xref: /illumos-gate/usr/src/lib/libm/common/complex/k_cexpl.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /* INDENT OFF */
31 /*
32  * long double __k_cexpl(long double x, int *n);
33  * Returns the exponential of x in the form of 2**n * y, y=__k_cexpl(x,&n).
34  *
35  *	1. Argument Reduction: given the input x, find r and integer k
36  *	   and j such that
37  *	             x = (32k+j)*ln2 + r,  |r| <= (1/64)*ln2 .
38  *
39  *	2. expl(x) = 2^k * (2^(j/32) + 2^(j/32)*expm1(r))
40  *	   Note:
41  *	   a. expm1(r) = (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
42  *	   b. 2^(j/32) is represented as
43  *			exp2_32_hi[j]+exp2_32_lo[j]
44  *         where
45  *              exp2_32_hi[j] = 2^(j/32) rounded
46  *		exp2_32_lo[j] = 2^(j/32) - exp2_32_hi[j].
47  *
48  * Special cases:
49  *	expl(INF) is INF, expl(NaN) is NaN;
50  *	expl(-INF)=  0;
51  *	for finite argument, only expl(0)=1 is exact.
52  *
53  * Accuracy:
54  *	according to an error analysis, the error is always less than
55  *	an ulp (unit in the last place).
56  *
57  * Misc. info.
58  *      When |x| is really big, say |x| > 1000000, the accuracy
59  *      is not important because the ultimate result will over or under
60  *      flow. So we will simply replace n = 1000000 and r = 0.0. For
61  *      moderate size x, according to an error analysis, the error is
62  *      always less than 1 ulp (unit in the last place).
63  *
64  * Constants:
65  * Only decimal values are given. We assume that the compiler will convert
66  * from decimal to binary accurately enough to produce the correct
67  * hexadecimal values.
68  */
69 /* INDENT ON */
70 
71 #include "libm.h"		/* __k_cexpl */
72 #include "complex_wrapper.h"	/* HI_XWORD */
73 
74 /* INDENT OFF */
75 /* ln2/32 = 0.0216608493924982909192885037955680177523593791987579766912713 */
76 #if defined(__x86)
77 static const long double
78 			/* 43 significant bits, 21 trailing zeros */
79 ln2_32hi = 2.166084939249657281834515742957592010498046875e-2L,
80 ln2_32lo = 1.7181009433463659920976473789104487579766912713e-15L;
81 static const long double exp2_32_hi[] = {  	/* exp2_32[j] = 2^(j/32) */
82 	1.0000000000000000000000000e+00L,
83 	1.0218971486541166782081522e+00L,
84 	1.0442737824274138402382006e+00L,
85 	1.0671404006768236181297224e+00L,
86 	1.0905077326652576591003302e+00L,
87 	1.1143867425958925362894369e+00L,
88 	1.1387886347566916536971221e+00L,
89 	1.1637248587775775137938619e+00L,
90 	1.1892071150027210666875674e+00L,
91 	1.2152473599804688780476325e+00L,
92 	1.2418578120734840485256747e+00L,
93 	1.2690509571917332224885722e+00L,
94 	1.2968395546510096659215822e+00L,
95 	1.3252366431597412945939118e+00L,
96 	1.3542555469368927282668852e+00L,
97 	1.3839098819638319548151403e+00L,
98 	1.4142135623730950487637881e+00L,
99 	1.4451808069770466200253470e+00L,
100 	1.4768261459394993113155431e+00L,
101 	1.5091644275934227397133885e+00L,
102 	1.5422108254079408235859630e+00L,
103 	1.5759808451078864864006862e+00L,
104 	1.6104903319492543080837174e+00L,
105 	1.6457554781539648445110730e+00L,
106 	1.6817928305074290860378350e+00L,
107 	1.7186192981224779156032914e+00L,
108 	1.7562521603732994831094730e+00L,
109 	1.7947090750031071864148413e+00L,
110 	1.8340080864093424633989166e+00L,
111 	1.8741676341102999013002103e+00L,
112 	1.9152065613971472938202589e+00L,
113 	1.9571441241754002689657438e+00L,
114 };
115 static const long double exp2_32_lo[] = {
116 	0.0000000000000000000000000e+00L,
