1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2013, 2019 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/dnode.h> 33 #include <sys/zio.h> 34 #include <sys/range_tree.h> 35 36 /* 37 * Range trees are tree-based data structures that can be used to 38 * track free space or generally any space allocation information. 39 * A range tree keeps track of individual segments and automatically 40 * provides facilities such as adjacent extent merging and extent 41 * splitting in response to range add/remove requests. 42 * 43 * A range tree starts out completely empty, with no segments in it. 44 * Adding an allocation via range_tree_add to the range tree can either: 45 * 1) create a new extent 46 * 2) extend an adjacent extent 47 * 3) merge two adjacent extents 48 * Conversely, removing an allocation via range_tree_remove can: 49 * 1) completely remove an extent 50 * 2) shorten an extent (if the allocation was near one of its ends) 51 * 3) split an extent into two extents, in effect punching a hole 52 * 53 * A range tree is also capable of 'bridging' gaps when adding 54 * allocations. This is useful for cases when close proximity of 55 * allocations is an important detail that needs to be represented 56 * in the range tree. See range_tree_set_gap(). The default behavior 57 * is not to bridge gaps (i.e. the maximum allowed gap size is 0). 58 * 59 * In order to traverse a range tree, use either the range_tree_walk() 60 * or range_tree_vacate() functions. 61 * 62 * To obtain more accurate information on individual segment 63 * operations that the range tree performs "under the hood", you can 64 * specify a set of callbacks by passing a range_tree_ops_t structure 65 * to the range_tree_create function. Any callbacks that are non-NULL 66 * are then called at the appropriate times. 67 * 68 * The range tree code also supports a special variant of range trees 69 * that can bridge small gaps between segments. This kind of tree is used 70 * by the dsl scanning code to group I/Os into mostly sequential chunks to 71 * optimize disk performance. The code here attempts to do this with as 72 * little memory and computational overhead as possible. One limitation of 73 * this implementation is that segments of range trees with gaps can only 74 * support removing complete segments. 75 */ 76 77 static inline void 78 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt) 79 { 80 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES); 81 size_t size = 0; 82 switch (rt->rt_type) { 83 case RANGE_SEG32: 84 size = sizeof (range_seg32_t); 85 break; 86 case RANGE_SEG64: 87 size = sizeof (range_seg64_t); 88 break; 89 case RANGE_SEG_GAP: 90 size = sizeof (range_seg_gap_t); 91 break; 92 default: 93 VERIFY(0); 94 } 95 bcopy(src, dest, size); 96 } 97 98 void 99 range_tree_stat_verify(range_tree_t *rt) 100 { 101 range_seg_t *rs; 102 zfs_btree_index_t where; 103 uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 }; 104 int i; 105 106 for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL; 107 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 108 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 109 int idx = highbit64(size) - 1; 110 111 hist[idx]++; 112 ASSERT3U(hist[idx], !=, 0); 113 } 114 115 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 116 if (hist[i] != rt->rt_histogram[i]) { 117 zfs_dbgmsg("i=%d, hist=%p, hist=%llu, rt_hist=%llu", 118 i, hist, hist[i], rt->rt_histogram[i]); 119 } 120 VERIFY3U(hist[i], ==, rt->rt_histogram[i]); 121 } 122 } 123 124 static void 125 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs) 126 { 127 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 128 int idx = highbit64(size) - 1; 129 130 ASSERT(size != 0); 131 ASSERT3U(idx, <, 132 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 133 134 rt->rt_histogram[idx]++; 135 ASSERT3U(rt->rt_histogram[idx], !=, 0); 136 } 137 138 static void 139 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs) 140 { 141 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 142 int idx = highbit64(size) - 1; 143 144 ASSERT(size != 0); 145 ASSERT3U(idx, <, 146 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 147 148 ASSERT3U(rt->rt_histogram[idx], !