xref: /illumos-gate/usr/src/cmd/bhyve/pci_e82545.c (revision cab7c30c9587a8c7b5dd94af5f688dc5b8e8add7)
1 /*
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/types.h>
36 #ifndef WITHOUT_CAPSICUM
37 #include <sys/capsicum.h>
38 #endif
39 #include <sys/limits.h>
40 #include <sys/ioctl.h>
41 #include <sys/uio.h>
42 #include <net/ethernet.h>
43 #include <netinet/in.h>
44 #include <netinet/tcp.h>
45 #ifndef	__FreeBSD__
46 #include <sys/filio.h>
47 #endif
48 
49 #ifndef WITHOUT_CAPSICUM
50 #include <capsicum_helpers.h>
51 #endif
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <md5.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <sysexits.h>
60 #include <unistd.h>
61 #include <pthread.h>
62 #include <pthread_np.h>
63 
64 #include "e1000_regs.h"
65 #include "e1000_defines.h"
66 #include "mii.h"
67 
68 #include "bhyverun.h"
69 #include "pci_emul.h"
70 #include "mevent.h"
71 
72 /* Hardware/register definitions XXX: move some to common code. */
73 #define E82545_VENDOR_ID_INTEL			0x8086
74 #define E82545_DEV_ID_82545EM_COPPER		0x100F
75 #define E82545_SUBDEV_ID			0x1008
76 
77 #define E82545_REVISION_4			4
78 
79 #define E82545_MDIC_DATA_MASK			0x0000FFFF
80 #define E82545_MDIC_OP_MASK			0x0c000000
81 #define E82545_MDIC_IE				0x20000000
82 
83 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
84 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
85 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
86 
87 #define E82545_BAR_REGISTER			0
88 #define E82545_BAR_REGISTER_LEN			(128*1024)
89 #define E82545_BAR_FLASH			1
90 #define E82545_BAR_FLASH_LEN			(64*1024)
91 #define E82545_BAR_IO				2
92 #define E82545_BAR_IO_LEN			8
93 
94 #define E82545_IOADDR				0x00000000
95 #define E82545_IODATA				0x00000004
96 #define E82545_IO_REGISTER_MAX			0x0001FFFF
97 #define E82545_IO_FLASH_BASE			0x00080000
98 #define E82545_IO_FLASH_MAX			0x000FFFFF
99 
100 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
101 #define E82545_RAR_MAX				15
102 #define E82545_MTA_MAX				127
103 #define E82545_VFTA_MAX				127
104 
105 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
106  * followed by 6 address bits.
107  * TODO: make opcode bits and addr bits configurable?
108  * NVM Commands - Microwire */
109 #define E82545_NVM_OPCODE_BITS	3
110 #define E82545_NVM_ADDR_BITS	6
111 #define E82545_NVM_DATA_BITS	16
112 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
113 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
114 #define E82545_NVM_OPCODE_MASK	\
115     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
116 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
117 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
118 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
119 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
120 
121 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
122 
123 #define E1000_ICR_SRPD		0x00010000
124 
125 /* This is an arbitrary number.  There is no hard limit on the chip. */
126 #define I82545_MAX_TXSEGS	64
127 
128 /* Legacy receive descriptor */
129 struct e1000_rx_desc {
130 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
131 	uint16_t length;	/* Length of data DMAed into data buffer */
132 	uint16_t csum;		/* Packet checksum */
133 	uint8_t	 status;       	/* Descriptor status */
134 	uint8_t  errors;	/* Descriptor Errors */
135 	uint16_t special;
136 };
137 
138 /* Transmit descriptor types */
139 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
140 #define E1000_TXD_TYP_L		(0)
141 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
142 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
143 
144 /* Legacy transmit descriptor */
145 struct e1000_tx_desc {
146 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
147 	union {
148 		uint32_t data;
149 		struct {
150 			uint16_t length;  /* Data buffer length */
151 			uint8_t  cso;  /* Checksum offset */
152 			uint8_t  cmd;  /* Descriptor control */
153 		} flags;
154 	} lower;
155 	union {
156 		uint32_t data;
157 		struct {
158 			uint8_t status; /* Descriptor status */
159 			uint8_t css;  /* Checksum start */
160 			uint16_t special;
161 		} fields;
162 	} upper;
163 };
164 
165 /* Context descriptor */
166 struct e1000_context_desc {
167 	union {
168 		uint32_t ip_config;
169 		struct {
170 			uint8_t ipcss;  /* IP checksum start */
171 			uint8_t ipcso;  /* IP checksum offset */
172 			uint16_t ipcse;  /* IP checksum end */
173 		} ip_fields;
174 	} lower_setup;
175 	union {
176 		uint32_t tcp_config;
177 		struct {
178 			uint8_t tucss;  /* TCP checksum start */
179 			uint8_t tucso;  /* TCP checksum offset */
180 			uint16_t tucse;  /* TCP checksum end */
181 		} tcp_fields;
182 	} upper_setup;
183 	uint32_t cmd_and_length;
184 	union {
185 		uint32_t data;
186 		struct {
187 			uint8_t status;  /* Descriptor status */
188 			uint8_t hdr_len;  /* Header length */
189 			uint16_t mss;  /* Maximum segment size */
190 		} fields;
191 	} tcp_seg_setup;
192 };
193 
194 /* Data descriptor */
195 struct e1000_data_desc {
196 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
197 	union {
198 		uint32_t data;
199 		struct {
200 			uint16_t length;  /* Data buffer length */
201 			uint8_t typ_len_ext;
202 			uint8_t cmd;
203 		} flags;
204 	} lower;
205 	union {
206 		uint32_t data;
207 		struct {
208 			uint8_t status;  /* Descriptor status */
209 			uint8_t popts;  /* Packet Options */
210 			uint16_t special;
211 		} fields;
212 	} upper;
213 };
214 
215 union e1000_tx_udesc {
216 	struct e1000_tx_desc td;
217 	struct e1000_context_desc cd;
218 	struct e1000_data_desc dd;
219 };
220 
221 /* Tx checksum info for a packet. */
222 struct ck_info {
223 	int	ck_valid;	/* ck_info is valid */
224 	uint8_t	ck_start;	/* start byte of cksum calcuation */
225 	uint8_t	ck_off;		/* offset of cksum insertion */
226 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
227 };
228 
229 /*
230  * Debug printf
231  */
232 static int e82545_debug = 0;
233 #define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
234 #define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
235 
236 #define	MIN(a,b) (((a)<(b))?(a):(b))
237 #define	MAX(a,b) (((a)>(b))?(a):(b))
238 
239 /* s/w representation of the RAL/RAH regs */
240 struct  eth_uni {
241 	int		eu_valid;
242 	int		eu_addrsel;
243 	struct ether_addr eu_eth;
244 };
245 
246 
247 struct e82545_softc {
248 	struct pci_devinst *esc_pi;
249 	struct vmctx	*esc_ctx;
250 	struct mevent   *esc_mevp;
251 	struct mevent   *esc_mevpitr;
252 	pthread_mutex_t	esc_mtx;
253 	struct ether_addr esc_mac;
254 	int		esc_tapfd;
255 
256 	/* General */
257 	uint32_t	esc_CTRL;	/* x0000 device ctl */
258 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
259 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
260 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
261 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
262 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
263 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
264 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
265 
266 	/* Interrupt control */
267 	int		esc_irq_asserted;
268 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
269 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
270 	uint32_t	esc_ICS;	/* x00C8 cause set */
271 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
272 	uint32_t	esc_IMC;	/* x00D8 mask clear */
273 
274 	/* Transmit */
275 	union e1000_tx_udesc *esc_txdesc;
276 	struct e1000_context_desc esc_txctx;
277 	pthread_t	esc_tx_tid;
278 	pthread_cond_t	esc_tx_cond;
279 	int		esc_tx_enabled;
280 	int		esc_tx_active;
281 	uint32_t	esc_TXCW;	/* x0178 transmit config */
282 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
283 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
284 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
285 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
286 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
287 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
288 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
289 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
290 	uint16_t	esc_TDHr;	/* internal read version of TDH */
291 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
292 	uint32_t	esc_TIDV;	/* x3820 intr delay */
293 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
294 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
295 
296 	/* L2 frame acceptance */
297 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
298 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
299 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
300 
301 	/* Receive */
302 	struct e1000_rx_desc *esc_rxdesc;
303 	pthread_cond_t	esc_rx_cond;
304 	int		esc_rx_enabled;
305 	int		esc_rx_active;
306 	int		esc_rx_loopback;
307 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
308 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
309 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
310 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
311 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
312 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
313 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
314 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
315 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
316 	uint32_t	esc_RDTR;	/* x2820 intr delay */
317 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
318 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
319 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
