xref: /illumos-gate/usr/src/common/crypto/sha1/sha1.c (revision 6ccda740e007c01cb5d1436fe337851ff8c5d422)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * The basic framework for this code came from the reference
8  * implementation for MD5.  That implementation is Copyright (C)
9  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
10  *
11  * License to copy and use this software is granted provided that it
12  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13  * Algorithm" in all material mentioning or referencing this software
14  * or this function.
15  *
16  * License is also granted to make and use derivative works provided
17  * that such works are identified as "derived from the RSA Data
18  * Security, Inc. MD5 Message-Digest Algorithm" in all material
19  * mentioning or referencing the derived work.
20  *
21  * RSA Data Security, Inc. makes no representations concerning either
22  * the merchantability of this software or the suitability of this
23  * software for any particular purpose. It is provided "as is"
24  * without express or implied warranty of any kind.
25  *
26  * These notices must be retained in any copies of any part of this
27  * documentation and/or software.
28  *
29  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30  * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31  * Not as fast as one would like -- further optimizations are encouraged
32  * and appreciated.
33  */
34 
35 #if defined(_STANDALONE)
36 #include <sys/cdefs.h>
37 #define	_RESTRICT_KYWD	restrict
38 #else
39 #if !defined(_KERNEL) && !defined(_BOOT)
40 #include <stdint.h>
41 #include <strings.h>
42 #include <stdlib.h>
43 #include <errno.h>
44 #include <sys/systeminfo.h>
45 #endif  /* !_KERNEL && !_BOOT */
46 #endif	/* _STANDALONE */
47 
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysmacros.h>
52 #include <sys/sha1.h>
53 #include <sys/sha1_consts.h>
54 
55 #if defined(_STANDALONE)
56 #include <sys/endian.h>
57 #define	HAVE_HTONL
58 #if _BYTE_ORDER == _LITTLE_ENDIAN
59 #undef _BIG_ENDIAN
60 #else
61 #undef _LITTLE_ENDIAN
62 #endif
63 #else
64 #ifdef _LITTLE_ENDIAN
65 #include <sys/byteorder.h>
66 #define	HAVE_HTONL
67 #endif
68 #endif /* _STANDALONE */
69 
70 #ifdef	_BOOT
71 #define	bcopy(_s, _d, _l)	((void) memcpy((_d), (_s), (_l)))
72 #define	bzero(_m, _l)		((void) memset((_m), 0, (_l)))
73 #endif
74 
75 static void Encode(uint8_t *, const uint32_t *, size_t);
76 
77 #if	defined(__sparc)
78 
79 #define	SHA1_TRANSFORM(ctx, in) \
80 	SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
81 		(ctx)->state[3], (ctx)->state[4], (ctx), (in))
82 
83 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
84     SHA1_CTX *, const uint8_t *);
85 
86 #elif	defined(__amd64)
87 
88 #define	SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
89 #define	SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
90 		(in), (num))
91 
92 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
93 
94 #else
95 
96 #define	SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
97 
98 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
99 
100 #endif
101 
102 
103 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
104 
105 /*
106  * F, G, and H are the basic SHA1 functions.
107  */
108 #define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
109 #define	G(b, c, d)	((b) ^ (c) ^ (d))
110 #define	H(b, c, d)	(((b) & (c)) | (((b)|(c)) & (d)))
111 
112 /*
113  * ROTATE_LEFT rotates x left n bits.
114  */
115 
116 #if	defined(__GNUC__) && defined(_LP64)
117 static __inline__ uint64_t
118 ROTATE_LEFT(uint64_t value, uint32_t n)
119 {
120 	uint32_t t32;
121 
122 	t32 = (uint32_t)value;
123 	return ((t32 << n) | (t32 >> (32 - n)));
124 }
125 
126 #else
127 
128 #define	ROTATE_LEFT(x, n)	\
129 	(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
130 
131 #endif
132 
133 
134 /*
135  * SHA1Init()
136  *
137  * purpose: initializes the sha1 context and begins and sha1 digest operation
138  *   input: SHA1_CTX *	: the context to initializes.