=, 0); 149 rt->rt_histogram[idx]--; 150 } 151 152 static int 153 range_tree_seg32_compare(const void *x1, const void *x2) 154 { 155 const range_seg32_t *r1 = x1; 156 const range_seg32_t *r2 = x2; 157 158 ASSERT3U(r1->rs_start, <=, r1->rs_end); 159 ASSERT3U(r2->rs_start, <=, r2->rs_end); 160 161 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 162 } 163 164 static int 165 range_tree_seg64_compare(const void *x1, const void *x2) 166 { 167 const range_seg64_t *r1 = x1; 168 const range_seg64_t *r2 = x2; 169 170 ASSERT3U(r1->rs_start, <=, r1->rs_end); 171 ASSERT3U(r2->rs_start, <=, r2->rs_end); 172 173 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 174 } 175 176 static int 177 range_tree_seg_gap_compare(const void *x1, const void *x2) 178 { 179 const range_seg_gap_t *r1 = x1; 180 const range_seg_gap_t *r2 = x2; 181 182 ASSERT3U(r1->rs_start, <=, r1->rs_end); 183 ASSERT3U(r2->rs_start, <=, r2->rs_end); 184 185 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 186 } 187 188 range_tree_t * 189 range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg, 190 uint64_t start, uint64_t shift, 191 int (*zfs_btree_compare) (const void *, const void *), 192 uint64_t gap) 193 { 194 range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP); 195 196 ASSERT3U(shift, <, 64); 197 ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES); 198 size_t size; 199 int (*compare) (const void *, const void *); 200 switch (type) { 201 case RANGE_SEG32: 202 size = sizeof (range_seg32_t); 203 compare = range_tree_seg32_compare; 204 break; 205 case RANGE_SEG64: 206 size = sizeof (range_seg64_t); 207 compare = range_tree_seg64_compare; 208 break; 209 case RANGE_SEG_GAP: 210 size = sizeof (range_seg_gap_t); 211 compare = range_tree_seg_gap_compare; 212 break; 213 default: 214 panic("Invalid range seg type %d", type); 215 } 216 zfs_btree_create(&rt->rt_root, compare, size); 217 218 rt->rt_ops = ops; 219 rt->rt_arg = arg; 220 rt->rt_gap = gap; 221 rt->rt_type = type; 222 rt->rt_start = start; 223 rt->rt_shift = shift; 224 rt->rt_btree_compare = zfs_btree_compare; 225 226 if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL) 227 rt->rt_ops->rtop_create(rt, rt->rt_arg); 228 229 return (rt); 230 } 231 232 range_tree_t * 233 range_tree_create(range_tree_ops_t *ops, range_seg_type_t type, 234 void *arg, uint64_t start, uint64_t shift) 235 { 236 return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0)); 237 } 238 239 void 240 range_tree_destroy(range_tree_t *rt) 241 { 242 VERIFY0(rt->rt_space); 243 244 if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL) 245 rt->rt_ops->rtop_destroy(rt, rt->rt_arg); 246 247 zfs_btree_destroy(&rt->rt_root); 248 kmem_free(rt, sizeof (*rt)); 249 } 250 251 void 252 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta) 253 { 254 ASSERT3U(rs_get_fill(rs, rt) + delta, !=, 0); 255 ASSERT3U(rs_get_fill(rs, rt) + delta, <=, rs_get_end(rs, rt) - 256 rs_get_start(rs, rt)); 257 258 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 259 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 260 rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta); 261 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 262 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 263 } 264 265 static void 266 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill) 267 { 268 range_tree_t *rt = arg; 269 zfs_btree_index_t where; 270 range_seg_t *rs_before, *rs_after, *rs; 271 range_seg_max_t tmp, rsearch; 272 uint64_t end = start + size, gap = rt->rt_gap; 273 uint64_t bridge_size = 0; 274 boolean_t merge_before, merge_after; 275 276 ASSERT3U(size, !=, 0); 277 ASSERT3U(fill, <=, size); 278 ASSERT3U(start + size, >, start); 279 280 rs_set_start(&rsearch, rt, start); 281 rs_set_end(&rsearch, rt, end); 282 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 283 284 /* 285 * If this is a gap-supporting range tree, it is possible that we 286 * are inserting into an existing segment. In this case simply 287 * bump the fill count and call the remove / add callbacks. If the 288 * new range will extend an existing segment, we remove the 289 * existing one, apply the new extent to it and re-insert it using 290 * the normal code paths. 291 */ 292 if (rs != NULL) { 293 ASSERT3U(rt->rt_gap, !=, 0); 294 uint64_t rstart = rs_get_start(rs, rt); 295 uint64_t rend = rs_get_end(rs, rt); 296 ASSERT3U(gap, !