/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. * Copyright 2022 Oxide Computer Company */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const struct { size_t dtps_offset; size_t dtps_len; } dtrace_probespecs[] = { { offsetof(dtrace_probedesc_t, dtpd_provider), DTRACE_PROVNAMELEN }, { offsetof(dtrace_probedesc_t, dtpd_mod), DTRACE_MODNAMELEN }, { offsetof(dtrace_probedesc_t, dtpd_func), DTRACE_FUNCNAMELEN }, { offsetof(dtrace_probedesc_t, dtpd_name), DTRACE_NAMELEN } }; int dtrace_xstr2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec, const char *s, int argc, char *const argv[], dtrace_probedesc_t *pdp) { size_t off, len, vlen, wlen; const char *p, *q, *v, *w; char buf[32]; /* for id_t as %d (see below) */ if (spec < DTRACE_PROBESPEC_NONE || spec > DTRACE_PROBESPEC_NAME) return (dt_set_errno(dtp, EINVAL)); bzero(pdp, sizeof (dtrace_probedesc_t)); p = s + strlen(s) - 1; do { for (len = 0; p >= s && *p != ':'; len++) p--; /* move backward until we find a delimiter */ q = p + 1; vlen = 0; w = NULL; wlen = 0; if ((v = strchr(q, '$')) != NULL && v < q + len) { /* * Set vlen to the length of the variable name and then * reset len to the length of the text prior to '$'. If * the name begins with a digit, interpret it using the * the argv[] array. Otherwise we look in dt_macros. * For the moment, all dt_macros variables are of type * id_t (see dtrace_update() for more details on that). */ vlen = (size_t)(q + len - v); len = (size_t)(v - q); /* * If the variable string begins with $$, skip past the * leading dollar sign since $ and $$ are equivalent * macro reference operators in a probe description. */ if (vlen > 2 && v[1] == '$') { vlen--; v++; } if (isdigit(v[1])) { long i; errno = 0; i = strtol(v + 1, (char **)&w, 10); wlen = vlen - (w - v); if (i < 0 || i >= argc || errno != 0) return (dt_set_errno(dtp, EDT_BADSPCV)); v = argv[i]; vlen = strlen(v); if (yypcb != NULL && yypcb->pcb_sargv == argv) yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; } else if (vlen > 1) { char *vstr = alloca(vlen); dt_ident_t *idp; (void) strncpy(vstr, v + 1, vlen - 1); vstr[vlen - 1] = '\0'; idp = dt_idhash_lookup(dtp->dt_macros, vstr); if (idp == NULL) return (dt_set_errno(dtp, EDT_BADSPCV)); v = buf; vlen = snprintf(buf, 32, "%d", idp->di_id); } else return (dt_set_errno(dtp, EDT_BADSPCV)); } if (spec == DTRACE_PROBESPEC_NONE) return (dt_set_errno(dtp, EDT_BADSPEC)); if (len + vlen >= dtrace_probespecs[spec].dtps_len) return (dt_set_errno(dtp, ENAMETOOLONG)); off = dtrace_probespecs[spec--].dtps_offset; bcopy(q, (char *)pdp + off, len); bcopy(v, (char *)pdp + off + len, vlen); bcopy(w, (char *)pdp + off + len + vlen, wlen); } while (--p >= s); pdp->dtpd_id = DTRACE_IDNONE; return (0); } int dtrace_str2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec, const char *s, dtrace_probedesc_t *pdp) { return (dtrace_xstr2desc(dtp, spec, s, 0, NULL, pdp)); } int dtrace_id2desc(dtrace_hdl_t *dtp, dtrace_id_t id, dtrace_probedesc_t *pdp) { bzero(pdp, sizeof (dtrace_probedesc_t)); pdp->dtpd_id = id; if (dt_ioctl(dtp, DTRACEIOC_PROBES, pdp) == -1 || pdp->dtpd_id != id) return (dt_set_errno(dtp, EDT_BADID)); return (0); } char * dtrace_desc2str(const dtrace_probedesc_t *pdp, char *buf, size_t len) { if (pdp->dtpd_id == 