1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * The basic framework for this code came from the reference
8 * implementation for MD5. That implementation is Copyright (C)
9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
10 *
11 * License to copy and use this software is granted provided that it
12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13 * Algorithm" in all material mentioning or referencing this software
14 * or this function.
15 *
16 * License is also granted to make and use derivative works provided
17 * that such works are identified as "derived from the RSA Data
18 * Security, Inc. MD5 Message-Digest Algorithm" in all material
19 * mentioning or referencing the derived work.
20 *
21 * RSA Data Security, Inc. makes no representations concerning either
22 * the merchantability of this software or the suitability of this
23 * software for any particular purpose. It is provided "as is"
24 * without express or implied warranty of any kind.
25 *
26 * These notices must be retained in any copies of any part of this
27 * documentation and/or software.
28 *
29 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31 * Not as fast as one would like -- further optimizations are encouraged
32 * and appreciated.
33 */
34
35 #if defined(_STANDALONE)
36 #include <sys/cdefs.h>
37 #include <stdint.h>
38 #define _RESTRICT_KYWD restrict
39 #else
40 #if !defined(_KERNEL) && !defined(_BOOT)
41 #include <stdint.h>
42 #include <strings.h>
43 #include <stdlib.h>
44 #include <errno.h>
45 #include <sys/systeminfo.h>
46 #endif /* !_KERNEL && !_BOOT */
47 #endif /* _STANDALONE */
48
49 #include <sys/types.h>
50 #if !defined(_STANDALONE)
51 #include <sys/inttypes.h>
52 #endif
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysmacros.h>
56 #include <sys/sha1.h>
57 #include <sys/sha1_consts.h>
58
59 #if defined(_STANDALONE)
60 #include <sys/endian.h>
61 #define HAVE_HTONL
62 #if _BYTE_ORDER == _LITTLE_ENDIAN
63 #undef _BIG_ENDIAN
64 #else
65 #undef _LITTLE_ENDIAN
66 #endif
67 #else
68 #ifdef _LITTLE_ENDIAN
69 #include <sys/byteorder.h>
70 #define HAVE_HTONL
71 #endif
72 #endif /* _STANDALONE */
73
74 #ifdef _BOOT
75 #define bcopy(_s, _d, _l) ((void) memcpy((_d), (_s), (_l)))
76 #define bzero(_m, _l) ((void) memset((_m), 0, (_l)))
77 #endif
78
79 static void Encode(uint8_t *, const uint32_t *, size_t);
80
81 #if defined(__sparc)
82
83 #define SHA1_TRANSFORM(ctx, in) \
84 SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
85 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
86
87 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
88 SHA1_CTX *, const uint8_t [64]);
89
90 #elif defined(__amd64)
91
92 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
93 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
94 (in), (num))
95
96 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
97
98 #else
99
100 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
101
102 static void SHA1Transform(SHA1_CTX *, const uint8_t [64]);
103
104 #endif
105
106
107 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
108
109 /*
110 * F, G, and H are the basic SHA1 functions.
111 */
112 #define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
113 #define G(b, c, d) ((b) ^ (c) ^ (d))
114 #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
115
116 /*
117 * SHA1Init()
118 *
119 * purpose: initializes the sha1 context and begins and sha1 digest operation
120 * input: SHA1_CTX * : the context to initializes.
121 * output: void
122 */
123
124 void
SHA1Init(SHA1_CTX * ctx)125 SHA1Init(SHA1_CTX *ctx)
126 {
127 ctx->count[0] = ctx->count[1] = 0;
128
129 /*
130 * load magic initialization constants. Tell lint
131 * that these constants are unsigned by using U.
132 */
133
134 ctx->state[0] = 0x67452301U;
135 ctx->state[1] = 0xefcdab89U;
136 ctx->state[2] = 0x98badcfeU;
137 ctx->state[3] = 0x10325476U;
138 ctx->state[4] = 0xc3d2e1f0U;
139 }
140
141 #ifdef VIS_SHA1
142 #ifdef _KERNEL
143
144 #include <sys/regset.h>
145 #include <sys/vis.h>
146 #include <sys/fpu/fpusystm.h>
147
148 /* the alignment for block stores to save fp registers */
149 #define VIS_ALIGN (64)
150
151 extern int sha1_savefp(kfpu_t *, int);
152 extern void sha1_restorefp(kfpu_t *);
153
154 uint32_t vis_sha1_svfp_threshold = 128;
155
156 #endif /* _KERNEL */
157
158 /*
159 * VIS SHA-1 consts.
