1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5 /*
6 * Copyright 2013 Saso Kiselkov. All rights reserved.
7 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org>
8 */
9
10 /*
11 * The basic framework for this code came from the reference
12 * implementation for MD5. That implementation is Copyright (C)
13 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
14 *
15 * License to copy and use this software is granted provided that it
16 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
17 * Algorithm" in all material mentioning or referencing this software
18 * or this function.
19 *
20 * License is also granted to make and use derivative works provided
21 * that such works are identified as "derived from the RSA Data
22 * Security, Inc. MD5 Message-Digest Algorithm" in all material
23 * mentioning or referencing the derived work.
24 *
25 * RSA Data Security, Inc. makes no representations concerning either
26 * the merchantability of this software or the suitability of this
27 * software for any particular purpose. It is provided "as is"
28 * without express or implied warranty of any kind.
29 *
30 * These notices must be retained in any copies of any part of this
31 * documentation and/or software.
32 *
33 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
34 * standard, available at
35 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
36 * Not as fast as one would like -- further optimizations are encouraged
37 * and appreciated.
38 */
39
40 #ifndef _KERNEL
41 #include <stdint.h>
42 #include <strings.h>
43 #include <stdlib.h>
44 #include <errno.h>
45 #endif /* _KERNEL */
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysmacros.h>
51 #define _SHA2_IMPL
52 #include <sys/sha2.h>
53 #include <sys/sha2_consts.h>
54
55 #ifdef _KERNEL
56 #include <sys/cmn_err.h>
57
58 #else
59 #pragma weak SHA256Update = SHA2Update
60 #pragma weak SHA384Update = SHA2Update
61 #pragma weak SHA512Update = SHA2Update
62
63 #pragma weak SHA256Final = SHA2Final
64 #pragma weak SHA384Final = SHA2Final
65 #pragma weak SHA512Final = SHA2Final
66
67 #endif /* _KERNEL */
68
69 #ifdef _LITTLE_ENDIAN
70 #include <sys/byteorder.h>
71 #define HAVE_HTONL
72 #endif
73
74 static void Encode(uint8_t *, uint32_t *, size_t);
75 static void Encode64(uint8_t *, uint64_t *, size_t);
76
77 #if defined(__amd64)
78 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
79 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
80
81 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
82 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
83
84 #else
85 static void SHA256Transform(SHA2_CTX *, const uint8_t *);
86 static void SHA512Transform(SHA2_CTX *, const uint8_t *);
87 #endif /* __amd64 */
88
89 static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
90
91 /* Ch and Maj are the basic SHA2 functions. */
92 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
93 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
94
95 /* Rotates x right n bits. */
96 #define ROTR(x, n) \
97 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
98
99 /* Shift x right n bits */
100 #define SHR(x, n) ((x) >> (n))
101
102 /* SHA256 Functions */
103 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
104 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
105 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
106 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
107
108 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \
109 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \
110 d += T1; \
111 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
112 h = T1 + T2
113
114 /* SHA384/512 Functions */
115 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
116 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
117 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
118 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
119 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
120 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
121 d += T1; \
122 T2 = BIGSIGMA0(a) + Maj(a, b, c); \
123 h = T1 + T2
124
125 /*
126 * sparc optimization:
127 *
128 * on the sparc, we can load big endian 32-bit data easily. note that
129 * special care must be taken to ensure the address is 32-bit aligned.
130 * in the interest of speed, we don't check to make sure, since
131 * careful programming can guarantee this for us.
