xref: /illumos-gate/usr/src/uts/common/fs/zfs/range_tree.c (revision 698f4ab6008be205f4362675967638572eef4f21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dnode.h>
33 #include <sys/zio.h>
34 #include <sys/range_tree.h>
35 
36 /*
37  * Range trees are tree-based data structures that can be used to
38  * track free space or generally any space allocation information.
39  * A range tree keeps track of individual segments and automatically
40  * provides facilities such as adjacent extent merging and extent
41  * splitting in response to range add/remove requests.
42  *
43  * A range tree starts out completely empty, with no segments in it.
44  * Adding an allocation via range_tree_add to the range tree can either:
45  * 1) create a new extent
46  * 2) extend an adjacent extent
47  * 3) merge two adjacent extents
48  * Conversely, removing an allocation via range_tree_remove can:
49  * 1) completely remove an extent
50  * 2) shorten an extent (if the allocation was near one of its ends)
51  * 3) split an extent into two extents, in effect punching a hole
52  *
53  * A range tree is also capable of 'bridging' gaps when adding
54  * allocations. This is useful for cases when close proximity of
55  * allocations is an important detail that needs to be represented
56  * in the range tree. See range_tree_set_gap(). The default behavior
57  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
58  *
59  * In order to traverse a range tree, use either the range_tree_walk()
60  * or range_tree_vacate() functions.
61  *
62  * To obtain more accurate information on individual segment
63  * operations that the range tree performs "under the hood", you can
64  * specify a set of callbacks by passing a range_tree_ops_t structure
65  * to the range_tree_create function. Any callbacks that are non-NULL
66  * are then called at the appropriate times.
67  *
68  * The range tree code also supports a special variant of range trees
69  * that can bridge small gaps between segments. This kind of tree is used
70  * by the dsl scanning code to group I/Os into mostly sequential chunks to
71  * optimize disk performance. The code here attempts to do this with as
72  * little memory and computational overhead as possible. One limitation of
73  * this implementation is that segments of range trees with gaps can only
74  * support removing complete segments.
75  */
76 
77 static inline void
78 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
79 {
80 	ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
81 	size_t size = 0;
82 	switch (rt->rt_type) {
83 	case RANGE_SEG32:
84 		size = sizeof (range_seg32_t);
85 		break;
86 	case RANGE_SEG64:
87 		size = sizeof (range_seg64_t);
88 		break;
89 	case RANGE_SEG_GAP:
90 		size = sizeof (range_seg_gap_t);
91 		break;
92 	default:
93 		VERIFY(0);
94 	}
95 	bcopy(src, dest, size);
96 }
97 
98 void
99 range_tree_stat_verify(range_tree_t *rt)
100 {
101 	range_seg_t *rs;
102 	zfs_btree_index_t where;
103 	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
104 	int i;
105 
106 	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
107 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
108 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
109 		int idx	= highbit64(size) - 1;
110 
111 		hist[idx]++;
112 		ASSERT3U(hist[idx], !=, 0);
113 	}
114 
115 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
116 		if (hist[i] != rt->rt_histogram[i]) {
117 			zfs_dbgmsg("i=%d, hist=%p, hist=%llu, rt_hist=%llu",
118 			    i, hist, hist[i], rt->rt_histogram[i]);
119 		}
120 		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
121 	}
122 }
123 
124 static void
125 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
126 {
127 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
128 	int idx = highbit64(size) - 1;
129 
130 	ASSERT(size != 0);
131 	ASSERT3U(idx, <,
132 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
133 
134 	rt->rt_histogram[idx]++;
135 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
136 }
137 
138 static void
139 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
140 {
141 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
142 	int idx = highbit64(size) - 1;
143 
144 	ASSERT(size != 0);
145 	ASSERT3U(idx, <,
146 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
147 
148 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
149 	rt->rt_histogram[idx]--;
150 }
151 
152 static int
153 range_tree_seg32_compare(const void *x1, const void *x2)
154 {
155 	const range_seg32_t *r1 = x1;
156 	const range_seg32_t *r2 = x2;
157 
158 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
159 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
160 
161 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
162 }
163 
164 static int
165 range_tree_seg64_compare(const void *x1, const void *x2)
