1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/metaslab_impl.h> 96 #include <sys/dsl_prop.h> 97 #include <sys/dsl_dataset.h> 98 #include <sys/refcount.h> 99 #include <stdio.h> 100 #include <stdio_ext.h> 101 #include <stdlib.h> 102 #include <unistd.h> 103 #include <signal.h> 104 #include <umem.h> 105 #include <dlfcn.h> 106 #include <ctype.h> 107 #include <math.h> 108 #include <sys/fs/zfs.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 static int zopt_maxfaults; 129 130 typedef struct ztest_block_tag { 131 uint64_t bt_objset; 132 uint64_t bt_object; 133 uint64_t bt_offset; 134 uint64_t bt_txg; 135 uint64_t bt_thread; 136 uint64_t bt_seq; 137 } ztest_block_tag_t; 138 139 typedef struct ztest_args { 140 char za_pool[MAXNAMELEN]; 141 spa_t *za_spa; 142 objset_t *za_os; 143 zilog_t *za_zilog; 144 thread_t za_thread; 145 uint64_t za_instance; 146 uint64_t za_random; 147 uint64_t za_diroff; 148 uint64_t za_diroff_shared; 149 uint64_t za_zil_seq; 150 hrtime_t za_start; 151 hrtime_t za_stop; 152 hrtime_t za_kill; 153 /* 154 * Thread-local variables can go here to aid debugging. 155 */ 156 ztest_block_tag_t za_rbt; 157 ztest_block_tag_t za_wbt; 158 dmu_object_info_t za_doi; 159 dmu_buf_t *za_dbuf; 160 } ztest_args_t; 161 162 typedef void ztest_func_t(ztest_args_t *); 163 164 /* 165 * Note: these aren't static because we want dladdr() to work. 166 */ 167 ztest_func_t ztest_dmu_read_write; 168 ztest_func_t ztest_dmu_read_write_zcopy; 169 ztest_func_t ztest_dmu_write_parallel; 170 ztest_func_t ztest_dmu_object_alloc_free; 171 ztest_func_t ztest_dmu_commit_callbacks; 172 ztest_func_t ztest_zap; 173 ztest_func_t ztest_fzap; 174 ztest_func_t ztest_zap_parallel; 175 ztest_func_t ztest_traverse; 176 ztest_func_t ztest_dsl_prop_get_set; 177 ztest_func_t ztest_dmu_objset_create_destroy; 178 ztest_func_t ztest_dmu_snapshot_create_destroy; 179 ztest_func_t ztest_dsl_dataset_promote_busy; 180 ztest_func_t ztest_spa_create_destroy; 181 ztest_func_t ztest_fault_inject; 182 ztest_func_t ztest_spa_rename; 183 ztest_func_t ztest_vdev_attach_detach; 184 ztest_func_t ztest_vdev_LUN_growth; 185 ztest_func_t ztest_vdev_add_remove; 186 ztest_func_t ztest_vdev_aux_add_remove; 187 ztest_func_t ztest_scrub; 188 ztest_func_t ztest_dmu_snapshot_hold; 189 190 typedef struct ztest_info { 191 ztest_func_t *zi_func; /* test function */ 192 uint64_t zi_iters; /* iterations per execution */ 193 uint64_t *zi_interval; /* execute every <interval> seconds */ 194 uint64_t zi_calls; /* per-pass count */ 195 uint64_t zi_call_time; /* per-pass time */ 196 uint64_t zi_call_total; /* cumulative total */ 197 uint64_t zi_call_target; /* target cumulative total */ 198 } ztest_info_t; 199 200 uint64_t zopt_always = 0; /* all the time */ 201 uint64_t zopt_often = 1; /* every second */ 202 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 203 uint64_t zopt_rarely = 60; /* every 60 seconds */ 204 205 ztest_info_t ztest_info[] = { 206 { ztest_dmu_read_write, 1, &zopt_always }, 207 { ztest_dmu_write_parallel, 30, &zopt_always }, 208 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 209 { ztest_dmu_commit_callbacks, 10, &zopt_always }, 210 { ztest_zap, 30, &zopt_always }, 211 { ztest_fzap, 1, &zopt_always }, 212 { ztest_zap_parallel, 100, &zopt_always }, 213 { ztest_dmu_read_write_zcopy, 1, &zopt_sometimes }, 214 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 215 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 216 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 217 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 218 { ztest_fault_inject, 1, &zopt_sometimes }, 219 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 220 { ztest_spa_rename, 1, &zopt_rarely }, 221 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 222 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 223 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 224 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 225 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 226 { ztest_scrub, 1, &zopt_vdevtime }, 227 }; 228 229 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 230 231 #define ZTEST_SYNC_LOCKS 16 232 233 /* 234 * The following struct is used to hold a list of uncalled commit callbacks. 235 * 236 * The callbacks are ordered by txg number. 237 */ 238 typedef struct ztest_cb_list { 239 mutex_t zcl_callbacks_lock; 240 list_t zcl_callbacks; 241 } ztest_cb_list_t; 242 243 /* 244 * Stuff we need to share writably between parent and child. 245 */ 246 typedef struct ztest_shared { 247 mutex_t zs_vdev_lock; 248 rwlock_t zs_name_lock; 249 uint64_t zs_vdev_next_leaf; 250 uint64_t zs_vdev_aux; 251 uint64_t zs_enospc_count; 252 hrtime_t zs_start_time; 253 hrtime_t zs_stop_time; 254 uint64_t zs_alloc; 255 uint64_t zs_space; 256 ztest_info_t zs_info[ZTEST_FUNCS]; 257 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 258 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 259 } ztest_shared_t; 260 261 static char ztest_dev_template[] = "%s/%s.%llua"; 262 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 263 static ztest_shared_t *ztest_shared; 264 265 static int ztest_random_fd; 266 static int ztest_dump_core = 1; 267 268 static uint64_t metaslab_sz; 269 static boolean_t ztest_exiting; 270 271 /* Global commit callback list */ 272 static ztest_cb_list_t zcl; 273 274 extern uint64_t metaslab_gang_bang; 275 extern uint64_t metaslab_df_alloc_threshold; 276 277 #define ZTEST_DIROBJ 1 278 #define ZTEST_MICROZAP_OBJ 2 279 #define ZTEST_FATZAP_OBJ 3 280 281 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 282 #define ZTEST_DIRSIZE 256 283 284 static void usage(boolean_t) __NORETURN; 285 286 /* 287 * These libumem hooks provide a reasonable set of defaults for the allocator's 288 * debugging facilities. 289 */ 290 const char * 291 _umem_debug_init() 292 { 293 return ("default,verbose"); /* $UMEM_DEBUG setting */ 294 } 295 296 const char * 297 _umem_logging_init(void) 298 { 299 return ("fail,contents"); /* $UMEM_LOGGING setting */ 300 } 301 302 #define FATAL_MSG_SZ 1024 303 304 char *fatal_msg; 305 306 static void 307 fatal(int do_perror, char *message, ...) 308 { 309 va_list args; 310 int save_errno = errno; 311 char buf[FATAL_MSG_SZ]; 312 313 (void) fflush(stdout); 314 315 va_start(args, message); 316 (void) sprintf(buf, "ztest: "); 317 /* LINTED */ 318 (void) vsprintf(buf + strlen(buf), message, args); 319 va_end(args); 320 if (do_perror) { 321 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 322 ": %s", strerror(save_errno)); 323 } 324 (void) fprintf(stderr, "%s\n", buf); 325 fatal_msg = buf; /* to ease debugging */ 326 if (ztest_dump_core) 327 abort(); 328 exit(3); 329 } 330 331 static int 332 str2shift(const char *buf) 333 { 334 const char *ends = "BKMGTPEZ"; 335 int i; 336 337 if (buf[0] == '\0') 338 return (0); 339 for (i = 0; i < strlen(ends); i++) { 340 if (toupper(buf[0]) == ends[i]) 341 break; 342 } 343 if (i == strlen(ends)) { 344 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 345 buf); 346 usage(B_FALSE); 347 } 348 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 349 return (10*i); 350 } 351 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 352 usage(B_FALSE); 353 /* NOTREACHED */ 354 } 355 356 static uint64_t 357 nicenumtoull(const char *buf) 358 { 359 char *end; 360 uint64_t val; 361 362 val = strtoull(buf, &end, 0); 363 if (end == buf) { 364 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 365 usage(B_FALSE); 366 } else if (end[0] == '.') { 367 double fval = strtod(buf, &end); 368 fval *= pow(2, str2shift(end)); 369 if (fval > UINT64_MAX) { 370 (void) fprintf(stderr, "ztest: value too large: %s\n", 371 buf); 372 usage(B_FALSE); 373 } 374 val = (uint64_t)fval; 375 } else { 376 int shift = str2shift(end); 377 if (shift >= 64 || (val << shift) >> shift != val) { 378 (void) fprintf(stderr, "ztest: value too large: %s\n", 379 buf); 380 usage(B_FALSE); 381 } 382 val <<= shift; 383 } 384 return (val); 385 } 386 387 static void 388 usage(boolean_t requested) 389 { 390 char nice_vdev_size[10]; 391 char nice_gang_bang[10]; 392 FILE *fp = requested ? stdout : stderr; 393 394 nicenum(zopt_vdev_size, nice_vdev_size); 395 nicenum(metaslab_gang_bang, nice_gang_bang); 396 397 (void) fprintf(fp, "Usage: %s\n" 398 "\t[-v vdevs (default: %llu)]\n" 399 "\t[-s size_of_each_vdev (default: %s)]\n" 400 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 401 "\t[-m mirror_copies (default: %d)]\n" 402 "\t[-r raidz_disks (default: %d)]\n" 403 "\t[-R raidz_parity (default: %d)]\n" 404 "\t[-d datasets (default: %d)]\n" 405 "\t[-t threads (default: %d)]\n" 406 "\t[-g gang_block_threshold (default: %s)]\n" 407 "\t[-i initialize pool i times (default: %d)]\n" 408 "\t[-k kill percentage (default: %llu%%)]\n" 409 "\t[-p pool_name (default: %s)]\n" 410 "\t[-f file directory for vdev files (default: %s)]\n" 411 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 412 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 413 "\t[-T time] total run time (default: %llu sec)\n" 414 "\t[-P passtime] time per pass (default: %llu sec)\n" 415 "\t[-h] (print help)\n" 416 "", 417 cmdname, 418 (u_longlong_t)zopt_vdevs, /* -v */ 419 nice_vdev_size, /* -s */ 420 zopt_ashift, /* -a */ 421 zopt_mirrors, /* -m */ 422 zopt_raidz, /* -r */ 423 zopt_raidz_parity, /* -R */ 424 zopt_datasets, /* -d */ 425 zopt_threads, /* -t */ 426 nice_gang_bang, /* -g */ 427 zopt_init, /* -i */ 428 (u_longlong_t)zopt_killrate, /* -k */ 429 zopt_pool, /* -p */ 430 zopt_dir, /* -f */ 431 (u_longlong_t)zopt_time, /* -T */ 432 (u_longlong_t)zopt_passtime); /* -P */ 433 exit(requested ? 0 : 1); 434 } 435 436 static uint64_t 437 ztest_random(uint64_t range) 438 { 439 uint64_t r; 440 441 if (range == 0) 442 return (0); 443 444 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 445 fatal(1, "short read from /dev/urandom"); 446 447 return (r % range); 448 } 449 450 /* ARGSUSED */ 451 static void 452 ztest_record_enospc(char *s) 453 { 454 ztest_shared->zs_enospc_count++; 455 } 456 457 static void 458 process_options(int argc, char **argv) 459 { 460 int opt; 461 uint64_t value; 462 463 /* By default, test gang blocks for blocks 32K and greater */ 464 metaslab_gang_bang = 32 << 10; 465 466 while ((opt = getopt(argc, argv, 467 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 468 value = 0; 469 switch (opt) { 470 case 'v': 471 case 's': 472 case 'a': 473 case 'm': 474 case 'r': 475 case 'R': 476 case 'd': 477 case 't': 478 case 'g': 479 case 'i': 480 case 'k': 481 case 'T': 482 case 'P': 483 value = nicenumtoull(optarg); 484 } 485 switch (opt) { 486 case 'v': 487 zopt_vdevs = value; 488 break; 489 case 's': 490 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 491 break; 492 case 'a': 493 zopt_ashift = value; 494 break; 495 case 'm': 496 zopt_mirrors = value; 497 break; 498 case 'r': 499 zopt_raidz = MAX(1, value); 500 break; 501 case 'R': 502 zopt_raidz_parity = MIN(MAX(value, 1), 3); 503 break; 504 case 'd': 505 zopt_datasets = MAX(1, value); 506 break; 507 case 't': 508 zopt_threads = MAX(1, value); 509 break; 510 case 'g': 511 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 512 break; 513 case 'i': 514 zopt_init = value; 515 break; 516 case 'k': 517 zopt_killrate = value; 518 break; 519 case 'p': 520 zopt_pool = strdup(optarg); 521 break; 522 case 'f': 523 zopt_dir = strdup(optarg); 524 break; 525 case 'V': 526 zopt_verbose++; 527 break; 528 case 'E': 529 zopt_init = 0; 530 break; 531 case 'T': 532 zopt_time = value; 533 break; 534 case 'P': 535 zopt_passtime = MAX(1, value); 536 break; 537 case 'h': 538 usage(B_TRUE); 539 break; 540 case '?': 541 default: 542 usage(B_FALSE); 543 break; 544 } 545 } 546 547 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 548 549 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 550 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 551 } 552 553 static uint64_t 554 ztest_get_ashift(void) 555 { 556 if (zopt_ashift == 0) 557 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 558 return (zopt_ashift); 559 } 560 561 static nvlist_t * 562 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 563 { 564 char pathbuf[MAXPATHLEN]; 565 uint64_t vdev; 566 nvlist_t *file; 567 568 if (ashift == 0) 569 ashift = ztest_get_ashift(); 570 571 if (path == NULL) { 572 path = pathbuf; 573 574 if (aux != NULL) { 575 vdev = ztest_shared->zs_vdev_aux; 576 (void) sprintf(path, ztest_aux_template, 577 zopt_dir, zopt_pool, aux, vdev); 578 } else { 579 vdev = ztest_shared->zs_vdev_next_leaf++; 580 (void) sprintf(path, ztest_dev_template, 581 zopt_dir, zopt_pool, vdev); 582 } 583 } 584 585 if (size != 0) { 586 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 587 if (fd == -1) 588 fatal(1, "can't open %s", path); 589 if (ftruncate(fd, size) != 0) 590 fatal(1, "can't ftruncate %s", path); 591 (void) close(fd); 592 } 593 594 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 595 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 596 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 597 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 598 599 return (file); 600 } 601 602 static nvlist_t * 603 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 604 { 605 nvlist_t *raidz, **child; 606 int c; 607 608 if (r < 2) 609 return (make_vdev_file(path, aux, size, ashift)); 610 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 611 612 for (c = 0; c < r; c++) 613 child[c] = make_vdev_file(path, aux, size, ashift); 614 615 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 616 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 617 VDEV_TYPE_RAIDZ) == 0); 618 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 619 zopt_raidz_parity) == 0); 620 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 621 child, r) == 0); 622 623 for (c = 0; c < r; c++) 624 nvlist_free(child[c]); 625 626 umem_free(child, r * sizeof (nvlist_t *)); 627 628 return (raidz); 629 } 630 631 static nvlist_t * 632 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 633 int r, int m) 634 { 635 nvlist_t *mirror, **child; 636 int c; 637 638 if (m < 1) 639 return (make_vdev_raidz(path, aux, size, ashift, r)); 640 641 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 642 643 for (c = 0; c < m; c++) 644 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 645 646 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 647 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 648 VDEV_TYPE_MIRROR) == 0); 649 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 650 child, m) == 0); 651 652 for (c = 0; c < m; c++) 653 nvlist_free(child[c]); 654 655 umem_free(child, m * sizeof (nvlist_t *)); 656 657 return (mirror); 658 } 659 660 static nvlist_t * 661 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 662 int log, int r, int m, int t) 663 { 664 nvlist_t *root, **child; 665 int c; 666 667 ASSERT(t > 0); 668 669 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 670 671 for (c = 0; c < t; c++) { 672 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 673 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 674 log) == 0); 675 } 676 677 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 678 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 679 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 680 child, t) == 0); 681 682 for (c = 0; c < t; c++) 683 nvlist_free(child[c]); 684 685 umem_free(child, t * sizeof (nvlist_t *)); 686 687 return (root); 688 } 689 690 static void 691 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 692 { 693 int bs = SPA_MINBLOCKSHIFT + 694 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 695 int ibs = DN_MIN_INDBLKSHIFT + 696 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 697 int error; 698 699 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 700 if (error) { 701 char osname[300]; 702 dmu_objset_name(os, osname); 703 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 704 osname, object, 1 << bs, ibs, error); 705 } 706 } 707 708 static uint8_t 709 ztest_random_checksum(void) 710 { 711 uint8_t checksum; 712 713 do { 714 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 715 } while (zio_checksum_table[checksum].ci_zbt); 716 717 if (checksum == ZIO_CHECKSUM_OFF) 718 checksum = ZIO_CHECKSUM_ON; 719 720 return (checksum); 721 } 