139  *  output: void
140  */
141 
142 void
143 SHA1Init(SHA1_CTX *ctx)
144 {
145 	ctx->count[0] = ctx->count[1] = 0;
146 
147 	/*
148 	 * load magic initialization constants. Tell lint
149 	 * that these constants are unsigned by using U.
150 	 */
151 
152 	ctx->state[0] = 0x67452301U;
153 	ctx->state[1] = 0xefcdab89U;
154 	ctx->state[2] = 0x98badcfeU;
155 	ctx->state[3] = 0x10325476U;
156 	ctx->state[4] = 0xc3d2e1f0U;
157 }
158 
159 #ifdef VIS_SHA1
160 #ifdef _KERNEL
161 
162 #include <sys/regset.h>
163 #include <sys/vis.h>
164 #include <sys/fpu/fpusystm.h>
165 
166 /* the alignment for block stores to save fp registers */
167 #define	VIS_ALIGN	(64)
168 
169 extern int sha1_savefp(kfpu_t *, int);
170 extern void sha1_restorefp(kfpu_t *);
171 
172 uint32_t	vis_sha1_svfp_threshold = 128;
173 
174 #endif /* _KERNEL */
175 
176 /*
177  * VIS SHA-1 consts.
178  */
179 static uint64_t VIS[] = {
180 	0x8000000080000000ULL,
181 	0x0002000200020002ULL,
182 	0x5a8279996ed9eba1ULL,
183 	0x8f1bbcdcca62c1d6ULL,
184 	0x012389ab456789abULL};
185 
186 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
187 
188 
189 /*
190  * SHA1Update()
191  *
192  * purpose: continues an sha1 digest operation, using the message block
193  *          to update the context.
194  *   input: SHA1_CTX *	: the context to update
195  *          void *	: the message block
196  *          size_t    : the length of the message block in bytes
197  *  output: void
198  */
199 
200 void
201 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
202 {
203 	uint32_t i, buf_index, buf_len;
204 	uint64_t X0[40], input64[8];
205 	const uint8_t *input = inptr;
206 #ifdef _KERNEL
207 	int usevis = 0;
208 #else
209 	int usevis = 1;
210 #endif /* _KERNEL */
211 
212 	/* check for noop */
213 	if (input_len == 0)
214 		return;
215 
216 	/* compute number of bytes mod 64 */
217 	buf_index = (ctx->count[1] >> 3) & 0x3F;
218 
219 	/* update number of bits */
220 	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
221 		ctx->count[0]++;
222 
223 	ctx->count[0] += (input_len >> 29);
224 
225 	buf_len = 64 - buf_index;
226 
227 	/* transform as many times as possible */
228 	i = 0;
229 	if (input_len >= buf_len) {
230 #ifdef _KERNEL
231 		kfpu_t *fpu;
232 		if (fpu_exists) {
233 			uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
234 			uint32_t len = (input_len + buf_index) & ~0x3f;
235 			int svfp_ok;
236 
237 			fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
238 			svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
239 			usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
240 		} else {
241 			usevis = 0;
242 		}
243 #endif /* _KERNEL */
244 
245 		/*
246 		 * general optimization:
247 		 *
248 		 * only do initial bcopy() and SHA1Transform() if
249 		 * buf_index != 0.  if buf_index == 0, we're just
250 		 * wasting our time doing the bcopy() since there
251 		 * wasn't any data left over from a previous call to
252 		 * SHA1Update().
253 		 */
254 
255 		if (buf_index) {
256 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
257 			if (usevis) {
258 				SHA1TransformVIS(X0,
259 				    ctx->buf_un.buf32,
260 				    &ctx->state[0], VIS);
261 			} else {
262 				SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
263 			}
264 			i = buf_len;
265 		}
266 
267 		/*
268 		 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
269 		 * SHA-1 processing. This is achieved by "offloading" the
270 		 * computation of the message schedule (MS) to the VIS units.
271 		 * This allows the VIS computation of the message schedule
272 		 * to be performed in parallel with the standard integer
273 		 * processing of the remainder of the SHA-1 computation.
274 		 * performance by up to around 1.37X, compared to an optimized
275 		 * integer-only implementation.