160 */
161 static uint64_t VIS[] = {
162 0x8000000080000000ULL,
163 0x0002000200020002ULL,
164 0x5a8279996ed9eba1ULL,
165 0x8f1bbcdcca62c1d6ULL,
166 0x012389ab456789abULL};
167
168 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
169
170
171 /*
172 * SHA1Update()
173 *
174 * purpose: continues an sha1 digest operation, using the message block
175 * to update the context.
176 * input: SHA1_CTX * : the context to update
177 * void * : the message block
178 * size_t : the length of the message block in bytes
179 * output: void
180 */
181
182 void
SHA1Update(SHA1_CTX * ctx,const void * inptr,size_t input_len)183 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
184 {
185 size_t i, buf_index, buf_len;
186 uint64_t X0[40], input64[8];
187 const uint8_t *input = inptr;
188 uint32_t il;
189 #ifdef _KERNEL
190 int usevis = 0;
191 #else
192 int usevis = 1;
193 #endif /* _KERNEL */
194
195 /* check for noop */
196 if (input_len == 0)
197 return;
198
199 /* compute number of bytes mod 64 */
200 buf_index = (ctx->count[1] >> 3) & 0x3F;
201
202 /*
203 * Extract low 32 bits of input_len; when we adjust
204 * count[0] we must fold in the carry from the
205 * addition of the low bits along with the nonzero
206 * upper bits (if any) from input_len.
207 */
208 il = input_len & UINT32_MAX;
209 il = il << 3;
210
211 /* update number of bits */
212 if ((ctx->count[1] += il) < il)
213 ctx->count[0]++;
214
215 ctx->count[0] += (input_len >> 29);
216
217 buf_len = 64 - buf_index;
218
219 /* transform as many times as possible */
220 i = 0;
221 if (input_len >= buf_len) {
222 #ifdef _KERNEL
223 kfpu_t *fpu;
224 if (fpu_exists) {
225 uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
226 size_t len = (input_len + buf_index) & ~0x3f;
227 int svfp_ok;
228
229 fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
230 svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
231 usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
232 } else {
233 usevis = 0;
234 }
235 #endif /* _KERNEL */
236
237 /*
238 * general optimization:
239 *
240 * only do initial bcopy() and SHA1Transform() if
241 * buf_index != 0. if buf_index == 0, we're just
242 * wasting our time doing the bcopy() since there
243 * wasn't any data left over from a previous call to
244 * SHA1Update().
245 */
246
247 if (buf_index) {
248 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
249 if (usevis) {
250 SHA1TransformVIS(X0,
251 ctx->buf_un.buf32,
252 &ctx->state[0], VIS);
253 } else {
254 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
255 }
256 i = buf_len;
257 }
258
259 /*
260 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
261 * SHA-1 processing. This is achieved by "offloading" the
262 * computation of the message schedule (MS) to the VIS units.
263 * This allows the VIS computation of the message schedule
264 * to be performed in parallel with the standard integer
265 * processing of the remainder of the SHA-1 computation.
266 * performance by up to around 1.37X, compared to an optimized
267 * integer-only implementation.
268 *
269 * The VIS implementation of SHA1Transform has a different API
270 * to the standard integer version:
271 *
272 * void SHA1TransformVIS(
273 * uint64_t *, // Pointer to MS for ith block
274 * uint32_t *, // Pointer to ith block of message data
275 * uint32_t *, // Pointer to SHA state i.e ctx->state
276 * uint64_t *, // Pointer to various VIS constants
277 * )
278 *
279 * Note: the message data must by 4-byte aligned.
280 *
281 * Function requires VIS 1.0 support.
282 *
283 * Handling is provided to deal with arbitrary byte alingment
284 * of the input data but the performance gains are reduced
285 * for alignments other than 4-bytes.