320 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
321 
322 	/* IO Port register access */
323 	uint32_t io_addr;
324 
325 	/* Shadow copy of MDIC */
326 	uint32_t mdi_control;
327 	/* Shadow copy of EECD */
328 	uint32_t eeprom_control;
329 	/* Latest NVM in/out */
330 	uint16_t nvm_data;
331 	uint16_t nvm_opaddr;
332 	/* stats */
333 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
334 	uint32_t pkt_rx_by_size[6];
335 	uint32_t pkt_tx_by_size[6];
336 	uint32_t good_pkt_rx_count;
337 	uint32_t bcast_pkt_rx_count;
338 	uint32_t mcast_pkt_rx_count;
339 	uint32_t good_pkt_tx_count;
340 	uint32_t bcast_pkt_tx_count;
341 	uint32_t mcast_pkt_tx_count;
342 	uint32_t oversize_rx_count;
343 	uint32_t tso_tx_count;
344 	uint64_t good_octets_rx;
345 	uint64_t good_octets_tx;
346 	uint64_t missed_octets; /* counts missed and oversized */
347 
348 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
349 	uint8_t nvm_mode:2;
350 #define E82545_NVM_MODE_OPADDR  0x0
351 #define E82545_NVM_MODE_DATAIN  0x1
352 #define E82545_NVM_MODE_DATAOUT 0x2
353 	/* EEPROM data */
354 	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
355 };
356 
357 static void e82545_reset(struct e82545_softc *sc, int dev);
358 static void e82545_rx_enable(struct e82545_softc *sc);
359 static void e82545_rx_disable(struct e82545_softc *sc);
360 #ifdef	__FreeBSD__
361 static void e82545_tap_callback(int fd, enum ev_type type, void *param);
362 #endif
363 static void e82545_tx_start(struct e82545_softc *sc);
364 static void e82545_tx_enable(struct e82545_softc *sc);
365 static void e82545_tx_disable(struct e82545_softc *sc);
366 
367 static inline int
368 e82545_size_stat_index(uint32_t size)
369 {
370 	if (size <= 64) {
371 		return 0;
372 	} else if (size >= 1024) {
373 		return 5;
374 	} else {
375 		/* should be 1-4 */
376 		return (ffs(size) - 6);
377 	}
378 }
379 
380 static void
381 e82545_init_eeprom(struct e82545_softc *sc)
382 {
383 	uint16_t checksum, i;
384 
385         /* mac addr */
386 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
387 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
388 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
389 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
390 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
391 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
392 
393 	/* pci ids */
394 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
395 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
396 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
397 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
398 
399 	/* fill in the checksum */
400         checksum = 0;
401 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
402 		checksum += sc->eeprom_data[i];
403 	}
404 	checksum = NVM_SUM - checksum;
405 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
406 	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
407 }
408 
409 static void
410 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
411 			uint8_t phy_addr, uint32_t data)
412 {
413 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
414 }
415 
416 static uint32_t
417 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
418 			uint8_t phy_addr)
419 {
420 	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
421 	switch (reg_addr) {
422 	case PHY_STATUS:
423 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
424 			MII_SR_AUTONEG_COMPLETE);
425 	case PHY_AUTONEG_ADV:
426 		return NWAY_AR_SELECTOR_FIELD;
427 	case PHY_LP_ABILITY:
428 		return 0;
429 	case PHY_1000T_STATUS:
430 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
431 			SR_1000T_LOCAL_RX_STATUS);
432 	case PHY_ID1:
433 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
434 	case PHY_ID2:
435 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
436 	default:
437 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
438 		return 0;
439 	}
440 	/* not reached */
441 }
442 
443 static void
444 e82545_eecd_strobe(struct e82545_softc *sc)
445 {
446 	/* Microwire state machine */
447 	/*
448 	DPRINTF("eeprom state machine srtobe "
449 		"0x%x 0x%x 0x%x 0x%x\r\n",
450 		sc->nvm_mode, sc->nvm_bits,
451 		sc->nvm_opaddr, sc->nvm_data);*/
452 
453 	if (sc->nvm_bits == 0) {
454 		DPRINTF("eeprom state machine not expecting data! "
455 			"0x%x 0x%x 0x%x 0x%x\r\n",
456 			sc->nvm_mode, sc->nvm_bits,
457 			sc->nvm_opaddr, sc->nvm_data);
458 		return;
459 	}
460 	sc->nvm_bits--;
461 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
462 		/* shifting out */
463 		if (sc->nvm_data & 0x8000) {
464 			sc->eeprom_control |= E1000_EECD_DO;
465 		} else {
466 			sc->eeprom_control &= ~E1000_EECD_DO;
467 		}
468 		sc->nvm_data <<= 1;
469 		if (sc->nvm_bits == 0) {
470 			/* read done, back to opcode mode. */
471 			sc->nvm_opaddr = 0;
472 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
473 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
474 		}
475 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
476 		/* shifting in */
477 		sc->nvm_data <<= 1;
478 		if (sc->eeprom_control & E1000_EECD_DI) {
479 			sc->nvm_data |= 1;
480 		}
481 		if (sc->nvm_bits == 0) {
482 			/* eeprom write */
483 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
484 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
485 			if (op != E82545_NVM_OPCODE_WRITE) {
486 				DPRINTF("Illegal eeprom write op 0x%x\r\n",
487 					sc->nvm_opaddr);
488 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
489 				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
490 					sc->nvm_opaddr);
491 			} else {
492 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
493 				addr, sc->nvm_data);
494 				sc->eeprom_data[addr] = sc->nvm_data;
495 			}
496 			/* back to opcode mode */
497 			sc->nvm_opaddr = 0;
498 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
499 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
500 		}
501 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
502 		sc->nvm_opaddr <<= 1;
503 		if (sc->eeprom_control & E1000_EECD_DI) {
504 			sc->nvm_opaddr |= 1;
505 		}
506 		if (sc->nvm_bits == 0) {
507 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
508 			switch (op) {
509 			case E82545_NVM_OPCODE_EWEN:
510 				DPRINTF("eeprom write enable: 0x%x\r\n",
511 					sc->nvm_opaddr);
512 				/* back to opcode mode */
513 				sc->nvm_opaddr = 0;
514 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
515 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
516 				break;
517 			case E82545_NVM_OPCODE_READ:
518 			{
519 				uint16_t addr = sc->nvm_opaddr &
520 					E82545_NVM_ADDR_MASK;
521 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
522 				sc->nvm_bits = E82545_NVM_DATA_BITS;
523 				if (addr < E82545_NVM_EEPROM_SIZE) {
524 					sc->nvm_data = sc->eeprom_data[addr];
525 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
526 						addr, sc->nvm_data);
527 				} else {
528 					DPRINTF("eeprom illegal read: 0x%x\r\n",
529 						sc->nvm_opaddr);
530 					sc->nvm_data = 0;
531 				}
532 				break;
533 			}
534 			case E82545_NVM_OPCODE_WRITE:
535 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
536 				sc->nvm_bits = E82545_NVM_DATA_BITS;
537 				sc->nvm_data = 0;
538 				break;
539 			default:
540 				DPRINTF("eeprom unknown op: 0x%x\r\r",
541 					sc->nvm_opaddr);
542 				/* back to opcode mode */
543 				sc->nvm_opaddr = 0;
544 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
545 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
546 			}
547 		}
548 	} else {
549 		DPRINTF("eeprom state machine wrong state! "
550 			"0x%x 0x%x 0x%x 0x%x\r\n",
551 			sc->nvm_mode, sc->nvm_bits,
552 			sc->nvm_opaddr, sc->nvm_data);
553 	}
554 }
555 
556 #ifdef	__FreeBSD__
557 static void
558 e82545_itr_callback(int fd, enum ev_type type, void *param)
559 {
560 	uint32_t new;
561 	struct e82545_softc *sc = param;
562 
563 	pthread_mutex_lock(&sc->esc_mtx);
564 	new = sc->esc_ICR & sc->esc_IMS;
565 	if (new && !sc->esc_irq_asserted) {
566 		DPRINTF("itr callback: lintr assert %x\r\n", new);
567 		sc->esc_irq_asserted = 1;
568 		pci_lintr_assert(sc->esc_pi);
569 	} else {
570 		mevent_delete(sc->esc_mevpitr);
571 		sc->esc_mevpitr = NULL;
572 	}
573 	pthread_mutex_unlock(&sc->esc_mtx);
574 }
575 #endif
576 
577 static void
578 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
579 {
580 	uint32_t new;
581 
582 	DPRINTF("icr assert: 0x%x\r\n", bits);
583 
584 	/*
585 	 * An interrupt is only generated if bits are set that
586 	 * aren't already in the ICR, these bits are unmasked,
587 	 * and there isn't an interrupt already pending.
588 	 */
589 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
590 	sc->esc_ICR |= bits;
591 
592 	if (new == 0) {
593 		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
594 	} else if (sc->esc_mevpitr != NULL) {
595 		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
596 	} else if (!sc->esc_irq_asserted) {
597 		DPRINTF("icr assert: lintr assert %x\r\n", new);
598 		sc->esc_irq_asserted = 1;
599 		pci_lintr_assert(sc->esc_pi);
600 		if (sc->esc_ITR != 0) {
601 #ifdef	__FreeBSD__
602 			sc->esc_mevpitr = mevent_add(
603 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
604 			    EVF_TIMER, e82545_itr_callback, sc);
605 #endif
606 		}
607 	}
608 }
609 
610 static void
611 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
612 {
613 	uint32_t new;
614 
615 	/*
616 	 * Changing the mask may allow previously asserted
617 	 * but masked interrupt requests to generate an interrupt.
