xref: /illumos-gate/usr/src/cmd/bhyve/pci_e82545.c (revision 32640292339b07090f10ce34d455f98711077343)
1 /*
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 
34 #include <sys/types.h>
35 #ifndef WITHOUT_CAPSICUM
36 #include <sys/capsicum.h>
37 #endif
38 #include <sys/limits.h>
39 #include <sys/ioctl.h>
40 #include <sys/uio.h>
41 #include <net/ethernet.h>
42 #include <netinet/in.h>
43 #include <netinet/tcp.h>
44 
45 #ifndef WITHOUT_CAPSICUM
46 #include <capsicum_helpers.h>
47 #endif
48 
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <md5.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <sysexits.h>
57 #include <unistd.h>
58 #include <pthread.h>
59 #include <pthread_np.h>
60 
61 #include "e1000_regs.h"
62 #include "e1000_defines.h"
63 #include "mii.h"
64 
65 #include "bhyverun.h"
66 #include "config.h"
67 #include "debug.h"
68 #include "pci_emul.h"
69 #include "mevent.h"
70 #include "net_utils.h"
71 #include "net_backends.h"
72 
73 /* Hardware/register definitions XXX: move some to common code. */
74 #define E82545_VENDOR_ID_INTEL			0x8086
75 #define E82545_DEV_ID_82545EM_COPPER		0x100F
76 #define E82545_SUBDEV_ID			0x1008
77 
78 #define E82545_REVISION_4			4
79 
80 #define E82545_MDIC_DATA_MASK			0x0000FFFF
81 #define E82545_MDIC_OP_MASK			0x0c000000
82 #define E82545_MDIC_IE				0x20000000
83 
84 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
85 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
86 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
87 
88 #define E82545_BAR_REGISTER			0
89 #define E82545_BAR_REGISTER_LEN			(128*1024)
90 #define E82545_BAR_FLASH			1
91 #define E82545_BAR_FLASH_LEN			(64*1024)
92 #define E82545_BAR_IO				2
93 #define E82545_BAR_IO_LEN			8
94 
95 #define E82545_IOADDR				0x00000000
96 #define E82545_IODATA				0x00000004
97 #define E82545_IO_REGISTER_MAX			0x0001FFFF
98 #define E82545_IO_FLASH_BASE			0x00080000
99 #define E82545_IO_FLASH_MAX			0x000FFFFF
100 
101 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
102 #define E82545_RAR_MAX				15
103 #define E82545_MTA_MAX				127
104 #define E82545_VFTA_MAX				127
105 
106 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
107  * followed by 6 address bits.
108  * TODO: make opcode bits and addr bits configurable?
109  * NVM Commands - Microwire */
110 #define E82545_NVM_OPCODE_BITS	3
111 #define E82545_NVM_ADDR_BITS	6
112 #define E82545_NVM_DATA_BITS	16
113 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
114 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
115 #define E82545_NVM_OPCODE_MASK	\
116     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
117 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
118 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
119 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
120 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
121 
122 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
123 
124 #define E1000_ICR_SRPD		0x00010000
125 
126 /* This is an arbitrary number.  There is no hard limit on the chip. */
127 #define I82545_MAX_TXSEGS	64
128 
129 /* Legacy receive descriptor */
130 struct e1000_rx_desc {
131 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
132 	uint16_t length;	/* Length of data DMAed into data buffer */
133 	uint16_t csum;		/* Packet checksum */
134 	uint8_t	 status;       	/* Descriptor status */
135 	uint8_t  errors;	/* Descriptor Errors */
136 	uint16_t special;
137 };
138 
139 /* Transmit descriptor types */
140 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
141 #define E1000_TXD_TYP_L		(0)
142 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
143 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
144 
145 /* Legacy transmit descriptor */
146 struct e1000_tx_desc {
147 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
148 	union {
149 		uint32_t data;
150 		struct {
151 			uint16_t length;  /* Data buffer length */
152 			uint8_t  cso;  /* Checksum offset */
153 			uint8_t  cmd;  /* Descriptor control */
154 		} flags;
155 	} lower;
156 	union {
157 		uint32_t data;
158 		struct {
159 			uint8_t status; /* Descriptor status */
160 			uint8_t css;  /* Checksum start */
161 			uint16_t special;
162 		} fields;
163 	} upper;
164 };
165 
166 /* Context descriptor */
167 struct e1000_context_desc {
168 	union {
169 		uint32_t ip_config;
170 		struct {
171 			uint8_t ipcss;  /* IP checksum start */
172 			uint8_t ipcso;  /* IP checksum offset */
173 			uint16_t ipcse;  /* IP checksum end */
174 		} ip_fields;
175 	} lower_setup;
176 	union {
177 		uint32_t tcp_config;
178 		struct {
179 			uint8_t tucss;  /* TCP checksum start */
180 			uint8_t tucso;  /* TCP checksum offset */
181 			uint16_t tucse;  /* TCP checksum end */
182 		} tcp_fields;
183 	} upper_setup;
184 	uint32_t cmd_and_length;
185 	union {
186 		uint32_t data;
187 		struct {
188 			uint8_t status;  /* Descriptor status */
189 			uint8_t hdr_len;  /* Header length */
190 			uint16_t mss;  /* Maximum segment size */
191 		} fields;
192 	} tcp_seg_setup;
193 };
194 
195 /* Data descriptor */
196 struct e1000_data_desc {
197 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
198 	union {
199 		uint32_t data;
200 		struct {
201 			uint16_t length;  /* Data buffer length */
202 			uint8_t typ_len_ext;
203 			uint8_t cmd;