132 */
133
134 #if defined(_BIG_ENDIAN)
135 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
136 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr))
137
138 #elif defined(HAVE_HTONL)
139 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
140 #define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
141
142 #else
143 /* little endian -- will work on big endian, but slowly */
144 #define LOAD_BIG_32(addr) \
145 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
146 #define LOAD_BIG_64(addr) \
147 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \
148 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \
149 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \
150 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
151 #endif /* _BIG_ENDIAN */
152
153
154 #if !defined(__amd64)
155 /* SHA256 Transform */
156
157 static void
SHA256Transform(SHA2_CTX * ctx,const uint8_t * blk)158 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
159 {
160 uint32_t a = ctx->state.s32[0];
161 uint32_t b = ctx->state.s32[1];
162 uint32_t c = ctx->state.s32[2];
163 uint32_t d = ctx->state.s32[3];
164 uint32_t e = ctx->state.s32[4];
165 uint32_t f = ctx->state.s32[5];
166 uint32_t g = ctx->state.s32[6];
167 uint32_t h = ctx->state.s32[7];
168
169 uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
170 uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
171 uint32_t T1, T2;
172
173 #if defined(__sparc)
174 static const uint32_t sha256_consts[] = {
175 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
176 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
177 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
178 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
179 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
180 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
181 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
182 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
183 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
184 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
185 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
186 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
187 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
188 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
189 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
190 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
191 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
192 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
193 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
194 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
195 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
196 SHA256_CONST_63
197 };
198 #endif /* __sparc */
199
200 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
201 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
202 blk = (uint8_t *)ctx->buf_un.buf32;
203 }
204
205 /* LINTED E_BAD_PTR_CAST_ALIGN */
206 w0 = LOAD_BIG_32(blk + 4 * 0);
207 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
208 /* LINTED E_BAD_PTR_CAST_ALIGN */
209 w1 = LOAD_BIG_32(blk + 4 * 1);
210 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
211 /* LINTED E_BAD_PTR_CAST_ALIGN */
212 w2 = LOAD_BIG_32(blk + 4 * 2);
213 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
214 /* LINTED E_BAD_PTR_CAST_ALIGN */
215 w3 = LOAD_BIG_32(blk + 4 * 3);
216 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
217 /* LINTED E_BAD_PTR_CAST_ALIGN */
218 w4 = LOAD_BIG_32(blk + 4 * 4);
219 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
220 /* LINTED E_BAD_PTR_CAST_ALIGN */
221 w5 = LOAD_BIG_32(blk + 4 * 5);
222 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
223 /* LINTED E_BAD_PTR_CAST_ALIGN */
224 w6 = LOAD_BIG_32(blk + 4 * 6);
225 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
226 /* LINTED E_BAD_PTR_CAST_ALIGN */
227 w7 = LOAD_BIG_32(blk + 4 * 7);
228 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
229 /* LINTED E_BAD_PTR_CAST_ALIGN */
230 w8 = LOAD_BIG_32(blk + 4 * 8);
231 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
232 /* LINTED E_BAD_PTR_CAST_ALIGN */
233 w9 = LOAD_BIG_32(blk + 4 * 9);
234 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
235 /* LINTED E_BAD_PTR_CAST_ALIGN */
236 w10 = LOAD_BIG_32(blk + 4 * 10);
237 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
238 /* LINTED E_BAD_PTR_CAST_ALIGN */
239 w11 = LOAD_BIG_32(blk + 4 * 11);
240 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
241 /* LINTED E_BAD_PTR_CAST_ALIGN */
242 w12 = LOAD_BIG_32(blk + 4 * 12);
243 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
244 /* LINTED E_BAD_PTR_CAST_ALIGN */
245 w13 = LOAD_BIG_32(blk + 4 * 13);
246 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
247 /* LINTED E_BAD_PTR_CAST_ALIGN */
248 w14 = LOAD_BIG_32(blk + 4 * 14);
249 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
250 /* LINTED E_BAD_PTR_CAST_ALIGN */
251 w15 = LOAD_BIG_32(blk + 4 * 15);
252 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
253
254 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
255 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
256 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
257 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
258 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
259 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
260 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
261 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
262 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
263 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
264 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
265 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
266 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
267 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
268 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
269 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
270 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
271 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
272 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
273 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
274 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
275 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
276 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
277 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
278 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
279 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
280 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
281 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
282 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
283 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
284 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
285 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
286
287 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
288 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
289 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
290 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
291 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
292 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
293 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
294 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