722 723 static uint8_t 724 ztest_random_compress(void) 725 { 726 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 727 } 728 729 static int 730 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 731 { 732 dmu_tx_t *tx; 733 int error; 734 735 if (byteswap) 736 byteswap_uint64_array(lr, sizeof (*lr)); 737 738 tx = dmu_tx_create(os); 739 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 740 error = dmu_tx_assign(tx, TXG_WAIT); 741 if (error) { 742 dmu_tx_abort(tx); 743 return (error); 744 } 745 746 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 747 DMU_OT_NONE, 0, tx); 748 ASSERT3U(error, ==, 0); 749 dmu_tx_commit(tx); 750 751 if (zopt_verbose >= 5) { 752 char osname[MAXNAMELEN]; 753 dmu_objset_name(os, osname); 754 (void) printf("replay create of %s object %llu" 755 " in txg %llu = %d\n", 756 osname, (u_longlong_t)lr->lr_doid, 757 (u_longlong_t)dmu_tx_get_txg(tx), error); 758 } 759 760 return (error); 761 } 762 763 static int 764 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 765 { 766 dmu_tx_t *tx; 767 int error; 768 769 if (byteswap) 770 byteswap_uint64_array(lr, sizeof (*lr)); 771 772 tx = dmu_tx_create(os); 773 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 774 error = dmu_tx_assign(tx, TXG_WAIT); 775 if (error) { 776 dmu_tx_abort(tx); 777 return (error); 778 } 779 780 error = dmu_object_free(os, lr->lr_doid, tx); 781 dmu_tx_commit(tx); 782 783 return (error); 784 } 785 786 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 787 NULL, /* 0 no such transaction type */ 788 ztest_replay_create, /* TX_CREATE */ 789 NULL, /* TX_MKDIR */ 790 NULL, /* TX_MKXATTR */ 791 NULL, /* TX_SYMLINK */ 792 ztest_replay_remove, /* TX_REMOVE */ 793 NULL, /* TX_RMDIR */ 794 NULL, /* TX_LINK */ 795 NULL, /* TX_RENAME */ 796 NULL, /* TX_WRITE */ 797 NULL, /* TX_TRUNCATE */ 798 NULL, /* TX_SETATTR */ 799 NULL, /* TX_ACL */ 800 NULL, /* TX_CREATE_ACL */ 801 NULL, /* TX_CREATE_ATTR */ 802 NULL, /* TX_CREATE_ACL_ATTR */ 803 NULL, /* TX_MKDIR_ACL */ 804 NULL, /* TX_MKDIR_ATTR */ 805 NULL, /* TX_MKDIR_ACL_ATTR */ 806 NULL, /* TX_WRITE2 */ 807 }; 808 809 /* 810 * Verify that we can't destroy an active pool, create an existing pool, 811 * or create a pool with a bad vdev spec. 812 */ 813 void 814 ztest_spa_create_destroy(ztest_args_t *za) 815 { 816 int error; 817 spa_t *spa; 818 nvlist_t *nvroot; 819 820 /* 821 * Attempt to create using a bad file. 822 */ 823 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 824 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 825 nvlist_free(nvroot); 826 if (error != ENOENT) 827 fatal(0, "spa_create(bad_file) = %d", error); 828 829 /* 830 * Attempt to create using a bad mirror. 831 */ 832 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 833 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 834 nvlist_free(nvroot); 835 if (error != ENOENT) 836 fatal(0, "spa_create(bad_mirror) = %d", error); 837 838 /* 839 * Attempt to create an existing pool. It shouldn't matter 840 * what's in the nvroot; we should fail with EEXIST. 841 */ 842 (void) rw_rdlock(&ztest_shared->zs_name_lock); 843 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 844 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 845 nvlist_free(nvroot); 846 if (error != EEXIST) 847 fatal(0, "spa_create(whatever) = %d", error); 848 849 error = spa_open(za->za_pool, &spa, FTAG); 850 if (error) 851 fatal(0, "spa_open() = %d", error); 852 853 error = spa_destroy(za->za_pool); 854 if (error != EBUSY) 855 fatal(0, "spa_destroy() = %d", error); 856 857 spa_close(spa, FTAG); 858 (void) rw_unlock(&ztest_shared->zs_name_lock); 859 } 860 861 static vdev_t * 862 vdev_lookup_by_path(vdev_t *vd, const char *path) 863 { 864 vdev_t *mvd; 865 866 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 867 return (vd); 868 869 for (int c = 0; c < vd->vdev_children; c++) 870 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 871 NULL) 872 return (mvd); 873 874 return (NULL); 875 } 876 877 /* 878 * Find the first available hole which can be used as a top-level. 879 */ 880 int 881 find_vdev_hole(spa_t *spa) 882 { 883 vdev_t *rvd = spa->spa_root_vdev; 884 int c; 885 886 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 887 888 for (c = 0; c < rvd->vdev_children; c++) { 889 vdev_t *cvd = rvd->vdev_child[c]; 890 891 if (cvd->vdev_ishole) 892 break; 893 } 894 return (c); 895 } 896 897 /* 898 * Verify that vdev_add() works as expected. 899 */ 900 void 901 ztest_vdev_add_remove(ztest_args_t *za) 902 { 903 spa_t *spa = za->za_spa; 904 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 905 uint64_t guid; 906 nvlist_t *nvroot; 907 int error; 908 909 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 910 911 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 912 913 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 914 915 /* 916 * If we have slogs then remove them 1/4 of the time. 917 */ 918 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 919 /* 920 * Grab the guid from the head of the log class rotor. 921 */ 922 guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid; 923 924 spa_config_exit(spa, SCL_VDEV, FTAG); 925 926 /* 927 * We have to grab the zs_name_lock as writer to 928 * prevent a race between removing a slog (dmu_objset_find) 929 * and destroying a dataset. Removing the slog will 930 * grab a reference on the dataset which may cause 931 * dmu_objset_destroy() to fail with EBUSY thus 932 * leaving the dataset in an inconsistent state. 933 */ 934 (void) rw_wrlock(&ztest_shared->zs_name_lock); 935 error = spa_vdev_remove(spa, guid, B_FALSE); 936 (void) rw_unlock(&ztest_shared->zs_name_lock); 937 938 if (error && error != EEXIST) 939 fatal(0, "spa_vdev_remove() = %d", error); 940 } else { 941 spa_config_exit(spa, SCL_VDEV, FTAG); 942 943 /* 944 * Make 1/4 of the devices be log devices. 945 */ 946 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 947 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 948 949 error = spa_vdev_add(spa, nvroot); 950 nvlist_free(nvroot); 951 952 if (error == ENOSPC) 953 ztest_record_enospc("spa_vdev_add"); 954 else if (error != 0) 955 fatal(0, "spa_vdev_add() = %d", error); 956 } 957 958 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 959 } 960 961 /* 962 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 963 */ 964 void 965 ztest_vdev_aux_add_remove(ztest_args_t *za) 966 { 967 spa_t *spa = za->za_spa; 968 vdev_t *rvd = spa->spa_root_vdev; 969 spa_aux_vdev_t *sav; 970 char *aux; 971 uint64_t guid = 0; 972 int error; 973 974 if (ztest_random(2) == 0) { 975 sav = &spa->spa_spares; 976 aux = ZPOOL_CONFIG_SPARES; 977 } else { 978 sav = &spa->spa_l2cache; 979 aux = ZPOOL_CONFIG_L2CACHE; 980 } 981 982 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 983 984 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 985 986 if (sav->sav_count != 0 && ztest_random(4) == 0) { 987 /* 988 * Pick a random device to remove. 989 */ 990 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 991 } else { 992 /* 993 * Find an unused device we can add. 994 */ 995 ztest_shared->zs_vdev_aux = 0; 996 for (;;) { 997 char path[MAXPATHLEN]; 998 int c; 999 (void) sprintf(path, ztest_aux_template, zopt_dir, 1000 zopt_pool, aux, ztest_shared->zs_vdev_aux); 1001 for (c = 0; c < sav->sav_count; c++) 1002 if (strcmp(sav->sav_vdevs[c]->vdev_path, 1003 path) == 0) 1004 break; 1005 if (c == sav->sav_count && 1006 vdev_lookup_by_path(rvd, path) == NULL) 1007 break; 1008 ztest_shared->zs_vdev_aux++; 1009 } 1010 } 1011 1012 spa_config_exit(spa, SCL_VDEV, FTAG); 1013 1014 if (guid == 0) { 1015 /* 1016 * Add a new device. 1017 */ 1018 nvlist_t *nvroot = make_vdev_root(NULL, aux, 1019 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 1020 error = spa_vdev_add(spa, nvroot); 1021 if (error != 0) 1022 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 1023 nvlist_free(nvroot); 1024 } else { 1025 /* 1026 * Remove an existing device. Sometimes, dirty its 1027 * vdev state first to make sure we handle removal 1028 * of devices that have pending state changes. 1029 */ 1030 if (ztest_random(2) == 0) 1031 (void) vdev_online(spa, guid, 0, NULL); 1032 1033 error = spa_vdev_remove(spa, guid, B_FALSE); 1034 if (error != 0 && error != EBUSY) 1035 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 1036 } 1037 1038 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1039 } 1040 1041 /* 1042 * Verify that we can attach and detach devices. 1043 */ 1044 void 1045 ztest_vdev_attach_detach(ztest_args_t *za) 1046 { 1047 spa_t *spa = za->za_spa; 1048 spa_aux_vdev_t *sav = &spa->spa_spares; 1049 vdev_t *rvd = spa->spa_root_vdev; 1050 vdev_t *oldvd, *newvd, *pvd; 1051 nvlist_t *root; 1052 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1053 uint64_t leaf, top; 1054 uint64_t ashift = ztest_get_ashift(); 1055 uint64_t oldguid, pguid; 1056 size_t oldsize, newsize; 1057 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 1058 int replacing; 1059 int oldvd_has_siblings = B_FALSE; 1060 int newvd_is_spare = B_FALSE; 1061 int oldvd_is_log; 1062 int error, expected_error; 1063 1064 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1065 1066 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1067 1068 /* 1069 * Decide whether to do an attach or a replace. 1070 */ 1071 replacing = ztest_random(2); 1072 1073 /* 1074 * Pick a random top-level vdev. 1075 */ 1076 top = ztest_random(rvd->vdev_children); 1077 1078 /* 1079 * Pick a random leaf within it. 1080 */ 1081 leaf = ztest_random(leaves); 1082 1083 /* 1084 * Locate this vdev. 1085 */ 1086 oldvd = rvd->vdev_child[top]; 1087 if (zopt_mirrors >= 1) { 1088 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1089 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1090 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1091 } 1092 if (zopt_raidz > 1) { 1093 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1094 ASSERT(oldvd->vdev_children == zopt_raidz); 1095 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1096 } 1097 1098 /* 1099 * If we're already doing an attach or replace, oldvd may be a 1100 * mirror vdev -- in which case, pick a random child. 1101 */ 1102 while (oldvd->vdev_children != 0) { 1103 oldvd_has_siblings = B_TRUE; 1104 ASSERT(oldvd->vdev_children >= 2); 1105 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1106 } 1107 1108 oldguid = oldvd->vdev_guid; 1109 oldsize = vdev_get_min_asize(oldvd); 1110 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1111 (void) strcpy(oldpath, oldvd->vdev_path); 1112 pvd = oldvd->vdev_parent; 1113 pguid = pvd->vdev_guid; 1114 1115 /* 1116 * If oldvd has siblings, then half of the time, detach it. 1117 */ 1118 if (oldvd_has_siblings && ztest_random(2) == 0) { 1119 spa_config_exit(spa, SCL_VDEV, FTAG); 1120 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1121 if (error != 0 && error != ENODEV && error != EBUSY && 1122 error != ENOTSUP) 1123 fatal(0, "detach (%s) returned %d", oldpath, error); 1124 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1125 return; 1126 } 1127 1128 /* 1129 * For the new vdev, choose with equal probability between the two 1130 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1131 */ 1132 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1133 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1134 newvd_is_spare = B_TRUE; 1135 (void) strcpy(newpath, newvd->vdev_path); 1136 } else { 1137 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1138 zopt_dir, zopt_pool, top * leaves + leaf); 1139 if (ztest_random(2) == 0) 1140 newpath[strlen(newpath) - 1] = 'b'; 1141 newvd = vdev_lookup_by_path(rvd, newpath); 1142 } 1143 1144 if (newvd) { 1145 newsize = vdev_get_min_asize(newvd); 1146 } else { 1147 /* 1148 * Make newsize a little bigger or smaller than oldsize. 1149 * If it's smaller, the attach should fail. 1150 * If it's larger, and we're doing a replace, 1151 * we should get dynamic LUN growth when we're done. 1152 */ 1153 newsize = 10 * oldsize / (9 + ztest_random(3)); 1154 } 1155 1156 /* 1157 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1158 * unless it's a replace; in that case any non-replacing parent is OK. 1159 * 1160 * If newvd is already part of the pool, it should fail with EBUSY. 1161 * 1162 * If newvd is too small, it should fail with EOVERFLOW. 1163 */ 1164 if (pvd->vdev_ops != &vdev_mirror_ops && 1165 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1166 pvd->vdev_ops == &vdev_replacing_ops || 1167 pvd->vdev_ops == &vdev_spare_ops)) 1168 expected_error = ENOTSUP; 1169 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1170 expected_error = ENOTSUP; 1171 else if (newvd == oldvd) 1172 expected_error = replacing ? 0 : EBUSY; 1173 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1174 expected_error = EBUSY; 1175 else if (newsize < oldsize) 1176 expected_error = EOVERFLOW; 1177 else if (ashift > oldvd->vdev_top->vdev_ashift) 1178 expected_error = EDOM; 1179 else 1180 expected_error = 0; 1181 1182 spa_config_exit(spa, SCL_VDEV, FTAG); 1183 1184 /* 1185 * Build the nvlist describing newpath. 1186 */ 1187 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1188 ashift, 0, 0, 0, 1); 1189 1190 error = spa_vdev_attach(spa, oldguid, root, replacing); 1191 1192 nvlist_free(root); 1193 1194 /* 1195 * If our parent was the replacing vdev, but the replace completed, 1196 * then instead of failing with ENOTSUP we may either succeed, 1197 * fail with ENODEV, or fail with EOVERFLOW. 1198 */ 1199 if (expected_error == ENOTSUP && 1200 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1201 expected_error = error; 1202 1203 /* 1204 * If someone grew the LUN, the replacement may be too small. 1205 */ 1206 if (error == EOVERFLOW || error == EBUSY) 1207 expected_error = error; 1208 1209 /* XXX workaround 6690467 */ 1210 if (error != expected_error && expected_error != EBUSY) { 1211 fatal(0, "attach (%s %llu, %s %llu, %d) " 1212 "returned %d, expected %d", 1213 oldpath, (longlong_t)oldsize, newpath, 1214 (longlong_t)newsize, replacing, error, expected_error); 1215 } 1216 1217 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1218 } 1219 1220 /* 1221 * Callback function which expands the physical size of the vdev. 1222 */ 1223 vdev_t * 1224 grow_vdev(vdev_t *vd, void *arg) 1225 { 1226 spa_t *spa = vd->vdev_spa; 1227 size_t *newsize = arg; 1228 size_t fsize; 1229 int fd; 1230 1231 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1232 ASSERT(vd->vdev_ops->vdev_op_leaf); 1233 1234 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 1235 return (vd); 1236 1237 fsize = lseek(fd, 0, SEEK_END); 1238 (void) ftruncate(fd, *newsize); 1239 1240 if (zopt_verbose >= 6) { 1241 (void) printf("%s grew from %lu to %lu bytes\n", 1242 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 1243 } 1244 (void) close(fd); 1245 return (NULL); 1246 } 1247 1248 /* 1249 * Callback function which expands a given vdev by calling vdev_online(). 1250 */ 1251 /* ARGSUSED */ 1252 vdev_t * 1253 online_vdev(vdev_t *vd, void *arg) 1254 { 1255 spa_t *spa = vd->vdev_spa; 1256 vdev_t *tvd = vd->vdev_top; 1257 uint64_t guid = vd->vdev_guid; 1258 uint64_t generation = spa->spa_config_generation + 1; 1259 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 1260 int error; 1261 1262 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1263 ASSERT(vd->vdev_ops->vdev_op_leaf); 1264 1265 /* Calling vdev_online will initialize the new metaslabs */ 1266 spa_config_exit(spa, SCL_STATE, spa); 1267 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 1268 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1269 1270 /* 1271 * If vdev_online returned an error or the underlying vdev_open 1272 * failed then we abort the expand. The only way to know that 1273 * vdev_open fails is by checking the returned newstate. 1274 */ 1275 if (error || newstate != VDEV_STATE_HEALTHY) { 1276 if (zopt_verbose >= 5) { 1277 (void) printf("Unable to expand vdev, state %llu, " 1278 "error %d\n", (u_longlong_t)newstate, error); 1279 } 1280 return (vd); 1281 } 1282 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 1283 1284 /* 1285 * Since we dropped the lock we need to ensure that we're 1286 * still talking to the original vdev. It's possible this 1287 * vdev may have been detached/replaced while we were 1288 * trying to online it. 1289 */ 1290 if (generation != spa->spa_config_generation) { 1291 if (zopt_verbose >= 5) { 1292 (void) printf("vdev configuration has changed, " 1293 "guid %llu, state %llu, expected gen %llu, " 1294 "got gen %llu\n", (u_longlong_t)guid, 1295 (u_longlong_t)tvd->vdev_state, 1296 (u_longlong_t)generation, 1297 (u_longlong_t)spa->spa_config_generation); 1298 } 1299 return (vd); 1300 } 1301 return (NULL); 1302 } 1303 1304 /* 1305 * Traverse the vdev tree calling the supplied function. 