1 /* 2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * The basic framework for this code came from the reference 8 * implementation for MD5. That implementation is Copyright (C) 9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 10 * 11 * License to copy and use this software is granted provided that it 12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 13 * Algorithm" in all material mentioning or referencing this software 14 * or this function. 15 * 16 * License is also granted to make and use derivative works provided 17 * that such works are identified as "derived from the RSA Data 18 * Security, Inc. MD5 Message-Digest Algorithm" in all material 19 * mentioning or referencing the derived work. 20 * 21 * RSA Data Security, Inc. makes no representations concerning either 22 * the merchantability of this software or the suitability of this 23 * software for any particular purpose. It is provided "as is" 24 * without express or implied warranty of any kind. 25 * 26 * These notices must be retained in any copies of any part of this 27 * documentation and/or software. 28 * 29 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 30 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm 31 * Not as fast as one would like -- further optimizations are encouraged 32 * and appreciated. 33 */ 34 35 #if defined(_STANDALONE) 36 #include <sys/cdefs.h> 37 #include <stdint.h> 38 #define _RESTRICT_KYWD restrict 39 #else 40 #if !defined(_KERNEL) && !defined(_BOOT) 41 #include <stdint.h> 42 #include <strings.h> 43 #include <stdlib.h> 44 #include <errno.h> 45 #include <sys/systeminfo.h> 46 #endif /* !_KERNEL && !_BOOT */ 47 #endif /* _STANDALONE */ 48 49 #include <sys/types.h> 50 #if !defined(_STANDALONE) 51 #include <sys/inttypes.h> 52 #endif 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/sysmacros.h> 56 #include <sys/sha1.h> 57 #include <sys/sha1_consts.h> 58 59 #if defined(_STANDALONE) 60 #include <sys/endian.h> 61 #define HAVE_HTONL 62 #if _BYTE_ORDER == _LITTLE_ENDIAN 63 #undef _BIG_ENDIAN 64 #else 65 #undef _LITTLE_ENDIAN 66 #endif 67 #else 68 #ifdef _LITTLE_ENDIAN 69 #include <sys/byteorder.h> 70 #define HAVE_HTONL 71 #endif 72 #endif /* _STANDALONE */ 73 74 #ifdef _BOOT 75 #define bcopy(_s, _d, _l) ((void) memcpy((_d), (_s), (_l))) 76 #define bzero(_m, _l) ((void) memset((_m), 0, (_l))) 77 #endif 78 79 static void Encode(uint8_t *, const uint32_t *, size_t); 80 81 #if defined(__sparc) 82 83 #define SHA1_TRANSFORM(ctx, in) \ 84 SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \ 85 (ctx)->state[3], (ctx)->state[4], (ctx), (in)) 86 87 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, 88 SHA1_CTX *, const uint8_t [64]); 89 90 #elif defined(__amd64) 91 92 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) 93 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ 94 (in), (num)) 95 96 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); 97 98 #else 99 100 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) 101 102 static void SHA1Transform(SHA1_CTX *, const uint8_t [64]); 103 104 #endif 105 106 107 static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; 108 109 /* 110 * F, G, and H are the basic SHA1 functions. 111 */ 112 #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) 113 #define G(b, c, d) ((b) ^ (c) ^ (d)) 114 #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) 115 116 /* 117 * SHA1Init() 118 * 119 * purpose: initializes the sha1 context and begins and sha1 digest operation 120 * input: SHA1_CTX * : the context to initializes. 121 * output: void 122 */ 123 124 void 125 SHA1Init(SHA1_CTX *ctx) 126 { 127 ctx->count[0] = ctx->count[1] = 0; 128 129 /* 130 * load magic initialization constants. Tell lint 131 * that these constants are unsigned by using U. 132 */ 133 134 ctx->state[0] = 0x67452301U; 135 ctx->state[1] = 0xefcdab89U; 136 ctx->state[2] = 0x98badcfeU; 137 ctx->state[3] = 0x10325476U; 138 ctx->state[4] = 0xc3d2e1f0U; 139 } 140 141 #ifdef VIS_SHA1 142 #ifdef _KERNEL 143 144 #include <sys/regset.h> 145 #include <sys/vis.h> 146 #include <sys/fpu/fpusystm.h> 147 148 /* the alignment for block stores to save fp registers */ 149 #define VIS_ALIGN (64) 150 151 extern int sha1_savefp(kfpu_t *, int); 152 extern void sha1_restorefp(kfpu_t *); 153 154 uint32_t vis_sha1_svfp_threshold = 128; 155 156 #endif /* _KERNEL */ 157 158 /* 159 * VIS SHA-1 consts. 