1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 #include "deflate.h"
51
52 const char deflate_copyright[] =
53 " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
54 /*
55 If you use the zlib library in a product, an acknowledgment is welcome
56 in the documentation of your product. If for some reason you cannot
57 include such an acknowledgment, I would appreciate that you keep this
58 copyright string in the executable of your product.
59 */
60
61 /* ===========================================================================
62 * Function prototypes.
63 */
64 typedef enum {
65 need_more, /* block not completed, need more input or more output */
66 block_done, /* block flush performed */
67 finish_started, /* finish started, need only more output at next deflate */
68 finish_done /* finish done, accept no more input or output */
69 } block_state;
70
71 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
72 /* Compression function. Returns the block state after the call. */
73
74 local int deflateStateCheck OF((z_streamp strm));
75 local void slide_hash OF((deflate_state *s));
76 local void fill_window OF((deflate_state *s));
77 local block_state deflate_stored OF((deflate_state *s, int flush));
78 local block_state deflate_fast OF((deflate_state *s, int flush));
79 #ifndef FASTEST
80 local block_state deflate_slow OF((deflate_state *s, int flush));
81 #endif
82 local block_state deflate_rle OF((deflate_state *s, int flush));
83 local block_state deflate_huff OF((deflate_state *s, int flush));
84 local void lm_init OF((deflate_state *s));
85 local void putShortMSB OF((deflate_state *s, uInt b));
86 local void flush_pending OF((z_streamp strm));
87 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
88 #ifdef ASMV
89 # pragma message("Assembler code may have bugs -- use at your own risk")
90 void match_init OF((void)); /* asm code initialization */
91 uInt longest_match OF((deflate_state *s, IPos cur_match));
92 #else
93 local uInt longest_match OF((deflate_state *s, IPos cur_match));
94 #endif
95
96 #ifdef ZLIB_DEBUG
97 local void check_match OF((deflate_state *s, IPos start, IPos match,
98 int length));
99 #endif
100
101 /* ===========================================================================
102 * Local data
103 */
104
105 #define NIL 0
106 /* Tail of hash chains */
107
108 #ifndef TOO_FAR
109 # define TOO_FAR 4096
110 #endif
111 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
112
113 /* Values for max_lazy_match, good_match and max_chain_length, depending on
114 * the desired pack level (0..9). The values given below have been tuned to
115 * exclude worst case performance for pathological files. Better values may be
116 * found for specific files.
117 */
118 typedef struct config_s {
119 ush good_length; /* reduce lazy search above this match length */
120 ush max_lazy; /* do not perform lazy search above this match length */
121 ush nice_length; /* quit search above this match length */
122 ush max_chain;
123 compress_func func;
124 } config;
125
126 #ifdef FASTEST
127 local const config configuration_table[2] = {
128 /* good lazy nice chain */
129 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
130 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
131 #else
132 local const config configuration_table[10] = {
133 /* good lazy nice chain */
134 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
135 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
136 /* 2 */ {4, 5, 16, 8, deflate_fast},
137 /* 3 */ {4, 6, 32, 32, deflate_fast},
138
139 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
140 /* 5 */ {8, 16, 32, 32, deflate_slow},
141 /* 6 */ {8, 16, 128, 128, deflate_slow},
142 /* 7 */ {8, 32, 128, 256, deflate_slow},
143 /* 8 */ {32, 128, 258, 1024, deflate_slow},
144 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
145 #endif
146
147 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
148 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
149 * meaning.
150 */
151
152 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
153 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
154
155 /* ===========================================================================
156 * Update a hash value with the given input byte
157 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
158 * characters, so that a running hash key can be computed from the previous
159 * key instead of complete recalculation each time.
160 */
161 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
162
163
164 /* ===========================================================================
165 * Insert string str in the dictionary and set match_head to the previous head
166 * of the hash chain (the most recent string with same hash key). Return
167 * the previous length of the hash chain.
168 * If this file is compiled with -DFASTEST, the compression level is forced
169 * to 1, and no hash chains are maintained.
170 * IN assertion: all calls to INSERT_STRING are made with consecutive input
171 * characters and the first MIN_MATCH bytes of str are valid (except for
172 * the last MIN_MATCH-1 bytes of the input file).
173 */
174 #ifdef FASTEST
175 #define INSERT_STRING(s, str, match_head) \
176 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
177 match_head = s->head[s->ins_h], \
178 s->head[s->ins_h] = (Pos)(str))
179 #else
180 #define INSERT_STRING(s, str, match_head) \
181 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
182 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
183 s->head[s->ins_h] = (Pos)(str))
184 #endif
185
186 /* ===========================================================================
187 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
188 * prev[] will be initialized on the fly.
189 */
190 #define CLEAR_HASH(s) \
191 do { \
192 s->head[s->hash_size-1] = NIL; \
193 zmemzero((Bytef *)s->head, \
194 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
195 } while (0)
196
197 /* ===========================================================================
198 * Slide the hash table when sliding the window down (could be avoided with 32
199 * bit values at the expense of memory usage). We slide even when level == 0 to
200 * keep the hash table consistent if we switch back to level > 0 later.
201 */
slide_hash(s)202 local void slide_hash(s)
203 deflate_state *s;
204 {
205 unsigned n, m;
206 Posf *p;
207 uInt wsize = s->w_size;
208
209 n = s->hash_size;
210 p = &s->head[n];
211 do {
212 m = *--p;
213 *p = (Pos)(m >= wsize ? m - wsize : NIL);
214 } while (--n);
215 n = wsize;
216 #ifndef FASTEST
217 p = &s->prev[n];
218 do {
219 m = *--p;
220 *p = (Pos)(m >= wsize ? m - wsize : NIL);
221 /* If n is not on any hash chain, prev[n] is garbage but
222 * its value will never be used.
223 */
224 } while (--n);
225 #endif
226 }
227
228 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)229 int ZEXPORT deflateInit_(strm, level, version, stream_size)
230 z_streamp strm;
231 int level;
232 const char *version;
233 int stream_size;
234 {
235 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
236 Z_DEFAULT_STRATEGY, version, stream_size);
237 /* To do: ignore strm->next_in if we use it as window */
238 }
239
240 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)241 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
242 version, stream_size)
243 z_streamp strm;
244 int level;
245 int method;
246 int windowBits;
247 int memLevel;
248 int strategy;
249 const char *version;
250 int stream_size;
251 {
252 deflate_state *s;
253 int wrap = 1;
254 static const char my_version[] = ZLIB_VERSION;
255
256 if (version == Z_NULL || version[0] != my_version[0] ||
257 stream_size != sizeof(z_stream)) {
258 return Z_VERSION_ERROR;
259 }
260 if (strm == Z_NULL) return Z_STREAM_ERROR;
261
262 strm->msg = Z_NULL;
263 if (strm->zalloc == (alloc_func)0) {
264 #ifdef Z_SOLO
265 return Z_STREAM_ERROR;
266 #else
267 strm->zalloc = zcalloc;
268 strm->opaque = (voidpf)0;
269 #endif
270 }
271 if (strm->zfree == (free_func)0)
272 #ifdef Z_SOLO
273 return Z_STREAM_ERROR;
274 #else
275 strm->zfree = zcfree;
276 #endif
277
278 #ifdef FASTEST
279 if (level != 0) level = 1;
280 #else
281 if (level == Z_DEFAULT_COMPRESSION) level = 6;
282 #endif
283
284 if (windowBits < 0) { /* suppress zlib wrapper */
285 wrap = 0;
286 windowBits = -windowBits;
287 }
288 #ifdef GZIP
289 else if (windowBits > 15) {
290 wrap = 2; /* write gzip wrapper instead */
291 windowBits -= 16;
292 }
293 #endif
294 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
295 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
296 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
297 return Z_STREAM_ERROR;
298 }
299 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
300 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
301 if (s == Z_NULL) return Z_MEM_ERROR;
302 strm->state = (struct internal_state FAR *)s;
303 s->strm = strm;
304 s->status = INIT_STATE; /* to pass state test in deflateReset() */
305
306 s->wrap = wrap;
307 s->gzhead = Z_NULL;
308 s->w_bits = (uInt)windowBits;
309 s->w_size = 1 << s->w_bits;
310 s->w_mask = s->w_size - 1;
311
312 s->hash_bits = (uInt)memLevel + 7;
313 s->hash_size = 1 << s->hash_bits;
314 s->hash_mask = s->hash_size - 1;
315 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
316
317 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
318 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
319 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
320
321 s->high_water = 0; /* nothing written to s->window yet */
322
323 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
324
325 /* We overlay pending_buf and sym_buf. This works since the average size
326 * for length/distance pairs over any compressed block is assured to be 31
327 * bits or less.
328 *
329 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
330 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
331 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
332 * possible fixed-codes length/distance pair is then 31 bits total.