0) { (void) snprintf(buf, len, "%s:%s:%s:%s", pdp->dtpd_provider, pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name); } else (void) snprintf(buf, len, "%u", pdp->dtpd_id); return (buf); } char * dtrace_attr2str(dtrace_attribute_t attr, char *buf, size_t len) { const char *name = dtrace_stability_name(attr.dtat_name); const char *data = dtrace_stability_name(attr.dtat_data); const char *class = dtrace_class_name(attr.dtat_class); if (name == NULL || data == NULL || class == NULL) return (NULL); /* one or more invalid attributes */ (void) snprintf(buf, len, "%s/%s/%s", name, data, class); return (buf); } static char * dt_getstrattr(char *p, char **qp) { char *q; if (*p == '\0') return (NULL); if ((q = strchr(p, '/')) == NULL) q = p + strlen(p); else *q++ = '\0'; *qp = q; return (p); } int dtrace_str2attr(const char *str, dtrace_attribute_t *attr) { dtrace_stability_t s; dtrace_class_t c; char *p, *q; if (str == NULL || attr == NULL) return (-1); /* invalid function arguments */ *attr = _dtrace_maxattr; p = strdupa(str); if ((p = dt_getstrattr(p, &q)) == NULL) return (0); for (s = 0; s <= DTRACE_STABILITY_MAX; s++) { if (strcasecmp(p, dtrace_stability_name(s)) == 0) { attr->dtat_name = s; break; } } if (s > DTRACE_STABILITY_MAX) return (-1); if ((p = dt_getstrattr(q, &q)) == NULL) return (0); for (s = 0; s <= DTRACE_STABILITY_MAX; s++) { if (strcasecmp(p, dtrace_stability_name(s)) == 0) { attr->dtat_data = s; break; } } if (s > DTRACE_STABILITY_MAX) return (-1); if ((p = dt_getstrattr(q, &q)) == NULL) return (0); for (c = 0; c <= DTRACE_CLASS_MAX; c++) { if (strcasecmp(p, dtrace_class_name(c)) == 0) { attr->dtat_class = c; break; } } if (c > DTRACE_CLASS_MAX || (p = dt_getstrattr(q, &q)) != NULL) return (-1); return (0); } const char * dtrace_stability_name(dtrace_stability_t s) { switch (s) { case DTRACE_STABILITY_INTERNAL: return ("Internal"); case DTRACE_STABILITY_PRIVATE: return ("Private"); case DTRACE_STABILITY_OBSOLETE: return ("Obsolete"); case DTRACE_STABILITY_EXTERNAL: return ("External"); case DTRACE_STABILITY_UNSTABLE: return ("Unstable"); case DTRACE_STABILITY_EVOLVING: return ("Evolving"); case DTRACE_STABILITY_STABLE: return ("Stable"); case DTRACE_STABILITY_STANDARD: return ("Standard"); default: return (NULL); } } const char * dtrace_class_name(dtrace_class_t c) { switch (c) { case DTRACE_CLASS_UNKNOWN: return ("Unknown"); case DTRACE_CLASS_CPU: return ("CPU"); case DTRACE_CLASS_PLATFORM: return ("Platform"); case DTRACE_CLASS_GROUP: return ("Group"); case DTRACE_CLASS_ISA: return ("ISA"); case DTRACE_CLASS_COMMON: return ("Common"); default: return (NULL); } } dtrace_attribute_t dt_attr_min(dtrace_attribute_t a1, dtrace_attribute_t a2) { dtrace_attribute_t am; am.dtat_name = MIN(a1.dtat_name, a2.dtat_name); am.dtat_data = MIN(a1.dtat_data, a2.dtat_data); am.dtat_class = MIN(a1.dtat_class, a2.dtat_class); return (am); } dtrace_attribute_t dt_attr_max(dtrace_attribute_t a1, dtrace_attribute_t a2) { dtrace_attribute_t am; am.dtat_name = MAX(a1.dtat_name, a2.dtat_name); am.dtat_data = MAX(a1.dtat_data, a2.dtat_data); am.dtat_class = MAX(a1.dtat_class, a2.dtat_class); return (am); } /* * Compare two attributes and return an integer value in the following ranges: * * <0 if any of a1's attributes are less than a2's attributes * =0 if all of a1's attributes are equal to a2's attributes * >0 if all of a1's attributes are