286 */
287 if (usevis) {
288 if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
289 /*
290 * Main processing loop - input misaligned
291 */
292 for (; i + 63 < input_len; i += 64) {
293 bcopy(&input[i], input64, 64);
294 SHA1TransformVIS(X0,
295 (uint32_t *)input64,
296 &ctx->state[0], VIS);
297 }
298 } else {
299 /*
300 * Main processing loop - input 8-byte aligned
301 */
302 for (; i + 63 < input_len; i += 64) {
303 SHA1TransformVIS(X0,
304 /* LINTED E_BAD_PTR_CAST_ALIGN */
305 (uint32_t *)&input[i], /* CSTYLED */
306 &ctx->state[0], VIS);
307 }
308
309 }
310 #ifdef _KERNEL
311 sha1_restorefp(fpu);
312 #endif /* _KERNEL */
313 } else {
314 for (; i + 63 < input_len; i += 64) {
315 SHA1_TRANSFORM(ctx, &input[i]);
316 }
317 }
318
319 /*
320 * general optimization:
321 *
322 * if i and input_len are the same, return now instead
323 * of calling bcopy(), since the bcopy() in this case
324 * will be an expensive nop.
325 */
326
327 if (input_len == i)
328 return;
329
330 buf_index = 0;
331 }
332
333 /* buffer remaining input */
334 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
335 }
336
337 #else /* VIS_SHA1 */
338
339 void
SHA1Update(SHA1_CTX * ctx,const void * inptr,size_t input_len)340 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
341 {
342 size_t i, buf_index, buf_len;
343 const uint8_t *input = inptr;
344 uint32_t il;
345 #if defined(__amd64)
346 size_t block_count;
347 #endif /* __amd64 */
348
349 /* check for noop */
350 if (input_len == 0)
351 return;
352
353 /* compute number of bytes mod 64 */
354 buf_index = (ctx->count[1] >> 3) & 0x3F;
355
356 /*
357 * Extract low 32 bits of input_len; when we adjust
358 * count[0] we must fold in the carry from the
359 * addition of the low bits along with the nonzero
360 * upper bits (if any) from input_len.
361 */
362 il = input_len & UINT32_MAX;
363 il = il << 3;
364
365 /* update number of bits */
366 if ((ctx->count[1] += il) < il)
367 ctx->count[0]++;
368
369 ctx->count[0] += (input_len >> 29);
370
371 buf_len = 64 - buf_index;
372
373 /* transform as many times as possible */
374 i = 0;
375 if (input_len >= buf_len) {
376
377 /*
378 * general optimization:
379 *
380 * only do initial bcopy() and SHA1Transform() if
381 * buf_index != 0. if buf_index == 0, we're just
382 * wasting our time doing the bcopy() since there
383 * wasn't any data left over from a previous call to
384 * SHA1Update().
385 */
386
387 if (buf_index) {
388 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
389 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
390 i = buf_len;
391 }
392
393 #if !defined(__amd64)
394 for (; i + 63 < input_len; i += 64)
395 SHA1_TRANSFORM(ctx, &input[i]);
396 #else
397 block_count = (input_len - i) >> 6;
398 if (block_count > 0) {
399 SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
400 i += block_count << 6;
401 }
402 #endif /* !__amd64 */
403
404 /*
405 * general optimization:
406 *
407 * if i and input_len are the same, return now instead
408 * of calling bcopy(), since the bcopy() in this case
409 * will be an expensive nop.
410 */
411
412 if (input_len == i)
413 return;
414
415 buf_index = 0;
416 }
417
418 /* buffer remaining input */
419 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
420 }
421
422 #endif /* VIS_SHA1 */
423
424 /*
425 * SHA1Final()
426 *
427 * purpose: ends an sha1 digest operation, finalizing the message digest and
428 * zeroing the context.
429 * input: uchar_t * : A buffer to store the digest.
430 * : The function actually uses void* because many
431 * : callers pass things other than uchar_t here.
432 * SHA1_CTX * : the context to finalize, save, and zero
433 * output: void
434 */
435
436 void
SHA1Final(void * digest,SHA1_CTX * ctx)437 SHA1Final(void *digest, SHA1_CTX *ctx)
438 {
439 uint8_t bitcount_be[sizeof (ctx->count)];
440 uint32_t index = (ctx->count[1] >> 3) & 0x3f;
441
442 /* store bit count, big endian */
443 Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
444
445 /* pad out to 56 mod 64 */
446 SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
447
448 /* append length (before padding) */
449 SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
450
451 /* store state in digest */
452 Encode(digest, ctx->state, sizeof (ctx->state));
453
454 /* zeroize sensitive information */
455 bzero(ctx, sizeof (*ctx));
456 }
457
458
459 #if !defined(__amd64)
460
461 /*
462 * ROTATE_LEFT rotates x left n bits.