295 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
296 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
297 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
298 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
299 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
300 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
301 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
302 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
303 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
304 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
305 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
306 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
307 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
308 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
309 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
310 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
311 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
312 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
313 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
314 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
315 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
316 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
317 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
318 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
319
320 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
321 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
322 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
323 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
324 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
325 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
326 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
327 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
328 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
329 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
330 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
331 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
332 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
333 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
334 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
335 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
336 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
337 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
338 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
339 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
340 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
341 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
342 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
343 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
344 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
345 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
346 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
347 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
348 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
349 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
350 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
351 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
352
353 ctx->state.s32[0] += a;
354 ctx->state.s32[1] += b;
355 ctx->state.s32[2] += c;
356 ctx->state.s32[3] += d;
357 ctx->state.s32[4] += e;
358 ctx->state.s32[5] += f;
359 ctx->state.s32[6] += g;
360 ctx->state.s32[7] += h;
361 }
362
363
364 /* SHA384 and SHA512 Transform */
365
366 static void
SHA512Transform(SHA2_CTX * ctx,const uint8_t * blk)367 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
368 {
369
370 uint64_t a = ctx->state.s64[0];
371 uint64_t b = ctx->state.s64[1];
372 uint64_t c = ctx->state.s64[2];
373 uint64_t d = ctx->state.s64[3];
374 uint64_t e = ctx->state.s64[4];
375 uint64_t f = ctx->state.s64[5];
376 uint64_t g = ctx->state.s64[6];
377 uint64_t h = ctx->state.s64[7];
378
379 uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
380 uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
381 uint64_t T1, T2;
382
383 #if defined(__sparc)
384 static const uint64_t sha512_consts[] = {
385 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
386 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
387 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
388 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
389 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
390 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
391 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
392 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
393 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
394 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
395 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
396 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
397 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
398 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
399 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
400 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
401 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
402 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
403 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
404 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
405 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
406 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
407 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
408 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
409 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
410 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
411 SHA512_CONST_78, SHA512_CONST_79
412 };
413 #endif /* __sparc */
414
415
416 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
417 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64));
418 blk = (uint8_t *)ctx->buf_un.buf64;
419 }
420
421 /* LINTED E_BAD_PTR_CAST_ALIGN */
422 w0 = LOAD_BIG_64(blk + 8 * 0);
423 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
424 /* LINTED E_BAD_PTR_CAST_ALIGN */
425 w1 = LOAD_BIG_64(blk + 8 * 1);
426 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
427 /* LINTED E_BAD_PTR_CAST_ALIGN */
428 w2 = LOAD_BIG_64(blk + 8 * 2);
429 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
430 /* LINTED E_BAD_PTR_CAST_ALIGN */
431 w3 = LOAD_BIG_64(blk + 8 * 3);
432 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
433 /* LINTED E_BAD_PTR_CAST_ALIGN */
434 w4 = LOAD_BIG_64(blk + 8 * 4);
435 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
436 /* LINTED E_BAD_PTR_CAST_ALIGN */
437 w5 = LOAD_BIG_64(blk + 8 * 5);
438 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
439 /* LINTED E_BAD_PTR_CAST_ALIGN */
440 w6 = LOAD_BIG_64(blk + 8 * 6);
441 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
442 /* LINTED E_BAD_PTR_CAST_ALIGN */
443 w7 = LOAD_BIG_64(blk + 8 * 7);
444 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
445 /* LINTED E_BAD_PTR_CAST_ALIGN */
446 w8 = LOAD_BIG_64(blk + 8 * 8);
447 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
448 /* LINTED E_BAD_PTR_CAST_ALIGN */
449 w9 = LOAD_BIG_64(blk + 8 * 9);
450 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
451 /* LINTED E_BAD_PTR_CAST_ALIGN */
452 w10 = LOAD_BIG_64(blk + 8 * 10);
453 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
454 /* LINTED E_BAD_PTR_CAST_ALIGN */