276 		 *
277 		 * The VIS implementation of SHA1Transform has a different API
278 		 * to the standard integer version:
279 		 *
280 		 * void SHA1TransformVIS(
281 		 *	 uint64_t *, // Pointer to MS for ith block
282 		 *	 uint32_t *, // Pointer to ith block of message data
283 		 *	 uint32_t *, // Pointer to SHA state i.e ctx->state
284 		 *	 uint64_t *, // Pointer to various VIS constants
285 		 * )
286 		 *
287 		 * Note: the message data must by 4-byte aligned.
288 		 *
289 		 * Function requires VIS 1.0 support.
290 		 *
291 		 * Handling is provided to deal with arbitrary byte alingment
292 		 * of the input data but the performance gains are reduced
293 		 * for alignments other than 4-bytes.
294 		 */
295 		if (usevis) {
296 			if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
297 				/*
298 				 * Main processing loop - input misaligned
299 				 */
300 				for (; i + 63 < input_len; i += 64) {
301 					bcopy(&input[i], input64, 64);
302 					SHA1TransformVIS(X0,
303 					    (uint32_t *)input64,
304 					    &ctx->state[0], VIS);
305 				}
306 			} else {
307 				/*
308 				 * Main processing loop - input 8-byte aligned
309 				 */
310 				for (; i + 63 < input_len; i += 64) {
311 					SHA1TransformVIS(X0,
312 					    /* LINTED E_BAD_PTR_CAST_ALIGN */
313 					    (uint32_t *)&input[i], /* CSTYLED */
314 					    &ctx->state[0], VIS);
315 				}
316 
317 			}
318 #ifdef _KERNEL
319 			sha1_restorefp(fpu);
320 #endif /* _KERNEL */
321 		} else {
322 			for (; i + 63 < input_len; i += 64) {
323 				SHA1_TRANSFORM(ctx, &input[i]);
324 			}
325 		}
326 
327 		/*
328 		 * general optimization:
329 		 *
330 		 * if i and input_len are the same, return now instead
331 		 * of calling bcopy(), since the bcopy() in this case
332 		 * will be an expensive nop.
333 		 */
334 
335 		if (input_len == i)
336 			return;
337 
338 		buf_index = 0;
339 	}
340 
341 	/* buffer remaining input */
342 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
343 }
344 
345 #else /* VIS_SHA1 */
346 
347 void
348 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
349 {
350 	uint32_t i, buf_index, buf_len;
351 	const uint8_t *input = inptr;
352 #if defined(__amd64)
353 	uint32_t	block_count;
354 #endif	/* __amd64 */
355 
356 	/* check for noop */
357 	if (input_len == 0)
358 		return;
359 
360 	/* compute number of bytes mod 64 */
361 	buf_index = (ctx->count[1] >> 3) & 0x3F;
362 
363 	/* update number of bits */
364 	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
365 		ctx->count[0]++;
366 
367 	ctx->count[0] += (input_len >> 29);
368 
369 	buf_len = 64 - buf_index;
370 
371 	/* transform as many times as possible */
372 	i = 0;
373 	if (input_len >= buf_len) {
374 
375 		/*
376 		 * general optimization:
377 		 *
378 		 * only do initial bcopy() and SHA1Transform() if
379 		 * buf_index != 0.  if buf_index == 0, we're just
380 		 * wasting our time doing the bcopy() since there
381 		 * wasn't any data left over from a previous call to
382 		 * SHA1Update().
383 		 */
384 
385 		if (buf_index) {
386 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
387 			SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
388 			i = buf_len;
389 		}
390 
391 #if !defined(__amd64)
392 		for (; i + 63 < input_len; i += 64)
393 			SHA1_TRANSFORM(ctx, &input[i]);
394 #else
395 		block_count = (input_len - i) >> 6;
396 		if (block_count > 0) {
397 			SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
398 			i += block_count << 6;
399 		}
400 #endif	/* !__amd64 */
401 
402 		/*
403 		 * general optimization:
404 		 *
405 		 * if i and input_len are the same, return now instead
406 		 * of calling bcopy(), since the bcopy() in this case
407 		 * will be an expensive nop.
