xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_initialize.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35 
36 /*
37  * Value that is written to disk during initialization.
38  */
39 uint64_t zfs_initialize_value = 0xdeadbeefdeadbeefULL;
40 
41 /* maximum number of I/Os outstanding per leaf vdev */
42 int zfs_initialize_limit = 1;
43 
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
46 
47 static boolean_t
48 vdev_initialize_should_stop(vdev_t *vd)
49 {
50 	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
52 }
53 
54 static void
55 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
56 {
57 	/*
58 	 * We pass in the guid instead of the vdev_t since the vdev may
59 	 * have been freed prior to the sync task being processed. This
60 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
61 	 * stop the initializing thread, schedule the sync task, and free
62 	 * the vdev. Later when the scheduled sync task is invoked, it would
63 	 * find that the vdev has been freed.
64 	 */
65 	uint64_t guid = *(uint64_t *)arg;
66 	uint64_t txg = dmu_tx_get_txg(tx);
67 	kmem_free(arg, sizeof (uint64_t));
68 
69 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
70 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
71 		return;
72 
73 	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
74 	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
75 
76 	VERIFY(vd->vdev_leaf_zap != 0);
77 
78 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
79 
80 	if (last_offset > 0) {
81 		vd->vdev_initialize_last_offset = last_offset;
82 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
83 		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
84 		    sizeof (last_offset), 1, &last_offset, tx));
85 	}
86 	if (vd->vdev_initialize_action_time > 0) {
87 		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
88 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
90 		    1, &val, tx));
91 	}
92 
93 	uint64_t initialize_state = vd->vdev_initialize_state;
94 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
96 	    &initialize_state, tx));
97 }
98 
99 static void
100 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
101 {
102 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
103 	spa_t *spa = vd->vdev_spa;
104 
105 	if (new_state == vd->vdev_initialize_state)
106 		return;
107 
108 	/*
109 	 * Copy the vd's guid, this will be freed by the sync task.
110 	 */
111 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
112 	*guid = vd->vdev_guid;
113 
114 	/*
115 	 * If we're suspending, then preserving the original start time.
116 	 */
117 	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
118 		vd->vdev_initialize_action_time = gethrestime_sec();
119 	}
120 	vd->vdev_initialize_state = new_state;
121 
122 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
123 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
124 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
125 	    guid, 2, ZFS_SPACE_CHECK_NONE, tx);
126 
127 	switch (new_state) {
128 	case VDEV_INITIALIZE_ACTIVE:
129 		spa_history_log_internal(spa, "initialize", tx,
130 		    "vdev=%s activated", vd->vdev_path);
131 		break;
132 	case VDEV_INITIALIZE_SUSPENDED:
133 		spa_history_log_internal(spa, "initialize", tx,
134 		    "vdev=%s suspended", vd->vdev_path);
135 		break;
136 	case VDEV_INITIALIZE_CANCELED:
137 		spa_history_log_internal(spa, "initialize", tx,
138 		    "vdev=%s canceled", vd->vdev_path);
139 		break;
140 	case VDEV_INITIALIZE_COMPLETE:
141 		spa_history_log_internal(spa, "initialize", tx,
142 		    "vdev=%s complete", vd->vdev_path);
143 		break;
144 	default:
145 		panic("invalid state %llu", (unsigned long long)new_state);
146 	}
147 
148 	dmu_tx_commit(tx);
149 }
150 
151 static void
152 vdev_initialize_cb(zio_t *zio)
153 {
154 	vdev_t *vd = zio->io_vd;
155 	mutex_enter(&vd->vdev_initialize_io_lock);
156 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
157 		/*
158 		 * The I/O failed because the vdev was unavailable; roll the
159 		 * last offset back. (This works because spa_sync waits on
160 		 * spa_txg_zio before it runs sync tasks.)
161 		 */
162 		uint64_t *off =
163 		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
164 		*off = MIN(*off, zio->io_offset);
165 	} else {
166 		/*
167 		 * Since initializing is best-effort, we ignore I/O errors and
168 		 * rely on vdev_probe to determine if the errors are more
169 		 * critical.