1306 * We continue to walk the tree until we either have walked all 1307 * children or we receive a non-NULL return from the callback. 1308 * If a NULL callback is passed, then we just return back the first 1309 * leaf vdev we encounter. 1310 */ 1311 vdev_t * 1312 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 1313 { 1314 if (vd->vdev_ops->vdev_op_leaf) { 1315 if (func == NULL) 1316 return (vd); 1317 else 1318 return (func(vd, arg)); 1319 } 1320 1321 for (uint_t c = 0; c < vd->vdev_children; c++) { 1322 vdev_t *cvd = vd->vdev_child[c]; 1323 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 1324 return (cvd); 1325 } 1326 return (NULL); 1327 } 1328 1329 /* 1330 * Verify that dynamic LUN growth works as expected. 1331 */ 1332 void 1333 ztest_vdev_LUN_growth(ztest_args_t *za) 1334 { 1335 spa_t *spa = za->za_spa; 1336 vdev_t *vd, *tvd = NULL; 1337 size_t psize, newsize; 1338 uint64_t spa_newsize, spa_cursize, ms_count; 1339 1340 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1341 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1342 1343 while (tvd == NULL || tvd->vdev_islog) { 1344 uint64_t vdev; 1345 1346 vdev = ztest_random(spa->spa_root_vdev->vdev_children); 1347 tvd = spa->spa_root_vdev->vdev_child[vdev]; 1348 } 1349 1350 /* 1351 * Determine the size of the first leaf vdev associated with 1352 * our top-level device. 1353 */ 1354 vd = vdev_walk_tree(tvd, NULL, NULL); 1355 ASSERT3P(vd, !=, NULL); 1356 ASSERT(vd->vdev_ops->vdev_op_leaf); 1357 1358 psize = vd->vdev_psize; 1359 1360 /* 1361 * We only try to expand the vdev if it's healthy, less than 4x its 1362 * original size, and it has a valid psize. 1363 */ 1364 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 1365 psize == 0 || psize >= 4 * zopt_vdev_size) { 1366 spa_config_exit(spa, SCL_STATE, spa); 1367 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1368 return; 1369 } 1370 ASSERT(psize > 0); 1371 newsize = psize + psize / 8; 1372 ASSERT3U(newsize, >, psize); 1373 1374 if (zopt_verbose >= 5) { 1375 (void) printf("Expanding vdev %s from %lu to %lu\n", 1376 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 1377 } 1378 1379 spa_cursize = spa_get_space(spa); 1380 ms_count = tvd->vdev_ms_count; 1381 1382 /* 1383 * Growing the vdev is a two step process: 1384 * 1). expand the physical size (i.e. relabel) 1385 * 2). online the vdev to create the new metaslabs 1386 */ 1387 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 1388 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 1389 tvd->vdev_state != VDEV_STATE_HEALTHY) { 1390 if (zopt_verbose >= 5) { 1391 (void) printf("Could not expand LUN because " 1392 "the vdev configuration changed.\n"); 1393 } 1394 (void) spa_config_exit(spa, SCL_STATE, spa); 1395 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1396 return; 1397 } 1398 1399 (void) spa_config_exit(spa, SCL_STATE, spa); 1400 1401 /* 1402 * Expanding the LUN will update the config asynchronously, 1403 * thus we must wait for the async thread to complete any 1404 * pending tasks before proceeding. 1405 */ 1406 mutex_enter(&spa->spa_async_lock); 1407 while (spa->spa_async_thread != NULL || spa->spa_async_tasks) 1408 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 1409 mutex_exit(&spa->spa_async_lock); 1410 1411 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1412 spa_newsize = spa_get_space(spa); 1413 1414 /* 1415 * Make sure we were able to grow the pool. 1416 */ 1417 if (ms_count >= tvd->vdev_ms_count || 1418 spa_cursize >= spa_newsize) { 1419 (void) printf("Top-level vdev metaslab count: " 1420 "before %llu, after %llu\n", 1421 (u_longlong_t)ms_count, 1422 (u_longlong_t)tvd->vdev_ms_count); 1423 fatal(0, "LUN expansion failed: before %llu, " 1424 "after %llu\n", spa_cursize, spa_newsize); 1425 } else if (zopt_verbose >= 5) { 1426 char oldnumbuf[6], newnumbuf[6]; 1427 1428 nicenum(spa_cursize, oldnumbuf); 1429 nicenum(spa_newsize, newnumbuf); 1430 (void) printf("%s grew from %s to %s\n", 1431 spa->spa_name, oldnumbuf, newnumbuf); 1432 } 1433 spa_config_exit(spa, SCL_STATE, spa); 1434 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1435 } 1436 1437 /* ARGSUSED */ 1438 static void 1439 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1440 { 1441 /* 1442 * Create the directory object. 1443 */ 1444 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1445 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1446 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1447 1448 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1449 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1450 1451 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1452 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1453 } 1454 1455 static int 1456 ztest_destroy_cb(char *name, void *arg) 1457 { 1458 ztest_args_t *za = arg; 1459 objset_t *os; 1460 dmu_object_info_t *doi = &za->za_doi; 1461 int error; 1462 1463 /* 1464 * Verify that the dataset contains a directory object. 1465 */ 1466 error = dmu_objset_hold(name, FTAG, &os); 1467 ASSERT3U(error, ==, 0); 1468 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1469 if (error != ENOENT) { 1470 /* We could have crashed in the middle of destroying it */ 1471 ASSERT3U(error, ==, 0); 1472 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1473 ASSERT3S(doi->doi_physical_blks, >=, 0); 1474 } 1475 dmu_objset_rele(os, FTAG); 1476 1477 /* 1478 * Destroy the dataset. 1479 */ 1480 error = dmu_objset_destroy(name, B_FALSE); 1481 if (error) { 1482 (void) dmu_objset_hold(name, FTAG, &os); 1483 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error); 1484 } 1485 return (0); 1486 } 1487 1488 /* 1489 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1490 */ 1491 static uint64_t 1492 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1493 { 1494 itx_t *itx; 1495 lr_create_t *lr; 1496 size_t namesize; 1497 char name[24]; 1498 1499 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1500 namesize = strlen(name) + 1; 1501 1502 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1503 ztest_random(ZIL_MAX_BLKSZ)); 1504 lr = (lr_create_t *)&itx->itx_lr; 1505 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1506 lr->lr_doid = object; 1507 lr->lr_foid = 0; 1508 lr->lr_mode = mode; 1509 lr->lr_uid = 0; 1510 lr->lr_gid = 0; 1511 lr->lr_gen = dmu_tx_get_txg(tx); 1512 lr->lr_crtime[0] = time(NULL); 1513 lr->lr_crtime[1] = 0; 1514 lr->lr_rdev = 0; 1515 bcopy(name, (char *)(lr + 1), namesize); 1516 1517 return (zil_itx_assign(zilog, itx, tx)); 1518 } 1519 1520 void 1521 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1522 { 1523 int error; 1524 objset_t *os, *os2; 1525 char name[100]; 1526 zilog_t *zilog; 1527 uint64_t seq; 1528 uint64_t objects; 1529 1530 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1531 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1532 (u_longlong_t)za->za_instance); 1533 1534 /* 1535 * If this dataset exists from a previous run, process its replay log 1536 * half of the time. If we don't replay it, then dmu_objset_destroy() 1537 * (invoked from ztest_destroy_cb() below) should just throw it away. 1538 */ 1539 if (ztest_random(2) == 0 && 1540 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 1541 zil_replay(os, os, ztest_replay_vector); 1542 dmu_objset_disown(os, FTAG); 1543 } 1544 1545 /* 1546 * There may be an old instance of the dataset we're about to 1547 * create lying around from a previous run. If so, destroy it 1548 * and all of its snapshots. 1549 */ 1550 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1551 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1552 1553 /* 1554 * Verify that the destroyed dataset is no longer in the namespace. 1555 */ 1556 error = dmu_objset_hold(name, FTAG, &os); 1557 if (error != ENOENT) 1558 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1559 name, os); 1560 1561 /* 1562 * Verify that we can create a new dataset. 1563 */ 1564 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 1565 ztest_create_cb, NULL); 1566 if (error) { 1567 if (error == ENOSPC) { 1568 ztest_record_enospc("dmu_objset_create"); 1569 (void) rw_unlock(&ztest_shared->zs_name_lock); 1570 return; 1571 } 1572 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1573 } 1574 1575 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os); 1576 if (error) { 1577 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1578 } 1579 1580 /* 1581 * Open the intent log for it. 1582 */ 1583 zilog = zil_open(os, NULL); 1584 1585 /* 1586 * Put a random number of objects in there. 1587 */ 1588 objects = ztest_random(20); 1589 seq = 0; 1590 while (objects-- != 0) { 1591 uint64_t object; 1592 dmu_tx_t *tx = dmu_tx_create(os); 1593 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1594 error = dmu_tx_assign(tx, TXG_WAIT); 1595 if (error) { 1596 dmu_tx_abort(tx); 1597 } else { 1598 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1599 DMU_OT_NONE, 0, tx); 1600 ztest_set_random_blocksize(os, object, tx); 1601 seq = ztest_log_create(zilog, tx, object, 1602 DMU_OT_UINT64_OTHER); 1603 dmu_write(os, object, 0, sizeof (name), name, tx); 1604 dmu_tx_commit(tx); 1605 } 1606 if (ztest_random(5) == 0) { 1607 zil_commit(zilog, seq, object); 1608 } 1609 if (ztest_random(100) == 0) { 1610 error = zil_suspend(zilog); 1611 if (error == 0) { 1612 zil_resume(zilog); 1613 } 1614 } 1615 } 1616 1617 /* 1618 * Verify that we cannot create an existing dataset. 1619 */ 1620 error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL); 1621 if (error != EEXIST) 1622 fatal(0, "created existing dataset, error = %d", error); 1623 1624 /* 1625 * Verify that we can hold an objset that is also owned. 1626 */ 1627 error = dmu_objset_hold(name, FTAG, &os2); 1628 if (error) 1629 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1630 dmu_objset_rele(os2, FTAG); 1631 1632 /* 1633 * Verify that we can not own an objset that is already owned. 1634 */ 1635 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2); 1636 if (error != EBUSY) 1637 fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY", 1638 name, error); 1639 1640 zil_close(zilog); 1641 dmu_objset_disown(os, FTAG); 1642 1643 error = dmu_objset_destroy(name, B_FALSE); 1644 if (error) 1645 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1646 1647 (void) rw_unlock(&ztest_shared->zs_name_lock); 1648 } 1649 1650 /* 1651 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1652 */ 1653 void 1654 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1655 { 1656 int error; 1657 objset_t *os = za->za_os; 1658 char snapname[100]; 1659 char osname[MAXNAMELEN]; 1660 1661 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1662 dmu_objset_name(os, osname); 1663 (void) snprintf(snapname, 100, "%s@%llu", osname, 1664 (u_longlong_t)za->za_instance); 1665 1666 error = dmu_objset_destroy(snapname, B_FALSE); 1667 if (error != 0 && error != ENOENT) 1668 fatal(0, "dmu_objset_destroy() = %d", error); 1669 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1670 NULL, FALSE); 1671 if (error == ENOSPC) 1672 ztest_record_enospc("dmu_take_snapshot"); 1673 else if (error != 0 && error != EEXIST) 1674 fatal(0, "dmu_take_snapshot() = %d", error); 1675 (void) rw_unlock(&ztest_shared->zs_name_lock); 1676 } 1677 1678 /* 1679 * Cleanup non-standard snapshots and clones. 1680 */ 1681 void 1682 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) 1683 { 1684 char snap1name[100]; 1685 char clone1name[100]; 1686 char snap2name[100]; 1687 char clone2name[100]; 1688 char snap3name[100]; 1689 int error; 1690 1691 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1692 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1693 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1694 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1695 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1696 1697 error = dmu_objset_destroy(clone2name, B_FALSE); 1698 if (error && error != ENOENT) 1699 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1700 error = dmu_objset_destroy(snap3name, B_FALSE); 1701 if (error && error != ENOENT) 1702 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1703 error = dmu_objset_destroy(snap2name, B_FALSE); 1704 if (error && error != ENOENT) 1705 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1706 error = dmu_objset_destroy(clone1name, B_FALSE); 1707 if (error && error != ENOENT) 1708 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1709 error = dmu_objset_destroy(snap1name, B_FALSE); 1710 if (error && error != ENOENT) 1711 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1712 } 1713 1714 /* 1715 * Verify dsl_dataset_promote handles EBUSY 1716 */ 1717 void 1718 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1719 { 1720 int error; 1721 objset_t *os = za->za_os; 1722 objset_t *clone; 1723 dsl_dataset_t *ds; 1724 char snap1name[100]; 1725 char clone1name[100]; 1726 char snap2name[100]; 1727 char clone2name[100]; 1728 char snap3name[100]; 1729 char osname[MAXNAMELEN]; 1730 uint64_t curval = za->za_instance; 1731 1732 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1733 1734 dmu_objset_name(os, osname); 1735 ztest_dsl_dataset_cleanup(osname, curval); 1736 1737 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1738 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1739 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1740 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1741 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1742 1743 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1744 NULL, FALSE); 1745 if (error && error != EEXIST) { 1746 if (error == ENOSPC) { 1747 ztest_record_enospc("dmu_take_snapshot"); 1748 goto out; 1749 } 1750 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1751 } 1752 1753 error = dmu_objset_hold(snap1name, FTAG, &clone); 1754 if (error) 1755 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1756 1757 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 1758 dmu_objset_rele(clone, FTAG); 1759 if (error) { 1760 if (error == ENOSPC) { 1761 ztest_record_enospc("dmu_objset_create"); 1762 goto out; 1763 } 1764 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1765 } 1766 1767 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1768 NULL, FALSE); 1769 if (error && error != EEXIST) { 1770 if (error == ENOSPC) { 1771 ztest_record_enospc("dmu_take_snapshot"); 1772 goto out; 1773 } 1774 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1775 } 1776 1777 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1778 NULL, FALSE); 1779 if (error && error != EEXIST) { 1780 if (error == ENOSPC) { 1781 ztest_record_enospc("dmu_take_snapshot"); 1782 goto out; 1783 } 1784 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1785 } 1786 1787 error = dmu_objset_hold(snap3name, FTAG, &clone); 1788 if (error) 1789 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1790 1791 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 1792 dmu_objset_rele(clone, FTAG); 1793 if (error) { 1794 if (error == ENOSPC) { 1795 ztest_record_enospc("dmu_objset_create"); 1796 goto out; 1797 } 1798 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1799 } 1800 1801 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 1802 if (error) 1803 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1804 error = dsl_dataset_promote(clone2name, NULL); 1805 if (error != EBUSY) 1806 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1807 error); 1808 dsl_dataset_disown(ds, FTAG); 1809 1810 out: 1811 ztest_dsl_dataset_cleanup(osname, curval); 1812 1813 (void) rw_unlock(&ztest_shared->zs_name_lock); 1814 } 1815 1816 /* 1817 * Verify that dmu_object_{alloc,free} work as expected. 