1 /* 2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 /* 6 * Copyright 2013 Saso Kiselkov. All rights reserved. 7 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 8 */ 9 10 /* 11 * The basic framework for this code came from the reference 12 * implementation for MD5. That implementation is Copyright (C) 13 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 14 * 15 * License to copy and use this software is granted provided that it 16 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 17 * Algorithm" in all material mentioning or referencing this software 18 * or this function. 19 * 20 * License is also granted to make and use derivative works provided 21 * that such works are identified as "derived from the RSA Data 22 * Security, Inc. MD5 Message-Digest Algorithm" in all material 23 * mentioning or referencing the derived work. 24 * 25 * RSA Data Security, Inc. makes no representations concerning either 26 * the merchantability of this software or the suitability of this 27 * software for any particular purpose. It is provided "as is" 28 * without express or implied warranty of any kind. 29 * 30 * These notices must be retained in any copies of any part of this 31 * documentation and/or software. 32 * 33 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 34 * standard, available at 35 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf 36 * Not as fast as one would like -- further optimizations are encouraged 37 * and appreciated. 38 */ 39 40 #ifndef _KERNEL 41 #include <stdint.h> 42 #include <strings.h> 43 #include <stdlib.h> 44 #include <errno.h> 45 #endif /* _KERNEL */ 46 47 #include <sys/types.h> 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/sysmacros.h> 51 #define _SHA2_IMPL 52 #include <sys/sha2.h> 53 #include <sys/sha2_consts.h> 54 55 #ifdef _KERNEL 56 #include <sys/cmn_err.h> 57 58 #else 59 #pragma weak SHA256Update = SHA2Update 60 #pragma weak SHA384Update = SHA2Update 61 #pragma weak SHA512Update = SHA2Update 62 63 #pragma weak SHA256Final = SHA2Final 64 #pragma weak SHA384Final = SHA2Final 65 #pragma weak SHA512Final = SHA2Final 66 67 #endif /* _KERNEL */ 68 69 #ifdef _LITTLE_ENDIAN 70 #include <sys/byteorder.h> 71 #define HAVE_HTONL 72 #endif 73 74 static void Encode(uint8_t *, uint32_t *, size_t); 75 static void Encode64(uint8_t *, uint64_t *, size_t); 76 77 #if defined(__amd64) 78 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1) 79 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1) 80 81 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 82 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 83 84 #else 85 static void SHA256Transform(SHA2_CTX *, const uint8_t *); 86 static void SHA512Transform(SHA2_CTX *, const uint8_t *); 87 #endif /* __amd64 */ 88 89 static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; 90 91 /* Ch and Maj are the basic SHA2 functions. */ 92 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) 93 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) 94 95 /* Rotates x right n bits. */ 96 #define ROTR(x, n) \ 97 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) 98 99 /* Shift x right n bits */ 100 #define SHR(x, n) ((x) >> (n)) 101 102 /* SHA256 Functions */ 103 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) 104 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) 105 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) 106 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) 107 108 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ 109 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ 110 d += T1; \ 111 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ 112 h = T1 + T2 113 114 /* SHA384/512 Functions */ 115 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) 116 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) 117 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) 118 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) 119 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ 120 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ 121 d += T1; \ 122 T2 = BIGSIGMA0(a) + Maj(a, b, c); \ 123 h = T1 + T2 124 125 /* 126 * sparc optimization: 127 * 128 * on the sparc, we can load big endian 32-bit data easily. note that 129 * special care must be taken to ensure the address is 32-bit aligned. 130 * in the interest of speed, we don't check to make sure, since 131 * careful programming can guarantee this for us. 132 */ 133 134 #if defined(_BIG_ENDIAN) 135 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 136 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) 137 138 #elif defined(HAVE_HTONL) 139 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) 140 #define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr))) 141 142 #else 143 /* little endian -- will work on big endian, but slowly */ 144 #define LOAD_BIG_32(addr) \ 145 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 146 #define LOAD_BIG_64(addr) \ 147 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ 148 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ 149 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ 150 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) 151 #endif /* _BIG_ENDIAN */ 152 153 154 #if !defined(__amd64) 155 /* SHA256 Transform */ 156 157 static void 158 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) 159 { 160 uint32_t a = ctx->state.s32[0]; 161 uint32_t b = ctx->state.s32[1]; 162 uint32_t c = ctx->state.s32[2]; 163 uint32_t d = ctx->state.s32[3]; 