333 *
334 * sym_buf starts one-fourth of the way into pending_buf. So there are
335 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
336 * in sym_buf is three bytes -- two for the distance and one for the
337 * literal/length. As each symbol is consumed, the pointer to the next
338 * sym_buf value to read moves forward three bytes. From that symbol, up to
339 * 31 bits are written to pending_buf. The closest the written pending_buf
340 * bits gets to the next sym_buf symbol to read is just before the last
341 * code is written. At that time, 31*(n-2) bits have been written, just
342 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
343 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
344 * symbols are written.) The closest the writing gets to what is unread is
345 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
346 * can range from 128 to 32768.
347 *
348 * Therefore, at a minimum, there are 142 bits of space between what is
349 * written and what is read in the overlain buffers, so the symbols cannot
350 * be overwritten by the compressed data. That space is actually 139 bits,
351 * due to the three-bit fixed-code block header.
352 *
353 * That covers the case where either Z_FIXED is specified, forcing fixed
354 * codes, or when the use of fixed codes is chosen, because that choice
355 * results in a smaller compressed block than dynamic codes. That latter
356 * condition then assures that the above analysis also covers all dynamic
357 * blocks. A dynamic-code block will only be chosen to be emitted if it has
358 * fewer bits than a fixed-code block would for the same set of symbols.
359 * Therefore its average symbol length is assured to be less than 31. So
360 * the compressed data for a dynamic block also cannot overwrite the
361 * symbols from which it is being constructed.
362 */
363
364 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
365 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
366
367 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
368 s->pending_buf == Z_NULL) {
369 s->status = FINISH_STATE;
370 strm->msg = ERR_MSG(Z_MEM_ERROR);
371 deflateEnd (strm);
372 return Z_MEM_ERROR;
373 }
374 s->sym_buf = s->pending_buf + s->lit_bufsize;
375 s->sym_end = (s->lit_bufsize - 1) * 3;
376 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
377 * on 16 bit machines and because stored blocks are restricted to
378 * 64K-1 bytes.
379 */
380
381 s->level = level;
382 s->strategy = strategy;
383 s->method = (Byte)method;
384
385 return deflateReset(strm);
386 }
387
388 /* =========================================================================
389 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
390 */
deflateStateCheck(strm)391 local int deflateStateCheck (strm)
392 z_streamp strm;
393 {
394 deflate_state *s;
395 if (strm == Z_NULL ||
396 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
397 return 1;
398 s = strm->state;
399 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
400 #ifdef GZIP
401 s->status != GZIP_STATE &&
402 #endif
403 s->status != EXTRA_STATE &&
404 s->status != NAME_STATE &&
405 s->status != COMMENT_STATE &&
406 s->status != HCRC_STATE &&
407 s->status != BUSY_STATE &&
408 s->status != FINISH_STATE))
409 return 1;
410 return 0;
411 }
412
413 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)414 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
415 z_streamp strm;
416 const Bytef *dictionary;
417 uInt dictLength;
418 {
419 deflate_state *s;
420 uInt str, n;
421 int wrap;
422 unsigned avail;
423 z_const unsigned char *next;
424
425 if (deflateStateCheck(strm) || dictionary == Z_NULL)
426 return Z_STREAM_ERROR;
427 s = strm->state;
428 wrap = s->wrap;
429 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
430 return Z_STREAM_ERROR;
431
432 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
433 if (wrap == 1)
434 strm->adler = adler32(strm->adler, dictionary, dictLength);
435 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
436
437 /* if dictionary would fill window, just replace the history */
438 if (dictLength >= s->w_size) {
439 if (wrap == 0) { /* already empty otherwise */
440 CLEAR_HASH(s);
441 s->strstart = 0;
442 s->block_start = 0L;
443 s->insert = 0;
444 }
445 dictionary += dictLength - s->w_size; /* use the tail */
446 dictLength = s->w_size;
447 }
448
449 /* insert dictionary into window and hash */
450 avail = strm->avail_in;
451 next = strm->next_in;
452 strm->avail_in = dictLength;
453 strm->next_in = (z_const Bytef *)dictionary;
454 fill_window(s);
455 while (s->lookahead >= MIN_MATCH) {
456 str = s->strstart;
457 n = s->lookahead - (MIN_MATCH-1);
458 do {
459 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
460 #ifndef FASTEST
461 s->prev[str & s->w_mask] = s->head[s->ins_h];
462 #endif
463 s->head[s->ins_h] = (Pos)str;
464 str++;
465 } while (--n);
466 s->strstart = str;
467 s->lookahead = MIN_MATCH-1;
468 fill_window(s);
469 }
470 s->strstart += s->lookahead;
471 s->block_start = (long)s->strstart;
472 s->insert = s->lookahead;
473 s->lookahead = 0;
474 s->match_length = s->prev_length = MIN_MATCH-1;
475 s->match_available = 0;
476 strm->next_in = next;
477 strm->avail_in = avail;
478 s->wrap = wrap;
479 return Z_OK;
480 }
481
482 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)483 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
484 z_streamp strm;
485 Bytef *dictionary;
486 uInt *dictLength;
487 {
488 deflate_state *s;
489 uInt len;
490
491 if (deflateStateCheck(strm))
492 return Z_STREAM_ERROR;
493 s = strm->state;
494 len = s->strstart + s->lookahead;
495 if (len > s->w_size)
496 len = s->w_size;
497 if (dictionary != Z_NULL && len)
498 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
499 if (dictLength != Z_NULL)
500 *dictLength = len;
501 return Z_OK;
502 }
503
504 /* ========================================================================= */
deflateResetKeep(strm)505 int ZEXPORT deflateResetKeep (strm)
506 z_streamp strm;
507 {
508 deflate_state *s;
509
510 if (deflateStateCheck(strm)) {
511 return Z_STREAM_ERROR;
512 }
513
514 strm->total_in = strm->total_out = 0;
515 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
516 strm->data_type = Z_UNKNOWN;
517
518 s = (deflate_state *)strm->state;
519 s->pending = 0;
520 s->pending_out = s->pending_buf;
521
522 if (s->wrap < 0) {
523 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
524 }
525 s->status =
526 #ifdef GZIP
527 s->wrap == 2 ? GZIP_STATE :
528 #endif
529 INIT_STATE;
530 strm->adler =
531 #ifdef GZIP
532 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
533 #endif
534 adler32(0L, Z_NULL, 0);
535 s->last_flush = -2;
536
537 _tr_init(s);
538
539 return Z_OK;
540 }
541
542 /* ========================================================================= */
deflateReset(strm)543 int ZEXPORT deflateReset (strm)
544 z_streamp strm;
545 {
546 int ret;
547
548 ret = deflateResetKeep(strm);
549 if (ret == Z_OK)
550 lm_init(strm->state);
551 return ret;
552 }
553
554 /* ========================================================================= */
deflateSetHeader(strm,head)555 int ZEXPORT deflateSetHeader (strm, head)
556 z_streamp strm;
557 gz_headerp head;
558 {
559 if (deflateStateCheck(strm) || strm->state->wrap != 2)
560 return Z_STREAM_ERROR;
561 strm->state->gzhead = head;
562 return Z_OK;
563 }
564
565 /* ========================================================================= */
deflatePending(strm,pending,bits)566 int ZEXPORT deflatePending (strm, pending, bits)
567 unsigned *pending;
568 int *bits;
569 z_streamp strm;
570 {
571 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
572 if (pending != Z_NULL)
573 *pending = strm->state->pending;
574 if (bits != Z_NULL)
575 *bits = strm->state->bi_valid;
576 return Z_OK;
577 }
578
579 /* ========================================================================= */
deflatePrime(strm,bits,value)580 int ZEXPORT deflatePrime (strm, bits, value)
581 z_streamp strm;
582 int bits;
583 int value;
584 {
585 deflate_state *s;
586 int put;
587
588 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
589 s = strm->state;
590 if (bits < 0 || bits > 16 ||
591 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
592 return Z_BUF_ERROR;
593 do {
594 put = Buf_size - s->bi_valid;
595 if (put > bits)
596 put = bits;
597 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
598 s->bi_valid += put;
599 _tr_flush_bits(s);
600 value >>= put;
601 bits -= put;
602 } while (bits);
603 return Z_OK;
604 }
605
606 /* ========================================================================= */
deflateParams(strm,level,strategy)607 int ZEXPORT deflateParams(strm, level, strategy)
608 z_streamp strm;
609 int level;
610 int strategy;
611 {
612 deflate_state *s;
613 compress_func func;
614
615 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
616 s = strm->state;
617
618 #ifdef FASTEST
619 if (level != 0) level = 1;
620 #else
621 if (level == Z_DEFAULT_COMPRESSION) level = 6;
622 #endif
623 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
624 return Z_STREAM_ERROR;
625 }
626 func = configuration_table[s->level].func;
627
628 if ((strategy != s->strategy || func != configuration_table[level].func) &&
629 s->last_flush != -2) {
630 /* Flush the last buffer: */
631 int err = deflate(strm, Z_BLOCK);
632 if (err == Z_STREAM_ERROR)
633 return err;
634 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
635 return Z_BUF_ERROR;
636 }
637 if (s->level != level) {
638 if (s->level == 0 && s->matches != 0) {
639 if (s->matches == 1)
640 slide_hash(s);
641 else
642 CLEAR_HASH(s);
643 s->matches = 0;
644 }
645 s->level = level;
646 s->max_lazy_match = configuration_table[level].max_lazy;
647 s->good_match = configuration_table[level].good_length;
648 s->nice_match = configuration_table[level].nice_length;
649 s->max_chain_length = configuration_table[level].max_chain;
650 }
651 s->strategy = strategy;
652 return Z_OK;
653 }
654
655 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)656 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
657 z_streamp strm;
658 int good_length;
659 int max_lazy;
660 int nice_length;
661 int max_chain;
662 {
663 deflate_state *s;
664
665 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
666 s = strm->state;
667 s->good_match = (uInt)good_length;
668 s->max_lazy_match = (uInt)max_lazy;
669 s->nice_match = nice_length;
670 s->max_chain_length = (uInt)max_chain;
671 return Z_OK;
672 }
673
674 /* =========================================================================
675 * For the default windowBits of 15 and memLevel of 8, this function returns
676 * a close to exact, as well as small, upper bound on the compressed size.