1818 */ 1819 void 1820 ztest_dmu_object_alloc_free(ztest_args_t *za) 1821 { 1822 objset_t *os = za->za_os; 1823 dmu_buf_t *db; 1824 dmu_tx_t *tx; 1825 uint64_t batchobj, object, batchsize, endoff, temp; 1826 int b, c, error, bonuslen; 1827 dmu_object_info_t *doi = &za->za_doi; 1828 char osname[MAXNAMELEN]; 1829 1830 dmu_objset_name(os, osname); 1831 1832 endoff = -8ULL; 1833 batchsize = 2; 1834 1835 /* 1836 * Create a batch object if necessary, and record it in the directory. 1837 */ 1838 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1839 sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); 1840 if (batchobj == 0) { 1841 tx = dmu_tx_create(os); 1842 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1843 sizeof (uint64_t)); 1844 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1845 error = dmu_tx_assign(tx, TXG_WAIT); 1846 if (error) { 1847 ztest_record_enospc("create a batch object"); 1848 dmu_tx_abort(tx); 1849 return; 1850 } 1851 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1852 DMU_OT_NONE, 0, tx); 1853 ztest_set_random_blocksize(os, batchobj, tx); 1854 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1855 sizeof (uint64_t), &batchobj, tx); 1856 dmu_tx_commit(tx); 1857 } 1858 1859 /* 1860 * Destroy the previous batch of objects. 1861 */ 1862 for (b = 0; b < batchsize; b++) { 1863 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1864 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 1865 if (object == 0) 1866 continue; 1867 /* 1868 * Read and validate contents. 1869 * We expect the nth byte of the bonus buffer to be n. 1870 */ 1871 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1872 za->za_dbuf = db; 1873 1874 dmu_object_info_from_db(db, doi); 1875 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1876 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1877 ASSERT3S(doi->doi_physical_blks, >=, 0); 1878 1879 bonuslen = doi->doi_bonus_size; 1880 1881 for (c = 0; c < bonuslen; c++) { 1882 if (((uint8_t *)db->db_data)[c] != 1883 (uint8_t)(c + bonuslen)) { 1884 fatal(0, 1885 "bad bonus: %s, obj %llu, off %d: %u != %u", 1886 osname, object, c, 1887 ((uint8_t *)db->db_data)[c], 1888 (uint8_t)(c + bonuslen)); 1889 } 1890 } 1891 1892 dmu_buf_rele(db, FTAG); 1893 za->za_dbuf = NULL; 1894 1895 /* 1896 * We expect the word at endoff to be our object number. 1897 */ 1898 VERIFY(0 == dmu_read(os, object, endoff, 1899 sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); 1900 1901 if (temp != object) { 1902 fatal(0, "bad data in %s, got %llu, expected %llu", 1903 osname, temp, object); 1904 } 1905 1906 /* 1907 * Destroy old object and clear batch entry. 1908 */ 1909 tx = dmu_tx_create(os); 1910 dmu_tx_hold_write(tx, batchobj, 1911 b * sizeof (uint64_t), sizeof (uint64_t)); 1912 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1913 error = dmu_tx_assign(tx, TXG_WAIT); 1914 if (error) { 1915 ztest_record_enospc("free object"); 1916 dmu_tx_abort(tx); 1917 return; 1918 } 1919 error = dmu_object_free(os, object, tx); 1920 if (error) { 1921 fatal(0, "dmu_object_free('%s', %llu) = %d", 1922 osname, object, error); 1923 } 1924 object = 0; 1925 1926 dmu_object_set_checksum(os, batchobj, 1927 ztest_random_checksum(), tx); 1928 dmu_object_set_compress(os, batchobj, 1929 ztest_random_compress(), tx); 1930 1931 dmu_write(os, batchobj, b * sizeof (uint64_t), 1932 sizeof (uint64_t), &object, tx); 1933 1934 dmu_tx_commit(tx); 1935 } 1936 1937 /* 1938 * Before creating the new batch of objects, generate a bunch of churn. 1939 */ 1940 for (b = ztest_random(100); b > 0; b--) { 1941 tx = dmu_tx_create(os); 1942 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1943 error = dmu_tx_assign(tx, TXG_WAIT); 1944 if (error) { 1945 ztest_record_enospc("churn objects"); 1946 dmu_tx_abort(tx); 1947 return; 1948 } 1949 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1950 DMU_OT_NONE, 0, tx); 1951 ztest_set_random_blocksize(os, object, tx); 1952 error = dmu_object_free(os, object, tx); 1953 if (error) { 1954 fatal(0, "dmu_object_free('%s', %llu) = %d", 1955 osname, object, error); 1956 } 1957 dmu_tx_commit(tx); 1958 } 1959 1960 /* 1961 * Create a new batch of objects with randomly chosen 1962 * blocksizes and record them in the batch directory. 1963 */ 1964 for (b = 0; b < batchsize; b++) { 1965 uint32_t va_blksize; 1966 u_longlong_t va_nblocks; 1967 1968 tx = dmu_tx_create(os); 1969 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1970 sizeof (uint64_t)); 1971 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1972 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1973 sizeof (uint64_t)); 1974 error = dmu_tx_assign(tx, TXG_WAIT); 1975 if (error) { 1976 ztest_record_enospc("create batchobj"); 1977 dmu_tx_abort(tx); 1978 return; 1979 } 1980 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1981 1982 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1983 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1984 1985 ztest_set_random_blocksize(os, object, tx); 1986 1987 dmu_object_set_checksum(os, object, 1988 ztest_random_checksum(), tx); 1989 dmu_object_set_compress(os, object, 1990 ztest_random_compress(), tx); 1991 1992 dmu_write(os, batchobj, b * sizeof (uint64_t), 1993 sizeof (uint64_t), &object, tx); 1994 1995 /* 1996 * Write to both the bonus buffer and the regular data. 1997 */ 1998 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1999 za->za_dbuf = db; 2000 ASSERT3U(bonuslen, <=, db->db_size); 2001 2002 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 2003 ASSERT3S(va_nblocks, >=, 0); 2004 2005 dmu_buf_will_dirty(db, tx); 2006 2007 /* 2008 * See comments above regarding the contents of 2009 * the bonus buffer and the word at endoff. 2010 */ 2011 for (c = 0; c < bonuslen; c++) 2012 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 2013 2014 dmu_buf_rele(db, FTAG); 2015 za->za_dbuf = NULL; 2016 2017 /* 2018 * Write to a large offset to increase indirection. 2019 */ 2020 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 2021 2022 dmu_tx_commit(tx); 2023 } 2024 } 2025 2026 /* 2027 * Verify that dmu_{read,write} work as expected. 2028 */ 2029 typedef struct bufwad { 2030 uint64_t bw_index; 2031 uint64_t bw_txg; 2032 uint64_t bw_data; 2033 } bufwad_t; 2034 2035 typedef struct dmu_read_write_dir { 2036 uint64_t dd_packobj; 2037 uint64_t dd_bigobj; 2038 uint64_t dd_chunk; 2039 } dmu_read_write_dir_t; 2040 2041 void 2042 ztest_dmu_read_write(ztest_args_t *za) 2043 { 2044 objset_t *os = za->za_os; 2045 dmu_read_write_dir_t dd; 2046 dmu_tx_t *tx; 2047 int i, freeit, error; 2048 uint64_t n, s, txg; 2049 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 2050 uint64_t packoff, packsize, bigoff, bigsize; 2051 uint64_t regions = 997; 2052 uint64_t stride = 123456789ULL; 2053 uint64_t width = 40; 2054 int free_percent = 5; 2055 2056 /* 2057 * This test uses two objects, packobj and bigobj, that are always 2058 * updated together (i.e. in the same tx) so that their contents are 2059 * in sync and can be compared. Their contents relate to each other 2060 * in a simple way: packobj is a dense array of 'bufwad' structures, 2061 * while bigobj is a sparse array of the same bufwads. Specifically, 2062 * for any index n, there are three bufwads that should be identical: 2063 * 2064 * packobj, at offset n * sizeof (bufwad_t) 2065 * bigobj, at the head of the nth chunk 2066 * bigobj, at the tail of the nth chunk 2067 * 2068 * The chunk size is arbitrary. It doesn't have to be a power of two, 2069 * and it doesn't have any relation to the object blocksize. 2070 * The only requirement is that it can hold at least two bufwads. 2071 * 2072 * Normally, we write the bufwad to each of these locations. 2073 * However, free_percent of the time we instead write zeroes to 2074 * packobj and perform a dmu_free_range() on bigobj. By comparing 2075 * bigobj to packobj, we can verify that the DMU is correctly 2076 * tracking which parts of an object are allocated and free, 2077 * and that the contents of the allocated blocks are correct. 2078 */ 2079 2080 /* 2081 * Read the directory info. If it's the first time, set things up. 2082 */ 2083 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2084 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2085 if (dd.dd_chunk == 0) { 2086 ASSERT(dd.dd_packobj == 0); 2087 ASSERT(dd.dd_bigobj == 0); 2088 tx = dmu_tx_create(os); 2089 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2090 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2091 error = dmu_tx_assign(tx, TXG_WAIT); 2092 if (error) { 2093 ztest_record_enospc("create r/w directory"); 2094 dmu_tx_abort(tx); 2095 return; 2096 } 2097 2098 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2099 DMU_OT_NONE, 0, tx); 2100 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2101 DMU_OT_NONE, 0, tx); 2102 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 2103 2104 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2105 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2106 2107 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2108 tx); 2109 dmu_tx_commit(tx); 2110 } 2111 2112 /* 2113 * Prefetch a random chunk of the big object. 2114 * Our aim here is to get some async reads in flight 2115 * for blocks that we may free below; the DMU should 2116 * handle this race correctly. 2117 */ 2118 n = ztest_random(regions) * stride + ztest_random(width); 2119 s = 1 + ztest_random(2 * width - 1); 2120 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 2121 2122 /* 2123 * Pick a random index and compute the offsets into packobj and bigobj. 2124 */ 2125 n = ztest_random(regions) * stride + ztest_random(width); 2126 s = 1 + ztest_random(width - 1); 2127 2128 packoff = n * sizeof (bufwad_t); 2129 packsize = s * sizeof (bufwad_t); 2130 2131 bigoff = n * dd.dd_chunk; 2132 bigsize = s * dd.dd_chunk; 2133 2134 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 2135 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 2136 2137 /* 2138 * free_percent of the time, free a range of bigobj rather than 2139 * overwriting it. 2140 */ 2141 freeit = (ztest_random(100) < free_percent); 2142 2143 /* 2144 * Read the current contents of our objects. 2145 */ 2146 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, 2147 DMU_READ_PREFETCH); 2148 ASSERT3U(error, ==, 0); 2149 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, 2150 DMU_READ_PREFETCH); 2151 ASSERT3U(error, ==, 0); 2152 2153 /* 2154 * Get a tx for the mods to both packobj and bigobj. 2155 */ 2156 tx = dmu_tx_create(os); 2157 2158 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2159 2160 if (freeit) 2161 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 2162 else 2163 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2164 2165 error = dmu_tx_assign(tx, TXG_WAIT); 2166 2167 if (error) { 2168 ztest_record_enospc("dmu r/w range"); 2169 dmu_tx_abort(tx); 2170 umem_free(packbuf, packsize); 2171 umem_free(bigbuf, bigsize); 2172 return; 2173 } 2174 2175 txg = dmu_tx_get_txg(tx); 2176 2177 /* 2178 * For each index from n to n + s, verify that the existing bufwad 2179 * in packobj matches the bufwads at the head and tail of the 2180 * corresponding chunk in bigobj. Then update all three bufwads 2181 * with the new values we want to write out. 2182 */ 2183 for (i = 0; i < s; i++) { 2184 /* LINTED */ 2185 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2186 /* LINTED */ 2187 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2188 /* LINTED */ 2189 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2190 2191 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2192 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2193 2194 if (pack->bw_txg > txg) 2195 fatal(0, "future leak: got %llx, open txg is %llx", 2196 pack->bw_txg, txg); 2197 2198 if (pack->bw_data != 0 && pack->bw_index != n + i) 2199 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2200 pack->bw_index, n, i); 2201 2202 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2203 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2204 2205 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2206 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2207 2208 if (freeit) { 2209 bzero(pack, sizeof (bufwad_t)); 2210 } else { 2211 pack->bw_index = n + i; 2212 pack->bw_txg = txg; 2213 pack->bw_data = 1 + ztest_random(-2ULL); 2214 } 2215 *bigH = *pack; 2216 *bigT = *pack; 2217 } 2218 2219 /* 2220 * We've verified all the old bufwads, and made new ones. 2221 * Now write them out. 2222 */ 2223 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2224 2225 if (freeit) { 2226 if (zopt_verbose >= 6) { 2227 (void) printf("freeing offset %llx size %llx" 2228 " txg %llx\n", 2229 (u_longlong_t)bigoff, 2230 (u_longlong_t)bigsize, 2231 (u_longlong_t)txg); 2232 } 2233 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2234 bigsize, tx)); 2235 } else { 2236 if (zopt_verbose >= 6) { 2237 (void) printf("writing offset %llx size %llx" 2238 " txg %llx\n", 2239 (u_longlong_t)bigoff, 2240 (u_longlong_t)bigsize, 2241 (u_longlong_t)txg); 2242 } 2243 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2244 } 2245 2246 dmu_tx_commit(tx); 2247 2248 /* 2249 * Sanity check the stuff we just wrote. 2250 */ 2251 { 2252 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2253 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2254 2255 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2256 packsize, packcheck, DMU_READ_PREFETCH)); 2257 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2258 bigsize, bigcheck, DMU_READ_PREFETCH)); 2259 2260 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2261 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2262 2263 umem_free(packcheck, packsize); 2264 umem_free(bigcheck, bigsize); 2265 } 2266 2267 umem_free(packbuf, packsize); 2268 umem_free(bigbuf, bigsize); 2269 } 2270 2271 void 2272 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2273 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2274 { 2275 uint64_t i; 2276 bufwad_t *pack; 2277 bufwad_t *bigH; 2278 bufwad_t *bigT; 2279 2280 /* 2281 * For each index from n to n + s, verify that the existing bufwad 2282 * in packobj matches the bufwads at the head and tail of the 2283 * corresponding chunk in bigobj. Then update all three bufwads 2284 * with the new values we want to write out. 2285 */ 2286 for (i = 0; i < s; i++) { 2287 /* LINTED */ 2288 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2289 /* LINTED */ 2290 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2291 /* LINTED */ 2292 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2293 2294 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2295 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2296 2297 if (pack->bw_txg > txg) 2298 fatal(0, "future leak: got %llx, open txg is %llx", 2299 pack->bw_txg, txg); 2300 2301 if (pack->bw_data != 0 && pack->bw_index != n + i) 2302 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2303 pack->bw_index, n, i); 2304 2305 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2306 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2307 2308 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2309 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2310 2311 pack->bw_index = n + i; 2312 pack->bw_txg = txg; 2313 pack->bw_data = 1 + ztest_random(-2ULL); 2314 2315 *bigH = *pack; 2316 *bigT = *pack; 2317 } 2318 } 2319 2320 void 2321 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2322 { 2323 objset_t *os = za->za_os; 2324 dmu_read_write_dir_t dd; 2325 dmu_tx_t *tx; 2326 uint64_t i; 2327 int error; 2328 uint64_t n, s, txg; 2329 bufwad_t *packbuf, *bigbuf; 2330 uint64_t packoff, packsize, bigoff, bigsize; 2331 uint64_t regions = 997; 2332 uint64_t stride = 123456789ULL; 2333 uint64_t width = 9; 2334 dmu_buf_t *bonus_db; 2335 arc_buf_t **bigbuf_arcbufs; 2336 dmu_object_info_t *doi = &za->za_doi; 2337 2338 /* 2339 * This test uses two objects, packobj and bigobj, that are always 2340 * updated together (i.e. in the same tx) so that their contents are 2341 * in sync and can be compared. Their contents relate to each other 2342 * in a simple way: packobj is a dense array of 'bufwad' structures, 2343 * while bigobj is a sparse array of the same bufwads. Specifically, 2344 * for any index n, there are three bufwads that should be identical: 2345 * 2346 * packobj, at offset n * sizeof (bufwad_t) 2347 * bigobj, at the head of the nth chunk 2348 * bigobj, at the tail of the nth chunk 2349 * 2350 * The chunk size is set equal to bigobj block size so that 2351 * dmu_assign_arcbuf() can be tested for object updates. 