit_wanted);
563 ASSERT(!vd->vdev_top->vdev_removing);
564
565 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
566 vd->vdev_initialize_thread = thread_create(NULL, 0,
567 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
568 }
569
570 /*
571 * Wait for the initialize thread to be terminated (cancelled or stopped).
572 */
573 static void
vdev_initialize_stop_wait_impl(vdev_t * vd)574 vdev_initialize_stop_wait_impl(vdev_t *vd)
575 {
576 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
577
578 while (vd->vdev_initialize_thread != NULL)
579 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
580
581 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
582 vd->vdev_initialize_exit_wanted = B_FALSE;
583 }
584
585 /*
586 * Wait for vdev initialize threads which were either to cleanly exit.
587 */
588 void
vdev_initialize_stop_wait(spa_t * spa,list_t * vd_list)589 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
590 {
591 vdev_t *vd;
592
593 ASSERT(MUTEX_HELD(&spa_namespace_lock));
594
595 while ((vd = list_remove_head(vd_list)) != NULL) {
596 mutex_enter(&vd->vdev_initialize_lock);
597 vdev_initialize_stop_wait_impl(vd);
598 mutex_exit(&vd->vdev_initialize_lock);
599 }
600 }
601
602 /*
603 * Stop initializing a device, with the resultant initializing state being
604 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
605 * a list_t is provided the stopping vdev is inserted in to the list. Callers
606 * are then required to call vdev_initialize_stop_wait() to block for all the
607 * initialization threads to exit. The caller must hold vdev_initialize_lock
608 * and must not be writing to the spa config, as the initializing thread may
609 * try to enter the config as a reader before exiting.
610 */
611 void
vdev_initialize_stop(vdev_t * vd,vdev_initializing_state_t tgt_state,list_t * vd_list)612 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
613 list_t *vd_list)
614 {
615 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
616 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
617 ASSERT(vd->vdev_ops->vdev_op_leaf);
618 ASSERT(vdev_is_concrete(vd));
619
620 /*
621 * Allow cancel requests to proceed even if the initialize thread
622 * has stopped.
623 */
624 if (vd->vdev_initialize_thread == NULL &&
625 tgt_state != VDEV_INITIALIZE_CANCELED) {
626 return;
627 }
628
629 vdev_initialize_change_state(vd, tgt_state);
630 vd->vdev_initialize_exit_wanted = B_TRUE;
631
632 if (vd_list == NULL) {
633 vdev_initialize_stop_wait_impl(vd);
634 } else {
635 ASSERT(MUTEX_HELD(&spa_namespace_lock));
636 list_insert_tail(vd_list, vd);
637 }
638 }
639
640 static void
vdev_initialize_stop_all_impl(vdev_t * vd,vdev_initializing_state_t tgt_state,list_t * vd_list)641 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
642 list_t *vd_list)
643 {
644 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
645 mutex_enter(&vd->vdev_initialize_lock);
646 vdev_initialize_stop(vd, tgt_state, vd_list);
647 mutex_exit(&vd->vdev_initialize_lock);
648 return;
649 }
650
651 for (uint64_t i = 0; i < vd->vdev_children; i++) {
652 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
653 vd_list);
654 }
655 }
656
657 /*
658 * Convenience function to stop initializing of a vdev tree and set all
659 * initialize thread pointers to NULL.
660 */
661 void
vdev_initialize_stop_all(vdev_t * vd,vdev_initializing_state_t tgt_state)662 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
663 {
664 spa_t *spa = vd->vdev_spa;
665 list_t vd_list;
666
667 ASSERT(MUTEX_HELD(&spa_namespace_lock));
668
669 list_create(&vd_list, sizeof (vdev_t),
670 offsetof(vdev_t, vdev_initialize_node));
671
672 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
673 vdev_initialize_stop_wait(spa, &vd_list);
674
675 if (vd->vdev_spa->spa_sync_on) {
676 /* Make sure that our state has been synced to disk */
677 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
678 }
679
680 list_destroy(&vd_list);
681 }
682
683 void
vdev_initialize_restart(vdev_t * vd)684 vdev_initialize_restart(vdev_t *vd)
685 {
686 ASSERT(MUTEX_HELD(&spa_namespace_lock));
687 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
688
689 if (vd->vdev_leaf_zap != 0) {
690 mutex_enter(&vd->vdev_initialize_lock);
691 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
692 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
693 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
694 sizeof (initialize_state), 1, &initialize_state);
695 ASSERT(err == 0 || err == ENOENT);
696 vd->vdev_initialize_state = initialize_state;
697
698 uint64_t timestamp = 0;
699 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
700 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
701 sizeof (timestamp), 1, ×tamp);
702 ASSERT(err == 0 || err == ENOENT);
703 vd->vdev_initialize_action_time = (time_t)timestamp;
704
705 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
706 vd->vdev_offline) {
707 /* load progress for reporting, but don't resume */
708 VERIFY0(vdev_initialize_load(vd));
709 } else if (vd->vdev_initialize_state ==
710 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
711 !vd->vdev_top->vdev_removing &&
712 vd->vdev_initialize_thread == NULL) {
713 vdev_initialize(vd);
714 }
715
716 mutex_exit(&vd->vdev_initialize_lock);
717 }
718
719 for (uint64_t i = 0; i < vd->vdev_children; i++) {
720 vdev_initialize_restart(vd->vdev_child[i]);
721 }
722 }
723