408 		 */
409 
410 		if (input_len == i)
411 			return;
412 
413 		buf_index = 0;
414 	}
415 
416 	/* buffer remaining input */
417 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
418 }
419 
420 #endif /* VIS_SHA1 */
421 
422 /*
423  * SHA1Final()
424  *
425  * purpose: ends an sha1 digest operation, finalizing the message digest and
426  *          zeroing the context.
427  *   input: uchar_t *	: A buffer to store the digest.
428  *			: The function actually uses void* because many
429  *			: callers pass things other than uchar_t here.
430  *          SHA1_CTX *  : the context to finalize, save, and zero
431  *  output: void
432  */
433 
434 void
435 SHA1Final(void *digest, SHA1_CTX *ctx)
436 {
437 	uint8_t		bitcount_be[sizeof (ctx->count)];
438 	uint32_t	index = (ctx->count[1] >> 3) & 0x3f;
439 
440 	/* store bit count, big endian */
441 	Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
442 
443 	/* pad out to 56 mod 64 */
444 	SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
445 
446 	/* append length (before padding) */
447 	SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
448 
449 	/* store state in digest */
450 	Encode(digest, ctx->state, sizeof (ctx->state));
451 
452 	/* zeroize sensitive information */
453 	bzero(ctx, sizeof (*ctx));
454 }
455 
456 
457 #if !defined(__amd64)
458 
459 typedef uint32_t sha1word;
460 
461 /*
462  * sparc optimization:
463  *
464  * on the sparc, we can load big endian 32-bit data easily.  note that
465  * special care must be taken to ensure the address is 32-bit aligned.
466  * in the interest of speed, we don't check to make sure, since
467  * careful programming can guarantee this for us.
468  */
469 
470 #if	defined(_BIG_ENDIAN)
471 #define	LOAD_BIG_32(addr)	(*(uint32_t *)(addr))
472 
473 #elif	defined(HAVE_HTONL)
474 #define	LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
475 
476 #else
477 /* little endian -- will work on big endian, but slowly */
478 #define	LOAD_BIG_32(addr)	\
479 	(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
480 #endif	/* _BIG_ENDIAN */
481 
482 /*
483  * SHA1Transform()
484  */
485 #if	defined(W_ARRAY)
486 #define	W(n) w[n]
487 #else	/* !defined(W_ARRAY) */
488 #define	W(n) w_ ## n
489 #endif	/* !defined(W_ARRAY) */
490 
491 
492 #if	defined(__sparc)
493 
494 /*
495  * sparc register window optimization:
496  *
497  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
498  * explicitly since it increases the number of registers available to
499  * the compiler.  under this scheme, these variables can be held in
500  * %i0 - %i4, which leaves more local and out registers available.
501  *
502  * purpose: sha1 transformation -- updates the digest based on `block'
503  *   input: uint32_t	: bytes  1 -  4 of the digest
504  *          uint32_t	: bytes  5 -  8 of the digest
505  *          uint32_t	: bytes  9 - 12 of the digest
506  *          uint32_t	: bytes 12 - 16 of the digest
507  *          uint32_t	: bytes 16 - 20 of the digest
508  *          SHA1_CTX *	: the context to update
509  *          uint8_t [64]: the block to use to update the digest
510  *  output: void
511  */
512 
513 void
514 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
515     SHA1_CTX *ctx, const uint8_t blk[64])
516 {
517 	/*
518 	 * sparc optimization:
519 	 *
520 	 * while it is somewhat counter-intuitive, on sparc, it is
521 	 * more efficient to place all the constants used in this
522 	 * function in an array and load the values out of the array
523 	 * than to manually load the constants.  this is because
524 	 * setting a register to a 32-bit value takes two ops in most
525 	 * cases: a `sethi' and an `or', but loading a 32-bit value
526 	 * from memory only takes one `ld' (or `lduw' on v9).  while
527 	 * this increases memory usage, the compiler can find enough
528 	 * other things to do while waiting to keep the pipeline does
529 	 * not stall.  additionally, it is likely that many of these
530 	 * constants are cached so that later accesses do not even go
531 	 * out to the bus.