164 uint32_t e = ctx->state.s32[4]; 165 uint32_t f = ctx->state.s32[5]; 166 uint32_t g = ctx->state.s32[6]; 167 uint32_t h = ctx->state.s32[7]; 168 169 uint32_t w0, w1, w2, w3, w4, w5, w6, w7; 170 uint32_t w8, w9, w10, w11, w12, w13, w14, w15; 171 uint32_t T1, T2; 172 173 #if defined(__sparc) 174 static const uint32_t sha256_consts[] = { 175 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, 176 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, 177 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, 178 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, 179 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, 180 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, 181 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, 182 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, 183 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, 184 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, 185 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, 186 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, 187 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, 188 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, 189 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, 190 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, 191 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, 192 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, 193 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, 194 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, 195 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, 196 SHA256_CONST_63 197 }; 198 #endif /* __sparc */ 199 200 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 201 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 202 blk = (uint8_t *)ctx->buf_un.buf32; 203 } 204 205 /* LINTED E_BAD_PTR_CAST_ALIGN */ 206 w0 = LOAD_BIG_32(blk + 4 * 0); 207 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); 208 /* LINTED E_BAD_PTR_CAST_ALIGN */ 209 w1 = LOAD_BIG_32(blk + 4 * 1); 210 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); 211 /* LINTED E_BAD_PTR_CAST_ALIGN */ 212 w2 = LOAD_BIG_32(blk + 4 * 2); 213 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); 214 /* LINTED E_BAD_PTR_CAST_ALIGN */ 215 w3 = LOAD_BIG_32(blk + 4 * 3); 216 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); 217 /* LINTED E_BAD_PTR_CAST_ALIGN */ 218 w4 = LOAD_BIG_32(blk + 4 * 4); 219 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); 220 /* LINTED E_BAD_PTR_CAST_ALIGN */ 221 w5 = LOAD_BIG_32(blk + 4 * 5); 222 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); 223 /* LINTED E_BAD_PTR_CAST_ALIGN */ 224 w6 = LOAD_BIG_32(blk + 4 * 6); 225 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); 226 /* LINTED E_BAD_PTR_CAST_ALIGN */ 227 w7 = LOAD_BIG_32(blk + 4 * 7); 228 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); 229 /* LINTED E_BAD_PTR_CAST_ALIGN */ 230 w8 = LOAD_BIG_32(blk + 4 * 8); 231 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); 232 /* LINTED E_BAD_PTR_CAST_ALIGN */ 233 w9 = LOAD_BIG_32(blk + 4 * 9); 234 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); 235 /* LINTED E_BAD_PTR_CAST_ALIGN */ 236 w10 = LOAD_BIG_32(blk + 4 * 10); 237 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); 238 /* LINTED E_BAD_PTR_CAST_ALIGN */ 239 w11 = LOAD_BIG_32(blk + 4 * 11); 240 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); 241 /* LINTED E_BAD_PTR_CAST_ALIGN */ 242 w12 = LOAD_BIG_32(blk + 4 * 12); 243 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); 244 /* LINTED E_BAD_PTR_CAST_ALIGN */ 245 w13 = LOAD_BIG_32(blk + 4 * 13); 246 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); 247 /* LINTED E_BAD_PTR_CAST_ALIGN */ 248 w14 = LOAD_BIG_32(blk + 4 * 14); 249 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); 250 /* LINTED E_BAD_PTR_CAST_ALIGN */ 251 w15 = LOAD_BIG_32(blk + 4 * 15); 252 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); 253 254 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 255 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); 256 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 257 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); 258 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 259 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); 260 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 261 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); 262 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 263 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); 264 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 265 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); 266 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 267 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); 268 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 269 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); 270 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 271 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); 272 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 273 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); 274 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 275 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); 276 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 277 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); 278 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 279 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); 