1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dnode.h>
33 #include <sys/zio.h>
34 #include <sys/range_tree.h>
35
36 /*
37 * Range trees are tree-based data structures that can be used to
38 * track free space or generally any space allocation information.
39 * A range tree keeps track of individual segments and automatically
40 * provides facilities such as adjacent extent merging and extent
41 * splitting in response to range add/remove requests.
42 *
43 * A range tree starts out completely empty, with no segments in it.
44 * Adding an allocation via range_tree_add to the range tree can either:
45 * 1) create a new extent
46 * 2) extend an adjacent extent
47 * 3) merge two adjacent extents
48 * Conversely, removing an allocation via range_tree_remove can:
49 * 1) completely remove an extent
50 * 2) shorten an extent (if the allocation was near one of its ends)
51 * 3) split an extent into two extents, in effect punching a hole
52 *
53 * A range tree is also capable of 'bridging' gaps when adding
54 * allocations. This is useful for cases when close proximity of
55 * allocations is an important detail that needs to be represented
56 * in the range tree. See range_tree_set_gap(). The default behavior
57 * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
58 *
59 * In order to traverse a range tree, use either the range_tree_walk()
60 * or range_tree_vacate() functions.
61 *
62 * To obtain more accurate information on individual segment
63 * operations that the range tree performs "under the hood", you can
64 * specify a set of callbacks by passing a range_tree_ops_t structure
65 * to the range_tree_create function. Any callbacks that are non-NULL
66 * are then called at the appropriate times.
67 *
68 * The range tree code also supports a special variant of range trees
69 * that can bridge small gaps between segments. This kind of tree is used
70 * by the dsl scanning code to group I/Os into mostly sequential chunks to
71 * optimize disk performance. The code here attempts to do this with as
72 * little memory and computational overhead as possible. One limitation of
73 * this implementation is that segments of range trees with gaps can only
74 * support removing complete segments.
75 */
76
77 static inline void
rs_copy(range_seg_t * src,range_seg_t * dest,range_tree_t * rt)78 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
79 {
80 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
81 size_t size = 0;
82 switch (rt->rt_type) {
83 case RANGE_SEG32:
84 size = sizeof (range_seg32_t);
85 break;
86 case RANGE_SEG64:
87 size = sizeof (range_seg64_t);
88 break;
89 case RANGE_SEG_GAP:
90 size = sizeof (range_seg_gap_t);
91 break;
92 default:
93 VERIFY(0);
94 }
95 bcopy(src, dest, size);
96 }
97
98 void
range_tree_stat_verify(range_tree_t * rt)99 range_tree_stat_verify(range_tree_t *rt)
100 {
101 range_seg_t *rs;
102 zfs_btree_index_t where;
103 uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
104 int i;
105
106 for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
107 rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
108 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
109 int idx = highbit64(size) - 1;
110
111 hist[idx]++;
112 ASSERT3U(hist[idx], !=, 0);
113 }
114
115 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
116 if (hist[i] != rt->rt_histogram[i]) {
117 zfs_dbgmsg("i=%d, hist=%p, hist=%llu, rt_hist=%llu",
118 i, hist, hist[i], rt->rt_histogram[i]);
119 }
120 VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
121 }
122 }
123
124 static void
range_tree_stat_incr(range_tree_t * rt,range_seg_t * rs)125 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
126 {
127 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
128 int idx = highbit64(size) - 1;
129
130 ASSERT(size != 0);
131 ASSERT3U(idx, <,
132 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
133
134 rt->rt_histogram[idx]++;
135 ASSERT3U(rt->rt_histogram[idx], !=, 0);
136 }
137
138 static void
range_tree_stat_decr(range_tree_t * rt,range_seg_t * rs)139 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
140 {
141 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
142 int idx = highbit64(size) - 1;
143
144 ASSERT(size != 0);
145 ASSERT3U(idx, <,
146 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
147
148 ASSERT3U(rt->rt_histogram[idx], !=, 0);
149 rt->rt_histogram[idx]--;
150 }
151
152 static int
range_tree_seg32_compare(const void * x1,const void * x2)153 range_tree_seg32_compare(const void *x1, const void *x2)
154 {
155 const range_seg32_t *r1 = x1;
156 const range_seg32_t *r2 = x2;