170 		 */
171 		if (zio->io_error != 0)
172 			vd->vdev_stat.vs_initialize_errors++;
173 
174 		vd->vdev_initialize_bytes_done += zio->io_orig_size;
175 	}
176 	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
177 	vd->vdev_initialize_inflight--;
178 	cv_broadcast(&vd->vdev_initialize_io_cv);
179 	mutex_exit(&vd->vdev_initialize_io_lock);
180 
181 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
182 }
183 
184 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
185 static int
186 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
187 {
188 	spa_t *spa = vd->vdev_spa;
189 
190 	/* Limit inflight initializing I/Os */
191 	mutex_enter(&vd->vdev_initialize_io_lock);
192 	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
193 		cv_wait(&vd->vdev_initialize_io_cv,
194 		    &vd->vdev_initialize_io_lock);
195 	}
196 	vd->vdev_initialize_inflight++;
197 	mutex_exit(&vd->vdev_initialize_io_lock);
198 
199 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
200 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
201 	uint64_t txg = dmu_tx_get_txg(tx);
202 
203 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
204 	mutex_enter(&vd->vdev_initialize_lock);
205 
206 	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
207 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
208 		*guid = vd->vdev_guid;
209 
210 		/* This is the first write of this txg. */
211 		dsl_sync_task_nowait(spa_get_dsl(spa),
212 		    vdev_initialize_zap_update_sync, guid, 2,
213 		    ZFS_SPACE_CHECK_RESERVED, tx);
214 	}
215 
216 	/*
217 	 * We know the vdev struct will still be around since all
218 	 * consumers of vdev_free must stop the initialization first.
219 	 */
220 	if (vdev_initialize_should_stop(vd)) {
221 		mutex_enter(&vd->vdev_initialize_io_lock);
222 		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
223 		vd->vdev_initialize_inflight--;
224 		mutex_exit(&vd->vdev_initialize_io_lock);
225 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
226 		mutex_exit(&vd->vdev_initialize_lock);
227 		dmu_tx_commit(tx);
228 		return (SET_ERROR(EINTR));
229 	}
230 	mutex_exit(&vd->vdev_initialize_lock);
231 
232 	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
233 	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
234 	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
235 	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
236 	/* vdev_initialize_cb releases SCL_STATE_ALL */
237 
238 	dmu_tx_commit(tx);
239 
240 	return (0);
241 }
242 
243 /*
244  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
245  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
246  * allocation will guarantee these for us.
247  */
248 /* ARGSUSED */
249 static int
250 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
251 {
252 	ASSERT0(len % sizeof (uint64_t));
253 	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
254 		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
255 	}
256 	return (0);
257 }
258 
259 static abd_t *
260 vdev_initialize_block_alloc()
261 {
262 	/* Allocate ABD for filler data */
263 	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
264 
265 	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
266 	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
267 	    vdev_initialize_block_fill, NULL);
268 
269 	return (data);
270 }
271 
272 static void
273 vdev_initialize_block_free(abd_t *data)
274 {
275 	abd_free(data);
276 }
277 
278 static int
279 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
280 {
281 	avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
282 
283 	for (range_seg_t *rs = avl_first(rt); rs != NULL;
284 	    rs = AVL_NEXT(rt, rs)) {
285 		uint64_t size = rs->rs_end - rs->rs_start;
286 
287 		/* Split range into legally-sized physical chunks */
288 		uint64_t writes_required =
289 		    ((size - 1) / zfs_initialize_chunk_size) + 1;
290 
291 		for (uint64_t w = 0; w < writes_required; w++) {
292 			int error;
293 
294 			error = vdev_initialize_write(vd,
295 			    VDEV_LABEL_START_SIZE + rs->rs_start +
296 			    (w * zfs_initialize_chunk_size),
297 			    MIN(size - (w * zfs_initialize_chunk_size),
298 			    zfs_initialize_chunk_size), data);
299 			if (error != 0)
300 				return (error);
301 		}
302 	}
303 	return (0);
304 }
305 
306 static void
307 vdev_initialize_calculate_progress(vdev_t *vd)
308 {
309 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
310 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
311 	ASSERT(vd->vdev_leaf_zap != 0);
312 
313 	vd->vdev_initialize_bytes_est = 0;
314 	vd->vdev_initialize_bytes_done = 0;
315 
316 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
317 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
318 		mutex_enter(&msp->ms_lock);
319 
320 		uint64_t ms_free = msp->ms_size -
321 		    metaslab_allocated_space(msp);
322 
323 		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
324 			ms_free /= vd->vdev_top->vdev_children;
325 
326 		/*
327 		 * Convert the metaslab range to a physical range
328 		 * on our vdev. We use this to determine if we are
329 		 * in the middle of this metaslab range.