455 w11 = LOAD_BIG_64(blk + 8 * 11);
456 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
457 /* LINTED E_BAD_PTR_CAST_ALIGN */
458 w12 = LOAD_BIG_64(blk + 8 * 12);
459 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
460 /* LINTED E_BAD_PTR_CAST_ALIGN */
461 w13 = LOAD_BIG_64(blk + 8 * 13);
462 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
463 /* LINTED E_BAD_PTR_CAST_ALIGN */
464 w14 = LOAD_BIG_64(blk + 8 * 14);
465 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
466 /* LINTED E_BAD_PTR_CAST_ALIGN */
467 w15 = LOAD_BIG_64(blk + 8 * 15);
468 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
469
470 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
471 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
472 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
473 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
474 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
475 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
476 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
477 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
478 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
479 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
480 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
481 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
482 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
483 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
484 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
485 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
486 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
487 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
488 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
489 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
490 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
491 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
492 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
493 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
494 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
495 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
496 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
497 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
498 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
499 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
500 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
501 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
502
503 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
504 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
505 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
506 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
507 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
508 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
509 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
510 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
511 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
512 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
513 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
514 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
515 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
516 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
517 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
518 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
519 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
520 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
521 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
522 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
523 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
524 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
525 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
526 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
527 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
528 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
529 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
530 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
531 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
532 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
533 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
534 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
535
536 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
537 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
538 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
539 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
540 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
541 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
542 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
543 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
544 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
545 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
546 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
547 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
548 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
549 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
550 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
551 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
552 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
553 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
554 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
555 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
556 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
557 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
558 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
559 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
560 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
561 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
562 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
563 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
564 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
565 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
566 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
567 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
568
569 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
570 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
571 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
572 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
573 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
574 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
575 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
576 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
577 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
578 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
579 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
580 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
581 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
582 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
583 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
584 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
585 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
586 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
587 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
588 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