618 	 */
619 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
620 	sc->esc_IMS |= bits;
621 
622 	if (new == 0) {
623 		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
624 	} else if (sc->esc_mevpitr != NULL) {
625 		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
626 	} else if (!sc->esc_irq_asserted) {
627 		DPRINTF("ims change: lintr assert %x\n\r", new);
628 		sc->esc_irq_asserted = 1;
629 		pci_lintr_assert(sc->esc_pi);
630 		if (sc->esc_ITR != 0) {
631 #ifdef	__FreeBSD__
632 			sc->esc_mevpitr = mevent_add(
633 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
634 			    EVF_TIMER, e82545_itr_callback, sc);
635 #endif
636 		}
637 	}
638 }
639 
640 static void
641 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
642 {
643 
644 	DPRINTF("icr deassert: 0x%x\r\n", bits);
645 	sc->esc_ICR &= ~bits;
646 
647 	/*
648 	 * If there are no longer any interrupt sources and there
649 	 * was an asserted interrupt, clear it
650 	 */
651 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
652 		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
653 		pci_lintr_deassert(sc->esc_pi);
654 		sc->esc_irq_asserted = 0;
655 	}
656 }
657 
658 static void
659 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
660 {
661 
662 	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
663 
664 	switch (offset) {
665 	case E1000_ICR:
666 		e82545_icr_deassert(sc, value);
667 		break;
668 	case E1000_ITR:
669 		sc->esc_ITR = value;
670 		break;
671 	case E1000_ICS:
672 		sc->esc_ICS = value;	/* not used: store for debug */
673 		e82545_icr_assert(sc, value);
674 		break;
675 	case E1000_IMS:
676 		e82545_ims_change(sc, value);
677 		break;
678 	case E1000_IMC:
679 		sc->esc_IMC = value;	/* for debug */
680 		sc->esc_IMS &= ~value;
681 		// XXX clear interrupts if all ICR bits now masked
682 		// and interrupt was pending ?
683 		break;
684 	default:
685 		break;
686 	}
687 }
688 
689 static uint32_t
690 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
691 {
692 	uint32_t retval;
693 
694 	retval = 0;
695 
696 	DPRINTF("intr_read: off %x\n\r", offset);
697 
698 	switch (offset) {
699 	case E1000_ICR:
700 		retval = sc->esc_ICR;
701 		sc->esc_ICR = 0;
702 		e82545_icr_deassert(sc, ~0);
703 		break;
704 	case E1000_ITR:
705 		retval = sc->esc_ITR;
706 		break;
707 	case E1000_ICS:
708 		/* write-only register */
709 		break;
710 	case E1000_IMS:
711 		retval = sc->esc_IMS;
712 		break;
713 	case E1000_IMC:
714 		/* write-only register */
715 		break;
716 	default:
717 		break;
718 	}
719 
720 	return (retval);
721 }
722 
723 static void
724 e82545_devctl(struct e82545_softc *sc, uint32_t val)
725 {
726 
727 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
728 
729 	if (val & E1000_CTRL_RST) {
730 		DPRINTF("e1k: s/w reset, ctl %x\n", val);
731 		e82545_reset(sc, 1);
732 	}
733 	/* XXX check for phy reset ? */
734 }
735 
736 static void
737 e82545_rx_update_rdba(struct e82545_softc *sc)
738 {
739 
740 	/* XXX verify desc base/len within phys mem range */
741 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
742 	    sc->esc_RDBAL;
743 
744 	/* Cache host mapping of guest descriptor array */
745 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
746 	    sc->esc_rdba, sc->esc_RDLEN);
747 }
748 
749 static void
750 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
751 {
752 	int on;
753 
754 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
755 
756 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
757 	sc->esc_RCTL = val & ~0xF9204c01;
758 
759 	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
760 		on ? "on" : "off", sc->esc_RCTL, val);
761 
762 	/* state change requested */
763 	if (on != sc->esc_rx_enabled) {
764 		if (on) {
765 			/* Catch disallowed/unimplemented settings */
766 			//assert(!(val & E1000_RCTL_LBM_TCVR));
767 
768 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
769 				sc->esc_rx_loopback = 1;
770 			} else {
771 				sc->esc_rx_loopback = 0;
772 			}
773 
774 			e82545_rx_update_rdba(sc);
775 			e82545_rx_enable(sc);
776 		} else {
777 			e82545_rx_disable(sc);
778 			sc->esc_rx_loopback = 0;
779 			sc->esc_rdba = 0;
780 			sc->esc_rxdesc = NULL;
781 		}
782 	}
783 }
784 
785 static void
786 e82545_tx_update_tdba(struct e82545_softc *sc)
787 {
788 
789 	/* XXX verify desc base/len within phys mem range */
790 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
791 
792 	/* Cache host mapping of guest descriptor array */
793 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
794             sc->esc_TDLEN);
795 }
796 
797 static void
798 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
799 {
800 	int on;
801 
802 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
803 
804 	/* ignore TCTL_EN settings that don't change state */
805 	if (on == sc->esc_tx_enabled)
806 		return;
807 
808 	if (on) {
809 		e82545_tx_update_tdba(sc);
810 		e82545_tx_enable(sc);
811 	} else {
812 		e82545_tx_disable(sc);
813 		sc->esc_tdba = 0;
814 		sc->esc_txdesc = NULL;
815 	}
816 
817 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
818 	sc->esc_TCTL = val & ~0xFE800005;
819 }
820 
821 int
822 e82545_bufsz(uint32_t rctl)
823 {
824 
825 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
826 	case (E1000_RCTL_SZ_2048): return (2048);
827 	case (E1000_RCTL_SZ_1024): return (1024);
828 	case (E1000_RCTL_SZ_512): return (512);
829 	case (E1000_RCTL_SZ_256): return (256);
830 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
831 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
832 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
833 	}
834 	return (256);	/* Forbidden value. */
835 }
836 
837 #ifdef	__FreeBSD__
838 static uint8_t dummybuf[2048];
839 
840 /* XXX one packet at a time until this is debugged */
841 static void
842 e82545_tap_callback(int fd, enum ev_type type, void *param)
843 {
844 	struct e82545_softc *sc = param;
845 	struct e1000_rx_desc *rxd;
846 	struct iovec vec[64];
847 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
848 	uint32_t cause = 0;
849 	uint16_t *tp, tag, head;
850 
851 	pthread_mutex_lock(&sc->esc_mtx);
852 	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
853 
854 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
855 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
856 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
857 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
858 		}
859 		goto done1;
860 	}
861 	bufsz = e82545_bufsz(sc->esc_RCTL);
862 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
863 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
864 	size = sc->esc_RDLEN / 16;
865 	head = sc->esc_RDH;
866 	left = (size + sc->esc_RDT - head) % size;
867 	if (left < maxpktdesc) {
868 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
869 		    left, maxpktdesc);
870 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
871 		}
872 		goto done1;
873 	}
874 
875 	sc->esc_rx_active = 1;
876 	pthread_mutex_unlock(&sc->esc_mtx);
877 
878 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
879 
880 		/* Grab rx descriptor pointed to by the head pointer */
881 		for (i = 0; i < maxpktdesc; i++) {
882 			rxd = &sc->esc_rxdesc[(head + i) % size];
883 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
884 			    rxd->buffer_addr, bufsz);
885 			vec[i].iov_len = bufsz;
886 		}
887 		len = readv(sc->esc_tapfd, vec, maxpktdesc);
888 		if (len <= 0) {
889 			DPRINTF("tap: readv() returned %d\n", len);
890 			goto done;
891 		}
892 
893 		/*
894 		 * Adjust the packet length based on whether the CRC needs
895 		 * to be stripped or if the packet is less than the minimum
896 		 * eth packet size.
897 		 */
898 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
899 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
900 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
901 			len += ETHER_CRC_LEN;
902 		n = (len + bufsz - 1) / bufsz;
903 
904 		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
905 		    len, n, head);
906 
907 		/* Apply VLAN filter. */
908 		tp = (uint16_t *)vec[0].iov_base + 6;
909 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
910 		    (ntohs(tp[0]) == sc->esc_VET)) {
911 			tag = ntohs(tp[1]) & 0x0fff;
912 			if ((sc->esc_fvlan[tag >> 5] &
913 			    (1 << (tag & 0x1f))) != 0) {
914 				DPRINTF("known VLAN %d\r\n", tag);
915 			} else {
916 				DPRINTF("unknown VLAN %d\r\n", tag);
917 				n = 0;
918 				continue;
919 			}
920 		}
921 
922 		/* Update all consumed descriptors. */
923 		for (i = 0; i < n - 1; i++) {
924 			rxd = &sc->esc_rxdesc[(head + i) % size];
925 			rxd->length = bufsz;
926 			rxd->csum = 0;
927 			rxd->errors = 0;
928 			rxd->special = 0;
929 			rxd->status = E1000_RXD_STAT_DD;
930 		}
931 		rxd = &sc->esc_rxdesc[(head + i) % size];
932 		rxd->length = len % bufsz;
933 		rxd->csum = 0;
934 		rxd->errors = 0;
935 		rxd->special = 0;
936 		/* XXX signal no checksum for now */
937 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
938 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
939 
940 		/* Schedule receive interrupts. */
941 		if (len <= sc->esc_RSRPD) {
942 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
943 		} else {
944 			/* XXX: RDRT and RADV timers should be here. */
945 			cause |= E1000_ICR_RXT0;
946 		}
947 
948 		head = (head + n) % size;
949 		left -= n;
950 	}
951 
952 done:
953 	pthread_mutex_lock(&sc->esc_mtx);
954 	sc->esc_rx_active = 0;
955 	if (sc->esc_rx_enabled == 0)
956 		pthread_cond_signal(&sc->esc_rx_cond);
957 
958 	sc->esc_RDH = head;
959 	/* Respect E1000_RCTL_RDMTS */
960 	left = (size + sc->esc_RDT - head) % size;
961 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
962 		cause |= E1000_ICR_RXDMT0;
963 	/* Assert all accumulated interrupts. */
964 	if (cause != 0)
965 		e82545_icr_assert(sc, cause);
966 done1:
967 	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
968 	pthread_mutex_unlock(&sc->esc_mtx);
969 }
970 #endif
971 
972 static uint16_t
973 e82545_carry(uint32_t sum)
974 {
975 
976 	sum = (sum & 0xFFFF) + (sum >> 16);
977 	if (sum > 0xFFFF)
978 		sum -= 0xFFFF;
979 	return (sum);
980 }
981 
982 static uint16_t
983 #ifdef __FreeBSD__
984 e82545_buf_checksum(uint8_t *buf, int len)
985 #else
986 e82545_buf_checksum(caddr_t buf, int len)
987 #endif
988 {
989 	int i;
990 	uint32_t sum = 0;
991 
992 	/* Checksum all the pairs of bytes first... */
993 	for (i = 0; i < (len & ~1U); i += 2)
994 		sum += *((u_int16_t *)(buf + i));
995 
996 	/*
997 	 * If there's a single byte left over, checksum it, too.
