1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 * Copyright 2022 Oxide Computer Company 26 */ 27 28 #include <sys/sysmacros.h> 29 30 #include <strings.h> 31 #include <unistd.h> 32 #include <stdarg.h> 33 #include <stddef.h> 34 #include <stdlib.h> 35 #include <stdio.h> 36 #include <errno.h> 37 #include <ctype.h> 38 #include <alloca.h> 39 #include <assert.h> 40 #include <libgen.h> 41 #include <limits.h> 42 43 #include <dt_impl.h> 44 45 static const struct { 46 size_t dtps_offset; 47 size_t dtps_len; 48 } dtrace_probespecs[] = { 49 { offsetof(dtrace_probedesc_t, dtpd_provider), DTRACE_PROVNAMELEN }, 50 { offsetof(dtrace_probedesc_t, dtpd_mod), DTRACE_MODNAMELEN }, 51 { offsetof(dtrace_probedesc_t, dtpd_func), DTRACE_FUNCNAMELEN }, 52 { offsetof(dtrace_probedesc_t, dtpd_name), DTRACE_NAMELEN } 53 }; 54 55 int 56 dtrace_xstr2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec, 57 const char *s, int argc, char *const argv[], dtrace_probedesc_t *pdp) 58 { 59 size_t off, len, vlen, wlen; 60 const char *p, *q, *v, *w; 61 62 char buf[32]; /* for id_t as %d (see below) */ 63 64 if (spec < DTRACE_PROBESPEC_NONE || spec > DTRACE_PROBESPEC_NAME) 65 return (dt_set_errno(dtp, EINVAL)); 66 67 bzero(pdp, sizeof (dtrace_probedesc_t)); 68 p = s + strlen(s) - 1; 69 70 do { 71 for (len = 0; p >= s && *p != ':'; len++) 72 p--; /* move backward until we find a delimiter */ 73 74 q = p + 1; 75 vlen = 0; 76 w = NULL; 77 wlen = 0; 78 79 if ((v = strchr(q, '$')) != NULL && v < q + len) { 80 /* 81 * Set vlen to the length of the variable name and then 82 * reset len to the length of the text prior to '$'. If 83 * the name begins with a digit, interpret it using the 84 * the argv[] array. Otherwise we look in dt_macros. 85 * For the moment, all dt_macros variables are of type 86 * id_t (see dtrace_update() for more details on that). 87 */ 88 vlen = (size_t)(q + len - v); 89 len = (size_t)(v - q); 90 91 /* 92 * If the variable string begins with $$, skip past the 93 * leading dollar sign since $ and $$ are equivalent 94 * macro reference operators in a probe description. 95 */ 96 if (vlen > 2 && v[1] == '$') { 97 vlen--; 98 v++; 99 } 100 101 if (isdigit(v[1])) { 102 long i; 103 104 errno = 0; 105 i = strtol(v + 1, (char **)&w, 10); 106 107 wlen = vlen - (w - v); 108 109 if (i < 0 || i >= argc || errno != 0) 110 return (dt_set_errno(dtp, EDT_BADSPCV)); 111 112 v = argv[i]; 113 vlen = strlen(v); 114 115 if (yypcb != NULL && yypcb->pcb_sargv == argv) 116 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 117 118 } else if (vlen > 1) { 119 char *vstr = alloca(vlen); 120 dt_ident_t *idp; 121 122 (void) strncpy(vstr, v + 1, vlen - 1); 123 vstr[vlen - 1] = '\0'; 124 idp = dt_idhash_lookup(dtp->dt_macros, vstr); 125 126 if (idp == NULL) 127 return (dt_set_errno(dtp, EDT_BADSPCV)); 128 129 v = buf; 130 vlen = snprintf(buf, 32, "%d", idp->di_id); 131 132 } else 133 return (dt_set_errno(dtp, EDT_BADSPCV)); 134 } 135 136 if (spec == DTRACE_PROBESPEC_NONE) 