160 */ 161 static uint64_t VIS[] = { 162 0x8000000080000000ULL, 163 0x0002000200020002ULL, 164 0x5a8279996ed9eba1ULL, 165 0x8f1bbcdcca62c1d6ULL, 166 0x012389ab456789abULL}; 167 168 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *); 169 170 171 /* 172 * SHA1Update() 173 * 174 * purpose: continues an sha1 digest operation, using the message block 175 * to update the context. 176 * input: SHA1_CTX * : the context to update 177 * void * : the message block 178 * size_t : the length of the message block in bytes 179 * output: void 180 */ 181 182 void 183 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) 184 { 185 size_t i, buf_index, buf_len; 186 uint64_t X0[40], input64[8]; 187 const uint8_t *input = inptr; 188 uint32_t il; 189 #ifdef _KERNEL 190 int usevis = 0; 191 #else 192 int usevis = 1; 193 #endif /* _KERNEL */ 194 195 /* check for noop */ 196 if (input_len == 0) 197 return; 198 199 /* compute number of bytes mod 64 */ 200 buf_index = (ctx->count[1] >> 3) & 0x3F; 201 202 /* 203 * Extract low 32 bits of input_len; when we adjust 204 * count[0] we must fold in the carry from the 205 * addition of the low bits along with the nonzero 206 * upper bits (if any) from input_len. 207 */ 208 il = input_len & UINT32_MAX; 209 il = il << 3; 210 211 /* update number of bits */ 212 if ((ctx->count[1] += il) < il) 213 ctx->count[0]++; 214 215 ctx->count[0] += (input_len >> 29); 216 217 buf_len = 64 - buf_index; 218 219 /* transform as many times as possible */ 220 i = 0; 221 if (input_len >= buf_len) { 222 #ifdef _KERNEL 223 kfpu_t *fpu; 224 if (fpu_exists) { 225 uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN]; 226 size_t len = (input_len + buf_index) & ~0x3f; 227 int svfp_ok; 228 229 fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64); 230 svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0); 231 usevis = fpu_exists && sha1_savefp(fpu, svfp_ok); 232 } else { 233 usevis = 0; 234 } 235 #endif /* _KERNEL */ 236 237 /* 238 * general optimization: 239 * 240 * only do initial bcopy() and SHA1Transform() if 241 * buf_index != 0. if buf_index == 0, we're just 242 * wasting our time doing the bcopy() since there 243 * wasn't any data left over from a previous call to 244 * SHA1Update(). 245 */ 246 247 if (buf_index) { 248 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 249 if (usevis) { 250 SHA1TransformVIS(X0, 251 ctx->buf_un.buf32, 252 &ctx->state[0], VIS); 253 } else { 254 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); 255 } 256 i = buf_len; 257 } 258 259 /* 260 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate 261 * SHA-1 processing. This is achieved by "offloading" the 262 * computation of the message schedule (MS) to the VIS units. 263 * This allows the VIS computation of the message schedule 264 * to be performed in parallel with the standard integer 265 * processing of the remainder of the SHA-1 computation. 266 * performance by up to around 1.37X, compared to an optimized 267 * integer-only implementation. 268 * 269 * The VIS implementation of SHA1Transform has a different API 270 * to the standard integer version: 271 * 272 * void SHA1TransformVIS( 273 * uint64_t *, // Pointer to MS for ith block 274 * uint32_t *, // Pointer to ith block of message data 275 * uint32_t *, // Pointer to SHA state i.e ctx->state 276 * uint64_t *, // Pointer to various VIS constants 277 * ) 278 * 279 * Note: the message data must by 4-byte aligned. 280 * 281 * Function requires VIS 1.0 support. 282 * 283 * Handling is provided to deal with arbitrary byte alingment 284 * of the input data but the performance gains are reduced 285 * for alignments other than 4-bytes. 