677 * They are coded as constants here for a reason--if the #define's are
678 * changed, then this function needs to be changed as well. The return
679 * value for 15 and 8 only works for those exact settings.
680 *
681 * For any setting other than those defaults for windowBits and memLevel,
682 * the value returned is a conservative worst case for the maximum expansion
683 * resulting from using fixed blocks instead of stored blocks, which deflate
684 * can emit on compressed data for some combinations of the parameters.
685 *
686 * This function could be more sophisticated to provide closer upper bounds for
687 * every combination of windowBits and memLevel. But even the conservative
688 * upper bound of about 14% expansion does not seem onerous for output buffer
689 * allocation.
690 */
deflateBound(strm,sourceLen)691 uLong ZEXPORT deflateBound(strm, sourceLen)
692 z_streamp strm;
693 uLong sourceLen;
694 {
695 deflate_state *s;
696 uLong complen, wraplen;
697
698 /* conservative upper bound for compressed data */
699 complen = sourceLen +
700 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
701
702 /* if can't get parameters, return conservative bound plus zlib wrapper */
703 if (deflateStateCheck(strm))
704 return complen + 6;
705
706 /* compute wrapper length */
707 s = strm->state;
708 switch (s->wrap) {
709 case 0: /* raw deflate */
710 wraplen = 0;
711 break;
712 case 1: /* zlib wrapper */
713 wraplen = 6 + (s->strstart ? 4 : 0);
714 break;
715 #ifdef GZIP
716 case 2: /* gzip wrapper */
717 wraplen = 18;
718 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
719 Bytef *str;
720 if (s->gzhead->extra != Z_NULL)
721 wraplen += 2 + s->gzhead->extra_len;
722 str = s->gzhead->name;
723 if (str != Z_NULL)
724 do {
725 wraplen++;
726 } while (*str++);
727 str = s->gzhead->comment;
728 if (str != Z_NULL)
729 do {
730 wraplen++;
731 } while (*str++);
732 if (s->gzhead->hcrc)
733 wraplen += 2;
734 }
735 break;
736 #endif
737 default: /* for compiler happiness */
738 wraplen = 6;
739 }
740
741 /* if not default parameters, return conservative bound */
742 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
743 return complen + wraplen;
744
745 /* default settings: return tight bound for that case */
746 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
747 (sourceLen >> 25) + 13 - 6 + wraplen;
748 }
749
750 /* =========================================================================
751 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
752 * IN assertion: the stream state is correct and there is enough room in
753 * pending_buf.
754 */
putShortMSB(s,b)755 local void putShortMSB (s, b)
756 deflate_state *s;
757 uInt b;
758 {
759 put_byte(s, (Byte)(b >> 8));
760 put_byte(s, (Byte)(b & 0xff));
761 }
762
763 /* =========================================================================
764 * Flush as much pending output as possible. All deflate() output, except for
765 * some deflate_stored() output, goes through this function so some
766 * applications may wish to modify it to avoid allocating a large
767 * strm->next_out buffer and copying into it. (See also read_buf()).
768 */
flush_pending(strm)769 local void flush_pending(strm)
770 z_streamp strm;
771 {
772 unsigned len;
773 deflate_state *s = strm->state;
774
775 _tr_flush_bits(s);
776 len = s->pending;
777 if (len > strm->avail_out) len = strm->avail_out;
778 if (len == 0) return;
779
780 zmemcpy(strm->next_out, s->pending_out, len);
781 strm->next_out += len;
782 s->pending_out += len;
783 strm->total_out += len;
784 strm->avail_out -= len;
785 s->pending -= len;
786 if (s->pending == 0) {
787 s->pending_out = s->pending_buf;
788 }
789 }
790
791 /* ===========================================================================
792 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
793 */
794 #define HCRC_UPDATE(beg) \
795 do { \
796 if (s->gzhead->hcrc && s->pending > (beg)) \
797 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
798 s->pending - (beg)); \
799 } while (0)
800
801 /* ========================================================================= */
deflate(strm,flush)802 int ZEXPORT deflate (strm, flush)
803 z_streamp strm;
804 int flush;
805 {
806 int old_flush; /* value of flush param for previous deflate call */
807 deflate_state *s;
808
809 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
810 return Z_STREAM_ERROR;
811 }
812 s = strm->state;
813
814 if (strm->next_out == Z_NULL ||
815 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
816 (s->status == FINISH_STATE && flush != Z_FINISH)) {
817 ERR_RETURN(strm, Z_STREAM_ERROR);
818 }
819 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
820
821 old_flush = s->last_flush;
822 s->last_flush = flush;
823
824 /* Flush as much pending output as possible */
825 if (s->pending != 0) {
826 flush_pending(strm);
827 if (strm->avail_out == 0) {
828 /* Since avail_out is 0, deflate will be called again with
829 * more output space, but possibly with both pending and
830 * avail_in equal to zero. There won't be anything to do,
831 * but this is not an error situation so make sure we
832 * return OK instead of BUF_ERROR at next call of deflate:
833 */
834 s->last_flush = -1;
835 return Z_OK;
836 }
837
838 /* Make sure there is something to do and avoid duplicate consecutive
839 * flushes. For repeated and useless calls with Z_FINISH, we keep
840 * returning Z_STREAM_END instead of Z_BUF_ERROR.