137 return (dt_set_errno(dtp, EDT_BADSPEC)); 138 139 if (len + vlen >= dtrace_probespecs[spec].dtps_len) 140 return (dt_set_errno(dtp, ENAMETOOLONG)); 141 142 off = dtrace_probespecs[spec--].dtps_offset; 143 bcopy(q, (char *)pdp + off, len); 144 bcopy(v, (char *)pdp + off + len, vlen); 145 bcopy(w, (char *)pdp + off + len + vlen, wlen); 146 } while (--p >= s); 147 148 pdp->dtpd_id = DTRACE_IDNONE; 149 return (0); 150 } 151 152 int 153 dtrace_str2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec, 154 const char *s, dtrace_probedesc_t *pdp) 155 { 156 return (dtrace_xstr2desc(dtp, spec, s, 0, NULL, pdp)); 157 } 158 159 int 160 dtrace_id2desc(dtrace_hdl_t *dtp, dtrace_id_t id, dtrace_probedesc_t *pdp) 161 { 162 bzero(pdp, sizeof (dtrace_probedesc_t)); 163 pdp->dtpd_id = id; 164 165 if (dt_ioctl(dtp, DTRACEIOC_PROBES, pdp) == -1 || 166 pdp->dtpd_id != id) 167 return (dt_set_errno(dtp, EDT_BADID)); 168 169 return (0); 170 } 171 172 char * 173 dtrace_desc2str(const dtrace_probedesc_t *pdp, char *buf, size_t len) 174 { 175 if (pdp->dtpd_id == 0) { 176 (void) snprintf(buf, len, "%s:%s:%s:%s", pdp->dtpd_provider, 177 pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name); 178 } else 179 (void) snprintf(buf, len, "%u", pdp->dtpd_id); 180 181 return (buf); 182 } 183 184 char * 185 dtrace_attr2str(dtrace_attribute_t attr, char *buf, size_t len) 186 { 187 const char *name = dtrace_stability_name(attr.dtat_name); 188 const char *data = dtrace_stability_name(attr.dtat_data); 189 const char *class = dtrace_class_name(attr.dtat_class); 190 191 if (name == NULL || data == NULL || class == NULL) 192 return (NULL); /* one or more invalid attributes */ 193 194 (void) snprintf(buf, len, "%s/%s/%s", name, data, class); 195 return (buf); 196 } 197 198 static char * 199 dt_getstrattr(char *p, char **qp) 200 { 201 char *q; 202 203 if (*p == '\0') 204 return (NULL); 205 206 if ((q = strchr(p, '/')) == NULL) 207 q = p + strlen(p); 208 else 209 *q++ = '\0'; 210 211 *qp = q; 212 return (p); 213 } 214 215 int 216 dtrace_str2attr(const char *str, dtrace_attribute_t *attr) 217 { 218 dtrace_stability_t s; 219 dtrace_class_t c; 220 char *p, *q; 221 222 if (str == NULL || attr == NULL) 223 return (-1); /* invalid function arguments */ 224 225 *attr = _dtrace_maxattr; 226 p = strdupa(str); 227 228 if ((p = dt_getstrattr(p, &q)) == NULL) 229 return (0); 230 231 for (s = 0; s <= DTRACE_STABILITY_MAX; s++) { 232 if (strcasecmp(p, dtrace_stability_name(s)) == 0) { 233 attr->dtat_name = s; 234 break; 235 } 236 } 237 238 if (s > DTRACE_STABILITY_MAX) 239 return (-1); 240 241 if ((p = dt_getstrattr(q, &q)) == NULL) 242 return (0); 243 244 for (s = 0; s <= DTRACE_STABILITY_MAX; s++) { 245 if (strcasecmp(p, dtrace_stability_name(s)) == 0) { 246 attr->dtat_data = s; 247 break; 248 } 249 } 250 251 if (s > DTRACE_STABILITY_MAX) 252 return (-1); 253 254 if ((p = dt_getstrattr(q, &q)) == NULL) 255 return (0); 256 257 for (c = 0; c <= DTRACE_CLASS_MAX; c++) { 