157
158 ASSERT3U(r1->rs_start, <=, r1->rs_end);
159 ASSERT3U(r2->rs_start, <=, r2->rs_end);
160
161 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
162 }
163
164 static int
range_tree_seg64_compare(const void * x1,const void * x2)165 range_tree_seg64_compare(const void *x1, const void *x2)
166 {
167 const range_seg64_t *r1 = x1;
168 const range_seg64_t *r2 = x2;
169
170 ASSERT3U(r1->rs_start, <=, r1->rs_end);
171 ASSERT3U(r2->rs_start, <=, r2->rs_end);
172
173 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
174 }
175
176 static int
range_tree_seg_gap_compare(const void * x1,const void * x2)177 range_tree_seg_gap_compare(const void *x1, const void *x2)
178 {
179 const range_seg_gap_t *r1 = x1;
180 const range_seg_gap_t *r2 = x2;
181
182 ASSERT3U(r1->rs_start, <=, r1->rs_end);
183 ASSERT3U(r2->rs_start, <=, r2->rs_end);
184
185 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
186 }
187
188 range_tree_t *
range_tree_create_impl(range_tree_ops_t * ops,range_seg_type_t type,void * arg,uint64_t start,uint64_t shift,int (* zfs_btree_compare)(const void *,const void *),uint64_t gap)189 range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg,
190 uint64_t start, uint64_t shift,
191 int (*zfs_btree_compare) (const void *, const void *),
192 uint64_t gap)
193 {
194 range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
195
196 ASSERT3U(shift, <, 64);
197 ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
198 size_t size;
199 int (*compare) (const void *, const void *);
200 switch (type) {
201 case RANGE_SEG32:
202 size = sizeof (range_seg32_t);
203 compare = range_tree_seg32_compare;
204 break;
205 case RANGE_SEG64:
206 size = sizeof (range_seg64_t);
207 compare = range_tree_seg64_compare;
208 break;
209 case RANGE_SEG_GAP:
210 size = sizeof (range_seg_gap_t);
211 compare = range_tree_seg_gap_compare;
212 break;
213 default:
214 panic("Invalid range seg type %d", type);
215 }
216 zfs_btree_create(&rt->rt_root, compare, size);
217
218 rt->rt_ops = ops;
219 rt->rt_arg = arg;
220 rt->rt_gap = gap;
221 rt->rt_type = type;
222 rt->rt_start = start;
223 rt->rt_shift = shift;
224 rt->rt_btree_compare = zfs_btree_compare;
225
226 if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
227 rt->rt_ops->rtop_create(rt, rt->rt_arg);
228
229 return (rt);
230 }
231
232 range_tree_t *
range_tree_create(range_tree_ops_t * ops,range_seg_type_t type,void * arg,uint64_t start,uint64_t shift)233 range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
234 void *arg, uint64_t start, uint64_t shift)
235 {
236 return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
237 }
238
239 void
range_tree_destroy(range_tree_t * rt)240 range_tree_destroy(range_tree_t *rt)
241 {
242 VERIFY0(rt->rt_space);
243
244 if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
245 rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
246
247 zfs_btree_destroy(&rt->rt_root);
248 kmem_free(rt, sizeof (*rt));
249 }
250
251 void
range_tree_adjust_fill(range_tree_t * rt,range_seg_t * rs,int64_t delta)252 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
253 {
254 ASSERT3U(rs_get_fill(rs, rt) + delta, !=, 0);
255 ASSERT3U(rs_get_fill(rs, rt) + delta, <=, rs_get_end(rs, rt) -
256 rs_get_start(rs, rt));
257
258 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
259 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
260 rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
261 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
262 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
263 }
264
265 static void
range_tree_add_impl(void * arg,uint64_t start,uint64_t size,uint64_t fill)266 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
267 {
268 range_tree_t *rt = arg;
269 zfs_btree_index_t where;
270 range_seg_t *rs_before, *rs_after, *rs;
271 range_seg_max_t tmp, rsearch;
272 uint64_t end = start + size, gap = rt->rt_gap;
273 uint64_t bridge_size = 0;
274 boolean_t merge_before, merge_after;
275
276 ASSERT3U(size, !=, 0);
277 ASSERT3U(fill, <=, size);
278 ASSERT3U(start + size, >, start);
279
280 rs_set_start(&rsearch, rt, start);
281 rs_set_end(&rsearch, rt, end);
282 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
283
284 /*
285 * If this is a gap-supporting range tree, it is possible that we
286 * are inserting into an existing segment. In this case simply
287 * bump the fill count and call the remove / add callbacks. If the
288 * new range will extend an existing segment, we remove the
289 * existing one, apply the new extent to it and re-insert it using
290 * the normal code paths.