532 	 *
533 	 * this array is declared `static' to keep the compiler from
534 	 * having to bcopy() this array onto the stack frame of
535 	 * SHA1Transform() each time it is called -- which is
536 	 * unacceptably expensive.
537 	 *
538 	 * the `const' is to ensure that callers are good citizens and
539 	 * do not try to munge the array.  since these routines are
540 	 * going to be called from inside multithreaded kernelland,
541 	 * this is a good safety check. -- `sha1_consts' will end up in
542 	 * .rodata.
543 	 *
544 	 * unfortunately, loading from an array in this manner hurts
545 	 * performance under Intel.  So, there is a macro,
546 	 * SHA1_CONST(), used in SHA1Transform(), that either expands to
547 	 * a reference to this array, or to the actual constant,
548 	 * depending on what platform this code is compiled for.
549 	 */
550 
551 	static const uint32_t sha1_consts[] = {
552 		SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
553 	};
554 
555 	/*
556 	 * general optimization:
557 	 *
558 	 * use individual integers instead of using an array.  this is a
559 	 * win, although the amount it wins by seems to vary quite a bit.
560 	 */
561 
562 	uint32_t	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
563 	uint32_t	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
564 
565 	/*
566 	 * sparc optimization:
567 	 *
568 	 * if `block' is already aligned on a 4-byte boundary, use
569 	 * LOAD_BIG_32() directly.  otherwise, bcopy() into a
570 	 * buffer that *is* aligned on a 4-byte boundary and then do
571 	 * the LOAD_BIG_32() on that buffer.  benchmarks have shown
572 	 * that using the bcopy() is better than loading the bytes
573 	 * individually and doing the endian-swap by hand.
574 	 *
575 	 * even though it's quite tempting to assign to do:
576 	 *
577 	 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
578 	 *
579 	 * and only have one set of LOAD_BIG_32()'s, the compiler
580 	 * *does not* like that, so please resist the urge.
581 	 */
582 
583 	if ((uintptr_t)blk & 0x3) {		/* not 4-byte aligned? */
584 		bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
585 		w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
586 		w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
587 		w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
588 		w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
589 		w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
590 		w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
591 		w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
592 		w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
593 		w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
594 		w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
595 		w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
596 		w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
597 		w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
598 		w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
599 		w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
600 		w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
601 	} else {
602 		/* LINTED E_BAD_PTR_CAST_ALIGN */
603 		w_15 = LOAD_BIG_32(blk + 60);
604 		/* LINTED E_BAD_PTR_CAST_ALIGN */
605 		w_14 = LOAD_BIG_32(blk + 56);
606 		/* LINTED E_BAD_PTR_CAST_ALIGN */
607 		w_13 = LOAD_BIG_32(blk + 52);
608 		/* LINTED E_BAD_PTR_CAST_ALIGN */