258 if (strcasecmp(p, dtrace_class_name(c)) == 0) { 259 attr->dtat_class = c; 260 break; 261 } 262 } 263 264 if (c > DTRACE_CLASS_MAX || (p = dt_getstrattr(q, &q)) != NULL) 265 return (-1); 266 267 return (0); 268 } 269 270 const char * 271 dtrace_stability_name(dtrace_stability_t s) 272 { 273 switch (s) { 274 case DTRACE_STABILITY_INTERNAL: return ("Internal"); 275 case DTRACE_STABILITY_PRIVATE: return ("Private"); 276 case DTRACE_STABILITY_OBSOLETE: return ("Obsolete"); 277 case DTRACE_STABILITY_EXTERNAL: return ("External"); 278 case DTRACE_STABILITY_UNSTABLE: return ("Unstable"); 279 case DTRACE_STABILITY_EVOLVING: return ("Evolving"); 280 case DTRACE_STABILITY_STABLE: return ("Stable"); 281 case DTRACE_STABILITY_STANDARD: return ("Standard"); 282 default: return (NULL); 283 } 284 } 285 286 const char * 287 dtrace_class_name(dtrace_class_t c) 288 { 289 switch (c) { 290 case DTRACE_CLASS_UNKNOWN: return ("Unknown"); 291 case DTRACE_CLASS_CPU: return ("CPU"); 292 case DTRACE_CLASS_PLATFORM: return ("Platform"); 293 case DTRACE_CLASS_GROUP: return ("Group"); 294 case DTRACE_CLASS_ISA: return ("ISA"); 295 case DTRACE_CLASS_COMMON: return ("Common"); 296 default: return (NULL); 297 } 298 } 299 300 dtrace_attribute_t 301 dt_attr_min(dtrace_attribute_t a1, dtrace_attribute_t a2) 302 { 303 dtrace_attribute_t am; 304 305 am.dtat_name = MIN(a1.dtat_name, a2.dtat_name); 306 am.dtat_data = MIN(a1.dtat_data, a2.dtat_data); 307 am.dtat_class = MIN(a1.dtat_class, a2.dtat_class); 308 309 return (am); 310 } 311 312 dtrace_attribute_t 313 dt_attr_max(dtrace_attribute_t a1, dtrace_attribute_t a2) 314 { 315 dtrace_attribute_t am; 316 317 am.dtat_name = MAX(a1.dtat_name, a2.dtat_name); 318 am.dtat_data = MAX(a1.dtat_data, a2.dtat_data); 319 am.dtat_class = MAX(a1.dtat_class, a2.dtat_class); 320 321 return (am); 322 } 323 324 /* 325 * Compare two attributes and return an integer value in the following ranges: 326 * 327 * <0 if any of a1's attributes are less than a2's attributes 328 * =0 if all of a1's attributes are equal to a2's attributes 329 * >0 if all of a1's attributes are greater than or equal to a2's attributes 330 * 331 * To implement this function efficiently, we subtract a2's attributes from 332 * a1's to obtain a negative result if an a1 attribute is less than its a2 333 * counterpart. We then OR the intermediate results together, relying on the 334 * twos-complement property that if any result is negative, the bitwise union 335 * will also be negative since the highest bit will be set in the result. 