286 */ 287 if (usevis) { 288 if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) { 289 /* 290 * Main processing loop - input misaligned 291 */ 292 for (; i + 63 < input_len; i += 64) { 293 bcopy(&input[i], input64, 64); 294 SHA1TransformVIS(X0, 295 (uint32_t *)input64, 296 &ctx->state[0], VIS); 297 } 298 } else { 299 /* 300 * Main processing loop - input 8-byte aligned 301 */ 302 for (; i + 63 < input_len; i += 64) { 303 SHA1TransformVIS(X0, 304 /* LINTED E_BAD_PTR_CAST_ALIGN */ 305 (uint32_t *)&input[i], /* CSTYLED */ 306 &ctx->state[0], VIS); 307 } 308 309 } 310 #ifdef _KERNEL 311 sha1_restorefp(fpu); 312 #endif /* _KERNEL */ 313 } else { 314 for (; i + 63 < input_len; i += 64) { 315 SHA1_TRANSFORM(ctx, &input[i]); 316 } 317 } 318 319 /* 320 * general optimization: 321 * 322 * if i and input_len are the same, return now instead 323 * of calling bcopy(), since the bcopy() in this case 324 * will be an expensive nop. 325 */ 326 327 if (input_len == i) 328 return; 329 330 buf_index = 0; 331 } 332 333 /* buffer remaining input */ 334 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 335 } 336 337 #else /* VIS_SHA1 */ 338 339 void 340 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) 341 { 342 size_t i, buf_index, buf_len; 343 const uint8_t *input = inptr; 344 uint32_t il; 345 #if defined(__amd64) 346 size_t block_count; 347 #endif /* __amd64 */ 348 349 /* check for noop */ 350 if (input_len == 0) 351 return; 352 353 /* compute number of bytes mod 64 */ 354 buf_index = (ctx->count[1] >> 3) & 0x3F; 355 356 /* 357 * Extract low 32 bits of input_len; when we adjust 358 * count[0] we must fold in the carry from the 359 * addition of the low bits along with the nonzero 360 * upper bits (if any) from input_len. 361 */ 362 il = input_len & UINT32_MAX; 363 il = il << 3; 364 365 /* update number of bits */ 366 if ((ctx->count[1] += il) < il) 367 ctx->count[0]++; 368 369 ctx->count[0] += (input_len >> 29); 370 371 buf_len = 64 - buf_index; 372 373 /* transform as many times as possible */ 374 i = 0; 375 if (input_len >= buf_len) { 376 377 /* 378 * general optimization: 379 * 380 * only do initial bcopy() and SHA1Transform() if 381 * buf_index != 0. if buf_index == 0, we're just 382 * wasting our time doing the bcopy() since there 383 * wasn't any data left over from a previous call to 384 * SHA1Update(). 385 */ 386 387 if (buf_index) { 388 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 389 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); 390 i = buf_len; 391 } 392 393 #if !defined(__amd64) 394 for (; i + 63 < input_len; i += 64) 395 SHA1_TRANSFORM(ctx, &input[i]); 396 #else 397 block_count = (input_len - i) >> 6; 398 if (block_count > 0) { 399 SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); 400 i += block_count << 6; 401 } 402 #endif /* !__amd64 */ 403 404 /* 405 * general optimization: 406 * 407 * if i and input_len are the same, return now instead 408 * of calling bcopy(), since the bcopy() in this case 409 * will be an expensive nop. 410 */ 411 412 if (input_len == i) 413 return; 414 415 buf_index = 0; 416 } 417 418 /* buffer remaining input */ 419 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 420 } 421 422 #endif /* VIS_SHA1 */ 423 424 /* 425 * SHA1Final() 426 * 427 * purpose: ends an sha1 digest operation, finalizing the message digest and 428 * zeroing the context. 429 * input: uchar_t * : A buffer to store the digest. 430 * : The function actually uses void* because many 431 * : callers pass things other than uchar_t here. 432 * SHA1_CTX * : the context to finalize, save, and zero 433 * output: void 434 */ 435 436 void 437 SHA1Final(void *digest, SHA1_CTX *ctx) 438 { 439 uint8_t bitcount_be[sizeof (ctx->count)]; 440 uint32_t index = (ctx->count[1] >> 3) & 0x3f; 441 442 /* store bit count, big endian */ 443 Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); 444 445 /* pad out to 56 mod 64 */ 446 SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 447 448 /* append length (before padding) */ 449 SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); 450 451 /* store state in digest */ 452 Encode(digest, ctx->state, sizeof (ctx->state)); 453 454 /* zeroize sensitive information */ 455 bzero(ctx, sizeof (*ctx)); 456 } 457 458 459 #if !defined(__amd64) 460 461 /* 462 * ROTATE_LEFT rotates x left n bits. 463 */ 464 465 #if defined(__GNUC__) && defined(_LP64) 466 static __inline__ uint64_t 467 ROTATE_LEFT(uint64_t value, uint32_t n) 468 { 469 uint32_t t32; 470 471 t32 = (uint32_t)value; 472 return ((t32 << n) | (t32 >> (32 - n))); 473 } 474 475 #else 476 #define ROTATE_LEFT(x, n) \ 477 (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) 478 #endif 479 480 typedef uint32_t sha1word; 481 482 /* 483 * sparc optimization: 484 * 485 * on the sparc, we can load big endian 32-bit data easily. note that 486 * special care must be taken to ensure the address is 32-bit aligned. 