1 /* 2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 /* 6 * Copyright 2013 Saso Kiselkov. All rights reserved. 7 */ 8 9 /* 10 * The basic framework for this code came from the reference 11 * implementation for MD5. That implementation is Copyright (C) 12 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 13 * 14 * License to copy and use this software is granted provided that it 15 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 16 * Algorithm" in all material mentioning or referencing this software 17 * or this function. 18 * 19 * License is also granted to make and use derivative works provided 20 * that such works are identified as "derived from the RSA Data 21 * Security, Inc. MD5 Message-Digest Algorithm" in all material 22 * mentioning or referencing the derived work. 23 * 24 * RSA Data Security, Inc. makes no representations concerning either 25 * the merchantability of this software or the suitability of this 26 * software for any particular purpose. It is provided "as is" 27 * without express or implied warranty of any kind. 28 * 29 * These notices must be retained in any copies of any part of this 30 * documentation and/or software. 31 * 32 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 33 * standard, available at 34 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf 35 * Not as fast as one would like -- further optimizations are encouraged 36 * and appreciated. 37 */ 38 39 #ifndef _KERNEL 40 #include <stdint.h> 41 #include <strings.h> 42 #include <stdlib.h> 43 #include <errno.h> 44 #endif /* _KERNEL */ 45 46 #include <sys/types.h> 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/sysmacros.h> 50 #define _SHA2_IMPL 51 #include <sys/sha2.h> 52 #include <sys/sha2_consts.h> 53 54 #ifdef _KERNEL 55 #include <sys/cmn_err.h> 56 57 #else 58 #pragma weak SHA256Update = SHA2Update 59 #pragma weak SHA384Update = SHA2Update 60 #pragma weak SHA512Update = SHA2Update 61 62 #pragma weak SHA256Final = SHA2Final 63 #pragma weak SHA384Final = SHA2Final 64 #pragma weak SHA512Final = SHA2Final 65 66 #endif /* _KERNEL */ 67 68 #ifdef _LITTLE_ENDIAN 69 #include <sys/byteorder.h> 70 #define HAVE_HTONL 71 #endif 72 73 static void Encode(uint8_t *, uint32_t *, size_t); 74 static void Encode64(uint8_t *, uint64_t *, size_t); 75 76 #if defined(__amd64) 77 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1) 78 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1) 79 80 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 81 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 82 83 #else 84 static void SHA256Transform(SHA2_CTX *, const uint8_t *); 85 static void SHA512Transform(SHA2_CTX *, const uint8_t *); 86 #endif /* __amd64 */ 87 88 static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; 89 90 /* Ch and Maj are the basic SHA2 functions. */ 91 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) 92 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) 93 94 /* Rotates x right n bits. */ 95 #define ROTR(x, n) \ 96 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) 97 98 /* Shift x right n bits */ 99 #define SHR(x, n) ((x) >> (n)) 100 101 /* SHA256 Functions */ 102 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) 103 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) 104 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) 105 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) 106 107 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ 108 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ 109 d += T1; \ 110 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ 111 h = T1 + T2 112 113 /* SHA384/512 Functions */ 114 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) 115 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) 116 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) 117 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) 118 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ 119 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ 120 d += T1; \ 121 T2 = BIGSIGMA0(a) + Maj(a, b, c); \ 122 h = T1 + T2 123 124 /* 125 * sparc optimization: 126 * 127 * on the sparc, we can load big endian 32-bit data easily. note that 128 * special care must be taken to ensure the address is 32-bit aligned. 129 * in the interest of speed, we don't check to make sure, since 130 * careful programming can guarantee this for us. 131 */ 132 133 #if defined(_BIG_ENDIAN) 134 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 135 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) 136 137 #elif defined(HAVE_HTONL) 138 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) 139 #define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr))) 140 141 #else 142 /* little endian -- will work on big endian, but slowly */ 143 #define LOAD_BIG_32(addr) \ 144 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 145 #define LOAD_BIG_64(addr) \ 146 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ 147 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ 148 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ 149 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) 150 #endif /* _BIG_ENDIAN */ 151 152 153 #if !defined(__amd64) 154 /* SHA256 Transform */ 155 156 static void 157 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) 158 { 159 uint32_t a = ctx->state.s32[0]; 160 uint32_t b = ctx->state.s32[1]; 161 uint32_t c = ctx->state.s32[2]; 162 uint32_t d = ctx->state.s32[3]; 163 uint32_t e = ctx->state.s32[4]; 164 uint32_t f = ctx->state.s32[5]; 165 uint32_t g = ctx->state.s32[6]; 166 uint32_t h = ctx->state.s32[7]; 167 168 uint32_t w0, w1, w2, w3, w4, w5, w6, w7; 169 uint32_t w8, w9, w10, w11, w12, w13, w14, w15; 170 uint32_t T1, T2; 171 172 #if defined(__sparc) 173 static const uint32_t sha256_consts[] = { 174 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, 175 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, 176 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, 177 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, 178 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, 179 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, 180 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, 181 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, 182 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, 183 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, 