336 */ 337 int 338 dt_attr_cmp(dtrace_attribute_t a1, dtrace_attribute_t a2) 339 { 340 return (((int)a1.dtat_name - a2.dtat_name) | 341 ((int)a1.dtat_data - a2.dtat_data) | 342 ((int)a1.dtat_class - a2.dtat_class)); 343 } 344 345 char * 346 dt_attr_str(dtrace_attribute_t a, char *buf, size_t len) 347 { 348 static const char stability[] = "ipoxuesS"; 349 static const char class[] = "uCpgIc"; 350 351 if (a.dtat_name < sizeof (stability) && 352 a.dtat_data < sizeof (stability) && a.dtat_class < sizeof (class)) { 353 (void) snprintf(buf, len, "[%c/%c/%c]", stability[a.dtat_name], 354 stability[a.dtat_data], class[a.dtat_class]); 355 } else { 356 (void) snprintf(buf, len, "[%u/%u/%u]", 357 a.dtat_name, a.dtat_data, a.dtat_class); 358 } 359 360 return (buf); 361 } 362 363 char * 364 dt_version_num2str(dt_version_t v, char *buf, size_t len) 365 { 366 uint_t M = DT_VERSION_MAJOR(v); 367 uint_t m = DT_VERSION_MINOR(v); 368 uint_t u = DT_VERSION_MICRO(v); 369 370 if (u == 0) 371 (void) snprintf(buf, len, "%u.%u", M, m); 372 else 373 (void) snprintf(buf, len, "%u.%u.%u", M, m, u); 374 375 return (buf); 376 } 377 378 int 379 dt_version_str2num(const char *s, dt_version_t *vp) 380 { 381 int i = 0, n[3] = { 0, 0, 0 }; 382 char c; 383 384 while ((c = *s++) != '\0') { 385 if (isdigit(c)) 386 n[i] = n[i] * 10 + c - '0'; 387 else if (c != '.' || i++ >= sizeof (n) / sizeof (n[0]) - 1) 388 return (-1); 389 } 390 391 if (n[0] > DT_VERSION_MAJMAX || 392 n[1] > DT_VERSION_MINMAX || 393 n[2] > DT_VERSION_MICMAX) 394 return (-1); 395 396 if (vp != NULL) 397 *vp = DT_VERSION_NUMBER(n[0], n[1], n[2]); 398 399 return (0); 400 } 401 402 int 403 dt_version_defined(dt_version_t v) 404 { 405 int i; 406 407 for (i = 0; _dtrace_versions[i] != 0; i++) { 408 if (_dtrace_versions[i] == v) 409 return (1); 410 } 411 412 return (0); 413 } 414 415 char * 416 dt_cpp_add_arg(dtrace_hdl_t *dtp, const char *str) 417 { 418 char *arg; 419 420 if (dtp->dt_cpp_argc == dtp->dt_cpp_args) { 421 int olds = dtp->dt_cpp_args; 422 int news = olds * 2; 423 char **argv = realloc(dtp->dt_cpp_argv, sizeof (char *) * news); 424 425 if (argv == NULL) 426 return (NULL); 427 428 bzero(&argv[olds], sizeof (char *) * olds); 429 dtp->dt_cpp_argv = argv; 430 dtp->dt_cpp_args = news; 431 } 432 433 if ((arg = strdup(str)) == NULL) 434 return (NULL); 435 436 assert(dtp->dt_cpp_argc < dtp->dt_cpp_args); 437 dtp->dt_cpp_argv[dtp->dt_cpp_argc++] = arg; 438 return (arg); 439 } 440 441 char * 442 dt_cpp_pop_arg(dtrace_hdl_t *dtp) 443 { 444 char *arg; 445 446 if (dtp->dt_cpp_argc <= 1) 447 return (NULL); /* dt_cpp_argv[0] cannot be popped */ 448 449 arg = dtp->dt_cpp_argv[--dtp->dt_cpp_argc]; 450 dtp->dt_cpp_argv[dtp->dt_cpp_argc] = NULL; 451 452 return (arg); 453 } 454 455 /*PRINTFLIKE1*/ 456 void 457 dt_dprintf(const char *format, ...) 458 { 459 if (_dtrace_debug) { 460 va_list alist; 461 462 va_start(alist, format); 463 (void) fputs("libdtrace DEBUG: ", stderr); 464 (void) vfprintf(stderr, format, alist); 465 va_end(alist); 466 } 467 } 468 469 int 470 dt_ioctl(dtrace_hdl_t *dtp, int val, void *arg) 471 { 472 const dtrace_vector_t *v = dtp->dt_vector; 473 474 if (v != NULL) 475 return (v->dtv_ioctl(dtp->dt_varg, val, arg)); 476 477 if (dtp->dt_fd >= 0) 478 return (ioctl(dtp->dt_fd, val, arg)); 479 480 errno = EBADF; 481 return (-1); 482 } 483 484 int 485 dt_status(dtrace_hdl_t *dtp, processorid_t cpu) 486 { 487 const