2352 */ 2353 2354 /* 2355 * Read the directory info. If it's the first time, set things up. 2356 */ 2357 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2358 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2359 if (dd.dd_chunk == 0) { 2360 ASSERT(dd.dd_packobj == 0); 2361 ASSERT(dd.dd_bigobj == 0); 2362 tx = dmu_tx_create(os); 2363 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2364 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2365 error = dmu_tx_assign(tx, TXG_WAIT); 2366 if (error) { 2367 ztest_record_enospc("create r/w directory"); 2368 dmu_tx_abort(tx); 2369 return; 2370 } 2371 2372 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2373 DMU_OT_NONE, 0, tx); 2374 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2375 DMU_OT_NONE, 0, tx); 2376 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2377 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2378 2379 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2380 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2381 ASSERT(ISP2(doi->doi_data_block_size)); 2382 dd.dd_chunk = doi->doi_data_block_size; 2383 2384 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2385 tx); 2386 dmu_tx_commit(tx); 2387 } else { 2388 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2389 VERIFY(ISP2(doi->doi_data_block_size)); 2390 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2391 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2392 } 2393 2394 /* 2395 * Pick a random index and compute the offsets into packobj and bigobj. 2396 */ 2397 n = ztest_random(regions) * stride + ztest_random(width); 2398 s = 1 + ztest_random(width - 1); 2399 2400 packoff = n * sizeof (bufwad_t); 2401 packsize = s * sizeof (bufwad_t); 2402 2403 bigoff = n * dd.dd_chunk; 2404 bigsize = s * dd.dd_chunk; 2405 2406 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2407 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2408 2409 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2410 2411 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2412 2413 /* 2414 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2415 * Iteration 1 test zcopy to already referenced dbufs. 2416 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2417 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2418 * Iteration 4 test zcopy when dbuf is no longer dirty. 2419 * Iteration 5 test zcopy when it can't be done. 2420 * Iteration 6 one more zcopy write. 2421 */ 2422 for (i = 0; i < 7; i++) { 2423 uint64_t j; 2424 uint64_t off; 2425 2426 /* 2427 * In iteration 5 (i == 5) use arcbufs 2428 * that don't match bigobj blksz to test 2429 * dmu_assign_arcbuf() when it can't directly 2430 * assign an arcbuf to a dbuf. 2431 */ 2432 for (j = 0; j < s; j++) { 2433 if (i != 5) { 2434 bigbuf_arcbufs[j] = 2435 dmu_request_arcbuf(bonus_db, 2436 dd.dd_chunk); 2437 } else { 2438 bigbuf_arcbufs[2 * j] = 2439 dmu_request_arcbuf(bonus_db, 2440 dd.dd_chunk / 2); 2441 bigbuf_arcbufs[2 * j + 1] = 2442 dmu_request_arcbuf(bonus_db, 2443 dd.dd_chunk / 2); 2444 } 2445 } 2446 2447 /* 2448 * Get a tx for the mods to both packobj and bigobj. 2449 */ 2450 tx = dmu_tx_create(os); 2451 2452 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2453 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2454 2455 if (ztest_random(100) == 0) { 2456 error = -1; 2457 } else { 2458 error = dmu_tx_assign(tx, TXG_WAIT); 2459 } 2460 2461 if (error) { 2462 if (error != -1) { 2463 ztest_record_enospc("dmu r/w range"); 2464 } 2465 dmu_tx_abort(tx); 2466 umem_free(packbuf, packsize); 2467 umem_free(bigbuf, bigsize); 2468 for (j = 0; j < s; j++) { 2469 if (i != 5) { 2470 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2471 } else { 2472 dmu_return_arcbuf( 2473 bigbuf_arcbufs[2 * j]); 2474 dmu_return_arcbuf( 2475 bigbuf_arcbufs[2 * j + 1]); 2476 } 2477 } 2478 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2479 dmu_buf_rele(bonus_db, FTAG); 2480 return; 2481 } 2482 2483 txg = dmu_tx_get_txg(tx); 2484 2485 /* 2486 * 50% of the time don't read objects in the 1st iteration to 2487 * test dmu_assign_arcbuf() for the case when there're no 2488 * existing dbufs for the specified offsets. 2489 */ 2490 if (i != 0 || ztest_random(2) != 0) { 2491 error = dmu_read(os, dd.dd_packobj, packoff, 2492 packsize, packbuf, DMU_READ_PREFETCH); 2493 ASSERT3U(error, ==, 0); 2494 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2495 bigbuf, DMU_READ_PREFETCH); 2496 ASSERT3U(error, ==, 0); 2497 } 2498 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2499 n, dd, txg); 2500 2501 /* 2502 * We've verified all the old bufwads, and made new ones. 2503 * Now write them out. 2504 */ 2505 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2506 if (zopt_verbose >= 6) { 2507 (void) printf("writing offset %llx size %llx" 2508 " txg %llx\n", 2509 (u_longlong_t)bigoff, 2510 (u_longlong_t)bigsize, 2511 (u_longlong_t)txg); 2512 } 2513 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2514 dmu_buf_t *dbt; 2515 if (i != 5) { 2516 bcopy((caddr_t)bigbuf + (off - bigoff), 2517 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2518 } else { 2519 bcopy((caddr_t)bigbuf + (off - bigoff), 2520 bigbuf_arcbufs[2 * j]->b_data, 2521 dd.dd_chunk / 2); 2522 bcopy((caddr_t)bigbuf + (off - bigoff) + 2523 dd.dd_chunk / 2, 2524 bigbuf_arcbufs[2 * j + 1]->b_data, 2525 dd.dd_chunk / 2); 2526 } 2527 2528 if (i == 1) { 2529 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2530 FTAG, &dbt) == 0); 2531 } 2532 if (i != 5) { 2533 dmu_assign_arcbuf(bonus_db, off, 2534 bigbuf_arcbufs[j], tx); 2535 } else { 2536 dmu_assign_arcbuf(bonus_db, off, 2537 bigbuf_arcbufs[2 * j], tx); 2538 dmu_assign_arcbuf(bonus_db, 2539 off + dd.dd_chunk / 2, 2540 bigbuf_arcbufs[2 * j + 1], tx); 2541 } 2542 if (i == 1) { 2543 dmu_buf_rele(dbt, FTAG); 2544 } 2545 } 2546 dmu_tx_commit(tx); 2547 2548 /* 2549 * Sanity check the stuff we just wrote. 2550 */ 2551 { 2552 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2553 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2554 2555 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2556 packsize, packcheck, DMU_READ_PREFETCH)); 2557 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2558 bigsize, bigcheck, DMU_READ_PREFETCH)); 2559 2560 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2561 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2562 2563 umem_free(packcheck, packsize); 2564 umem_free(bigcheck, bigsize); 2565 } 2566 if (i == 2) { 2567 txg_wait_open(dmu_objset_pool(os), 0); 2568 } else if (i == 3) { 2569 txg_wait_synced(dmu_objset_pool(os), 0); 2570 } 2571 } 2572 2573 dmu_buf_rele(bonus_db, FTAG); 2574 umem_free(packbuf, packsize); 2575 umem_free(bigbuf, bigsize); 2576 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2577 } 2578 2579 void 2580 ztest_dmu_check_future_leak(ztest_args_t *za) 2581 { 2582 objset_t *os = za->za_os; 2583 dmu_buf_t *db; 2584 ztest_block_tag_t *bt; 2585 dmu_object_info_t *doi = &za->za_doi; 2586 2587 /* 2588 * Make sure that, if there is a write record in the bonus buffer 2589 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2590 * last synced txg of the pool. 2591 */ 2592 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2593 za->za_dbuf = db; 2594 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2595 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2596 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2597 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2598 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2599 if (bt->bt_objset != 0) { 2600 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2601 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2602 ASSERT3U(bt->bt_offset, ==, -1ULL); 2603 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2604 } 2605 dmu_buf_rele(db, FTAG); 2606 za->za_dbuf = NULL; 2607 } 2608 2609 void 2610 ztest_dmu_write_parallel(ztest_args_t *za) 2611 { 2612 objset_t *os = za->za_os; 2613 ztest_block_tag_t *rbt = &za->za_rbt; 2614 ztest_block_tag_t *wbt = &za->za_wbt; 2615 const size_t btsize = sizeof (ztest_block_tag_t); 2616 dmu_buf_t *db; 2617 int b, error; 2618 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2619 int do_free = 0; 2620 uint64_t off, txg, txg_how; 2621 mutex_t *lp; 2622 char osname[MAXNAMELEN]; 2623 char iobuf[SPA_MAXBLOCKSIZE]; 2624 blkptr_t blk = { 0 }; 2625 uint64_t blkoff; 2626 zbookmark_t zb; 2627 dmu_tx_t *tx = dmu_tx_create(os); 2628 dmu_buf_t *bonus_db; 2629 arc_buf_t *abuf = NULL; 2630 2631 dmu_objset_name(os, osname); 2632 2633 /* 2634 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2635 * to verify that having multiple threads writing to the same object 2636 * in parallel doesn't cause any trouble. 2637 */ 2638 if (ztest_random(4) == 0) { 2639 /* 2640 * Do the bonus buffer instead of a regular block. 2641 * We need a lock to serialize resize vs. others, 2642 * so we hash on the objset ID. 2643 */ 2644 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2645 off = -1ULL; 2646 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2647 } else { 2648 b = ztest_random(ZTEST_SYNC_LOCKS); 2649 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2650 if (ztest_random(4) == 0) { 2651 do_free = 1; 2652 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2653 } else { 2654 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2655 } 2656 } 2657 2658 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2659 ztest_random(8) == 0) { 2660 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2661 abuf = dmu_request_arcbuf(bonus_db, bs); 2662 } 2663 2664 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2665 error = dmu_tx_assign(tx, txg_how); 2666 if (error) { 2667 if (error == ERESTART) { 2668 ASSERT(txg_how == TXG_NOWAIT); 2669 dmu_tx_wait(tx); 2670 } else { 2671 ztest_record_enospc("dmu write parallel"); 2672 } 2673 dmu_tx_abort(tx); 2674 if (abuf != NULL) { 2675 dmu_return_arcbuf(abuf); 2676 dmu_buf_rele(bonus_db, FTAG); 2677 } 2678 return; 2679 } 2680 txg = dmu_tx_get_txg(tx); 2681 2682 lp = &ztest_shared->zs_sync_lock[b]; 2683 (void) mutex_lock(lp); 2684 2685 wbt->bt_objset = dmu_objset_id(os); 2686 wbt->bt_object = ZTEST_DIROBJ; 2687 wbt->bt_offset = off; 2688 wbt->bt_txg = txg; 2689 wbt->bt_thread = za->za_instance; 2690 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2691 2692 /* 2693 * Occasionally, write an all-zero block to test the behavior 2694 * of blocks that compress into holes. 2695 */ 2696 if (off != -1ULL && ztest_random(8) == 0) 2697 bzero(wbt, btsize); 2698 2699 if (off == -1ULL) { 2700 dmu_object_info_t *doi = &za->za_doi; 2701 char *dboff; 2702 2703 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2704 za->za_dbuf = db; 2705 dmu_object_info_from_db(db, doi); 2706 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2707 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2708 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2709 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2710 bcopy(dboff, rbt, btsize); 2711 if (rbt->bt_objset != 0) { 2712 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2713 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2714 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2715 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2716 } 2717 if (ztest_random(10) == 0) { 2718 int newsize = (ztest_random(db->db_size / 2719 btsize) + 1) * btsize; 2720 2721 ASSERT3U(newsize, >=, btsize); 2722 ASSERT3U(newsize, <=, db->db_size); 2723 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2724 dboff = (char *)db->db_data + newsize - btsize; 2725 } 2726 dmu_buf_will_dirty(db, tx); 2727 bcopy(wbt, dboff, btsize); 2728 dmu_buf_rele(db, FTAG); 2729 za->za_dbuf = NULL; 2730 } else if (do_free) { 2731 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2732 } else if (abuf == NULL) { 2733 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2734 } else { 2735 bcopy(wbt, abuf->b_data, btsize); 2736 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2737 dmu_buf_rele(bonus_db, FTAG); 2738 } 2739 2740 (void) mutex_unlock(lp); 2741 2742 if (ztest_random(1000) == 0) 2743 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2744 2745 dmu_tx_commit(tx); 2746 2747 if (ztest_random(10000) == 0) 2748 txg_wait_synced(dmu_objset_pool(os), txg); 2749 2750 if (off == -1ULL || do_free) 2751 return; 2752 2753 if (ztest_random(2) != 0) 2754 return; 2755 2756 /* 2757 * dmu_sync() the block we just wrote. 2758 */ 2759 (void) mutex_lock(lp); 2760 2761 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2762 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2763 za->za_dbuf = db; 2764 if (error) { 2765 (void) mutex_unlock(lp); 2766 return; 2767 } 2768 blkoff = off - blkoff; 2769 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2770 dmu_buf_rele(db, FTAG); 2771 za->za_dbuf = NULL; 2772 2773 if (error) { 2774 (void) mutex_unlock(lp); 2775 return; 2776 } 2777 2778 if (blk.blk_birth == 0) { /* concurrent free */ 2779 (void) mutex_unlock(lp); 2780 return; 2781 } 2782 2783 txg_suspend(dmu_objset_pool(os)); 2784 2785 (void) mutex_unlock(lp); 2786 2787 ASSERT(blk.blk_fill == 1); 2788 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2789 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2790 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2791 2792 /* 2793 * Read the block that dmu_sync() returned to make sure its contents 2794 * match what we wrote. We do this while still txg_suspend()ed 2795 * to ensure that the block can't be reused before we read it. 2796 */ 2797 zb.zb_objset = dmu_objset_id(os); 2798 zb.zb_object = ZTEST_DIROBJ; 2799 zb.zb_level = 0; 2800 zb.zb_blkid = off / bs; 2801 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2802 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2803 ASSERT3U(error, ==, 0); 2804 2805 txg_resume(dmu_objset_pool(os)); 2806 2807 bcopy(&iobuf[blkoff], rbt, btsize); 2808 2809 if (rbt->bt_objset == 0) /* concurrent free */ 2810 return; 2811 2812 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2813 return; 2814 2815 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2816 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2817 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2818 2819 /* 2820 * The semantic of dmu_sync() is that we always push the most recent 2821 * version of the data, so in the face of concurrent updates we may 2822 * see a newer version of the block. That's OK. 2823 */ 2824 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2825 if (rbt->bt_thread == wbt->bt_thread) 2826 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2827 else 2828 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2829 } 2830 2831 /* 2832 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2833 */ 2834 #define ZTEST_ZAP_MIN_INTS 1 2835 #define ZTEST_ZAP_MAX_INTS 4 2836 #define ZTEST_ZAP_MAX_PROPS 1000 2837 2838 void 2839 ztest_zap(ztest_args_t *za) 2840 { 2841 objset_t *os = za->za_os; 2842 uint64_t object; 2843 uint64_t txg, last_txg; 2844 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2845 uint64_t zl_ints, zl_intsize, prop; 2846 int i, ints; 2847 dmu_tx_t *tx; 2848 char propname[100], txgname[100]; 2849 int error; 2850 char osname[MAXNAMELEN]; 2851 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2852 2853 dmu_objset_name(os, osname); 2854 2855 /* 2856 * Create a new object if necessary, and record it in the directory. 2857 */ 2858 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2859 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2860 2861 if (object == 0) { 2862 tx = dmu_tx_create(os); 2863 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2864 sizeof (uint64_t)); 2865 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2866 error = dmu_tx_assign(tx, TXG_WAIT); 2867 if (error) { 2868 ztest_record_enospc("create zap test obj"); 2869 dmu_tx_abort(tx); 2870 return; 2871 } 2872 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2873 if (error) { 2874 fatal(0, "zap_create('%s', %llu) = %d", 2875 osname, object, error); 2876 } 2877 ASSERT(object != 0); 2878 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2879 sizeof (uint64_t), &object, tx); 2880 /* 2881 * Generate a known hash collision, and verify that 2882 * we can lookup and remove both entries. 