998 	 * Network byte order is big-endian, so the remaining byte is
999 	 * the high byte.
1000 	 */
1001 	if (i < len)
1002 		sum += htons(buf[i] << 8);
1003 
1004 	return (e82545_carry(sum));
1005 }
1006 
1007 static uint16_t
1008 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
1009 {
1010 	int now, odd;
1011 	uint32_t sum = 0, s;
1012 
1013 	/* Skip completely unneeded vectors. */
1014 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
1015 		off -= iov->iov_len;
1016 		iov++;
1017 		iovcnt--;
1018 	}
1019 
1020 	/* Calculate checksum of requested range. */
1021 	odd = 0;
1022 	while (len > 0 && iovcnt > 0) {
1023 		now = MIN(len, iov->iov_len - off);
1024 		s = e82545_buf_checksum(iov->iov_base + off, now);
1025 		sum += odd ? (s << 8) : s;
1026 		odd ^= (now & 1);
1027 		len -= now;
1028 		off = 0;
1029 		iov++;
1030 		iovcnt--;
1031 	}
1032 
1033 	return (e82545_carry(sum));
1034 }
1035 
1036 /*
1037  * Return the transmit descriptor type.
1038  */
1039 int
1040 e82545_txdesc_type(uint32_t lower)
1041 {
1042 	int type;
1043 
1044 	type = 0;
1045 
1046 	if (lower & E1000_TXD_CMD_DEXT)
1047 		type = lower & E1000_TXD_MASK;
1048 
1049 	return (type);
1050 }
1051 
1052 static void
1053 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1054 {
1055 	uint16_t cksum;
1056 	int cklen;
1057 
1058 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1059 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1060 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1061 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1062 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1063 }
1064 
1065 static void
1066 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1067 {
1068 
1069 	if (sc->esc_tapfd == -1)
1070 		return;
1071 
1072 	(void) writev(sc->esc_tapfd, iov, iovcnt);
1073 }
1074 
1075 static void
1076 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1077     uint16_t dsize, int *tdwb)
1078 {
1079 	union e1000_tx_udesc *dsc;
1080 
1081 	for ( ; head != tail; head = (head + 1) % dsize) {
1082 		dsc = &sc->esc_txdesc[head];
1083 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1084 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1085 			*tdwb = 1;
1086 		}
1087 	}
1088 }
1089 
1090 static int
1091 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1092     uint16_t dsize, uint16_t *rhead, int *tdwb)
1093 {
1094 #ifdef	__FreeBSD__
1095 	uint8_t *hdr, *hdrp;
1096 #else
1097 	caddr_t hdr, hdrp;
1098 #endif
1099 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1100 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1101 	struct e1000_context_desc *cd;
1102 	struct ck_info ckinfo[2];
1103 	struct iovec *iov;
1104 	union  e1000_tx_udesc *dsc;
1105 	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1106 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1107 	uint32_t tcpsum, tcpseq;
1108 	uint16_t ipcs, tcpcs, ipid, ohead;
1109 
1110 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1111 	iovcnt = 0;
1112 	tlen = 0;
1113 	ntype = 0;
1114 	tso = 0;
1115 	ohead = head;
1116 	hdr = NULL;
1117 
1118 	/* iovb[0/1] may be used for writable copy of headers. */
1119 	iov = &iovb[2];
1120 
1121 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1122 		if (head == tail) {
1123 			*rhead = head;
1124 			return (0);
1125 		}
1126 		dsc = &sc->esc_txdesc[head];
1127 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1128 
1129 		if (desc == 0) {
1130 			switch (dtype) {
1131 			case E1000_TXD_TYP_C:
1132 				DPRINTF("tx ctxt desc idx %d: %016jx "
1133 				    "%08x%08x\r\n",
1134 				    head, dsc->td.buffer_addr,
1135 				    dsc->td.upper.data, dsc->td.lower.data);
1136 				/* Save context and return */
1137 				sc->esc_txctx = dsc->cd;
1138 				goto done;
1139 			case E1000_TXD_TYP_L:
1140 				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1141 				    head, dsc->td.upper.data, dsc->td.lower.data);
1142 				/*
1143 				 * legacy cksum start valid in first descriptor
1144 				 */
1145 				ntype = dtype;
1146 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1147 				break;
1148 			case E1000_TXD_TYP_D:
1149 				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1150 				    head, dsc->td.upper.data, dsc->td.lower.data);
1151 				ntype = dtype;
1152 				break;
1153 			default:
1154 				break;
1155 			}
1156 		} else {
1157 			/* Descriptor type must be consistent */
1158 			assert(dtype == ntype);
1159 			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1160 			    head, dsc->td.upper.data, dsc->td.lower.data);
1161 		}
1162 
1163 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1164 		    dsc->dd.lower.data & 0xFFFFF;
1165 
1166 		if (len > 0) {
1167 			/* Strip checksum supplied by guest. */
1168 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1169 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1170 				len -= 2;
1171 			tlen += len;
1172 			if (iovcnt < I82545_MAX_TXSEGS) {
1173 				iov[iovcnt].iov_base = paddr_guest2host(
1174 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1175 				iov[iovcnt].iov_len = len;
1176 			}
1177 			iovcnt++;
1178 		}
1179 
1180 		/*
1181 		 * Pull out info that is valid in the final descriptor
1182 		 * and exit descriptor loop.
1183 		 */
1184 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1185 			if (dtype == E1000_TXD_TYP_L) {
1186 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1187 					ckinfo[0].ck_valid = 1;
1188 					ckinfo[0].ck_off =
1189 					    dsc->td.lower.flags.cso;
1190 					ckinfo[0].ck_len = 0;
1191 				}
1192 			} else {
1193 				cd = &sc->esc_txctx;
1194 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1195 					tso = 1;
1196 				if (dsc->dd.upper.fields.popts &
1197 				    E1000_TXD_POPTS_IXSM)
1198 					ckinfo[0].ck_valid = 1;
1199 				if (dsc->dd.upper.fields.popts &
1200 				    E1000_TXD_POPTS_IXSM || tso) {
1201 					ckinfo[0].ck_start =
1202 					    cd->lower_setup.ip_fields.ipcss;
1203 					ckinfo[0].ck_off =
1204 					    cd->lower_setup.ip_fields.ipcso;
1205 					ckinfo[0].ck_len =
1206 					    cd->lower_setup.ip_fields.ipcse;
1207 				}
1208 				if (dsc->dd.upper.fields.popts &
1209 				    E1000_TXD_POPTS_TXSM)
1210 					ckinfo[1].ck_valid = 1;
1211 				if (dsc->dd.upper.fields.popts &
1212 				    E1000_TXD_POPTS_TXSM || tso) {
1213 					ckinfo[1].ck_start =
1214 					    cd->upper_setup.tcp_fields.tucss;
1215 					ckinfo[1].ck_off =
1216 					    cd->upper_setup.tcp_fields.tucso;
1217 					ckinfo[1].ck_len =
1218 					    cd->upper_setup.tcp_fields.tucse;
1219 				}
1220 			}
1221 			break;
1222 		}
1223 	}
1224 
1225 	if (iovcnt > I82545_MAX_TXSEGS) {
1226 		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1227 		    iovcnt, I82545_MAX_TXSEGS);
1228 		goto done;
1229 	}
1230 
1231 	hdrlen = vlen = 0;
1232 	/* Estimate writable space for VLAN header insertion. */
1233 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1234 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1235 		hdrlen = ETHER_ADDR_LEN*2;
1236 		vlen = ETHER_VLAN_ENCAP_LEN;
1237 	}
1238 	if (!tso) {
1239 		/* Estimate required writable space for checksums. */
1240 		if (ckinfo[0].ck_valid)
1241 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1242 		if (ckinfo[1].ck_valid)
1243 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1244 		/* Round up writable space to the first vector. */
1245 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1246 		    iov[0].iov_len < hdrlen + 100)
1247 			hdrlen = iov[0].iov_len;
1248 	} else {
1249 		/* In case of TSO header length provided by software. */
1250 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1251 	}
1252 
1253 	/* Allocate, fill and prepend writable header vector. */
1254 	if (hdrlen != 0) {
1255 		hdr = __builtin_alloca(hdrlen + vlen);
1256 		hdr += vlen;
1257 		for (left = hdrlen, hdrp = hdr; left > 0;
1258 		    left -= now, hdrp += now) {
1259 			now = MIN(left, iov->iov_len);
1260 			memcpy(hdrp, iov->iov_base, now);
1261 			iov->iov_base += now;
1262 			iov->iov_len -= now;
1263 			if (iov->iov_len == 0) {
1264 				iov++;
1265 				iovcnt--;