291 */
292 if (rs != NULL) {
293 ASSERT3U(rt->rt_gap, !=, 0);
294 uint64_t rstart = rs_get_start(rs, rt);
295 uint64_t rend = rs_get_end(rs, rt);
296 ASSERT3U(gap, !=, 0);
297 if (rstart <= start && rend >= end) {
298 range_tree_adjust_fill(rt, rs, fill);
299 return;
300 }
301
302 zfs_btree_remove(&rt->rt_root, rs);
303 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
304 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
305
306 range_tree_stat_decr(rt, rs);
307 rt->rt_space -= rend - rstart;
308
309 fill += rs_get_fill(rs, rt);
310 start = MIN(start, rstart);
311 end = MAX(end, rend);
312 size = end - start;
313
314 range_tree_add_impl(rt, start, size, fill);
315 return;
316 }
317
318 ASSERT3P(rs, ==, NULL);
319
320 /*
321 * Determine whether or not we will have to merge with our neighbors.
322 * If gap != 0, we might need to merge with our neighbors even if we
323 * aren't directly touching.
324 */
325 zfs_btree_index_t where_before, where_after;
326 rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
327 rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
328
329 merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
330 start - gap);
331 merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
332 gap);
333
334 if (merge_before && gap != 0)
335 bridge_size += start - rs_get_end(rs_before, rt);
336 if (merge_after && gap != 0)
337 bridge_size += rs_get_start(rs_after, rt) - end;
338
339 if (merge_before && merge_after) {
340 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
341 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
342 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
343 }
344
345 range_tree_stat_decr(rt, rs_before);
346 range_tree_stat_decr(rt, rs_after);
347
348 rs_copy(rs_after, &tmp, rt);
349 uint64_t before_start = rs_get_start_raw(rs_before, rt);
350 uint64_t before_fill = rs_get_fill(rs_before, rt);
351 uint64_t after_fill = rs_get_fill(rs_after, rt);
352 zfs_btree_remove_idx(&rt->rt_root, &where_before);
353
354 /*
355 * We have to re-find the node because our old reference is
356 * invalid as soon as we do any mutating btree operations.