463 */
464
465 #if defined(__GNUC__) && defined(_LP64)
466 static __inline__ uint64_t
ROTATE_LEFT(uint64_t value,uint32_t n)467 ROTATE_LEFT(uint64_t value, uint32_t n)
468 {
469 uint32_t t32;
470
471 t32 = (uint32_t)value;
472 return ((t32 << n) | (t32 >> (32 - n)));
473 }
474
475 #else
476 #define ROTATE_LEFT(x, n) \
477 (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
478 #endif
479
480 typedef uint32_t sha1word;
481
482 /*
483 * sparc optimization:
484 *
485 * on the sparc, we can load big endian 32-bit data easily. note that
486 * special care must be taken to ensure the address is 32-bit aligned.
487 * in the interest of speed, we don't check to make sure, since
488 * careful programming can guarantee this for us.
489 */
490
491 #if defined(_BIG_ENDIAN)
492 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
493
494 #elif defined(HAVE_HTONL)
495 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
496
497 #else
498 /* little endian -- will work on big endian, but slowly */
499 #define LOAD_BIG_32(addr) \
500 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
501 #endif /* _BIG_ENDIAN */
502
503 /*
504 * SHA1Transform()
505 */
506 #if defined(W_ARRAY)
507 #define W(n) w[n]
508 #else /* !defined(W_ARRAY) */
509 #define W(n) w_ ## n
510 #endif /* !defined(W_ARRAY) */
511
512
513 #if defined(__sparc)
514
515 /*
516 * sparc register window optimization:
517 *
518 * `a', `b', `c', `d', and `e' are passed into SHA1Transform
519 * explicitly since it increases the number of registers available to
520 * the compiler. under this scheme, these variables can be held in
521 * %i0 - %i4, which leaves more local and out registers available.
522 *
523 * purpose: sha1 transformation -- updates the digest based on `block'
524 * input: uint32_t : bytes 1 - 4 of the digest
525 * uint32_t : bytes 5 - 8 of the digest
526 * uint32_t : bytes 9 - 12 of the digest
527 * uint32_t : bytes 12 - 16 of the digest
528 * uint32_t : bytes 16 - 20 of the digest
529 * SHA1_CTX * : the context to update
530 * uint8_t [64]: the block to use to update the digest
531 * output: void
532 */
533
534 void
SHA1Transform(uint32_t a,uint32_t b,uint32_t c,uint32_t d,uint32_t e,SHA1_CTX * ctx,const uint8_t blk[64])535 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
536 SHA1_CTX *ctx, const uint8_t blk[64])
537 {
538 /*
539 * sparc optimization:
540 *
541 * while it is somewhat counter-intuitive, on sparc, it is
542 * more efficient to place all the constants used in this
543 * function in an array and load the values out of the array
544 * than to manually load the constants. this is because
545 * setting a register to a 32-bit value takes two ops in most
546 * cases: a `sethi' and an `or', but loading a 32-bit value
547 * from memory only takes one `ld' (or `lduw' on v9). while
548 * this increases memory usage, the compiler can find enough
549 * other things to do while waiting to keep the pipeline does
550 * not stall. additionally, it is likely that many of these
551 * constants are cached so that later accesses do not even go
552 * out to the bus.
553 *
554 * this array is declared `static' to keep the compiler from
555 * having to bcopy() this array onto the stack frame of
556 * SHA1Transform() each time it is called -- which is
557 * unacceptably expensive.
558 *
559 * the `const' is to ensure that callers are good citizens and
560 * do not try to munge the array. since these routines are
561 * going to be called from inside multithreaded kernelland,
562 * this is a good safety check. -- `sha1_consts' will end up in
563 * .rodata.
564 *
565 * unfortunately, loading from an array in this manner hurts
566 * performance under Intel. So, there is a macro,
567 * SHA1_CONST(), used in SHA1Transform(), that either expands to
568 * a reference to this array, or to the actual constant,
569 * depending on what platform this code is compiled for.
570 */
571
572 static const uint32_t sha1_consts[] = {
573 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
574 };
575
576 /*
577 * general optimization:
578 *
579 * use individual integers instead of using an array. this is a
580 * win, although the amount it wins by seems to vary quite a bit.
581 */
582
583 uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
584 uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
585
586 /*
587 * sparc optimization:
588 *
589 * if `block' is already aligned on a 4-byte boundary, use
590 * LOAD_BIG_32() directly. otherwise, bcopy() into a
591 * buffer that *is* aligned on a 4-byte boundary and then do
592 * the LOAD_BIG_32() on that buffer. benchmarks have shown
593 * that using the bcopy() is better than loading the bytes
594 * individually and doing the endian-swap by hand.