166 {
167 	const range_seg64_t *r1 = x1;
168 	const range_seg64_t *r2 = x2;
169 
170 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
171 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
172 
173 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
174 }
175 
176 static int
177 range_tree_seg_gap_compare(const void *x1, const void *x2)
178 {
179 	const range_seg_gap_t *r1 = x1;
180 	const range_seg_gap_t *r2 = x2;
181 
182 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
183 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
184 
185 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
186 }
187 
188 range_tree_t *
189 range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg,
190     uint64_t start, uint64_t shift,
191     int (*zfs_btree_compare) (const void *, const void *),
192     uint64_t gap)
193 {
194 	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
195 
196 	ASSERT3U(shift, <, 64);
197 	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
198 	size_t size;
199 	int (*compare) (const void *, const void *);
200 	switch (type) {
201 	case RANGE_SEG32:
202 		size = sizeof (range_seg32_t);
203 		compare = range_tree_seg32_compare;
204 		break;
205 	case RANGE_SEG64:
206 		size = sizeof (range_seg64_t);
207 		compare = range_tree_seg64_compare;
208 		break;
209 	case RANGE_SEG_GAP:
210 		size = sizeof (range_seg_gap_t);
211 		compare = range_tree_seg_gap_compare;
212 		break;
213 	default:
214 		panic("Invalid range seg type %d", type);
215 	}
216 	zfs_btree_create(&rt->rt_root, compare, size);
217 
218 	rt->rt_ops = ops;
219 	rt->rt_arg = arg;
220 	rt->rt_gap = gap;
221 	rt->rt_type = type;
222 	rt->rt_start = start;
223 	rt->rt_shift = shift;
224 	rt->rt_btree_compare = zfs_btree_compare;
225 
226 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
227 		rt->rt_ops->rtop_create(rt, rt->rt_arg);
228 
229 	return (rt);
230 }
231 
232 range_tree_t *
233 range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
234     void *arg, uint64_t start, uint64_t shift)
235 {
236 	return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
237 }
238 
239 void
240 range_tree_destroy(range_tree_t *rt)
241 {
242 	VERIFY0(rt->rt_space);
243 
244 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
245 		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
246 
247 	zfs_btree_destroy(&rt->rt_root);
248 	kmem_free(rt, sizeof (*rt));
249 }
250 
251 void
252 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
253 {
254 	ASSERT3U(rs_get_fill(rs, rt) + delta, !=, 0);
255 	ASSERT3U(rs_get_fill(rs, rt) + delta, <=, rs_get_end(rs, rt) -
256 	    rs_get_start(rs, rt));
257 
258 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
259 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
260 	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
261 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
262 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
263 }
264 
265 static void
266 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
267 {
268 	range_tree_t *rt = arg;
269 	zfs_btree_index_t where;
270 	range_seg_t *rs_before, *rs_after, *rs;
271 	range_seg_max_t tmp, rsearch;
272 	uint64_t end = start + size, gap = rt->rt_gap;
273 	uint64_t bridge_size = 0;
274 	boolean_t merge_before, merge_after;
275 
276 	ASSERT3U(size, !=, 0);
277 	ASSERT3U(fill, <=, size);
278 	ASSERT3U(start + size, >, start);
279 
280 	rs_set_start(&rsearch, rt, start);
281 	rs_set_end(&rsearch, rt, end);
282 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
283 
284 	/*
285 	 * If this is a gap-supporting range tree, it is possible that we
286 	 * are inserting into an existing segment. In this case simply
287 	 * bump the fill count and call the remove / add callbacks. If the
288 	 * new range will extend an existing segment, we remove the
289 	 * existing one, apply the new extent to it and re-insert it using
290 	 * the normal code paths.
291 	 */
292 	if (rs != NULL) {
293 		ASSERT3U(rt->rt_gap, !=, 0);
294 		uint64_t rstart = rs_get_start(rs, rt);
295 		uint64_t rend = rs_get_end(rs, rt);
296 		ASSERT3U(gap, !=, 0);
297 		if (rstart <= start && rend >= end) {
298 			range_tree_adjust_fill(rt, rs, fill);
299 			return;
300 		}
301 
302 		zfs_btree_remove(&rt->rt_root, rs);
303 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
304 			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
305 
306 		range_tree_stat_decr(rt, rs);
307 		rt->rt_space -= rend - rstart;
308 
309 		fill += rs_get_fill(rs, rt);
310 		start = MIN(start, rstart);
311 		end = MAX(end, rend);
312 		size = end - start;
313 
314 		range_tree_add_impl(rt, start, size, fill);
315 		return;
316 	}
317 
318 	ASSERT3P(rs, ==, NULL);
319 
320 	/*
321 	 * Determine whether or not we will have to merge with our neighbors.