280 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 281 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); 282 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 283 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); 284 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 285 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); 286 287 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 288 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); 289 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 290 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); 291 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 292 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); 293 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 294 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); 295 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 296 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); 297 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 298 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); 299 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 300 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); 301 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 302 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); 303 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 304 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); 305 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 306 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); 307 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 308 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); 309 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 310 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); 311 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 312 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); 313 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 314 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); 315 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 316 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); 317 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 318 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); 319 320 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 321 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); 322 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 323 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); 324 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 325 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); 326 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 327 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); 328 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 329 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); 330 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 331 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); 332 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 333 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); 334 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 335 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); 336 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 337 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); 338 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 339 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); 340 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 341 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); 342 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 343 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); 344 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 345 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); 346 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 347 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); 348 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 349 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); 350 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 351 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); 352 353 ctx->state.s32[0] += a; 354 ctx->state.s32[1] += b; 355 ctx->state.s32[2] += c; 356 ctx->state.s32[3] += d; 357 ctx->state.s32[4] += e; 358 ctx->state.s32[5] += f; 359 ctx->state.s32[6] += g; 360 ctx->state.s32[7] += h; 361 } 362 363 364 /* SHA384 and SHA512 Transform */ 365 366 static void 367 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) 368 { 369 370 uint64_t a = ctx->state.s64[0]; 371 uint64_t b = ctx->state.s64[1]; 372 uint64_t c = ctx->state.s64[2]; 373 uint64_t d = ctx->state.s64[3]; 374 uint64_t e = ctx->state.s64[4]; 375 uint64_t f = ctx->state.s64[5]; 376 uint64_t g = ctx->state.s64[6]; 377 uint64_t h = ctx->state.s64[7]; 378 379 uint64_t w0, w1, w2, w3, w4, w5, w6, w7; 380 uint64_t w8, w9, w10, w11, w12, w13, w14, w15; 381 uint64_t T1, T2; 382 383 #if defined(__sparc) 384 static const uint64_t sha512_consts[] = { 385 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, 386 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, 387 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, 388 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, 389 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, 390 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, 391 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, 392 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, 393 