487 * in the interest of speed, we don't check to make sure, since 488 * careful programming can guarantee this for us. 489 */ 490 491 #if defined(_BIG_ENDIAN) 492 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 493 494 #elif defined(HAVE_HTONL) 495 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) 496 497 #else 498 /* little endian -- will work on big endian, but slowly */ 499 #define LOAD_BIG_32(addr) \ 500 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 501 #endif /* _BIG_ENDIAN */ 502 503 /* 504 * SHA1Transform() 505 */ 506 #if defined(W_ARRAY) 507 #define W(n) w[n] 508 #else /* !defined(W_ARRAY) */ 509 #define W(n) w_ ## n 510 #endif /* !defined(W_ARRAY) */ 511 512 513 #if defined(__sparc) 514 515 /* 516 * sparc register window optimization: 517 * 518 * `a', `b', `c', `d', and `e' are passed into SHA1Transform 519 * explicitly since it increases the number of registers available to 520 * the compiler. under this scheme, these variables can be held in 521 * %i0 - %i4, which leaves more local and out registers available. 522 * 523 * purpose: sha1 transformation -- updates the digest based on `block' 524 * input: uint32_t : bytes 1 - 4 of the digest 525 * uint32_t : bytes 5 - 8 of the digest 526 * uint32_t : bytes 9 - 12 of the digest 527 * uint32_t : bytes 12 - 16 of the digest 528 * uint32_t : bytes 16 - 20 of the digest 529 * SHA1_CTX * : the context to update 530 * uint8_t [64]: the block to use to update the digest 531 * output: void 532 */ 533 534 void 535 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, 536 SHA1_CTX *ctx, const uint8_t blk[64]) 537 { 538 /* 539 * sparc optimization: 540 * 541 * while it is somewhat counter-intuitive, on sparc, it is 542 * more efficient to place all the constants used in this 543 * function in an array and load the values out of the array 544 * than to manually load the constants. this is because 545 * setting a register to a 32-bit value takes two ops in most 546 * cases: a `sethi' and an `or', but loading a 32-bit value 547 * from memory only takes one `ld' (or `lduw' on v9). while 548 * this increases memory usage, the compiler can find enough 549 * other things to do while waiting to keep the pipeline does 550 * not stall. additionally, it is likely that many of these 551 * constants are cached so that later accesses do not even go 552 * out to the bus. 553 * 554 * this array is declared `static' to keep the compiler from 555 * having to bcopy() this array onto the stack frame of 556 * SHA1Transform() each time it is called -- which is 557 * unacceptably expensive. 558 * 559 * the `const' is to ensure that callers are good citizens and 560 * do not try to munge the array. since these routines are 561 * going to be called from inside multithreaded kernelland, 562 * this is a good safety check. -- `sha1_consts' will end up in 563 * .rodata. 564 * 565 * unfortunately, loading from an array in this manner hurts 566 * performance under Intel. So, there is a macro, 567 * SHA1_CONST(), used in SHA1Transform(), that either expands to 568 * a reference to this array, or to the actual constant, 569 * depending on what platform this code is compiled for. 570 */ 571 572 static const uint32_t sha1_consts[] = { 573 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3 574 }; 575 576 /* 577 * general optimization: 578 * 579 * use individual integers instead of using an array. this is a 580 * win, although the amount it wins by seems to vary quite a bit. 581 */ 582 583 uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; 584 uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 585 586 /* 587 * sparc optimization: 588 * 589 * if `block' is already aligned on a 4-byte boundary, use 590 * LOAD_BIG_32() directly. otherwise, bcopy() into a 591 * buffer that *is* aligned on a 4-byte boundary and then do 592 * the LOAD_BIG_32() on that buffer. benchmarks have shown 593 * that using the bcopy() is better than loading the bytes 594 * individually and doing the endian-swap by hand. 595 * 596 * even though it's quite tempting to assign to do: 597 * 598 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32)); 599 * 600 * and only have one set of LOAD_BIG_32()'s, the compiler 601 * *does