117 	2.6327965667180882569382524e-20L,
118 	8.3765863521895191129661899e-20L,
119 	3.9798705777454504249209575e-20L,
120 	1.0668046596651558640993042e-19L,
121 	1.9376009847285360448117114e-20L,
122 	6.7081819456112953751277576e-21L,
123 	1.9711680502629186462729727e-20L,
124 	2.9932584438449523689104569e-20L,
125 	6.8887754153039109411061914e-20L,
126 	6.8002718741225378942847820e-20L,
127 	6.5846917376975403439742349e-20L,
128 	1.2171958727511372194876001e-20L,
129 	3.5625253228704087115438260e-20L,
130 	3.1129551559077560956309179e-20L,
131 	5.7519192396164779846216492e-20L,
132 	3.7900651177865141593101239e-20L,
133 	1.1659262405698741798080115e-20L,
134 	7.1364385105284695967172478e-20L,
135 	5.2631003710812203588788949e-20L,
136 	2.6328853788732632868460580e-20L,
137 	5.4583950085438242788190141e-20L,
138 	9.5803254376938269960718656e-20L,
139 	7.6837733983874245823512279e-21L,
140 	2.4415965910835093824202087e-20L,
141 	2.6052966871016580981769728e-20L,
142 	2.6876456344632553875309579e-21L,
143 	1.2861930155613700201703279e-20L,
144 	8.8166633394037485606572294e-20L,
145 	2.9788615389580190940837037e-20L,
146 	5.2352341619805098677422139e-20L,
147 	5.2578463064010463732242363e-20L,
148 };
149 #else	/* sparc */
150 static const long double
151 			/* 0x3FF962E4 2FEFA39E F35793C7 00000000 */
152 ln2_32hi = 2.166084939249829091928849858592451515688e-2L,
153 ln2_32lo = 5.209643502595475652782654157501186731779e-27L;
154 static const long double exp2_32_hi[] = {  	/* exp2_32[j] = 2^(j/32) */
155 	1.000000000000000000000000000000000000000e+0000L,
156 	1.021897148654116678234480134783299439782e+0000L,
157 	1.044273782427413840321966478739929008785e+0000L,
158 	1.067140400676823618169521120992809162607e+0000L,
159 	1.090507732665257659207010655760707978993e+0000L,
160 	1.114386742595892536308812956919603067800e+0000L,
161 	1.138788634756691653703830283841511254720e+0000L,
162 	1.163724858777577513813573599092185312343e+0000L,
163 	1.189207115002721066717499970560475915293e+0000L,
164 	1.215247359980468878116520251338798457624e+0000L,
165 	1.241857812073484048593677468726595605511e+0000L,
166 	1.269050957191733222554419081032338004715e+0000L,
167 	1.296839554651009665933754117792451159835e+0000L,
168 	1.325236643159741294629537095498721674113e+0000L,
169 	1.354255546936892728298014740140702804343e+0000L,
170 	1.383909881963831954872659527265192818002e+0000L,
171 	1.414213562373095048801688724209698078570e+0000L,
172 	1.445180806977046620037006241471670905678e+0000L,
173 	1.476826145939499311386907480374049923924e+0000L,
174 	1.509164427593422739766019551033193531420e+0000L,
175 	1.542210825407940823612291862090734841307e+0000L,
176 	1.575980845107886486455270160181905008906e+0000L,
177 	1.610490331949254308179520667357400583459e+0000L,
178 	1.645755478153964844518756724725822445667e+0000L,
179 	1.681792830507429086062250952466429790080e+0000L,
180 	1.718619298122477915629344376456312504516e+0000L,
181 	1.756252160373299483112160619375313221294e+0000L,
182 	1.794709075003107186427703242127781814354e+0000L,
183 	1.834008086409342463487083189588288856077e+0000L,
184 	1.874167634110299901329998949954446534439e+0000L,
185 	1.915206561397147293872611270295830887850e+0000L,
186 	1.957144124175400269018322251626871491190e+0000L,
187 };
188 
189 static const long double exp2_32_lo[] = {
190 	+0.000000000000000000000000000000000000000e+0000L,
191 	+1.805067874203309547455733330545737864651e-0035L,