2883 */ 2884 for (i = 0; i < 2; i++) { 2885 value[i] = i; 2886 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2887 1, &value[i], tx); 2888 ASSERT3U(error, ==, 0); 2889 } 2890 for (i = 0; i < 2; i++) { 2891 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2892 1, &value[i], tx); 2893 ASSERT3U(error, ==, EEXIST); 2894 error = zap_length(os, object, hc[i], 2895 &zl_intsize, &zl_ints); 2896 ASSERT3U(error, ==, 0); 2897 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2898 ASSERT3U(zl_ints, ==, 1); 2899 } 2900 for (i = 0; i < 2; i++) { 2901 error = zap_remove(os, object, hc[i], tx); 2902 ASSERT3U(error, ==, 0); 2903 } 2904 2905 dmu_tx_commit(tx); 2906 } 2907 2908 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2909 2910 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2911 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2912 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2913 bzero(value, sizeof (value)); 2914 last_txg = 0; 2915 2916 /* 2917 * If these zap entries already exist, validate their contents. 2918 */ 2919 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2920 if (error == 0) { 2921 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2922 ASSERT3U(zl_ints, ==, 1); 2923 2924 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2925 zl_ints, &last_txg) == 0); 2926 2927 VERIFY(zap_length(os, object, propname, &zl_intsize, 2928 &zl_ints) == 0); 2929 2930 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2931 ASSERT3U(zl_ints, ==, ints); 2932 2933 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2934 zl_ints, value) == 0); 2935 2936 for (i = 0; i < ints; i++) { 2937 ASSERT3U(value[i], ==, last_txg + object + i); 2938 } 2939 } else { 2940 ASSERT3U(error, ==, ENOENT); 2941 } 2942 2943 /* 2944 * Atomically update two entries in our zap object. 2945 * The first is named txg_%llu, and contains the txg 2946 * in which the property was last updated. The second 2947 * is named prop_%llu, and the nth element of its value 2948 * should be txg + object + n. 2949 */ 2950 tx = dmu_tx_create(os); 2951 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2952 error = dmu_tx_assign(tx, TXG_WAIT); 2953 if (error) { 2954 ztest_record_enospc("create zap entry"); 2955 dmu_tx_abort(tx); 2956 return; 2957 } 2958 txg = dmu_tx_get_txg(tx); 2959 2960 if (last_txg > txg) 2961 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2962 2963 for (i = 0; i < ints; i++) 2964 value[i] = txg + object + i; 2965 2966 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2967 if (error) 2968 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2969 osname, object, txgname, error); 2970 2971 error = zap_update(os, object, propname, sizeof (uint64_t), 2972 ints, value, tx); 2973 if (error) 2974 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2975 osname, object, propname, error); 2976 2977 dmu_tx_commit(tx); 2978 2979 /* 2980 * Remove a random pair of entries. 2981 */ 2982 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2983 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2984 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2985 2986 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2987 2988 if (error == ENOENT) 2989 return; 2990 2991 ASSERT3U(error, ==, 0); 2992 2993 tx = dmu_tx_create(os); 2994 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2995 error = dmu_tx_assign(tx, TXG_WAIT); 2996 if (error) { 2997 ztest_record_enospc("remove zap entry"); 2998 dmu_tx_abort(tx); 2999 return; 3000 } 3001 error = zap_remove(os, object, txgname, tx); 3002 if (error) 3003 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 3004 osname, object, txgname, error); 3005 3006 error = zap_remove(os, object, propname, tx); 3007 if (error) 3008 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 3009 osname, object, propname, error); 3010 3011 dmu_tx_commit(tx); 3012 3013 /* 3014 * Once in a while, destroy the object. 3015 */ 3016 if (ztest_random(1000) != 0) 3017 return; 3018 3019 tx = dmu_tx_create(os); 3020 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3021 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 3022 error = dmu_tx_assign(tx, TXG_WAIT); 3023 if (error) { 3024 ztest_record_enospc("destroy zap object"); 3025 dmu_tx_abort(tx); 3026 return; 3027 } 3028 error = zap_destroy(os, object, tx); 3029 if (error) 3030 fatal(0, "zap_destroy('%s', %llu) = %d", 3031 osname, object, error); 3032 object = 0; 3033 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3034 &object, tx); 3035 dmu_tx_commit(tx); 3036 } 3037 3038 /* 3039 * Testcase to test the upgrading of a microzap to fatzap. 3040 */ 3041 void 3042 ztest_fzap(ztest_args_t *za) 3043 { 3044 objset_t *os = za->za_os; 3045 uint64_t object; 3046 uint64_t value; 3047 dmu_tx_t *tx; 3048 int i, error; 3049 char osname[MAXNAMELEN]; 3050 char *name = "aaa"; 3051 char entname[MAXNAMELEN]; 3052 3053 dmu_objset_name(os, osname); 3054 3055 /* 3056 * Create a new object if necessary, and record it in the directory. 3057 */ 3058 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 3059 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 3060 3061 if (object == 0) { 3062 tx = dmu_tx_create(os); 3063 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 3064 sizeof (uint64_t)); 3065 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 3066 error = dmu_tx_assign(tx, TXG_WAIT); 3067 if (error) { 3068 ztest_record_enospc("create zap test obj"); 3069 dmu_tx_abort(tx); 3070 return; 3071 } 3072 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 3073 if (error) { 3074 fatal(0, "zap_create('%s', %llu) = %d", 3075 osname, object, error); 3076 } 3077 ASSERT(object != 0); 3078 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 3079 sizeof (uint64_t), &object, tx); 3080 dmu_tx_commit(tx); 3081 } 3082 3083 /* 3084 * Add entries to this ZAP amd make sure it spills over 3085 * and gets upgraded to a fatzap. Also, since we are adding 3086 * 2050 entries we should see ptrtbl growth and leaf-block 3087 * split. 3088 */ 3089 for (i = 0; i < 2050; i++) { 3090 (void) snprintf(entname, sizeof (entname), "%s-%d", name, i); 3091 value = i; 3092 3093 tx = dmu_tx_create(os); 3094 dmu_tx_hold_zap(tx, object, TRUE, entname); 3095 error = dmu_tx_assign(tx, TXG_WAIT); 3096 3097 if (error) { 3098 ztest_record_enospc("create zap entry"); 3099 dmu_tx_abort(tx); 3100 return; 3101 } 3102 error = zap_add(os, object, entname, sizeof (uint64_t), 3103 1, &value, tx); 3104 3105 ASSERT(error == 0 || error == EEXIST); 3106 dmu_tx_commit(tx); 3107 } 3108 3109 /* 3110 * Once in a while, destroy the object. 3111 */ 3112 if (ztest_random(1000) != 0) 3113 return; 3114 3115 tx = dmu_tx_create(os); 3116 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3117 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 3118 error = dmu_tx_assign(tx, TXG_WAIT); 3119 if (error) { 3120 ztest_record_enospc("destroy zap object"); 3121 dmu_tx_abort(tx); 3122 return; 3123 } 3124 error = zap_destroy(os, object, tx); 3125 if (error) 3126 fatal(0, "zap_destroy('%s', %llu) = %d", 3127 osname, object, error); 3128 object = 0; 3129 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3130 &object, tx); 3131 dmu_tx_commit(tx); 3132 } 3133 3134 void 3135 ztest_zap_parallel(ztest_args_t *za) 3136 { 3137 objset_t *os = za->za_os; 3138 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3139 dmu_tx_t *tx; 3140 int i, namelen, error; 3141 char name[20], string_value[20]; 3142 void *data; 3143 3144 /* 3145 * Generate a random name of the form 'xxx.....' where each 3146 * x is a random printable character and the dots are dots. 3147 * There are 94 such characters, and the name length goes from 3148 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3149 */ 3150 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3151 3152 for (i = 0; i < 3; i++) 3153 name[i] = '!' + ztest_random('~' - '!' + 1); 3154 for (; i < namelen - 1; i++) 3155 name[i] = '.'; 3156 name[i] = '\0'; 3157 3158 if (ztest_random(2) == 0) 3159 object = ZTEST_MICROZAP_OBJ; 3160 else 3161 object = ZTEST_FATZAP_OBJ; 3162 3163 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 3164 wsize = sizeof (txg); 3165 wc = 1; 3166 data = &txg; 3167 } else { 3168 wsize = 1; 3169 wc = namelen; 3170 data = string_value; 3171 } 3172 3173 count = -1ULL; 3174 VERIFY(zap_count(os, object, &count) == 0); 3175 ASSERT(count != -1ULL); 3176 3177 /* 3178 * Select an operation: length, lookup, add, update, remove. 3179 */ 3180 i = ztest_random(5); 3181 3182 if (i >= 2) { 3183 tx = dmu_tx_create(os); 3184 dmu_tx_hold_zap(tx, object, TRUE, NULL); 3185 error = dmu_tx_assign(tx, TXG_WAIT); 3186 if (error) { 3187 ztest_record_enospc("zap parallel"); 3188 dmu_tx_abort(tx); 3189 return; 3190 } 3191 txg = dmu_tx_get_txg(tx); 3192 bcopy(name, string_value, namelen); 3193 } else { 3194 tx = NULL; 3195 txg = 0; 3196 bzero(string_value, namelen); 3197 } 3198 3199 switch (i) { 3200 3201 case 0: 3202 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3203 if (error == 0) { 3204 ASSERT3U(wsize, ==, zl_wsize); 3205 ASSERT3U(wc, ==, zl_wc); 3206 } else { 3207 ASSERT3U(error, ==, ENOENT); 3208 } 3209 break; 3210 3211 case 1: 3212 error = zap_lookup(os, object, name, wsize, wc, data); 3213 if (error == 0) { 3214 if (data == string_value && 3215 bcmp(name, data, namelen) != 0) 3216 fatal(0, "name '%s' != val '%s' len %d", 3217 name, data, namelen); 3218 } else { 3219 ASSERT3U(error, ==, ENOENT); 3220 } 3221 break; 3222 3223 case 2: 3224 error = zap_add(os, object, name, wsize, wc, data, tx); 3225 ASSERT(error == 0 || error == EEXIST); 3226 break; 3227 3228 case 3: 3229 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3230 break; 3231 3232 case 4: 3233 error = zap_remove(os, object, name, tx); 3234 ASSERT(error == 0 || error == ENOENT); 3235 break; 3236 } 3237 3238 if (tx != NULL) 3239 dmu_tx_commit(tx); 3240 } 3241 3242 /* 3243 * Commit callback data. 3244 */ 3245 typedef struct ztest_cb_data { 3246 list_node_t zcd_node; 3247 uint64_t zcd_txg; 3248 int zcd_expected_err; 3249 boolean_t zcd_added; 3250 boolean_t zcd_called; 3251 spa_t *zcd_spa; 3252 } ztest_cb_data_t; 3253 3254 /* This is the actual commit callback function */ 3255 static void 3256 ztest_commit_callback(void *arg, int error) 3257 { 3258 ztest_cb_data_t *data = arg; 3259 uint64_t synced_txg; 3260 3261 VERIFY(data != NULL); 3262 VERIFY3S(data->zcd_expected_err, ==, error); 3263 VERIFY(!data->zcd_called); 3264 3265 synced_txg = spa_last_synced_txg(data->zcd_spa); 3266 if (data->zcd_txg > synced_txg) 3267 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 3268 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 3269 synced_txg); 3270 3271 data->zcd_called = B_TRUE; 3272 3273 if (error == ECANCELED) { 3274 ASSERT3U(data->zcd_txg, ==, 0); 3275 ASSERT(!data->zcd_added); 3276 3277 /* 3278 * The private callback data should be destroyed here, but 3279 * since we are going to check the zcd_called field after 3280 * dmu_tx_abort(), we will destroy it there. 3281 */ 3282 return; 3283 } 3284 3285 /* Was this callback added to the global callback list? */ 3286 if (!data->zcd_added) 3287 goto out; 3288 3289 ASSERT3U(data->zcd_txg, !=, 0); 3290 3291 /* Remove our callback from the list */ 3292 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3293 list_remove(&zcl.zcl_callbacks, data); 3294 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3295 3296 out: 3297 umem_free(data, sizeof (ztest_cb_data_t)); 3298 } 3299 3300 /* Allocate and initialize callback data structure */ 3301 static ztest_cb_data_t * 3302 ztest_create_cb_data(objset_t *os, uint64_t txg) 3303 { 3304 ztest_cb_data_t *cb_data; 3305 3306 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 3307 3308 cb_data->zcd_txg = txg; 3309 cb_data->zcd_spa = dmu_objset_spa(os); 3310 3311 return (cb_data); 3312 } 3313 3314 /* 3315 * If a number of txgs equal to this threshold have been created after a commit 3316 * callback has been registered but not called, then we assume there is an 3317 * implementation bug. 3318 */ 3319 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 3320 3321 /* 3322 * Commit callback test. 3323 */ 3324 void 3325 ztest_dmu_commit_callbacks(ztest_args_t *za) 3326 { 3327 objset_t *os = za->za_os; 3328 dmu_tx_t *tx; 3329 ztest_cb_data_t *cb_data[3], *tmp_cb; 3330 uint64_t old_txg, txg; 3331 int i, error; 3332 3333 tx = dmu_tx_create(os); 3334 3335 cb_data[0] = ztest_create_cb_data(os, 0); 3336 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 3337 3338 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3339 3340 /* Every once in a while, abort the transaction on purpose */ 3341 if (ztest_random(100) == 0) 3342 error = -1; 3343 3344 if (!error) 3345 error = dmu_tx_assign(tx, TXG_NOWAIT); 3346 3347 txg = error ? 0 : dmu_tx_get_txg(tx); 3348 3349 cb_data[0]->zcd_txg = txg; 3350 cb_data[1] = ztest_create_cb_data(os, txg); 3351 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 3352 3353 if (error) { 3354 /* 3355 * It's not a strict requirement to call the registered 3356 * callbacks from inside dmu_tx_abort(), but that's what 3357 * it's supposed to happen in the current implementation 3358 * so we will check for that. 3359 */ 3360 for (i = 0; i < 2; i++) { 3361 cb_data[i]->zcd_expected_err = ECANCELED; 3362 VERIFY(!cb_data[i]->zcd_called); 3363 } 3364 3365 dmu_tx_abort(tx); 3366 3367 for (i = 0; i < 2; i++) { 3368 VERIFY(cb_data[i]->zcd_called); 3369 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 3370 } 3371 3372 return; 3373 } 3374 3375 cb_data[2] = ztest_create_cb_data(os, txg); 3376 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 3377 3378 /* 3379 * Read existing data to make sure there isn't a future leak. 3380 */ 3381 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3382 &old_txg, DMU_READ_PREFETCH)); 3383 3384 if (old_txg > txg) 3385 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 3386 old_txg, txg); 3387 3388 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &txg, tx); 3389 3390 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3391 3392 /* 3393 * Since commit callbacks don't have any ordering requirement and since 3394 * it is theoretically possible for a commit callback to be called 3395 * after an arbitrary amount of time has elapsed since its txg has been 3396 * synced, it is difficult to reliably determine whether a commit 3397 * callback hasn't been called due to high load or due to a flawed 3398 * implementation. 3399 * 3400 * In practice, we will assume that if after a certain number of txgs a 3401 * commit callback hasn't been called, then most likely there's an 3402 * implementation bug.. 3403 */ 3404 tmp_cb = list_head(&zcl.zcl_callbacks); 3405 if (tmp_cb != NULL && 3406 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 3407 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 3408 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 3409 } 3410 3411 /* 3412 * Let's find the place to insert our callbacks. 3413 * 3414 * Even though the list is ordered by txg, it is possible for the 3415 * insertion point to not be the end because our txg may already be 3416 * quiescing at this point and other callbacks in the open txg 3417 * (from other objsets) may have sneaked in. 3418 */ 3419 tmp_cb = list_tail(&zcl.zcl_callbacks); 3420 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 3421 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 3422 3423 /* Add the 3 callbacks to the list */ 3424 for (i = 0; i < 3; i++) { 3425 if (tmp_cb == NULL) 3426 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 3427 else 3428 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 3429 cb_data[i]); 3430 3431 cb_data[i]->zcd_added = B_TRUE; 3432 VERIFY(!cb_data[i]->zcd_called); 3433 3434 tmp_cb = cb_data[i]; 3435 } 3436 3437 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3438 3439 dmu_tx_commit(tx); 3440 } 3441 3442 void 3443 ztest_dsl_prop_get_set(ztest_args_t *za) 3444 { 3445 objset_t *os = za->za_os; 3446 int i, inherit; 3447 uint64_t value; 3448 const char *prop, *valname; 3449 char setpoint[MAXPATHLEN]; 3450 char osname[MAXNAMELEN]; 3451 int error; 3452 3453 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3454 3455 dmu_objset_name(os, osname); 3456 3457 for (i = 0; i < 2; i++) { 3458 if (i == 0) { 3459 prop = "checksum"; 3460 value = ztest_random_checksum(); 3461 inherit = (value == ZIO_CHECKSUM_INHERIT); 3462 } else { 3463 prop = "compression"; 3464 value = ztest_random_compress(); 3465 inherit = (value == ZIO_COMPRESS_INHERIT); 3466 } 3467 3468 error = dsl_prop_set(osname, prop, sizeof (value), 3469 !inherit, &value); 3470 3471 if (error == ENOSPC) { 3472 ztest_record_enospc("dsl_prop_set"); 3473 break; 3474 } 3475 3476 ASSERT3U(error, ==, 0); 3477 3478 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 3479 1, &value, setpoint), ==, 0); 3480 3481 if (i == 0) 3482 valname = zio_checksum_table[value].ci_name; 3483 else 3484 valname = zio_compress_table[value].ci_name; 3485 3486 if (zopt_verbose >= 6) { 3487 (void) printf("%s %s = %s for '%s'\n", 3488 osname, prop, valname, setpoint); 3489 } 3490 } 3491 3492 (void) rw_unlock(&ztest_shared->zs_name_lock); 3493 } 3494 3495 /* 3496 * Test snapshot hold/release and deferred destroy. 