322 	 * If gap != 0, we might need to merge with our neighbors even if we
323 	 * aren't directly touching.
324 	 */
325 	zfs_btree_index_t where_before, where_after;
326 	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
327 	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
328 
329 	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
330 	    start - gap);
331 	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
332 	    gap);
333 
334 	if (merge_before && gap != 0)
335 		bridge_size += start - rs_get_end(rs_before, rt);
336 	if (merge_after && gap != 0)
337 		bridge_size += rs_get_start(rs_after, rt) - end;
338 
339 	if (merge_before && merge_after) {
340 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
341 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
342 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
343 		}
344 
345 		range_tree_stat_decr(rt, rs_before);
346 		range_tree_stat_decr(rt, rs_after);
347 
348 		rs_copy(rs_after, &tmp, rt);
349 		uint64_t before_start = rs_get_start_raw(rs_before, rt);
350 		uint64_t before_fill = rs_get_fill(rs_before, rt);
351 		uint64_t after_fill = rs_get_fill(rs_after, rt);
352 		zfs_btree_remove_from(&rt->rt_root, &where_before);
353 
354 		/*
355 		 * We have to re-find the node because our old reference is
356 		 * invalid as soon as we do any mutating btree operations.
357 		 */
358 		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
359 		rs_set_start_raw(rs_after, rt, before_start);
360 		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
361 		rs = rs_after;
362 	} else if (merge_before) {
363 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
364 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
365 
366 		range_tree_stat_decr(rt, rs_before);
367 
368 		uint64_t before_fill = rs_get_fill(rs_before, rt);
369 		rs_set_end(rs_before, rt, end);
370 		rs_set_fill(rs_before, rt, before_fill + fill);
371 		rs = rs_before;
372 	} else if (merge_after) {
373 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
374 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
375 
376 		range_tree_stat_decr(rt, rs_after);
377 
378 		uint64_t after_fill = rs_get_fill(rs_after, rt);
379 		rs_set_start(rs_after, rt, start);
380 		rs_set_fill(rs_after, rt, after_fill + fill);
381 		rs = rs_after;
382 	} else {
383 		rs = &tmp;
384 
385 		rs_set_start(rs, rt, start);
386 		rs_set_end(rs, rt, end);
387 		rs_set_fill(rs, rt, fill);
388 		zfs_btree_insert(&rt->rt_root, rs, &where);
389 	}
390 
391 	if (gap != 0) {
392 		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
393 		    rs_get_start(rs, rt));
394 	} else {
395 		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
396 		    rs_get_start(rs, rt));
397 	}
398 
399 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
400 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
401 
402 	range_tree_stat_incr(rt, rs);
403 	rt->rt_space += size + bridge_size;
404 }
405 
406 void
407 range_tree_add(void *arg, uint64_t start, uint64_t size)
408 {
409 	range_tree_add_impl(arg, start, size, size);
410 }
411 
412 static void
413 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
414     boolean_t do_fill)
415 {
416 	zfs_btree_index_t where;
417 	range_seg_t *rs;
418 	range_seg_max_t rsearch, rs_tmp;
419 	uint64_t end = start + size;
420 	boolean_t left_over, right_over;
421 
422 	VERIFY3U(size, !=, 0);
423 	VERIFY3U(size, <=, rt->rt_space);
424 	if (rt->rt_type == RANGE_SEG64)
425 		ASSERT3U(start + size, >, start);
426 
427 	rs_set_start(&rsearch, rt, start);
428 	rs_set_end(&rsearch, rt, end);
429 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
430 
431 	/* Make sure we completely overlap with someone */
432 	if (rs == NULL) {
433 		zfs_panic_recover("zfs: removing nonexistent segment from "
434 		    "range tree (offset=%llu size=%llu)",
435 		    (longlong_t)start, (longlong_t)size);
436 		return;
437 	}
438 
439 	/*
440 	 * Range trees with gap support must only remove complete segments
441 	 * from the tree. This allows us to maintain accurate fill accounting
442 	 * and to ensure that bridged sections are not leaked. If we need to
443 	 * remove less than the full segment, we can only adjust the fill count.