greater than or equal to a2's attributes * * To implement this function efficiently, we subtract a2's attributes from * a1's to obtain a negative result if an a1 attribute is less than its a2 * counterpart. We then OR the intermediate results together, relying on the * twos-complement property that if any result is negative, the bitwise union * will also be negative since the highest bit will be set in the result. */ int dt_attr_cmp(dtrace_attribute_t a1, dtrace_attribute_t a2) { return (((int)a1.dtat_name - a2.dtat_name) | ((int)a1.dtat_data - a2.dtat_data) | ((int)a1.dtat_class - a2.dtat_class)); } char * dt_attr_str(dtrace_attribute_t a, char *buf, size_t len) { static const char stability[] = "ipoxuesS"; static const char class[] = "uCpgIc"; if (a.dtat_name < sizeof (stability) && a.dtat_data < sizeof (stability) && a.dtat_class < sizeof (class)) { (void) snprintf(buf, len, "[%c/%c/%c]", stability[a.dtat_name], stability[a.dtat_data], class[a.dtat_class]); } else { (void) snprintf(buf, len, "[%u/%u/%u]", a.dtat_name, a.dtat_data, a.dtat_class); } return (buf); } char * dt_version_num2str(dt_version_t v, char *buf, size_t len) { uint_t M = DT_VERSION_MAJOR(v); uint_t m = DT_VERSION_MINOR(v); uint_t u = DT_VERSION_MICRO(v); if (u == 0) (void) snprintf(buf, len, "%u.%u", M, m); else (void) snprintf(buf, len, "%u.%u.%u", M, m, u); return (buf); } int dt_version_str2num(const char *s, dt_version_t *vp) { int i = 0, n[3] = { 0, 0, 0 }; char c; while ((c = *s++) != '\0') { if (isdigit(c)) n[i] = n[i] * 10 + c - '0'; else if (c != '.' || i++ >= sizeof (n) / sizeof (n[0]) - 1) return (-1); } if (n[0] > DT_VERSION_MAJMAX || n[1] > DT_VERSION_MINMAX || n[2] > DT_VERSION_MICMAX) return (-1); if (vp != NULL) *vp = DT_VERSION_NUMBER(n[0], n[1], n[2]); return (0); } int dt_version_defined(dt_version_t v) { int i; for (i = 0; _dtrace_versions[i] != 0; i++) { if (_dtrace_versions[i] == v) return (1); } return (0); } char * dt_cpp_add_arg(dtrace_hdl_t *dtp, const char *str) { char *arg; if (dtp->dt_cpp_argc == dtp->dt_cpp_args) { int olds = dtp->dt_cpp_args; int news = olds * 2; char **argv = realloc(dtp->dt_cpp_argv, sizeof (char *) * news); if (argv == NULL) return (NULL); bzero(&argv[olds], sizeof (char *) * olds); dtp->dt_cpp_argv = argv; dtp->dt_cpp_args = news; } if ((arg = strdup(str)) == NULL) return (NULL); assert(dtp->dt_cpp_argc < dtp->dt_cpp_args); dtp->dt_cpp_argv[dtp->dt_cpp_argc++] = arg; return (arg); } char * dt_cpp_pop_arg(dtrace_hdl_t *dtp) { char *arg; if (dtp->dt_cpp_argc <= 1) return (NULL); /* dt_cpp_argv[0] cannot be popped */ arg = dtp->dt_cpp_argv[--dtp->dt_cpp_argc]; dtp->dt_cpp_argv[dtp->dt_cpp_argc] = NULL; return (arg); } /*PRINTFLIKE1*/ void dt_dprintf(const char *format, ...) { if (_dtrace_debug) { va_list alist; va_start(alist, format); (void) fputs("libdtrace DEBUG: ", stderr); (void) vfprintf(stderr, format, alist); va_end(alist); } } int dt_ioctl(dtrace_hdl_t *dtp, int val, void *arg) { const dtrace_vector_t *v = dtp->dt_vector; if (v != NULL) return (v->dtv_ioctl(dtp->dt_varg, val, arg)); if (dtp->dt_fd >= 0) return (ioctl(dtp->dt_fd, val, arg)); errno = EBADF; return (-1); } int dt_status(dtrace_hdl_t *dtp, processorid_t cpu) { const dtrace_vector_t *v = dtp->dt_vector; if (v == NULL) return (p_online(cpu, P_STATUS)); return (v->dtv_status(dtp->dt_varg, cpu)); } long