not* like that, so please resist the urge. 602 */ 603 604 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 605 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 606 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15); 607 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14); 608 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13); 609 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12); 610 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11); 611 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10); 612 w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9); 613 w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8); 614 w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7); 615 w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6); 616 w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5); 617 w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4); 618 w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3); 619 w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2); 620 w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1); 621 w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0); 622 } else { 623 /* LINTED E_BAD_PTR_CAST_ALIGN */ 624 w_15 = LOAD_BIG_32(blk + 60); 625 /* LINTED E_BAD_PTR_CAST_ALIGN */ 626 w_14 = LOAD_BIG_32(blk + 56); 627 /* LINTED E_BAD_PTR_CAST_ALIGN */ 628 w_13 = LOAD_BIG_32(blk + 52); 629 /* LINTED E_BAD_PTR_CAST_ALIGN */ 630 w_12 = LOAD_BIG_32(blk + 48); 631 /* LINTED E_BAD_PTR_CAST_ALIGN */ 632 w_11 = LOAD_BIG_32(blk + 44); 633 /* LINTED E_BAD_PTR_CAST_ALIGN */ 634 w_10 = LOAD_BIG_32(blk + 40); 635 /* LINTED E_BAD_PTR_CAST_ALIGN */ 636 w_9 = LOAD_BIG_32(blk + 36); 637 /* LINTED E_BAD_PTR_CAST_ALIGN */ 638 w_8 = LOAD_BIG_32(blk + 32); 639 /* LINTED E_BAD_PTR_CAST_ALIGN */ 640 w_7 = LOAD_BIG_32(blk + 28); 641 /* LINTED E_BAD_PTR_CAST_ALIGN */ 642 w_6 = LOAD_BIG_32(blk + 24); 643 /* LINTED E_BAD_PTR_CAST_ALIGN */ 644 w_5 = LOAD_BIG_32(blk + 20); 645 /* LINTED E_BAD_PTR_CAST_ALIGN */ 646 w_4 = LOAD_BIG_32(blk + 16); 647 /* LINTED E_BAD_PTR_CAST_ALIGN */ 648 w_3 = LOAD_BIG_32(blk + 12); 649 /* LINTED E_BAD_PTR_CAST_ALIGN */ 650 w_2 = LOAD_BIG_32(blk + 8); 651 /* LINTED E_BAD_PTR_CAST_ALIGN */ 652 w_1 = LOAD_BIG_32(blk + 4); 653 /* LINTED E_BAD_PTR_CAST_ALIGN */ 654 w_0 = LOAD_BIG_32(blk + 0); 655 } 656 #else /* !defined(__sparc) */ 657 658 void /* CSTYLED */ 659 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) 660 { 661 /* CSTYLED */ 662 sha1word a = ctx->state[0]; 663 sha1word b = ctx->state[1]; 664 sha1word c = ctx->state[2]; 665 sha1word d = ctx->state[3]; 666 sha1word e = ctx->state[4]; 667 668 #if defined(W_ARRAY) 669 sha1word w[16]; 670 #else /* !defined(W_ARRAY) */ 671 sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; 672 sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 673 #endif /* !defined(W_ARRAY) */ 674 675 W(0) = LOAD_BIG_32((void *)(blk + 0)); 676 W(1) = LOAD_BIG_32((void *)(blk + 4)); 677 W(2) = LOAD_BIG_32((void *)(blk + 8)); 678 W(3) = LOAD_BIG_32((void *)(blk + 12)); 679 W(4) = LOAD_BIG_32((void *)(blk + 16)); 680 W(5) = LOAD_BIG_32((void *)(blk + 20)); 681 W(6) = LOAD_BIG_32((void *)(blk + 24)); 682 W(7) = LOAD_BIG_32((void *)(blk + 28)); 683 W(8) = LOAD_BIG_32((void *)(blk + 32)); 684 W(9) = LOAD_BIG_32((void *)(blk + 36)); 685 W(10) = LOAD_BIG_32((void *)(blk + 40)); 686 W(11) = LOAD_BIG_32((void *)(blk + 44)); 687 W(12) = LOAD_BIG_32((void *)(blk + 48)); 688 W(13) = LOAD_BIG_32((void *)(blk + 52)); 689 W(14) = LOAD_BIG_32((void *)(blk + 56)); 690 W(15) = LOAD_BIG_32((void *)(blk + 60)); 691 692 #endif /* !defined(__sparc) */ 693 694 /* 695 * general optimization: 696 * 697 * even though this approach is described in the standard as 698 * being slower algorithmically, it is 30-40% faster than the 699 * "faster" version under SPARC, because this version has more 700 * of the constraints specified at compile-time and uses fewer 701 * variables (and therefore has better register utilization) 702 * than its "speedier" brother. (i've tried both, trust me) 703 * 704 * for either method given in the spec, there is an "assignment" 705 * phase where the following takes place: 706 * 707 * tmp = (main_computation); 708 * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; 709 * 710 * we can make the algorithm go faster by not doing this work, 711 * but just pretending that `d' is now `e', etc. this works 712 * really well and obviates the need for a temporary variable. 