589 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
590 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
591 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
592 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
593 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
594 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
595 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
596 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
597 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
598 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
599 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
600 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
601
602 ctx->state.s64[0] += a;
603 ctx->state.s64[1] += b;
604 ctx->state.s64[2] += c;
605 ctx->state.s64[3] += d;
606 ctx->state.s64[4] += e;
607 ctx->state.s64[5] += f;
608 ctx->state.s64[6] += g;
609 ctx->state.s64[7] += h;
610
611 }
612 #endif /* !__amd64 */
613
614
615 /*
616 * Encode()
617 *
618 * purpose: to convert a list of numbers from little endian to big endian
619 * input: uint8_t * : place to store the converted big endian numbers
620 * uint32_t * : place to get numbers to convert from
621 * size_t : the length of the input in bytes
622 * output: void
623 */
624
625 static void
Encode(uint8_t * _RESTRICT_KYWD output,uint32_t * _RESTRICT_KYWD input,size_t len)626 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
627 size_t len)
628 {
629 size_t i, j;
630
631 #if defined(__sparc)
632 if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
633 for (i = 0, j = 0; j < len; i++, j += 4) {
634 /* LINTED E_BAD_PTR_CAST_ALIGN */
635 *((uint32_t *)(output + j)) = input[i];
636 }
637 } else {
638 #endif /* little endian -- will work on big endian, but slowly */
639 for (i = 0, j = 0; j < len; i++, j += 4) {
640 output[j] = (input[i] >> 24) & 0xff;
641 output[j + 1] = (input[i] >> 16) & 0xff;
642 output[j + 2] = (input[i] >> 8) & 0xff;
643 output[j + 3] = input[i] & 0xff;
644 }
645 #if defined(__sparc)
646 }
647 #endif
648 }
649
650 static void
Encode64(uint8_t * _RESTRICT_KYWD output,uint64_t * _RESTRICT_KYWD input,size_t len)651 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
652 size_t len)
653 {
654 size_t i, j;
655
656 #if defined(__sparc)
657 if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
658 for (i = 0, j = 0; j < len; i++, j += 8) {
659 /* LINTED E_BAD_PTR_CAST_ALIGN */
660 *((uint64_t *)(output + j)) = input[i];
661 }
662 } else {
663 #endif /* little endian -- will work on big endian, but slowly */
664 for (i = 0, j = 0; j < len; i++, j += 8) {
665
666 output[j] = (input[i] >> 56) & 0xff;
667 output[j + 1] = (input[i] >> 48) & 0xff;
668 output[j + 2] = (input[i] >> 40) & 0xff;
669 output[j + 3] = (input[i] >> 32) & 0xff;
670 output[j + 4] = (input[i] >> 24) & 0xff;
671 output[j + 5] = (input[i] >> 16) & 0xff;
672 output[j + 6] = (input[i] >> 8) & 0xff;
673 output[j + 7] = input[i] & 0xff;
674 }
675 #if defined(__sparc)
676 }
677 #endif
678 }
679
680
681 void
SHA2Init(uint64_t mech,SHA2_CTX * ctx)682 SHA2Init(uint64_t mech, SHA2_CTX *ctx)
683 {
684
685 switch (mech) {
686 case SHA256_MECH_INFO_TYPE:
687 case SHA256_HMAC_MECH_INFO_TYPE:
688 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
689 ctx->state.s32[0] = 0x6a09e667U;
690 ctx->state.s32[1] = 0xbb67ae85U;
691 ctx->state.s32[2] = 0x3c6ef372U;
692 ctx->state.s32[3] = 0xa54ff53aU;
693 ctx->state.s32[4] = 0x510e527fU;
694 ctx->state.s32[5] = 0x9b05688cU;
695 ctx->state.s32[6] = 0x1f83d9abU;
696 ctx->state.s32[7] = 0x5be0cd19U;
697 break;
698 case SHA384_MECH_INFO_TYPE:
699 case SHA384_HMAC_MECH_INFO_TYPE:
700 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
701 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
702 ctx->state.s64[1] = 0x629a292a367cd507ULL;
703 ctx->state.s64[2] = 0x9159015a3070dd17ULL;
704 ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
705 ctx->state.s64[4] = 0x67332667ffc00b31ULL;
706 ctx->state.s64[5] = 0x8eb44a8768581511ULL;
707 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
708 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
709 break;
710 case SHA512_MECH_INFO_TYPE:
711 case SHA512_HMAC_MECH_INFO_TYPE:
712 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
713 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
714 ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
715 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
716 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
717 ctx->state.s64[4] = 0x510e527fade682d1ULL;
718 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
719 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
720 ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
721 break;
722 case SHA512_224_MECH_INFO_TYPE:
723 ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
724 ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
725 ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
726 ctx->state.s64[3] = 0x679DD514582F9FCFULL;
727 ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
728 ctx->state.s64[5] = 0x77E36F7304C48942ULL;
729 ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
730 ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
731 break;
732 case SHA512_256_MECH_INFO_TYPE:
733 ctx->state.s64[0] = 0x22312194FC2BF72CULL;
734 ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
735 ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
736 ctx->state.s64[3] = 0x963877195940EABDULL;
737 ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
738 ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
739 ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
740 ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
741 break;
742 #ifdef _KERNEL
743 default:
744 cmn_err(CE_PANIC,
745 "sha2_init: failed to find a supported algorithm: 0x%x",
746 (uint32_t)mech);
747
748 #endif /* _KERNEL */
749 }
750
751 ctx->algotype = (uint32_t)mech;
752 ctx->count.c64[0] = ctx->count.c64[1] = 0;
753 }
754
755 #ifndef _KERNEL
756
757 #pragma inline(SHA256Init, SHA384Init, SHA512Init)
758 void
SHA256Init(SHA256_CTX * ctx)759 SHA256Init(SHA256_CTX *ctx)
760 {
761 SHA2Init(SHA256, ctx);
762 }
763
764 void
SHA384Init(SHA384_CTX * ctx)765 SHA384Init(SHA384_CTX *ctx)
766 {
767 SHA2Init(SHA384, ctx);
768 }
769
770 void
SHA512Init(SHA512_CTX * ctx)771 SHA512Init(SHA512_CTX *ctx)
772 {
773 SHA2Init(SHA512, ctx);
774 }
775
776 #endif /* _KERNEL */
777
778 /*
779 * SHA2Update()
780 *
781 * purpose: continues an sha2 digest operation, using the message block
782 * to update the context.
783 * input: SHA2_CTX * : the context to update
784 * void * : the message block
785 * size_t : the length of the message block, in bytes
786 * output: void
787 */
788
789 void
SHA2Update(SHA2_CTX * ctx,const void * inptr,size_t input_len)790 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
791 {
792 size_t i, buf_index, buf_len, buf_limit;
793 const uint8_t *input = inptr;
794 uint32_t algotype = ctx->algotype;
795 #if defined(__amd64)
796 size_t block_count;
797 #endif /* !__amd64 */
798
799
800 /* check for noop */
801 if (input_len == 0)
802 return;
803
804 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
805 /*
806 * Extract low 32 bits of input_len; when we adjust
807 * count.c32[0] we must fold in the carry from the
808 * addition of the low bits along with the nonzero
809 * upper bits (if any) from input_len.