3497 */ 3498 void 3499 ztest_dmu_snapshot_hold(ztest_args_t *za) 3500 { 3501 int error; 3502 objset_t *os = za->za_os; 3503 objset_t *origin; 3504 uint64_t curval = za->za_instance; 3505 char snapname[100]; 3506 char fullname[100]; 3507 char clonename[100]; 3508 char tag[100]; 3509 char osname[MAXNAMELEN]; 3510 3511 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3512 3513 dmu_objset_name(os, osname); 3514 3515 (void) snprintf(snapname, 100, "sh1_%llu", curval); 3516 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 3517 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, curval); 3518 (void) snprintf(tag, 100, "%tag_%llu", curval); 3519 3520 /* 3521 * Clean up from any previous run. 3522 */ 3523 (void) dmu_objset_destroy(clonename, B_FALSE); 3524 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 3525 (void) dmu_objset_destroy(fullname, B_FALSE); 3526 3527 /* 3528 * Create snapshot, clone it, mark snap for deferred destroy, 3529 * destroy clone, verify snap was also destroyed. 3530 */ 3531 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 3532 if (error) { 3533 if (error == ENOSPC) { 3534 ztest_record_enospc("dmu_objset_snapshot"); 3535 goto out; 3536 } 3537 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 3538 } 3539 3540 error = dmu_objset_hold(fullname, FTAG, &origin); 3541 if (error) 3542 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 3543 3544 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 3545 dmu_objset_rele(origin, FTAG); 3546 if (error) { 3547 if (error == ENOSPC) { 3548 ztest_record_enospc("dmu_objset_clone"); 3549 goto out; 3550 } 3551 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 3552 } 3553 3554 error = dmu_objset_destroy(fullname, B_TRUE); 3555 if (error) { 3556 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 3557 fullname, error); 3558 } 3559 3560 error = dmu_objset_destroy(clonename, B_FALSE); 3561 if (error) 3562 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 3563 3564 error = dmu_objset_hold(fullname, FTAG, &origin); 3565 if (error != ENOENT) 3566 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 3567 3568 /* 3569 * Create snapshot, add temporary hold, verify that we can't 3570 * destroy a held snapshot, mark for deferred destroy, 3571 * release hold, verify snapshot was destroyed. 3572 */ 3573 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 3574 if (error) { 3575 if (error == ENOSPC) { 3576 ztest_record_enospc("dmu_objset_snapshot"); 3577 goto out; 3578 } 3579 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 3580 } 3581 3582 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 3583 if (error) 3584 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 3585 3586 error = dmu_objset_destroy(fullname, B_FALSE); 3587 if (error != EBUSY) { 3588 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 3589 fullname, error); 3590 } 3591 3592 error = dmu_objset_destroy(fullname, B_TRUE); 3593 if (error) { 3594 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 3595 fullname, error); 3596 } 3597 3598 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 3599 if (error) 3600 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 3601 3602 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 3603 3604 out: 3605 (void) rw_unlock(&ztest_shared->zs_name_lock); 3606 } 3607 3608 /* 3609 * Inject random faults into the on-disk data. 3610 */ 3611 void 3612 ztest_fault_inject(ztest_args_t *za) 3613 { 3614 int fd; 3615 uint64_t offset; 3616 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 3617 uint64_t bad = 0x1990c0ffeedecade; 3618 uint64_t top, leaf; 3619 char path0[MAXPATHLEN]; 3620 char pathrand[MAXPATHLEN]; 3621 size_t fsize; 3622 spa_t *spa = za->za_spa; 3623 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 3624 int iters = 1000; 3625 int maxfaults = zopt_maxfaults; 3626 vdev_t *vd0 = NULL; 3627 uint64_t guid0 = 0; 3628 boolean_t islog = B_FALSE; 3629 3630 ASSERT(leaves >= 1); 3631 3632 /* 3633 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 3634 */ 3635 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3636 3637 if (ztest_random(2) == 0) { 3638 /* 3639 * Inject errors on a normal data device. 3640 */ 3641 top = ztest_random(spa->spa_root_vdev->vdev_children); 3642 leaf = ztest_random(leaves); 3643 3644 /* 3645 * Generate paths to the first leaf in this top-level vdev, 3646 * and to the random leaf we selected. We'll induce transient 3647 * write failures and random online/offline activity on leaf 0, 3648 * and we'll write random garbage to the randomly chosen leaf. 3649 */ 3650 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3651 zopt_dir, zopt_pool, top * leaves + 0); 3652 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3653 zopt_dir, zopt_pool, top * leaves + leaf); 3654 3655 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3656 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 3657 islog = B_TRUE; 3658 3659 if (vd0 != NULL && maxfaults != 1) { 3660 /* 3661 * Make vd0 explicitly claim to be unreadable, 3662 * or unwriteable, or reach behind its back 3663 * and close the underlying fd. We can do this if 3664 * maxfaults == 0 because we'll fail and reexecute, 3665 * and we can do it if maxfaults >= 2 because we'll 3666 * have enough redundancy. If maxfaults == 1, the 3667 * combination of this with injection of random data 3668 * corruption below exceeds the pool's fault tolerance. 3669 */ 3670 vdev_file_t *vf = vd0->vdev_tsd; 3671 3672 if (vf != NULL && ztest_random(3) == 0) { 3673 (void) close(vf->vf_vnode->v_fd); 3674 vf->vf_vnode->v_fd = -1; 3675 } else if (ztest_random(2) == 0) { 3676 vd0->vdev_cant_read = B_TRUE; 3677 } else { 3678 vd0->vdev_cant_write = B_TRUE; 3679 } 3680 guid0 = vd0->vdev_guid; 3681 } 3682 } else { 3683 /* 3684 * Inject errors on an l2cache device. 3685 */ 3686 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3687 3688 if (sav->sav_count == 0) { 3689 spa_config_exit(spa, SCL_STATE, FTAG); 3690 return; 3691 } 3692 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3693 guid0 = vd0->vdev_guid; 3694 (void) strcpy(path0, vd0->vdev_path); 3695 (void) strcpy(pathrand, vd0->vdev_path); 3696 3697 leaf = 0; 3698 leaves = 1; 3699 maxfaults = INT_MAX; /* no limit on cache devices */ 3700 } 3701 3702 spa_config_exit(spa, SCL_STATE, FTAG); 3703 3704 /* 3705 * If we can tolerate two or more faults, or we're dealing 3706 * with a slog, randomly online/offline vd0. 3707 */ 3708 if ((maxfaults >= 2 || islog) && guid0 != 0) { 3709 if (ztest_random(10) < 6) { 3710 int flags = (ztest_random(2) == 0 ? 3711 ZFS_OFFLINE_TEMPORARY : 0); 3712 3713 /* 3714 * We have to grab the zs_name_lock as writer to 3715 * prevent a race between offlining a slog and 3716 * destroying a dataset. Offlining the slog will 3717 * grab a reference on the dataset which may cause 3718 * dmu_objset_destroy() to fail with EBUSY thus 3719 * leaving the dataset in an inconsistent state. 3720 */ 3721 if (islog) 3722 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3723 3724 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3725 3726 if (islog) 3727 (void) rw_unlock(&ztest_shared->zs_name_lock); 3728 } else { 3729 (void) vdev_online(spa, guid0, 0, NULL); 3730 } 3731 } 3732 3733 if (maxfaults == 0) 3734 return; 3735 3736 /* 3737 * We have at least single-fault tolerance, so inject data corruption. 3738 */ 3739 fd = open(pathrand, O_RDWR); 3740 3741 if (fd == -1) /* we hit a gap in the device namespace */ 3742 return; 3743 3744 fsize = lseek(fd, 0, SEEK_END); 3745 3746 while (--iters != 0) { 3747 offset = ztest_random(fsize / (leaves << bshift)) * 3748 (leaves << bshift) + (leaf << bshift) + 3749 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3750 3751 if (offset >= fsize) 3752 continue; 3753 3754 if (zopt_verbose >= 6) 3755 (void) printf("injecting bad word into %s," 3756 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3757 3758 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3759 fatal(1, "can't inject bad word at 0x%llx in %s", 3760 offset, pathrand); 3761 } 3762 3763 (void) close(fd); 3764 } 3765 3766 /* 3767 * Scrub the pool. 3768 */ 3769 void 3770 ztest_scrub(ztest_args_t *za) 3771 { 3772 spa_t *spa = za->za_spa; 3773 3774 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3775 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3776 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3777 } 3778 3779 /* 3780 * Rename the pool to a different name and then rename it back. 3781 */ 3782 void 3783 ztest_spa_rename(ztest_args_t *za) 3784 { 3785 char *oldname, *newname; 3786 int error; 3787 spa_t *spa; 3788 3789 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3790 3791 oldname = za->za_pool; 3792 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3793 (void) strcpy(newname, oldname); 3794 (void) strcat(newname, "_tmp"); 3795 3796 /* 3797 * Do the rename 3798 */ 3799 error = spa_rename(oldname, newname); 3800 if (error) 3801 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3802 newname, error); 3803 3804 /* 3805 * Try to open it under the old name, which shouldn't exist 3806 */ 3807 error = spa_open(oldname, &spa, FTAG); 3808 if (error != ENOENT) 3809 fatal(0, "spa_open('%s') = %d", oldname, error); 3810 3811 /* 3812 * Open it under the new name and make sure it's still the same spa_t. 3813 */ 3814 error = spa_open(newname, &spa, FTAG); 3815 if (error != 0) 3816 fatal(0, "spa_open('%s') = %d", newname, error); 3817 3818 ASSERT(spa == za->za_spa); 3819 spa_close(spa, FTAG); 3820 3821 /* 3822 * Rename it back to the original 3823 */ 3824 error = spa_rename(newname, oldname); 3825 if (error) 3826 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3827 oldname, error); 3828 3829 /* 3830 * Make sure it can still be opened 3831 */ 3832 error = spa_open(oldname, &spa, FTAG); 3833 if (error != 0) 3834 fatal(0, "spa_open('%s') = %d", oldname, error); 3835 3836 ASSERT(spa == za->za_spa); 3837 spa_close(spa, FTAG); 3838 3839 umem_free(newname, strlen(newname) + 1); 3840 3841 (void) rw_unlock(&ztest_shared->zs_name_lock); 3842 } 3843 3844 3845 /* 3846 * Completely obliterate one disk. 3847 */ 3848 static void 3849 ztest_obliterate_one_disk(uint64_t vdev) 3850 { 3851 int fd; 3852 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3853 size_t fsize; 3854 3855 if (zopt_maxfaults < 2) 3856 return; 3857 3858 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3859 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3860 3861 fd = open(dev_name, O_RDWR); 3862 3863 if (fd == -1) 3864 fatal(1, "can't open %s", dev_name); 3865 3866 /* 3867 * Determine the size. 3868 */ 3869 fsize = lseek(fd, 0, SEEK_END); 3870 3871 (void) close(fd); 3872 3873 /* 3874 * Rename the old device to dev_name.old (useful for debugging). 3875 */ 3876 VERIFY(rename(dev_name, copy_name) == 0); 3877 3878 /* 3879 * Create a new one. 3880 */ 3881 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3882 VERIFY(ftruncate(fd, fsize) == 0); 3883 (void) close(fd); 3884 } 3885 3886 static void 3887 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3888 { 3889 char dev_name[MAXPATHLEN]; 3890 nvlist_t *root; 3891 int error; 3892 uint64_t guid; 3893 vdev_t *vd; 3894 3895 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3896 3897 /* 3898 * Build the nvlist describing dev_name. 3899 */ 3900 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3901 3902 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3903 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3904 guid = 0; 3905 else 3906 guid = vd->vdev_guid; 3907 spa_config_exit(spa, SCL_VDEV, FTAG); 3908 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3909 if (error != 0 && 3910 error != EBUSY && 3911 error != ENOTSUP && 3912 error != ENODEV && 3913 error != EDOM) 3914 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3915 3916 nvlist_free(root); 3917 } 3918 3919 static void 3920 ztest_verify_blocks(char *pool) 3921 { 3922 int status; 3923 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3924 char zbuf[1024]; 3925 char *bin; 3926 char *ztest; 3927 char *isa; 3928 int isalen; 3929 FILE *fp; 3930 3931 (void) realpath(getexecname(), zdb); 3932 3933 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3934 bin = strstr(zdb, "/usr/bin/"); 3935 ztest = strstr(bin, "/ztest"); 3936 isa = bin + 8; 3937 isalen = ztest - isa; 3938 isa = strdup(isa); 3939 /* LINTED */ 3940 (void) sprintf(bin, 3941 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3942 isalen, 3943 isa, 3944 zopt_verbose >= 3 ? "s" : "", 3945 zopt_verbose >= 4 ? "v" : "", 3946 pool); 3947 free(isa); 3948 3949 if (zopt_verbose >= 5) 3950 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3951 3952 fp = popen(zdb, "r"); 3953 3954 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3955 if (zopt_verbose >= 3) 3956 (void) printf("%s", zbuf); 3957 3958 status = pclose(fp); 3959 3960 if (status == 0) 3961 return; 3962 3963 ztest_dump_core = 0; 3964 if (WIFEXITED(status)) 3965 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3966 else 3967 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3968 } 3969 3970 static void 3971 ztest_walk_pool_directory(char *header) 3972 { 3973 spa_t *spa = NULL; 3974 3975 if (zopt_verbose >= 6) 3976 (void) printf("%s\n", header); 3977 3978 mutex_enter(&spa_namespace_lock); 3979 while ((spa = spa_next(spa)) != NULL) 3980 if (zopt_verbose >= 6) 3981 (void) printf("\t%s\n", spa_name(spa)); 3982 mutex_exit(&spa_namespace_lock); 3983 } 3984 3985 static void 3986 ztest_spa_import_export(char *oldname, char *newname) 3987 { 3988 nvlist_t *config, *newconfig; 3989 uint64_t pool_guid; 3990 spa_t *spa; 3991 int error; 3992 3993 if (zopt_verbose >= 4) { 3994 (void) printf("import/export: old = %s, new = %s\n", 3995 oldname, newname); 3996 } 3997 3998 /* 3999 * Clean up from previous runs. 4000 */ 4001 (void) spa_destroy(newname); 4002 4003 /* 4004 * Get the pool's configuration and guid. 4005 */ 4006 error = spa_open(oldname, &spa, FTAG); 4007 if (error) 4008 fatal(0, "spa_open('%s') = %d", oldname, error); 4009 4010 /* 4011 * Kick off a scrub to tickle scrub/export races. 4012 */ 4013 if (ztest_random(2) == 0) 4014 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4015 4016 pool_guid = spa_guid(spa); 4017 spa_close(spa, FTAG); 4018 4019 ztest_walk_pool_directory("pools before export"); 4020 4021 /* 4022 * Export it. 4023 */ 4024 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 4025 if (error) 4026 fatal(0, "spa_export('%s') = %d", oldname, error); 4027 4028 ztest_walk_pool_directory("pools after export"); 4029 4030 /* 4031 * Try to import it. 4032 */ 4033 newconfig = spa_tryimport(config); 4034 ASSERT(newconfig != NULL); 4035 nvlist_free(newconfig); 4036 4037 /* 4038 * Import it under the new name. 4039 */ 4040 error = spa_import(newname, config, NULL); 4041 if (error) 4042 fatal(0, "spa_import('%s') = %d", newname, error); 4043 4044 ztest_walk_pool_directory("pools after import"); 4045 4046 /* 4047 * Try to import it again -- should fail with EEXIST. 4048 */ 4049 error = spa_import(newname, config, NULL); 4050 if (error != EEXIST) 4051 fatal(0, "spa_import('%s') twice", newname); 4052 4053 /* 4054 * Try to import it under a different name -- should fail with EEXIST. 