330 		 */
331 		range_seg_t logical_rs, physical_rs;
332 		logical_rs.rs_start = msp->ms_start;
333 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
334 		vdev_xlate(vd, &logical_rs, &physical_rs);
335 
336 		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
337 			vd->vdev_initialize_bytes_est += ms_free;
338 			mutex_exit(&msp->ms_lock);
339 			continue;
340 		} else if (vd->vdev_initialize_last_offset >
341 		    physical_rs.rs_end) {
342 			vd->vdev_initialize_bytes_done += ms_free;
343 			vd->vdev_initialize_bytes_est += ms_free;
344 			mutex_exit(&msp->ms_lock);
345 			continue;
346 		}
347 
348 		/*
349 		 * If we get here, we're in the middle of initializing this
350 		 * metaslab. Load it and walk the free tree for more accurate
351 		 * progress estimation.
352 		 */
353 		VERIFY0(metaslab_load(msp));
354 
355 		for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
356 		    rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
357 			logical_rs.rs_start = rs->rs_start;
358 			logical_rs.rs_end = rs->rs_end;
359 			vdev_xlate(vd, &logical_rs, &physical_rs);
360 
361 			uint64_t size = physical_rs.rs_end -
362 			    physical_rs.rs_start;
363 			vd->vdev_initialize_bytes_est += size;
364 			if (vd->vdev_initialize_last_offset >
365 			    physical_rs.rs_end) {
366 				vd->vdev_initialize_bytes_done += size;
367 			} else if (vd->vdev_initialize_last_offset >
368 			    physical_rs.rs_start &&
369 			    vd->vdev_initialize_last_offset <
370 			    physical_rs.rs_end) {
371 				vd->vdev_initialize_bytes_done +=
372 				    vd->vdev_initialize_last_offset -
373 				    physical_rs.rs_start;
374 			}
375 		}
376 		mutex_exit(&msp->ms_lock);
377 	}
378 }
379 
380 static int
381 vdev_initialize_load(vdev_t *vd)
382 {
383 	int err = 0;
384 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
385 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
386 	ASSERT(vd->vdev_leaf_zap != 0);
387 
388 	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
389 	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
390 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
391 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
392 		    sizeof (vd->vdev_initialize_last_offset), 1,
393 		    &vd->vdev_initialize_last_offset);
394 		if (err == ENOENT) {
395 			vd->vdev_initialize_last_offset = 0;
396 			err = 0;
397 		}
398 	}
399 
400 	vdev_initialize_calculate_progress(vd);
401 	return (err);
402 }
403 
404 
405 /*
406  * Convert the logical range into a physical range and add it to our
407  * avl tree.
408  */
409 void
410 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
411 {
412 	vdev_t *vd = arg;
413 	range_seg_t logical_rs, physical_rs;
414 	logical_rs.rs_start = start;
415 	logical_rs.rs_end = start + size;
416 
417 	ASSERT(vd->vdev_ops->vdev_op_leaf);
418 	vdev_xlate(vd, &logical_rs, &physical_rs);
419 
420 	IMPLY(vd->vdev_top == vd,
421 	    logical_rs.rs_start == physical_rs.rs_start);
422 	IMPLY(vd->vdev_top == vd,
423 	    logical_rs.rs_end == physical_rs.rs_end);
424 
425 	/* Only add segments that we have not visited yet */
426 	if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
427 		return;
428 
429 	/* Pick up where we left off mid-range. */
430 	if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
431 		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
432 		    "(%llu, %llu)", vd->vdev_path,
433 		    (u_longlong_t)physical_rs.rs_start,
434 		    (u_longlong_t)physical_rs.rs_end,
435 		    (u_longlong_t)vd->vdev_initialize_last_offset,
436 		    (u_longlong_t)physical_rs.rs_end);
437 		ASSERT3U(physical_rs.rs_end, >,
438 		    vd->vdev_initialize_last_offset);
439 		physical_rs.rs_start = vd->vdev_initialize_last_offset;
440 	}
441 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
442 
443 	/*
444 	 * With raidz, it's possible that the logical range does not live on
445 	 * this leaf vdev. We only add the physical range to this vdev's if it
446 	 * has a length greater than 0.