=, 0); 297 if (rstart <= start && rend >= end) { 298 range_tree_adjust_fill(rt, rs, fill); 299 return; 300 } 301 302 zfs_btree_remove(&rt->rt_root, rs); 303 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 304 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 305 306 range_tree_stat_decr(rt, rs); 307 rt->rt_space -= rend - rstart; 308 309 fill += rs_get_fill(rs, rt); 310 start = MIN(start, rstart); 311 end = MAX(end, rend); 312 size = end - start; 313 314 range_tree_add_impl(rt, start, size, fill); 315 return; 316 } 317 318 ASSERT3P(rs, ==, NULL); 319 320 /* 321 * Determine whether or not we will have to merge with our neighbors. 322 * If gap != 0, we might need to merge with our neighbors even if we 323 * aren't directly touching. 324 */ 325 zfs_btree_index_t where_before, where_after; 326 rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before); 327 rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after); 328 329 merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >= 330 start - gap); 331 merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end + 332 gap); 333 334 if (merge_before && gap != 0) 335 bridge_size += start - rs_get_end(rs_before, rt); 336 if (merge_after && gap != 0) 337 bridge_size += rs_get_start(rs_after, rt) - end; 338 339 if (merge_before && merge_after) { 340 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) { 341 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 342 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 343 } 344 345 range_tree_stat_decr(rt, rs_before); 346 range_tree_stat_decr(rt, rs_after); 347 348 rs_copy(rs_after, &tmp, rt); 349 uint64_t before_start = rs_get_start_raw(rs_before, rt); 350 uint64_t before_fill = rs_get_fill(rs_before, rt); 351 uint64_t after_fill = rs_get_fill(rs_after, rt); 352 zfs_btree_remove_idx(&rt->rt_root, &where_before); 353 354 /* 355 * We have to re-find the node because our old reference is 356 * invalid as soon as we do any mutating btree operations. 357 */ 358 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after); 359 rs_set_start_raw(rs_after, rt, before_start); 360 rs_set_fill(rs_after, rt, after_fill + before_fill + fill); 361 rs = rs_after; 362 } else if (merge_before) { 363 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 364 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 365 366 range_tree_stat_decr(rt, rs_before); 367 368 uint64_t before_fill = rs_get_fill(rs_before, rt); 369 rs_set_end(rs_before, rt, end); 370 rs_set_fill(rs_before, rt, before_fill + fill); 371 rs = rs_before; 372 } else if (merge_after) { 373 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 374 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 375 376 range_tree_stat_decr(rt, rs_after); 377 378 uint64_t after_fill = rs_get_fill(rs_after, rt); 379 rs_set_start(rs_after, rt, start); 380 rs_set_fill(rs_after, rt, after_fill + fill); 381 rs = rs_after; 382 } else { 383 rs = &tmp; 384 385 rs_set_start(rs, rt, start); 386 rs_set_end(rs, rt, end); 387 rs_set_fill(rs, rt, fill); 388 zfs_btree_add_idx(&rt->rt_root, rs, &where); 389 } 390 391 if (gap != 0) { 392 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) - 393 rs_get_start(rs, rt)); 394 } else { 395 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) - 396 rs_get_start(rs, rt)); 397 } 398 399 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 400 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 401 402 range_tree_stat_incr(rt, rs); 403 rt->rt_space += size + bridge_size; 404 } 405 406 void 407 range_tree_add(void *arg, uint64_t start, uint64_t size) 408 { 409 range_tree_add_impl(arg, start, size, size); 410 } 411 412 static void 413 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size, 414 boolean_t do_fill) 415 { 416 zfs_btree_index_t where; 417 range_seg_t *rs; 418 range_seg_max_t rsearch, rs_tmp; 419 uint64_t end = start + size; 420 boolean_t left_over, right_over; 421 422 VERIFY3U(size, !=, 0); 423 VERIFY3U(size, <=, rt->rt_space); 424 if (rt->rt_type == RANGE_SEG64) 425 ASSERT3U(start + size, >, start); 426 427 rs_set_start(&rsearch, rt, start); 428 rs_set_end(&rsearch, rt, end); 429 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 430 431 /* Make sure we completely overlap with someone */ 432 if (rs == NULL) { 433 zfs_panic_recover("zfs: removing nonexistent segment from " 434 "range tree (offset=%llu size=%llu)", 435 (longlong_t)start, (longlong_t)size); 436 return; 437 } 438 439 /* 440 * Range trees with gap support must only remove complete segments 441 * from the tree. This allows us to maintain accurate fill accounting 442 * and to ensure that bridged sections are not leaked. If we need to 443 * remove less than the full segment, we can only adjust the fill count. 