184 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, 185 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, 186 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, 187 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, 188 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, 189 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, 190 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, 191 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, 192 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, 193 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, 194 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, 195 SHA256_CONST_63 196 }; 197 #endif /* __sparc */ 198 199 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 200 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 201 blk = (uint8_t *)ctx->buf_un.buf32; 202 } 203 204 /* LINTED E_BAD_PTR_CAST_ALIGN */ 205 w0 = LOAD_BIG_32(blk + 4 * 0); 206 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); 207 /* LINTED E_BAD_PTR_CAST_ALIGN */ 208 w1 = LOAD_BIG_32(blk + 4 * 1); 209 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); 210 /* LINTED E_BAD_PTR_CAST_ALIGN */ 211 w2 = LOAD_BIG_32(blk + 4 * 2); 212 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); 213 /* LINTED E_BAD_PTR_CAST_ALIGN */ 214 w3 = LOAD_BIG_32(blk + 4 * 3); 215 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); 216 /* LINTED E_BAD_PTR_CAST_ALIGN */ 217 w4 = LOAD_BIG_32(blk + 4 * 4); 218 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); 219 /* LINTED E_BAD_PTR_CAST_ALIGN */ 220 w5 = LOAD_BIG_32(blk + 4 * 5); 221 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); 222 /* LINTED E_BAD_PTR_CAST_ALIGN */ 223 w6 = LOAD_BIG_32(blk + 4 * 6); 224 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); 225 /* LINTED E_BAD_PTR_CAST_ALIGN */ 226 w7 = LOAD_BIG_32(blk + 4 * 7); 227 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); 228 /* LINTED E_BAD_PTR_CAST_ALIGN */ 229 w8 = LOAD_BIG_32(blk + 4 * 8); 230 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); 231 /* LINTED E_BAD_PTR_CAST_ALIGN */ 232 w9 = LOAD_BIG_32(blk + 4 * 9); 233 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); 234 /* LINTED E_BAD_PTR_CAST_ALIGN */ 235 w10 = LOAD_BIG_32(blk + 4 * 10); 236 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); 237 /* LINTED E_BAD_PTR_CAST_ALIGN */ 238 w11 = LOAD_BIG_32(blk + 4 * 11); 239 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); 240 /* LINTED E_BAD_PTR_CAST_ALIGN */ 241 w12 = LOAD_BIG_32(blk + 4 * 12); 242 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); 243 /* LINTED E_BAD_PTR_CAST_ALIGN */ 244 w13 = LOAD_BIG_32(blk + 4 * 13); 245 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); 246 /* LINTED E_BAD_PTR_CAST_ALIGN */ 247 w14 = LOAD_BIG_32(blk + 4 * 14); 248 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); 249 /* LINTED E_BAD_PTR_CAST_ALIGN */ 250 w15 = LOAD_BIG_32(blk + 4 * 15); 251 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); 252 253 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 254 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); 255 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 256 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); 257 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 258 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); 259 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 260 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); 261 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 262 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); 263 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 264 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); 265 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 266 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); 267 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 268 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); 269 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 270 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); 271 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 272 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); 273 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 274 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); 275 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 276 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); 277 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 278 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); 279 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 280 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); 281 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 282 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); 283 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 284 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); 285 286 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 287 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); 288 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 289 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); 290 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 291 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); 292 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 293 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); 294 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 295 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); 296 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 297 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); 298 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 299 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); 300 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 301 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); 302 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 303 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); 304 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 305 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); 306 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 307 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); 308 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 309 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); 