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, 394 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, 395 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, 396 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, 397 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, 398 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, 399 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, 400 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, 401 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, 402 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, 403 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, 404 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, 405 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, 406 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, 407 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, 408 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, 409 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, 410 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, 411 SHA512_CONST_78, SHA512_CONST_79 412 }; 413 #endif /* __sparc */ 414 415 416 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ 417 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); 418 blk = (uint8_t *)ctx->buf_un.buf64; 419 } 420 421 /* LINTED E_BAD_PTR_CAST_ALIGN */ 422 w0 = LOAD_BIG_64(blk + 8 * 0); 423 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); 424 /* LINTED E_BAD_PTR_CAST_ALIGN */ 425 w1 = LOAD_BIG_64(blk + 8 * 1); 426 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); 427 /* LINTED E_BAD_PTR_CAST_ALIGN */ 428 w2 = LOAD_BIG_64(blk + 8 * 2); 429 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); 430 /* LINTED E_BAD_PTR_CAST_ALIGN */ 431 w3 = LOAD_BIG_64(blk + 8 * 3); 432 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); 433 /* LINTED E_BAD_PTR_CAST_ALIGN */ 434 w4 = LOAD_BIG_64(blk + 8 * 4); 435 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); 436 /* LINTED E_BAD_PTR_CAST_ALIGN */ 437 w5 = LOAD_BIG_64(blk + 8 * 5); 438 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); 439 /* LINTED E_BAD_PTR_CAST_ALIGN */ 440 w6 = LOAD_BIG_64(blk + 8 * 6); 441 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); 442 /* LINTED E_BAD_PTR_CAST_ALIGN */ 443 w7 = LOAD_BIG_64(blk + 8 * 7); 444 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); 445 /* LINTED E_BAD_PTR_CAST_ALIGN */ 446 w8 = LOAD_BIG_64(blk + 8 * 8); 447 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); 448 /* LINTED E_BAD_PTR_CAST_ALIGN */ 449 w9 = LOAD_BIG_64(blk + 8 * 9); 450 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); 451 /* LINTED E_BAD_PTR_CAST_ALIGN */ 452 w10 = LOAD_BIG_64(blk + 8 * 10); 453 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); 454 /* LINTED E_BAD_PTR_CAST_ALIGN */ 455 w11 = LOAD_BIG_64(blk + 8 * 11); 456 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); 457 /* LINTED E_BAD_PTR_CAST_ALIGN */ 458 w12 = LOAD_BIG_64(blk + 8 * 12); 459 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); 460 /* LINTED E_BAD_PTR_CAST_ALIGN */ 461 w13 = LOAD_BIG_64(blk + 8 * 13); 462 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); 463 /* LINTED E_BAD_PTR_CAST_ALIGN */ 464 w14 = LOAD_BIG_64(blk + 8 * 14); 465 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); 466 /* LINTED E_BAD_PTR_CAST_ALIGN */ 467 w15 = LOAD_BIG_64(blk + 8 * 15); 468 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); 469 470 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 471 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); 472 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 473 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); 474 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 475 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); 476 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 477 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); 478 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 479 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); 480 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 481 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); 482 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 483 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); 484 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 485 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); 486 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 487 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); 488 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 489 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); 490 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 491 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); 492 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 493 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); 494 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 495 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); 496 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 497 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); 498 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 499 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); 500 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 501 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); 502 503 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 504 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); 505 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 