1 /* deflate.c -- compress data using the deflation algorithm 2 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6 /* 7 * ALGORITHM 8 * 9 * The "deflation" process depends on being able to identify portions 10 * of the input text which are identical to earlier input (within a 11 * sliding window trailing behind the input currently being processed). 12 * 13 * The most straightforward technique turns out to be the fastest for 14 * most input files: try all possible matches and select the longest. 15 * The key feature of this algorithm is that insertions into the string 16 * dictionary are very simple and thus fast, and deletions are avoided 17 * completely. Insertions are performed at each input character, whereas 18 * string matches are performed only when the previous match ends. So it 19 * is preferable to spend more time in matches to allow very fast string 20 * insertions and avoid deletions. The matching algorithm for small 21 * strings is inspired from that of Rabin & Karp. A brute force approach 22 * is used to find longer strings when a small match has been found. 23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 24 * (by Leonid Broukhis). 25 * A previous version of this file used a more sophisticated algorithm 26 * (by Fiala and Greene) which is guaranteed to run in linear amortized 27 * time, but has a larger average cost, uses more memory and is patented. 28 * However the F&G algorithm may be faster for some highly redundant 29 * files if the parameter max_chain_length (described below) is too large. 30 * 31 * ACKNOWLEDGEMENTS 32 * 33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 34 * I found it in 'freeze' written by Leonid Broukhis. 35 * Thanks to many people for bug reports and testing. 36 * 37 * REFERENCES 38 * 39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 40 * Available in http://tools.ietf.org/html/rfc1951 41 * 42 * A description of the Rabin and Karp algorithm is given in the book 43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 44 * 45 * Fiala,E.R., and Greene,D.H. 46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 47 * 48 */ 49 50 #include "deflate.h" 51 52 const char deflate_copyright[] = 53 " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler "; 54 /* 55 If you use the zlib library in a product, an acknowledgment is welcome 56 in the documentation of your product. If for some reason you cannot 57 include such an acknowledgment, I would appreciate that you keep this 58 copyright string in the executable of your product. 59 */ 60 61 /* =========================================================================== 62 * Function prototypes. 63 */ 64 typedef enum { 65 need_more, /* block not completed, need more input or more output */ 66 block_done, /* block flush performed */ 67 finish_started, /* finish started, need only more output at next deflate */ 68 finish_done /* finish done, accept no more input or output */ 69 } block_state; 70 71 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 72 /* Compression function. Returns the block state after the call. */ 73 74 local int deflateStateCheck OF((z_streamp strm)); 75 local void slide_hash OF((deflate_state *s)); 76 local void fill_window OF((deflate_state *s)); 77 local block_state deflate_stored OF((deflate_state *s, int flush)); 78 local block_state deflate_fast OF((deflate_state *s, int flush)); 79 #ifndef FASTEST 80 local block_state deflate_slow OF((deflate_state *s, int flush)); 81 #endif 82 local block_state deflate_rle OF((deflate_state *s, int flush)); 83 local block_state deflate_huff OF((deflate_state *s, int flush)); 84 local void lm_init OF((deflate_state *s)); 85 local void putShortMSB OF((deflate_state *s, uInt b)); 86 local void flush_pending OF((z_streamp strm)); 87 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); 88 #ifdef ASMV 89 # pragma message("Assembler code may have bugs -- use at your own risk") 90 void match_init OF((void)); /* asm code initialization */ 91 uInt longest_match OF((deflate_state *s, IPos cur_match)); 92 #else 93 local uInt longest_match OF((deflate_state *s, IPos cur_match)); 94 #endif 95 96 #ifdef ZLIB_DEBUG 97 local void check_match OF((deflate_state *s, IPos start, IPos match, 98 int length)); 99 #endif 100 101 /* =========================================================================== 102 * Local data 103 */ 104 105 #define NIL 0 106 /* Tail of hash chains */ 107 108 #ifndef TOO_FAR 109 # define TOO_FAR 4096 110 #endif 111 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 112 113 /* Values for max_lazy_match, good_match and max_chain_length, depending on 114 * the desired pack level (0..9). The values given below have been tuned to 115 * exclude worst case performance for pathological files. Better values may be 116 * found for specific files. 117 */ 118 typedef struct config_s { 119 ush good_length; /* reduce lazy search above this match length */ 120 ush max_lazy; /* do not perform lazy search above this match length */ 121 ush nice_length; /* quit search above this match length */ 122 ush max_chain; 123 compress_func func; 124 } config; 125 126 #ifdef FASTEST 127 local const config configuration_table[2] = { 128 /* good lazy nice chain */ 129 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 130 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ 131 #else 132 local const config configuration_table[10] = { 133 /* good lazy nice chain */ 134 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 135 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ 136 /* 2 */ {4, 5, 16, 8, deflate_fast}, 137 /* 3 */ {4, 6, 32, 32, deflate_fast}, 138 139 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 140 /* 5 */ {8, 16, 32, 32, deflate_slow}, 141 /* 6 */ {8, 16, 128, 128, deflate_slow}, 142 /* 7 */ {8, 32, 128, 256, deflate_slow}, 143 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 144 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 145 #endif 146 147 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 148 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 149 * meaning. 150 */ 151 152 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ 153 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) 154 155 /* =========================================================================== 156 * Update a hash value with the given input byte 157 * IN assertion: all calls to UPDATE_HASH are made with consecutive input 158 * characters, so that a running hash key can be computed from the previous 159 * key instead of complete recalculation each time. 160 */ 161 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 162 163 164 /* =========================================================================== 165 * Insert string str in the dictionary and set match_head to the previous head 166 * of the hash chain (the most recent string with same hash key). Return 167 * the previous length of the hash chain. 168 * If this file is compiled with -DFASTEST, the compression level is forced 169 * to 1, and no hash chains are maintained. 170 * IN assertion: all calls to INSERT_STRING are made with consecutive input 171 * characters and the first MIN_MATCH bytes of str are valid (except for 172 * the last MIN_MATCH-1 bytes of the input file). 173 */ 174 #ifdef FASTEST 175 #define INSERT_STRING(s, str, match_head) \ 176 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 177 match_head = s->head[s->ins_h], \ 178 s->head[s->ins_h] = (Pos)(str)) 179 #else 180 #define INSERT_STRING(s, str, match_head) \ 181 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 182 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 183 s->head[s->ins_h] = (Pos)(str)) 184 #endif 185 186 /* =========================================================================== 187 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 188 * prev[] will be initialized on the fly. 189 */ 190 #define CLEAR_HASH(s) \ 191 do { \ 192 s->head[s->hash_size-1] = NIL; \ 193 zmemzero((Bytef *)s->head, \ 194 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \ 195 } while (0) 196 197 /* =========================================================================== 198 * Slide the hash table when sliding the window down (could be avoided with 32 199 * bit values at the expense of memory usage). We slide even when level == 0 to 200 * keep the hash table consistent if we switch back to level > 0 later. 