595 *
596 * even though it's quite tempting to assign to do:
597 *
598 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
599 *
600 * and only have one set of LOAD_BIG_32()'s, the compiler
601 * *does not* like that, so please resist the urge.
602 */
603
604 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
605 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
606 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
607 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
608 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
609 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
610 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
611 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
612 w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9);
613 w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8);
614 w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7);
615 w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6);
616 w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5);
617 w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4);
618 w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3);
619 w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2);
620 w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1);
621 w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0);
622 } else {
623 /* LINTED E_BAD_PTR_CAST_ALIGN */
624 w_15 = LOAD_BIG_32(blk + 60);
625 /* LINTED E_BAD_PTR_CAST_ALIGN */
626 w_14 = LOAD_BIG_32(blk + 56);
627 /* LINTED E_BAD_PTR_CAST_ALIGN */
628 w_13 = LOAD_BIG_32(blk + 52);
629 /* LINTED E_BAD_PTR_CAST_ALIGN */
630 w_12 = LOAD_BIG_32(blk + 48);
631 /* LINTED E_BAD_PTR_CAST_ALIGN */
632 w_11 = LOAD_BIG_32(blk + 44);
633 /* LINTED E_BAD_PTR_CAST_ALIGN */
634 w_10 = LOAD_BIG_32(blk + 40);
635 /* LINTED E_BAD_PTR_CAST_ALIGN */
636 w_9 = LOAD_BIG_32(blk + 36);
637 /* LINTED E_BAD_PTR_CAST_ALIGN */
638 w_8 = LOAD_BIG_32(blk + 32);
639 /* LINTED E_BAD_PTR_CAST_ALIGN */
640 w_7 = LOAD_BIG_32(blk + 28);
641 /* LINTED E_BAD_PTR_CAST_ALIGN */
642 w_6 = LOAD_BIG_32(blk + 24);
643 /* LINTED E_BAD_PTR_CAST_ALIGN */
644 w_5 = LOAD_BIG_32(blk + 20);
645 /* LINTED E_BAD_PTR_CAST_ALIGN */
646 w_4 = LOAD_BIG_32(blk + 16);
647 /* LINTED E_BAD_PTR_CAST_ALIGN */
648 w_3 = LOAD_BIG_32(blk + 12);
649 /* LINTED E_BAD_PTR_CAST_ALIGN */
650 w_2 = LOAD_BIG_32(blk + 8);
651 /* LINTED E_BAD_PTR_CAST_ALIGN */
652 w_1 = LOAD_BIG_32(blk + 4);
653 /* LINTED E_BAD_PTR_CAST_ALIGN */
654 w_0 = LOAD_BIG_32(blk + 0);
655 }
656 #else /* !defined(__sparc) */
657
658 void /* CSTYLED */
659 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
660 {
661 /* CSTYLED */
662 sha1word a = ctx->state[0];
663 sha1word b = ctx->state[1];
664 sha1word c = ctx->state[2];
665 sha1word d = ctx->state[3];
666 sha1word e = ctx->state[4];
667
668 #if defined(W_ARRAY)
669 sha1word w[16];
670 #else /* !defined(W_ARRAY) */
671 sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
672 sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
673 #endif /* !defined(W_ARRAY) */
674
675 W(0) = LOAD_BIG_32((void *)(blk + 0));
676 W(1) = LOAD_BIG_32((void *)(blk + 4));
677 W(2) = LOAD_BIG_32((void *)(blk + 8));
678 W(3) = LOAD_BIG_32((void *)(blk + 12));
679 W(4) = LOAD_BIG_32((void *)(blk + 16));
680 W(5) = LOAD_BIG_32((void *)(blk + 20));
681 W(6) = LOAD_BIG_32((void *)(blk + 24));
682 W(7) = LOAD_BIG_32((void *)(blk + 28));
683 W(8) = LOAD_BIG_32((void *)(blk + 32));
684 W(9) = LOAD_BIG_32((void *)(blk + 36));
685 W(10) = LOAD_BIG_32((void *)(blk + 40));
686 W(11) = LOAD_BIG_32((void *)(blk + 44));
687 W(12) = LOAD_BIG_32((void *)(blk + 48));
688 W(13) = LOAD_BIG_32((void *)(blk + 52));
689 W(14) = LOAD_BIG_32((void *)(blk + 56));
690 W(15) = LOAD_BIG_32((void *)(blk + 60));
691
692 #endif /* !defined(__sparc) */
693
694 /*
695 * general optimization:
696 *
697 * even though this approach is described in the standard as
698 * being slower algorithmically, it is 30-40% faster than the
699 * "faster" version under SPARC, because this version has more
700 * of the constraints specified at compile-time and uses fewer
701 * variables (and therefore has better register utilization)
702 * than its "speedier" brother. (i've tried both, trust me)
703 *
704 * for either method given in the spec, there is an "assignment"
705 * phase where the following takes place:
706 *
707 * tmp = (main_computation);
708 * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
709 *
710 * we can make the algorithm go faster by not doing this work,
711 * but just pretending that `d' is now `e', etc. this works
712 * really well and obviates the need for a temporary variable.