609 		w_12 = LOAD_BIG_32(blk + 48);
610 		/* LINTED E_BAD_PTR_CAST_ALIGN */
611 		w_11 = LOAD_BIG_32(blk + 44);
612 		/* LINTED E_BAD_PTR_CAST_ALIGN */
613 		w_10 = LOAD_BIG_32(blk + 40);
614 		/* LINTED E_BAD_PTR_CAST_ALIGN */
615 		w_9  = LOAD_BIG_32(blk + 36);
616 		/* LINTED E_BAD_PTR_CAST_ALIGN */
617 		w_8  = LOAD_BIG_32(blk + 32);
618 		/* LINTED E_BAD_PTR_CAST_ALIGN */
619 		w_7  = LOAD_BIG_32(blk + 28);
620 		/* LINTED E_BAD_PTR_CAST_ALIGN */
621 		w_6  = LOAD_BIG_32(blk + 24);
622 		/* LINTED E_BAD_PTR_CAST_ALIGN */
623 		w_5  = LOAD_BIG_32(blk + 20);
624 		/* LINTED E_BAD_PTR_CAST_ALIGN */
625 		w_4  = LOAD_BIG_32(blk + 16);
626 		/* LINTED E_BAD_PTR_CAST_ALIGN */
627 		w_3  = LOAD_BIG_32(blk + 12);
628 		/* LINTED E_BAD_PTR_CAST_ALIGN */
629 		w_2  = LOAD_BIG_32(blk +  8);
630 		/* LINTED E_BAD_PTR_CAST_ALIGN */
631 		w_1  = LOAD_BIG_32(blk +  4);
632 		/* LINTED E_BAD_PTR_CAST_ALIGN */
633 		w_0  = LOAD_BIG_32(blk +  0);
634 	}
635 #else	/* !defined(__sparc) */
636 
637 void /* CSTYLED */
638 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
639 {
640 	/* CSTYLED */
641 	sha1word a = ctx->state[0];
642 	sha1word b = ctx->state[1];
643 	sha1word c = ctx->state[2];
644 	sha1word d = ctx->state[3];
645 	sha1word e = ctx->state[4];
646 
647 #if	defined(W_ARRAY)
648 	sha1word	w[16];
649 #else	/* !defined(W_ARRAY) */
650 	sha1word	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
651 	sha1word	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
652 #endif	/* !defined(W_ARRAY) */
653 
654 	W(0)  = LOAD_BIG_32((void *)(blk +  0));
655 	W(1)  = LOAD_BIG_32((void *)(blk +  4));
656 	W(2)  = LOAD_BIG_32((void *)(blk +  8));
657 	W(3)  = LOAD_BIG_32((void *)(blk + 12));
658 	W(4)  = LOAD_BIG_32((void *)(blk + 16));
659 	W(5)  = LOAD_BIG_32((void *)(blk + 20));
660 	W(6)  = LOAD_BIG_32((void *)(blk + 24));
661 	W(7)  = LOAD_BIG_32((void *)(blk + 28));
662 	W(8)  = LOAD_BIG_32((void *)(blk + 32));
663 	W(9)  = LOAD_BIG_32((void *)(blk + 36));
664 	W(10) = LOAD_BIG_32((void *)(blk + 40));
665 	W(11) = LOAD_BIG_32((void *)(blk + 44));
666 	W(12) = LOAD_BIG_32((void *)(blk + 48));
667 	W(13) = LOAD_BIG_32((void *)(blk + 52));
668 	W(14) = LOAD_BIG_32((void *)(blk + 56));
669 	W(15) = LOAD_BIG_32((void *)(blk + 60));
670 
671 #endif	/* !defined(__sparc) */
672 
673 	/*
674 	 * general optimization:
675 	 *
676 	 * even though this approach is described in the standard as
677 	 * being slower algorithmically, it is 30-40% faster than the
678 	 * "faster" version under SPARC, because this version has more
679 	 * of the constraints specified at compile-time and uses fewer
680 	 * variables (and therefore has better register utilization)
681 	 * than its "speedier" brother.  (i've tried both, trust me)
682 	 *
683 	 * for either method given in the spec, there is an "assignment"
684 	 * phase where the following takes place:
685 	 *
686 	 *	tmp = (main_computation);
687 	 *	e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
688 	 *
689 	 * we can make the algorithm go faster by not doing this work,
690 	 * but just pretending that `d' is now `e', etc. this works
691 	 * really well and obviates the need for a temporary variable.
692 	 * however, we still explicitly perform the rotate action,
693 	 * since it is cheaper on SPARC to do it once than to have to
694 	 * do it over and over again.