357 */
358 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
359 rs_set_start_raw(rs_after, rt, before_start);
360 rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
361 rs = rs_after;
362 } else if (merge_before) {
363 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
364 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
365
366 range_tree_stat_decr(rt, rs_before);
367
368 uint64_t before_fill = rs_get_fill(rs_before, rt);
369 rs_set_end(rs_before, rt, end);
370 rs_set_fill(rs_before, rt, before_fill + fill);
371 rs = rs_before;
372 } else if (merge_after) {
373 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
374 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
375
376 range_tree_stat_decr(rt, rs_after);
377
378 uint64_t after_fill = rs_get_fill(rs_after, rt);
379 rs_set_start(rs_after, rt, start);
380 rs_set_fill(rs_after, rt, after_fill + fill);
381 rs = rs_after;
382 } else {
383 rs = &tmp;
384
385 rs_set_start(rs, rt, start);
386 rs_set_end(rs, rt, end);
387 rs_set_fill(rs, rt, fill);
388 zfs_btree_add_idx(&rt->rt_root, rs, &where);
389 }
390
391 if (gap != 0) {
392 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
393 rs_get_start(rs, rt));
394 } else {
395 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
396 rs_get_start(rs, rt));
397 }
398
399 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
400 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
401
402 range_tree_stat_incr(rt, rs);
403 rt->rt_space += size + bridge_size;
404 }
405
406 void
range_tree_add(void * arg,uint64_t start,uint64_t size)407 range_tree_add(void *arg, uint64_t start, uint64_t size)
408 {
409 range_tree_add_impl(arg, start, size, size);
410 }
411
412 static void
range_tree_remove_impl(range_tree_t * rt,uint64_t start,uint64_t size,boolean_t do_fill)413 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
414 boolean_t do_fill)
415 {
416 zfs_btree_index_t where;
417 range_seg_t *rs;
418 range_seg_max_t rsearch, rs_tmp;
419 uint64_t end = start + size;
420 boolean_t left_over, right_over;
421
422 VERIFY3U(size, !=, 0);
423 VERIFY3U(size, <=, rt->rt_space);
424 if (rt->rt_type == RANGE_SEG64)
425 ASSERT3U(start + size, >, start);
426
427 rs_set_start(&rsearch, rt, start);
428 rs_set_end(&rsearch, rt, end);
429 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
430
431 /* Make sure we completely overlap with someone */
432 if (rs == NULL) {
433 zfs_panic_recover("zfs: removing nonexistent segment from "
434 "range tree (offset=%llu size=%llu)",
435 (longlong_t)start, (longlong_t)size);
436 return;
437 }
438
439 /*
440 * Range trees with gap support must only remove complete segments
441 * from the tree. This allows us to maintain accurate fill accounting
442 * and to ensure that bridged sections are not leaked. If we need to
443 * remove less than the full segment, we can only adjust the fill count.
444 */
445 if (rt->rt_gap != 0) {
446 if (do_fill) {
447 if (rs_get_fill(rs, rt) == size) {
448 start = rs_get_start(rs, rt);
449 end = rs_get_end(rs, rt);
450 size = end - start;
451 } else {
452 range_tree_adjust_fill(rt, rs, -size);
453 return;
454 }
455 } else if (rs_get_start(rs, rt) != start ||
456 rs_get_end(rs, rt) != end) {
457 zfs_panic_recover("zfs: freeing partial segment of "
458 "gap tree (offset=%llu size=%llu) of "
459 "(offset=%llu size=%llu)",
460 (longlong_t)start, (longlong_t)size,
461 (longlong_t)rs_get_start(rs, rt),
462 (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
463 rt));
464 return;
465 }
466 }
467
468 VERIFY3U(rs_get_start(rs, rt), <=, start);
469 VERIFY3U(rs_get_end(rs, rt), >=, end);
470
471 left_over = (rs_get_start(rs, rt) != start);
472 right_over = (rs_get_end(rs, rt) != end);
473
474 range_tree_stat_decr(rt, rs);
475
476 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
477 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
478
479 if (left_over && right_over) {
480 range_seg_max_t newseg;
481 rs_set_start(&newseg, rt, end);
482 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
483 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
484 range_tree_stat_incr(rt, &newseg);
485
486 // This modifies the buffer already inside the range tree
487 rs_set_end(rs, rt, start);
488
489 rs_copy(rs, &rs_tmp, rt);
490 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
491 zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
492 else
493 zfs_btree_add(&rt->rt_root, &newseg);
494
495 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
496 rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
497 } else if (left_over) {
498 // This modifies the buffer already inside the range tree
499 rs_set_end(rs, rt, start);
500 rs_copy(rs, &rs_tmp, rt);
501 } else if (right_over) {
502 // This modifies the buffer already inside the range tree
503 rs_set_start(rs, rt, end);
504 rs_copy(rs, &rs_tmp, rt);
505 } else {
506 zfs_btree_remove_idx(&rt->rt_root, &where);
507 rs = NULL;
508 }
509
510 if (rs != NULL) {
511 /*
512 * The fill of the leftover segment will always be equal to
513 * the size, since we do not support removing partial segments
514 * of range trees with gaps.