4055 */ 4056 error = spa_import(oldname, config, NULL); 4057 if (error != EEXIST) 4058 fatal(0, "spa_import('%s') under multiple names", newname); 4059 4060 /* 4061 * Verify that the pool is no longer visible under the old name. 4062 */ 4063 error = spa_open(oldname, &spa, FTAG); 4064 if (error != ENOENT) 4065 fatal(0, "spa_open('%s') = %d", newname, error); 4066 4067 /* 4068 * Verify that we can open and close the pool using the new name. 4069 */ 4070 error = spa_open(newname, &spa, FTAG); 4071 if (error) 4072 fatal(0, "spa_open('%s') = %d", newname, error); 4073 ASSERT(pool_guid == spa_guid(spa)); 4074 spa_close(spa, FTAG); 4075 4076 nvlist_free(config); 4077 } 4078 4079 static void 4080 ztest_resume(spa_t *spa) 4081 { 4082 if (spa_suspended(spa)) { 4083 spa_vdev_state_enter(spa, SCL_NONE); 4084 vdev_clear(spa, NULL); 4085 (void) spa_vdev_state_exit(spa, NULL, 0); 4086 (void) zio_resume(spa); 4087 } 4088 } 4089 4090 static void * 4091 ztest_resume_thread(void *arg) 4092 { 4093 spa_t *spa = arg; 4094 4095 while (!ztest_exiting) { 4096 (void) poll(NULL, 0, 1000); 4097 ztest_resume(spa); 4098 } 4099 return (NULL); 4100 } 4101 4102 static void * 4103 ztest_thread(void *arg) 4104 { 4105 ztest_args_t *za = arg; 4106 ztest_shared_t *zs = ztest_shared; 4107 hrtime_t now, functime; 4108 ztest_info_t *zi; 4109 int f, i; 4110 4111 while ((now = gethrtime()) < za->za_stop) { 4112 /* 4113 * See if it's time to force a crash. 4114 */ 4115 if (now > za->za_kill) { 4116 zs->zs_alloc = spa_get_alloc(za->za_spa); 4117 zs->zs_space = spa_get_space(za->za_spa); 4118 (void) kill(getpid(), SIGKILL); 4119 } 4120 4121 /* 4122 * Pick a random function. 4123 */ 4124 f = ztest_random(ZTEST_FUNCS); 4125 zi = &zs->zs_info[f]; 4126 4127 /* 4128 * Decide whether to call it, based on the requested frequency. 4129 */ 4130 if (zi->zi_call_target == 0 || 4131 (double)zi->zi_call_total / zi->zi_call_target > 4132 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 4133 continue; 4134 4135 atomic_add_64(&zi->zi_calls, 1); 4136 atomic_add_64(&zi->zi_call_total, 1); 4137 4138 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 4139 ZTEST_DIRSIZE; 4140 za->za_diroff_shared = (1ULL << 63); 4141 4142 for (i = 0; i < zi->zi_iters; i++) 4143 zi->zi_func(za); 4144 4145 functime = gethrtime() - now; 4146 4147 atomic_add_64(&zi->zi_call_time, functime); 4148 4149 if (zopt_verbose >= 4) { 4150 Dl_info dli; 4151 (void) dladdr((void *)zi->zi_func, &dli); 4152 (void) printf("%6.2f sec in %s\n", 4153 (double)functime / NANOSEC, dli.dli_sname); 4154 } 4155 4156 /* 4157 * If we're getting ENOSPC with some regularity, stop. 4158 */ 4159 if (zs->zs_enospc_count > 10) 4160 break; 4161 } 4162 4163 return (NULL); 4164 } 4165 4166 /* 4167 * Kick off threads to run tests on all datasets in parallel. 4168 */ 4169 static void 4170 ztest_run(char *pool) 4171 { 4172 int t, d, error; 4173 ztest_shared_t *zs = ztest_shared; 4174 ztest_args_t *za; 4175 spa_t *spa; 4176 char name[100]; 4177 thread_t resume_tid; 4178 4179 ztest_exiting = B_FALSE; 4180 4181 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 4182 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 4183 4184 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, 4185 NULL); 4186 4187 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 4188 offsetof(ztest_cb_data_t, zcd_node)); 4189 4190 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 4191 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 4192 4193 /* 4194 * Destroy one disk before we even start. 4195 * It's mirrored, so everything should work just fine. 4196 * This makes us exercise fault handling very early in spa_load(). 4197 */ 4198 ztest_obliterate_one_disk(0); 4199 4200 /* 4201 * Verify that the sum of the sizes of all blocks in the pool 4202 * equals the SPA's allocated space total. 4203 */ 4204 ztest_verify_blocks(pool); 4205 4206 /* 4207 * Kick off a replacement of the disk we just obliterated. 4208 */ 4209 kernel_init(FREAD | FWRITE); 4210 VERIFY(spa_open(pool, &spa, FTAG) == 0); 4211 ztest_replace_one_disk(spa, 0); 4212 if (zopt_verbose >= 5) 4213 show_pool_stats(spa); 4214 spa_close(spa, FTAG); 4215 kernel_fini(); 4216 4217 kernel_init(FREAD | FWRITE); 4218 4219 /* 4220 * Verify that we can export the pool and reimport it under a 4221 * different name. 4222 */ 4223 if (ztest_random(2) == 0) { 4224 (void) snprintf(name, 100, "%s_import", pool); 4225 ztest_spa_import_export(pool, name); 4226 ztest_spa_import_export(name, pool); 4227 } 4228 4229 /* 4230 * Verify that we can loop over all pools. 4231 */ 4232 mutex_enter(&spa_namespace_lock); 4233 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 4234 if (zopt_verbose > 3) { 4235 (void) printf("spa_next: found %s\n", spa_name(spa)); 4236 } 4237 } 4238 mutex_exit(&spa_namespace_lock); 4239 4240 /* 4241 * Open our pool. 4242 */ 4243 VERIFY(spa_open(pool, &spa, FTAG) == 0); 4244 4245 /* 4246 * We don't expect the pool to suspend unless maxfaults == 0, 4247 * in which case ztest_fault_inject() temporarily takes away 4248 * the only valid replica. 4249 */ 4250 if (zopt_maxfaults == 0) 4251 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 4252 else 4253 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 4254 4255 /* 4256 * Create a thread to periodically resume suspended I/O. 4257 */ 4258 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 4259 &resume_tid) == 0); 4260 4261 /* 4262 * Verify that we can safely inquire about about any object, 4263 * whether it's allocated or not. To make it interesting, 4264 * we probe a 5-wide window around each power of two. 4265 * This hits all edge cases, including zero and the max. 4266 */ 4267 for (t = 0; t < 64; t++) { 4268 for (d = -5; d <= 5; d++) { 4269 error = dmu_object_info(spa->spa_meta_objset, 4270 (1ULL << t) + d, NULL); 4271 ASSERT(error == 0 || error == ENOENT || 4272 error == EINVAL); 4273 } 4274 } 4275 4276 /* 4277 * Now kick off all the tests that run in parallel. 4278 */ 4279 zs->zs_enospc_count = 0; 4280 4281 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 4282 4283 if (zopt_verbose >= 4) 4284 (void) printf("starting main threads...\n"); 4285 4286 za[0].za_start = gethrtime(); 4287 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 4288 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 4289 za[0].za_kill = za[0].za_stop; 4290 if (ztest_random(100) < zopt_killrate) 4291 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 4292 4293 for (t = 0; t < zopt_threads; t++) { 4294 d = t % zopt_datasets; 4295 4296 (void) strcpy(za[t].za_pool, pool); 4297 za[t].za_os = za[d].za_os; 4298 za[t].za_spa = spa; 4299 za[t].za_zilog = za[d].za_zilog; 4300 za[t].za_instance = t; 4301 za[t].za_random = ztest_random(-1ULL); 4302 za[t].za_start = za[0].za_start; 4303 za[t].za_stop = za[0].za_stop; 4304 za[t].za_kill = za[0].za_kill; 4305 4306 if (t < zopt_datasets) { 4307 int test_future = FALSE; 4308 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4309 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 4310 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 4311 ztest_create_cb, NULL); 4312 if (error == EEXIST) { 4313 test_future = TRUE; 4314 } else if (error == ENOSPC) { 4315 zs->zs_enospc_count++; 4316 (void) rw_unlock(&ztest_shared->zs_name_lock); 4317 break; 4318 } else if (error != 0) { 4319 fatal(0, "dmu_objset_create(%s) = %d", 4320 name, error); 4321 } 4322 error = dmu_objset_hold(name, FTAG, &za[d].za_os); 4323 if (error) 4324 fatal(0, "dmu_objset_open('%s') = %d", 4325 name, error); 4326 (void) rw_unlock(&ztest_shared->zs_name_lock); 4327 if (test_future) 4328 ztest_dmu_check_future_leak(&za[t]); 4329 zil_replay(za[d].za_os, za[d].za_os, 4330 ztest_replay_vector); 4331 za[d].za_zilog = zil_open(za[d].za_os, NULL); 4332 } 4333 4334 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 4335 &za[t].za_thread) == 0); 4336 } 4337 4338 while (--t >= 0) { 4339 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 4340 if (t < zopt_datasets) { 4341 zil_close(za[t].za_zilog); 4342 dmu_objset_rele(za[t].za_os, FTAG); 4343 } 4344 } 4345 4346 if (zopt_verbose >= 3) 4347 show_pool_stats(spa); 4348 4349 txg_wait_synced(spa_get_dsl(spa), 0); 4350 4351 zs->zs_alloc = spa_get_alloc(spa); 4352 zs->zs_space = spa_get_space(spa); 4353 4354 /* 4355 * If we had out-of-space errors, destroy a random objset. 4356 */ 4357 if (zs->zs_enospc_count != 0) { 4358 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4359 d = (int)ztest_random(zopt_datasets); 4360 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 4361 if (zopt_verbose >= 3) 4362 (void) printf("Destroying %s to free up space\n", name); 4363 4364 /* Cleanup any non-standard clones and snapshots */ 4365 ztest_dsl_dataset_cleanup(name, za[d].za_instance); 4366 4367 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 4368 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4369 (void) rw_unlock(&ztest_shared->zs_name_lock); 4370 } 4371 4372 txg_wait_synced(spa_get_dsl(spa), 0); 4373 4374 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 4375 4376 /* Kill the resume thread */ 4377 ztest_exiting = B_TRUE; 4378 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 4379 ztest_resume(spa); 4380 4381 /* 4382 * Right before closing the pool, kick off a bunch of async I/O; 4383 * spa_close() should wait for it to complete. 4384 */ 4385 for (t = 1; t < 50; t++) 4386 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 4387 4388 spa_close(spa, FTAG); 4389 4390 kernel_fini(); 4391 4392 list_destroy(&zcl.zcl_callbacks); 4393 4394 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 4395 4396 (void) rwlock_destroy(&zs->zs_name_lock); 4397 (void) _mutex_destroy(&zs->zs_vdev_lock); 4398 } 4399 4400 void 4401 print_time(hrtime_t t, char *timebuf) 4402 { 4403 hrtime_t s = t / NANOSEC; 4404 hrtime_t m = s / 60; 4405 hrtime_t h = m / 60; 4406 hrtime_t d = h / 24; 4407 4408 s -= m * 60; 4409 m -= h * 60; 4410 h -= d * 24; 4411 4412 timebuf[0] = '\0'; 4413 4414 if (d) 4415 (void) sprintf(timebuf, 4416 "%llud%02lluh%02llum%02llus", d, h, m, s); 4417 else if (h) 4418 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 4419 else if (m) 4420 (void) sprintf(timebuf, "%llum%02llus", m, s); 4421 else 4422 (void) sprintf(timebuf, "%llus", s); 4423 } 4424 4425 /* 4426 * Create a storage pool with the given name and initial vdev size. 4427 * Then create the specified number of datasets in the pool. 4428 */ 4429 static void 4430 ztest_init(char *pool) 4431 { 4432 spa_t *spa; 4433 int error; 4434 nvlist_t *nvroot; 4435 4436 kernel_init(FREAD | FWRITE); 4437 4438 /* 4439 * Create the storage pool. 4440 */ 4441 (void) spa_destroy(pool); 4442 ztest_shared->zs_vdev_next_leaf = 0; 4443 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 4444 0, zopt_raidz, zopt_mirrors, 1); 4445 error = spa_create(pool, nvroot, NULL, NULL, NULL); 4446 nvlist_free(nvroot); 4447 4448 if (error) 4449 fatal(0, "spa_create() = %d", error); 4450 error = spa_open(pool, &spa, FTAG); 4451 if (error) 4452 fatal(0, "spa_open() = %d", error); 4453 4454 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 4455 4456 if (zopt_verbose >= 3) 4457 show_pool_stats(spa); 4458 4459 spa_close(spa, FTAG); 4460 4461 kernel_fini(); 4462 } 4463 4464 int 4465 main(int argc, char **argv) 4466 { 4467 int kills = 0; 4468 int iters = 0; 4469 int i, f; 4470 ztest_shared_t *zs; 4471 ztest_info_t *zi; 4472 char timebuf[100]; 4473 char numbuf[6]; 4474 4475 (void) setvbuf(stdout, NULL, _IOLBF, 0); 4476 4477 /* Override location of zpool.cache */ 4478 spa_config_path = "/tmp/zpool.cache"; 4479 4480 ztest_random_fd = open("/dev/urandom", O_RDONLY); 4481 4482 process_options(argc, argv); 4483 4484 /* 4485 * Blow away any existing copy of zpool.cache 4486 */ 4487 if (zopt_init != 0) 4488 (void) remove("/tmp/zpool.cache"); 4489 4490 zs = ztest_shared = (void *)mmap(0, 4491 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 4492 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 4493 4494 if (zopt_verbose >= 1) { 4495 (void) printf("%llu vdevs, %d datasets, %d threads," 4496 " %llu seconds...\n", 4497 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 4498 (u_longlong_t)zopt_time); 4499 } 4500 4501 /* 4502 * Create and initialize our storage pool. 4503 */ 4504 for (i = 1; i <= zopt_init; i++) { 4505 bzero(zs, sizeof (ztest_shared_t)); 4506 if (zopt_verbose >= 3 && zopt_init != 1) 4507 (void) printf("ztest_init(), pass %d\n", i); 4508 ztest_init(zopt_pool); 4509 } 4510 4511 /* 4512 * Initialize the call targets for each function. 4513 */ 4514 for (f = 0; f < ZTEST_FUNCS; f++) { 4515 zi = &zs->zs_info[f]; 4516 4517 *zi = ztest_info[f]; 4518 4519 if (*zi->zi_interval == 0) 4520 zi->zi_call_target = UINT64_MAX; 4521 else 4522 zi->zi_call_target = zopt_time / *zi->zi_interval; 4523 } 4524 4525 zs->zs_start_time = gethrtime(); 4526 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 4527 4528 /* 4529 * Run the tests in a loop. These tests include fault injection 4530 * to verify that self-healing data works, and forced crashes 4531 * to verify that we never lose on-disk consistency. 4532 */ 4533 while (gethrtime() < zs->zs_stop_time) { 4534 int status; 4535 pid_t pid; 4536 char *tmp; 4537 4538 /* 4539 * Initialize the workload counters for each function. 4540 */ 4541 for (f = 0; f < ZTEST_FUNCS; f++) { 4542 zi = &zs->zs_info[f]; 4543 zi->zi_calls = 0; 4544 zi->zi_call_time = 0; 4545 } 4546 4547 /* Set the allocation switch size */ 4548 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 4549 4550 pid = fork(); 4551 4552 if (pid == -1) 4553 fatal(1, "fork failed"); 4554 4555 if (pid == 0) { /* child */ 4556 struct rlimit rl = { 1024, 1024 }; 4557 (void) setrlimit(RLIMIT_NOFILE, &rl); 4558 (void) enable_extended_FILE_stdio(-1, -1); 4559 ztest_run(zopt_pool); 4560 exit(0); 4561 } 4562 4563 while (waitpid(pid, &status, 0) != pid) 4564 continue; 4565 4566 if (WIFEXITED(status)) { 4567 if (WEXITSTATUS(status) != 0) { 4568 (void) fprintf(stderr, 4569 "child exited with code %d\n", 4570 WEXITSTATUS(status)); 4571 exit(2); 4572 } 4573 } else if (WIFSIGNALED(status)) { 4574 if (WTERMSIG(status) != SIGKILL) { 4575 (void) fprintf(stderr, 4576 "child died with signal %d\n", 4577 WTERMSIG(status)); 4578 exit(3); 4579 } 4580 kills++; 4581 } else { 4582 (void) fprintf(stderr, "something strange happened " 4583 "to child\n"); 4584 exit(4); 4585 } 4586 4587 iters++; 4588 4589 if (zopt_verbose >= 1) { 4590 hrtime_t now = gethrtime(); 4591 4592 now = MIN(now, zs->zs_stop_time); 4593 print_time(zs->zs_stop_time - now, timebuf); 4594 nicenum(zs->zs_space, numbuf); 4595 4596 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 4597 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 4598 iters, 4599 WIFEXITED(status) ? "Complete" : "SIGKILL", 4600 (u_longlong_t)zs->zs_enospc_count, 4601 100.0 * zs->zs_alloc / zs->zs_space, 4602 numbuf, 4603 100.0 * (now - zs->zs_start_time) / 4604 (zopt_time * NANOSEC), timebuf); 4605 } 4606 4607 if (zopt_verbose >= 2) { 4608 (void) printf("\nWorkload summary:\n\n"); 4609 (void) printf("%7s %9s %s\n", 4610 "Calls", "Time", "Function"); 4611 (void) printf("%7s %9s %s\n", 4612 "-----", "----", "--------"); 4613 for (f = 0; f < ZTEST_FUNCS; f++) { 4614 Dl_info dli; 4615 4616 zi = &zs->zs_info[f]; 4617 print_time(zi->zi_call_time, timebuf); 4618 (void) dladdr((void *)zi->zi_func, &dli); 4619 (void) printf("%7llu %9s %s\n", 4620 (u_longlong_t)zi->zi_calls, timebuf, 4621 dli.dli_sname); 4622 } 4623 (void) printf("\n"); 4624 } 4625 4626 /* 4627 * It's possible that we killed a child during a rename test, in 4628 * which case we'll have a 'ztest_tmp' pool lying around instead 4629 * of 'ztest'. Do a blind rename in case this happened. 4630 */ 4631 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 4632 (void) strcpy(tmp, zopt_pool); 4633 (void) strcat(tmp, "_tmp"); 4634 kernel_init(FREAD | FWRITE); 4635 (void) spa_rename(tmp, zopt_pool); 4636 kernel_fini(); 4637 umem_free(tmp, strlen(tmp) + 1); 4638 } 4639 4640 ztest_verify_blocks(zopt_pool); 4641 4642 if (zopt_verbose >= 1) { 4643 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 4644 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 4645 } 4646 4647 return (0); 4648 } 4649