841 */
842 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
843 flush != Z_FINISH) {
844 ERR_RETURN(strm, Z_BUF_ERROR);
845 }
846
847 /* User must not provide more input after the first FINISH: */
848 if (s->status == FINISH_STATE && strm->avail_in != 0) {
849 ERR_RETURN(strm, Z_BUF_ERROR);
850 }
851
852 /* Write the header */
853 if (s->status == INIT_STATE && s->wrap == 0)
854 s->status = BUSY_STATE;
855 if (s->status == INIT_STATE) {
856 /* zlib header */
857 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
858 uInt level_flags;
859
860 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
861 level_flags = 0;
862 else if (s->level < 6)
863 level_flags = 1;
864 else if (s->level == 6)
865 level_flags = 2;
866 else
867 level_flags = 3;
868 header |= (level_flags << 6);
869 if (s->strstart != 0) header |= PRESET_DICT;
870 header += 31 - (header % 31);
871
872 putShortMSB(s, header);
873
874 /* Save the adler32 of the preset dictionary: */
875 if (s->strstart != 0) {
876 putShortMSB(s, (uInt)(strm->adler >> 16));
877 putShortMSB(s, (uInt)(strm->adler & 0xffff));
878 }
879 strm->adler = adler32(0L, Z_NULL, 0);
880 s->status = BUSY_STATE;
881
882 /* Compression must start with an empty pending buffer */
883 flush_pending(strm);
884 if (s->pending != 0) {
885 s->last_flush = -1;
886 return Z_OK;
887 }
888 }
889 #ifdef GZIP
890 if (s->status == GZIP_STATE) {
891 /* gzip header */
892 strm->adler = crc32(0L, Z_NULL, 0);
893 put_byte(s, 31);
894 put_byte(s, 139);
895 put_byte(s, 8);
896 if (s->gzhead == Z_NULL) {
897 put_byte(s, 0);
898 put_byte(s, 0);
899 put_byte(s, 0);
900 put_byte(s, 0);
901 put_byte(s, 0);
902 put_byte(s, s->level == 9 ? 2 :
903 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
904 4 : 0));
905 put_byte(s, OS_CODE);
906 s->status = BUSY_STATE;
907
908 /* Compression must start with an empty pending buffer */
909 flush_pending(strm);
910 if (s->pending != 0) {
911 s->last_flush = -1;
912 return Z_OK;
913 }
914 }
915 else {
916 put_byte(s, (s->gzhead->text ? 1 : 0) +
917 (s->gzhead->hcrc ? 2 : 0) +
918 (s->gzhead->extra == Z_NULL ? 0 : 4) +
919 (s->gzhead->name == Z_NULL ? 0 : 8) +
920 (s->gzhead->comment == Z_NULL ? 0 : 16)
921 );
922 put_byte(s, (Byte)(s->gzhead->time & 0xff));
923 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
924 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
925 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
926 put_byte(s, s->level == 9 ? 2 :
927 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
928 4 : 0));
929 put_byte(s, s->gzhead->os & 0xff);
930 if (s->gzhead->extra != Z_NULL) {
931 put_byte(s, s->gzhead->extra_len & 0xff);
932 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
933 }
934 if (s->gzhead->hcrc)
935 strm->adler = crc32(strm->adler, s->pending_buf,
936 s->pending);
937 s->gzindex = 0;
938 s->status = EXTRA_STATE;
939 }
940 }
941 if (s->status == EXTRA_STATE) {
942 if (s->gzhead->extra != Z_NULL) {
943 ulg beg = s->pending; /* start of bytes to update crc */
944 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
945 while (s->pending + left > s->pending_buf_size) {
946 uInt copy = s->pending_buf_size - s->pending;
947 zmemcpy(s->pending_buf + s->pending,
948 s->gzhead->extra + s->gzindex, copy);
949 s->pending = s->pending_buf_size;
950 HCRC_UPDATE(beg);
951 s->gzindex += copy;
952 flush_pending(strm);
953 if (s->pending != 0) {
954 s->last_flush = -1;
955 return Z_OK;
956 }
957 beg = 0;
958 left -= copy;
959 }
960 zmemcpy(s->pending_buf + s->pending,
961 s->gzhead->extra + s->gzindex, left);
962 s->pending += left;
963 HCRC_UPDATE(beg);
964 s->gzindex = 0;
965 }
966 s->status = NAME_STATE;
967 }
968 if (s->status == NAME_STATE) {
969 if (s->gzhead->name != Z_NULL) {
970 ulg beg = s->pending; /* start of bytes to update crc */
971 int val;
972 do {
973 if (s->pending == s->pending_buf_size) {
974 HCRC_UPDATE(beg);
975 flush_pending(strm);
976 if (s->pending != 0) {
977 s->last_flush = -1;
978 return Z_OK;
979 }
980 beg = 0;
981 }
982 val = s->gzhead->name[s->gzindex++];
983 put_byte(s, val);
984 } while (val != 0);
985 HCRC_UPDATE(beg);
986 s->gzindex = 0;
987 }
988 s->status = COMMENT_STATE;
989 }
990 if (s->status == COMMENT_STATE) {
991 if (s->gzhead->comment != Z_NULL) {
992 ulg beg = s->pending; /* start of bytes to update crc */
993 int val;
994 do {
995 if (s->pending == s->pending_buf_size) {
996 HCRC_UPDATE(beg);
997 flush_pending(strm);
998 if (s->pending != 0) {
999 s->last_flush = -1;
1000 return Z_OK;
1001 }
1002 beg = 0;
1003 }
1004 val = s->gzhead->comment[s->gzindex++];
1005 put_byte(s, val);
1006 } while (val != 0);
1007 HCRC_UPDATE(beg);
1008 }
1009 s->status = HCRC_STATE;
1010 }
1011 if (s->status == HCRC_STATE) {
1012 if (s->gzhead->hcrc) {
1013 if (s->pending + 2 > s->pending_buf_size) {
1014 flush_pending(strm);
1015 if (s->pending != 0) {
1016 s->last_flush = -1;
1017 return Z_OK;
1018 }
1019 }
1020 put_byte(s, (Byte)(strm->adler & 0xff));
1021 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1022 strm->adler = crc32(0L, Z_NULL, 0);
1023 }
1024 s->status = BUSY_STATE;
1025
1026 /* Compression must start with an empty pending buffer */
1027 flush_pending(strm);
1028 if (s->pending != 0) {
1029 s->last_flush = -1;
1030 return Z_OK;
1031 }
1032 }
1033 #endif
1034
1035 /* Start a new block or continue the current one.
1036 */
1037 if (strm->avail_in != 0 || s->lookahead != 0 ||
1038 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1039 block_state bstate;
1040
1041 bstate = s->level == 0 ? deflate_stored(s, flush) :
1042 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1043 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1044 (*(configuration_table[s->level].func))(s, flush);
1045
1046 if (bstate == finish_started || bstate == finish_done) {
1047 s->status = FINISH_STATE;
1048 }
1049 if (bstate == need_more || bstate == finish_started) {
1050 if (strm->avail_out == 0) {
1051 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1052 }
1053 return Z_OK;
1054 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1055 * of deflate should use the same flush parameter to make sure
1056 * that the flush is complete. So we don't have to output an
1057 * empty block here, this will be done at next call. This also
1058 * ensures that for a very small output buffer, we emit at most
1059 * one empty block.
1060 */
1061 }
1062 if (bstate == block_done) {
1063 if (flush == Z_PARTIAL_FLUSH) {
1064 _tr_align(s);
1065 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1066 _tr_stored_block(s, (char*)0, 0L, 0);
1067 /* For a full flush, this empty block will be recognized
1068 * as a special marker by inflate_sync().
1069 */
1070 if (flush == Z_FULL_FLUSH) {
1071 CLEAR_HASH(s); /* forget history */
1072 if (s->lookahead == 0) {
1073 s->strstart = 0;
1074 s->block_start = 0L;
1075 s->insert = 0;
1076 }
1077 }
1078 }
1079 flush_pending(strm);
1080 if (strm->avail_out == 0) {
1081 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1082 return Z_OK;
1083 }
1084 }
1085 }
1086
1087 if (flush != Z_FINISH) return Z_OK;
1088 if (s->wrap <= 0) return Z_STREAM_END;
1089
1090 /* Write the trailer */
1091 #ifdef GZIP
1092 if (s->wrap == 2) {
1093 put_byte(s, (Byte)(strm->adler & 0xff));
1094 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1095 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1096 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1097 put_byte(s, (Byte)(strm->total_in & 0xff));
1098 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1099 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1100 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1101 }
1102 else
1103 #endif
1104 {
1105 putShortMSB(s, (uInt)(strm->adler >> 16));
1106 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1107 }
1108 flush_pending(strm);
1109 /* If avail_out is zero, the application will call deflate again
1110 * to flush the rest.
1111 */
1112 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1113 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1114 }
1115
1116 /* ========================================================================= */
deflateEnd(strm)1117 int ZEXPORT deflateEnd (strm)
1118 z_streamp strm;
1119 {
1120 int status;
1121
1122 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1123
1124 status = strm->state->status;
1125
1126 /* Deallocate in reverse order of allocations: */
1127 TRY_FREE(strm, strm->state->pending_buf);
1128 TRY_FREE(strm, strm->state->head);
1129 TRY_FREE(strm, strm->state->prev);
1130 TRY_FREE(strm, strm->state->window);
1131
1132 ZFREE(strm, strm->state);
1133 strm->state = Z_NULL;
1134
1135 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1136 }
1137
1138 /* =========================================================================
1139 * Copy the source state to the destination state.
1140 * To simplify the source, this is not supported for 16-bit MSDOS (which
1141 * doesn't have enough memory anyway to duplicate compression states).
1142 */
deflateCopy(dest,source)1143 int ZEXPORT deflateCopy (dest, source)
1144 z_streamp dest;
1145 z_streamp source;
1146 {
1147 #ifdef MAXSEG_64K
1148 return Z_STREAM_ERROR;
1149 #else
1150 deflate_state *ds;
1151 deflate_state *ss;
1152
1153
1154 if (deflateStateCheck(source) || dest == Z_NULL) {
1155 return Z_STREAM_ERROR;
1156 }
1157
1158 ss = source->state;
1159
1160 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1161
1162 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1163 if (ds == Z_NULL) return Z_MEM_ERROR;
1164 dest->state = (struct internal_state FAR *) ds;
1165 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1166 ds->strm = dest;
1167
1168 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1169 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1170 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1171 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1172
1173 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1174 ds->pending_buf == Z_NULL) {
1175 deflateEnd (dest);
1176 return Z_MEM_ERROR;
1177 }
1178 /* following zmemcpy do not work for 16-bit MSDOS */
1179 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1180 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1181 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1182 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1183
1184 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1185 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1186
1187 ds->l_desc.dyn_tree = ds->dyn_ltree;
1188 ds->d_desc.dyn_tree = ds->dyn_dtree;
1189 ds->bl_desc.dyn_tree = ds->bl_tree;
1190
1191 return Z_OK;
1192 #endif /* MAXSEG_64K */
1193 }
1194
1195 /* ===========================================================================
1196 * Read a new buffer from the current input stream, update the adler32
1197 * and total number of bytes read. All deflate() input goes through
1198 * this function so some applications may wish to modify it to avoid
1199 * allocating a large strm->next_in buffer and copying from it.