1266 			}
1267 		}
1268 		iov--;
1269 		iovcnt++;
1270 		iov->iov_base = hdr;
1271 		iov->iov_len = hdrlen;
1272 	}
1273 
1274 	/* Insert VLAN tag. */
1275 	if (vlen != 0) {
1276 		hdr -= ETHER_VLAN_ENCAP_LEN;
1277 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1278 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1279 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1280 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1281 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1282 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1283 		iov->iov_base = hdr;
1284 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1285 		/* Correct checksum offsets after VLAN tag insertion. */
1286 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1287 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1288 		if (ckinfo[0].ck_len != 0)
1289 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1290 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1291 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1292 		if (ckinfo[1].ck_len != 0)
1293 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1294 	}
1295 
1296 	/* Simple non-TSO case. */
1297 	if (!tso) {
1298 		/* Calculate checksums and transmit. */
1299 		if (ckinfo[0].ck_valid)
1300 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1301 		if (ckinfo[1].ck_valid)
1302 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1303 		e82545_transmit_backend(sc, iov, iovcnt);
1304 		goto done;
1305 	}
1306 
1307 	/* Doing TSO. */
1308 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1309 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1310 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1311 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1312 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1313 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1314 	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1315 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1316 	tcpcs = 0;
1317 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1318 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1319 	pv = 1;
1320 	pvoff = 0;
1321 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1322 		now = MIN(left, mss);
1323 
1324 		/* Construct IOVs for the segment. */
1325 		/* Include whole original header. */
1326 		tiov[0].iov_base = hdr;
1327 		tiov[0].iov_len = hdrlen;
1328 		tiovcnt = 1;
1329 		/* Include respective part of payload IOV. */
1330 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1331 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1332 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1333 			tiov[tiovcnt++].iov_len = nnow;
1334 			if (pvoff + nnow == iov[pv].iov_len) {
1335 				pv++;
1336 				pvoff = 0;
1337 			} else
1338 				pvoff += nnow;
1339 		}
1340 		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1341 		    seg, hdrlen, now, tiovcnt);
1342 
1343 		/* Update IP header. */
1344 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1345 			/* IPv4 -- set length and ID */
1346 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1347 			    htons(hdrlen - ckinfo[0].ck_start + now);
1348 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1349 			    htons(ipid + seg);
1350 		} else {
1351 			/* IPv6 -- set length */
1352 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1353 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1354 				  now);
1355 		}
1356 
1357 		/* Update pseudo-header checksum. */
1358 		tcpsum = tcpcs;
1359 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1360 
1361 		/* Update TCP/UDP headers. */
1362 		if (tcp) {
1363 			/* Update sequence number and FIN/PUSH flags. */
1364 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1365 			    htonl(tcpseq + paylen - left);
1366 			if (now < left) {
1367 				hdr[ckinfo[1].ck_start + 13] &=
1368 				    ~(TH_FIN | TH_PUSH);
1369 			}
1370 		} else {
1371 			/* Update payload length. */
1372 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1373 			    hdrlen - ckinfo[1].ck_start + now;
1374 		}
1375 
1376 		/* Calculate checksums and transmit. */
1377 		if (ckinfo[0].ck_valid) {
1378 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1379 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1380 		}
1381 		if (ckinfo[1].ck_valid) {
1382 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1383 			    e82545_carry(tcpsum);
1384 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1385 		}
1386 		e82545_transmit_backend(sc, tiov, tiovcnt);
1387 	}
1388 
1389 done:
1390 	head = (head + 1) % dsize;
1391 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1392 
1393 	*rhead = head;
1394 	return (desc + 1);
1395 }
1396 
1397 static void
1398 e82545_tx_run(struct e82545_softc *sc)
1399 {
1400 	uint32_t cause;
1401 	uint16_t head, rhead, tail, size;
1402 	int lim, tdwb, sent;
1403 
1404 	head = sc->esc_TDH;
1405 	tail = sc->esc_TDT;
1406 	size = sc->esc_TDLEN / 16;
1407 	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1408 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1409 
1410 	pthread_mutex_unlock(&sc->esc_mtx);
1411 	rhead = head;
1412 	tdwb = 0;
1413 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1414 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1415 		if (sent == 0)
1416 			break;
1417 		head = rhead;
1418 	}
1419 	pthread_mutex_lock(&sc->esc_mtx);
1420 
1421 	sc->esc_TDH = head;
1422 	sc->esc_TDHr = rhead;
1423 	cause = 0;
1424 	if (tdwb)
1425 		cause |= E1000_ICR_TXDW;
1426 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1427 		cause |= E1000_ICR_TXQE;
1428 	if (cause)
1429 		e82545_icr_assert(sc, cause);
1430 
1431 	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1432 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1433 }
1434 
1435 static void *
1436 e82545_tx_thread(void *param)
1437 {
1438 	struct e82545_softc *sc = param;
1439 
1440 	pthread_mutex_lock(&sc->esc_mtx);
1441 	for (;;) {
1442 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1443 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1444 				break;
1445 			sc->esc_tx_active = 0;
1446 			if (sc->esc_tx_enabled == 0)
1447 				pthread_cond_signal(&sc->esc_tx_cond);
1448 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1449 		}
1450 		sc->esc_tx_active = 1;
1451 
1452 		/* Process some tx descriptors.  Lock dropped inside. */
1453 		e82545_tx_run(sc);
1454 	}
1455 #ifndef	__FreeBSD__
1456 	return (NULL);
1457 #endif
1458 }
1459 
1460 static void
1461 e82545_tx_start(struct e82545_softc *sc)
1462 {
1463 
1464 	if (sc->esc_tx_active == 0)
1465 		pthread_cond_signal(&sc->esc_tx_cond);
1466 }
1467 
1468 static void
1469 e82545_tx_enable(struct e82545_softc *sc)
1470 {
1471 
1472 	sc->esc_tx_enabled = 1;
1473 }
1474 
1475 static void
1476 e82545_tx_disable(struct e82545_softc *sc)
1477 {
1478 
1479 	sc->esc_tx_enabled = 0;
1480 	while (sc->esc_tx_active)
1481 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1482 }
1483 
1484 static void
1485 e82545_rx_enable(struct e82545_softc *sc)
1486 {
1487 
1488 	sc->esc_rx_enabled = 1;
1489 }
1490 
1491 static void
1492 e82545_rx_disable(struct e82545_softc *sc)
1493 {
1494 
1495 	sc->esc_rx_enabled = 0;
1496 	while (sc->esc_rx_active)
1497 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1498 }
1499 
1500 static void
1501 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1502 {
1503 	struct eth_uni *eu;
1504 	int idx;
1505 
1506 	idx = reg >> 1;
1507 	assert(idx < 15);
1508 
1509 	eu = &sc->esc_uni[idx];
1510 
1511 	if (reg & 0x1) {
1512 		/* RAH */
1513 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1514 		eu->eu_addrsel = (wval >> 16) & 0x3;
1515 		eu->eu_eth.octet[5] = wval >> 8;
1516 		eu->eu_eth.octet[4] = wval;
1517 	} else {
1518 		/* RAL */
1519 		eu->eu_eth.octet[3] = wval >> 24;
1520 		eu->eu_eth.octet[2] = wval >> 16;
1521 		eu->eu_eth.octet[1] = wval >> 8;
1522 		eu->eu_eth.octet[0] = wval;
1523 	}
1524 }
1525 
1526 static uint32_t
1527 e82545_read_ra(struct e82545_softc *sc, int reg)
1528 {
1529 	struct eth_uni *eu;
1530 	uint32_t retval;
1531 	int idx;
1532 