dt_sysconf(dtrace_hdl_t *dtp, int name) { const dtrace_vector_t *v = dtp->dt_vector; if (v == NULL) return (sysconf(name)); return (v->dtv_sysconf(dtp->dt_varg, name)); } /* * Wrapper around write(2) to handle partial writes. For maximum safety of * output files and proper error reporting, we continuing writing in the * face of partial writes until write(2) fails or 'buf' is completely written. * We also record any errno in the specified dtrace_hdl_t as well as 'errno'. */ ssize_t dt_write(dtrace_hdl_t *dtp, int fd, const void *buf, size_t n) { ssize_t resid = n; ssize_t len; while (resid != 0) { if ((len = write(fd, buf, resid)) <= 0) break; resid -= len; buf = (char *)buf + len; } if (resid == n && n != 0) return (dt_set_errno(dtp, errno)); return (n - resid); } /* * This function handles all output from libdtrace, as well as the * dtrace_sprintf() case. If we're here due to dtrace_sprintf(), then * dt_sprintf_buflen will be non-zero; in this case, we sprintf into the * specified buffer and return. Otherwise, if output is buffered (denoted by * a NULL fp), we sprintf the desired output into the buffered buffer * (expanding the buffer if required). If we don't satisfy either of these * conditions (that is, if we are to actually generate output), then we call * fprintf with the specified fp. In this case, we need to deal with one of * the more annoying peculiarities of libc's printf routines: any failed * write persistently sets an error flag inside the FILE causing every * subsequent write to fail, but only the caller that initiated the error gets * the errno. Since libdtrace clients often intercept SIGINT, this case is * particularly frustrating since we don't want the EINTR on one attempt to * write to the output file to preclude later attempts to write. This * function therefore does a clearerr() if any error occurred, and saves the * errno for the caller inside the specified dtrace_hdl_t. */ /*PRINTFLIKE3*/ int dt_printf(dtrace_hdl_t *dtp, FILE *fp, const char *format, ...) { va_list ap; int n; va_start(ap, format); if (dtp->dt_sprintf_buflen != 0) { int len; char *buf; assert(dtp->dt_sprintf_buf != NULL); buf = &dtp->dt_sprintf_buf[len = strlen(dtp->dt_sprintf_buf)]; len = dtp->dt_sprintf_buflen - len; assert(len >= 0); if ((n = vsnprintf(buf, len, format, ap)) < 0) n = dt_set_errno(dtp, errno); va_end(ap); return (n); } if (fp == NULL) { int needed, rval; size_t avail; /* * Using buffered output is not allowed if a handler has * not been installed. */ if (dtp->dt_bufhdlr == NULL) { va_end(ap); return (dt_set_errno(dtp, EDT_NOBUFFERED)); } if (dtp->dt_buffered_buf == NULL) { assert(dtp->dt_buffered_size == 0); dtp->dt_buffered_size = 1; dtp->dt_buffered_buf = malloc(dtp->dt_buffered_size); if (dtp->dt_buffered_buf == NULL) { va_end(ap); return (dt_set_errno(dtp, EDT_NOMEM)); } dtp->dt_buffered_offs = 0; dtp->dt_buffered_buf[0] = '\0'; } if ((needed = vsnprintf(NULL, 0, format, ap)) < 0) { rval = dt_set_errno(dtp, errno); va_end(ap); return (rval); } if (needed == 0) { va_end(ap); return (0); } for (;;) { char *newbuf; assert(dtp->dt_buffered_offs < dtp->dt_buffered_size); avail = dtp->dt_buffered_size - dtp->dt_buffered_offs; if (needed + 1 < avail) break; if ((newbuf = realloc(dtp->dt_buffered_buf, dtp->dt_buffered_size << 1)) == NULL) { va_end(ap); return (dt_set_errno(dtp, EDT_NOMEM)); } dtp->dt_buffered_buf = newbuf; dtp->dt_buffered_size <<= 1; } if (vsnprintf(&dtp->dt_buffered_buf[dtp->dt_buffered_offs], avail, format, ap) < 0) { rval = dt_set_errno(dtp, errno); va_end(ap); return (rval); } dtp->dt_buffered_offs += needed; assert(dtp->dt_buffered_buf[dtp->dt_buffered_offs] == '\0'); return (0); } n = vfprintf(fp, format, ap); va_end(ap); if (n < 0) { clearerr(fp); return (dt_set_errno(dtp, errno)); } return (n); } int dt_buffered_flush(dtrace_hdl_t *dtp, dtrace_probedata_t *pdata, const dtrace_recdesc_t *rec, const dtrace_aggdata_t *agg, uint32_t flags) { dtrace_bufdata_t data; if (dtp->dt_buffered_offs == 0) return (0); data.dtbda_handle = dtp; data.dtbda_buffered = dtp->dt_buffered_buf; data.dtbda_probe = pdata; data.dtbda_recdesc = rec; data.dtbda_aggdata = agg; data.dtbda_flags = flags; if ((*dtp->dt_bufhdlr)(&data, dtp->dt_bufarg) == DTRACE_HANDLE_ABORT) return (dt_set_errno(dtp, EDT_DIRABORT)); dtp->dt_buffered_offs = 0; dtp->dt_buffered_buf[0] = '\0'; return (0); } void dt_buffered_destroy(dtrace_hdl_t *dtp) { free(dtp->dt_buffered_buf); dtp->dt_buffered_buf = NULL; dtp->dt_buffered_offs = 0; dtp->dt_buffered_size = 0; } void * dt_zalloc(dtrace_hdl_t *dtp, size_t size) { void *data; if ((data = malloc(size)) == NULL) (void) dt_set_errno(dtp, EDT_NOMEM); else bzero(data, size); return (data); } void * dt_alloc(dtrace_hdl_t *dtp, size_t size) { void *data; if ((data = malloc(size)) == NULL) (void) dt_set_errno(dtp, EDT_NOMEM); return (data); } void dt_free(dtrace_hdl_t *dtp, void *data) { assert(dtp != NULL); /* ensure sane use of this interface */ free(data); } void dt_difo_free(dtrace_hdl_t *dtp, dtrace_difo_t *dp) { if (dp == NULL) return; /* simplify caller code */ dt_free(dtp, dp->dtdo_buf); dt_free(dtp, dp->dtdo_inttab); dt_free(dtp, dp->dtdo_strtab); dt_free(dtp, dp->dtdo_vartab); dt_free(dtp, dp->dtdo_kreltab); dt_free(dtp, dp->dtdo_ureltab); dt_free(dtp, dp->dtdo_xlmtab); dt_free(dtp, dp); } /* * dt_gmatch() is similar to gmatch(3GEN) and dtrace(4D) globbing, but also * implements the behavior that an empty pattern matches any string. */ int dt_gmatch(const char *s, const char *p) { return (p == NULL || *p == '\0' || gmatch(s, p)); } char * dt_basename(char *str) { char *last = strrchr(str, '/'); if (last == NULL) return (str); return (last + 1); } /* * dt_popc() is a fast implementation of population count. The algorithm is * from "Hacker's Delight" by Henry Warren, Jr with a 64-bit equivalent added. */ ulong_t dt_popc(ulong_t x) { #ifdef _ILP32 x = x - ((x >> 1) & 0x55555555UL); x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL); x = (x + (x >> 4)) & 0x0F0F0F0FUL; x = x + (x >> 8); x = x + (x >> 16); return (x & 0x3F); #endif #ifdef _LP64 x = x - ((x >> 1) & 0x5555555555555555ULL); x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL); x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL; x = x + (x >> 8); x = x + (x >> 16); x = x + (x >> 32); return (x & 0x7F); #endif } /* * dt_popcb() is a bitmap-based version of population count that returns the * number of one bits in the specified bitmap 'bp' at bit positions below 'n'. */ ulong_t dt_popcb(const ulong_t *bp, ulong_t n) { ulong_t maxb = n & BT_ULMASK; ulong_t maxw = n >> BT_ULSHIFT; ulong_t w, popc = 0; if (n == 0) return (0); for (w = 0; w < maxw; w++) popc += dt_popc(bp[w]); return (popc + dt_popc(bp[maxw] & ((1UL << maxb) - 1))); } static int dt_string2str(char *s, char *str, int nbytes) { int len = strlen(s); if (nbytes == 0) { /* * Like snprintf(3C), we don't check the value of str if the * number of bytes is 0. */ return (len); } if (nbytes <= len) { (void) strncpy(str, s, nbytes - 1); /* * Like snprintf(3C) (and unlike strncpy(3C)), we guarantee * that the string is null-terminated. */ str[nbytes - 1] = '\0'; } else { (void) strcpy(str, s); } return (len); } int dtrace_addr2str(dtrace_hdl_t *dtp, uint64_t addr, char *str, int nbytes) { dtrace_syminfo_t dts; GElf_Sym sym; size_t n = 20; /* for 0x%llx\0 */ char *s; int err; if ((err = dtrace_lookup_by_addr(dtp, addr, &sym, &dts)) == 0) n += strlen(dts.dts_object) + strlen(dts.dts_name) + 2; /* +` */ s = alloca(n); if (err == 0 && addr != sym.st_value) { (void) snprintf(s, n, "%s`%s+0x%llx", dts.dts_object, dts.dts_name, (u_longlong_t)addr - sym.st_value); } else if (err == 0) { (void) snprintf(s, n, "%s`%s", dts.dts_object, dts.dts_name); } else { /* * We'll repeat the lookup, but this time we'll specify a NULL * GElf_Sym -- indicating that we're only interested in the * containing module. */ if (dtrace_lookup_by_addr(dtp, addr, NULL, &dts) == 0) { (void) snprintf(s, n, "%s`0x%llx", dts.dts_object, (u_longlong_t)addr); } else { (void) snprintf(s, n, "0x%llx", (u_longlong_t)addr); } } return (dt_string2str(s, str, nbytes)); } int dtrace_uaddr2str(dtrace_hdl_t *dtp, pid_t pid, uint64_t addr, char *str, int nbytes) { char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; struct ps_prochandle *P = NULL; GElf_Sym sym; char *obj; if (pid != 0) P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); if (P == NULL) { (void) snprintf(c, sizeof (c), "0x%llx", addr); return (dt_string2str(c, str, nbytes)); } dt_proc_lock(dtp, P); if (Plookup_by_addr(P, addr, name, sizeof (name), &sym) == 0) { (void) Pobjname(P, addr, objname, sizeof (objname)); obj = dt_basename(objname); if (addr > sym.st_value) { (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", obj, name, (u_longlong_t)(addr - sym.st_value)); } else { (void) snprintf(c, sizeof (c), "%s`%s", obj, name); } } else if (Pobjname(P, addr, objname, sizeof (objname)) != NULL) { (void) snprintf(c, sizeof (c), "%s`0x%llx", dt_basename(objname), addr); } else { (void) snprintf(c, sizeof (c), "0x%llx", addr); } dt_proc_unlock(dtp, P); dt_proc_release(dtp, P); return (dt_string2str(c, str, nbytes)); } /* * This is a shared implementation to determine if we should treat a type as a * bitfield. The parameters are the CTF encoding and the bit offset of the * integer. This also exists in mdb_print.c. We consider something a bitfield * if: * * o The type is more than 8 bytes. This is a bit of a historical choice from * mdb and is a stranger one. The normal integer handling code generally * doesn't handle integers more than 64-bits in size. Of course neither does * the bitfield code... * o The bit count is not a multiple of 8. * o The size in bytes is not a power of 2. * o The offset is not a multiple of 8. */ boolean_t dt_is_bitfield(const ctf_encoding_t *ep, ulong_t off) { size_t bsize = ep->cte_bits / NBBY; return (bsize > 8 || (ep->cte_bits % NBBY) != 0 || (bsize & (bsize - 1)) != 0 || (off % NBBY) != 0); }