310 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 311 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); 312 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 313 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); 314 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 315 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); 316 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 317 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); 318 319 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 320 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); 321 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 322 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); 323 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 324 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); 325 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 326 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); 327 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 328 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); 329 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 330 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); 331 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 332 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); 333 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 334 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); 335 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 336 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); 337 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 338 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); 339 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 340 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); 341 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 342 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); 343 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 344 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); 345 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 346 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); 347 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 348 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); 349 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 350 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); 351 352 ctx->state.s32[0] += a; 353 ctx->state.s32[1] += b; 354 ctx->state.s32[2] += c; 355 ctx->state.s32[3] += d; 356 ctx->state.s32[4] += e; 357 ctx->state.s32[5] += f; 358 ctx->state.s32[6] += g; 359 ctx->state.s32[7] += h; 360 } 361 362 363 /* SHA384 and SHA512 Transform */ 364 365 static void 366 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) 367 { 368 369 uint64_t a = ctx->state.s64[0]; 370 uint64_t b = ctx->state.s64[1]; 371 uint64_t c = ctx->state.s64[2]; 372 uint64_t d = ctx->state.s64[3]; 373 uint64_t e = ctx->state.s64[4]; 374 uint64_t f = ctx->state.s64[5]; 375 uint64_t g = ctx->state.s64[6]; 376 uint64_t h = ctx->state.s64[7]; 377 378 uint64_t w0, w1, w2, w3, w4, w5, w6, w7; 379 uint64_t w8, w9, w10, w11, w12, w13, w14, w15; 380 uint64_t T1, T2; 381 382 #if defined(__sparc) 383 static const uint64_t sha512_consts[] = { 384 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, 385 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, 386 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, 387 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, 388 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, 389 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, 390 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, 391 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, 392 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, 393 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, 394 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, 395 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, 396 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, 397 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, 398 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, 399 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, 400 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, 401 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, 402 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, 403 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, 404 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, 405 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, 406 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, 407 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, 408 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, 409 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, 410 SHA512_CONST_78, SHA512_CONST_79 411 }; 412 #endif /* __sparc */ 413 414 415 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ 416 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); 417 blk = (uint8_t *)ctx->buf_un.buf64; 418 } 419 420 /* LINTED E_BAD_PTR_CAST_ALIGN */ 421 w0 = LOAD_BIG_64(blk + 8 * 0); 422 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); 423 /* LINTED E_BAD_PTR_CAST_ALIGN */ 424 w1 = LOAD_BIG_64(blk + 8 * 1); 425 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); 426 /* LINTED E_BAD_PTR_CAST_ALIGN */ 427 w2 = LOAD_BIG_64(blk + 8 * 2); 428 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); 429 /* LINTED E_BAD_PTR_CAST_ALIGN */ 430 w3 = LOAD_BIG_64(blk + 8 * 3); 431 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); 432 /* LINTED E_BAD_PTR_CAST_ALIGN */ 433 w4 = LOAD_BIG_64(blk + 8 * 4); 434 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); 435 /* LINTED E_BAD_PTR_CAST_ALIGN */ 436 w5 = LOAD_BIG_64(blk + 8 * 5); 437 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); 438 /* LINTED E_BAD_PTR_CAST_ALIGN */ 439 w6 = LOAD_BIG_64(blk + 8 * 6); 440 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); 441 /* LINTED E_BAD_PTR_CAST_ALIGN */ 442 w7 = LOAD_BIG_64(blk + 8 * 7); 443 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); 444 /* LINTED E_BAD_PTR_CAST_ALIGN */ 445 w8 = LOAD_BIG_64(blk + 8 * 8); 446 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); 447 /* LINTED E_BAD_PTR_CAST_ALIGN */ 448 w9 = LOAD_BIG_64(blk + 8 * 9); 449 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); 450 /* LINTED