515 */
516 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
517 rs_get_start_raw(rs, rt));
518 range_tree_stat_incr(rt, &rs_tmp);
519
520 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
521 rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
522 }
523
524 rt->rt_space -= size;
525 }
526
527 void
range_tree_remove(void * arg,uint64_t start,uint64_t size)528 range_tree_remove(void *arg, uint64_t start, uint64_t size)
529 {
530 range_tree_remove_impl(arg, start, size, B_FALSE);
531 }
532
533 void
range_tree_remove_fill(range_tree_t * rt,uint64_t start,uint64_t size)534 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
535 {
536 range_tree_remove_impl(rt, start, size, B_TRUE);
537 }
538
539 void
range_tree_resize_segment(range_tree_t * rt,range_seg_t * rs,uint64_t newstart,uint64_t newsize)540 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
541 uint64_t newstart, uint64_t newsize)
542 {
543 int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
544
545 range_tree_stat_decr(rt, rs);
546 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
547 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
548
549 rs_set_start(rs, rt, newstart);
550 rs_set_end(rs, rt, newstart + newsize);
551
552 range_tree_stat_incr(rt, rs);
553 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
554 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
555
556 rt->rt_space += delta;
557 }
558
559 static range_seg_t *
range_tree_find_impl(range_tree_t * rt,uint64_t start,uint64_t size)560 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
561 {
562 range_seg_max_t rsearch;
563 uint64_t end = start + size;
564
565 VERIFY(size != 0);
566
567 rs_set_start(&rsearch, rt, start);
568 rs_set_end(&rsearch, rt, end);
569 return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
570 }
571
572 range_seg_t *
range_tree_find(range_tree_t * rt,uint64_t start,uint64_t size)573 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
574 {
575 if (rt->rt_type == RANGE_SEG64)
576 ASSERT3U(start + size, >, start);
577
578 range_seg_t *rs = range_tree_find_impl(rt, start, size);
579 if (rs != NULL && rs_get_start(rs, rt) <= start &&
580 rs_get_end(rs, rt) >= start + size) {
581 return (rs);
582 }
583 return (NULL);
584 }
585
586 void
range_tree_verify_not_present(range_tree_t * rt,uint64_t off,uint64_t size)587 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
588 {
589 range_seg_t *rs = range_tree_find(rt, off, size);
590 if (rs != NULL)
591 panic("segment already in tree; rs=%p", (void *)rs);
592 }
593
594 boolean_t
range_tree_contains(range_tree_t * rt,uint64_t start,uint64_t size)595 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
596 {
597 return (range_tree_find(rt, start, size) != NULL);
598 }
599
600 /*
601 * Returns the first subset of the given range which overlaps with the range
602 * tree. Returns true if there is a segment in the range, and false if there
603 * isn't.
604 */
605 boolean_t
range_tree_find_in(range_tree_t * rt,uint64_t start,uint64_t size,uint64_t * ostart,uint64_t * osize)606 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
607 uint64_t *ostart, uint64_t *osize)
608 {
609 if (rt->rt_type == RANGE_SEG64)
610 ASSERT3U(start + size, >, start);
611
612 range_seg_max_t rsearch;
613 rs_set_start(&rsearch, rt, start);
614 rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
615
616 zfs_btree_index_t where;
617 range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
618 if (rs != NULL) {
619 *ostart = start;
620 *osize = MIN(size, rs_get_end(rs, rt) - start);
621 return (B_TRUE);
622 }
623
624 rs = zfs_btree_next(&rt->rt_root, &where, &where);
625 if (rs == NULL || rs_get_start(rs, rt) > start + size)
626 return (B_FALSE);
627
628 *ostart = rs_get_start(rs, rt);
629 *osize = MIN(start + size, rs_get_end(rs, rt)) -
630 rs_get_start(rs, rt);
631 return (B_TRUE);
632 }
633
634 /*
635 * Ensure that this range is not in the tree, regardless of whether
636 * it is currently in the tree.