506 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); 507 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 508 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); 509 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 510 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); 511 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 512 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); 513 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 514 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); 515 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 516 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); 517 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 518 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); 519 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 520 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); 521 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 522 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); 523 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 524 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); 525 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 526 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); 527 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 528 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); 529 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 530 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); 531 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 532 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); 533 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 534 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); 535 536 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 537 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); 538 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 539 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); 540 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 541 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); 542 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 543 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); 544 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 545 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); 546 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 547 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); 548 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 549 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); 550 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 551 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); 552 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 553 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); 554 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 555 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); 556 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 557 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); 558 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 559 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); 560 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 561 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); 562 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 563 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); 564 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 565 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); 566 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 567 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); 568 569 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 570 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); 571 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 572 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); 573 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 574 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); 575 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 576 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); 577 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 578 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); 579 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 580 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); 581 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 582 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); 583 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 584 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); 585 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 586 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); 587 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 588 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); 589 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 590 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); 591 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 592 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); 593 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 594 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); 595 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 596 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); 597 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 598 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); 599 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 600 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); 601 602 ctx->state.s64[0] += a; 603 ctx->state.s64[1] += b; 604 ctx->state.s64[2] += c; 605 ctx->state.s64[3] += d; 606 ctx->state.s64[4] += e; 607 ctx->state.s64[5] += f; 608 ctx->state.s64[6] += g; 609 ctx->state.s64[7] += h; 610 611 } 612 #endif /* !