444 */ 445 if (rt->rt_gap != 0) { 446 if (do_fill) { 447 if (rs_get_fill(rs, rt) == size) { 448 start = rs_get_start(rs, rt); 449 end = rs_get_end(rs, rt); 450 size = end - start; 451 } else { 452 range_tree_adjust_fill(rt, rs, -size); 453 return; 454 } 455 } else if (rs_get_start(rs, rt) != start || 456 rs_get_end(rs, rt) != end) { 457 zfs_panic_recover("zfs: freeing partial segment of " 458 "gap tree (offset=%llu size=%llu) of " 459 "(offset=%llu size=%llu)", 460 (longlong_t)start, (longlong_t)size, 461 (longlong_t)rs_get_start(rs, rt), 462 (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs, 463 rt)); 464 return; 465 } 466 } 467 468 VERIFY3U(rs_get_start(rs, rt), <=, start); 469 VERIFY3U(rs_get_end(rs, rt), >=, end); 470 471 left_over = (rs_get_start(rs, rt) != start); 472 right_over = (rs_get_end(rs, rt) != end); 473 474 range_tree_stat_decr(rt, rs); 475 476 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 477 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 478 479 if (left_over && right_over) { 480 range_seg_max_t newseg; 481 rs_set_start(&newseg, rt, end); 482 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt)); 483 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end); 484 range_tree_stat_incr(rt, &newseg); 485 486 // This modifies the buffer already inside the range tree 487 rs_set_end(rs, rt, start); 488 489 rs_copy(rs, &rs_tmp, rt); 490 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL) 491 zfs_btree_add_idx(&rt->rt_root, &newseg, &where); 492 else 493 zfs_btree_add(&rt->rt_root, &newseg); 494 495 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 496 rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg); 497 } else if (left_over) { 498 // This modifies the buffer already inside the range tree 499 rs_set_end(rs, rt, start); 500 rs_copy(rs, &rs_tmp, rt); 501 } else if (right_over) { 502 // This modifies the buffer already inside the range tree 503 rs_set_start(rs, rt, end); 504 rs_copy(rs, &rs_tmp, rt); 505 } else { 506 zfs_btree_remove_idx(&rt->rt_root, &where); 507 rs = NULL; 508 } 509 510 if (rs != NULL) { 511 /* 512 * The fill of the leftover segment will always be equal to 513 * the size, since we do not support removing partial segments 514 * of range trees with gaps. 515 */ 516 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) - 517 rs_get_start_raw(rs, rt)); 518 range_tree_stat_incr(rt, &rs_tmp); 519 520 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 521 rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg); 522 } 523 524 rt->rt_space -= size; 525 } 526 527 void 528 range_tree_remove(void *arg, uint64_t start, uint64_t size) 529 { 530 range_tree_remove_impl(arg, start, size, B_FALSE); 531 } 532 533 void 534 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size) 535 { 536 range_tree_remove_impl(rt, start, size, B_TRUE); 537 } 538 539 void 540 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs, 541 uint64_t newstart, uint64_t newsize) 542 { 543 int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt)); 544 545 range_tree_stat_decr(rt, rs); 546 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 547 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 548 549 rs_set_start(rs, rt, newstart); 550 rs_set_end(rs, rt, newstart + newsize); 551 552 range_tree_stat_incr(rt, rs); 553 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 554 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 555 556 rt->rt_space += delta; 557 } 558 559 static range_seg_t * 560 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size) 561 { 562 range_seg_max_t rsearch; 563 uint64_t end = start + size; 564 565 VERIFY(size != 0); 566 567 rs_set_start(&rsearch, rt, start); 568 rs_set_end(&rsearch, rt, end); 569 return (zfs_btree_find(&rt->rt_root, &rsearch, NULL)); 570 } 571 572 range_seg_t * 573 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size) 574 { 575 if (rt->rt_type == RANGE_SEG64) 576 ASSERT3U(start + size, >, start); 577 578 range_seg_t *rs = range_tree_find_impl(rt, start, size); 579 if (rs != NULL && rs_get_start(rs, rt) <= start && 580 rs_get_end(rs, rt) >= start + size) { 581 return (rs); 582 } 583 return (NULL); 584 } 585 586 void 587 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size) 588 { 589 range_seg_t *rs = range_tree_find(rt, off, size); 590 if (rs != NULL) 591 panic("segment already in tree; rs=%p", (void *)rs); 592 } 593 594 boolean_t 595 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size) 596 { 597 return (range_tree_find(rt, start, size) != NULL); 598 } 599 600 /* 601 * Returns the first subset of the given range which overlaps with the range 602 * tree. Returns true if there is a segment in the range, and false if there 603 * isn't. 604 */ 605 boolean_t 606 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size, 607 uint64_t *ostart, uint64_t *osize) 608 { 609 if (rt->rt_type == RANGE_SEG64) 610 ASSERT3U(start + size, >, start); 611 612 range_seg_max_t rsearch; 613 rs_set_start(&rsearch, rt, start); 614 rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1); 615 616 zfs_btree_index_t where; 617 range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 618 if (rs != NULL) { 619 *ostart = start; 620 *osize = MIN(size, rs_get_end(rs, rt) - start); 621 return (B_TRUE); 622 } 623 624 rs = zfs_btree_next(&rt->rt_root, &where, &where); 625 if (rs == NULL || rs_get_start(rs, rt) > start + size) 626 return (B_FALSE); 627 628 *ostart = rs_get_start(rs, rt); 629 *osize = MIN(start + size, rs_get_end(rs, rt)) - 630 rs_get_start(rs, rt); 631 return (B_TRUE); 632 } 633 634 /* 635 * Ensure that this range is not in the tree, regardless of whether 636 * it is currently in the tree. 637 */ 638 void 639 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size) 640 { 641 range_seg_t *rs; 642 643 if (size == 0) 644 return; 645 646 if (rt->rt_type == RANGE_SEG64) 647 ASSERT3U(start + size, >, start); 648 649 while ((rs = range_tree_find_impl(rt, start, size)) != NULL) { 650 uint64_t free_start = MAX(rs_get_start(rs, rt), start); 651 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size); 652 range_tree_remove(rt, free_start, free_end - free_start); 653 } 654 } 655 656 void 657 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst) 658 { 659 range_tree_t *rt; 660 661 ASSERT0(range_tree_space(*rtdst)); 662 ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root)); 663 664 rt = *rtsrc; 665 *rtsrc = *rtdst; 666 *rtdst = rt; 667 } 668 669 void 670 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg) 671 { 672 673 if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL) 674 rt->rt_ops->rtop_vacate(rt, rt->rt_arg); 675 676 if (func != NULL) { 677 range_seg_t *rs; 678 zfs_btree_index_t *cookie = NULL; 679 680 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) != 681 NULL) { 682 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 683 rs_get_start(rs, rt)); 684 } 685 } else { 686 zfs_btree_clear(&rt->rt_root); 687 } 688 689 bzero(rt->rt_histogram, sizeof (rt->rt_histogram)); 690 rt->rt_space = 0; 691 } 692 693 void 694 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg) 695 { 696 zfs_btree_index_t where; 697 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); 698 rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 699 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 700 rs_get_start(rs, rt)); 701 } 702 } 703 704 range_seg_t * 705 range_tree_first(range_tree_t *rt) 706 { 707 return (zfs_btree_first(&rt->rt_root, NULL)); 708 } 709 710 uint64_t 711 range_tree_space(range_tree_t *rt) 712 { 713 return (rt->rt_space); 714 } 715 716 uint64_t 717 range_tree_numsegs(range_tree_t *rt) 718 { 719 return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root)); 720 } 721 722 boolean_t 723 range_tree_is_empty(range_tree_t *rt) 724 { 725 ASSERT(rt != NULL); 726 return (range_tree_space(rt) == 0); 727 } 728 729 /* ARGSUSED */ 730 void 731 rt_btree_create(range_tree_t *rt, void *arg) 732 { 733 zfs_btree_t *size_tree = arg; 734 735 size_t size; 736 switch (rt->rt_type) { 737 case RANGE_SEG32: 738 size = sizeof (range_seg32_t); 739 break; 740 case RANGE_SEG64: 741 size = sizeof (range_seg64_t); 742 break; 743 case RANGE_SEG_GAP: 744 size = sizeof (range_seg_gap_t); 745 break; 746 default: 747 panic("Invalid range seg type %d", rt->rt_type); 748 } 749 zfs_btree_create(size_tree, rt->rt_btree_compare, size); 750 } 751 752 /* ARGSUSED */ 753 void 754 rt_btree_destroy(range_tree_t *rt, void *arg) 755 { 756 zfs_btree_t *size_tree = arg; 757 ASSERT0(zfs_btree_numnodes(size_tree)); 758 759 zfs_btree_destroy(size_tree); 760 } 761 762 /* ARGSUSED */ 763 void 764 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg) 765 { 766 zfs_btree_t *size_tree = arg; 767 768 zfs_btree_add(size_tree, rs); 769 } 770 771 /* ARGSUSED */ 772 void 773 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 774 { 775 zfs_btree_t *size_tree = arg; 776 777 zfs_btree_remove(size_tree, rs); 778 } 779 780 /* ARGSUSED */ 781 void 782 rt_btree_vacate(range_tree_t *rt, void *arg) 783 { 784 zfs_btree_t *size_tree = arg; 785 zfs_btree_clear(size_tree); 786 zfs_btree_destroy(size_tree); 787 788 rt_btree_create(rt, arg); 789 } 790 791 range_tree_ops_t rt_btree_ops = { 792 .rtop_create = rt_btree_create, 793 .rtop_destroy = rt_btree_destroy, 794 .rtop_add = rt_btree_add, 795 .rtop_remove = rt_btree_remove, 796 .rtop_vacate = rt_btree_vacate 797 }; 798 799 /* 800 * Remove any overlapping ranges between the given segment [start, end) 801 * from removefrom. Add non-overlapping leftovers to addto. 802 */ 803 void 804 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end, 805 range_tree_t *removefrom, range_tree_t *addto) 806 { 807 zfs_btree_index_t where; 808 range_seg_max_t starting_rs; 809 rs_set_start(&starting_rs, removefrom, start); 810 rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs, 811 removefrom) + 1); 812 813 range_seg_t *curr = zfs_btree_find(&removefrom->rt_root, 814 &starting_rs, &where); 815 816 if (curr == NULL) 817 curr = zfs_btree_next(&removefrom->rt_root, &where, &where); 818 819 range_seg_t *next; 820 for (; curr != NULL; curr = next) { 821 if (start == end) 822 return; 823 VERIFY3U(start, <, end); 824 825 /* there is no overlap */ 826 if (end <= rs_get_start(curr, removefrom)) { 827 range_tree_add(addto, start, end - start); 828 return; 829 } 830 831 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom), 832 start); 833 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom), 834 end); 835 uint64_t overlap_size = overlap_end - overlap_start; 836 ASSERT3S(overlap_size, >, 0); 837 range_seg_max_t rs; 838 rs_copy(curr, &rs, removefrom); 839 840 range_tree_remove(removefrom, overlap_start, overlap_size); 841 842 if (start < overlap_start) 843 range_tree_add(addto, start, overlap_start - start); 844 845 start = overlap_end; 846 next = zfs_btree_find(&removefrom->rt_root, &rs, &where); 847 /* 848 * If we find something here, we only removed part of the 849 * curr segment. Either there's some left at the end 850 * because we've reached the end of the range we're removing, 851 * or there's some left at the start because we started 852 * partway through the range. Either way, we continue with 853 * the loop. If it's the former, we'll return at the start of 854 * the loop, and if it's the latter we'll see if there is more 855 * area to process. 856 */ 857 if (next != NULL) { 858 ASSERT(start == end || start == rs_get_end(&rs, 859 removefrom)); 860 } 861 862 next = zfs_btree_next(&removefrom->rt_root, &where, &where); 863 } 864 VERIFY3P(curr, ==, NULL); 865 866 if (start != end) { 867 VERIFY3U(start, <, end); 868 range_tree_add(addto, start, end - start); 869 } else { 870 VERIFY3U(start, ==, end); 871 } 872 } 873 874 /* 875 * For each entry in rt, if it exists in removefrom, remove it 876 * from removefrom. Otherwise, add it to addto. 877 */ 878 void 879 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom, 880 range_tree_t *addto) 881 { 882 zfs_btree_index_t where; 883 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs; 884 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 885 range_tree_remove_xor_add_segment(rs_get_start(rs, rt), 886 rs_get_end(rs, rt), removefrom, addto); 887 } 888 } 889 890 uint64_t 891 range_tree_min(range_tree_t *rt) 892 { 893 range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL); 894 return (rs != NULL ? rs_get_start(rs, rt) : 0); 895 } 896 897 uint64_t 898 range_tree_max(range_tree_t *rt) 899 { 900 range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL); 901 return (rs != NULL ? rs_get_end(rs, rt) : 0); 902 } 903 904 uint64_t 905 range_tree_span(range_tree_t *rt) 906 { 907 return (range_tree_max(rt) - range_tree_min(rt)); 908 } 909