1200 * (See also flush_pending()).
1201 */
read_buf(strm,buf,size)1202 local unsigned read_buf(strm, buf, size)
1203 z_streamp strm;
1204 Bytef *buf;
1205 unsigned size;
1206 {
1207 unsigned len = strm->avail_in;
1208
1209 if (len > size) len = size;
1210 if (len == 0) return 0;
1211
1212 strm->avail_in -= len;
1213
1214 zmemcpy(buf, strm->next_in, len);
1215 if (strm->state->wrap == 1) {
1216 strm->adler = adler32(strm->adler, buf, len);
1217 }
1218 #ifdef GZIP
1219 else if (strm->state->wrap == 2) {
1220 strm->adler = crc32(strm->adler, buf, len);
1221 }
1222 #endif
1223 strm->next_in += len;
1224 strm->total_in += len;
1225
1226 return len;
1227 }
1228
1229 /* ===========================================================================
1230 * Initialize the "longest match" routines for a new zlib stream
1231 */
lm_init(s)1232 local void lm_init (s)
1233 deflate_state *s;
1234 {
1235 s->window_size = (ulg)2L*s->w_size;
1236
1237 CLEAR_HASH(s);
1238
1239 /* Set the default configuration parameters:
1240 */
1241 s->max_lazy_match = configuration_table[s->level].max_lazy;
1242 s->good_match = configuration_table[s->level].good_length;
1243 s->nice_match = configuration_table[s->level].nice_length;
1244 s->max_chain_length = configuration_table[s->level].max_chain;
1245
1246 s->strstart = 0;
1247 s->block_start = 0L;
1248 s->lookahead = 0;
1249 s->insert = 0;
1250 s->match_length = s->prev_length = MIN_MATCH-1;
1251 s->match_available = 0;
1252 s->ins_h = 0;
1253 #ifndef FASTEST
1254 #ifdef ASMV
1255 match_init(); /* initialize the asm code */
1256 #endif
1257 #endif
1258 }
1259
1260 #ifndef FASTEST
1261 /* ===========================================================================
1262 * Set match_start to the longest match starting at the given string and
1263 * return its length. Matches shorter or equal to prev_length are discarded,
1264 * in which case the result is equal to prev_length and match_start is
1265 * garbage.
1266 * IN assertions: cur_match is the head of the hash chain for the current
1267 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1268 * OUT assertion: the match length is not greater than s->lookahead.
1269 */
1270 #ifndef ASMV
1271 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1272 * match.S. The code will be functionally equivalent.
1273 */
longest_match(s,cur_match)1274 local uInt longest_match(s, cur_match)
1275 deflate_state *s;
1276 IPos cur_match; /* current match */
1277 {
1278 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1279 register Bytef *scan = s->window + s->strstart; /* current string */
1280 register Bytef *match; /* matched string */
1281 register int len; /* length of current match */
1282 int best_len = (int)s->prev_length; /* best match length so far */
1283 int nice_match = s->nice_match; /* stop if match long enough */
1284 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1285 s->strstart - (IPos)MAX_DIST(s) : NIL;
1286 /* Stop when cur_match becomes <= limit. To simplify the code,
1287 * we prevent matches with the string of window index 0.
1288 */
1289 Posf *prev = s->prev;
1290 uInt wmask = s->w_mask;
1291
1292 #ifdef UNALIGNED_OK
1293 /* Compare two bytes at a time. Note: this is not always beneficial.
1294 * Try with and without -DUNALIGNED_OK to check.
1295 */
1296 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1297 register ush scan_start = *(ushf*)scan;
1298 register ush scan_end = *(ushf*)(scan+best_len-1);
1299 #else
1300 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1301 register Byte scan_end1 = scan[best_len-1];
1302 register Byte scan_end = scan[best_len];
1303 #endif
1304
1305 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1306 * It is easy to get rid of this optimization if necessary.
1307 */
1308 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1309
1310 /* Do not waste too much time if we already have a good match: */
1311 if (s->prev_length >= s->good_match) {
1312 chain_length >>= 2;
1313 }
1314 /* Do not look for matches beyond the end of the input. This is necessary
1315 * to make deflate deterministic.
1316 */
1317 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1318
1319 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1320
1321 do {
1322 Assert(cur_match < s->strstart, "no future");
1323 match = s->window + cur_match;
1324
1325 /* Skip to next match if the match length cannot increase
1326 * or if the match length is less than 2. Note that the checks below
1327 * for insufficient lookahead only occur occasionally for performance
1328 * reasons. Therefore uninitialized memory will be accessed, and
1329 * conditional jumps will be made that depend on those values.
1330 * However the length of the match is limited to the lookahead, so
1331 * the output of deflate is not affected by the uninitialized values.
1332 */
1333 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1334 /* This code assumes sizeof(unsigned short) == 2. Do not use
1335 * UNALIGNED_OK if your compiler uses a different size.
1336 */
1337 if (*(ushf*)(match+best_len-1) != scan_end ||
1338 *(ushf*)match != scan_start) continue;
1339
1340 /* It is not necessary to compare scan[2] and match[2] since they are
1341 * always equal when the other bytes match, given that the hash keys
1342 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1343 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1344 * lookahead only every 4th comparison; the 128th check will be made
1345 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1346 * necessary to put more guard bytes at the end of the window, or
1347 * to check more often for insufficient lookahead.
1348 */
1349 Assert(scan[2] == match[2], "scan[2]?");
1350 scan++, match++;
1351 do {
1352 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1353 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1354 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356 scan < strend);
1357 /* The funny "do {}" generates better code on most compilers */
1358
1359 /* Here, scan <= window+strstart+257 */
1360 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1361 if (*scan == *match) scan++;
1362
1363 len = (MAX_MATCH - 1) - (int)(strend-scan);
1364 scan = strend - (MAX_MATCH-1);
1365
1366 #else /* UNALIGNED_OK */
1367
1368 if (match[best_len] != scan_end ||
1369 match[best_len-1] != scan_end1 ||
1370 *match != *scan ||
1371 *++match != scan[1]) continue;
1372
1373 /* The check at best_len-1 can be removed because it will be made
1374 * again later. (This heuristic is not always a win.)
1375 * It is not necessary to compare scan[2] and match[2] since they
1376 * are always equal when the other bytes match, given that
1377 * the hash keys are equal and that HASH_BITS >= 8.
1378 */
1379 scan += 2, match++;
1380 Assert(*scan == *match, "match[2]?");
1381
1382 /* We check for insufficient lookahead only every 8th comparison;
1383 * the 256th check will be made at strstart+258.
1384 */
1385 do {
1386 } while (*++scan == *++match && *++scan == *++match &&
1387 *++scan == *++match && *++scan == *++match &&
1388 *++scan == *++match && *++scan == *++match &&
1389 *++scan == *++match && *++scan == *++match &&
1390 scan < strend);
1391
1392 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1393
1394 len = MAX_MATCH - (int)(strend - scan);
1395 scan = strend - MAX_MATCH;
1396
1397 #endif /* UNALIGNED_OK */
1398
1399 if (len > best_len) {
1400 s->match_start = cur_match;
1401 best_len = len;
1402 if (len >= nice_match) break;
1403 #ifdef UNALIGNED_OK
1404 scan_end = *(ushf*)(scan+best_len-1);
1405 #else
1406 scan_end1 = scan[best_len-1];
1407 scan_end = scan[best_len];
1408 #endif
1409 }
1410 } while ((cur_match = prev[cur_match & wmask]) > limit
1411 && --chain_length != 0);
1412
1413 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1414 return s->lookahead;
1415 }
1416 #endif /* ASMV */
1417
1418 #else /* FASTEST */
1419
1420 /* ---------------------------------------------------------------------------
1421 * Optimized version for FASTEST only
1422 */
longest_match(s,cur_match)1423 local uInt longest_match(s, cur_match)
1424 deflate_state *s;
1425 IPos cur_match; /* current match */
1426 {
1427 register Bytef *scan = s->window + s->strstart; /* current string */
1428 register Bytef *match; /* matched string */
1429 register int len; /* length of current match */
1430 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1431
1432 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1433 * It is easy to get rid of this optimization if necessary.