201 */ 202 local void slide_hash(s) 203 deflate_state *s; 204 { 205 unsigned n, m; 206 Posf *p; 207 uInt wsize = s->w_size; 208 209 n = s->hash_size; 210 p = &s->head[n]; 211 do { 212 m = *--p; 213 *p = (Pos)(m >= wsize ? m - wsize : NIL); 214 } while (--n); 215 n = wsize; 216 #ifndef FASTEST 217 p = &s->prev[n]; 218 do { 219 m = *--p; 220 *p = (Pos)(m >= wsize ? m - wsize : NIL); 221 /* If n is not on any hash chain, prev[n] is garbage but 222 * its value will never be used. 223 */ 224 } while (--n); 225 #endif 226 } 227 228 /* ========================================================================= */ 229 int ZEXPORT deflateInit_(strm, level, version, stream_size) 230 z_streamp strm; 231 int level; 232 const char *version; 233 int stream_size; 234 { 235 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 236 Z_DEFAULT_STRATEGY, version, stream_size); 237 /* To do: ignore strm->next_in if we use it as window */ 238 } 239 240 /* ========================================================================= */ 241 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 242 version, stream_size) 243 z_streamp strm; 244 int level; 245 int method; 246 int windowBits; 247 int memLevel; 248 int strategy; 249 const char *version; 250 int stream_size; 251 { 252 deflate_state *s; 253 int wrap = 1; 254 static const char my_version[] = ZLIB_VERSION; 255 256 if (version == Z_NULL || version[0] != my_version[0] || 257 stream_size != sizeof(z_stream)) { 258 return Z_VERSION_ERROR; 259 } 260 if (strm == Z_NULL) return Z_STREAM_ERROR; 261 262 strm->msg = Z_NULL; 263 if (strm->zalloc == (alloc_func)0) { 264 #ifdef Z_SOLO 265 return Z_STREAM_ERROR; 266 #else 267 strm->zalloc = zcalloc; 268 strm->opaque = (voidpf)0; 269 #endif 270 } 271 if (strm->zfree == (free_func)0) 272 #ifdef Z_SOLO 273 return Z_STREAM_ERROR; 274 #else 275 strm->zfree = zcfree; 276 #endif 277 278 #ifdef FASTEST 279 if (level != 0) level = 1; 280 #else 281 if (level == Z_DEFAULT_COMPRESSION) level = 6; 282 #endif 283 284 if (windowBits < 0) { /* suppress zlib wrapper */ 285 wrap = 0; 286 windowBits = -windowBits; 287 } 288 #ifdef GZIP 289 else if (windowBits > 15) { 290 wrap = 2; /* write gzip wrapper instead */ 291 windowBits -= 16; 292 } 293 #endif 294 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 295 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 296 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { 297 return Z_STREAM_ERROR; 298 } 299 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 300 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 301 if (s == Z_NULL) return Z_MEM_ERROR; 302 strm->state = (struct internal_state FAR *)s; 303 s->strm = strm; 304 s->status = INIT_STATE; /* to pass state test in deflateReset() */ 305 306 s->wrap = wrap; 307 s->gzhead = Z_NULL; 308 s->w_bits = (uInt)windowBits; 309 s->w_size = 1 << s->w_bits; 310 s->w_mask = s->w_size - 1; 311 312 s->hash_bits = (uInt)memLevel + 7; 313 s->hash_size = 1 << s->hash_bits; 314 s->hash_mask = s->hash_size - 1; 315 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 316 317 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 318 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 319 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 320 321 s->high_water = 0; /* nothing written to s->window yet */ 322 323 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 324 325 /* We overlay pending_buf and sym_buf. This works since the average size 326 * for length/distance pairs over any compressed block is assured to be 31 327 * bits or less. 328 * 329 * Analysis: The longest fixed codes are a length code of 8 bits plus 5 330 * extra bits, for lengths 131 to 257. The longest fixed distance codes are 331 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest 332 * possible fixed-codes length/distance pair is then 31 bits total. 333 * 334 * sym_buf starts one-fourth of the way into pending_buf. So there are 335 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol 336 * in sym_buf is three bytes -- two for the distance and one for the 337 * literal/length. As each symbol is consumed, the pointer to the next 338 * sym_buf value to read moves forward three bytes. From that symbol, up to 339 * 31 bits are written to pending_buf. The closest the written pending_buf 340 * bits gets to the next sym_buf symbol to read is just before the last 341 * code is written. At that time, 31*(n-2) bits have been written, just 342 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at 343 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1 344 * symbols are written.) The closest the writing gets to what is unread is 345 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and 346 * can range from 128 to 32768. 347 * 348 * Therefore, at a minimum, there are 142 bits of space between what is 349 * written and what is read in the overlain buffers, so the symbols cannot 350 * be overwritten by the compressed data. That space is actually 139 bits, 351 * due to the three-bit fixed-code block header. 352 * 353 * That covers the case where either Z_FIXED is specified, forcing fixed 354 * codes, or when the use of fixed codes is chosen, because that choice 355 * results in a smaller compressed block than dynamic codes. That latter 356 * condition then assures that the above analysis also covers all dynamic 357 * blocks. A dynamic-code block will only be chosen to be emitted if it has 358 * fewer bits than a fixed-code block would for the same set of symbols. 359 * Therefore its average symbol length is assured to be less than 31. So 360 * the compressed data for a dynamic block also cannot overwrite the 361 * symbols from which it is being constructed. 362 */ 363 364 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4); 365 s->pending_buf_size = (ulg)s->lit_bufsize * 4; 366 367 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 368 s->pending_buf == Z_NULL) { 369 s->status = FINISH_STATE; 370 strm->msg = ERR_MSG(Z_MEM_ERROR); 371 deflateEnd (strm); 372 return Z_MEM_ERROR; 373 } 374 s->sym_buf = s->pending_buf + s->lit_bufsize; 375 s->sym_end = (s->lit_bufsize - 1) * 3; 376 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K 377 * on 16 bit machines and because stored blocks are restricted to 378 * 64K-1 bytes. 379 */ 380 381 s->level = level; 382 s->strategy = strategy; 383 s->method = (Byte)method; 384 385 return deflateReset(strm); 386 } 387 388 /* ========================================================================= 389 * Check for a valid deflate stream state. Return 0 if ok, 1 if not. 390 */ 391 local int deflateStateCheck (strm) 392 z_streamp strm; 393 { 394 deflate_state *s; 395 if (strm == Z_NULL || 396 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) 397 return 1; 398 s = strm->state; 399 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && 400 #ifdef GZIP 401 s->status != GZIP_STATE && 402 #endif 403 s->status != EXTRA_STATE && 404 s->status != NAME_STATE && 405 s->status != COMMENT_STATE && 406 s->status != HCRC_STATE && 407 s->status != BUSY_STATE && 408 s->status != FINISH_STATE)) 409 return 1; 410 return 0; 411 } 412 413 /* ========================================================================= */ 414 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) 415 z_streamp strm; 416 const Bytef *dictionary; 417 uInt dictLength; 418 { 419 deflate_state *s; 420 uInt str, n; 421 int wrap; 422 unsigned avail; 423 z_const unsigned char *next; 424 425 if (deflateStateCheck(strm) || dictionary == Z_NULL) 426 return Z_STREAM_ERROR; 427 s = strm->state; 428 wrap = s->wrap; 429 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) 430 return Z_STREAM_ERROR; 431 432 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ 433 if (wrap == 1) 434 strm->adler = adler32(strm->adler, dictionary, dictLength); 435 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ 436 437 /* if dictionary would fill window, just replace the history */ 438 if (dictLength >= s->w_size) { 439 if (wrap == 0) { /* already empty otherwise */ 440 CLEAR_HASH(s); 441 s->strstart = 0; 442 s->block_start = 0L; 443 s->insert = 0; 444 } 445 dictionary += dictLength - s->w_size; /* use the tail */ 446 dictLength = s->w_size; 447 } 448 449 /* insert dictionary into window and hash */ 450 avail = strm->avail_in; 451 next = strm->next_in; 452 strm->avail_in = dictLength; 453 strm->next_in = (z_const Bytef *)dictionary; 454 fill_window(s); 455 while (s->lookahead >= MIN_MATCH) { 456 str = s->strstart; 457 n = s->lookahead - (MIN_MATCH-1); 458 do { 459 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 460 #ifndef FASTEST 461 s->prev[str & s->w_mask] = s->head[s->ins_h]; 462 #endif 463 s->head[s->ins_h] = (Pos)str; 464 str++; 465 } while (--n); 466 s->strstart = str; 467 s->lookahead = MIN_MATCH-1; 468 fill_window(s); 469 } 470 s->strstart += s->lookahead; 471 s->block_start = (long)s->strstart; 472 s->insert = s->lookahead; 473 s->lookahead = 0; 474 s->match_length = s->prev_length = MIN_MATCH-1; 475 s->match_available = 0; 476 strm->next_in = next; 477 strm->avail_in = avail; 478 s->wrap = wrap; 479 return Z_OK; 480 } 481 482 /* ========================================================================= */ 483 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength) 484 z_streamp strm; 485 Bytef *dictionary; 486 uInt *dictLength; 487 { 488 deflate_state *s; 489 uInt len; 490 491 if (deflateStateCheck(strm)) 492 return Z_STREAM_ERROR; 493 s = strm->state; 494 len = s->strstart + s->lookahead; 495 if (len > s->w_size) 496 len = s->w_size; 497 if (dictionary != Z_NULL && len) 498 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); 499 if (dictLength != Z_NULL) 500 *dictLength = len; 501 return Z_OK; 502 } 503 504 /* ========================================================================= */ 505 int ZEXPORT deflateResetKeep (strm) 506 z_streamp strm; 507 { 508 deflate_state *s; 509 510 if (deflateStateCheck(strm)) { 511 return Z_STREAM_ERROR; 512 } 513 514 strm->total_in = strm->total_out = 0; 515 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 516 strm->data_type = Z_UNKNOWN; 517 518 s = (deflate_state *)strm->state; 519 s->pending = 0; 520 s->pending_out = s->pending_buf; 521 522 if (s->wrap < 0) { 523 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 524 } 525 s->status = 526 #ifdef GZIP 527 s->wrap == 2 ? GZIP_STATE : 528 #endif 529 INIT_STATE; 530 strm->adler = 531 #ifdef GZIP 532 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : 533 #endif 534 adler32(0L, Z_NULL, 0); 535 s->last_flush = -2; 536 537 _tr_init(s); 538 539 return Z_OK; 540 } 541 542 /* ========================================================================= */ 543 int ZEXPORT deflateReset (strm) 544 z_streamp strm; 545 { 546 int ret; 547 548 ret = deflateResetKeep(strm); 549 if (ret == Z_OK) 550 lm_init(strm->state); 551 return ret; 552 } 553 554 /* ========================================================================= */ 555 int ZEXPORT deflateSetHeader (strm, head) 556 z_streamp strm; 557 gz_headerp head; 558 { 559 if (deflateStateCheck(strm) || strm->state->wrap != 2) 560 return Z_STREAM_ERROR; 561 strm->state->gzhead = head; 562 return Z_OK; 563 } 564 565 /* ========================================================================= */ 566 int ZEXPORT deflatePending (strm, pending, bits) 567 unsigned *pending; 568 int *bits; 569 z_streamp strm; 570 { 571 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 572 if (pending != Z_NULL) 573 *pending = strm->state->pending; 574 if (bits != Z_NULL) 575 *bits = strm->state->bi_valid; 576 return Z_OK; 577 } 578 579 /* ========================================================================= */ 580 int ZEXPORT deflatePrime (strm, bits, value) 581 z_streamp strm; 582 int bits; 583 int value; 584 { 585 deflate_state *s; 586 int put; 587 588 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 589 s = strm->state; 590 if (bits < 0 || bits > 16 || 591 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) 592 return Z_BUF_ERROR; 593 do { 594 put = Buf_size - s->bi_valid; 595 if (put > bits) 596 put = bits; 597 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); 598 s->bi_valid += put; 599 _tr_flush_bits(s); 600 value >>= put; 601 bits -= put; 602 } while (bits); 603 return Z_OK; 604 } 605 606 /* ========================================================================= */ 607 int ZEXPORT deflateParams(strm, level, strategy) 608 z_streamp strm; 609 int level; 610 int strategy; 611 { 612 deflate_state *s; 613 compress_func func; 614 615 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 616 s = strm->state; 617 618 #ifdef FASTEST 619 if (level != 0) level = 1; 620 #else 621 if (level == Z_DEFAULT_COMPRESSION) level = 6; 622 #endif 623 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { 624 return Z_STREAM_ERROR; 625 } 626 func = configuration_table[s->level].func; 627 628 if ((strategy != s->strategy || func != configuration_table[level].func) && 629 s->last_flush != -2) { 630 /* Flush the last buffer: */ 631 int err = deflate(strm, Z_BLOCK); 632 if (err == Z_STREAM_ERROR) 633 return err; 634 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead) 635 return Z_BUF_ERROR; 636 } 637 if (s->level != level) { 638 if (s->level == 0 && s->matches != 0) { 639 if (s->matches == 1) 640 slide_hash(s); 641 else 642 CLEAR_HASH(s); 643 s->matches = 0; 644 } 645 s->level = level; 646 s->max_lazy_match = configuration_table[level].max_lazy; 647 s->good_match = configuration_table[level].good_length; 648 s->nice_match = configuration_table[level].nice_length; 649 s->max_chain_length = configuration_table[level].max_chain; 650 } 651 s->strategy = strategy; 652 return Z_OK; 653 } 654 655 /* ========================================================================= */ 656 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) 657 z_streamp strm; 658 int good_length; 659 int max_lazy; 660 int nice_length; 661 int max_chain; 662 { 663 deflate_state *s; 664 665 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 666 s = strm->state; 667 s->good_match = (uInt)good_length; 668 s->max_lazy_match = (uInt)max_lazy; 669 s->nice_match = nice_length; 670 s->max_chain_length = (uInt)max_chain; 671 return Z_OK; 672 } 673 674 /* ========================================================================= 675 * For the default windowBits of 15 and memLevel of 8, this function returns 676 * a close to exact, as well as small, upper bound on the compressed size. 677 * They are coded as constants here for a reason--if the #define's are 678 * changed, then this function needs to be changed as well. The return 679 * value for 15 and 8 only works for those exact settings. 680 * 681 * For any setting other than those defaults for windowBits and memLevel, 682 * the value returned is a conservative worst case for the maximum expansion 683 * resulting from using fixed blocks instead of stored blocks, which deflate 684 * can emit on compressed data for some combinations of the parameters. 685 * 686 * This function could be more sophisticated to provide closer upper bounds for 687 * every combination of windowBits and memLevel. But even the conservative 688 * upper bound of about 14% expansion does not seem onerous for output buffer 689 * allocation. 690 */ 691 uLong ZEXPORT deflateBound(strm, sourceLen) 692 z_streamp strm; 693 uLong sourceLen; 694 { 695 deflate_state *s; 696 uLong complen, wraplen; 697 698 /* conservative upper bound for compressed data */ 699 complen = sourceLen + 700 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; 701 702 /* if can't get parameters, return conservative bound plus zlib wrapper */ 703 if (deflateStateCheck(strm)) 704 return complen + 6; 705 706 /* compute wrapper length */ 707 s = strm->state; 708 switch (s->wrap) { 709 case 0: /* raw deflate */ 710 wraplen = 0; 711 break; 712 case 1: /* zlib wrapper */ 713 wraplen = 6 + (s->strstart ? 4 : 0); 714 break; 715 #ifdef GZIP 716 case 2: /* gzip wrapper */ 717 wraplen = 18; 718 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ 719 Bytef *str; 720 if (s->gzhead->extra != Z_NULL) 721 wraplen += 2 + s->gzhead->extra_len; 722 str = s->gzhead->name; 723 if (str != Z_NULL) 724 do { 725 wraplen++; 726 } while (*str++); 727 str = s->gzhead->comment; 728 if (str != Z_NULL) 729 do { 730 wraplen++; 731 } while (*str++); 732 if (s->gzhead->hcrc) 733 wraplen += 2; 734 } 735 break; 736 #endif 737 default: /* for compiler happiness */ 738 wraplen = 6; 739 } 740 741 /* if not default parameters, return conservative bound */ 742 if (s->w_bits != 15 || s->hash_bits != 8 + 7) 743 return complen + wraplen; 744 745 /* default settings: return tight bound for that case */ 746 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 747 (sourceLen >> 25) + 13 - 6 + wraplen; 748 } 749 750 /* ========================================================================= 751 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 752 * IN assertion: the stream state is correct and there is enough room in 753 * pending_buf. 754 */ 755 local void putShortMSB (s, b) 756 deflate_state *s; 757 uInt b; 758 { 759 put_byte(s, (Byte)(b >> 8)); 760 put_byte(s, (Byte)(b & 0xff)); 761 } 762 763 /* ========================================================================= 764 * Flush as much pending output as possible. All deflate() output, except for 765 * some deflate_stored() output, goes through this function so some 766 * applications may wish to modify it to avoid allocating a large 767 * strm->next_out buffer and copying into it. (See also read_buf()). 768 */ 769 local void flush_pending(strm) 770 z_streamp strm; 771 { 772 unsigned len; 773 deflate_state *s = strm->state; 774 775 _tr_flush_bits(s); 776 len = s->pending; 777 if (len > strm->avail_out) len = strm->avail_out; 778 if (len == 0) return; 779 780 zmemcpy(strm->next_out, s->pending_out, len); 781 strm->next_out += len; 782 s->pending_out += len; 783 strm->total_out += len; 784 strm->avail_out -= len; 785 s->pending -= len; 786 if (s->pending == 0) { 787 s->pending_out = s->pending_buf; 788 } 789 } 790 791 /* =========================================================================== 792 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. 793 */ 794 #define HCRC_UPDATE(beg) \ 795 do { \ 796 if (s->gzhead->hcrc && s->pending > (beg)) \ 797 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ 798 s->pending - (beg)); \ 799 } while (0) 800 801 /* ========================================================================= */ 802 int ZEXPORT deflate (strm, flush) 803 z_streamp strm; 804 int flush; 805 { 806 int old_flush; /* value of flush param for previous deflate call */ 807 deflate_state *s; 808 809 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { 810 return Z_STREAM_ERROR; 811 } 812 s = strm->state; 813 814 if (strm->next_out == Z_NULL || 815 (strm->avail_in != 0 && strm->next_in == Z_NULL) || 816 (s->status == FINISH_STATE && flush != Z_FINISH)) { 817 ERR_RETURN(strm, Z_STREAM_ERROR); 818 } 819 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 820 821 old_flush = s->last_flush; 822 s->last_flush = flush; 823 824 /* Flush as much pending output as possible */ 825 if (s->pending != 0) { 826 flush_pending(strm); 827 if (strm->avail_out == 0) { 828 /* Since avail_out is 0, deflate will be called again with 829 * more output space, but possibly with both pending and 830 * avail_in equal to zero. There won't be anything to do, 831 * but this is not an error situation so make sure we 832 * return OK instead of BUF_ERROR at next call of deflate: 833 */ 834 s->last_flush = -1; 835 return Z_OK; 836 } 837 838 /* Make sure there is something to do and avoid duplicate consecutive 839 * flushes. For repeated and useless calls with Z_FINISH, we keep 840 * returning Z_STREAM_END instead of Z_BUF_ERROR. 