dtrace_vector_t *v = dtp->dt_vector; 488 489 if (v == NULL) 490 return (p_online(cpu, P_STATUS)); 491 492 return (v->dtv_status(dtp->dt_varg, cpu)); 493 } 494 495 long 496 dt_sysconf(dtrace_hdl_t *dtp, int name) 497 { 498 const dtrace_vector_t *v = dtp->dt_vector; 499 500 if (v == NULL) 501 return (sysconf(name)); 502 503 return (v->dtv_sysconf(dtp->dt_varg, name)); 504 } 505 506 /* 507 * Wrapper around write(2) to handle partial writes. For maximum safety of 508 * output files and proper error reporting, we continuing writing in the 509 * face of partial writes until write(2) fails or 'buf' is completely written. 510 * We also record any errno in the specified dtrace_hdl_t as well as 'errno'. 511 */ 512 ssize_t 513 dt_write(dtrace_hdl_t *dtp, int fd, const void *buf, size_t n) 514 { 515 ssize_t resid = n; 516 ssize_t len; 517 518 while (resid != 0) { 519 if ((len = write(fd, buf, resid)) <= 0) 520 break; 521 522 resid -= len; 523 buf = (char *)buf + len; 524 } 525 526 if (resid == n && n != 0) 527 return (dt_set_errno(dtp, errno)); 528 529 return (n - resid); 530 } 531 532 /* 533 * This function handles all output from libdtrace, as well as the 534 * dtrace_sprintf() case. If we're here due to dtrace_sprintf(), then 535 * dt_sprintf_buflen will be non-zero; in this case, we sprintf into the 536 * specified buffer and return. Otherwise, if output is buffered (denoted by 537 * a NULL fp), we sprintf the desired output into the buffered buffer 538 * (expanding the buffer if required). If we don't satisfy either of these 539 * conditions (that is, if we are to actually generate output), then we call 540 * fprintf with the specified fp. In this case, we need to deal with one of 541 * the more annoying peculiarities of libc's printf routines: any failed 542 * write persistently sets an error flag inside the FILE causing every 543 * subsequent write to fail, but only the caller that initiated the error gets 544 * the errno. Since libdtrace clients often intercept SIGINT, this case is 545 * particularly frustrating since we don't want the EINTR on one attempt to 546 * write to the output file to preclude later attempts to write. This 547 * function therefore does a clearerr() if any error occurred, and saves the 548 * errno for the caller inside the specified dtrace_hdl_t. 549 */ 550 /*PRINTFLIKE3*/ 551 int 552 dt_printf(dtrace_hdl_t *dtp, FILE *fp, const char *format, ...) 553 { 554 va_list ap; 555 int n; 556 557 va_start(ap, format); 558 559 if (dtp->dt_sprintf_buflen != 0) { 560 int len; 561 char *buf; 562 563 assert(dtp->dt_sprintf_buf != NULL); 564 565 buf = &dtp->dt_sprintf_buf[len = strlen(dtp->dt_sprintf_buf)]; 566 len = dtp->dt_sprintf_buflen - len; 567 assert(len >= 0); 568 569 if ((n = vsnprintf(buf, len, format, ap)) < 0) 570 n = dt_set_errno(dtp, errno); 571 572 va_end(ap); 573 574 return (n); 575 } 576 577 if (fp == NULL) { 578 int needed, rval; 579 size_t avail; 580 581 /* 582 * Using buffered output is not allowed if a handler has 583 * not been installed. 