713 * however, we still explicitly perform the rotate action,
714 * since it is cheaper on SPARC to do it once than to have to
715 * do it over and over again.
716 */
717
718 /* round 1 */
719 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
720 b = ROTATE_LEFT(b, 30);
721
722 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
723 a = ROTATE_LEFT(a, 30);
724
725 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
726 e = ROTATE_LEFT(e, 30);
727
728 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
729 d = ROTATE_LEFT(d, 30);
730
731 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
732 c = ROTATE_LEFT(c, 30);
733
734 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
735 b = ROTATE_LEFT(b, 30);
736
737 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
738 a = ROTATE_LEFT(a, 30);
739
740 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
741 e = ROTATE_LEFT(e, 30);
742
743 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
744 d = ROTATE_LEFT(d, 30);
745
746 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
747 c = ROTATE_LEFT(c, 30);
748
749 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
750 b = ROTATE_LEFT(b, 30);
751
752 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
753 a = ROTATE_LEFT(a, 30);
754
755 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
756 e = ROTATE_LEFT(e, 30);
757
758 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
759 d = ROTATE_LEFT(d, 30);
760
761 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
762 c = ROTATE_LEFT(c, 30);
763
764 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
765 b = ROTATE_LEFT(b, 30);
766
767 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
768 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
769 a = ROTATE_LEFT(a, 30);
770
771 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
772 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
773 e = ROTATE_LEFT(e, 30);
774
775 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
776 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
777 d = ROTATE_LEFT(d, 30);
778
779 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
780 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
781 c = ROTATE_LEFT(c, 30);
782
783 /* round 2 */
784 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
785 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
786 b = ROTATE_LEFT(b, 30);
787
788 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
789 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
790 a = ROTATE_LEFT(a, 30);
791
792 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
793 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
794 e = ROTATE_LEFT(e, 30);
795
796 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
797 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
798 d = ROTATE_LEFT(d, 30);
799
800 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
801 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
802 c = ROTATE_LEFT(c, 30);
803
804 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
805 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
806 b = ROTATE_LEFT(b, 30);
807
808 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
809 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
810 a = ROTATE_LEFT(a, 30);
811
812 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
813 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
814 e = ROTATE_LEFT(e, 30);
815
816 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
817 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
818 d = ROTATE_LEFT(d, 30);
819
820 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
821 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
822 c = ROTATE_LEFT(c, 30);
823
824 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
825 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
826 b = ROTATE_LEFT(b, 30);
827
828 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
829 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
830 a = ROTATE_LEFT(a, 30);
831
832 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
833 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
834 e = ROTATE_LEFT(e, 30);
835
836 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
837 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
838 d = ROTATE_LEFT(d, 30);
839
840 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
841 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
842 c = ROTATE_LEFT(c, 30);
843
844 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
845 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
846 b = ROTATE_LEFT(b, 30);
847
848 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
849 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
850 a = ROTATE_LEFT(a, 30);
851
852 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
853 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
854 e = ROTATE_LEFT(e, 30);
855
856 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
857 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
858 d = ROTATE_LEFT(d, 30);
859
860 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
861 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
862 c = ROTATE_LEFT(c, 30);
863
864 /* round 3 */
865 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
866 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
867 b = ROTATE_LEFT(b, 30);
868
869 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
870 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
871 a = ROTATE_LEFT(a, 30);
872
873 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
874 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
875 e = ROTATE_LEFT(e, 30);
876
877 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
878 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
879 d = ROTATE_LEFT(d, 30);
880
881 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
882 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
883 c = ROTATE_LEFT(c, 30);
884
885 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
886 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
887 b = ROTATE_LEFT(b, 30);
888
889 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
890 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
891 a = ROTATE_LEFT(a, 30);
892