841 */ 842 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && 843 flush != Z_FINISH) { 844 ERR_RETURN(strm, Z_BUF_ERROR); 845 } 846 847 /* User must not provide more input after the first FINISH: */ 848 if (s->status == FINISH_STATE && strm->avail_in != 0) { 849 ERR_RETURN(strm, Z_BUF_ERROR); 850 } 851 852 /* Write the header */ 853 if (s->status == INIT_STATE && s->wrap == 0) 854 s->status = BUSY_STATE; 855 if (s->status == INIT_STATE) { 856 /* zlib header */ 857 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 858 uInt level_flags; 859 860 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 861 level_flags = 0; 862 else if (s->level < 6) 863 level_flags = 1; 864 else if (s->level == 6) 865 level_flags = 2; 866 else 867 level_flags = 3; 868 header |= (level_flags << 6); 869 if (s->strstart != 0) header |= PRESET_DICT; 870 header += 31 - (header % 31); 871 872 putShortMSB(s, header); 873 874 /* Save the adler32 of the preset dictionary: */ 875 if (s->strstart != 0) { 876 putShortMSB(s, (uInt)(strm->adler >> 16)); 877 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 878 } 879 strm->adler = adler32(0L, Z_NULL, 0); 880 s->status = BUSY_STATE; 881 882 /* Compression must start with an empty pending buffer */ 883 flush_pending(strm); 884 if (s->pending != 0) { 885 s->last_flush = -1; 886 return Z_OK; 887 } 888 } 889 #ifdef GZIP 890 if (s->status == GZIP_STATE) { 891 /* gzip header */ 892 strm->adler = crc32(0L, Z_NULL, 0); 893 put_byte(s, 31); 894 put_byte(s, 139); 895 put_byte(s, 8); 896 if (s->gzhead == Z_NULL) { 897 put_byte(s, 0); 898 put_byte(s, 0); 899 put_byte(s, 0); 900 put_byte(s, 0); 901 put_byte(s, 0); 902 put_byte(s, s->level == 9 ? 2 : 903 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 904 4 : 0)); 905 put_byte(s, OS_CODE); 906 s->status = BUSY_STATE; 907 908 /* Compression must start with an empty pending buffer */ 909 flush_pending(strm); 910 if (s->pending != 0) { 911 s->last_flush = -1; 912 return Z_OK; 913 } 914 } 915 else { 916 put_byte(s, (s->gzhead->text ? 1 : 0) + 917 (s->gzhead->hcrc ? 2 : 0) + 918 (s->gzhead->extra == Z_NULL ? 0 : 4) + 919 (s->gzhead->name == Z_NULL ? 0 : 8) + 920 (s->gzhead->comment == Z_NULL ? 0 : 16) 921 ); 922 put_byte(s, (Byte)(s->gzhead->time & 0xff)); 923 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); 924 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); 925 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); 926 put_byte(s, s->level == 9 ? 2 : 927 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 928 4 : 0)); 929 put_byte(s, s->gzhead->os & 0xff); 930 if (s->gzhead->extra != Z_NULL) { 931 put_byte(s, s->gzhead->extra_len & 0xff); 932 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); 933 } 934 if (s->gzhead->hcrc) 935 strm->adler = crc32(strm->adler, s->pending_buf, 936 s->pending); 937 s->gzindex = 0; 938 s->status = EXTRA_STATE; 939 } 940 } 941 if (s->status == EXTRA_STATE) { 942 if (s->gzhead->extra != Z_NULL) { 943 ulg beg = s->pending; /* start of bytes to update crc */ 944 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; 945 while (s->pending + left > s->pending_buf_size) { 946 uInt copy = s->pending_buf_size - s->pending; 947 zmemcpy(s->pending_buf + s->pending, 948 s->gzhead->extra + s->gzindex, copy); 949 s->pending = s->pending_buf_size; 950 HCRC_UPDATE(beg); 951 s->gzindex += copy; 952 flush_pending(strm); 953 if (s->pending != 0) { 954 s->last_flush = -1; 955 return Z_OK; 956 } 957 beg = 0; 958 left -= copy; 959 } 960 zmemcpy(s->pending_buf + s->pending, 961 s->gzhead->extra + s->gzindex, left); 962 s->pending += left; 963 HCRC_UPDATE(beg); 964 s->gzindex = 0; 965 } 966 s->status = NAME_STATE; 967 } 968 if (s->status == NAME_STATE) { 969 if (s->gzhead->name != Z_NULL) { 970 ulg beg = s->pending; /* start of bytes to update crc */ 971 int val; 972 do { 973 if (s->pending == s->pending_buf_size) { 974 HCRC_UPDATE(beg); 975 flush_pending(strm); 976 if (s->pending != 0) { 977 s->last_flush = -1; 978 return Z_OK; 979 } 980 beg = 0; 981 } 982 val = s->gzhead->name[s->gzindex++]; 983 put_byte(s, val); 984 } while (val != 0); 985 HCRC_UPDATE(beg); 986 s->gzindex = 0; 987 } 988 s->status = COMMENT_STATE; 989 } 990 if (s->status == COMMENT_STATE) { 991 if (s->gzhead->comment != Z_NULL) { 992 ulg beg = s->pending; /* start of bytes to update crc */ 993 int val; 994 do { 995 if (s->pending == s->pending_buf_size) { 996 HCRC_UPDATE(beg); 997 flush_pending(strm); 998 if (s->pending != 0) { 999 s->last_flush = -1; 1000 return Z_OK; 1001 } 1002 beg = 0; 1003 } 1004 val = s->gzhead->comment[s->gzindex++]; 1005 put_byte(s, val); 1006 } while (val != 0); 1007 HCRC_UPDATE(beg); 1008 } 1009 s->status = HCRC_STATE; 1010 } 1011 if (s->status == HCRC_STATE) { 1012 if (s->gzhead->hcrc) { 1013 if (s->pending + 2 > s->pending_buf_size) { 1014 flush_pending(strm); 1015 if (s->pending != 0) { 1016 s->last_flush = -1; 1017 return Z_OK; 1018 } 1019 } 1020 put_byte(s, (Byte)(strm->adler & 0xff)); 1021 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1022 strm->adler = crc32(0L, Z_NULL, 0); 1023 } 1024 s->status = BUSY_STATE; 1025 1026 /* Compression must start with an empty pending buffer */ 1027 flush_pending(strm); 1028 if (s->pending != 0) { 1029 s->last_flush = -1; 1030 return Z_OK; 1031 } 1032 } 1033 #endif 1034 1035 /* Start a new block or continue the current one. 1036 */ 1037 if (strm->avail_in != 0 || s->lookahead != 0 || 1038 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 1039 block_state bstate; 1040 1041 bstate = s->level == 0 ? deflate_stored(s, flush) : 1042 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 1043 s->strategy == Z_RLE ? deflate_rle(s, flush) : 1044 (*(configuration_table[s->level].func))(s, flush); 1045 1046 if (bstate == finish_started || bstate == finish_done) { 1047 s->status = FINISH_STATE; 1048 } 1049 if (bstate == need_more || bstate == finish_started) { 1050 if (strm->avail_out == 0) { 1051 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 1052 } 1053 return Z_OK; 1054 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 1055 * of deflate should use the same flush parameter to make sure 1056 * that the flush is complete. So we don't have to output an 1057 * empty block here, this will be done at next call. This also 1058 * ensures that for a very small output buffer, we emit at most 1059 * one empty block. 1060 */ 1061 } 1062 if (bstate == block_done) { 1063 if (flush == Z_PARTIAL_FLUSH) { 1064 _tr_align(s); 1065 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 1066 _tr_stored_block(s, (char*)0, 0L, 0); 1067 /* For a full flush, this empty block will be recognized 1068 * as a special marker by inflate_sync(). 1069 */ 1070 if (flush == Z_FULL_FLUSH) { 1071 CLEAR_HASH(s); /* forget history */ 1072 if (s->lookahead == 0) { 1073 s->strstart = 0; 1074 s->block_start = 0L; 1075 s->insert = 0; 1076 } 1077 } 1078 } 1079 flush_pending(strm); 1080 if (strm->avail_out == 0) { 1081 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 1082 return Z_OK; 1083 } 1084 } 1085 } 1086 1087 if (flush != Z_FINISH) return Z_OK; 1088 if (s->wrap <= 0) return Z_STREAM_END; 1089 1090 /* Write the trailer */ 1091 #ifdef GZIP 1092 if (s->wrap == 2) { 1093 put_byte(s, (Byte)(strm->adler & 0xff)); 1094 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1095 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); 1096 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); 1097 put_byte(s, (Byte)(strm->total_in & 0xff)); 1098 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); 1099 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); 1100 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); 1101 } 1102 else 1103 #endif 1104 { 1105 putShortMSB(s, (uInt)(strm->adler >> 16)); 1106 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 1107 } 1108 flush_pending(strm); 1109 /* If avail_out is zero, the application will call deflate again 1110 * to flush the rest. 1111 */ 1112 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 1113 return s->pending != 0 ? Z_OK : Z_STREAM_END; 1114 } 1115 1116 /* ========================================================================= */ 1117 int ZEXPORT deflateEnd (strm) 1118 z_streamp strm; 1119 { 1120 int status; 1121 1122 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 1123 1124 status = strm->state->status; 1125 1126 /* Deallocate in reverse order of allocations: */ 1127 TRY_FREE(strm, strm->state->pending_buf); 1128 TRY_FREE(strm, strm->state->head); 1129 TRY_FREE(strm, strm->state->prev); 1130 TRY_FREE(strm, strm->state->window); 1131 1132 ZFREE(strm, strm->state); 1133 strm->state = Z_NULL; 1134 1135 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 1136 } 1137 1138 /* ========================================================================= 1139 * Copy the source state to the destination state. 1140 * To simplify the source, this is not supported for 16-bit MSDOS (which 1141 * doesn't have enough memory anyway to duplicate compression states). 