584 */ 585 if (dtp->dt_bufhdlr == NULL) { 586 va_end(ap); 587 return (dt_set_errno(dtp, EDT_NOBUFFERED)); 588 } 589 590 if (dtp->dt_buffered_buf == NULL) { 591 assert(dtp->dt_buffered_size == 0); 592 dtp->dt_buffered_size = 1; 593 dtp->dt_buffered_buf = malloc(dtp->dt_buffered_size); 594 595 if (dtp->dt_buffered_buf == NULL) { 596 va_end(ap); 597 return (dt_set_errno(dtp, EDT_NOMEM)); 598 } 599 600 dtp->dt_buffered_offs = 0; 601 dtp->dt_buffered_buf[0] = '\0'; 602 } 603 604 if ((needed = vsnprintf(NULL, 0, format, ap)) < 0) { 605 rval = dt_set_errno(dtp, errno); 606 va_end(ap); 607 return (rval); 608 } 609 610 if (needed == 0) { 611 va_end(ap); 612 return (0); 613 } 614 615 for (;;) { 616 char *newbuf; 617 618 assert(dtp->dt_buffered_offs < dtp->dt_buffered_size); 619 avail = dtp->dt_buffered_size - dtp->dt_buffered_offs; 620 621 if (needed + 1 < avail) 622 break; 623 624 if ((newbuf = realloc(dtp->dt_buffered_buf, 625 dtp->dt_buffered_size << 1)) == NULL) { 626 va_end(ap); 627 return (dt_set_errno(dtp, EDT_NOMEM)); 628 } 629 630 dtp->dt_buffered_buf = newbuf; 631 dtp->dt_buffered_size <<= 1; 632 } 633 634 if (vsnprintf(&dtp->dt_buffered_buf[dtp->dt_buffered_offs], 635 avail, format, ap) < 0) { 636 rval = dt_set_errno(dtp, errno); 637 va_end(ap); 638 return (rval); 639 } 640 641 dtp->dt_buffered_offs += needed; 642 assert(dtp->dt_buffered_buf[dtp->dt_buffered_offs] == '\0'); 643 return (0); 644 } 645 646 n = vfprintf(fp, format, ap); 647 va_end(ap); 648 649 if (n < 0) { 650 clearerr(fp); 651 return (dt_set_errno(dtp, errno)); 652 } 653 654 return (n); 655 } 656 657 int 658 dt_buffered_flush(dtrace_hdl_t *dtp, dtrace_probedata_t *pdata, 659 const dtrace_recdesc_t *rec, const dtrace_aggdata_t *agg, uint32_t flags) 660 { 661 dtrace_bufdata_t data; 662 663 if (dtp->dt_buffered_offs == 0) 664 return (0); 665 666 data.dtbda_handle = dtp; 667 data.dtbda_buffered = dtp->dt_buffered_buf; 668 data.dtbda_probe = pdata; 669 data.dtbda_recdesc = rec; 670 data.dtbda_aggdata = agg; 671 data.dtbda_flags = flags; 672 673 if ((*dtp->dt_bufhdlr)(&data, dtp->dt_bufarg) == DTRACE_HANDLE_ABORT) 674 return (dt_set_errno(dtp, EDT_DIRABORT)); 675 676 dtp->dt_buffered_offs = 0; 677 dtp->dt_buffered_buf[0] = '\0'; 678 679 return (0); 680 } 681 682 void 683 dt_buffered_destroy(dtrace_hdl_t *dtp) 684 { 685 free(dtp->dt_buffered_buf); 686 dtp->dt_buffered_buf = NULL; 687 dtp->dt_buffered_offs = 0; 688 dtp->dt_buffered_size = 0; 689 } 690 691 void * 692 dt_zalloc(dtrace_hdl_t *dtp, size_t size) 693 { 694 void *data; 695 696 if ((data = malloc(size)) == NULL) 697 (void) dt_set_errno(dtp, EDT_NOMEM); 698 else 699 bzero(data, size); 700 701 return (data); 702 } 703 704 void * 705 dt_alloc(dtrace_hdl_t *dtp, size_t size) 706 { 707 void *data; 708 709 if ((data = malloc(size)) == NULL) 710 (void) dt_set_errno(dtp, EDT_NOMEM); 711 712 return (data); 713 } 714 715 void 716 dt_free(dtrace_hdl_t *dtp, void *data) 717 { 