__amd64 */ 613 614 615 /* 616 * Encode() 617 * 618 * purpose: to convert a list of numbers from little endian to big endian 619 * input: uint8_t * : place to store the converted big endian numbers 620 * uint32_t * : place to get numbers to convert from 621 * size_t : the length of the input in bytes 622 * output: void 623 */ 624 625 static void 626 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, 627 size_t len) 628 { 629 size_t i, j; 630 631 #if defined(__sparc) 632 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 633 for (i = 0, j = 0; j < len; i++, j += 4) { 634 /* LINTED E_BAD_PTR_CAST_ALIGN */ 635 *((uint32_t *)(output + j)) = input[i]; 636 } 637 } else { 638 #endif /* little endian -- will work on big endian, but slowly */ 639 for (i = 0, j = 0; j < len; i++, j += 4) { 640 output[j] = (input[i] >> 24) & 0xff; 641 output[j + 1] = (input[i] >> 16) & 0xff; 642 output[j + 2] = (input[i] >> 8) & 0xff; 643 output[j + 3] = input[i] & 0xff; 644 } 645 #if defined(__sparc) 646 } 647 #endif 648 } 649 650 static void 651 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input, 652 size_t len) 653 { 654 size_t i, j; 655 656 #if defined(__sparc) 657 if (IS_P2ALIGNED(output, sizeof (uint64_t))) { 658 for (i = 0, j = 0; j < len; i++, j += 8) { 659 /* LINTED E_BAD_PTR_CAST_ALIGN */ 660 *((uint64_t *)(output + j)) = input[i]; 661 } 662 } else { 663 #endif /* little endian -- will work on big endian, but slowly */ 664 for (i = 0, j = 0; j < len; i++, j += 8) { 665 666 output[j] = (input[i] >> 56) & 0xff; 667 output[j + 1] = (input[i] >> 48) & 0xff; 668 output[j + 2] = (input[i] >> 40) & 0xff; 669 output[j + 3] = (input[i] >> 32) & 0xff; 670 output[j + 4] = (input[i] >> 24) & 0xff; 671 output[j + 5] = (input[i] >> 16) & 0xff; 672 output[j + 6] = (input[i] >> 8) & 0xff; 673 output[j + 7] = input[i] & 0xff; 674 } 675 #if defined(__sparc) 676 } 677 #endif 678 } 679 680 681 void 682 SHA2Init(uint64_t mech, SHA2_CTX *ctx) 683 { 684 685 switch (mech) { 686 case SHA256_MECH_INFO_TYPE: 687 case SHA256_HMAC_MECH_INFO_TYPE: 688 case SHA256_HMAC_GEN_MECH_INFO_TYPE: 689 ctx->state.s32[0] = 0x6a09e667U; 690 ctx->state.s32[1] = 0xbb67ae85U; 691 ctx->state.s32[2] = 0x3c6ef372U; 692 ctx->state.s32[3] = 0xa54ff53aU; 693 ctx->state.s32[4] = 0x510e527fU; 694 ctx->state.s32[5] = 0x9b05688cU; 695 ctx->state.s32[6] = 0x1f83d9abU; 696 ctx->state.s32[7] = 0x5be0cd19U; 697 break; 698 case SHA384_MECH_INFO_TYPE: 699 case SHA384_HMAC_MECH_INFO_TYPE: 700 case SHA384_HMAC_GEN_MECH_INFO_TYPE: 701 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; 702 ctx->state.s64[1] = 0x629a292a367cd507ULL; 703 ctx->state.s64[2] = 0x9159015a3070dd17ULL; 704 ctx->state.s64[3] = 0x152fecd8f70e5939ULL; 705 ctx->state.s64[4] = 0x67332667ffc00b31ULL; 706 ctx->state.s64[5] = 0x8eb44a8768581511ULL; 707 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; 708 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; 709 break; 710 case SHA512_MECH_INFO_TYPE: 711 case SHA512_HMAC_MECH_INFO_TYPE: 712 case SHA512_HMAC_GEN_MECH_INFO_TYPE: 713 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; 714 ctx->state.s64[1] = 0xbb67ae8584caa73bULL; 715 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; 716 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; 717 ctx->state.s64[4] = 0x510e527fade682d1ULL; 718 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; 719 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; 720 ctx->state.s64[7] = 0x5be0cd19137e2179ULL; 721 break; 722 case SHA512_224_MECH_INFO_TYPE: 723 ctx->state.s64[0] = 0x8C3D37C819544DA2ULL; 724 ctx->state.s64[1] = 0x73E1996689DCD4D6ULL; 725 ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL; 726 ctx->state.s64[3] = 0x679DD514582F9FCFULL; 727 ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL; 728 ctx->state.s64[5] = 0x77E36F7304C48942ULL; 729 ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL; 730 ctx->state.s64[7] = 0x1112E6AD91D692A1ULL; 731 break; 732 case SHA512_256_MECH_INFO_TYPE: 733 ctx->state.s64[0] = 0x22312194FC2BF72CULL; 734 ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL; 735 ctx->state.s64[2] = 0x2393B86B6F53B151ULL; 736 ctx->state.s64[3] = 0x963877195940EABDULL; 737 ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL; 738 ctx->state.s64[5] = 0xBE5E1E2553863992ULL; 739 ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL; 740 ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL; 741 break; 742 #ifdef _KERNEL 743 default: 744 cmn_err(CE_PANIC, 745 "sha2_init: failed to find a supported algorithm: 0x%x", 746 (uint32_t)mech); 747 748 #endif /* _KERNEL */ 749 } 750 751 ctx->algotype = (uint32_t)mech; 752 ctx->count.c64[0] = ctx->count.c64[1] = 0; 753 } 754 755 #ifndef _KERNEL 756 757 #pragma inline(SHA256Init, SHA384Init, SHA512Init) 758 void 759 SHA256Init(SHA256_CTX *ctx) 760 { 761 SHA2Init(SHA256, ctx); 762 } 763 764 void 765 SHA384Init(SHA384_CTX *ctx) 766 { 767 SHA2Init(SHA384, ctx); 768 } 769 770 void 771 SHA512Init(SHA512_CTX *ctx) 772 { 773 SHA2Init(SHA512, ctx); 774 } 775 776 #endif /* _KERNEL */ 777 778 /* 779 * SHA2Update() 780 * 781 * purpose: continues an sha2 digest operation, using the message block 782 * to update the context. 