1142 */ 1143 int ZEXPORT deflateCopy (dest, source) 1144 z_streamp dest; 1145 z_streamp source; 1146 { 1147 #ifdef MAXSEG_64K 1148 return Z_STREAM_ERROR; 1149 #else 1150 deflate_state *ds; 1151 deflate_state *ss; 1152 1153 1154 if (deflateStateCheck(source) || dest == Z_NULL) { 1155 return Z_STREAM_ERROR; 1156 } 1157 1158 ss = source->state; 1159 1160 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); 1161 1162 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 1163 if (ds == Z_NULL) return Z_MEM_ERROR; 1164 dest->state = (struct internal_state FAR *) ds; 1165 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); 1166 ds->strm = dest; 1167 1168 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 1169 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 1170 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 1171 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4); 1172 1173 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 1174 ds->pending_buf == Z_NULL) { 1175 deflateEnd (dest); 1176 return Z_MEM_ERROR; 1177 } 1178 /* following zmemcpy do not work for 16-bit MSDOS */ 1179 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 1180 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); 1181 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); 1182 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 1183 1184 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 1185 ds->sym_buf = ds->pending_buf + ds->lit_bufsize; 1186 1187 ds->l_desc.dyn_tree = ds->dyn_ltree; 1188 ds->d_desc.dyn_tree = ds->dyn_dtree; 1189 ds->bl_desc.dyn_tree = ds->bl_tree; 1190 1191 return Z_OK; 1192 #endif /* MAXSEG_64K */ 1193 } 1194 1195 /* =========================================================================== 1196 * Read a new buffer from the current input stream, update the adler32 1197 * and total number of bytes read. All deflate() input goes through 1198 * this function so some applications may wish to modify it to avoid 1199 * allocating a large strm->next_in buffer and copying from it. 1200 * (See also flush_pending()). 1201 */ 1202 local unsigned read_buf(strm, buf, size) 1203 z_streamp strm; 1204 Bytef *buf; 1205 unsigned size; 1206 { 1207 unsigned len = strm->avail_in; 1208 1209 if (len > size) len = size; 1210 if (len == 0) return 0; 1211 1212 strm->avail_in -= len; 1213 1214 zmemcpy(buf, strm->next_in, len); 1215 if (strm->state->wrap == 1) { 1216 strm->adler = adler32(strm->adler, buf, len); 1217 } 1218 #ifdef GZIP 1219 else if (strm->state->wrap == 2) { 1220 strm->adler = crc32(strm->adler, buf, len); 1221 } 1222 #endif 1223 strm->next_in += len; 1224 strm->total_in += len; 1225 1226 return len; 1227 } 1228 1229 /* =========================================================================== 1230 * Initialize the "longest match" routines for a new zlib stream 1231 */ 1232 local void lm_init (s) 1233 deflate_state *s; 1234 { 1235 s->window_size = (ulg)2L*s->w_size; 1236 1237 CLEAR_HASH(s); 1238 1239 /* Set the default configuration parameters: 1240 */ 1241 s->max_lazy_match = configuration_table[s->level].max_lazy; 1242 s->good_match = configuration_table[s->level].good_length; 1243 s->nice_match = configuration_table[s->level].nice_length; 1244 s->max_chain_length = configuration_table[s->level].max_chain; 1245 1246 s->strstart = 0; 1247 s->block_start = 0L; 1248 s->lookahead = 0; 1249 s->insert = 0; 1250 s->match_length = s->prev_length = MIN_MATCH-1; 1251 s->match_available = 0; 1252 s->ins_h = 0; 1253 #ifndef FASTEST 1254 #ifdef ASMV 1255 match_init(); /* initialize the asm code */ 1256 #endif 1257 #endif 1258 } 1259 1260 #ifndef FASTEST 1261 /* =========================================================================== 1262 * Set match_start to the longest match starting at the given string and 1263 * return its length. Matches shorter or equal to prev_length are discarded, 1264 * in which case the result is equal to prev_length and match_start is 1265 * garbage. 1266 * IN assertions: cur_match is the head of the hash chain for the current 1267 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1268 * OUT assertion: the match length is not greater than s->lookahead. 1269 */ 1270 #ifndef ASMV 1271 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or 1272 * match.S. The code will be functionally equivalent. 1273 */ 1274 local uInt longest_match(s, cur_match) 1275 deflate_state *s; 1276 IPos cur_match; /* current match */ 1277 { 1278 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1279 register Bytef *scan = s->window + s->strstart; /* current string */ 1280 register Bytef *match; /* matched string */ 1281 register int len; /* length of current match */ 1282 int best_len = (int)s->prev_length; /* best match length so far */ 1283 int nice_match = s->nice_match; /* stop if match long enough */ 1284 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1285 s->strstart - (IPos)MAX_DIST(s) : NIL; 1286 /* Stop when cur_match becomes <= limit. To simplify the code, 1287 * we prevent matches with the string of window index 0. 1288 */ 1289 Posf *prev = s->prev; 1290 uInt wmask = s->w_mask; 1291 1292 #ifdef UNALIGNED_OK 1293 /* Compare two bytes at a time. Note: this is not always beneficial. 1294 * Try with and without -DUNALIGNED_OK to check. 1295 */ 1296 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1297 register ush scan_start = *(ushf*)scan; 1298 register ush scan_end = *(ushf*)(scan+best_len-1); 1299 #else 1300 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1301 register Byte scan_end1 = scan[best_len-1]; 1302 register Byte scan_end = scan[best_len]; 1303 #endif 1304 1305 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1306 * It is easy to get rid of this optimization if necessary. 1307 */ 1308 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1309 1310 /* Do not waste too much time if we already have a good match: */ 1311 if (s->prev_length >= s->good_match) { 1312 chain_length >>= 2; 1313 } 1314 /* Do not look for matches beyond the end of the input. This is necessary 1315 * to make deflate deterministic. 1316 */ 1317 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; 1318 1319 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1320 1321 do { 1322 Assert(cur_match < s->strstart, "no future"); 1323 match = s->window + cur_match; 1324 1325 /* Skip to next match if the match length cannot increase 1326 * or if the match length is less than 2. Note that the checks below 1327 * for insufficient lookahead only occur occasionally for performance 1328 * reasons. Therefore uninitialized memory will be accessed, and 1329 * conditional jumps will be made that depend on those values. 1330 * However the length of the match is limited to the lookahead, so 1331 * the output of deflate is not affected by the uninitialized values. 1332 */ 1333 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1334 /* This code assumes sizeof(unsigned short) == 2. Do not use 1335 * UNALIGNED_OK if your compiler uses a different size. 1336 */ 1337 if (*(ushf*)(match+best_len-1) != scan_end || 1338 *(ushf*)match != scan_start) continue; 1339 1340 /* It is not necessary to compare scan[2] and match[2] since they are 1341 * always equal when the other bytes match, given that the hash keys 1342 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1343 * strstart+3, +5, ... up to strstart+257. We check for insufficient 1344 * lookahead only every 4th comparison; the 128th check will be made 1345 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 1346 * necessary to put more guard bytes at the end of the window, or 1347 * to check more often for insufficient lookahead. 1348 */ 1349 Assert(scan[2] == match[2], "scan[2]?"); 1350 scan++, match++; 1351 do { 1352 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1353 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1354 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1355 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1356 scan < strend); 1357 /* The funny "do {}" generates better code on most compilers */ 1358 1359 /* Here, scan <= window+strstart+257 */ 1360 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1361 if (*scan == *match) scan++; 1362 1363 len = (MAX_MATCH - 1) - (int)(strend-scan); 1364 scan = strend - (MAX_MATCH-1); 1365 1366 #else /* UNALIGNED_OK */ 1367 1368 if (match[best_len] != scan_end || 1369 match[best_len-1] != scan_end1 || 1370 *match != *scan || 1371 *++match != scan[1]) continue; 1372 1373 /* The check at best_len-1 can be removed because it will be made 1374 * again later. (This heuristic is not always a win.) 1375 * It is not necessary to compare scan[2] and match[2] since they 1376 * are always equal when the other bytes match, given that 1377 * the hash keys are equal and that HASH_BITS >= 8. 1378 */ 1379 scan += 2, match++; 1380 Assert(*scan == *match, "match[2]?"); 1381 1382 /* We check for insufficient lookahead only every 8th comparison; 1383 * the 256th check will be made at strstart+258. 1384 */ 1385 do { 1386 } while (*++scan == *++match && *++scan == *++match && 1387 *++scan == *++match && *++scan == *++match && 1388 *++scan == *++match && *++scan == *++match && 1389 *++scan == *++match && *++scan == *++match && 1390 scan < strend); 1391 1392 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1393 1394 len = MAX_MATCH - (int)(strend - scan); 1395 scan = strend - MAX_MATCH; 1396 1397 #endif /* UNALIGNED_OK */ 1398 1399 if (len > best_len) { 1400 s->match_start = cur_match; 1401 best_len = len; 1402 if (len >= nice_match) break; 1403 #ifdef UNALIGNED_OK 1404 scan_end = *(ushf*)(scan+best_len-1); 1405 #else 1406 scan_end1 = scan[best_len-1]; 1407 scan_end = scan[best_len]; 1408 #endif 1409 } 1410 } while ((cur_match = prev[cur_match & wmask]) > limit 1411 && --chain_length != 0); 1412 1413 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 1414 return s->lookahead; 1415 } 1416 #endif /* ASMV */ 1417 1418 #else /* FASTEST */ 1419 1420 /* --------------------------------------------------------------------------- 1421 * Optimized version for FASTEST only 1422 */ 1423 local uInt longest_match(s, cur_match) 1424 deflate_state *s; 1425 IPos cur_match; /* current match */ 1426 { 1427 register Bytef *scan = s->window + s->strstart; /* current string */ 1428 register Bytef *match; /* matched string */ 1429 register int len; /* length of current match */ 1430 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1431 1432 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1433 * It is easy to get rid of this optimization if necessary. 