447 	 */
448 	if (physical_rs.rs_end > physical_rs.rs_start) {
449 		range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
450 		    physical_rs.rs_end - physical_rs.rs_start);
451 	} else {
452 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
453 	}
454 }
455 
456 static void
457 vdev_initialize_thread(void *arg)
458 {
459 	vdev_t *vd = arg;
460 	spa_t *spa = vd->vdev_spa;
461 	int error = 0;
462 	uint64_t ms_count = 0;
463 
464 	ASSERT(vdev_is_concrete(vd));
465 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
466 
467 	vd->vdev_initialize_last_offset = 0;
468 	VERIFY0(vdev_initialize_load(vd));
469 
470 	abd_t *deadbeef = vdev_initialize_block_alloc();
471 
472 	vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
473 
474 	for (uint64_t i = 0; !vd->vdev_detached &&
475 	    i < vd->vdev_top->vdev_ms_count; i++) {
476 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
477 		boolean_t unload_when_done = B_FALSE;
478 
479 		/*
480 		 * If we've expanded the top-level vdev or it's our
481 		 * first pass, calculate our progress.
482 		 */
483 		if (vd->vdev_top->vdev_ms_count != ms_count) {
484 			vdev_initialize_calculate_progress(vd);
485 			ms_count = vd->vdev_top->vdev_ms_count;
486 		}
487 
488 		spa_config_exit(spa, SCL_CONFIG, FTAG);
489 		metaslab_disable(msp);
490 		mutex_enter(&msp->ms_lock);
491 		if (!msp->ms_loaded && !msp->ms_loading)
492 			unload_when_done = B_TRUE;
493 		VERIFY0(metaslab_load(msp));
494 
495 		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
496 		    vd);
497 		mutex_exit(&msp->ms_lock);
498 
499 		error = vdev_initialize_ranges(vd, deadbeef);
500 		metaslab_enable(msp, B_TRUE, unload_when_done);
501 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
502 
503 		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
504 		if (error != 0)
505 			break;
506 	}
507 
508 	spa_config_exit(spa, SCL_CONFIG, FTAG);
509 	mutex_enter(&vd->vdev_initialize_io_lock);
510 	while (vd->vdev_initialize_inflight > 0) {
511 		cv_wait(&vd->vdev_initialize_io_cv,
512 		    &vd->vdev_initialize_io_lock);
513 	}
514 	mutex_exit(&vd->vdev_initialize_io_lock);
515 
516 	range_tree_destroy(vd->vdev_initialize_tree);
517 	vdev_initialize_block_free(deadbeef);
518 	vd->vdev_initialize_tree = NULL;
519 
520 	mutex_enter(&vd->vdev_initialize_lock);
521 	if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
522 		vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
523 	}
524 	ASSERT(vd->vdev_initialize_thread != NULL ||
525 	    vd->vdev_initialize_inflight == 0);
526 
527 	/*
528 	 * Drop the vdev_initialize_lock while we sync out the
529 	 * txg since it's possible that a device might be trying to
530 	 * come online and must check to see if it needs to restart an
531 	 * initialization. That thread will be holding the spa_config_lock
532 	 * which would prevent the txg_wait_synced from completing.
533 	 */
534 	mutex_exit(&vd->vdev_initialize_lock);
535 	txg_wait_synced(spa_get_dsl(spa), 0);
536 	mutex_enter(&vd->vdev_initialize_lock);
537 
538 	vd->vdev_initialize_thread = NULL;
539 	cv_broadcast(&vd->vdev_initialize_cv);
540 	mutex_exit(&vd->vdev_initialize_lock);
541 }
542 
543 /*
544  * Initiates a device. Caller must hold vdev_initialize_lock.
545  * Device must be a leaf and not already be initializing.
546  */
547 void
548 vdev_initialize(vdev_t *vd)
549 {
550 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
551 	ASSERT(vd->vdev_ops->vdev_op_leaf);
552 	ASSERT(vdev_is_concrete(vd));
553 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
554 	ASSERT(!vd->vdev_detached);
555 	ASSERT(!vd->vdev_initialize_exit_wanted);
556 	ASSERT(!vd->vdev_top->vdev_removing);
557 
558 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
559 	vd->vdev_initialize_thread = thread_create(NULL, 0,
560 	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
561 }
562 
563 /*
564  * Wait for the initialize thread to be terminated (cancelled or stopped).