783 * input: SHA2_CTX * : the context to update 784 * void * : the message block 785 * size_t : the length of the message block, in bytes 786 * output: void 787 */ 788 789 void 790 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) 791 { 792 size_t i, buf_index, buf_len, buf_limit; 793 const uint8_t *input = inptr; 794 uint32_t algotype = ctx->algotype; 795 #if defined(__amd64) 796 size_t block_count; 797 #endif /* !__amd64 */ 798 799 800 /* check for noop */ 801 if (input_len == 0) 802 return; 803 804 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 805 /* 806 * Extract low 32 bits of input_len; when we adjust 807 * count.c32[0] we must fold in the carry from the 808 * addition of the low bits along with the nonzero 809 * upper bits (if any) from input_len. 810 */ 811 uint32_t il = input_len & UINT32_MAX; 812 813 il = il << 3; 814 buf_limit = 64; 815 816 /* compute number of bytes mod 64 */ 817 buf_index = (ctx->count.c32[1] >> 3) & 0x3F; 818 819 /* update number of bits */ 820 if ((ctx->count.c32[1] += il) < il) 821 ctx->count.c32[0]++; 822 823 ctx->count.c32[0] += (input_len >> 29); 824 825 } else { 826 uint64_t il = input_len; 827 828 il = il << 3; 829 buf_limit = 128; 830 831 /* compute number of bytes mod 128 */ 832 buf_index = (ctx->count.c64[1] >> 3) & 0x7F; 833 834 /* update number of bits */ 835 if ((ctx->count.c64[1] += il) < il) 836 ctx->count.c64[0]++; 837 838 ctx->count.c64[0] += ((uintmax_t)input_len >> 61); 839 } 840 841 buf_len = buf_limit - buf_index; 842 843 /* transform as many times as possible */ 844 i = 0; 845 if (input_len >= buf_len) { 846 847 /* 848 * general optimization: 849 * 850 * only do initial bcopy() and SHA2Transform() if 851 * buf_index != 0. if buf_index == 0, we're just 852 * wasting our time doing the bcopy() since there 853 * wasn't any data left over from a previous call to 854 * SHA2Update(). 855 */ 856 if (buf_index) { 857 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 858 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) 859 SHA256Transform(ctx, ctx->buf_un.buf8); 860 else 861 SHA512Transform(ctx, ctx->buf_un.buf8); 862 863 i = buf_len; 864 } 865 866 #if !defined(__amd64) 867 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 868 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 869 SHA256Transform(ctx, &input[i]); 870 } 871 } else { 872 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 873 SHA512Transform(ctx, &input[i]); 874 } 875 } 876 877 #else 878 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 879 block_count = (input_len - i) >> 6; 880 if (block_count > 0) { 881 SHA256TransformBlocks(ctx, &input[i], 882 block_count); 883 i += block_count << 6; 884 } 885 } else { 886 block_count = (input_len - i) >> 7; 887 if (block_count > 0) { 888 SHA512TransformBlocks(ctx, &input[i], 889 block_count); 890 i += block_count << 7; 891 } 892 } 893 #endif /* !__amd64 */ 894 895 /* 896 * general optimization: 897 * 898 * if i and input_len are the same, return now instead 899 * of calling bcopy(), since the bcopy() in this case 900 * will be an expensive noop. 901 */ 902 903 if (input_len == i) 904 return; 905 906 buf_index = 0; 907 } 908 909 /* buffer remaining input */ 910 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 911 } 912 913 914 /* 915 * SHA2Final() 916 * 917 * purpose: ends an sha2 digest operation, finalizing the message digest and 918 * zeroing the context. 919 * input: uchar_t * : a buffer to store the digest 920 * : The function actually uses void* because many 921 * : callers pass things other than uchar_t here. 922 * SHA2_CTX * : the context to finalize, save, and zero 923 * output: void 924 */ 925 926 void 927 SHA2Final(void *digest, SHA2_CTX *ctx) 928 { 929 uint8_t bitcount_be[sizeof (ctx->count.c32)]; 930 uint8_t bitcount_be64[sizeof (ctx->count.c64)]; 931 uint32_t index; 932 uint32_t algotype = ctx->algotype; 933 934 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 935 index = (ctx->count.c32[1] >> 3) & 0x3f; 936 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); 937 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 938 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); 939 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); 940 } else { 941 index = (ctx->count.c64[1] >> 3) & 0x7f; 942 Encode64(bitcount_be64, ctx->count.c64, 943 sizeof (bitcount_be64)); 944 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); 945 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); 946 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { 947 ctx->state.s64[6] = ctx->state.s64[7] = 0; 948 Encode64(digest, ctx->state.s64, 949 sizeof (uint64_t) * 6); 950 } else if (algotype == SHA512_224_MECH_INFO_TYPE) { 951 uint8_t last[sizeof (uint64_t)]; 952 /* 953 * Since SHA-512/224 doesn't align well to 64-bit 954 * boundaries, we must do the encoding in three steps: 955 * 1) encode the three 64-bit words that fit neatly 956 * 2) encode the last 64-bit word to a temp buffer 957 * 3) chop out the lower 32-bits from the temp buffer 958 * and append them to the digest 959 */ 960 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3); 961 Encode64(last, &ctx->state.s64[3], sizeof (uint64_t)); 962 bcopy(last, (uint8_t *)digest + 24, 4); 963 } else if (algotype == SHA512_256_MECH_INFO_TYPE) { 964 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4); 965 } else { 966 Encode64(digest, ctx->state.s64, 967 sizeof (ctx->state.s64)); 968 } 969 } 970 971 /* zeroize sensitive information */ 972 bzero(ctx, sizeof (*ctx)); 973 } 974