713 * however, we still explicitly perform the rotate action, 714 * since it is cheaper on SPARC to do it once than to have to 715 * do it over and over again. 716 */ 717 718 /* round 1 */ 719 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ 720 b = ROTATE_LEFT(b, 30); 721 722 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ 723 a = ROTATE_LEFT(a, 30); 724 725 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ 726 e = ROTATE_LEFT(e, 30); 727 728 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ 729 d = ROTATE_LEFT(d, 30); 730 731 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ 732 c = ROTATE_LEFT(c, 30); 733 734 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ 735 b = ROTATE_LEFT(b, 30); 736 737 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ 738 a = ROTATE_LEFT(a, 30); 739 740 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ 741 e = ROTATE_LEFT(e, 30); 742 743 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ 744 d = ROTATE_LEFT(d, 30); 745 746 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ 747 c = ROTATE_LEFT(c, 30); 748 749 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ 750 b = ROTATE_LEFT(b, 30); 751 752 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ 753 a = ROTATE_LEFT(a, 30); 754 755 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ 756 e = ROTATE_LEFT(e, 30); 757 758 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ 759 d = ROTATE_LEFT(d, 30); 760 761 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ 762 c = ROTATE_LEFT(c, 30); 763 764 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ 765 b = ROTATE_LEFT(b, 30); 766 767 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ 768 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); 769 a = ROTATE_LEFT(a, 30); 770 771 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ 772 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); 773 e = ROTATE_LEFT(e, 30); 774 775 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ 776 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); 777 d = ROTATE_LEFT(d, 30); 778 779 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ 780 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); 781 c = ROTATE_LEFT(c, 30); 782 783 /* round 2 */ 784 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ 785 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); 786 b = ROTATE_LEFT(b, 30); 787 788 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ 789 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); 790 a = ROTATE_LEFT(a, 30); 791 792 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ 793 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); 794 e = ROTATE_LEFT(e, 30); 795 796 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ 797 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); 798 d = ROTATE_LEFT(d, 30); 799 800 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ 801 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); 802 c = ROTATE_LEFT(c, 30); 803 804 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ 805 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); 806 b = ROTATE_LEFT(b, 30); 807 808 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ 809 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); 810 a = ROTATE_LEFT(a, 30); 811 812 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ 813 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); 814 e = ROTATE_LEFT(e, 30); 815 816 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ 817 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); 818 d = ROTATE_LEFT(d, 30); 819 820 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ 821 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); 822 c = ROTATE_LEFT(c, 30); 823 824 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ 825 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); 826 b = ROTATE_LEFT(b, 30); 827 828 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ 829 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); 830 a = ROTATE_LEFT(a, 30); 831 832 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ 833 