565  */
566 static void
567 vdev_initialize_stop_wait_impl(vdev_t *vd)
568 {
569 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
570 
571 	while (vd->vdev_initialize_thread != NULL)
572 		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
573 
574 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
575 	vd->vdev_initialize_exit_wanted = B_FALSE;
576 }
577 
578 /*
579  * Wait for vdev initialize threads which were either to cleanly exit.
580  */
581 void
582 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
583 {
584 	vdev_t *vd;
585 
586 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
587 
588 	while ((vd = list_remove_head(vd_list)) != NULL) {
589 		mutex_enter(&vd->vdev_initialize_lock);
590 		vdev_initialize_stop_wait_impl(vd);
591 		mutex_exit(&vd->vdev_initialize_lock);
592 	}
593 }
594 
595 /*
596  * Stop initializing a device, with the resultant initializing state being
597  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
598  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
599  * are then required to call vdev_initialize_stop_wait() to block for all the
600  * initialization threads to exit.  The caller must hold vdev_initialize_lock
601  * and must not be writing to the spa config, as the initializing thread may
602  * try to enter the config as a reader before exiting.
603  */
604 void
605 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
606     list_t *vd_list)
607 {
608 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
609 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
610 	ASSERT(vd->vdev_ops->vdev_op_leaf);
611 	ASSERT(vdev_is_concrete(vd));
612 
613 	/*
614 	 * Allow cancel requests to proceed even if the initialize thread
615 	 * has stopped.
616 	 */
617 	if (vd->vdev_initialize_thread == NULL &&
618 	    tgt_state != VDEV_INITIALIZE_CANCELED) {
619 		return;
620 	}
621 
622 	vdev_initialize_change_state(vd, tgt_state);
623 	vd->vdev_initialize_exit_wanted = B_TRUE;
624 
625 	if (vd_list == NULL) {
626 		vdev_initialize_stop_wait_impl(vd);
627 	} else {
628 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
629 		list_insert_tail(vd_list, vd);
630 	}
631 }
632 
633 static void
634 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
635     list_t *vd_list)
636 {
637 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
638 		mutex_enter(&vd->vdev_initialize_lock);
639 		vdev_initialize_stop(vd, tgt_state, vd_list);
640 		mutex_exit(&vd->vdev_initialize_lock);
641 		return;
642 	}
643 
644 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
645 		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
646 		    vd_list);
647 	}
648 }
649 
650 /*
651  * Convenience function to stop initializing of a vdev tree and set all
652  * initialize thread pointers to NULL.
653  */
654 void
655 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
656 {
657 	spa_t *spa = vd->vdev_spa;
658 	list_t vd_list;
659 
660 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
661 
662 	list_create(&vd_list, sizeof (vdev_t),
663 	    offsetof(vdev_t, vdev_initialize_node));
664 
665 	vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
666 	vdev_initialize_stop_wait(spa, &vd_list);
667 
668 	if (vd->vdev_spa->spa_sync_on) {
669 		/* Make sure that our state has been synced to disk */
670 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
671 	}
672 
673 	list_destroy(&vd_list);
674 }
675 
676 void
677 vdev_initialize_restart(vdev_t *vd)
678 {
679 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
680 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
681 
682 	if (vd->vdev_leaf_zap != 0) {
683 		mutex_enter(&vd->vdev_initialize_lock);
684 		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
685 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
686 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
687 		    sizeof (initialize_state), 1, &initialize_state);
688 		ASSERT(err == 0 || err == ENOENT);
689 		vd->vdev_initialize_state = initialize_state;
690 
691 		uint64_t timestamp = 0;
692 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
693 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
694 		    sizeof (timestamp), 1, &timestamp);
695 		ASSERT(err == 0 || err == ENOENT);
696 		vd->vdev_initialize_action_time = (time_t)timestamp;
697 
698 		if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
699 		    vd->vdev_offline) {
700 			/* load progress for reporting, but don't resume */
701 			VERIFY0(vdev_initialize_load(vd));
702 		} else if (vd->vdev_initialize_state ==
703 		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
704 		    !vd->vdev_top->vdev_removing &&
705 		    vd->vdev_initialize_thread == NULL) {
706 			vdev_initialize(vd);
707 		}
708 
709 		mutex_exit(&vd->vdev_initialize_lock);
710 	}
711 
712 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
713 		vdev_initialize_restart(vd->vdev_child[i]);
714 	}
715 }
716