E_BAD_PTR_CAST_ALIGN */ 451 w10 = LOAD_BIG_64(blk + 8 * 10); 452 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); 453 /* LINTED E_BAD_PTR_CAST_ALIGN */ 454 w11 = LOAD_BIG_64(blk + 8 * 11); 455 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); 456 /* LINTED E_BAD_PTR_CAST_ALIGN */ 457 w12 = LOAD_BIG_64(blk + 8 * 12); 458 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); 459 /* LINTED E_BAD_PTR_CAST_ALIGN */ 460 w13 = LOAD_BIG_64(blk + 8 * 13); 461 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); 462 /* LINTED E_BAD_PTR_CAST_ALIGN */ 463 w14 = LOAD_BIG_64(blk + 8 * 14); 464 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); 465 /* LINTED E_BAD_PTR_CAST_ALIGN */ 466 w15 = LOAD_BIG_64(blk + 8 * 15); 467 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); 468 469 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 470 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); 471 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 472 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); 473 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 474 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); 475 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 476 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); 477 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 478 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); 479 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 480 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); 481 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 482 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); 483 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 484 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); 485 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 486 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); 487 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 488 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); 489 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 490 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); 491 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 492 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); 493 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 494 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); 495 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 496 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); 497 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 498 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); 499 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 500 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); 501 502 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 503 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); 504 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 505 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); 506 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 507 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); 508 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 509 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); 510 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 511 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); 512 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 513 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); 514 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 515 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); 516 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 517 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); 518 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 519 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); 520 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 521 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); 522 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 523 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); 524 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 525 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); 526 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 527 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); 528 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 529 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); 530 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 531 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); 532 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 533 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); 534 535 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 536 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); 537 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 538 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); 539 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 540 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); 541 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 542 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); 543 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 544 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); 545 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 546 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); 547 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 548 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); 549 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 550 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); 551 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 552 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); 553 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 554 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); 555 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 556 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); 557 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 558 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); 559 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 560 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); 561 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 562 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); 563 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 564 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); 