718 assert(dtp != NULL); /* ensure sane use of this interface */ 719 free(data); 720 } 721 722 void 723 dt_difo_free(dtrace_hdl_t *dtp, dtrace_difo_t *dp) 724 { 725 if (dp == NULL) 726 return; /* simplify caller code */ 727 728 dt_free(dtp, dp->dtdo_buf); 729 dt_free(dtp, dp->dtdo_inttab); 730 dt_free(dtp, dp->dtdo_strtab); 731 dt_free(dtp, dp->dtdo_vartab); 732 dt_free(dtp, dp->dtdo_kreltab); 733 dt_free(dtp, dp->dtdo_ureltab); 734 dt_free(dtp, dp->dtdo_xlmtab); 735 736 dt_free(dtp, dp); 737 } 738 739 /* 740 * dt_gmatch() is similar to gmatch(3GEN) and dtrace(4D) globbing, but also 741 * implements the behavior that an empty pattern matches any string. 742 */ 743 int 744 dt_gmatch(const char *s, const char *p) 745 { 746 return (p == NULL || *p == '\0' || gmatch(s, p)); 747 } 748 749 char * 750 dt_basename(char *str) 751 { 752 char *last = strrchr(str, '/'); 753 754 if (last == NULL) 755 return (str); 756 757 return (last + 1); 758 } 759 760 /* 761 * dt_popc() is a fast implementation of population count. The algorithm is 762 * from "Hacker's Delight" by Henry Warren, Jr with a 64-bit equivalent added. 763 */ 764 ulong_t 765 dt_popc(ulong_t x) 766 { 767 #ifdef _ILP32 768 x = x - ((x >> 1) & 0x55555555UL); 769 x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL); 770 x = (x + (x >> 4)) & 0x0F0F0F0FUL; 771 x = x + (x >> 8); 772 x = x + (x >> 16); 773 return (x & 0x3F); 774 #endif 775 #ifdef _LP64 776 x = x - ((x >> 1) & 0x5555555555555555ULL); 777 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL); 778 x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL; 779 x = x + (x >> 8); 780 x = x + (x >> 16); 781 x = x + (x >> 32); 782 return (x & 0x7F); 783 #endif 784 } 785 786 /* 787 * dt_popcb() is a bitmap-based version of population count that returns the 788 * number of one bits in the specified bitmap 'bp' at bit positions below 'n'. 789 */ 790 ulong_t 791 dt_popcb(const ulong_t *bp, ulong_t n) 792 { 793 ulong_t maxb = n & BT_ULMASK; 794 ulong_t maxw = n >> BT_ULSHIFT; 795 ulong_t w, popc = 0; 796 797 if (n == 0) 798 return (0); 799 800 for (w = 0; w < maxw; w++) 801 popc += dt_popc(bp[w]); 802 803 return (popc + dt_popc(bp[maxw] & ((1UL << maxb) - 1))); 804 } 805 806 static int 807 dt_string2str(char *s, char *str, int nbytes) 808 { 809 int len = strlen(s); 810 811 if (nbytes == 0) { 812 /* 813 * Like snprintf(3C), we don't check the value of str if the 814 * number of bytes is 0. 815 */ 816 return (len); 817 } 818 819 if (nbytes <= len) { 820 (void) strncpy(str, s, nbytes - 1); 821 /* 822 * Like snprintf(3C) (and unlike strncpy(3C)), we guarantee 823 * that the string is null-terminated. 