444 	 */
445 	if (rt->rt_gap != 0) {
446 		if (do_fill) {
447 			if (rs_get_fill(rs, rt) == size) {
448 				start = rs_get_start(rs, rt);
449 				end = rs_get_end(rs, rt);
450 				size = end - start;
451 			} else {
452 				range_tree_adjust_fill(rt, rs, -size);
453 				return;
454 			}
455 		} else if (rs_get_start(rs, rt) != start ||
456 		    rs_get_end(rs, rt) != end) {
457 			zfs_panic_recover("zfs: freeing partial segment of "
458 			    "gap tree (offset=%llu size=%llu) of "
459 			    "(offset=%llu size=%llu)",
460 			    (longlong_t)start, (longlong_t)size,
461 			    (longlong_t)rs_get_start(rs, rt),
462 			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
463 			    rt));
464 			return;
465 		}
466 	}
467 
468 	VERIFY3U(rs_get_start(rs, rt), <=, start);
469 	VERIFY3U(rs_get_end(rs, rt), >=, end);
470 
471 	left_over = (rs_get_start(rs, rt) != start);
472 	right_over = (rs_get_end(rs, rt) != end);
473 
474 	range_tree_stat_decr(rt, rs);
475 
476 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
477 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
478 
479 	if (left_over && right_over) {
480 		range_seg_max_t newseg;
481 		rs_set_start(&newseg, rt, end);
482 		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
483 		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
484 		range_tree_stat_incr(rt, &newseg);
485 
486 		// This modifies the buffer already inside the range tree
487 		rs_set_end(rs, rt, start);
488 
489 		rs_copy(rs, &rs_tmp, rt);
490 		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
491 			zfs_btree_insert(&rt->rt_root, &newseg, &where);
492 		else
493 			zfs_btree_add(&rt->rt_root, &newseg);
494 
495 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
496 			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
497 	} else if (left_over) {
498 		// This modifies the buffer already inside the range tree
499 		rs_set_end(rs, rt, start);
500 		rs_copy(rs, &rs_tmp, rt);
501 	} else if (right_over) {
502 		// This modifies the buffer already inside the range tree
503 		rs_set_start(rs, rt, end);
504 		rs_copy(rs, &rs_tmp, rt);
505 	} else {
506 		zfs_btree_remove_from(&rt->rt_root, &where);
507 		rs = NULL;
508 	}
509 
510 	if (rs != NULL) {
511 		/*
512 		 * The fill of the leftover segment will always be equal to
513 		 * the size, since we do not support removing partial segments
514 		 * of range trees with gaps.
515 		 */
516 		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
517 		    rs_get_start_raw(rs, rt));
518 		range_tree_stat_incr(rt, &rs_tmp);
519 
520 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
521 			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
522 	}
523 
524 	rt->rt_space -= size;
525 }
526 
527 void
528 range_tree_remove(void *arg, uint64_t start, uint64_t size)
529 {
530 	range_tree_remove_impl(arg, start, size, B_FALSE);
531 }
532 
533 void
534 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
535 {
536 	range_tree_remove_impl(rt, start, size, B_TRUE);
537 }
538 
539 void
540 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
541     uint64_t newstart, uint64_t newsize)
542 {
543 	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
544 
545 	range_tree_stat_decr(rt, rs);
546 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
547 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
548 
549 	rs_set_start(rs, rt, newstart);
550 	rs_set_end(rs, rt, newstart + newsize);
551 
552 	range_tree_stat_incr(rt, rs);
553 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
554 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
555 
556 	rt->rt_space += delta;
557 }
558 
559 static range_seg_t *
560 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
561 {
562 	range_seg_max_t rsearch;
563 	uint64_t end = start + size;
564 
565 	VERIFY(size != 0);
566 
567 	rs_set_start(&rsearch, rt, start);
568 	rs_set_end(&rsearch, rt, end);
569 	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
570 }
571 
572 range_seg_t *
573 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
574 {
575 	if (rt->rt_type == RANGE_SEG64)
576 		ASSERT3U(start + size, >, start);
577 
578 	range_seg_t *rs = range_tree_find_impl(rt, start, size);
579 	if (rs != NULL && rs_get_start(rs, rt) <= start &&
580 	    rs_get_end(rs, rt) >= start + size) {
581 		return (rs);
582 	}
583 	return (NULL);
584 }
585 
586 void
587 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
588 {
589 	range_seg_t *rs = range_tree_find(rt, off, size);
590 	if (rs != NULL)
591 		panic("segment already in tree; rs=%p", (void *)rs);
592 }
593 
594 boolean_t
595 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
596 {
597 	return (range_tree_find(rt, start, size) != NULL);
598 }
599 
600 /*
601  * Returns the first subset of the given range which overlaps with the range
602  * tree. Returns true if there is a segment in the range, and false if there
603  * isn't.