637 */
638 void
range_tree_clear(range_tree_t * rt,uint64_t start,uint64_t size)639 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
640 {
641 range_seg_t *rs;
642
643 if (size == 0)
644 return;
645
646 if (rt->rt_type == RANGE_SEG64)
647 ASSERT3U(start + size, >, start);
648
649 while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
650 uint64_t free_start = MAX(rs_get_start(rs, rt), start);
651 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
652 range_tree_remove(rt, free_start, free_end - free_start);
653 }
654 }
655
656 void
range_tree_swap(range_tree_t ** rtsrc,range_tree_t ** rtdst)657 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
658 {
659 range_tree_t *rt;
660
661 ASSERT0(range_tree_space(*rtdst));
662 ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
663
664 rt = *rtsrc;
665 *rtsrc = *rtdst;
666 *rtdst = rt;
667 }
668
669 void
range_tree_vacate(range_tree_t * rt,range_tree_func_t * func,void * arg)670 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
671 {
672
673 if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
674 rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
675
676 if (func != NULL) {
677 range_seg_t *rs;
678 zfs_btree_index_t *cookie = NULL;
679
680 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
681 NULL) {
682 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
683 rs_get_start(rs, rt));
684 }
685 } else {
686 zfs_btree_clear(&rt->rt_root);
687 }
688
689 bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
690 rt->rt_space = 0;
691 }
692
693 void
range_tree_walk(range_tree_t * rt,range_tree_func_t * func,void * arg)694 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
695 {
696 zfs_btree_index_t where;
697 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
698 rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
699 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
700 rs_get_start(rs, rt));
701 }
702 }
703
704 range_seg_t *
range_tree_first(range_tree_t * rt)705 range_tree_first(range_tree_t *rt)
706 {
707 return (zfs_btree_first(&rt->rt_root, NULL));
708 }
709
710 uint64_t
range_tree_space(range_tree_t * rt)711 range_tree_space(range_tree_t *rt)
712 {
713 return (rt->rt_space);
714 }
715
716 uint64_t
range_tree_numsegs(range_tree_t * rt)717 range_tree_numsegs(range_tree_t *rt)
718 {
719 return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
720 }
721
722 boolean_t
range_tree_is_empty(range_tree_t * rt)723 range_tree_is_empty(range_tree_t *rt)
724 {
725 ASSERT(rt != NULL);
726 return (range_tree_space(rt) == 0);
727 }
728
729 /* ARGSUSED */
730 void
rt_btree_create(range_tree_t * rt,void * arg)731 rt_btree_create(range_tree_t *rt, void *arg)
732 {
733 zfs_btree_t *size_tree = arg;
734
735 size_t size;
736 switch (rt->rt_type) {
737 case RANGE_SEG32:
738 size = sizeof (range_seg32_t);
739 break;
740 case RANGE_SEG64:
741 size = sizeof (range_seg64_t);
742 break;
743 case RANGE_SEG_GAP:
744 size = sizeof (range_seg_gap_t);
745 break;
746 default:
747 panic("Invalid range seg type %d", rt->rt_type);
748 }
749 zfs_btree_create(size_tree, rt->rt_btree_compare, size);
750 }
751
752 /* ARGSUSED */
753 void
rt_btree_destroy(range_tree_t * rt,void * arg)754 rt_btree_destroy(range_tree_t *rt, void *arg)
755 {
756 zfs_btree_t *size_tree = arg;
757 ASSERT0(zfs_btree_numnodes(size_tree));
758
759 zfs_btree_destroy(size_tree);
760 }
761
762 /* ARGSUSED */
763 void
rt_btree_add(range_tree_t * rt,range_seg_t * rs,void * arg)764 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
765 {
766 zfs_btree_t *size_tree = arg;
767
768 zfs_btree_add(size_tree, rs);
769 }
770
771 /* ARGSUSED */
772 void
rt_btree_remove(range_tree_t * rt,range_seg_t * rs,void * arg)773 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
774 {
775 zfs_btree_t *size_tree = arg;
776
777 zfs_btree_remove(size_tree, rs);
778 }
779
780 /* ARGSUSED */
781 void
rt_btree_vacate(range_tree_t * rt,void * arg)782 rt_btree_vacate(range_tree_t *rt, void *arg)
783 {
784 zfs_btree_t *size_tree = arg;
785 zfs_btree_clear(size_tree);
786 zfs_btree_destroy(size_tree);
787
788 rt_btree_create(rt, arg);
789 }
790
791 range_tree_ops_t rt_btree_ops = {
792 .rtop_create = rt_btree_create,
793 .rtop_destroy = rt_btree_destroy,
794 .rtop_add = rt_btree_add,
795 .rtop_remove = rt_btree_remove,
796 .rtop_vacate = rt_btree_vacate
797 };
798
799 /*
800 * Remove any overlapping ranges between the given segment [start, end)
801 * from removefrom. Add non-overlapping leftovers to addto.