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); 834 e = ROTATE_LEFT(e, 30); 835 836 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ 837 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); 838 d = ROTATE_LEFT(d, 30); 839 840 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ 841 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); 842 c = ROTATE_LEFT(c, 30); 843 844 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ 845 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); 846 b = ROTATE_LEFT(b, 30); 847 848 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ 849 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); 850 a = ROTATE_LEFT(a, 30); 851 852 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ 853 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); 854 e = ROTATE_LEFT(e, 30); 855 856 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ 857 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); 858 d = ROTATE_LEFT(d, 30); 859 860 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ 861 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); 862 c = ROTATE_LEFT(c, 30); 863 864 /* round 3 */ 865 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ 866 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); 867 b = ROTATE_LEFT(b, 30); 868 869 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ 870 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); 871 a = ROTATE_LEFT(a, 30); 872 873 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ 874 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); 875 e = ROTATE_LEFT(e, 30); 876 877 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ 878 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); 879 d = ROTATE_LEFT(d, 30); 880 881 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ 882 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); 883 c = ROTATE_LEFT(c, 30); 884 885 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ 886 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); 887 b = ROTATE_LEFT(b, 30); 888 889 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ 890 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); 891 a = ROTATE_LEFT(a, 30); 892 893 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ 894 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); 895 e = ROTATE_LEFT(e, 30); 896 897 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ 898 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); 899 d = ROTATE_LEFT(d, 30); 900 901 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ 902 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); 903 c = ROTATE_LEFT(c, 30); 904 905 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ 906 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); 907 b = ROTATE_LEFT(b, 30); 908 909 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ 910 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); 911 a = ROTATE_LEFT(a, 30); 912 913 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ 914 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); 915 e = ROTATE_LEFT(e, 30); 916 917 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ 918 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); 919 d = ROTATE_LEFT(d, 30); 920 921 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ 922 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); 923 c = ROTATE_LEFT(c, 30); 924 925 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ 926 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); 927 b = ROTATE_LEFT(b, 30); 928 929 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ 930 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); 931 a = ROTATE_LEFT(a, 30); 932 933 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ 934 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); 935 e = ROTATE_LEFT(e, 30); 936 937 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ 938 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); 939 d = ROTATE_LEFT(d, 30); 940 941 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ 942 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); 943 c = ROTATE_LEFT(c, 30); 944 945 /* round 4 */ 946 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ 947 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); 