1533 	idx = reg >> 1;
1534 	assert(idx < 15);
1535 
1536 	eu = &sc->esc_uni[idx];
1537 
1538 	if (reg & 0x1) {
1539 		/* RAH */
1540 		retval = (eu->eu_valid << 31) |
1541 			 (eu->eu_addrsel << 16) |
1542 			 (eu->eu_eth.octet[5] << 8) |
1543 			 eu->eu_eth.octet[4];
1544 	} else {
1545 		/* RAL */
1546 		retval = (eu->eu_eth.octet[3] << 24) |
1547 			 (eu->eu_eth.octet[2] << 16) |
1548 			 (eu->eu_eth.octet[1] << 8) |
1549 			 eu->eu_eth.octet[0];
1550 	}
1551 
1552 	return (retval);
1553 }
1554 
1555 static void
1556 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1557 {
1558 	int ridx;
1559 
1560 	if (offset & 0x3) {
1561 		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1562 		return;
1563 	}
1564 	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1565 
1566 	switch (offset) {
1567 	case E1000_CTRL:
1568 	case E1000_CTRL_DUP:
1569 		e82545_devctl(sc, value);
1570 		break;
1571 	case E1000_FCAL:
1572 		sc->esc_FCAL = value;
1573 		break;
1574 	case E1000_FCAH:
1575 		sc->esc_FCAH = value & ~0xFFFF0000;
1576 		break;
1577 	case E1000_FCT:
1578 		sc->esc_FCT = value & ~0xFFFF0000;
1579 		break;
1580 	case E1000_VET:
1581 		sc->esc_VET = value & ~0xFFFF0000;
1582 		break;
1583 	case E1000_FCTTV:
1584 		sc->esc_FCTTV = value & ~0xFFFF0000;
1585 		break;
1586 	case E1000_LEDCTL:
1587 		sc->esc_LEDCTL = value & ~0x30303000;
1588 		break;
1589 	case E1000_PBA:
1590 		sc->esc_PBA = value & 0x0000FF80;
1591 		break;
1592 	case E1000_ICR:
1593 	case E1000_ITR:
1594 	case E1000_ICS:
1595 	case E1000_IMS:
1596 	case E1000_IMC:
1597 		e82545_intr_write(sc, offset, value);
1598 		break;
1599 	case E1000_RCTL:
1600 		e82545_rx_ctl(sc, value);
1601 		break;
1602 	case E1000_FCRTL:
1603 		sc->esc_FCRTL = value & ~0xFFFF0007;
1604 		break;
1605 	case E1000_FCRTH:
1606 		sc->esc_FCRTH = value & ~0xFFFF0007;
1607 		break;
1608 	case E1000_RDBAL(0):
1609 		sc->esc_RDBAL = value & ~0xF;
1610 		if (sc->esc_rx_enabled) {
1611 			/* Apparently legal: update cached address */
1612 			e82545_rx_update_rdba(sc);
1613 		}
1614 		break;
1615 	case E1000_RDBAH(0):
1616 		assert(!sc->esc_rx_enabled);
1617 		sc->esc_RDBAH = value;
1618 		break;
1619 	case E1000_RDLEN(0):
1620 		assert(!sc->esc_rx_enabled);
1621 		sc->esc_RDLEN = value & ~0xFFF0007F;
1622 		break;
1623 	case E1000_RDH(0):
1624 		/* XXX should only ever be zero ? Range check ? */
1625 		sc->esc_RDH = value;
1626 		break;
1627 	case E1000_RDT(0):
1628 		/* XXX if this opens up the rx ring, do something ? */
1629 		sc->esc_RDT = value;
1630 		break;
1631 	case E1000_RDTR:
1632 		/* ignore FPD bit 31 */
1633 		sc->esc_RDTR = value & ~0xFFFF0000;
1634 		break;
1635 	case E1000_RXDCTL(0):
1636 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1637 		break;
1638 	case E1000_RADV:
1639 		sc->esc_RADV = value & ~0xFFFF0000;
1640 		break;
1641 	case E1000_RSRPD:
1642 		sc->esc_RSRPD = value & ~0xFFFFF000;
1643 		break;
1644 	case E1000_RXCSUM:
1645 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1646 		break;
1647 	case E1000_TXCW:
1648 		sc->esc_TXCW = value & ~0x3FFF0000;
1649 		break;
1650 	case E1000_TCTL:
1651 		e82545_tx_ctl(sc, value);
1652 		break;
1653 	case E1000_TIPG:
1654 		sc->esc_TIPG = value;
1655 		break;
1656 	case E1000_AIT:
1657 		sc->esc_AIT = value;
1658 		break;
1659 	case E1000_TDBAL(0):
1660 		sc->esc_TDBAL = value & ~0xF;
1661 		if (sc->esc_tx_enabled) {
1662 			/* Apparently legal */
1663 			e82545_tx_update_tdba(sc);
1664 		}
1665 		break;
1666 	case E1000_TDBAH(0):
1667 		//assert(!sc->esc_tx_enabled);
1668 		sc->esc_TDBAH = value;
1669 		break;
1670 	case E1000_TDLEN(0):
1671 		//assert(!sc->esc_tx_enabled);
1672 		sc->esc_TDLEN = value & ~0xFFF0007F;
1673 		break;
1674 	case E1000_TDH(0):
1675 		//assert(!sc->esc_tx_enabled);
1676 		/* XXX should only ever be zero ? Range check ? */
1677 		sc->esc_TDHr = sc->esc_TDH = value;
1678 		break;
1679 	case E1000_TDT(0):
1680 		/* XXX range check ? */
1681 		sc->esc_TDT = value;
1682 		if (sc->esc_tx_enabled)
1683 			e82545_tx_start(sc);
1684 		break;
1685 	case E1000_TIDV:
1686 		sc->esc_TIDV = value & ~0xFFFF0000;
1687 		break;
1688 	case E1000_TXDCTL(0):
1689 		//assert(!sc->esc_tx_enabled);
1690 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1691 		break;
1692 	case E1000_TADV:
1693 		sc->esc_TADV = value & ~0xFFFF0000;
1694 		break;
1695 	case E1000_RAL(0) ... E1000_RAH(15):
1696 		/* convert to u32 offset */
1697 		ridx = (offset - E1000_RAL(0)) >> 2;
1698 		e82545_write_ra(sc, ridx, value);
1699 		break;
1700 	case E1000_MTA ... (E1000_MTA + (127*4)):
1701 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1702 		break;
1703 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1704 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1705 		break;
1706 	case E1000_EECD:
1707 	{
1708 		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1709 		/* edge triggered low->high */
1710 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1711 			0 : (value & E1000_EECD_SK));
1712 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1713 					E1000_EECD_DI|E1000_EECD_REQ);
1714 		sc->eeprom_control &= ~eecd_mask;
1715 		sc->eeprom_control |= (value & eecd_mask);
1716 		/* grant/revoke immediately */
1717 		if (value & E1000_EECD_REQ) {
1718 			sc->eeprom_control |= E1000_EECD_GNT;
1719 		} else {
1720                         sc->eeprom_control &= ~E1000_EECD_GNT;
1721 		}
1722 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1723 			e82545_eecd_strobe(sc);
1724 		}
1725 		return;
1726 	}
1727 	case E1000_MDIC:
1728 	{
1729 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1730 						E1000_MDIC_REG_SHIFT);
1731 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1732 						E1000_MDIC_PHY_SHIFT);
1733 		sc->mdi_control =
1734 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1735 		if ((value & E1000_MDIC_READY) != 0) {
1736 			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1737 			return;
1738 		}
1739 		switch (value & E82545_MDIC_OP_MASK) {
1740 		case E1000_MDIC_OP_READ:
1741 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1742 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1743 			break;
1744 		case E1000_MDIC_OP_WRITE:
1745 			e82545_write_mdi(sc, reg_addr, phy_addr,
1746 				value & E82545_MDIC_DATA_MASK);
1747 			break;
1748 		default:
1749 			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1750 			return;
1751 		}
1752 		/* TODO: barrier? */
1753 		sc->mdi_control |= E1000_MDIC_READY;
1754 		if (value & E82545_MDIC_IE) {
1755 			// TODO: generate interrupt
1756 		}
1757 		return;
1758 	}
1759 	case E1000_MANC:
1760 	case E1000_STATUS:
1761 		return;
1762 	default:
1763 		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1764 		return;
1765 	}
1766 }
1767 
1768 static uint32_t
1769 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1770 {
1771 	uint32_t retval;
1772 	int ridx;
1773 
1774 	if (offset & 0x3) {
1775 		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1776 		return 0;
1777 	}
1778 
1779 	DPRINTF("Register read: 0x%x\r\n", offset);
1780 
1781 	switch (offset) {
1782 	case E1000_CTRL:
1783 		retval = sc->esc_CTRL;
1784 		break;
1785 	case E1000_STATUS:
1786 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1787 		    E1000_STATUS_SPEED_1000;
1788 		break;
1789 	case E1000_FCAL:
1790 		retval = sc->esc_FCAL;
1791 		break;
1792 	case E1000_FCAH:
1793 		retval = sc->esc_FCAH;
1794 		break;
1795 	case E1000_FCT:
1796 		retval = sc->esc_FCT;
1797 		break;
1798 	case E1000_VET:
1799 		retval = sc->esc_VET;
1800 		break;
1801 	case E1000_FCTTV:
1802 		retval = sc->esc_FCTTV;
1803 		break;
1804 	case E1000_LEDCTL:
1805 		retval = sc->esc_LEDCTL;
1806 		break;
1807 	case E1000_PBA:
1808 		retval = sc->esc_PBA;
1809 		break;
1810 	case E1000_ICR:
1811 	case E1000_ITR:
1812 	case E1000_ICS:
1813 	case E1000_IMS:
1814 	case E1000_IMC:
1815 		retval = e82545_intr_read(sc, offset);
1816 		break;
1817 	case E1000_RCTL:
1818 		retval = sc->esc_RCTL;
1819 		break;
1820 	case E1000_FCRTL:
1821 		retval = sc->esc_FCRTL;
1822 		break;
1823 	case E1000_FCRTH:
1824 		retval = sc->esc_FCRTH;