1434 */
1435 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1436
1437 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1438
1439 Assert(cur_match < s->strstart, "no future");
1440
1441 match = s->window + cur_match;
1442
1443 /* Return failure if the match length is less than 2:
1444 */
1445 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1446
1447 /* The check at best_len-1 can be removed because it will be made
1448 * again later. (This heuristic is not always a win.)
1449 * It is not necessary to compare scan[2] and match[2] since they
1450 * are always equal when the other bytes match, given that
1451 * the hash keys are equal and that HASH_BITS >= 8.
1452 */
1453 scan += 2, match += 2;
1454 Assert(*scan == *match, "match[2]?");
1455
1456 /* We check for insufficient lookahead only every 8th comparison;
1457 * the 256th check will be made at strstart+258.
1458 */
1459 do {
1460 } while (*++scan == *++match && *++scan == *++match &&
1461 *++scan == *++match && *++scan == *++match &&
1462 *++scan == *++match && *++scan == *++match &&
1463 *++scan == *++match && *++scan == *++match &&
1464 scan < strend);
1465
1466 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1467
1468 len = MAX_MATCH - (int)(strend - scan);
1469
1470 if (len < MIN_MATCH) return MIN_MATCH - 1;
1471
1472 s->match_start = cur_match;
1473 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1474 }
1475
1476 #endif /* FASTEST */
1477
1478 #ifdef ZLIB_DEBUG
1479
1480 #define EQUAL 0
1481 /* result of memcmp for equal strings */
1482
1483 /* ===========================================================================
1484 * Check that the match at match_start is indeed a match.
1485 */
check_match(s,start,match,length)1486 local void check_match(s, start, match, length)
1487 deflate_state *s;
1488 IPos start, match;
1489 int length;
1490 {
1491 /* check that the match is indeed a match */
1492 if (zmemcmp(s->window + match,
1493 s->window + start, length) != EQUAL) {
1494 fprintf(stderr, " start %u, match %u, length %d\n",
1495 start, match, length);
1496 do {
1497 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1498 } while (--length != 0);
1499 z_error("invalid match");
1500 }
1501 if (z_verbose > 1) {
1502 fprintf(stderr,"\\[%d,%d]", start-match, length);
1503 do { putc(s->window[start++], stderr); } while (--length != 0);
1504 }
1505 }
1506 #else
1507 # define check_match(s, start, match, length)
1508 #endif /* ZLIB_DEBUG */
1509
1510 /* ===========================================================================
1511 * Fill the window when the lookahead becomes insufficient.
1512 * Updates strstart and lookahead.
1513 *
1514 * IN assertion: lookahead < MIN_LOOKAHEAD
1515 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1516 * At least one byte has been read, or avail_in == 0; reads are
1517 * performed for at least two bytes (required for the zip translate_eol
1518 * option -- not supported here).
1519 */
fill_window(s)1520 local void fill_window(s)
1521 deflate_state *s;
1522 {
1523 unsigned n;
1524 unsigned more; /* Amount of free space at the end of the window. */
1525 uInt wsize = s->w_size;
1526
1527 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1528
1529 do {
1530 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1531
1532 /* Deal with !@#$% 64K limit: */
1533 if (sizeof(int) <= 2) {
1534 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1535 more = wsize;
1536
1537 } else if (more == (unsigned)(-1)) {
1538 /* Very unlikely, but possible on 16 bit machine if
1539 * strstart == 0 && lookahead == 1 (input done a byte at time)
1540 */
1541 more--;
1542 }
1543 }
1544
1545 /* If the window is almost full and there is insufficient lookahead,
1546 * move the upper half to the lower one to make room in the upper half.
1547 */
1548 if (s->strstart >= wsize+MAX_DIST(s)) {
1549
1550 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1551 s->match_start -= wsize;
1552 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1553 s->block_start -= (long) wsize;
1554 if (s->insert > s->strstart)
1555 s->insert = s->strstart;
1556 slide_hash(s);
1557 more += wsize;
1558 }
1559 if (s->strm->avail_in == 0) break;
1560
1561 /* If there was no sliding:
1562 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1563 * more == window_size - lookahead - strstart
1564 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1565 * => more >= window_size - 2*WSIZE + 2
1566 * In the BIG_MEM or MMAP case (not yet supported),
1567 * window_size == input_size + MIN_LOOKAHEAD &&
1568 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1569 * Otherwise, window_size == 2*WSIZE so more >= 2.
1570 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1571 */
1572 Assert(more >= 2, "more < 2");
1573
1574 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1575 s->lookahead += n;
1576
1577 /* Initialize the hash value now that we have some input: */
1578 if (s->lookahead + s->insert >= MIN_MATCH) {
1579 uInt str = s->strstart - s->insert;
1580 s->ins_h = s->window[str];
1581 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1582 #if MIN_MATCH != 3
1583 Call UPDATE_HASH() MIN_MATCH-3 more times
1584 #endif
1585 while (s->insert) {
1586 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1587 #ifndef FASTEST
1588 s->prev[str & s->w_mask] = s->head[s->ins_h];
1589 #endif
1590 s->head[s->ins_h] = (Pos)str;
1591 str++;
1592 s->insert--;
1593 if (s->lookahead + s->insert < MIN_MATCH)
1594 break;
1595 }
1596 }
1597 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1598 * but this is not important since only literal bytes will be emitted.
1599 */
1600
1601 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1602
1603 /* If the WIN_INIT bytes after the end of the current data have never been
1604 * written, then zero those bytes in order to avoid memory check reports of
1605 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1606 * the longest match routines. Update the high water mark for the next
1607 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1608 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1609 */
1610 if (s->high_water < s->window_size) {
1611 ulg curr = s->strstart + (ulg)(s->lookahead);
1612 ulg init;
1613
1614 if (s->high_water < curr) {
1615 /* Previous high water mark below current data -- zero WIN_INIT
1616 * bytes or up to end of window, whichever is less.
1617 */
1618 init = s->window_size - curr;
1619 if (init > WIN_INIT)
1620 init = WIN_INIT;
1621 zmemzero(s->window + curr, (unsigned)init);
1622 s->high_water = curr + init;
1623 }
1624 else if (s->high_water < (ulg)curr + WIN_INIT) {
1625 /* High water mark at or above current data, but below current data
1626 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1627 * to end of window, whichever is less.
1628 */
1629 init = (ulg)curr + WIN_INIT - s->high_water;
1630 if (init > s->window_size - s->high_water)
1631 init = s->window_size - s->high_water;
1632 zmemzero(s->window + s->high_water, (unsigned)init);
1633 s->high_water += init;
1634 }
1635 }
1636
1637 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1638 "not enough room for search");
1639 }
1640
1641 /* ===========================================================================
1642 * Flush the current block, with given end-of-file flag.
1643 * IN assertion: strstart is set to the end of the current match.
1644 */
1645 #define FLUSH_BLOCK_ONLY(s, last) { \
1646 _tr_flush_block(s, (s->block_start >= 0L ? \
1647 (charf *)&s->window[(unsigned)s->block_start] : \
1648 (charf *)Z_NULL), \
1649 (ulg)((long)s->strstart - s->block_start), \
1650 (last)); \
1651 s->block_start = s->strstart; \
1652 flush_pending(s->strm); \
1653 Tracev((stderr,"[FLUSH]")); \
1654 }
1655
1656 /* Same but force premature exit if necessary. */
1657 #define FLUSH_BLOCK(s, last) { \
1658 FLUSH_BLOCK_ONLY(s, last); \
1659 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1660 }
1661
1662 /* Maximum stored block length in deflate format (not including header). */
1663 #define MAX_STORED 65535
1664
1665 /* Minimum of a and b. */
1666 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1667
1668 /* ===========================================================================
1669 * Copy without compression as much as possible from the input stream, return
1670 * the current block state.
1671 *
1672 * In case deflateParams() is used to later switch to a non-zero compression
1673 * level, s->matches (otherwise unused when storing) keeps track of the number
1674 * of hash table slides to perform. If s->matches is 1, then one hash table
1675 * slide will be done when switching. If s->matches is 2, the maximum value
1676 * allowed here, then the hash table will be cleared, since two or more slides
1677 * is the same as a clear.
1678 *
1679 * deflate_stored() is written to minimize the number of times an input byte is
1680 * copied. It is most efficient with large input and output buffers, which
1681 * maximizes the opportunites to have a single copy from next_in to next_out.
1682 */
deflate_stored(s,flush)1683 local block_state deflate_stored(s, flush)
1684 deflate_state *s;
1685 int flush;
1686 {
1687 /* Smallest worthy block size when not flushing or finishing. By default
1688 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1689 * large input and output buffers, the stored block size will be larger.
1690 */
1691 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1692
1693 /* Copy as many min_block or larger stored blocks directly to next_out as
1694 * possible. If flushing, copy the remaining available input to next_out as
1695 * stored blocks, if there is enough space.