695 	 */
696 
697 	/* round 1 */
698 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
699 	b = ROTATE_LEFT(b, 30);
700 
701 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
702 	a = ROTATE_LEFT(a, 30);
703 
704 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
705 	e = ROTATE_LEFT(e, 30);
706 
707 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
708 	d = ROTATE_LEFT(d, 30);
709 
710 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
711 	c = ROTATE_LEFT(c, 30);
712 
713 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
714 	b = ROTATE_LEFT(b, 30);
715 
716 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
717 	a = ROTATE_LEFT(a, 30);
718 
719 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
720 	e = ROTATE_LEFT(e, 30);
721 
722 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
723 	d = ROTATE_LEFT(d, 30);
724 
725 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
726 	c = ROTATE_LEFT(c, 30);
727 
728 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
729 	b = ROTATE_LEFT(b, 30);
730 
731 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
732 	a = ROTATE_LEFT(a, 30);
733 
734 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
735 	e = ROTATE_LEFT(e, 30);
736 
737 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
738 	d = ROTATE_LEFT(d, 30);
739 
740 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
741 	c = ROTATE_LEFT(c, 30);
742 
743 	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
744 	b = ROTATE_LEFT(b, 30);
745 
746 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 16 */
747 	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
748 	a = ROTATE_LEFT(a, 30);
749 
750 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 17 */
751 	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
752 	e = ROTATE_LEFT(e, 30);
753 
754 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 18 */
755 	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
756 	d = ROTATE_LEFT(d, 30);
757 
758 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 19 */
759 	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
760 	c = ROTATE_LEFT(c, 30);
761 
762 	/* round 2 */
763 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 20 */
764 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
765 	b = ROTATE_LEFT(b, 30);
766 
767 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 21 */
768 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
769 	a = ROTATE_LEFT(a, 30);
770 
771 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 22 */
772 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
773 	e = ROTATE_LEFT(e, 30);
774 
775 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 23 */
776 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
777 	d = ROTATE_LEFT(d, 30);
778 
779 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 24 */
780 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
781 	c = ROTATE_LEFT(c, 30);
782 
783 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 25 */
784 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
785 	b = ROTATE_LEFT(b, 30);
786 
787 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 26 */
788 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
789 	a = ROTATE_LEFT(a, 30);
790 
791 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 27 */
792 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
793 	e = ROTATE_LEFT(e, 30);
794 
795 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 28 */
796 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
797 	d = ROTATE_LEFT(d, 30);
798 
799 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 29 */
800 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
801 	c = ROTATE_LEFT(c, 30);
802 
803 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 30 */
804 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
805 	b = ROTATE_LEFT(b, 30);
806 
807 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 31 */
808 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
809 	a = ROTATE_LEFT(a, 30);
810 
811 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 32 */
812 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
813 	e = ROTATE_LEFT(e, 30);
814 
815 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 33 */
816 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
817 	d = ROTATE_LEFT(d, 30);
818 
819 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 34 */
820 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
821 	c = ROTATE_LEFT(c, 30);
822 
823 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 35 */
824 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
825 	b = ROTATE_LEFT(b, 30);
826 
827 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 36 */
828 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
829 	a = ROTATE_LEFT(a, 30);
830 
831 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 37 */
832 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
833 	e = ROTATE_LEFT(e, 30);
834 
835 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 38 */
836 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
837 	d = ROTATE_LEFT(d, 30);
838 
839 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 39 */
840 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
841 	c = ROTATE_LEFT(c, 30);
842 
843 	/* round 3 */
844 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 40 */
845 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
846 	b = ROTATE_LEFT(b, 30);
847 
848 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 41 */
849 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
850 	a = ROTATE_LEFT(a, 30);
851 
852 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 42 */
853 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
854 	e = ROTATE_LEFT(e, 30);
855 
856 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 43 */
857 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
858 	d = ROTATE_LEFT(d, 30);
859 
860 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 44 */
861 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
862 	c = ROTATE_LEFT(c, 30);
863 
864 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 45 */
865 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
866 	b = ROTATE_LEFT(b, 30);
867 
868 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 46 */
869 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
870 	a = ROTATE_LEFT(a, 30);
871 
872 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 47 */
873 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