1825 		break;
1826 	case E1000_RDBAL(0):
1827 		retval = sc->esc_RDBAL;
1828 		break;
1829 	case E1000_RDBAH(0):
1830 		retval = sc->esc_RDBAH;
1831 		break;
1832 	case E1000_RDLEN(0):
1833 		retval = sc->esc_RDLEN;
1834 		break;
1835 	case E1000_RDH(0):
1836 		retval = sc->esc_RDH;
1837 		break;
1838 	case E1000_RDT(0):
1839 		retval = sc->esc_RDT;
1840 		break;
1841 	case E1000_RDTR:
1842 		retval = sc->esc_RDTR;
1843 		break;
1844 	case E1000_RXDCTL(0):
1845 		retval = sc->esc_RXDCTL;
1846 		break;
1847 	case E1000_RADV:
1848 		retval = sc->esc_RADV;
1849 		break;
1850 	case E1000_RSRPD:
1851 		retval = sc->esc_RSRPD;
1852 		break;
1853 	case E1000_RXCSUM:
1854 		retval = sc->esc_RXCSUM;
1855 		break;
1856 	case E1000_TXCW:
1857 		retval = sc->esc_TXCW;
1858 		break;
1859 	case E1000_TCTL:
1860 		retval = sc->esc_TCTL;
1861 		break;
1862 	case E1000_TIPG:
1863 		retval = sc->esc_TIPG;
1864 		break;
1865 	case E1000_AIT:
1866 		retval = sc->esc_AIT;
1867 		break;
1868 	case E1000_TDBAL(0):
1869 		retval = sc->esc_TDBAL;
1870 		break;
1871 	case E1000_TDBAH(0):
1872 		retval = sc->esc_TDBAH;
1873 		break;
1874 	case E1000_TDLEN(0):
1875 		retval = sc->esc_TDLEN;
1876 		break;
1877 	case E1000_TDH(0):
1878 		retval = sc->esc_TDH;
1879 		break;
1880 	case E1000_TDT(0):
1881 		retval = sc->esc_TDT;
1882 		break;
1883 	case E1000_TIDV:
1884 		retval = sc->esc_TIDV;
1885 		break;
1886 	case E1000_TXDCTL(0):
1887 		retval = sc->esc_TXDCTL;
1888 		break;
1889 	case E1000_TADV:
1890 		retval = sc->esc_TADV;
1891 		break;
1892 	case E1000_RAL(0) ... E1000_RAH(15):
1893 		/* convert to u32 offset */
1894 		ridx = (offset - E1000_RAL(0)) >> 2;
1895 		retval = e82545_read_ra(sc, ridx);
1896 		break;
1897 	case E1000_MTA ... (E1000_MTA + (127*4)):
1898 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1899 		break;
1900 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1901 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1902 		break;
1903 	case E1000_EECD:
1904 		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1905 		retval = sc->eeprom_control;
1906 		break;
1907 	case E1000_MDIC:
1908 		retval = sc->mdi_control;
1909 		break;
1910 	case E1000_MANC:
1911 		retval = 0;
1912 		break;
1913 	/* stats that we emulate. */
1914 	case E1000_MPC:
1915 		retval = sc->missed_pkt_count;
1916 		break;
1917 	case E1000_PRC64:
1918 		retval = sc->pkt_rx_by_size[0];
1919 		break;
1920 	case E1000_PRC127:
1921 		retval = sc->pkt_rx_by_size[1];
1922 		break;
1923 	case E1000_PRC255:
1924 		retval = sc->pkt_rx_by_size[2];
1925 		break;
1926 	case E1000_PRC511:
1927 		retval = sc->pkt_rx_by_size[3];
1928 		break;
1929 	case E1000_PRC1023:
1930 		retval = sc->pkt_rx_by_size[4];
1931 		break;
1932 	case E1000_PRC1522:
1933 		retval = sc->pkt_rx_by_size[5];
1934 		break;
1935 	case E1000_GPRC:
1936 		retval = sc->good_pkt_rx_count;
1937 		break;
1938 	case E1000_BPRC:
1939 		retval = sc->bcast_pkt_rx_count;
1940 		break;
1941 	case E1000_MPRC:
1942 		retval = sc->mcast_pkt_rx_count;
1943 		break;
1944 	case E1000_GPTC:
1945 	case E1000_TPT:
1946 		retval = sc->good_pkt_tx_count;
1947 		break;
1948 	case E1000_GORCL:
1949 		retval = (uint32_t)sc->good_octets_rx;
1950 		break;
1951 	case E1000_GORCH:
1952 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1953 		break;
1954 	case E1000_TOTL:
1955 	case E1000_GOTCL:
1956 		retval = (uint32_t)sc->good_octets_tx;
1957 		break;
1958 	case E1000_TOTH:
1959 	case E1000_GOTCH:
1960 		retval = (uint32_t)(sc->good_octets_tx >> 32);
1961 		break;
1962 	case E1000_ROC:
1963 		retval = sc->oversize_rx_count;
1964 		break;
1965 	case E1000_TORL:
1966 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1967 		break;
1968 	case E1000_TORH:
1969 		retval = (uint32_t)((sc->good_octets_rx +
1970 		    sc->missed_octets) >> 32);
1971 		break;
1972 	case E1000_TPR:
1973 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1974 		    sc->oversize_rx_count;
1975 		break;
1976 	case E1000_PTC64:
1977 		retval = sc->pkt_tx_by_size[0];
1978 		break;
1979 	case E1000_PTC127:
1980 		retval = sc->pkt_tx_by_size[1];
1981 		break;
1982 	case E1000_PTC255:
1983 		retval = sc->pkt_tx_by_size[2];
1984 		break;
1985 	case E1000_PTC511:
1986 		retval = sc->pkt_tx_by_size[3];
1987 		break;
1988 	case E1000_PTC1023:
1989 		retval = sc->pkt_tx_by_size[4];
1990 		break;
1991 	case E1000_PTC1522:
1992 		retval = sc->pkt_tx_by_size[5];
1993 		break;
1994 	case E1000_MPTC:
1995 		retval = sc->mcast_pkt_tx_count;
1996 		break;
1997 	case E1000_BPTC:
1998 		retval = sc->bcast_pkt_tx_count;
1999 		break;
2000 	case E1000_TSCTC:
2001 		retval = sc->tso_tx_count;
2002 		break;
2003 	/* stats that are always 0. */
2004 	case E1000_CRCERRS:
2005 	case E1000_ALGNERRC:
2006 	case E1000_SYMERRS:
2007 	case E1000_RXERRC:
2008 	case E1000_SCC:
2009 	case E1000_ECOL:
2010 	case E1000_MCC:
2011 	case E1000_LATECOL:
2012 	case E1000_COLC:
2013 	case E1000_DC:
2014 	case E1000_TNCRS:
2015 	case E1000_SEC:
2016 	case E1000_CEXTERR:
2017 	case E1000_RLEC:
2018 	case E1000_XONRXC:
2019 	case E1000_XONTXC:
2020 	case E1000_XOFFRXC:
2021 	case E1000_XOFFTXC:
2022 	case E1000_FCRUC:
2023 	case E1000_RNBC:
2024 	case E1000_RUC:
2025 	case E1000_RFC:
2026 	case E1000_RJC:
2027 	case E1000_MGTPRC:
2028 	case E1000_MGTPDC:
2029 	case E1000_MGTPTC:
2030 	case E1000_TSCTFC:
2031 		retval = 0;
2032 		break;
2033 	default:
2034 		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2035 		retval = 0;
2036 		break;
2037 	}
2038 
2039 	return (retval);
2040 }
2041 
2042 static void
2043 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2044 	     uint64_t offset, int size, uint64_t value)
2045 {
2046 	struct e82545_softc *sc;
2047 
2048 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2049 
2050 	sc = pi->pi_arg;
2051 
2052 	pthread_mutex_lock(&sc->esc_mtx);
2053 
2054 	switch (baridx) {
2055 	case E82545_BAR_IO:
2056 		switch (offset) {
2057 		case E82545_IOADDR:
2058 			if (size != 4) {
2059 				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2060 			} else
2061 				sc->io_addr = (uint32_t)value;
2062 			break;
2063 		case E82545_IODATA:
2064 			if (size != 4) {
2065 				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2066 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2067 				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2068 			} else
2069 				e82545_write_register(sc, sc->io_addr,
2070 						      (uint32_t)value);
2071 			break;
2072 		default:
2073 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2074 			break;
2075 		}
2076 		break;
2077 	case E82545_BAR_REGISTER:
2078 		if (size != 4) {
2079 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2080 		} else
2081 			e82545_write_register(sc, (uint32_t)offset,
2082 					      (uint32_t)value);
2083 		break;
2084 	default:
2085 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2086 			baridx, offset, value, size);
2087 	}
2088 
2089 	pthread_mutex_unlock(&sc->esc_mtx);
2090 }
2091 
2092 static uint64_t
2093 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2094 	    uint64_t offset, int size)
2095 {
2096 	struct e82545_softc *sc;
2097 	uint64_t retval;
2098 
2099 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2100 	sc = pi->pi_arg;
2101 	retval = 0;
2102 
2103 	pthread_mutex_lock(&sc->esc_mtx);
2104 
2105 	switch (baridx) {
2106 	case E82545_BAR_IO:
2107 		switch (offset) {
2108 		case E82545_IOADDR:
2109 			if (size != 4) {
2110 				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2111 			} else
2112 				retval = sc->io_addr;
2113 			break;
2114 		case E82545_IODATA:
2115 			if (size != 4) {
2116 				DPRINTF("Wrong io data read sz:%d\r\n", size);
2117 			}
2118 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2119 				DPRINTF("Non-register io read addr:0x%x\r\n",
2120 					sc->io_addr);
2121 			} else
2122 				retval = e82545_read_register(sc, sc->io_addr);
2123 			break;
2124 		default:
2125 			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2126 				offset, size);
2127 			break;
2128 		}
2129 		break;
2130 	case E82545_BAR_REGISTER:
2131 		if (size != 4) {
2132 			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2133 				size, offset);
2134 		} else
2135 			retval = e82545_read_register(sc, (uint32_t)offset);
2136 		break;
2137 	default:
2138 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2139 			baridx, offset, size);
2140 		break;
2141 	}
2142 
2143 	pthread_mutex_unlock(&sc->esc_mtx);
2144 
2145 	return (retval);
2146 }
2147 
2148 static void
2149 e82545_reset(struct e82545_softc *sc, int drvr)
2150 {
2151 	int i;
2152 
2153 	e82545_rx_disable(sc);
2154 	e82545_tx_disable(sc);
2155 
2156 	/* clear outstanding interrupts */
2157 	if (sc->esc_irq_asserted)
2158 		pci_lintr_deassert(sc->esc_pi);
2159 
2160 	/* misc */
2161 	if (!drvr) {
2162 		sc->esc_FCAL = 0;
2163 		sc->esc_FCAH = 0;
2164 		sc->esc_FCT = 0;
2165 		sc->esc_VET = 0;
2166 		sc->esc_FCTTV = 0;
2167 	}
2168 	sc->esc_LEDCTL = 0x07061302;
2169 	sc->esc_PBA = 0x00100030;
2170 
2171 	/* start nvm in opcode mode. */
2172 	sc->nvm_opaddr = 0;
2173 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2174 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2175 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2176 	e82545_init_eeprom(sc);
2177 
2178 	/* interrupt */
2179 	sc->esc_ICR = 0;
2180 	sc->esc_ITR = 250;
2181 	sc->esc_ICS = 0;
2182 	sc->esc_IMS = 0;
2183 	sc->esc_IMC = 0;
2184 
2185 	/* L2 filters */
2186 	if (!drvr) {
2187 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2188 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2189 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2190 
2191 		/* XXX not necessary on 82545 ?? */
2192 		sc->esc_uni[0].eu_valid = 1;
2193 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2194 		    ETHER_ADDR_LEN);
2195 	} else {
2196 		/* Clear RAH valid bits */
2197 		for (i = 0; i < 16; i++)
2198 			sc->esc_uni[i].eu_valid = 0;
2199 	}
2200 
2201 	/* receive */
2202 	if (!drvr) {
2203 		sc->esc_RDBAL = 0;
2204 		sc->esc_RDBAH = 0;
2205 	}
2206 	sc->esc_RCTL = 0;
2207 	sc->esc_FCRTL = 0;
2208 	sc->esc_FCRTH = 0;
2209 	sc->esc_RDLEN = 0;
2210 	sc->esc_RDH = 0;
2211 	sc->esc_RDT = 0;
2212 	sc->esc_RDTR = 0;
2213 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2214 	sc->esc_RADV = 0;
2215 	sc->esc_RXCSUM = 0;
2216 
2217 	/* transmit */
2218 	if (!drvr) {
2219 		sc->esc_TDBAL = 0;
2220 		sc->esc_TDBAH = 0;
2221 		sc->esc_TIPG = 0;
2222 		sc->esc_AIT = 0;
2223 		sc->esc_TIDV = 0;
2224 		sc->esc_TADV = 0;
2225 	}
2226 	sc->esc_tdba = 0;
2227 	sc->esc_txdesc = NULL;
2228 	sc->esc_TXCW = 0;
2229 	sc->esc_TCTL = 0;
2230 	sc->esc_TDLEN = 0;
2231 	sc->esc_TDT = 0;
2232 	sc->esc_TDHr = sc->esc_TDH = 0;
2233 	sc->esc_TXDCTL = 0;
2234 }
2235 
2236 static void
2237 e82545_open_tap(struct e82545_softc *sc, char *opts)
2238 {
2239 	char tbuf[80];
2240 #ifndef WITHOUT_CAPSICUM
2241 	cap_rights_t rights;
2242 #endif
2243 
2244 	if (opts == NULL) {
2245 		sc->esc_tapfd = -1;
2246 		return;
2247 	}
2248 
2249 	strcpy(tbuf, "/dev/");
2250 	strlcat(tbuf, opts, sizeof(tbuf));
2251 
2252 	sc->esc_tapfd = open(tbuf, O_RDWR);
2253 	if (sc->esc_tapfd == -1) {
2254 		DPRINTF("unable to open tap device %s\n", opts);
2255 		exit(4);
2256 	}
2257 
2258 	/*
2259 	 * Set non-blocking and register for read
2260 	 * notifications with the event loop
2261 	 */
2262 	int opt = 1;
2263 	if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
2264 		WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
2265 		close(sc->esc_tapfd);
2266 		sc->esc_tapfd = -1;
2267 	}
2268 
2269 #ifndef WITHOUT_CAPSICUM
2270 	cap_rights_init(&rights, CAP_EVENT, CAP_READ, CAP_WRITE);
2271 	if (caph_rights_limit(sc->esc_tapfd, &rights) == -1)
2272 		errx(EX_OSERR, "Unable to apply rights for sandbox");
2273 #endif
2274 
2275 #ifdef	__FreeBSD__
2276 	sc->esc_mevp = mevent_add(sc->esc_tapfd,
2277 				  EVF_READ,
2278 				  e82545_tap_callback,
2279 				  sc);
2280 	if (sc->esc_mevp == NULL) {
2281 		DPRINTF("Could not register mevent %d\n", EVF_READ);
2282 		close(sc->esc_tapfd);
2283 		sc->esc_tapfd = -1;
2284 	}
2285 #endif
2286 }
2287 
2288 static int
2289 e82545_parsemac(char *mac_str, uint8_t *mac_addr)
2290 {
2291 	struct ether_addr *ea;
2292 	char *tmpstr;
2293 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2294 
2295 	tmpstr = strsep(&mac_str,"=");
2296 	if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
2297 		ea = ether_aton(mac_str);
2298 		if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
2299 		    memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
2300 			fprintf(stderr, "Invalid MAC %s\n", mac_str);
2301 			return (1);
2302 		} else
2303 			memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
2304 	}
2305 	return (0);
2306 }
2307 
2308 static int
2309 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2310 {
2311 	DPRINTF("Loading with options: %s\r\n", opts);
2312 
2313 	MD5_CTX mdctx;
2314 	unsigned char digest[16];
2315 	char nstr[80];
2316 	struct e82545_softc *sc;
2317 	char *devname;
2318 	char *vtopts;
2319 	int mac_provided;
2320 
2321 	/* Setup our softc */
2322 	sc = calloc(1, sizeof(*sc));
2323 
2324 	pi->pi_arg = sc;
2325 	sc->esc_pi = pi;
2326 	sc->esc_ctx = ctx;
2327 
2328 	pthread_mutex_init(&sc->esc_mtx, NULL);
2329 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2330 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2331 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2332 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2333 	    pi->pi_func);
2334         pthread_set_name_np(sc->esc_tx_tid, nstr);
2335 
2336 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2337 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2338 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2339 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2340 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2341 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2342 
2343 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2344 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2345 
2346 	/* TODO: this card also supports msi, but the freebsd driver for it
2347 	 * does not, so I have not implemented it. */
2348 	pci_lintr_request(pi);
2349 
2350 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2351 		E82545_BAR_REGISTER_LEN);
2352 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2353 		E82545_BAR_FLASH_LEN);
2354 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2355 		E82545_BAR_IO_LEN);
2356 
2357 	/*
2358 	 * Attempt to open the tap device and read the MAC address
2359 	 * if specified.  Copied from virtio-net, slightly modified.
2360 	 */
2361 	mac_provided = 0;
2362 	sc->esc_tapfd = -1;
2363 	if (opts != NULL) {
2364 		int err;
2365 
2366 		devname = vtopts = strdup(opts);
2367 		(void) strsep(&vtopts, ",");
2368 
2369 		if (vtopts != NULL) {
2370 			err = e82545_parsemac(vtopts, sc->esc_mac.octet);
2371 			if (err != 0) {
2372 				free(devname);
2373 				return (err);
2374 			}
2375 			mac_provided = 1;
2376 		}
2377 
2378 		if (strncmp(devname, "tap", 3) == 0 ||
2379 		    strncmp(devname, "vmnet", 5) == 0)
2380 			e82545_open_tap(sc, devname);
2381 
2382 		free(devname);
2383 	}
2384 
2385 	/*
2386 	 * The default MAC address is the standard NetApp OUI of 00-a0-98,
2387 	 * followed by an MD5 of the PCI slot/func number and dev name
2388 	 */
2389 	if (!mac_provided) {
2390 		snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
2391 		    pi->pi_func, vmname);
2392 
2393 		MD5Init(&mdctx);
2394 		MD5Update(&mdctx, nstr, strlen(nstr));
2395 		MD5Final(digest, &mdctx);
2396 
2397 		sc->esc_mac.octet[0] = 0x00;
2398 		sc->esc_mac.octet[1] = 0xa0;
2399 		sc->esc_mac.octet[2] = 0x98;
2400 		sc->esc_mac.octet[3] = digest[0];
2401 		sc->esc_mac.octet[4] = digest[1];
2402 		sc->esc_mac.octet[5] = digest[2];
2403 	}
2404 
2405 	/* H/w initiated reset */
2406 	e82545_reset(sc, 0);
2407 
2408 	return (0);
2409 }
2410 
2411 struct pci_devemu pci_de_e82545 = {
2412 	.pe_emu = 	"e1000",
2413 	.pe_init =	e82545_init,
2414 	.pe_barwrite =	e82545_write,
2415 	.pe_barread =	e82545_read
2416 };
2417 PCI_EMUL_SET(pci_de_e82545);
2418 
2419