192 	-9.374520292280427421957567419730832143843e-0035L,
193 	-1.596968447292758770712909630231499971233e-0035L,
194 	+9.112493410125022978511686101672486662119e-0035L,
195 	-6.504228206978548287230374775259388710985e-0035L,
196 	-8.148468844525851137325691767488155323605e-0035L,
197 	-5.066214576721800313372330745142903350963e-0035L,
198 	-1.359830974688816973749875638245919118924e-0035L,
199 	+9.497427635563196470307710566433246597109e-0035L,
200 	-3.283170523176998601615065965333915261932e-0036L,
201 	-5.017235709387190410290186530458428950862e-0035L,
202 	-2.391474797689109171622834301602640139258e-0035L,
203 	-8.350571357633908815298890737944083853080e-0036L,
204 	+7.036756889073265042421737190671876440729e-0035L,
205 	-5.182484853064646457536893018566956189817e-0035L,
206 	+9.422242548621832065692116736394064879758e-0035L,
207 	-3.967500825398862309167306130216418281103e-0035L,
208 	+7.143528991563300614523273615092767243521e-0035L,
209 	+1.159871252867985124246517834100444327747e-0035L,
210 	+4.696933478358115495309739213201874466685e-0035L,
211 	-3.386513175995004710799241984999819165197e-0035L,
212 	-8.587318774298247068868655935103874453522e-0035L,
213 	-9.605951548749350503185499362246069088835e-0035L,
214 	+9.609733932128012784507558697141785813655e-0035L,
215 	+6.378397921440028439244761449780848545957e-0035L,
216 	+7.792430785695864249456461125169277701177e-0035L,
217 	+7.361337767588456524131930836633932195088e-0035L,
218 	-6.472995147913347230035214575612170525266e-0035L,
219 	+8.587474417953698694278798062295229624207e-0035L,
220 	+2.371815422825174835691651228302690977951e-0035L,
221 	-3.026891682096118773004597373421900314256e-0037L,
222 };
223 #endif
224 
225 static const long double
226 	one = 1.0L,
227 	two = 2.0L,
228 	ln2_64 = 1.083042469624914545964425189778400898568e-2L,
229 	invln2_32 = 4.616624130844682903551758979206054839765e+1L;
230 
231 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
232 static const long double
233 	t1 =  1.666666666666666666666666666660876387437e-1L,
234 	t2 = -2.777777777777777777777707812093173478756e-3L,
235 	t3 =  6.613756613756613482074280932874221202424e-5L,
236 	t4 = -1.653439153392139954169609822742235851120e-6L,
237 	t5 =  4.175314851769539751387852116610973796053e-8L;
238 /* INDENT ON */
239 
240 long double
__k_cexpl(long double x,int * n)241 __k_cexpl(long double x, int *n) {
242 	int hx, ix, j, k;
243 	long double t, r;
244 
245 	*n = 0;
246 	hx = HI_XWORD(x);
247 	ix = hx & 0x7fffffff;
248 	if (hx >= 0x7fff0000)
249 		return (x + x);	/* NaN of +inf */
250 	if (((unsigned) hx) >= 0xffff0000)
251 		return (-one / x);	/* NaN or -inf */
252 	if (ix < 0x3fc30000)
253 		return (one + x);	/* |x|<2^-60 */
254 	if (hx > 0) {
255 		if (hx > 0x401086a0) {	/* x > 200000 */
256 			*n = 200000;
257 			return (one);
258 		}
259 		k = (int) (invln2_32 * (x + ln2_64));
260 	} else {
261 		if (ix > 0x401086a0) {	/* x < -200000 */
262 			*n = -200000;
263 			return (one);
264 		}
265 		k = (int) (invln2_32 * (x - ln2_64));
266 	}
267 	j = k & 0x1f;
268 	*n = k >> 5;
269 	t = (long double) k;
270 	x = (x - t * ln2_32hi) - t * ln2_32lo;
271 	t = x * x;
272 	r = (x - t * (t1 + t * (t2 + t * (t3 + t * (t4 + t * t5))))) - two;
273 	x = exp2_32_hi[j] - ((exp2_32_hi[j] * (x + x)) / r - exp2_32_lo[j]);
274 	k >>= 5;
275 	if (k > 240) {
276 		XFSCALE(x, 240);
277 		*n -= 240;
278 	} else if (k > 0) {
279 		XFSCALE(x, k);
280 		*n = 0;
281 	}
282 	return (x);
283 }
284