1696 */
1697 unsigned len, left, have, last = 0;
1698 unsigned used = s->strm->avail_in;
1699 do {
1700 /* Set len to the maximum size block that we can copy directly with the
1701 * available input data and output space. Set left to how much of that
1702 * would be copied from what's left in the window.
1703 */
1704 len = MAX_STORED; /* maximum deflate stored block length */
1705 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1706 if (s->strm->avail_out < have) /* need room for header */
1707 break;
1708 /* maximum stored block length that will fit in avail_out: */
1709 have = s->strm->avail_out - have;
1710 left = s->strstart - s->block_start; /* bytes left in window */
1711 if (len > (ulg)left + s->strm->avail_in)
1712 len = left + s->strm->avail_in; /* limit len to the input */
1713 if (len > have)
1714 len = have; /* limit len to the output */
1715
1716 /* If the stored block would be less than min_block in length, or if
1717 * unable to copy all of the available input when flushing, then try
1718 * copying to the window and the pending buffer instead. Also don't
1719 * write an empty block when flushing -- deflate() does that.
1720 */
1721 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1722 flush == Z_NO_FLUSH ||
1723 len != left + s->strm->avail_in))
1724 break;
1725
1726 /* Make a dummy stored block in pending to get the header bytes,
1727 * including any pending bits. This also updates the debugging counts.
1728 */
1729 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1730 _tr_stored_block(s, (char *)0, 0L, last);
1731
1732 /* Replace the lengths in the dummy stored block with len. */
1733 s->pending_buf[s->pending - 4] = len;
1734 s->pending_buf[s->pending - 3] = len >> 8;
1735 s->pending_buf[s->pending - 2] = ~len;
1736 s->pending_buf[s->pending - 1] = ~len >> 8;
1737
1738 /* Write the stored block header bytes. */
1739 flush_pending(s->strm);
1740
1741 #ifdef ZLIB_DEBUG
1742 /* Update debugging counts for the data about to be copied. */
1743 s->compressed_len += len << 3;
1744 s->bits_sent += len << 3;
1745 #endif
1746
1747 /* Copy uncompressed bytes from the window to next_out. */
1748 if (left) {
1749 if (left > len)
1750 left = len;
1751 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1752 s->strm->next_out += left;
1753 s->strm->avail_out -= left;
1754 s->strm->total_out += left;
1755 s->block_start += left;
1756 len -= left;
1757 }
1758
1759 /* Copy uncompressed bytes directly from next_in to next_out, updating
1760 * the check value.
1761 */
1762 if (len) {
1763 read_buf(s->strm, s->strm->next_out, len);
1764 s->strm->next_out += len;
1765 s->strm->avail_out -= len;
1766 s->strm->total_out += len;
1767 }
1768 } while (last == 0);
1769
1770 /* Update the sliding window with the last s->w_size bytes of the copied
1771 * data, or append all of the copied data to the existing window if less
1772 * than s->w_size bytes were copied. Also update the number of bytes to
1773 * insert in the hash tables, in the event that deflateParams() switches to
1774 * a non-zero compression level.
1775 */
1776 used -= s->strm->avail_in; /* number of input bytes directly copied */
1777 if (used) {
1778 /* If any input was used, then no unused input remains in the window,
1779 * therefore s->block_start == s->strstart.
1780 */
1781 if (used >= s->w_size) { /* supplant the previous history */
1782 s->matches = 2; /* clear hash */
1783 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1784 s->strstart = s->w_size;
1785 s->insert = s->strstart;
1786 }
1787 else {
1788 if (s->window_size - s->strstart <= used) {
1789 /* Slide the window down. */
1790 s->strstart -= s->w_size;
1791 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1792 if (s->matches < 2)
1793 s->matches++; /* add a pending slide_hash() */
1794 if (s->insert > s->strstart)
1795 s->insert = s->strstart;
1796 }
1797 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1798 s->strstart += used;
1799 s->insert += MIN(used, s->w_size - s->insert);
1800 }
1801 s->block_start = s->strstart;
1802 }
1803 if (s->high_water < s->strstart)
1804 s->high_water = s->strstart;
1805
1806 /* If the last block was written to next_out, then done. */
1807 if (last)
1808 return finish_done;
1809
1810 /* If flushing and all input has been consumed, then done. */
1811 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1812 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1813 return block_done;
1814
1815 /* Fill the window with any remaining input. */
1816 have = s->window_size - s->strstart;
1817 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1818 /* Slide the window down. */
1819 s->block_start -= s->w_size;
1820 s->strstart -= s->w_size;
1821 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1822 if (s->matches < 2)
1823 s->matches++; /* add a pending slide_hash() */
1824 have += s->w_size; /* more space now */
1825 if (s->insert > s->strstart)
1826 s->insert = s->strstart;
1827 }
1828 if (have > s->strm->avail_in)
1829 have = s->strm->avail_in;
1830 if (have) {
1831 read_buf(s->strm, s->window + s->strstart, have);
1832 s->strstart += have;
1833 s->insert += MIN(have, s->w_size - s->insert);
1834 }
1835 if (s->high_water < s->strstart)
1836 s->high_water = s->strstart;
1837
1838 /* There was not enough avail_out to write a complete worthy or flushed
1839 * stored block to next_out. Write a stored block to pending instead, if we
1840 * have enough input for a worthy block, or if flushing and there is enough
1841 * room for the remaining input as a stored block in the pending buffer.
1842 */
1843 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1844 /* maximum stored block length that will fit in pending: */
1845 have = MIN(s->pending_buf_size - have, MAX_STORED);
1846 min_block = MIN(have, s->w_size);
1847 left = s->strstart - s->block_start;
1848 if (left >= min_block ||
1849 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1850 s->strm->avail_in == 0 && left <= have)) {
1851 len = MIN(left, have);
1852 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1853 len == left ? 1 : 0;
1854 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1855 s->block_start += len;
1856 flush_pending(s->strm);
1857 }
1858
1859 /* We've done all we can with the available input and output. */
1860 return last ? finish_started : need_more;
1861 }
1862
1863 /* ===========================================================================
1864 * Compress as much as possible from the input stream, return the current
1865 * block state.
1866 * This function does not perform lazy evaluation of matches and inserts
1867 * new strings in the dictionary only for unmatched strings or for short
1868 * matches. It is used only for the fast compression options.
1869 */
deflate_fast(s,flush)1870 local block_state deflate_fast(s, flush)
1871 deflate_state *s;
1872 int flush;
1873 {
1874 IPos hash_head; /* head of the hash chain */
1875 int bflush; /* set if current block must be flushed */
1876
1877 for (;;) {
1878 /* Make sure that we always have enough lookahead, except
1879 * at the end of the input file. We need MAX_MATCH bytes
1880 * for the next match, plus MIN_MATCH bytes to insert the
1881 * string following the next match.
1882 */
1883 if (s->lookahead < MIN_LOOKAHEAD) {
1884 fill_window(s);
1885 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1886 return need_more;
1887 }
1888 if (s->lookahead == 0) break; /* flush the current block */
1889 }
1890
1891 /* Insert the string window[strstart .. strstart+2] in the
1892 * dictionary, and set hash_head to the head of the hash chain:
1893 */
1894 hash_head = NIL;
1895 if (s->lookahead >= MIN_MATCH) {
1896 INSERT_STRING(s, s->strstart, hash_head);
1897 }
1898
1899 /* Find the longest match, discarding those <= prev_length.
1900 * At this point we have always match_length < MIN_MATCH
1901 */
1902 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1903 /* To simplify the code, we prevent matches with the string
1904 * of window index 0 (in particular we have to avoid a match
1905 * of the string with itself at the start of the input file).
1906 */
1907 s->match_length = longest_match (s, hash_head);
1908 /* longest_match() sets match_start */
1909 }
1910 if (s->match_length >= MIN_MATCH) {
1911 check_match(s, s->strstart, s->match_start, s->match_length);
1912
1913 _tr_tally_dist(s, s->strstart - s->match_start,
1914 s->match_length - MIN_MATCH, bflush);
1915
1916 s->lookahead -= s->match_length;
1917
1918 /* Insert new strings in the hash table only if the match length
1919 * is not too large. This saves time but degrades compression.
1920 */
1921 #ifndef FASTEST
1922 if (s->match_length <= s->max_insert_length &&
1923 s->lookahead >= MIN_MATCH) {
1924 s->match_length--; /* string at strstart already in table */
1925 do {
1926 s->strstart++;
1927 INSERT_STRING(s, s->strstart, hash_head);
1928 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1929 * always MIN_MATCH bytes ahead.
1930 */
1931 } while (--s->match_length != 0);
1932 s->strstart++;
1933 } else
1934 #endif
1935 {
1936 s->strstart += s->match_length;
1937 s->match_length = 0;
1938 s->ins_h = s->window[s->strstart];
1939 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1940 #if MIN_MATCH != 3
1941 Call UPDATE_HASH() MIN_MATCH-3 more times
1942 #endif
1943 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1944 * matter since it will be recomputed at next deflate call.
