/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak clog = __clog /* INDENT OFF */ /* * dcomplex clog(dcomplex z); * * _________ * / 2 2 -1 y * log(x+iy) = log(\/ x + y ) + i tan (---) * x * * 1 2 2 -1 y * = --- log(x + y ) + i tan (---) * 2 x * * Note that the arctangent ranges from -PI to +PI, thus the imaginary * part of clog is atan2(y,x). * * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)): * clog(-0 + i 0 ) = -inf + i pi * clog( 0 + i 0 ) = -inf + i 0 * clog( x + i inf ) = -inf + i pi/2, for finite x * clog( x + i NaN ) = NaN + i NaN with invalid for finite x * clog(-inf + iy )= +inf + i pi, for finite positive-signed y * clog(+inf + iy )= +inf + i 0 , for finite positive-signed y * clog(-inf + i inf)= inf + i 3pi/4 * clog(+inf + i inf)= inf + i pi/4 * clog(+-inf+ i NaN)= inf + i NaN * clog(NaN + i y )= NaN + i NaN for finite y * clog(NaN + i inf)= inf + i NaN * clog(NaN + i NaN)= NaN + i NaN */ /* INDENT ON */ #include "libm_synonyms.h" #include <math.h> /* atan2/fabs/log/log1p */ #include "complex_wrapper.h" #include "libm_protos.h" /* __k_clog_r */ static const double half = 0.5, one = 1.0; dcomplex clog(dcomplex z) { dcomplex ans; double x, y, t, ax, ay, w; int n, ix, iy, hx, hy; unsigned lx, ly; x = D_RE(z); y = D_IM(z); hx = HI_WORD(x); lx = LO_WORD(x); hy = HI_WORD(y); ly = LO_WORD(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; ay = fabs(y); ax = fabs(x); D_IM(ans) = carg(z); if (ix < iy || (ix == iy && lx < ly)) { /* swap x and y to force ax >= ay */ t = ax; ax = ay; ay = t; n = ix, ix = iy; iy = n; n = lx, lx = ly; ly = n; } n = (ix - iy) >> 20; if (ix >= 0x7ff00000) { /* x or y is Inf or NaN */ if (ISINF(ix, lx)) D_RE(ans) = ax; else if (ISINF(iy, ly)) D_RE(ans) = ay; else D_RE(ans) = ax * ay; } else if ((iy | ly) == 0) { D_RE(ans) = ((ix | lx) == 0)? -one / ax : log(ax); } else if (((0x3fffffff - ix) ^ (ix - 0x3fe00000)) >= 0) { /* 0.5 <= x < 2 */ if (ix >= 0x3ff00000) { if (((ix - 0x3ff00000) | lx) == 0) D_RE(ans) = half * log1p(ay * ay); else if (n >= 60) D_RE(ans) = log(ax); else D_RE(ans) = half * (log1p(ay * ay + (ax - one) * (ax + one))); } else if (n >= 60) { D_RE(ans) = log(ax); } else { D_RE(ans) = __k_clog_r(ax, ay, &w); } } else if (n >= 30) { D_RE(ans) = log(ax); } else if (ix < 0x5f300000 && iy >= 0x20b00000) { /* 2**-500< y < x < 2**500 */ D_RE(ans) = half * log(ax * ax + ay * ay); } else { t = ay / ax; D_RE(ans) = log(ax) + half * log1p(t * t); } return (ans); }