810 */
811 uint32_t il = input_len & UINT32_MAX;
812
813 il = il << 3;
814 buf_limit = 64;
815
816 /* compute number of bytes mod 64 */
817 buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
818
819 /* update number of bits */
820 if ((ctx->count.c32[1] += il) < il)
821 ctx->count.c32[0]++;
822
823 ctx->count.c32[0] += (input_len >> 29);
824
825 } else {
826 uint64_t il = input_len;
827
828 il = il << 3;
829 buf_limit = 128;
830
831 /* compute number of bytes mod 128 */
832 buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
833
834 /* update number of bits */
835 if ((ctx->count.c64[1] += il) < il)
836 ctx->count.c64[0]++;
837
838 ctx->count.c64[0] += ((uintmax_t)input_len >> 61);
839 }
840
841 buf_len = buf_limit - buf_index;
842
843 /* transform as many times as possible */
844 i = 0;
845 if (input_len >= buf_len) {
846
847 /*
848 * general optimization:
849 *
850 * only do initial bcopy() and SHA2Transform() if
851 * buf_index != 0. if buf_index == 0, we're just
852 * wasting our time doing the bcopy() since there
853 * wasn't any data left over from a previous call to
854 * SHA2Update().
855 */
856 if (buf_index) {
857 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
858 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
859 SHA256Transform(ctx, ctx->buf_un.buf8);
860 else
861 SHA512Transform(ctx, ctx->buf_un.buf8);
862
863 i = buf_len;
864 }
865
866 #if !defined(__amd64)
867 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
868 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
869 SHA256Transform(ctx, &input[i]);
870 }
871 } else {
872 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
873 SHA512Transform(ctx, &input[i]);
874 }
875 }
876
877 #else
878 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
879 block_count = (input_len - i) >> 6;
880 if (block_count > 0) {
881 SHA256TransformBlocks(ctx, &input[i],
882 block_count);
883 i += block_count << 6;
884 }
885 } else {
886 block_count = (input_len - i) >> 7;
887 if (block_count > 0) {
888 SHA512TransformBlocks(ctx, &input[i],
889 block_count);
890 i += block_count << 7;
891 }
892 }
893 #endif /* !__amd64 */
894
895 /*
896 * general optimization:
897 *
898 * if i and input_len are the same, return now instead
899 * of calling bcopy(), since the bcopy() in this case
900 * will be an expensive noop.
901 */
902
903 if (input_len == i)
904 return;
905
906 buf_index = 0;
907 }
908
909 /* buffer remaining input */
910 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
911 }
912
913
914 /*
915 * SHA2Final()
916 *
917 * purpose: ends an sha2 digest operation, finalizing the message digest and
918 * zeroing the context.
919 * input: uchar_t * : a buffer to store the digest
920 * : The function actually uses void* because many
921 * : callers pass things other than uchar_t here.
922 * SHA2_CTX * : the context to finalize, save, and zero
923 * output: void
924 */
925
926 void
SHA2Final(void * digest,SHA2_CTX * ctx)927 SHA2Final(void *digest, SHA2_CTX *ctx)
928 {
929 uint8_t bitcount_be[sizeof (ctx->count.c32)];
930 uint8_t bitcount_be64[sizeof (ctx->count.c64)];
931 uint32_t index;
932 uint32_t algotype = ctx->algotype;
933
934 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
935 index = (ctx->count.c32[1] >> 3) & 0x3f;
936 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
937 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
938 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
939 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
940 } else {
941 index = (ctx->count.c64[1] >> 3) & 0x7f;
942 Encode64(bitcount_be64, ctx->count.c64,
943 sizeof (bitcount_be64));
944 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
945 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
946 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
947 ctx->state.s64[6] = ctx->state.s64[7] = 0;
948 Encode64(digest, ctx->state.s64,
949 sizeof (uint64_t) * 6);
950 } else if (algotype == SHA512_224_MECH_INFO_TYPE) {
951 uint8_t last[sizeof (uint64_t)];
952 /*
953 * Since SHA-512/224 doesn't align well to 64-bit
954 * boundaries, we must do the encoding in three steps:
955 * 1) encode the three 64-bit words that fit neatly
956 * 2) encode the last 64-bit word to a temp buffer
957 * 3) chop out the lower 32-bits from the temp buffer
958 * and append them to the digest
959 */
960 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
961 Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
962 bcopy(last, (uint8_t *)digest + 24, 4);
963 } else if (algotype == SHA512_256_MECH_INFO_TYPE) {
964 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
965 } else {
966 Encode64(digest, ctx->state.s64,
967 sizeof (ctx->state.s64));
968 }
969 }
970
971 /* zeroize sensitive information */
972 bzero(ctx, sizeof (*ctx));
973 }
974