604  */
605 boolean_t
606 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
607     uint64_t *ostart, uint64_t *osize)
608 {
609 	if (rt->rt_type == RANGE_SEG64)
610 		ASSERT3U(start + size, >, start);
611 
612 	range_seg_max_t rsearch;
613 	rs_set_start(&rsearch, rt, start);
614 	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
615 
616 	zfs_btree_index_t where;
617 	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
618 	if (rs != NULL) {
619 		*ostart = start;
620 		*osize = MIN(size, rs_get_end(rs, rt) - start);
621 		return (B_TRUE);
622 	}
623 
624 	rs = zfs_btree_next(&rt->rt_root, &where, &where);
625 	if (rs == NULL || rs_get_start(rs, rt) > start + size)
626 		return (B_FALSE);
627 
628 	*ostart = rs_get_start(rs, rt);
629 	*osize = MIN(start + size, rs_get_end(rs, rt)) -
630 	    rs_get_start(rs, rt);
631 	return (B_TRUE);
632 }
633 
634 /*
635  * Ensure that this range is not in the tree, regardless of whether
636  * it is currently in the tree.
637  */
638 void
639 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
640 {
641 	range_seg_t *rs;
642 
643 	if (size == 0)
644 		return;
645 
646 	if (rt->rt_type == RANGE_SEG64)
647 		ASSERT3U(start + size, >, start);
648 
649 	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
650 		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
651 		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
652 		range_tree_remove(rt, free_start, free_end - free_start);
653 	}
654 }
655 
656 void
657 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
658 {
659 	range_tree_t *rt;
660 
661 	ASSERT0(range_tree_space(*rtdst));
662 	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
663 
664 	rt = *rtsrc;
665 	*rtsrc = *rtdst;
666 	*rtdst = rt;
667 }
668 
669 void
670 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
671 {
672 
673 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
674 		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
675 
676 	if (func != NULL) {
677 		range_seg_t *rs;
678 		zfs_btree_index_t *cookie = NULL;
679 
680 		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
681 		    NULL) {
682 			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
683 			    rs_get_start(rs, rt));
684 		}
685 	} else {
686 		zfs_btree_clear(&rt->rt_root);
687 	}
688 
689 	bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
690 	rt->rt_space = 0;
691 }
692 
693 void
694 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
695 {
696 	zfs_btree_index_t where;
697 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
698 	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
699 		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
700 		    rs_get_start(rs, rt));
701 	}
702 }
703 
704 range_seg_t *
705 range_tree_first(range_tree_t *rt)
706 {
707 	return (zfs_btree_first(&rt->rt_root, NULL));
708 }
709 
710 uint64_t
711 range_tree_space(range_tree_t *rt)
712 {
713 	return (rt->rt_space);
714 }
715 
716 uint64_t
717 range_tree_numsegs(range_tree_t *rt)
718 {
719 	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
720 }
721 
722 boolean_t
723 range_tree_is_empty(range_tree_t *rt)
724 {
725 	ASSERT(rt != NULL);
726 	return (range_tree_space(rt) == 0);
727 }
728 
729 /* ARGSUSED */
730 void
731 rt_btree_create(range_tree_t *rt, void *arg)
732 {
733 	zfs_btree_t *size_tree = arg;
734 
735 	size_t size;
736 	switch (rt->rt_type) {
737 	case RANGE_SEG32:
738 		size = sizeof (range_seg32_t);
739 		break;
740 	case RANGE_SEG64:
741 		size = sizeof (range_seg64_t);
742 		break;
743 	case RANGE_SEG_GAP:
744 		size = sizeof (range_seg_gap_t);
745 		break;
746 	default:
747 		panic("Invalid range seg type %d", rt->rt_type);
748 	}
749 	zfs_btree_create(size_tree, rt->rt_btree_compare, size);
750 }
751 
752 /* ARGSUSED */
753 void
754 rt_btree_destroy(range_tree_t *rt, void *arg)
755 {
756 	zfs_btree_t *size_tree = arg;
757 	ASSERT0(zfs_btree_numnodes(size_tree));
758 
759 	zfs_btree_destroy(size_tree);
760 }
761 
762 /* ARGSUSED */
763 void
764 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
765 {
766 	zfs_btree_t *size_tree = arg;
767 
768 	zfs_btree_add(size_tree, rs);
769 }
770 
771 /* ARGSUSED */
772 void
773 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
774 {
775 	zfs_btree_t *size_tree = arg;
776 
777 	zfs_btree_remove(size_tree, rs);
778 }
779 
780 /* ARGSUSED */
781 void
782 rt_btree_vacate(range_tree_t *rt, void *arg)
783 {
784 	zfs_btree_t *size_tree = arg;
785 	zfs_btree_clear(size_tree);
786 	zfs_btree_destroy(size_tree);
787 
788 	rt_btree_create(rt, arg);
789 }
790 
791 range_tree_ops_t rt_btree_ops = {
792 	.rtop_create = rt_btree_create,
793 	.rtop_destroy = rt_btree_destroy,
794 	.rtop_add = rt_btree_add,
795 	.rtop_remove = rt_btree_remove,
796 	.rtop_vacate = rt_btree_vacate
797 };
798 
799 /*
800  * Remove any overlapping ranges between the given segment [start, end)
801  * from removefrom. Add non-overlapping leftovers to addto.