1434 */ 1435 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1436 1437 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1438 1439 Assert(cur_match < s->strstart, "no future"); 1440 1441 match = s->window + cur_match; 1442 1443 /* Return failure if the match length is less than 2: 1444 */ 1445 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; 1446 1447 /* The check at best_len-1 can be removed because it will be made 1448 * again later. (This heuristic is not always a win.) 1449 * It is not necessary to compare scan[2] and match[2] since they 1450 * are always equal when the other bytes match, given that 1451 * the hash keys are equal and that HASH_BITS >= 8. 1452 */ 1453 scan += 2, match += 2; 1454 Assert(*scan == *match, "match[2]?"); 1455 1456 /* We check for insufficient lookahead only every 8th comparison; 1457 * the 256th check will be made at strstart+258. 1458 */ 1459 do { 1460 } while (*++scan == *++match && *++scan == *++match && 1461 *++scan == *++match && *++scan == *++match && 1462 *++scan == *++match && *++scan == *++match && 1463 *++scan == *++match && *++scan == *++match && 1464 scan < strend); 1465 1466 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1467 1468 len = MAX_MATCH - (int)(strend - scan); 1469 1470 if (len < MIN_MATCH) return MIN_MATCH - 1; 1471 1472 s->match_start = cur_match; 1473 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; 1474 } 1475 1476 #endif /* FASTEST */ 1477 1478 #ifdef ZLIB_DEBUG 1479 1480 #define EQUAL 0 1481 /* result of memcmp for equal strings */ 1482 1483 /* =========================================================================== 1484 * Check that the match at match_start is indeed a match. 1485 */ 1486 local void check_match(s, start, match, length) 1487 deflate_state *s; 1488 IPos start, match; 1489 int length; 1490 { 1491 /* check that the match is indeed a match */ 1492 if (zmemcmp(s->window + match, 1493 s->window + start, length) != EQUAL) { 1494 fprintf(stderr, " start %u, match %u, length %d\n", 1495 start, match, length); 1496 do { 1497 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1498 } while (--length != 0); 1499 z_error("invalid match"); 1500 } 1501 if (z_verbose > 1) { 1502 fprintf(stderr,"\\[%d,%d]", start-match, length); 1503 do { putc(s->window[start++], stderr); } while (--length != 0); 1504 } 1505 } 1506 #else 1507 # define check_match(s, start, match, length) 1508 #endif /* ZLIB_DEBUG */ 1509 1510 /* =========================================================================== 1511 * Fill the window when the lookahead becomes insufficient. 1512 * Updates strstart and lookahead. 1513 * 1514 * IN assertion: lookahead < MIN_LOOKAHEAD 1515 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1516 * At least one byte has been read, or avail_in == 0; reads are 1517 * performed for at least two bytes (required for the zip translate_eol 1518 * option -- not supported here). 1519 */ 1520 local void fill_window(s) 1521 deflate_state *s; 1522 { 1523 unsigned n; 1524 unsigned more; /* Amount of free space at the end of the window. */ 1525 uInt wsize = s->w_size; 1526 1527 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); 1528 1529 do { 1530 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1531 1532 /* Deal with !@#$% 64K limit: */ 1533 if (sizeof(int) <= 2) { 1534 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1535 more = wsize; 1536 1537 } else if (more == (unsigned)(-1)) { 1538 /* Very unlikely, but possible on 16 bit machine if 1539 * strstart == 0 && lookahead == 1 (input done a byte at time) 1540 */ 1541 more--; 1542 } 1543 } 1544 1545 /* If the window is almost full and there is insufficient lookahead, 1546 * move the upper half to the lower one to make room in the upper half. 1547 */ 1548 if (s->strstart >= wsize+MAX_DIST(s)) { 1549 1550 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more); 1551 s->match_start -= wsize; 1552 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1553 s->block_start -= (long) wsize; 1554 if (s->insert > s->strstart) 1555 s->insert = s->strstart; 1556 slide_hash(s); 1557 more += wsize; 1558 } 1559 if (s->strm->avail_in == 0) break; 1560 1561 /* If there was no sliding: 1562 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1563 * more == window_size - lookahead - strstart 1564 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1565 * => more >= window_size - 2*WSIZE + 2 1566 * In the BIG_MEM or MMAP case (not yet supported), 1567 * window_size == input_size + MIN_LOOKAHEAD && 1568 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1569 * Otherwise, window_size == 2*WSIZE so more >= 2. 1570 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1571 */ 1572 Assert(more >= 2, "more < 2"); 1573 1574 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 1575 s->lookahead += n; 1576 1577 /* Initialize the hash value now that we have some input: */ 1578 if (s->lookahead + s->insert >= MIN_MATCH) { 1579 uInt str = s->strstart - s->insert; 1580 s->ins_h = s->window[str]; 1581 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); 1582 #if MIN_MATCH != 3 1583 Call UPDATE_HASH() MIN_MATCH-3 more times 1584 #endif 1585 while (s->insert) { 1586 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 1587 #ifndef FASTEST 1588 s->prev[str & s->w_mask] = s->head[s->ins_h]; 1589 #endif 1590 s->head[s->ins_h] = (Pos)str; 1591 str++; 1592 s->insert--; 1593 if (s->lookahead + s->insert < MIN_MATCH) 1594 break; 1595 } 1596 } 1597 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1598 * but this is not important since only literal bytes will be emitted. 1599 */ 1600 1601 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1602 1603 /* If the WIN_INIT bytes after the end of the current data have never been 1604 * written, then zero those bytes in order to avoid memory check reports of 1605 * the use of uninitialized (or uninitialised as Julian writes) bytes by 1606 * the longest match routines. Update the high water mark for the next 1607 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 1608 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 1609 */ 1610 if (s->high_water < s->window_size) { 1611 ulg curr = s->strstart + (ulg)(s->lookahead); 1612 ulg init; 1613 1614 if (s->high_water < curr) { 1615 /* Previous high water mark below current data -- zero WIN_INIT 1616 * bytes or up to end of window, whichever is less. 1617 */ 1618 init = s->window_size - curr; 1619 if (init > WIN_INIT) 1620 init = WIN_INIT; 1621 zmemzero(s->window + curr, (unsigned)init); 1622 s->high_water = curr + init; 1623 } 1624 else if (s->high_water < (ulg)curr + WIN_INIT) { 1625 /* High water mark at or above current data, but below current data 1626 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 1627 * to end of window, whichever is less. 1628 */ 1629 init = (ulg)curr + WIN_INIT - s->high_water; 1630 if (init > s->window_size - s->high_water) 1631 init = s->window_size - s->high_water; 1632 zmemzero(s->window + s->high_water, (unsigned)init); 1633 s->high_water += init; 1634 } 1635 } 1636 1637 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1638 "not enough room for search"); 1639 } 1640 1641 /* =========================================================================== 1642 * Flush the current block, with given end-of-file flag. 1643 * IN assertion: strstart is set to the end of the current match. 1644 */ 1645 #define FLUSH_BLOCK_ONLY(s, last) { \ 1646 _tr_flush_block(s, (s->block_start >= 0L ? \ 1647 (charf *)&s->window[(unsigned)s->block_start] : \ 1648 (charf *)Z_NULL), \ 1649 (ulg)((long)s->strstart - s->block_start), \ 1650 (last)); \ 1651 s->block_start = s->strstart; \ 1652 flush_pending(s->strm); \ 1653 Tracev((stderr,"[FLUSH]")); \ 1654 } 1655 1656 /* Same but force premature exit if necessary. */ 1657 #define FLUSH_BLOCK(s, last) { \ 1658 FLUSH_BLOCK_ONLY(s, last); \ 1659 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 1660 } 1661 1662 /* Maximum stored block length in deflate format (not including header). */ 1663 #define MAX_STORED 65535 1664 1665 /* Minimum of a and b. */ 1666 #define MIN(a, b) ((a) > (b) ? (b) : (a)) 1667 1668 /* =========================================================================== 1669 * Copy without compression as much as possible from the input stream, return 1670 * the current block state. 1671 * 1672 * In case deflateParams() is used to later switch to a non-zero compression 1673 * level, s->matches (otherwise unused when storing) keeps track of the number 1674 * of hash table slides to perform. If s->matches is 1, then one hash table 1675 * slide will be done when switching. If s->matches is 2, the maximum value 1676 * allowed here, then the hash table will be cleared, since two or more slides 1677 * is the same as a clear. 