1945 */
1946 }
1947 } else {
1948 /* No match, output a literal byte */
1949 Tracevv((stderr,"%c", s->window[s->strstart]));
1950 _tr_tally_lit (s, s->window[s->strstart], bflush);
1951 s->lookahead--;
1952 s->strstart++;
1953 }
1954 if (bflush) FLUSH_BLOCK(s, 0);
1955 }
1956 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1957 if (flush == Z_FINISH) {
1958 FLUSH_BLOCK(s, 1);
1959 return finish_done;
1960 }
1961 if (s->sym_next)
1962 FLUSH_BLOCK(s, 0);
1963 return block_done;
1964 }
1965
1966 #ifndef FASTEST
1967 /* ===========================================================================
1968 * Same as above, but achieves better compression. We use a lazy
1969 * evaluation for matches: a match is finally adopted only if there is
1970 * no better match at the next window position.
1971 */
deflate_slow(s,flush)1972 local block_state deflate_slow(s, flush)
1973 deflate_state *s;
1974 int flush;
1975 {
1976 IPos hash_head; /* head of hash chain */
1977 int bflush; /* set if current block must be flushed */
1978
1979 /* Process the input block. */
1980 for (;;) {
1981 /* Make sure that we always have enough lookahead, except
1982 * at the end of the input file. We need MAX_MATCH bytes
1983 * for the next match, plus MIN_MATCH bytes to insert the
1984 * string following the next match.
1985 */
1986 if (s->lookahead < MIN_LOOKAHEAD) {
1987 fill_window(s);
1988 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1989 return need_more;
1990 }
1991 if (s->lookahead == 0) break; /* flush the current block */
1992 }
1993
1994 /* Insert the string window[strstart .. strstart+2] in the
1995 * dictionary, and set hash_head to the head of the hash chain:
1996 */
1997 hash_head = NIL;
1998 if (s->lookahead >= MIN_MATCH) {
1999 INSERT_STRING(s, s->strstart, hash_head);
2000 }
2001
2002 /* Find the longest match, discarding those <= prev_length.
2003 */
2004 s->prev_length = s->match_length, s->prev_match = s->match_start;
2005 s->match_length = MIN_MATCH-1;
2006
2007 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2008 s->strstart - hash_head <= MAX_DIST(s)) {
2009 /* To simplify the code, we prevent matches with the string
2010 * of window index 0 (in particular we have to avoid a match
2011 * of the string with itself at the start of the input file).
2012 */
2013 s->match_length = longest_match (s, hash_head);
2014 /* longest_match() sets match_start */
2015
2016 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2017 #if TOO_FAR <= 32767
2018 || (s->match_length == MIN_MATCH &&
2019 s->strstart - s->match_start > TOO_FAR)
2020 #endif
2021 )) {
2022
2023 /* If prev_match is also MIN_MATCH, match_start is garbage
2024 * but we will ignore the current match anyway.
2025 */
2026 s->match_length = MIN_MATCH-1;
2027 }
2028 }
2029 /* If there was a match at the previous step and the current
2030 * match is not better, output the previous match:
2031 */
2032 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2033 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2034 /* Do not insert strings in hash table beyond this. */
2035
2036 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2037
2038 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2039 s->prev_length - MIN_MATCH, bflush);
2040
2041 /* Insert in hash table all strings up to the end of the match.
2042 * strstart-1 and strstart are already inserted. If there is not
2043 * enough lookahead, the last two strings are not inserted in
2044 * the hash table.
2045 */
2046 s->lookahead -= s->prev_length-1;
2047 s->prev_length -= 2;
2048 do {
2049 if (++s->strstart <= max_insert) {
2050 INSERT_STRING(s, s->strstart, hash_head);
2051 }
2052 } while (--s->prev_length != 0);
2053 s->match_available = 0;
2054 s->match_length = MIN_MATCH-1;
2055 s->strstart++;
2056
2057 if (bflush) FLUSH_BLOCK(s, 0);
2058
2059 } else if (s->match_available) {
2060 /* If there was no match at the previous position, output a
2061 * single literal. If there was a match but the current match
2062 * is longer, truncate the previous match to a single literal.
2063 */
2064 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2065 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2066 if (bflush) {
2067 FLUSH_BLOCK_ONLY(s, 0);
2068 }
2069 s->strstart++;
2070 s->lookahead--;
2071 if (s->strm->avail_out == 0) return need_more;
2072 } else {
2073 /* There is no previous match to compare with, wait for
2074 * the next step to decide.
2075 */
2076 s->match_available = 1;
2077 s->strstart++;
2078 s->lookahead--;
2079 }
2080 }
2081 Assert (flush != Z_NO_FLUSH, "no flush?");
2082 if (s->match_available) {
2083 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2084 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2085 s->match_available = 0;
2086 }
2087 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2088 if (flush == Z_FINISH) {
2089 FLUSH_BLOCK(s, 1);
2090 return finish_done;
2091 }
2092 if (s->sym_next)
2093 FLUSH_BLOCK(s, 0);
2094 return block_done;
2095 }
2096 #endif /* FASTEST */
2097
2098 /* ===========================================================================
2099 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2100 * one. Do not maintain a hash table. (It will be regenerated if this run of
2101 * deflate switches away from Z_RLE.)
2102 */
deflate_rle(s,flush)2103 local block_state deflate_rle(s, flush)
2104 deflate_state *s;
2105 int flush;
2106 {
2107 int bflush; /* set if current block must be flushed */
2108 uInt prev; /* byte at distance one to match */
2109 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2110
2111 for (;;) {
2112 /* Make sure that we always have enough lookahead, except
2113 * at the end of the input file. We need MAX_MATCH bytes
2114 * for the longest run, plus one for the unrolled loop.
2115 */
2116 if (s->lookahead <= MAX_MATCH) {
2117 fill_window(s);
2118 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2119 return need_more;
2120 }
2121 if (s->lookahead == 0) break; /* flush the current block */
2122 }
2123
2124 /* See how many times the previous byte repeats */
2125 s->match_length = 0;
2126 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2127 scan = s->window + s->strstart - 1;
2128 prev = *scan;
2129 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2130 strend = s->window + s->strstart + MAX_MATCH;
2131 do {
2132 } while (prev == *++scan && prev == *++scan &&
2133 prev == *++scan && prev == *++scan &&
2134 prev == *++scan && prev == *++scan &&
2135 prev == *++scan && prev == *++scan &&
2136 scan < strend);
2137 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2138 if (s->match_length > s->lookahead)
2139 s->match_length = s->lookahead;
2140 }
2141 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2142 }
2143
2144 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2145 if (s->match_length >= MIN_MATCH) {
2146 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2147
2148 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2149
2150 s->lookahead -= s->match_length;
2151 s->strstart += s->match_length;
2152 s->match_length = 0;
2153 } else {
2154 /* No match, output a literal byte */
2155 Tracevv((stderr,"%c", s->window[s->strstart]));
2156 _tr_tally_lit (s, s->window[s->strstart], bflush);
2157 s->lookahead--;
2158 s->strstart++;
2159 }
2160 if (bflush) FLUSH_BLOCK(s, 0);
2161 }
2162 s->insert = 0;
2163 if (flush == Z_FINISH) {
2164 FLUSH_BLOCK(s, 1);
2165 return finish_done;
2166 }
2167 if (s->sym_next)
2168 FLUSH_BLOCK(s, 0);
2169 return block_done;
2170 }
2171
2172 /* ===========================================================================
2173 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2174 * (It will be regenerated if this run of deflate switches away from Huffman.)
2175 */
deflate_huff(s,flush)2176 local block_state deflate_huff(s, flush)
2177 deflate_state *s;
2178 int flush;
2179 {
2180 int bflush; /* set if current block must be flushed */
2181
2182 for (;;) {
2183 /* Make sure that we have a literal to write. */
2184 if (s->lookahead == 0) {
2185 fill_window(s);
2186 if (s->lookahead == 0) {
2187 if (flush == Z_NO_FLUSH)
2188 return need_more;
2189 break; /* flush the current block */
2190 }
2191 }
2192
2193 /* Output a literal byte */
2194 s->match_length = 0;
2195 Tracevv((stderr,"%c", s->window[s->strstart]));
2196 _tr_tally_lit (s, s->window[s->strstart], bflush);
2197 s->lookahead--;
2198 s->strstart++;
2199 if (bflush) FLUSH_BLOCK(s, 0);
2200 }
2201 s->insert = 0;
2202 if (flush == Z_FINISH) {
2203 FLUSH_BLOCK(s, 1);
2204 return finish_done;
2205 }
2206 if (s->sym_next)
2207 FLUSH_BLOCK(s, 0);
2208 return block_done;
2209 }
2210