565 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 566 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); 567 568 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 569 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); 570 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 571 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); 572 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 573 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); 574 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 575 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); 576 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 577 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); 578 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 579 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); 580 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 581 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); 582 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 583 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); 584 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 585 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); 586 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 587 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); 588 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 589 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); 590 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 591 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); 592 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 593 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); 594 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 595 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); 596 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 597 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); 598 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 599 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); 600 601 ctx->state.s64[0] += a; 602 ctx->state.s64[1] += b; 603 ctx->state.s64[2] += c; 604 ctx->state.s64[3] += d; 605 ctx->state.s64[4] += e; 606 ctx->state.s64[5] += f; 607 ctx->state.s64[6] += g; 608 ctx->state.s64[7] += h; 609 610 } 611 #endif /* !__amd64 */ 612 613 614 /* 615 * Encode() 616 * 617 * purpose: to convert a list of numbers from little endian to big endian 618 * input: uint8_t * : place to store the converted big endian numbers 619 * uint32_t * : place to get numbers to convert from 620 * size_t : the length of the input in bytes 621 * output: void 622 */ 623 624 static void 625 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, 626 size_t len) 627 { 628 size_t i, j; 629 630 #if defined(__sparc) 631 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 632 for (i = 0, j = 0; j < len; i++, j += 4) { 633 /* LINTED E_BAD_PTR_CAST_ALIGN */ 634 *((uint32_t *)(output + j)) = input[i]; 635 } 636 } else { 637 #endif /* little endian -- will work on big endian, but slowly */ 638 for (i = 0, j = 0; j < len; i++, j += 4) { 639 output[j] = (input[i] >> 24) & 0xff; 640 output[j + 1] = (input[i] >> 16) & 0xff; 641 output[j + 2] = (input[i] >> 8) & 0xff; 642 output[j + 3] = input[i] & 0xff; 643 } 644 #if defined(__sparc) 645 } 646 #endif 647 } 648 649 static void 650 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input, 651 size_t len) 652 { 653 size_t i, j; 654 655 #if defined(__sparc) 656 if (IS_P2ALIGNED(output, sizeof (uint64_t))) { 657 for (i = 0, j = 0; j < len; i++, j += 8) { 658 /* LINTED E_BAD_PTR_CAST_ALIGN */ 659 *((uint64_t *)(output + j)) = input[i]; 660 } 661 } else { 662 #endif /* little endian -- will work on big endian, but slowly */ 663 for (i = 0, j = 0; j < len; i++, j += 8) { 664 665 output[j] = (input[i] >> 56) & 0xff; 666 output[j + 1] = (input[i] >> 48) & 0xff; 667 output[j + 2] = (input[i] >> 40) & 0xff; 668 output[j + 3] = (input[i] >> 32) & 0xff; 669 output[j + 4] = (input[i] >> 24) & 0xff; 670 output[j + 5] = (input[i] >> 16) & 0xff; 671 output[j + 6] = (input[i] >> 8) & 0xff; 672 output[j + 7] = input[i] & 0xff; 673 } 674 #if defined(__sparc) 675 } 676 #endif 677 } 678 679 680 void 681 SHA2Init(uint64_t mech, SHA2_CTX *ctx) 682 { 683 684 switch (mech) { 685 case SHA256_MECH_INFO_TYPE: 686 case SHA256_HMAC_MECH_INFO_TYPE: 687 case SHA256_HMAC_GEN_MECH_INFO_TYPE: 688 ctx->state.s32[0] = 0x6a09e667U; 689 ctx->state.s32[1] = 0xbb67ae85U; 690 ctx->state.s32[2] = 0x3c6ef372U; 691 ctx->state.s32[3] = 0xa54ff53aU; 692 ctx->state.s32[4] = 0x510e527fU; 693 ctx->state.s32[5] = 0x9b05688cU; 694 ctx->state.s32[6] = 0x1f83d9abU; 695 ctx->state.s32[7] = 0x5be0cd19U; 696 break; 697 case SHA384_MECH_INFO_TYPE: 698 case SHA384_HMAC_MECH_INFO_TYPE: 699 case SHA384_HMAC_GEN_MECH_INFO_TYPE: 700 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; 701 ctx->state.s64[1] = 0x629a292a367cd507ULL; 702 ctx->state.s64[2] = 0x9159015a3070dd17ULL; 703 ctx->state.s64[3] = 0x152fecd8f70e5939ULL; 704 ctx->state.s64[4] = 0x67332667ffc00b31ULL; 705 ctx->state.s64[5] = 0x8eb44a8768581511ULL; 706 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; 707 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; 708 break; 709 case SHA512_MECH_INFO_TYPE: 710 case SHA512_HMAC_MECH_INFO_TYPE: 711 case SHA512_HMAC_GEN_MECH_INFO_TYPE: 712 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; 713 ctx->state.s64[1] = 0xbb67ae8584caa73bULL; 714 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; 715 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; 716 ctx->state.s64[4] = 0x510e527fade682d1ULL; 717 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; 718 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; 719 ctx->state.s64[7] = 0x5be0cd19137e2179ULL; 720 break; 721 case SHA512_224_MECH_INFO_TYPE: 722 ctx->state.s64[0] = 0x8C3D37C819544DA2ULL; 723 ctx->state.s64[1] = 0x73E1996689DCD4D6ULL; 724 ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL; 725 ctx->state.s64[3] = 0x679DD514582F9FCFULL; 726 ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL; 727 ctx->state.s64[5] = 0x77E36F7304C48942ULL; 728 ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL; 729 ctx->state.s64[7] = 0x1112E6AD91D692A1ULL; 730 break; 731 case SHA512_256_MECH_INFO_TYPE: 732 ctx->state.s64[0] = 0x22312194FC2BF72CULL; 733 ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL; 734 ctx->state.s64[2] = 0x2393B86B6F53B151ULL; 735 ctx->state.s64[3] = 0x963877195940EABDULL; 736 ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL; 737 ctx->state.s64[5] = 0xBE5E1E2553863992ULL; 738 ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL; 739 ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL; 740 break; 741 #ifdef _KERNEL 742 default: 743 cmn_err(CE_PANIC, 744 "sha2_init: failed to find a supported algorithm: 0x%x", 745 (uint32_t)mech); 746 747 #endif /* _KERNEL */ 748 } 749 750 ctx->algotype = (uint32_t)mech; 751 ctx->count.c64[0] = ctx->count.c64[1] = 0; 752 } 753 754 #ifndef _KERNEL 755 756 #pragma inline(SHA256Init, SHA384Init, SHA512Init) 757 void 758 SHA256Init(SHA256_CTX *ctx) 759 { 760 SHA2Init(SHA256, ctx); 761 } 762 763 void 764 SHA384Init(SHA384_CTX *ctx) 765 { 766 SHA2Init(SHA384, ctx); 767 } 768 769 void 770 SHA512Init(SHA512_CTX *ctx) 771 { 772 SHA2Init(SHA512, ctx); 773 } 774 775 #endif /* _KERNEL */ 776 777 /* 778 * SHA2Update() 779 * 780 * purpose: continues an sha2 digest operation, using the message block 781 * to update the context. 782 * input: SHA2_CTX * : the context to update 783 * void * : the message block 784 * size_t : the length of the message block, in bytes 785 * output: void 786 */ 787 788 void 789 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) 790 { 791 uint32_t i, buf_index, buf_len, buf_limit; 792 const uint8_t *input = inptr; 793 uint32_t algotype = ctx->algotype; 794 #if defined(__amd64) 795 uint32_t block_count; 796 #endif /* !__amd64 */ 797 798 799 /* check for noop */ 800 if (input_len == 0) 801 return; 802 803 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 804 buf_limit = 64; 805 806 /* compute number of bytes mod 64 */ 807 buf_index = (ctx->count.c32[1] >> 3) & 0x3F; 808 809 /* update number of bits */ 810 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) 811 ctx->count.c32[0]++; 812 813 ctx->count.c32[0] += (input_len >> 29); 814 815 } else { 816 buf_limit = 128; 817 818 /* compute number of bytes mod 128 */ 819 buf_index = (ctx->count.c64[1] >> 3) & 0x7F; 820 821 /* update number of bits */ 822 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) 823 ctx->count.c64[0]++; 824 825 ctx->count.c64[0] += (input_len >> 29); 826 } 827 828 buf_len = buf_limit - buf_index; 829 830 /* transform as many times as possible */ 831 i = 0; 832 if (input_len >= buf_len) { 833 834 /* 835 * general optimization: 836 * 837 * only do initial bcopy() and SHA2Transform() if 838 * buf_index != 0. if buf_index == 0, we're just 839 * wasting our time doing the bcopy() since there 840 * wasn't any data left over from a previous call to 841 * SHA2Update(). 842 */ 843 if (buf_index) { 844 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 845 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) 846 SHA256Transform(ctx, ctx->buf_un.buf8); 847 else 848 SHA512Transform(ctx, ctx->buf_un.buf8); 849 850 i = buf_len; 851 } 852 853 #if !defined(__amd64) 854 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 855 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 856 SHA256Transform(ctx, &input[i]); 857 } 858 } else { 859 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 860 SHA512Transform(ctx, &input[i]); 861 } 862 } 863 864 #else 865 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 866 block_count = (input_len - i) >> 6; 867 if (block_count > 0) { 868 SHA256TransformBlocks(ctx, &input[i], 869 block_count); 870 i += block_count << 6; 871 } 872 } else { 873 block_count = (input_len - i) >> 7; 874 if (block_count > 0) { 875 SHA512TransformBlocks(ctx, &input[i], 876 block_count); 877 i += block_count << 7; 878 } 879 } 880 #endif /* !__amd64 */ 881 882 /* 883 * general optimization: 884 * 885 * if i and input_len are the same, return now instead 886 * of calling bcopy(), since the bcopy() in this case 887 * will be an expensive noop. 888 */ 889 890 if (input_len == i) 891 return; 892 893 buf_index = 0; 894 } 895 896 /* buffer remaining input */ 897 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 898 } 899 900 901 /* 902 * SHA2Final() 903 * 904 * purpose: ends an sha2 digest operation, finalizing the message digest and 905 * zeroing the context. 906 * input: uchar_t * : a buffer to store the digest 907 * : The function actually uses void* because many 908 * : callers pass things other than uchar_t here. 909 * SHA2_CTX * : the context to finalize, save, and zero 910 * output: void 911 */ 912 913 void 914 SHA2Final(void *digest, SHA2_CTX *ctx) 915 { 916 uint8_t bitcount_be[sizeof (ctx->count.c32)]; 917 uint8_t bitcount_be64[sizeof (ctx->count.c64)]; 918 uint32_t index; 919 uint32_t algotype = ctx->algotype; 920 921 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 922 index = (ctx->count.c32[1] >> 3) & 0x3f; 923 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); 924 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 925 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); 926 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); 927 } else { 928 index = (ctx->count.c64[1] >> 3) & 0x7f; 929 Encode64(bitcount_be64, ctx->count.c64, 930 sizeof (bitcount_be64)); 931 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); 932 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); 933 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { 934 ctx->state.s64[6] = ctx->state.s64[7] = 0; 935 Encode64(digest, ctx->state.s64, 936 sizeof (uint64_t) * 6); 937 } else if (algotype == SHA512_224_MECH_INFO_TYPE) { 938 uint8_t last[sizeof (uint64_t)]; 939 /* 940 * Since SHA-512/224 doesn't align well to 64-bit 941 * boundaries, we must do the encoding in three steps: 942 * 1) encode the three 64-bit words that fit neatly 943 * 2) encode the last 64-bit word to a temp buffer 944 * 3) chop out the lower 32-bits from the temp buffer 945 * and append them to the digest 946 */ 947 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3); 948 Encode64(last, &ctx->state.s64[3], sizeof (uint64_t)); 949 bcopy(last, (uint8_t *)digest + 24, 4); 950 } else if (algotype == SHA512_256_MECH_INFO_TYPE) { 951 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4); 952 } else { 953 Encode64(digest, ctx->state.s64, 954 sizeof (ctx->state.s64)); 955 } 956 } 957 958 /* zeroize sensitive information */ 959 bzero(ctx, sizeof (*ctx)); 960 } 961