1678 * 1679 * deflate_stored() is written to minimize the number of times an input byte is 1680 * copied. It is most efficient with large input and output buffers, which 1681 * maximizes the opportunites to have a single copy from next_in to next_out. 1682 */ 1683 local block_state deflate_stored(s, flush) 1684 deflate_state *s; 1685 int flush; 1686 { 1687 /* Smallest worthy block size when not flushing or finishing. By default 1688 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For 1689 * large input and output buffers, the stored block size will be larger. 1690 */ 1691 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); 1692 1693 /* Copy as many min_block or larger stored blocks directly to next_out as 1694 * possible. If flushing, copy the remaining available input to next_out as 1695 * stored blocks, if there is enough space. 1696 */ 1697 unsigned len, left, have, last = 0; 1698 unsigned used = s->strm->avail_in; 1699 do { 1700 /* Set len to the maximum size block that we can copy directly with the 1701 * available input data and output space. Set left to how much of that 1702 * would be copied from what's left in the window. 1703 */ 1704 len = MAX_STORED; /* maximum deflate stored block length */ 1705 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1706 if (s->strm->avail_out < have) /* need room for header */ 1707 break; 1708 /* maximum stored block length that will fit in avail_out: */ 1709 have = s->strm->avail_out - have; 1710 left = s->strstart - s->block_start; /* bytes left in window */ 1711 if (len > (ulg)left + s->strm->avail_in) 1712 len = left + s->strm->avail_in; /* limit len to the input */ 1713 if (len > have) 1714 len = have; /* limit len to the output */ 1715 1716 /* If the stored block would be less than min_block in length, or if 1717 * unable to copy all of the available input when flushing, then try 1718 * copying to the window and the pending buffer instead. Also don't 1719 * write an empty block when flushing -- deflate() does that. 1720 */ 1721 if (len < min_block && ((len == 0 && flush != Z_FINISH) || 1722 flush == Z_NO_FLUSH || 1723 len != left + s->strm->avail_in)) 1724 break; 1725 1726 /* Make a dummy stored block in pending to get the header bytes, 1727 * including any pending bits. This also updates the debugging counts. 1728 */ 1729 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; 1730 _tr_stored_block(s, (char *)0, 0L, last); 1731 1732 /* Replace the lengths in the dummy stored block with len. */ 1733 s->pending_buf[s->pending - 4] = len; 1734 s->pending_buf[s->pending - 3] = len >> 8; 1735 s->pending_buf[s->pending - 2] = ~len; 1736 s->pending_buf[s->pending - 1] = ~len >> 8; 1737 1738 /* Write the stored block header bytes. */ 1739 flush_pending(s->strm); 1740 1741 #ifdef ZLIB_DEBUG 1742 /* Update debugging counts for the data about to be copied. */ 1743 s->compressed_len += len << 3; 1744 s->bits_sent += len << 3; 1745 #endif 1746 1747 /* Copy uncompressed bytes from the window to next_out. */ 1748 if (left) { 1749 if (left > len) 1750 left = len; 1751 zmemcpy(s->strm->next_out, s->window + s->block_start, left); 1752 s->strm->next_out += left; 1753 s->strm->avail_out -= left; 1754 s->strm->total_out += left; 1755 s->block_start += left; 1756 len -= left; 1757 } 1758 1759 /* Copy uncompressed bytes directly from next_in to next_out, updating 1760 * the check value. 1761 */ 1762 if (len) { 1763 read_buf(s->strm, s->strm->next_out, len); 1764 s->strm->next_out += len; 1765 s->strm->avail_out -= len; 1766 s->strm->total_out += len; 1767 } 1768 } while (last == 0); 1769 1770 /* Update the sliding window with the last s->w_size bytes of the copied 1771 * data, or append all of the copied data to the existing window if less 1772 * than s->w_size bytes were copied. Also update the number of bytes to 1773 * insert in the hash tables, in the event that deflateParams() switches to 1774 * a non-zero compression level. 1775 */ 1776 used -= s->strm->avail_in; /* number of input bytes directly copied */ 1777 if (used) { 1778 /* If any input was used, then no unused input remains in the window, 1779 * therefore s->block_start == s->strstart. 1780 */ 1781 if (used >= s->w_size) { /* supplant the previous history */ 1782 s->matches = 2; /* clear hash */ 1783 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); 1784 s->strstart = s->w_size; 1785 s->insert = s->strstart; 1786 } 1787 else { 1788 if (s->window_size - s->strstart <= used) { 1789 /* Slide the window down. */ 1790 s->strstart -= s->w_size; 1791 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1792 if (s->matches < 2) 1793 s->matches++; /* add a pending slide_hash() */ 1794 if (s->insert > s->strstart) 1795 s->insert = s->strstart; 1796 } 1797 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); 1798 s->strstart += used; 1799 s->insert += MIN(used, s->w_size - s->insert); 1800 } 1801 s->block_start = s->strstart; 1802 } 1803 if (s->high_water < s->strstart) 1804 s->high_water = s->strstart; 1805 1806 /* If the last block was written to next_out, then done. */ 1807 if (last) 1808 return finish_done; 1809 1810 /* If flushing and all input has been consumed, then done. */ 1811 if (flush != Z_NO_FLUSH && flush != Z_FINISH && 1812 s->strm->avail_in == 0 && (long)s->strstart == s->block_start) 1813 return block_done; 1814 1815 /* Fill the window with any remaining input. */ 1816 have = s->window_size - s->strstart; 1817 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { 1818 /* Slide the window down. */ 1819 s->block_start -= s->w_size; 1820 s->strstart -= s->w_size; 1821 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1822 if (s->matches < 2) 1823 s->matches++; /* add a pending slide_hash() */ 1824 have += s->w_size; /* more space now */ 1825 if (s->insert > s->strstart) 1826 s->insert = s->strstart; 1827 } 1828 if (have > s->strm->avail_in) 1829 have = s->strm->avail_in; 1830 if (have) { 1831 read_buf(s->strm, s->window + s->strstart, have); 1832 s->strstart += have; 1833 s->insert += MIN(have, s->w_size - s->insert); 1834 } 1835 if (s->high_water < s->strstart) 1836 s->high_water = s->strstart; 1837 1838 /* There was not enough avail_out to write a complete worthy or flushed 1839 * stored block to next_out. Write a stored block to pending instead, if we 1840 * have enough input for a worthy block, or if flushing and there is enough 1841 * room for the remaining input as a stored block in the pending buffer. 1842 */ 1843 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1844 /* maximum stored block length that will fit in pending: */ 1845 have = MIN(s->pending_buf_size - have, MAX_STORED); 1846 min_block = MIN(have, s->w_size); 1847 left = s->strstart - s->block_start; 1848 if (left >= min_block || 1849 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && 1850 s->strm->avail_in == 0 && left <= have)) { 1851 len = MIN(left, have); 1852 last = flush == Z_FINISH && s->strm->avail_in == 0 && 1853 len == left ? 1 : 0; 1854 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); 1855 s->block_start += len; 1856 flush_pending(s->strm); 1857 } 1858 1859 /* We've done all we can with the available input and output. */ 1860 return last ? finish_started : need_more; 1861 } 1862 1863 /* =========================================================================== 1864 * Compress as much as possible from the input stream, return the current 1865 * block state. 1866 * This function does not perform lazy evaluation of matches and inserts 1867 * new strings in the dictionary only for unmatched strings or for short 1868 * matches. It is used only for the fast compression options. 1869 */ 1870 local block_state deflate_fast(s, flush) 1871 deflate_state *s; 1872 int flush; 1873 { 1874 IPos hash_head; /* head of the hash chain */ 1875 int bflush; /* set if current block must be flushed */ 1876 1877 for (;;) { 1878 /* Make sure that we always have enough lookahead, except 1879 * at the end of the input file. We need MAX_MATCH bytes 1880 * for the next match, plus MIN_MATCH bytes to insert the 1881 * string following the next match. 1882 */ 1883 if (s->lookahead < MIN_LOOKAHEAD) { 1884 fill_window(s); 1885 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1886 return need_more; 1887 } 1888 if (s->lookahead == 0) break; /* flush the current block */ 1889 } 1890 1891 /* Insert the string window[strstart .. strstart+2] in the 1892 * dictionary, and set hash_head to the head of the hash chain: 1893 */ 1894 hash_head = NIL; 1895 if (s->lookahead >= MIN_MATCH) { 1896 INSERT_STRING(s, s->strstart, hash_head); 1897 } 1898 1899 /* Find the longest match, discarding those <= prev_length. 1900 * At this point we have always match_length < MIN_MATCH 1901 */ 1902 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1903 /* To simplify the code, we prevent matches with the string 1904 * of window index 0 (in particular we have to avoid a match 1905 * of the string with itself at the start of the input file). 1906 */ 1907 s->match_length = longest_match (s, hash_head); 1908 /* longest_match() sets match_start */ 1909 } 1910 if (s->match_length >= MIN_MATCH) { 1911 check_match(s, s->strstart, s->match_start, s->match_length); 1912 1913 _tr_tally_dist(s, s->strstart - s->match_start, 1914 s->match_length - MIN_MATCH, bflush); 1915 1916 s->lookahead -= s->match_length; 1917 1918 /* Insert new strings in the hash table only if the match length 1919 * is not too large. This saves time but degrades compression. 