802 */
803 void
range_tree_remove_xor_add_segment(uint64_t start,uint64_t end,range_tree_t * removefrom,range_tree_t * addto)804 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
805 range_tree_t *removefrom, range_tree_t *addto)
806 {
807 zfs_btree_index_t where;
808 range_seg_max_t starting_rs;
809 rs_set_start(&starting_rs, removefrom, start);
810 rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
811 removefrom) + 1);
812
813 range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
814 &starting_rs, &where);
815
816 if (curr == NULL)
817 curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
818
819 range_seg_t *next;
820 for (; curr != NULL; curr = next) {
821 if (start == end)
822 return;
823 VERIFY3U(start, <, end);
824
825 /* there is no overlap */
826 if (end <= rs_get_start(curr, removefrom)) {
827 range_tree_add(addto, start, end - start);
828 return;
829 }
830
831 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
832 start);
833 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
834 end);
835 uint64_t overlap_size = overlap_end - overlap_start;
836 ASSERT3S(overlap_size, >, 0);
837 range_seg_max_t rs;
838 rs_copy(curr, &rs, removefrom);
839
840 range_tree_remove(removefrom, overlap_start, overlap_size);
841
842 if (start < overlap_start)
843 range_tree_add(addto, start, overlap_start - start);
844
845 start = overlap_end;
846 next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
847 /*
848 * If we find something here, we only removed part of the
849 * curr segment. Either there's some left at the end
850 * because we've reached the end of the range we're removing,
851 * or there's some left at the start because we started
852 * partway through the range. Either way, we continue with
853 * the loop. If it's the former, we'll return at the start of
854 * the loop, and if it's the latter we'll see if there is more
855 * area to process.
856 */
857 if (next != NULL) {
858 ASSERT(start == end || start == rs_get_end(&rs,
859 removefrom));
860 }
861
862 next = zfs_btree_next(&removefrom->rt_root, &where, &where);
863 }
864 VERIFY3P(curr, ==, NULL);
865
866 if (start != end) {
867 VERIFY3U(start, <, end);
868 range_tree_add(addto, start, end - start);
869 } else {
870 VERIFY3U(start, ==, end);
871 }
872 }
873
874 /*
875 * For each entry in rt, if it exists in removefrom, remove it
876 * from removefrom. Otherwise, add it to addto.
877 */
878 void
range_tree_remove_xor_add(range_tree_t * rt,range_tree_t * removefrom,range_tree_t * addto)879 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
880 range_tree_t *addto)
881 {
882 zfs_btree_index_t where;
883 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
884 rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
885 range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
886 rs_get_end(rs, rt), removefrom, addto);
887 }
888 }
889
890 uint64_t
range_tree_min(range_tree_t * rt)891 range_tree_min(range_tree_t *rt)
892 {
893 range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
894 return (rs != NULL ? rs_get_start(rs, rt) : 0);
895 }
896
897 uint64_t
range_tree_max(range_tree_t * rt)898 range_tree_max(range_tree_t *rt)
899 {
900 range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
901 return (rs != NULL ? rs_get_end(rs, rt) : 0);
902 }
903
904 uint64_t
range_tree_span(range_tree_t * rt)905 range_tree_span(range_tree_t *rt)
906 {
907 return (range_tree_max(rt) - range_tree_min(rt));
908 }
909