948 b = ROTATE_LEFT(b, 30); 949 950 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ 951 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); 952 a = ROTATE_LEFT(a, 30); 953 954 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ 955 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); 956 e = ROTATE_LEFT(e, 30); 957 958 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ 959 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); 960 d = ROTATE_LEFT(d, 30); 961 962 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ 963 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); 964 c = ROTATE_LEFT(c, 30); 965 966 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ 967 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); 968 b = ROTATE_LEFT(b, 30); 969 970 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ 971 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); 972 a = ROTATE_LEFT(a, 30); 973 974 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ 975 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); 976 e = ROTATE_LEFT(e, 30); 977 978 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ 979 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); 980 d = ROTATE_LEFT(d, 30); 981 982 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ 983 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); 984 c = ROTATE_LEFT(c, 30); 985 986 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ 987 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); 988 b = ROTATE_LEFT(b, 30); 989 990 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ 991 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); 992 a = ROTATE_LEFT(a, 30); 993 994 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ 995 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); 996 e = ROTATE_LEFT(e, 30); 997 998 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ 999 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); 1000 d = ROTATE_LEFT(d, 30); 1001 1002 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ 1003 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); 1004 c = ROTATE_LEFT(c, 30); 1005 1006 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ 1007 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); 1008 b = ROTATE_LEFT(b, 30); 1009 1010 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ 1011 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); 1012 a = ROTATE_LEFT(a, 30); 1013 1014 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ 1015 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); 1016 e = ROTATE_LEFT(e, 30); 1017 1018 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ 1019 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); 1020 d = ROTATE_LEFT(d, 30); 1021 1022 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ 1023 1024 ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + 1025 SHA1_CONST(3); 1026 ctx->state[1] += b; 1027 ctx->state[2] += ROTATE_LEFT(c, 30); 1028 ctx->state[3] += d; 1029 ctx->state[4] += e; 1030 1031 /* zeroize sensitive information */ 1032 W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; 1033 W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; 1034 } 1035 #endif /* !__amd64 */ 1036 1037 1038 /* 1039 * Encode() 1040 * 1041 * purpose: to convert a list of numbers from little endian to big endian 1042 * input: uint8_t * : place to store the converted big endian numbers 1043 * uint32_t * : place to get numbers to convert from 1044 * size_t : the length of the input in bytes 1045 * output: void 1046 */ 1047 1048 static void 1049 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, 1050 size_t len) 1051 { 1052 size_t i, j; 1053 1054 #if defined(__sparc) 1055 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 1056 for (i = 0, j = 0; j < len; i++, j += 4) { 1057 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1058 *((uint32_t *)(output + j)) = input[i]; 1059 } 1060 } else { 1061 #endif /* little endian -- will work on big endian, but slowly */ 1062 for (i = 0, j = 0; j < len; i++, j += 4) { 1063 output[j] = (input[i] >> 24) & 0xff; 1064 output[j + 1] = (input[i] >> 16) & 0xff; 1065 output[j + 2] = (input[i] >> 8) & 0xff; 1066 output[j + 3] = input[i] & 0xff; 1067 } 1068 #if defined(__sparc) 1069 } 1070 #endif 1071 } 1072