802  */
803 void
804 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
805     range_tree_t *removefrom, range_tree_t *addto)
806 {
807 	zfs_btree_index_t where;
808 	range_seg_max_t starting_rs;
809 	rs_set_start(&starting_rs, removefrom, start);
810 	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
811 	    removefrom) + 1);
812 
813 	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
814 	    &starting_rs, &where);
815 
816 	if (curr == NULL)
817 		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
818 
819 	range_seg_t *next;
820 	for (; curr != NULL; curr = next) {
821 		if (start == end)
822 			return;
823 		VERIFY3U(start, <, end);
824 
825 		/* there is no overlap */
826 		if (end <= rs_get_start(curr, removefrom)) {
827 			range_tree_add(addto, start, end - start);
828 			return;
829 		}
830 
831 		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
832 		    start);
833 		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
834 		    end);
835 		uint64_t overlap_size = overlap_end - overlap_start;
836 		ASSERT3S(overlap_size, >, 0);
837 		range_seg_max_t rs;
838 		rs_copy(curr, &rs, removefrom);
839 
840 		range_tree_remove(removefrom, overlap_start, overlap_size);
841 
842 		if (start < overlap_start)
843 			range_tree_add(addto, start, overlap_start - start);
844 
845 		start = overlap_end;
846 		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
847 		/*
848 		 * If we find something here, we only removed part of the
849 		 * curr segment. Either there's some left at the end
850 		 * because we've reached the end of the range we're removing,
851 		 * or there's some left at the start because we started
852 		 * partway through the range.  Either way, we continue with
853 		 * the loop. If it's the former, we'll return at the start of
854 		 * the loop, and if it's the latter we'll see if there is more
855 		 * area to process.
856 		 */
857 		if (next != NULL) {
858 			ASSERT(start == end || start == rs_get_end(&rs,
859 			    removefrom));
860 		}
861 
862 		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
863 	}
864 	VERIFY3P(curr, ==, NULL);
865 
866 	if (start != end) {
867 		VERIFY3U(start, <, end);
868 		range_tree_add(addto, start, end - start);
869 	} else {
870 		VERIFY3U(start, ==, end);
871 	}
872 }
873 
874 /*
875  * For each entry in rt, if it exists in removefrom, remove it
876  * from removefrom. Otherwise, add it to addto.
877  */
878 void
879 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
880     range_tree_t *addto)
881 {
882 	zfs_btree_index_t where;
883 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
884 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
885 		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
886 		    rs_get_end(rs, rt), removefrom, addto);
887 	}
888 }
889 
890 uint64_t
891 range_tree_min(range_tree_t *rt)
892 {
893 	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
894 	return (rs != NULL ? rs_get_start(rs, rt) : 0);
895 }
896 
897 uint64_t
898 range_tree_max(range_tree_t *rt)
899 {
900 	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
901 	return (rs != NULL ? rs_get_end(rs, rt) : 0);
902 }
903 
904 uint64_t
905 range_tree_span(range_tree_t *rt)
906 {
907 	return (range_tree_max(rt) - range_tree_min(rt));
908 }
909