xref: /illumos-gate/usr/src/lib/libm/common/complex/clog.c (revision cffcfaee1e6b29ef9ceb7d80e4e053ffd029906b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  */
24 /*
25  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma weak clog = __clog
30 
31 /* INDENT OFF */
32 /*
33  * dcomplex clog(dcomplex z);
34  *
35  *                    _________
36  *                   / 2    2            -1   y
37  * log(x+iy) = log(\/ x  + y    ) + i tan   (---)
38  *                                            x
39  *
40  *              1       2    2         -1   y
41  *           = --- log(x  + y ) + i tan   (---)
42  *              2                           x
43  *
44  * Note that the arctangent ranges from -PI to +PI, thus the imaginary
45  * part of clog is atan2(y,x).
46  *
47  * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)):
48  *    clog(-0 + i 0   ) =  -inf + i pi
49  *    clog( 0 + i 0   ) =  -inf + i 0
50  *    clog( x + i inf ) =  -inf + i pi/2, for finite x
51  *    clog( x + i NaN ) =  NaN  + i NaN with invalid for finite x
52  *    clog(-inf + iy   )=  +inf + i pi, for finite positive-signed y
53  *    clog(+inf + iy   )=  +inf + i 0 , for finite positive-signed y
54  *    clog(-inf + i inf)=  inf  + i 3pi/4
55  *    clog(+inf + i inf)=  inf  + i pi/4
56  *    clog(+-inf+ i NaN)=  inf  + i NaN
57  *    clog(NaN  + i y  )=  NaN  + i NaN for finite y
58  *    clog(NaN  + i inf)=  inf  + i NaN
59  *    clog(NaN  + i NaN)=  NaN  + i NaN
60  */
61 /* INDENT ON */
62 
63 #include "libm_synonyms.h"
64 #include <math.h>		/* atan2/fabs/log/log1p */
65 #include "complex_wrapper.h"
66 #include "libm_protos.h"	/* __k_clog_r */
67 
68 
69 static const double half = 0.5, one = 1.0;
70 
71 dcomplex
72 clog(dcomplex z) {
73 	dcomplex	ans;
74 	double		x, y, t, ax, ay, w;
75 	int		n, ix, iy, hx, hy;
76 	unsigned	lx, ly;
77 
78 	x = D_RE(z);
79 	y = D_IM(z);
80 	hx = HI_WORD(x);
81 	lx = LO_WORD(x);
82 	hy = HI_WORD(y);
83 	ly = LO_WORD(y);
84 	ix = hx & 0x7fffffff;
85 	iy = hy & 0x7fffffff;
86 	ay = fabs(y);
87 	ax = fabs(x);
88 	D_IM(ans) = carg(z);
89 	if (ix < iy || (ix == iy && lx < ly)) {
90 		/* swap x and y to force ax >= ay */
91 		t = ax;
92 		ax = ay;
93 		ay = t;
94 		n = ix, ix = iy;
95 		iy = n;
96 		n = lx, lx = ly;
97 		ly = n;
98 	}
99 	n = (ix - iy) >> 20;
100 	if (ix >= 0x7ff00000) {	/* x or y is Inf or NaN */
101 		if (ISINF(ix, lx))
102 			D_RE(ans) = ax;
103 		else if (ISINF(iy, ly))
104 			D_RE(ans) = ay;
105 		else
106 			D_RE(ans) = ax * ay;
107 	} else if ((iy | ly) == 0) {
108 		D_RE(ans) = ((ix | lx) == 0)? -one / ax : log(ax);
109 	} else if (((0x3fffffff - ix) ^ (ix - 0x3fe00000)) >= 0) {
110 		/* 0.5 <= x < 2 */
111 		if (ix >= 0x3ff00000) {
112 			if (((ix - 0x3ff00000) | lx) == 0)
113 				D_RE(ans) = half * log1p(ay * ay);
114 			else if (n >= 60)
115 				D_RE(ans) = log(ax);
116 			else
117 				D_RE(ans) = half * (log1p(ay * ay + (ax -
118 				    one) * (ax + one)));
119 		} else if (n >= 60) {
120 			D_RE(ans) = log(ax);
121 		} else {
122 			D_RE(ans) = __k_clog_r(ax, ay, &w);
123 		}
124 	} else if (n >= 30) {
125 		D_RE(ans) = log(ax);
126 	} else if (ix < 0x5f300000 && iy >= 0x20b00000) {
127 		/* 2**-500< y < x < 2**500 */
128 		D_RE(ans) = half * log(ax * ax + ay * ay);
129 	} else {
130 		t = ay / ax;
131 		D_RE(ans) = log(ax) + half * log1p(t * t);
132 	}
133 	return (ans);
134 }
135