824 */ 825 str[nbytes - 1] = '\0'; 826 } else { 827 (void) strcpy(str, s); 828 } 829 830 return (len); 831 } 832 833 int 834 dtrace_addr2str(dtrace_hdl_t *dtp, uint64_t addr, char *str, int nbytes) 835 { 836 dtrace_syminfo_t dts; 837 GElf_Sym sym; 838 839 size_t n = 20; /* for 0x%llx\0 */ 840 char *s; 841 int err; 842 843 if ((err = dtrace_lookup_by_addr(dtp, addr, &sym, &dts)) == 0) 844 n += strlen(dts.dts_object) + strlen(dts.dts_name) + 2; /* +` */ 845 846 s = alloca(n); 847 848 if (err == 0 && addr != sym.st_value) { 849 (void) snprintf(s, n, "%s`%s+0x%llx", dts.dts_object, 850 dts.dts_name, (u_longlong_t)addr - sym.st_value); 851 } else if (err == 0) { 852 (void) snprintf(s, n, "%s`%s", 853 dts.dts_object, dts.dts_name); 854 } else { 855 /* 856 * We'll repeat the lookup, but this time we'll specify a NULL 857 * GElf_Sym -- indicating that we're only interested in the 858 * containing module. 859 */ 860 if (dtrace_lookup_by_addr(dtp, addr, NULL, &dts) == 0) { 861 (void) snprintf(s, n, "%s`0x%llx", dts.dts_object, 862 (u_longlong_t)addr); 863 } else { 864 (void) snprintf(s, n, "0x%llx", (u_longlong_t)addr); 865 } 866 } 867 868 return (dt_string2str(s, str, nbytes)); 869 } 870 871 int 872 dtrace_uaddr2str(dtrace_hdl_t *dtp, pid_t pid, 873 uint64_t addr, char *str, int nbytes) 874 { 875 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; 876 struct ps_prochandle *P = NULL; 877 GElf_Sym sym; 878 char *obj; 879 880 if (pid != 0) 881 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 882 883 if (P == NULL) { 884 (void) snprintf(c, sizeof (c), "0x%llx", addr); 885 return (dt_string2str(c, str, nbytes)); 886 } 887 888 dt_proc_lock(dtp, P); 889 890 if (Plookup_by_addr(P, addr, name, sizeof (name), &sym) == 0) { 891 (void) Pobjname(P, addr, objname, sizeof (objname)); 892 893 obj = dt_basename(objname); 894 895 if (addr > sym.st_value) { 896 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", obj, 897 name, (u_longlong_t)(addr - sym.st_value)); 898 } else { 899 (void) snprintf(c, sizeof (c), "%s`%s", obj, name); 900 } 901 } else if (Pobjname(P, addr, objname, sizeof (objname)) != NULL) { 902 (void) snprintf(c, sizeof (c), "%s`0x%llx", 903 dt_basename(objname), addr); 904 } else { 905 (void) snprintf(c, sizeof (c), "0x%llx", addr); 906 } 907 908 dt_proc_unlock(dtp, P); 909 dt_proc_release(dtp, P); 910 911 return (dt_string2str(c, str, nbytes)); 912 } 913 914 /* 915 * This is a shared implementation to determine if we should treat a type as a 916 * bitfield. The parameters are the CTF encoding and the bit offset of the 917 * integer. This also exists in mdb_print.c. We consider something a bitfield 918 * if: 919 * 920 * o The type is more than 8 bytes. This is a bit of a historical choice from 921 * mdb and is a stranger one. The normal integer handling code generally 922 * doesn't handle integers more than 64-bits in size. Of course neither does 923 * the bitfield code... 924 * o The bit count is not a multiple of 8. 925 * o The size in bytes is not a power of 2. 926 * o The offset is not a multiple of 8. 927 */ 928 boolean_t 929 dt_is_bitfield(const ctf_encoding_t *ep, ulong_t off) 930 { 931 size_t bsize = ep->cte_bits / NBBY; 932 return (bsize > 8 || (ep->cte_bits % NBBY) != 0 || 933 (bsize & (bsize - 1)) != 0 || (off % NBBY) != 0); 934 } 935