/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * The -N(okill) option will suppress kills, so each child runs to completion. * This can be useful when you're trying to distinguish temporal incursions * from plain old race conditions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static char cmdname[] = "ztest"; static char *zopt_pool = cmdname; static uint64_t zopt_vdevs = 5; static uint64_t zopt_vdevtime; static int zopt_ashift = SPA_MINBLOCKSHIFT; static int zopt_mirrors = 2; static int zopt_raidz = 4; static int zopt_raidz_parity = 1; static size_t zopt_vdev_size = SPA_MINDEVSIZE; static int zopt_datasets = 7; static int zopt_threads = 23; static uint64_t zopt_passtime = 60; /* 60 seconds */ static uint64_t zopt_killrate = 70; /* 70% kill rate */ static int zopt_verbose = 0; static int zopt_init = 1; static char *zopt_dir = "/tmp"; static uint64_t zopt_time = 300; /* 5 minutes */ static int zopt_maxfaults; typedef struct ztest_block_tag { uint64_t bt_objset; uint64_t bt_object; uint64_t bt_offset; uint64_t bt_txg; uint64_t bt_thread; uint64_t bt_seq; } ztest_block_tag_t; typedef struct ztest_args { char za_pool[MAXNAMELEN]; spa_t *za_spa; objset_t *za_os; zilog_t *za_zilog; thread_t za_thread; uint64_t za_instance; uint64_t za_random; uint64_t za_diroff; uint64_t za_diroff_shared; uint64_t za_zil_seq; hrtime_t za_start; hrtime_t za_stop; hrtime_t za_kill; /* * Thread-local variables can go here to aid debugging. */ ztest_block_tag_t za_rbt; ztest_block_tag_t za_wbt; dmu_object_info_t za_doi; dmu_buf_t *za_dbuf; } ztest_args_t; typedef void ztest_func_t(ztest_args_t *); /* * Note: these aren't static because we want dladdr() to work. */ ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_fzap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_traverse; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_spa_rename; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_scrub; ztest_func_t ztest_dmu_snapshot_hold; typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ uint64_t zi_calls; /* per-pass count */ uint64_t zi_call_time; /* per-pass time */ uint64_t zi_call_total; /* cumulative total */ uint64_t zi_call_target; /* target cumulative total */ } ztest_info_t; uint64_t zopt_always = 0; /* all the time */ uint64_t zopt_often = 1; /* every second */ uint64_t zopt_sometimes = 10; /* every 10 seconds */ uint64_t zopt_rarely = 60; /* every 60 seconds */ ztest_info_t ztest_info[] = { { ztest_dmu_read_write, 1, &zopt_always }, { ztest_dmu_write_parallel, 30, &zopt_always }, { ztest_dmu_object_alloc_free, 1, &zopt_always }, { ztest_dmu_commit_callbacks, 10, &zopt_always }, { ztest_zap, 30, &zopt_always }, { ztest_fzap, 1, &zopt_always }, { ztest_zap_parallel, 100, &zopt_always }, { ztest_dmu_read_write_zcopy, 1, &zopt_sometimes }, { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, { ztest_spa_create_destroy, 1, &zopt_sometimes }, { ztest_fault_inject, 1, &zopt_sometimes }, { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, { ztest_spa_rename, 1, &zopt_rarely }, { ztest_vdev_attach_detach, 1, &zopt_rarely }, { ztest_vdev_LUN_growth, 1, &zopt_rarely }, { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, { ztest_vdev_add_remove, 1, &zopt_vdevtime }, { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, { ztest_scrub, 1, &zopt_vdevtime }, }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) #define ZTEST_SYNC_LOCKS 16 /* * The following struct is used to hold a list of uncalled commit callbacks. * * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { mutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { mutex_t zs_vdev_lock; rwlock_t zs_name_lock; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_enospc_count; hrtime_t zs_start_time; hrtime_t zs_stop_time; uint64_t zs_alloc; uint64_t zs_space; ztest_info_t zs_info[ZTEST_FUNCS]; mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; uint64_t zs_seq[ZTEST_SYNC_LOCKS]; } ztest_shared_t; static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; static ztest_shared_t *ztest_shared; static int ztest_random_fd; static int ztest_dump_core = 1; static uint64_t metaslab_sz; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; extern uint64_t metaslab_gang_bang; extern uint64_t metaslab_df_alloc_threshold; #define ZTEST_DIROBJ 1 #define ZTEST_MICROZAP_OBJ 2 #define ZTEST_FATZAP_OBJ 3 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) #define ZTEST_DIRSIZE 256 static void usage(boolean_t) __NORETURN; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #define FATAL_MSG_SZ 1024 char *fatal_msg; static void fatal(int do_perror, char *message, ...) { va_list args; int save_errno = errno; char buf[FATAL_MSG_SZ]; (void) fflush(stdout); va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ if (ztest_dump_core) abort(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); /* NOTREACHED */ } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); if (fval > UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } static void usage(boolean_t requested) { char nice_vdev_size[10]; char nice_gang_bang[10]; FILE *fp = requested ? stdout : stderr; nicenum(zopt_vdev_size, nice_vdev_size); nicenum(metaslab_gang_bang, nice_gang_bang); (void) fprintf(fp, "Usage: %s\n" "\t[-v vdevs (default: %llu)]\n" "\t[-s size_of_each_vdev (default: %s)]\n" "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" "\t[-m mirror_copies (default: %d)]\n" "\t[-r raidz_disks (default: %d)]\n" "\t[-R raidz_parity (default: %d)]\n" "\t[-d datasets (default: %d)]\n" "\t[-t threads (default: %d)]\n" "\t[-g gang_block_threshold (default: %s)]\n" "\t[-i initialize pool i times (default: %d)]\n" "\t[-k kill percentage (default: %llu%%)]\n" "\t[-p pool_name (default: %s)]\n" "\t[-f file directory for vdev files (default: %s)]\n" "\t[-V(erbose)] (use multiple times for ever more blather)\n" "\t[-E(xisting)] (use existing pool instead of creating new one)\n" "\t[-T time] total run time (default: %llu sec)\n" "\t[-P passtime] time per pass (default: %llu sec)\n" "\t[-h] (print help)\n" "", cmdname, (u_longlong_t)zopt_vdevs, /* -v */ nice_vdev_size, /* -s */ zopt_ashift, /* -a */ zopt_mirrors, /* -m */ zopt_raidz, /* -r */ zopt_raidz_parity, /* -R */ zopt_datasets, /* -d */ zopt_threads, /* -t */ nice_gang_bang, /* -g */ zopt_init, /* -i */ (u_longlong_t)zopt_killrate, /* -k */ zopt_pool, /* -p */ zopt_dir, /* -f */ (u_longlong_t)zopt_time, /* -T */ (u_longlong_t)zopt_passtime); /* -P */ exit(requested ? 0 : 1); } static uint64_t ztest_random(uint64_t range) { uint64_t r; if (range == 0) return (0); if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) fatal(1, "short read from /dev/urandom"); return (r % range); } /* ARGSUSED */ static void ztest_record_enospc(char *s) { ztest_shared->zs_enospc_count++; } static void process_options(int argc, char **argv) { int opt; uint64_t value; /* By default, test gang blocks for blocks 32K and greater */ metaslab_gang_bang = 32 << 10; while ((opt = getopt(argc, argv, "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': value = nicenumtoull(optarg); } switch (opt) { case 'v': zopt_vdevs = value; break; case 's': zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zopt_ashift = value; break; case 'm': zopt_mirrors = value; break; case 'r': zopt_raidz = MAX(1, value); break; case 'R': zopt_raidz_parity = MIN(MAX(value, 1), 3); break; case 'd': zopt_datasets = MAX(1, value); break; case 't': zopt_threads = MAX(1, value); break; case 'g': metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zopt_init = value; break; case 'k': zopt_killrate = value; break; case 'p': zopt_pool = strdup(optarg); break; case 'f': zopt_dir = strdup(optarg); break; case 'V': zopt_verbose++; break; case 'E': zopt_init = 0; break; case 'T': zopt_time = value; break; case 'P': zopt_passtime = MAX(1, value); break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; } static uint64_t ztest_get_ashift(void) { if (zopt_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(3)); return (zopt_ashift); } static nvlist_t * make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) { char pathbuf[MAXPATHLEN]; uint64_t vdev; nvlist_t *file; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) sprintf(path, ztest_aux_template, zopt_dir, zopt_pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) sprintf(path, ztest_dev_template, zopt_dir, zopt_pool, vdev); } } if (size != 0) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(1, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(1, "can't ftruncate %s", path); (void) close(fd); } VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); return (file); } static nvlist_t * make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) { nvlist_t *raidz, **child; int c; if (r < 2) return (make_vdev_file(path, aux, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, size, ashift); VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, VDEV_TYPE_RAIDZ) == 0); VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, zopt_raidz_parity) == 0); VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, child, r) == 0); for (c = 0; c < r; c++) nvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raidz); } static nvlist_t * make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raidz(path, aux, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raidz(path, aux, size, ashift, r); VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR) == 0); VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m) == 0); for (c = 0; c < m; c++) nvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, int log, int r, int m, int t) { nvlist_t *root, **child; int c; ASSERT(t > 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log) == 0); } VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, child, t) == 0); for (c = 0; c < t; c++) nvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } static void ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) { int bs = SPA_MINBLOCKSHIFT + ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); int ibs = DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); int error; error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); if (error) { char osname[300]; dmu_objset_name(os, osname); fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", osname, object, 1 << bs, ibs, error); } } static uint8_t ztest_random_checksum(void) { uint8_t checksum; do { checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); } while (zio_checksum_table[checksum].ci_zbt); if (checksum == ZIO_CHECKSUM_OFF) checksum = ZIO_CHECKSUM_ON; return (checksum); } static uint8_t ztest_random_compress(void) { return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); } static int ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) { dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, DMU_OT_NONE, 0, tx); ASSERT3U(error, ==, 0); dmu_tx_commit(tx); if (zopt_verbose >= 5) { char osname[MAXNAMELEN]; dmu_objset_name(os, osname); (void) printf("replay create of %s object %llu" " in txg %llu = %d\n", osname, (u_longlong_t)lr->lr_doid, (u_longlong_t)dmu_tx_get_txg(tx), error); } return (error); } static int ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) { dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = dmu_object_free(os, lr->lr_doid, tx); dmu_tx_commit(tx); return (error); } zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ NULL, /* TX_WRITE */ NULL, /* TX_TRUNCATE */ NULL, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ }; /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ void ztest_spa_create_destroy(ztest_args_t *za) { int error; spa_t *spa; nvlist_t *nvroot; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); nvlist_free(nvroot); if (error != ENOENT) fatal(0, "spa_create(bad_file) = %d", error); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); nvlist_free(nvroot); if (error != ENOENT) fatal(0, "spa_create(bad_mirror) = %d", error); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ (void) rw_rdlock(&ztest_shared->zs_name_lock); nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); nvlist_free(nvroot); if (error != EEXIST) fatal(0, "spa_create(whatever) = %d", error); error = spa_open(za->za_pool, &spa, FTAG); if (error) fatal(0, "spa_open() = %d", error); error = spa_destroy(za->za_pool); if (error != EBUSY) fatal(0, "spa_destroy() = %d", error); spa_close(spa, FTAG); (void) rw_unlock(&ztest_shared->zs_name_lock); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } /* * Find the first available hole which can be used as a top-level. */ int find_vdev_hole(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); for (c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; if (cvd->vdev_ishole) break; } return (c); } /* * Verify that vdev_add() works as expected. */ void ztest_vdev_add_remove(ztest_args_t *za) { spa_t *spa = za->za_spa; uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; uint64_t guid; nvlist_t *nvroot; int error; (void) mutex_lock(&ztest_shared->zs_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { /* * Grab the guid from the head of the log class rotor. */ guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ (void) rw_wrlock(&ztest_shared->zs_name_lock); error = spa_vdev_remove(spa, guid, B_FALSE); (void) rw_unlock(&ztest_shared->zs_name_lock); if (error && error != EEXIST) fatal(0, "spa_vdev_remove() = %d", error); } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices. */ nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); error = spa_vdev_add(spa, nvroot); nvlist_free(nvroot); if (error == ENOSPC) ztest_record_enospc("spa_vdev_add"); else if (error != 0) fatal(0, "spa_vdev_add() = %d", error); } (void) mutex_unlock(&ztest_shared->zs_vdev_lock); } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ void ztest_vdev_aux_add_remove(ztest_args_t *za) { spa_t *spa = za->za_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; char *aux; uint64_t guid = 0; int error; if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } (void) mutex_lock(&ztest_shared->zs_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; } else { /* * Find an unused device we can add. */ ztest_shared->zs_vdev_aux = 0; for (;;) { char path[MAXPATHLEN]; int c; (void) sprintf(path, ztest_aux_template, zopt_dir, zopt_pool, aux, ztest_shared->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; ztest_shared->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); error = spa_vdev_add(spa, nvroot); if (error != 0) fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); nvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); if (error != 0 && error != EBUSY) fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); } (void) mutex_unlock(&ztest_shared->zs_vdev_lock); } /* * Verify that we can attach and detach devices. */ void ztest_vdev_attach_detach(ztest_args_t *za) { spa_t *spa = za->za_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; size_t oldsize, newsize; char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int oldvd_is_log; int error, expected_error; (void) mutex_lock(&ztest_shared->zs_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random(rvd->vdev_children); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; if (zopt_mirrors >= 1) { ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); ASSERT(oldvd->vdev_children >= zopt_mirrors); oldvd = oldvd->vdev_child[leaf / zopt_raidz]; } if (zopt_raidz > 1) { ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); ASSERT(oldvd->vdev_children == zopt_raidz); oldvd = oldvd->vdev_child[leaf % zopt_raidz]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT(oldvd->vdev_children >= 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; (void) strcpy(oldpath, oldvd->vdev_path); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP) fatal(0, "detach (%s) returned %d", oldpath, error); (void) mutex_unlock(&ztest_shared->zs_vdev_lock); return; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; (void) strcpy(newpath, newvd->vdev_path); } else { (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else expected_error = 0; spa_config_exit(spa, SCL_VDEV, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, ashift, 0, 0, 0, 1); error = spa_vdev_attach(spa, oldguid, root, replacing); nvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; /* XXX workaround 6690467 */ if (error != expected_error && expected_error != EBUSY) { fatal(0, "attach (%s %llu, %s %llu, %d) " "returned %d, expected %d", oldpath, (longlong_t)oldsize, newpath, (longlong_t)newsize, replacing, error, expected_error); } (void) mutex_unlock(&ztest_shared->zs_vdev_lock); } /* * Callback function which expands the physical size of the vdev. */ vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); (void) ftruncate(fd, *newsize); if (zopt_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ /* ARGSUSED */ vdev_t * online_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (zopt_verbose >= 5) { (void) printf("Unable to expand vdev, state %llu, " "error %d\n", (u_longlong_t)newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (zopt_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %llu, state %llu, expected gen %llu, " "got gen %llu\n", (u_longlong_t)guid, (u_longlong_t)tvd->vdev_state, (u_longlong_t)generation, (u_longlong_t)spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (uint_t c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ void ztest_vdev_LUN_growth(ztest_args_t *za) { spa_t *spa = za->za_spa; vdev_t *vd, *tvd = NULL; size_t psize, newsize; uint64_t spa_newsize, spa_cursize, ms_count; (void) mutex_lock(&ztest_shared->zs_vdev_lock); spa_config_enter(spa, SCL_STATE, spa, RW_READER); while (tvd == NULL || tvd->vdev_islog) { uint64_t vdev; vdev = ztest_random(spa->spa_root_vdev->vdev_children); tvd = spa->spa_root_vdev->vdev_child[vdev]; } /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * zopt_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); (void) mutex_unlock(&ztest_shared->zs_vdev_lock); return; } ASSERT(psize > 0); newsize = psize + psize / 8; ASSERT3U(newsize, >, psize); if (zopt_verbose >= 5) { (void) printf("Expanding vdev %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } spa_cursize = spa_get_space(spa); ms_count = tvd->vdev_ms_count; /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (zopt_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } (void) spa_config_exit(spa, SCL_STATE, spa); (void) mutex_unlock(&ztest_shared->zs_vdev_lock); return; } (void) spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ mutex_enter(&spa->spa_async_lock); while (spa->spa_async_thread != NULL || spa->spa_async_tasks) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); spa_config_enter(spa, SCL_STATE, spa, RW_READER); spa_newsize = spa_get_space(spa); /* * Make sure we were able to grow the pool. */ if (ms_count >= tvd->vdev_ms_count || spa_cursize >= spa_newsize) { (void) printf("Top-level vdev metaslab count: " "before %llu, after %llu\n", (u_longlong_t)ms_count, (u_longlong_t)tvd->vdev_ms_count); fatal(0, "LUN expansion failed: before %llu, " "after %llu\n", spa_cursize, spa_newsize); } else if (zopt_verbose >= 5) { char oldnumbuf[6], newnumbuf[6]; nicenum(spa_cursize, oldnumbuf); nicenum(spa_newsize, newnumbuf); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); (void) mutex_unlock(&ztest_shared->zs_vdev_lock); } /* ARGSUSED */ static void ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { /* * Create the directory object. */ VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); } static int ztest_destroy_cb(char *name, void *arg) { ztest_args_t *za = arg; objset_t *os; dmu_object_info_t *doi = &za->za_doi; int error; /* * Verify that the dataset contains a directory object. */ error = dmu_objset_hold(name, FTAG, &os); ASSERT3U(error, ==, 0); error = dmu_object_info(os, ZTEST_DIROBJ, doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT3U(error, ==, 0); ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); ASSERT3S(doi->doi_physical_blks, >=, 0); } dmu_objset_rele(os, FTAG); /* * Destroy the dataset. */ error = dmu_objset_destroy(name, B_FALSE); if (error) { (void) dmu_objset_hold(name, FTAG, &os); fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error); } return (0); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ static uint64_t ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) { itx_t *itx; lr_create_t *lr; size_t namesize; char name[24]; (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); namesize = strlen(name) + 1; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + ztest_random(ZIL_MAX_BLKSZ)); lr = (lr_create_t *)&itx->itx_lr; bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); lr->lr_doid = object; lr->lr_foid = 0; lr->lr_mode = mode; lr->lr_uid = 0; lr->lr_gid = 0; lr->lr_gen = dmu_tx_get_txg(tx); lr->lr_crtime[0] = time(NULL); lr->lr_crtime[1] = 0; lr->lr_rdev = 0; bcopy(name, (char *)(lr + 1), namesize); return (zil_itx_assign(zilog, itx, tx)); } void ztest_dmu_objset_create_destroy(ztest_args_t *za) { int error; objset_t *os, *os2; char name[100]; zilog_t *zilog; uint64_t seq; uint64_t objects; (void) rw_rdlock(&ztest_shared->zs_name_lock); (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, (u_longlong_t)za->za_instance); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dmu_objset_destroy() * (invoked from ztest_destroy_cb() below) should just throw it away. */ if (ztest_random(2) == 0 && dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { zil_replay(os, os, ztest_replay_vector); dmu_objset_disown(os, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_destroy_cb, za, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. */ error = dmu_objset_hold(name, FTAG, &os); if (error != ENOENT) fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", name, os); /* * Verify that we can create a new dataset. */ error = dmu_objset_create(name, DMU_OST_OTHER, 0, ztest_create_cb, NULL); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_create"); (void) rw_unlock(&ztest_shared->zs_name_lock); return; } fatal(0, "dmu_objset_create(%s) = %d", name, error); } error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os); if (error) { fatal(0, "dmu_objset_open(%s) = %d", name, error); } /* * Open the intent log for it. */ zilog = zil_open(os, NULL); /* * Put a random number of objects in there. */ objects = ztest_random(20); seq = 0; while (objects-- != 0) { uint64_t object; dmu_tx_t *tx = dmu_tx_create(os); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); ztest_set_random_blocksize(os, object, tx); seq = ztest_log_create(zilog, tx, object, DMU_OT_UINT64_OTHER); dmu_write(os, object, 0, sizeof (name), name, tx); dmu_tx_commit(tx); } if (ztest_random(5) == 0) { zil_commit(zilog, seq, object); } if (ztest_random(100) == 0) { error = zil_suspend(zilog); if (error == 0) { zil_resume(zilog); } } } /* * Verify that we cannot create an existing dataset. */ error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL); if (error != EEXIST) fatal(0, "created existing dataset, error = %d", error); /* * Verify that we can hold an objset that is also owned. */ error = dmu_objset_hold(name, FTAG, &os2); if (error) fatal(0, "dmu_objset_open('%s') = %d", name, error); dmu_objset_rele(os2, FTAG); /* * Verify that we can not own an objset that is already owned. */ error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2); if (error != EBUSY) fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY", name, error); zil_close(zilog); dmu_objset_disown(os, FTAG); error = dmu_objset_destroy(name, B_FALSE); if (error) fatal(0, "dmu_objset_destroy(%s) = %d", name, error); (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_args_t *za) { int error; objset_t *os = za->za_os; char snapname[100]; char osname[MAXNAMELEN]; (void) rw_rdlock(&ztest_shared->zs_name_lock); dmu_objset_name(os, osname); (void) snprintf(snapname, 100, "%s@%llu", osname, (u_longlong_t)za->za_instance); error = dmu_objset_destroy(snapname, B_FALSE); if (error != 0 && error != ENOENT) fatal(0, "dmu_objset_destroy() = %d", error); error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, NULL, FALSE); if (error == ENOSPC) ztest_record_enospc("dmu_take_snapshot"); else if (error != 0 && error != EEXIST) fatal(0, "dmu_take_snapshot() = %d", error); (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Cleanup non-standard snapshots and clones. */ void ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) { char snap1name[100]; char clone1name[100]; char snap2name[100]; char clone2name[100]; char snap3name[100]; int error; (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); error = dmu_objset_destroy(clone2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); error = dmu_objset_destroy(snap3name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); error = dmu_objset_destroy(snap2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); error = dmu_objset_destroy(clone1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); error = dmu_objset_destroy(snap1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_args_t *za) { int error; objset_t *os = za->za_os; objset_t *clone; dsl_dataset_t *ds; char snap1name[100]; char clone1name[100]; char snap2name[100]; char clone2name[100]; char snap3name[100]; char osname[MAXNAMELEN]; uint64_t curval = za->za_instance; (void) rw_rdlock(&ztest_shared->zs_name_lock); dmu_objset_name(os, osname); ztest_dsl_dataset_cleanup(osname, curval); (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, NULL, FALSE); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc("dmu_take_snapshot"); goto out; } fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_hold(snap1name, FTAG, &clone); if (error) fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); dmu_objset_rele(clone, FTAG); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_create"); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, NULL, FALSE); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc("dmu_take_snapshot"); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, NULL, FALSE); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc("dmu_take_snapshot"); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_hold(snap3name, FTAG, &clone); if (error) fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); dmu_objset_rele(clone, FTAG); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_create"); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); } error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); if (error) fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); error = dsl_dataset_promote(clone2name, NULL); if (error != EBUSY) fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dsl_dataset_disown(ds, FTAG); out: ztest_dsl_dataset_cleanup(osname, curval); (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_args_t *za) { objset_t *os = za->za_os; dmu_buf_t *db; dmu_tx_t *tx; uint64_t batchobj, object, batchsize, endoff, temp; int b, c, error, bonuslen; dmu_object_info_t *doi = &za->za_doi; char osname[MAXNAMELEN]; dmu_objset_name(os, osname); endoff = -8ULL; batchsize = 2; /* * Create a batch object if necessary, and record it in the directory. */ VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); if (batchobj == 0) { tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create a batch object"); dmu_tx_abort(tx); return; } batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); ztest_set_random_blocksize(os, batchobj, tx); dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &batchobj, tx); dmu_tx_commit(tx); } /* * Destroy the previous batch of objects. */ for (b = 0; b < batchsize; b++) { VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), sizeof (uint64_t), &object, DMU_READ_PREFETCH)); if (object == 0) continue; /* * Read and validate contents. * We expect the nth byte of the bonus buffer to be n. */ VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); za->za_dbuf = db; dmu_object_info_from_db(db, doi); ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); ASSERT3S(doi->doi_physical_blks, >=, 0); bonuslen = doi->doi_bonus_size; for (c = 0; c < bonuslen; c++) { if (((uint8_t *)db->db_data)[c] != (uint8_t)(c + bonuslen)) { fatal(0, "bad bonus: %s, obj %llu, off %d: %u != %u", osname, object, c, ((uint8_t *)db->db_data)[c], (uint8_t)(c + bonuslen)); } } dmu_buf_rele(db, FTAG); za->za_dbuf = NULL; /* * We expect the word at endoff to be our object number. */ VERIFY(0 == dmu_read(os, object, endoff, sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); if (temp != object) { fatal(0, "bad data in %s, got %llu, expected %llu", osname, temp, object); } /* * Destroy old object and clear batch entry. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), sizeof (uint64_t)); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("free object"); dmu_tx_abort(tx); return; } error = dmu_object_free(os, object, tx); if (error) { fatal(0, "dmu_object_free('%s', %llu) = %d", osname, object, error); } object = 0; dmu_object_set_checksum(os, batchobj, ztest_random_checksum(), tx); dmu_object_set_compress(os, batchobj, ztest_random_compress(), tx); dmu_write(os, batchobj, b * sizeof (uint64_t), sizeof (uint64_t), &object, tx); dmu_tx_commit(tx); } /* * Before creating the new batch of objects, generate a bunch of churn. */ for (b = ztest_random(100); b > 0; b--) { tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("churn objects"); dmu_tx_abort(tx); return; } object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); ztest_set_random_blocksize(os, object, tx); error = dmu_object_free(os, object, tx); if (error) { fatal(0, "dmu_object_free('%s', %llu) = %d", osname, object, error); } dmu_tx_commit(tx); } /* * Create a new batch of objects with randomly chosen * blocksizes and record them in the batch directory. */ for (b = 0; b < batchsize; b++) { uint32_t va_blksize; u_longlong_t va_nblocks; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), sizeof (uint64_t)); dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, sizeof (uint64_t)); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create batchobj"); dmu_tx_abort(tx); return; } bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_PLAIN_OTHER, bonuslen, tx); ztest_set_random_blocksize(os, object, tx); dmu_object_set_checksum(os, object, ztest_random_checksum(), tx); dmu_object_set_compress(os, object, ztest_random_compress(), tx); dmu_write(os, batchobj, b * sizeof (uint64_t), sizeof (uint64_t), &object, tx); /* * Write to both the bonus buffer and the regular data. */ VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); za->za_dbuf = db; ASSERT3U(bonuslen, <=, db->db_size); dmu_object_size_from_db(db, &va_blksize, &va_nblocks); ASSERT3S(va_nblocks, >=, 0); dmu_buf_will_dirty(db, tx); /* * See comments above regarding the contents of * the bonus buffer and the word at endoff. */ for (c = 0; c < bonuslen; c++) ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); dmu_buf_rele(db, FTAG); za->za_dbuf = NULL; /* * Write to a large offset to increase indirection. */ dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); dmu_tx_commit(tx); } } /* * Verify that dmu_{read,write} work as expected. */ typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; typedef struct dmu_read_write_dir { uint64_t dd_packobj; uint64_t dd_bigobj; uint64_t dd_chunk; } dmu_read_write_dir_t; void ztest_dmu_read_write(ztest_args_t *za) { objset_t *os = za->za_os; dmu_read_write_dir_t dd; dmu_tx_t *tx; int i, freeit, error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packoff, packsize, bigoff, bigsize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, DMU_READ_PREFETCH)); if (dd.dd_chunk == 0) { ASSERT(dd.dd_packobj == 0); ASSERT(dd.dd_bigobj == 0); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create r/w directory"); dmu_tx_abort(tx); return; } dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); ztest_set_random_blocksize(os, dd.dd_packobj, tx); ztest_set_random_blocksize(os, dd.dd_bigobj, tx); dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, tx); dmu_tx_commit(tx); } /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * dd.dd_chunk; bigsize = s * dd.dd_chunk; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("dmu r/w range"); dmu_tx_abort(tx); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); return; } txg = dmu_tx_get_txg(tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { bzero(pack, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); if (freeit) { if (zopt_verbose >= 6) { (void) printf("freeing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, bigsize, tx)); } else { if (zopt_verbose >= 6) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); } void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } void ztest_dmu_read_write_zcopy(ztest_args_t *za) { objset_t *os = za->za_os; dmu_read_write_dir_t dd; dmu_tx_t *tx; uint64_t i; int error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packoff, packsize, bigoff, bigsize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t *doi = &za->za_doi; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, DMU_READ_PREFETCH)); if (dd.dd_chunk == 0) { ASSERT(dd.dd_packobj == 0); ASSERT(dd.dd_bigobj == 0); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create r/w directory"); dmu_tx_abort(tx); return; } dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx); ztest_set_random_blocksize(os, dd.dd_packobj, tx); ztest_set_random_blocksize(os, dd.dd_bigobj, tx); VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); ASSERT(ISP2(doi->doi_data_block_size)); dd.dd_chunk = doi->doi_data_block_size; dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, tx); dmu_tx_commit(tx); } else { VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); VERIFY(ISP2(doi->doi_data_block_size)); VERIFY(dd.dd_chunk == doi->doi_data_block_size); VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); } /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * dd.dd_chunk; bigsize = s * dd.dd_chunk; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, dd.dd_chunk); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, dd.dd_chunk / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, dd.dd_chunk / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); if (ztest_random(100) == 0) { error = -1; } else { error = dmu_tx_assign(tx, TXG_WAIT); } if (error) { if (error != -1) { ztest_record_enospc("dmu r/w range"); } dmu_tx_abort(tx); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); dmu_buf_rele(bonus_db, FTAG); return; } txg = dmu_tx_get_txg(tx); /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf() for the case when there're no * existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, dd, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); if (zopt_verbose >= 6) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { dmu_buf_t *dbt; if (i != 5) { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[j]->b_data, dd.dd_chunk); } else { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[2 * j]->b_data, dd.dd_chunk / 2); bcopy((caddr_t)bigbuf + (off - bigoff) + dd.dd_chunk / 2, bigbuf_arcbufs[2 * j + 1]->b_data, dd.dd_chunk / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, FTAG, &dbt) == 0); } if (i != 5) { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[j], tx); } else { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx); dmu_assign_arcbuf(bonus_db, off + dd.dd_chunk / 2, bigbuf_arcbufs[2 * j + 1], tx); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); } void ztest_dmu_check_future_leak(ztest_args_t *za) { objset_t *os = za->za_os; dmu_buf_t *db; ztest_block_tag_t *bt; dmu_object_info_t *doi = &za->za_doi; /* * Make sure that, if there is a write record in the bonus buffer * of the ZTEST_DIROBJ, that the txg for this record is <= the * last synced txg of the pool. */ VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); za->za_dbuf = db; VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); ASSERT3U(doi->doi_bonus_size, <=, db->db_size); ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); if (bt->bt_objset != 0) { ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); ASSERT3U(bt->bt_offset, ==, -1ULL); ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); } dmu_buf_rele(db, FTAG); za->za_dbuf = NULL; } void ztest_dmu_write_parallel(ztest_args_t *za) { objset_t *os = za->za_os; ztest_block_tag_t *rbt = &za->za_rbt; ztest_block_tag_t *wbt = &za->za_wbt; const size_t btsize = sizeof (ztest_block_tag_t); dmu_buf_t *db; int b, error; int bs = ZTEST_DIROBJ_BLOCKSIZE; int do_free = 0; uint64_t off, txg, txg_how; mutex_t *lp; char osname[MAXNAMELEN]; char iobuf[SPA_MAXBLOCKSIZE]; blkptr_t blk = { 0 }; uint64_t blkoff; zbookmark_t zb; dmu_tx_t *tx = dmu_tx_create(os); dmu_buf_t *bonus_db; arc_buf_t *abuf = NULL; dmu_objset_name(os, osname); /* * Have multiple threads write to large offsets in ZTEST_DIROBJ * to verify that having multiple threads writing to the same object * in parallel doesn't cause any trouble. */ if (ztest_random(4) == 0) { /* * Do the bonus buffer instead of a regular block. * We need a lock to serialize resize vs. others, * so we hash on the objset ID. */ b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; off = -1ULL; dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); } else { b = ztest_random(ZTEST_SYNC_LOCKS); off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); if (ztest_random(4) == 0) { do_free = 1; dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); } else { dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); } } if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && ztest_random(8) == 0) { VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); abuf = dmu_request_arcbuf(bonus_db, bs); } txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT(txg_how == TXG_NOWAIT); dmu_tx_wait(tx); } else { ztest_record_enospc("dmu write parallel"); } dmu_tx_abort(tx); if (abuf != NULL) { dmu_return_arcbuf(abuf); dmu_buf_rele(bonus_db, FTAG); } return; } txg = dmu_tx_get_txg(tx); lp = &ztest_shared->zs_sync_lock[b]; (void) mutex_lock(lp); wbt->bt_objset = dmu_objset_id(os); wbt->bt_object = ZTEST_DIROBJ; wbt->bt_offset = off; wbt->bt_txg = txg; wbt->bt_thread = za->za_instance; wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ /* * Occasionally, write an all-zero block to test the behavior * of blocks that compress into holes. */ if (off != -1ULL && ztest_random(8) == 0) bzero(wbt, btsize); if (off == -1ULL) { dmu_object_info_t *doi = &za->za_doi; char *dboff; VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); za->za_dbuf = db; dmu_object_info_from_db(db, doi); ASSERT3U(doi->doi_bonus_size, <=, db->db_size); ASSERT3U(doi->doi_bonus_size, >=, btsize); ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; bcopy(dboff, rbt, btsize); if (rbt->bt_objset != 0) { ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); ASSERT3U(rbt->bt_object, ==, wbt->bt_object); ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); } if (ztest_random(10) == 0) { int newsize = (ztest_random(db->db_size / btsize) + 1) * btsize; ASSERT3U(newsize, >=, btsize); ASSERT3U(newsize, <=, db->db_size); VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); dboff = (char *)db->db_data + newsize - btsize; } dmu_buf_will_dirty(db, tx); bcopy(wbt, dboff, btsize); dmu_buf_rele(db, FTAG); za->za_dbuf = NULL; } else if (do_free) { VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); } else if (abuf == NULL) { dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); } else { bcopy(wbt, abuf->b_data, btsize); dmu_assign_arcbuf(bonus_db, off, abuf, tx); dmu_buf_rele(bonus_db, FTAG); } (void) mutex_unlock(lp); if (ztest_random(1000) == 0) (void) poll(NULL, 0, 1); /* open dn_notxholds window */ dmu_tx_commit(tx); if (ztest_random(10000) == 0) txg_wait_synced(dmu_objset_pool(os), txg); if (off == -1ULL || do_free) return; if (ztest_random(2) != 0) return; /* * dmu_sync() the block we just wrote. */ (void) mutex_lock(lp); blkoff = P2ALIGN_TYPED(off, bs, uint64_t); error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); za->za_dbuf = db; if (error) { (void) mutex_unlock(lp); return; } blkoff = off - blkoff; error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); dmu_buf_rele(db, FTAG); za->za_dbuf = NULL; if (error) { (void) mutex_unlock(lp); return; } if (blk.blk_birth == 0) { /* concurrent free */ (void) mutex_unlock(lp); return; } txg_suspend(dmu_objset_pool(os)); (void) mutex_unlock(lp); ASSERT(blk.blk_fill == 1); ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); /* * Read the block that dmu_sync() returned to make sure its contents * match what we wrote. We do this while still txg_suspend()ed * to ensure that the block can't be reused before we read it. */ zb.zb_objset = dmu_objset_id(os); zb.zb_object = ZTEST_DIROBJ; zb.zb_level = 0; zb.zb_blkid = off / bs; error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); ASSERT3U(error, ==, 0); txg_resume(dmu_objset_pool(os)); bcopy(&iobuf[blkoff], rbt, btsize); if (rbt->bt_objset == 0) /* concurrent free */ return; if (wbt->bt_objset == 0) /* all-zero overwrite */ return; ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); ASSERT3U(rbt->bt_object, ==, wbt->bt_object); ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); /* * The semantic of dmu_sync() is that we always push the most recent * version of the data, so in the face of concurrent updates we may * see a newer version of the block. That's OK. */ ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); if (rbt->bt_thread == wbt->bt_thread) ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); else ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_args_t *za) { objset_t *os = za->za_os; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; char osname[MAXNAMELEN]; char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; dmu_objset_name(os, osname); /* * Create a new object if necessary, and record it in the directory. */ VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object, DMU_READ_PREFETCH)); if (object == 0) { tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create zap test obj"); dmu_tx_abort(tx); return; } object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); if (error) { fatal(0, "zap_create('%s', %llu) = %d", osname, object, error); } ASSERT(object != 0); dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object, tx); /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ for (i = 0; i < 2; i++) { value[i] = i; error = zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx); ASSERT3U(error, ==, 0); } for (i = 0; i < 2; i++) { error = zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx); ASSERT3U(error, ==, EEXIST); error = zap_length(os, object, hc[i], &zl_intsize, &zl_ints); ASSERT3U(error, ==, 0); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { error = zap_remove(os, object, hc[i], tx); ASSERT3U(error, ==, 0); } dmu_tx_commit(tx); } ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); bzero(value, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg) == 0); VERIFY(zap_length(os, object, propname, &zl_intsize, &zl_ints) == 0); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY(zap_lookup(os, object, propname, zl_intsize, zl_ints, value) == 0); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create zap entry"); dmu_tx_abort(tx); return; } txg = dmu_tx_get_txg(tx); if (last_txg > txg) fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); if (error) fatal(0, "zap_update('%s', %llu, '%s') = %d", osname, object, txgname, error); error = zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx); if (error) fatal(0, "zap_update('%s', %llu, '%s') = %d", osname, object, propname, error); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) return; ASSERT3U(error, ==, 0); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("remove zap entry"); dmu_tx_abort(tx); return; } error = zap_remove(os, object, txgname, tx); if (error) fatal(0, "zap_remove('%s', %llu, '%s') = %d", osname, object, txgname, error); error = zap_remove(os, object, propname, tx); if (error) fatal(0, "zap_remove('%s', %llu, '%s') = %d", osname, object, propname, error); dmu_tx_commit(tx); /* * Once in a while, destroy the object. */ if (ztest_random(1000) != 0) return; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("destroy zap object"); dmu_tx_abort(tx); return; } error = zap_destroy(os, object, tx); if (error) fatal(0, "zap_destroy('%s', %llu) = %d", osname, object, error); object = 0; dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object, tx); dmu_tx_commit(tx); } /* * Testcase to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_args_t *za) { objset_t *os = za->za_os; uint64_t object; uint64_t value; dmu_tx_t *tx; int i, error; char osname[MAXNAMELEN]; char *name = "aaa"; char entname[MAXNAMELEN]; dmu_objset_name(os, osname); /* * Create a new object if necessary, and record it in the directory. */ VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object, DMU_READ_PREFETCH)); if (object == 0) { tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create zap test obj"); dmu_tx_abort(tx); return; } object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); if (error) { fatal(0, "zap_create('%s', %llu) = %d", osname, object, error); } ASSERT(object != 0); dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object, tx); dmu_tx_commit(tx); } /* * Add entries to this ZAP amd make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block * split. */ for (i = 0; i < 2050; i++) { (void) snprintf(entname, sizeof (entname), "%s-%d", name, i); value = i; tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, TRUE, entname); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("create zap entry"); dmu_tx_abort(tx); return; } error = zap_add(os, object, entname, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } /* * Once in a while, destroy the object. */ if (ztest_random(1000) != 0) return; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("destroy zap object"); dmu_tx_abort(tx); return; } error = zap_destroy(os, object, tx); if (error) fatal(0, "zap_destroy('%s', %llu) = %d", osname, object, error); object = 0; dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &object, tx); dmu_tx_commit(tx); } void ztest_zap_parallel(ztest_args_t *za) { objset_t *os = za->za_os; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; char name[20], string_value[20]; void *data; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if (ztest_random(2) == 0) object = ZTEST_MICROZAP_OBJ; else object = ZTEST_FATZAP_OBJ; if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY(zap_count(os, object, &count) == 0); ASSERT(count != -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { ztest_record_enospc("zap parallel"); dmu_tx_abort(tx); return; } txg = dmu_tx_get_txg(tx); bcopy(name, string_value, namelen); } else { tx = NULL; txg = 0; bzero(string_value, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && bcmp(name, data, namelen) != 0) fatal(0, "name '%s' != val '%s' len %d", name, data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY(data != NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(0, "commit callback of txg %" PRIu64 " called prematurely" ", last synced txg = %" PRIu64 "\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT3U(data->zcd_txg, ==, 0); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } /* Was this callback added to the global callback list? */ if (!data->zcd_added) goto out; ASSERT3U(data->zcd_txg, !=, 0); /* Remove our callback from the list */ (void) mutex_lock(&zcl.zcl_callbacks_lock); list_remove(&zcl.zcl_callbacks, data); (void) mutex_unlock(&zcl.zcl_callbacks_lock); out: umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); return (cb_data); } /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_args_t *za) { objset_t *os = za->za_os; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error; tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, old_txg, txg); dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &txg, tx); (void) mutex_lock(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { fatal(0, "Commit callback threshold exceeded, oldest txg: %" PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } (void) mutex_unlock(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); } void ztest_dsl_prop_get_set(ztest_args_t *za) { objset_t *os = za->za_os; int i, inherit; uint64_t value; const char *prop, *valname; char setpoint[MAXPATHLEN]; char osname[MAXNAMELEN]; int error; (void) rw_rdlock(&ztest_shared->zs_name_lock); dmu_objset_name(os, osname); for (i = 0; i < 2; i++) { if (i == 0) { prop = "checksum"; value = ztest_random_checksum(); inherit = (value == ZIO_CHECKSUM_INHERIT); } else { prop = "compression"; value = ztest_random_compress(); inherit = (value == ZIO_COMPRESS_INHERIT); } error = dsl_prop_set(osname, prop, sizeof (value), !inherit, &value); if (error == ENOSPC) { ztest_record_enospc("dsl_prop_set"); break; } ASSERT3U(error, ==, 0); VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 1, &value, setpoint), ==, 0); if (i == 0) valname = zio_checksum_table[value].ci_name; else valname = zio_compress_table[value].ci_name; if (zopt_verbose >= 6) { (void) printf("%s %s = %s for '%s'\n", osname, prop, valname, setpoint); } } (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_args_t *za) { int error; objset_t *os = za->za_os; objset_t *origin; uint64_t curval = za->za_instance; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[MAXNAMELEN]; (void) rw_rdlock(&ztest_shared->zs_name_lock); dmu_objset_name(os, osname); (void) snprintf(snapname, 100, "sh1_%llu", curval); (void) snprintf(fullname, 100, "%s@%s", osname, snapname); (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, curval); (void) snprintf(tag, 100, "%tag_%llu", curval); /* * Clean up from any previous run. */ (void) dmu_objset_destroy(clonename, B_FALSE); (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); (void) dmu_objset_destroy(fullname, B_FALSE); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_hold(fullname, FTAG, &origin); if (error) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); dmu_objset_rele(origin, FTAG); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); } error = dmu_objset_destroy(fullname, B_TRUE); if (error) { fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", fullname, error); } error = dmu_objset_destroy(clonename, B_FALSE); if (error) fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); if (error) fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); error = dmu_objset_destroy(fullname, B_FALSE); if (error != EBUSY) { fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", fullname, error); } error = dmu_objset_destroy(fullname, B_TRUE); if (error) { fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", fullname, error); } error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); if (error) fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); out: (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Inject random faults into the on-disk data. */ void ztest_fault_inject(ztest_args_t *za) { int fd; uint64_t offset; uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; uint64_t bad = 0x1990c0ffeedecade; uint64_t top, leaf; char path0[MAXPATHLEN]; char pathrand[MAXPATHLEN]; size_t fsize; spa_t *spa = za->za_spa; int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ int iters = 1000; int maxfaults = zopt_maxfaults; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; ASSERT(leaves >= 1); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device. */ top = ztest_random(spa->spa_root_vdev->vdev_children); leaf = ztest_random(leaves); /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, sizeof (path0), ztest_dev_template, zopt_dir, zopt_pool, top * leaves + 0); (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; if (vd0 != NULL && maxfaults != 1) { /* * Make vd0 explicitly claim to be unreadable, * or unwriteable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_vnode->v_fd); vf->vf_vnode->v_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); return; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strcpy(path0, vd0->vdev_path); (void) strcpy(pathrand, vd0->vdev_path); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) (void) rw_wrlock(&ztest_shared->zs_name_lock); VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); if (islog) (void) rw_unlock(&ztest_shared->zs_name_lock); } else { (void) vdev_online(spa, guid0, 0, NULL); } } if (maxfaults == 0) return; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ return; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); if (offset >= fsize) continue; if (zopt_verbose >= 6) (void) printf("injecting bad word into %s," " offset 0x%llx\n", pathrand, (u_longlong_t)offset); if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(1, "can't inject bad word at 0x%llx in %s", offset, pathrand); } (void) close(fd); } /* * Scrub the pool. */ void ztest_scrub(ztest_args_t *za) { spa_t *spa = za->za_spa; (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); } /* * Rename the pool to a different name and then rename it back. */ void ztest_spa_rename(ztest_args_t *za) { char *oldname, *newname; int error; spa_t *spa; (void) rw_wrlock(&ztest_shared->zs_name_lock); oldname = za->za_pool; newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); (void) strcpy(newname, oldname); (void) strcat(newname, "_tmp"); /* * Do the rename */ error = spa_rename(oldname, newname); if (error) fatal(0, "spa_rename('%s', '%s') = %d", oldname, newname, error); /* * Try to open it under the old name, which shouldn't exist */ error = spa_open(oldname, &spa, FTAG); if (error != ENOENT) fatal(0, "spa_open('%s') = %d", oldname, error); /* * Open it under the new name and make sure it's still the same spa_t. */ error = spa_open(newname, &spa, FTAG); if (error != 0) fatal(0, "spa_open('%s') = %d", newname, error); ASSERT(spa == za->za_spa); spa_close(spa, FTAG); /* * Rename it back to the original */ error = spa_rename(newname, oldname); if (error) fatal(0, "spa_rename('%s', '%s') = %d", newname, oldname, error); /* * Make sure it can still be opened */ error = spa_open(oldname, &spa, FTAG); if (error != 0) fatal(0, "spa_open('%s') = %d", oldname, error); ASSERT(spa == za->za_spa); spa_close(spa, FTAG); umem_free(newname, strlen(newname) + 1); (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Completely obliterate one disk. */ static void ztest_obliterate_one_disk(uint64_t vdev) { int fd; char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; size_t fsize; if (zopt_maxfaults < 2) return; (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); fd = open(dev_name, O_RDWR); if (fd == -1) fatal(1, "can't open %s", dev_name); /* * Determine the size. */ fsize = lseek(fd, 0, SEEK_END); (void) close(fd); /* * Rename the old device to dev_name.old (useful for debugging). */ VERIFY(rename(dev_name, copy_name) == 0); /* * Create a new one. */ VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); VERIFY(ftruncate(fd, fsize) == 0); (void) close(fd); } static void ztest_replace_one_disk(spa_t *spa, uint64_t vdev) { char dev_name[MAXPATHLEN]; nvlist_t *root; int error; uint64_t guid; vdev_t *vd; (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); /* * Build the nvlist describing dev_name. */ root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) guid = 0; else guid = vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_attach(spa, guid, root, B_TRUE); if (error != 0 && error != EBUSY && error != ENOTSUP && error != ENODEV && error != EDOM) fatal(0, "spa_vdev_attach(in-place) = %d", error); nvlist_free(root); } static void ztest_verify_blocks(char *pool) { int status; char zdb[MAXPATHLEN + MAXNAMELEN + 20]; char zbuf[1024]; char *bin; char *ztest; char *isa; int isalen; FILE *fp; (void) realpath(getexecname(), zdb); /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ bin = strstr(zdb, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 8; isalen = ztest - isa; isa = strdup(isa); /* LINTED */ (void) sprintf(bin, "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", isalen, isa, zopt_verbose >= 3 ? "s" : "", zopt_verbose >= 4 ? "v" : "", pool); free(isa); if (zopt_verbose >= 5) (void) printf("Executing %s\n", strstr(zdb, "zdb ")); fp = popen(zdb, "r"); while (fgets(zbuf, sizeof (zbuf), fp) != NULL) if (zopt_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) return; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); } static void ztest_walk_pool_directory(char *header) { spa_t *spa = NULL; if (zopt_verbose >= 6) (void) printf("%s\n", header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (zopt_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; int error; if (zopt_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ error = spa_open(oldname, &spa, FTAG); if (error) fatal(0, "spa_open('%s') = %d", oldname, error); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ error = spa_export(oldname, &config, B_FALSE, B_FALSE); if (error) fatal(0, "spa_export('%s') = %d", oldname, error); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT(newconfig != NULL); nvlist_free(newconfig); /* * Import it under the new name. */ error = spa_import(newname, config, NULL); if (error) fatal(0, "spa_import('%s') = %d", newname, error); ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ error = spa_import(newname, config, NULL); if (error != EEXIST) fatal(0, "spa_import('%s') twice", newname); /* * Try to import it under a different name -- should fail with EEXIST. */ error = spa_import(oldname, config, NULL); if (error != EEXIST) fatal(0, "spa_import('%s') under multiple names", newname); /* * Verify that the pool is no longer visible under the old name. */ error = spa_open(oldname, &spa, FTAG); if (error != ENOENT) fatal(0, "spa_open('%s') = %d", newname, error); /* * Verify that we can open and close the pool using the new name. */ error = spa_open(newname, &spa, FTAG); if (error) fatal(0, "spa_open('%s') = %d", newname, error); ASSERT(pool_guid == spa_guid(spa)); spa_close(spa, FTAG); nvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa)) { spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } } static void * ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { (void) poll(NULL, 0, 1000); ztest_resume(spa); } return (NULL); } static void * ztest_thread(void *arg) { ztest_args_t *za = arg; ztest_shared_t *zs = ztest_shared; hrtime_t now, functime; ztest_info_t *zi; int f, i; while ((now = gethrtime()) < za->za_stop) { /* * See if it's time to force a crash. */ if (now > za->za_kill) { zs->zs_alloc = spa_get_alloc(za->za_spa); zs->zs_space = spa_get_space(za->za_spa); (void) kill(getpid(), SIGKILL); } /* * Pick a random function. */ f = ztest_random(ZTEST_FUNCS); zi = &zs->zs_info[f]; /* * Decide whether to call it, based on the requested frequency. */ if (zi->zi_call_target == 0 || (double)zi->zi_call_total / zi->zi_call_target > (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) continue; atomic_add_64(&zi->zi_calls, 1); atomic_add_64(&zi->zi_call_total, 1); za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * ZTEST_DIRSIZE; za->za_diroff_shared = (1ULL << 63); for (i = 0; i < zi->zi_iters; i++) zi->zi_func(za); functime = gethrtime() - now; atomic_add_64(&zi->zi_call_time, functime); if (zopt_verbose >= 4) { Dl_info dli; (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, dli.dli_sname); } /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; } return (NULL); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(char *pool) { int t, d, error; ztest_shared_t *zs = ztest_shared; ztest_args_t *za; spa_t *spa; char name[100]; thread_t resume_tid; ztest_exiting = B_FALSE; (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); for (t = 0; t < ZTEST_SYNC_LOCKS; t++) (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); /* * Destroy one disk before we even start. * It's mirrored, so everything should work just fine. * This makes us exercise fault handling very early in spa_load(). */ ztest_obliterate_one_disk(0); /* * Verify that the sum of the sizes of all blocks in the pool * equals the SPA's allocated space total. */ ztest_verify_blocks(pool); /* * Kick off a replacement of the disk we just obliterated. */ kernel_init(FREAD | FWRITE); VERIFY(spa_open(pool, &spa, FTAG) == 0); ztest_replace_one_disk(spa, 0); if (zopt_verbose >= 5) show_pool_stats(spa); spa_close(spa, FTAG); kernel_fini(); kernel_init(FREAD | FWRITE); /* * Verify that we can export the pool and reimport it under a * different name. */ if (ztest_random(2) == 0) { (void) snprintf(name, 100, "%s_import", pool); ztest_spa_import_export(pool, name); ztest_spa_import_export(name, pool); } /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { if (zopt_verbose > 3) { (void) printf("spa_next: found %s\n", spa_name(spa)); } } mutex_exit(&spa_namespace_lock); /* * Open our pool. */ VERIFY(spa_open(pool, &spa, FTAG) == 0); /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ if (zopt_maxfaults == 0) spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; else spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; /* * Create a thread to periodically resume suspended I/O. */ VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, &resume_tid) == 0); /* * Verify that we can safely inquire about about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (t = 0; t < 64; t++) { for (d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * Now kick off all the tests that run in parallel. */ zs->zs_enospc_count = 0; za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); if (zopt_verbose >= 4) (void) printf("starting main threads...\n"); za[0].za_start = gethrtime(); za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); za[0].za_kill = za[0].za_stop; if (ztest_random(100) < zopt_killrate) za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); for (t = 0; t < zopt_threads; t++) { d = t % zopt_datasets; (void) strcpy(za[t].za_pool, pool); za[t].za_os = za[d].za_os; za[t].za_spa = spa; za[t].za_zilog = za[d].za_zilog; za[t].za_instance = t; za[t].za_random = ztest_random(-1ULL); za[t].za_start = za[0].za_start; za[t].za_stop = za[0].za_stop; za[t].za_kill = za[0].za_kill; if (t < zopt_datasets) { int test_future = FALSE; (void) rw_rdlock(&ztest_shared->zs_name_lock); (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); error = dmu_objset_create(name, DMU_OST_OTHER, 0, ztest_create_cb, NULL); if (error == EEXIST) { test_future = TRUE; } else if (error == ENOSPC) { zs->zs_enospc_count++; (void) rw_unlock(&ztest_shared->zs_name_lock); break; } else if (error != 0) { fatal(0, "dmu_objset_create(%s) = %d", name, error); } error = dmu_objset_hold(name, FTAG, &za[d].za_os); if (error) fatal(0, "dmu_objset_open('%s') = %d", name, error); (void) rw_unlock(&ztest_shared->zs_name_lock); if (test_future) ztest_dmu_check_future_leak(&za[t]); zil_replay(za[d].za_os, za[d].za_os, ztest_replay_vector); za[d].za_zilog = zil_open(za[d].za_os, NULL); } VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, &za[t].za_thread) == 0); } while (--t >= 0) { VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); if (t < zopt_datasets) { zil_close(za[t].za_zilog); dmu_objset_rele(za[t].za_os, FTAG); } } if (zopt_verbose >= 3) show_pool_stats(spa); txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = spa_get_alloc(spa); zs->zs_space = spa_get_space(spa); /* * If we had out-of-space errors, destroy a random objset. */ if (zs->zs_enospc_count != 0) { (void) rw_rdlock(&ztest_shared->zs_name_lock); d = (int)ztest_random(zopt_datasets); (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); if (zopt_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* Cleanup any non-standard clones and snapshots */ ztest_dsl_dataset_cleanup(name, za[d].za_instance); (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); (void) rw_unlock(&ztest_shared->zs_name_lock); } txg_wait_synced(spa_get_dsl(spa), 0); umem_free(za, zopt_threads * sizeof (ztest_args_t)); /* Kill the resume thread */ ztest_exiting = B_TRUE; VERIFY(thr_join(resume_tid, NULL, NULL) == 0); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (t = 1; t < 50; t++) dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); spa_close(spa, FTAG); kernel_fini(); list_destroy(&zcl.zcl_callbacks); (void) _mutex_destroy(&zcl.zcl_callbacks_lock); (void) rwlock_destroy(&zs->zs_name_lock); (void) _mutex_destroy(&zs->zs_vdev_lock); } void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } /* * Create a storage pool with the given name and initial vdev size. * Then create the specified number of datasets in the pool. */ static void ztest_init(char *pool) { spa_t *spa; int error; nvlist_t *nvroot; kernel_init(FREAD | FWRITE); /* * Create the storage pool. */ (void) spa_destroy(pool); ztest_shared->zs_vdev_next_leaf = 0; nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 0, zopt_raidz, zopt_mirrors, 1); error = spa_create(pool, nvroot, NULL, NULL, NULL); nvlist_free(nvroot); if (error) fatal(0, "spa_create() = %d", error); error = spa_open(pool, &spa, FTAG); if (error) fatal(0, "spa_open() = %d", error); metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; if (zopt_verbose >= 3) show_pool_stats(spa); spa_close(spa, FTAG); kernel_fini(); } int main(int argc, char **argv) { int kills = 0; int iters = 0; int i, f; ztest_shared_t *zs; ztest_info_t *zi; char timebuf[100]; char numbuf[6]; (void) setvbuf(stdout, NULL, _IOLBF, 0); /* Override location of zpool.cache */ spa_config_path = "/tmp/zpool.cache"; ztest_random_fd = open("/dev/urandom", O_RDONLY); process_options(argc, argv); /* * Blow away any existing copy of zpool.cache */ if (zopt_init != 0) (void) remove("/tmp/zpool.cache"); zs = ztest_shared = (void *)mmap(0, P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); if (zopt_verbose >= 1) { (void) printf("%llu vdevs, %d datasets, %d threads," " %llu seconds...\n", (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, (u_longlong_t)zopt_time); } /* * Create and initialize our storage pool. */ for (i = 1; i <= zopt_init; i++) { bzero(zs, sizeof (ztest_shared_t)); if (zopt_verbose >= 3 && zopt_init != 1) (void) printf("ztest_init(), pass %d\n", i); ztest_init(zopt_pool); } /* * Initialize the call targets for each function. */ for (f = 0; f < ZTEST_FUNCS; f++) { zi = &zs->zs_info[f]; *zi = ztest_info[f]; if (*zi->zi_interval == 0) zi->zi_call_target = UINT64_MAX; else zi->zi_call_target = zopt_time / *zi->zi_interval; } zs->zs_start_time = gethrtime(); zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_stop_time) { int status; pid_t pid; char *tmp; /* * Initialize the workload counters for each function. */ for (f = 0; f < ZTEST_FUNCS; f++) { zi = &zs->zs_info[f]; zi->zi_calls = 0; zi->zi_call_time = 0; } /* Set the allocation switch size */ metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; pid = fork(); if (pid == -1) fatal(1, "fork failed"); if (pid == 0) { /* child */ struct rlimit rl = { 1024, 1024 }; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); ztest_run(zopt_pool); exit(0); } while (waitpid(pid, &status, 0) != pid) continue; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } } else if (WIFSIGNALED(status)) { if (WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } kills++; } else { (void) fprintf(stderr, "something strange happened " "to child\n"); exit(4); } iters++; if (zopt_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_stop_time); print_time(zs->zs_stop_time - now, timebuf); nicenum(zs->zs_space, numbuf); (void) printf("Pass %3d, %8s, %3llu ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", (u_longlong_t)zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_start_time) / (zopt_time * NANOSEC), timebuf); } if (zopt_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (f = 0; f < ZTEST_FUNCS; f++) { Dl_info dli; zi = &zs->zs_info[f]; print_time(zi->zi_call_time, timebuf); (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%7llu %9s %s\n", (u_longlong_t)zi->zi_calls, timebuf, dli.dli_sname); } (void) printf("\n"); } /* * It's possible that we killed a child during a rename test, in * which case we'll have a 'ztest_tmp' pool lying around instead * of 'ztest'. Do a blind rename in case this happened. */ tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); (void) strcpy(tmp, zopt_pool); (void) strcat(tmp, "_tmp"); kernel_init(FREAD | FWRITE); (void) spa_rename(tmp, zopt_pool); kernel_fini(); umem_free(tmp, strlen(tmp) + 1); } ztest_verify_blocks(zopt_pool); if (zopt_verbose >= 1) { (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } return (0); }