1920 */ 1921 #ifndef FASTEST 1922 if (s->match_length <= s->max_insert_length && 1923 s->lookahead >= MIN_MATCH) { 1924 s->match_length--; /* string at strstart already in table */ 1925 do { 1926 s->strstart++; 1927 INSERT_STRING(s, s->strstart, hash_head); 1928 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1929 * always MIN_MATCH bytes ahead. 1930 */ 1931 } while (--s->match_length != 0); 1932 s->strstart++; 1933 } else 1934 #endif 1935 { 1936 s->strstart += s->match_length; 1937 s->match_length = 0; 1938 s->ins_h = s->window[s->strstart]; 1939 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1940 #if MIN_MATCH != 3 1941 Call UPDATE_HASH() MIN_MATCH-3 more times 1942 #endif 1943 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1944 * matter since it will be recomputed at next deflate call. 1945 */ 1946 } 1947 } else { 1948 /* No match, output a literal byte */ 1949 Tracevv((stderr,"%c", s->window[s->strstart])); 1950 _tr_tally_lit (s, s->window[s->strstart], bflush); 1951 s->lookahead--; 1952 s->strstart++; 1953 } 1954 if (bflush) FLUSH_BLOCK(s, 0); 1955 } 1956 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1957 if (flush == Z_FINISH) { 1958 FLUSH_BLOCK(s, 1); 1959 return finish_done; 1960 } 1961 if (s->sym_next) 1962 FLUSH_BLOCK(s, 0); 1963 return block_done; 1964 } 1965 1966 #ifndef FASTEST 1967 /* =========================================================================== 1968 * Same as above, but achieves better compression. We use a lazy 1969 * evaluation for matches: a match is finally adopted only if there is 1970 * no better match at the next window position. 1971 */ 1972 local block_state deflate_slow(s, flush) 1973 deflate_state *s; 1974 int flush; 1975 { 1976 IPos hash_head; /* head of hash chain */ 1977 int bflush; /* set if current block must be flushed */ 1978 1979 /* Process the input block. */ 1980 for (;;) { 1981 /* Make sure that we always have enough lookahead, except 1982 * at the end of the input file. We need MAX_MATCH bytes 1983 * for the next match, plus MIN_MATCH bytes to insert the 1984 * string following the next match. 1985 */ 1986 if (s->lookahead < MIN_LOOKAHEAD) { 1987 fill_window(s); 1988 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1989 return need_more; 1990 } 1991 if (s->lookahead == 0) break; /* flush the current block */ 1992 } 1993 1994 /* Insert the string window[strstart .. strstart+2] in the 1995 * dictionary, and set hash_head to the head of the hash chain: 1996 */ 1997 hash_head = NIL; 1998 if (s->lookahead >= MIN_MATCH) { 1999 INSERT_STRING(s, s->strstart, hash_head); 2000 } 2001 2002 /* Find the longest match, discarding those <= prev_length. 2003 */ 2004 s->prev_length = s->match_length, s->prev_match = s->match_start; 2005 s->match_length = MIN_MATCH-1; 2006 2007 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 2008 s->strstart - hash_head <= MAX_DIST(s)) { 2009 /* To simplify the code, we prevent matches with the string 2010 * of window index 0 (in particular we have to avoid a match 2011 * of the string with itself at the start of the input file). 2012 */ 2013 s->match_length = longest_match (s, hash_head); 2014 /* longest_match() sets match_start */ 2015 2016 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 2017 #if TOO_FAR <= 32767 2018 || (s->match_length == MIN_MATCH && 2019 s->strstart - s->match_start > TOO_FAR) 2020 #endif 2021 )) { 2022 2023 /* If prev_match is also MIN_MATCH, match_start is garbage 2024 * but we will ignore the current match anyway. 2025 */ 2026 s->match_length = MIN_MATCH-1; 2027 } 2028 } 2029 /* If there was a match at the previous step and the current 2030 * match is not better, output the previous match: 2031 */ 2032 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 2033 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 2034 /* Do not insert strings in hash table beyond this. */ 2035 2036 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 2037 2038 _tr_tally_dist(s, s->strstart -1 - s->prev_match, 2039 s->prev_length - MIN_MATCH, bflush); 2040 2041 /* Insert in hash table all strings up to the end of the match. 2042 * strstart-1 and strstart are already inserted. If there is not 2043 * enough lookahead, the last two strings are not inserted in 2044 * the hash table. 2045 */ 2046 s->lookahead -= s->prev_length-1; 2047 s->prev_length -= 2; 2048 do { 2049 if (++s->strstart <= max_insert) { 2050 INSERT_STRING(s, s->strstart, hash_head); 2051 } 2052 } while (--s->prev_length != 0); 2053 s->match_available = 0; 2054 s->match_length = MIN_MATCH-1; 2055 s->strstart++; 2056 2057 if (bflush) FLUSH_BLOCK(s, 0); 2058 2059 } else if (s->match_available) { 2060 /* If there was no match at the previous position, output a 2061 * single literal. If there was a match but the current match 2062 * is longer, truncate the previous match to a single literal. 2063 */ 2064 Tracevv((stderr,"%c", s->window[s->strstart-1])); 2065 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 2066 if (bflush) { 2067 FLUSH_BLOCK_ONLY(s, 0); 2068 } 2069 s->strstart++; 2070 s->lookahead--; 2071 if (s->strm->avail_out == 0) return need_more; 2072 } else { 2073 /* There is no previous match to compare with, wait for 2074 * the next step to decide. 2075 */ 2076 s->match_available = 1; 2077 s->strstart++; 2078 s->lookahead--; 2079 } 2080 } 2081 Assert (flush != Z_NO_FLUSH, "no flush?"); 2082 if (s->match_available) { 2083 Tracevv((stderr,"%c", s->window[s->strstart-1])); 2084 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 2085 s->match_available = 0; 2086 } 2087 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 2088 if (flush == Z_FINISH) { 2089 FLUSH_BLOCK(s, 1); 2090 return finish_done; 2091 } 2092 if (s->sym_next) 2093 FLUSH_BLOCK(s, 0); 2094 return block_done; 2095 } 2096 #endif /* FASTEST */ 2097 2098 /* =========================================================================== 2099 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 2100 * one. Do not maintain a hash table. (It will be regenerated if this run of 2101 * deflate switches away from Z_RLE.) 2102 */ 2103 local block_state deflate_rle(s, flush) 2104 deflate_state *s; 2105 int flush; 2106 { 2107 int bflush; /* set if current block must be flushed */ 2108 uInt prev; /* byte at distance one to match */ 2109 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 2110 2111 for (;;) { 2112 /* Make sure that we always have enough lookahead, except 2113 * at the end of the input file. We need MAX_MATCH bytes 2114 * for the longest run, plus one for the unrolled loop. 2115 */ 2116 if (s->lookahead <= MAX_MATCH) { 2117 fill_window(s); 2118 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { 2119 return need_more; 2120 } 2121 if (s->lookahead == 0) break; /* flush the current block */ 2122 } 2123 2124 /* See how many times the previous byte repeats */ 2125 s->match_length = 0; 2126 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 2127 scan = s->window + s->strstart - 1; 2128 prev = *scan; 2129 if (prev == *++scan && prev == *++scan && prev == *++scan) { 2130 strend = s->window + s->strstart + MAX_MATCH; 2131 do { 2132 } while (prev == *++scan && prev == *++scan && 2133 prev == *++scan && prev == *++scan && 2134 prev == *++scan && prev == *++scan && 2135 prev == *++scan && prev == *++scan && 2136 scan < strend); 2137 s->match_length = MAX_MATCH - (uInt)(strend - scan); 2138 if (s->match_length > s->lookahead) 2139 s->match_length = s->lookahead; 2140 } 2141 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); 2142 } 2143 2144 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 2145 if (s->match_length >= MIN_MATCH) { 2146 check_match(s, s->strstart, s->strstart - 1, s->match_length); 2147 2148 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 2149 2150 s->lookahead -= s->match_length; 2151 s->strstart += s->match_length; 2152 s->match_length = 0; 2153 } else { 2154 /* No match, output a literal byte */ 2155 Tracevv((stderr,"%c", s->window[s->strstart])); 2156 _tr_tally_lit (s, s->window[s->strstart], bflush); 2157 s->lookahead--; 2158 s->strstart++; 2159 } 2160 if (bflush) FLUSH_BLOCK(s, 0); 2161 } 2162 s->insert = 0; 2163 if (flush == Z_FINISH) { 2164 FLUSH_BLOCK(s, 1); 2165 return finish_done; 2166 } 2167 if (s->sym_next) 2168 FLUSH_BLOCK(s, 0); 2169 return block_done; 2170 } 2171 2172 /* =========================================================================== 2173 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 2174 * (It will be regenerated if this run of deflate switches away from Huffman.) 2175 */ 2176 local block_state deflate_huff(s, flush) 2177 deflate_state *s; 2178 int flush; 2179 { 2180 int bflush; /* set if current block must be flushed */ 2181 2182 for (;;) { 2183 /* Make sure that we have a literal to write. */ 2184 if (s->lookahead == 0) { 2185 fill_window(s); 2186 if (s->lookahead == 0) { 2187 if (flush == Z_NO_FLUSH) 2188 return need_more; 2189 break; /* flush the current block */ 2190 } 2191 } 2192 2193 /* Output a literal byte */ 2194 s->match_length = 0; 2195 Tracevv((stderr,"%c", s->window[s->strstart])); 2196 _tr_tally_lit (s, s->window[s->strstart], bflush); 2197 s->lookahead--; 2198 s->strstart++; 2199 if (bflush) FLUSH_BLOCK(s, 0); 2200 } 2201 s->insert = 0; 2202 if (flush == Z_FINISH) { 2203 FLUSH_BLOCK(s, 1); 2204 return finish_done; 2205 } 2206 if (s->sym_next) 2207 FLUSH_BLOCK(s, 0); 2208 return block_done; 2209 } 2210