874 	e = ROTATE_LEFT(e, 30);
875 
876 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 48 */
877 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
878 	d = ROTATE_LEFT(d, 30);
879 
880 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 49 */
881 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
882 	c = ROTATE_LEFT(c, 30);
883 
884 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 50 */
885 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
886 	b = ROTATE_LEFT(b, 30);
887 
888 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 51 */
889 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
890 	a = ROTATE_LEFT(a, 30);
891 
892 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 52 */
893 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
894 	e = ROTATE_LEFT(e, 30);
895 
896 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 53 */
897 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
898 	d = ROTATE_LEFT(d, 30);
899 
900 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 54 */
901 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
902 	c = ROTATE_LEFT(c, 30);
903 
904 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 55 */
905 	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
906 	b = ROTATE_LEFT(b, 30);
907 
908 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 56 */
909 	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
910 	a = ROTATE_LEFT(a, 30);
911 
912 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 57 */
913 	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
914 	e = ROTATE_LEFT(e, 30);
915 
916 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 58 */
917 	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
918 	d = ROTATE_LEFT(d, 30);
919 
920 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 59 */
921 	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
922 	c = ROTATE_LEFT(c, 30);
923 
924 	/* round 4 */
925 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 60 */
926 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
927 	b = ROTATE_LEFT(b, 30);
928 
929 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 61 */
930 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
931 	a = ROTATE_LEFT(a, 30);
932 
933 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 62 */
934 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
935 	e = ROTATE_LEFT(e, 30);
936 
937 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 63 */
938 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
939 	d = ROTATE_LEFT(d, 30);
940 
941 	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 64 */
942 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
943 	c = ROTATE_LEFT(c, 30);
944 
945 	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 65 */
946 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
947 	b = ROTATE_LEFT(b, 30);
948 
949 	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 66 */
950 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
951 	a = ROTATE_LEFT(a, 30);
952 
953 	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 67 */
954 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
955 	e = ROTATE_LEFT(e, 30);
956 
957 	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 68 */
958 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
959 	d = ROTATE_LEFT(d, 30);
960 
961 	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 69 */
962 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
963 	c = ROTATE_LEFT(c, 30);
964 
965 	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 70 */
966 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
967 	b = ROTATE_LEFT(b, 30);
968 
969 	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 71 */
970 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
971 	a = ROTATE_LEFT(a, 30);
972 
973 	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 72 */
974 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
975 	e = ROTATE_LEFT(e, 30);
976 
977 	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 73 */
978 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
979 	d = ROTATE_LEFT(d, 30);
980 
981 	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 74 */
982 	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
983 	c = ROTATE_LEFT(c, 30);
984 
985 	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 75 */
986 	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
987 	b = ROTATE_LEFT(b, 30);
988 
989 	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 76 */
990 	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
991 	a = ROTATE_LEFT(a, 30);
992 
993 	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 77 */
994 	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
995 	e = ROTATE_LEFT(e, 30);
996 
997 	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 78 */
998 	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
999 	d = ROTATE_LEFT(d, 30);
1000 
1001 	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 79 */
1002 
1003 	ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
1004 	    SHA1_CONST(3);
1005 	ctx->state[1] += b;
1006 	ctx->state[2] += ROTATE_LEFT(c, 30);
1007 	ctx->state[3] += d;
1008 	ctx->state[4] += e;
1009 
1010 	/* zeroize sensitive information */
1011 	W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
1012 	W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
1013 }
1014 #endif	/* !__amd64 */
1015 
1016 
1017 /*
1018  * Encode()
1019  *
1020  * purpose: to convert a list of numbers from little endian to big endian
1021  *   input: uint8_t *	: place to store the converted big endian numbers
1022  *	    uint32_t *	: place to get numbers to convert from
1023  *          size_t	: the length of the input in bytes
1024  *  output: void
1025  */
1026 
1027 static void
1028 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1029     size_t len)
1030 {
1031 	size_t		i, j;
1032 
1033 #if	defined(__sparc)
1034 	if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1035 		for (i = 0, j = 0; j < len; i++, j += 4) {
1036 			/* LINTED E_BAD_PTR_CAST_ALIGN */
1037 			*((uint32_t *)(output + j)) = input[i];
1038 		}
1039 	} else {
1040 #endif	/* little endian -- will work on big endian, but slowly */
1041 		for (i = 0, j = 0; j < len; i++, j += 4) {
1042 			output[j]	= (input[i] >> 24) & 0xff;
1043 			output[j + 1]	= (input[i] >> 16) & 0xff;
1044 			output[j + 2]	= (input[i] >>  8) & 0xff;
1045 			output[j + 3]	= input[i] & 0xff;
1046 		}
1047 #if	defined(__sparc)
1048 	}
1049 #endif
1050 }
1051