893 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
894 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
895 e = ROTATE_LEFT(e, 30);
896
897 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
898 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
899 d = ROTATE_LEFT(d, 30);
900
901 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
902 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
903 c = ROTATE_LEFT(c, 30);
904
905 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
906 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
907 b = ROTATE_LEFT(b, 30);
908
909 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
910 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
911 a = ROTATE_LEFT(a, 30);
912
913 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
914 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
915 e = ROTATE_LEFT(e, 30);
916
917 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
918 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
919 d = ROTATE_LEFT(d, 30);
920
921 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
922 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
923 c = ROTATE_LEFT(c, 30);
924
925 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
926 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
927 b = ROTATE_LEFT(b, 30);
928
929 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
930 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
931 a = ROTATE_LEFT(a, 30);
932
933 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
934 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
935 e = ROTATE_LEFT(e, 30);
936
937 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
938 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
939 d = ROTATE_LEFT(d, 30);
940
941 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
942 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
943 c = ROTATE_LEFT(c, 30);
944
945 /* round 4 */
946 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
947 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
948 b = ROTATE_LEFT(b, 30);
949
950 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
951 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
952 a = ROTATE_LEFT(a, 30);
953
954 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
955 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
956 e = ROTATE_LEFT(e, 30);
957
958 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
959 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
960 d = ROTATE_LEFT(d, 30);
961
962 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
963 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
964 c = ROTATE_LEFT(c, 30);
965
966 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
967 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
968 b = ROTATE_LEFT(b, 30);
969
970 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
971 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
972 a = ROTATE_LEFT(a, 30);
973
974 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
975 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
976 e = ROTATE_LEFT(e, 30);
977
978 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
979 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
980 d = ROTATE_LEFT(d, 30);
981
982 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
983 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
984 c = ROTATE_LEFT(c, 30);
985
986 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
987 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
988 b = ROTATE_LEFT(b, 30);
989
990 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
991 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
992 a = ROTATE_LEFT(a, 30);
993
994 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
995 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
996 e = ROTATE_LEFT(e, 30);
997
998 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
999 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
1000 d = ROTATE_LEFT(d, 30);
1001
1002 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
1003 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
1004 c = ROTATE_LEFT(c, 30);
1005
1006 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
1007 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
1008 b = ROTATE_LEFT(b, 30);
1009
1010 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
1011 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
1012 a = ROTATE_LEFT(a, 30);
1013
1014 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
1015 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
1016 e = ROTATE_LEFT(e, 30);
1017
1018 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
1019 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
1020 d = ROTATE_LEFT(d, 30);
1021
1022 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
1023
1024 ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
1025 SHA1_CONST(3);
1026 ctx->state[1] += b;
1027 ctx->state[2] += ROTATE_LEFT(c, 30);
1028 ctx->state[3] += d;
1029 ctx->state[4] += e;
1030
1031 /* zeroize sensitive information */
1032 W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
1033 W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
1034 }
1035 #endif /* !__amd64 */
1036
1037
1038 /*
1039 * Encode()
1040 *
1041 * purpose: to convert a list of numbers from little endian to big endian
1042 * input: uint8_t * : place to store the converted big endian numbers
1043 * uint32_t * : place to get numbers to convert from
1044 * size_t : the length of the input in bytes
1045 * output: void
1046 */
1047
1048 static void
1049 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1050 size_t len)
1051 {
1052 size_t i, j;
1053
1054 #if defined(__sparc)
1055 if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1056 for (i = 0, j = 0; j < len; i++, j += 4) {
1057 /* LINTED E_BAD_PTR_CAST_ALIGN */
1058 *((uint32_t *)(output + j)) = input[i];
1059 }
1060 } else {
1061 #endif /* little endian -- will work on big endian, but slowly */
1062 for (i = 0, j = 0; j < len; i++, j += 4) {
1063 output[j] = (input[i] >> 24) & 0xff;
1064 output[j + 1] = (input[i] >> 16) & 0xff;
1065 output[j + 2] = (input[i] >> 8) & 0xff;
1066 output[j + 3] = input[i] & 0xff;
1067 }
1068 #if defined(__sparc)
1069 }
1070 #endif
1071 }
1072