204 		} flags;
205 	} lower;
206 	union {
207 		uint32_t data;
208 		struct {
209 			uint8_t status;  /* Descriptor status */
210 			uint8_t popts;  /* Packet Options */
211 			uint16_t special;
212 		} fields;
213 	} upper;
214 };
215 
216 union e1000_tx_udesc {
217 	struct e1000_tx_desc td;
218 	struct e1000_context_desc cd;
219 	struct e1000_data_desc dd;
220 };
221 
222 /* Tx checksum info for a packet. */
223 struct ck_info {
224 	int	ck_valid;	/* ck_info is valid */
225 	uint8_t	ck_start;	/* start byte of cksum calcuation */
226 	uint8_t	ck_off;		/* offset of cksum insertion */
227 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
228 };
229 
230 /*
231  * Debug printf
232  */
233 static int e82545_debug = 0;
234 #define WPRINTF(msg,params...) PRINTLN("e82545: " msg, ##params)
235 #define DPRINTF(msg,params...) if (e82545_debug) WPRINTF(msg, params)
236 
237 #define	MIN(a,b) (((a)<(b))?(a):(b))
238 #define	MAX(a,b) (((a)>(b))?(a):(b))
239 
240 /* s/w representation of the RAL/RAH regs */
241 struct  eth_uni {
242 	int		eu_valid;
243 	int		eu_addrsel;
244 	struct ether_addr eu_eth;
245 };
246 
247 
248 struct e82545_softc {
249 	struct pci_devinst *esc_pi;
250 	struct vmctx	*esc_ctx;
251 	struct mevent   *esc_mevpitr;
252 	pthread_mutex_t	esc_mtx;
253 	struct ether_addr esc_mac;
254 	net_backend_t	*esc_be;
255 
256 	/* General */
257 	uint32_t	esc_CTRL;	/* x0000 device ctl */
258 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
259 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
260 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
261 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
262 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
263 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
264 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
265 
266 	/* Interrupt control */
267 	int		esc_irq_asserted;
268 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
269 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
270 	uint32_t	esc_ICS;	/* x00C8 cause set */
271 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
272 	uint32_t	esc_IMC;	/* x00D8 mask clear */
273 
274 	/* Transmit */
275 	union e1000_tx_udesc *esc_txdesc;
276 	struct e1000_context_desc esc_txctx;
277 	pthread_t	esc_tx_tid;
278 	pthread_cond_t	esc_tx_cond;
279 	int		esc_tx_enabled;
280 	int		esc_tx_active;
281 	uint32_t	esc_TXCW;	/* x0178 transmit config */
282 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
283 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
284 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
285 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
286 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
287 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
288 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
289 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
290 	uint16_t	esc_TDHr;	/* internal read version of TDH */
291 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
292 	uint32_t	esc_TIDV;	/* x3820 intr delay */
293 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
294 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
295 
296 	/* L2 frame acceptance */
297 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
298 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
299 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
300 
301 	/* Receive */
302 	struct e1000_rx_desc *esc_rxdesc;
303 	pthread_cond_t	esc_rx_cond;
304 	int		esc_rx_enabled;
305 	int		esc_rx_active;
306 	int		esc_rx_loopback;
307 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
308 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
309 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
310 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
311 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
312 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
313 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
314 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
315 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
316 	uint32_t	esc_RDTR;	/* x2820 intr delay */
317 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
318 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
319 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
320 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
321 
322 	/* IO Port register access */
323 	uint32_t io_addr;
324 
325 	/* Shadow copy of MDIC */
326 	uint32_t mdi_control;
327 	/* Shadow copy of EECD */
328 	uint32_t eeprom_control;
329 	/* Latest NVM in/out */
330 	uint16_t nvm_data;
331 	uint16_t nvm_opaddr;
332 	/* stats */
333 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
334 	uint32_t pkt_rx_by_size[6];
335 	uint32_t pkt_tx_by_size[6];
336 	uint32_t good_pkt_rx_count;
337 	uint32_t bcast_pkt_rx_count;
338 	uint32_t mcast_pkt_rx_count;
339 	uint32_t good_pkt_tx_count;
340 	uint32_t bcast_pkt_tx_count;
341 	uint32_t mcast_pkt_tx_count;
342 	uint32_t oversize_rx_count;
343 	uint32_t tso_tx_count;
344 	uint64_t good_octets_rx;
345 	uint64_t good_octets_tx;
346 	uint64_t missed_octets; /* counts missed and oversized */
347 
348 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
349 	uint8_t nvm_mode:2;
350 #define E82545_NVM_MODE_OPADDR  0x0
351 #define E82545_NVM_MODE_DATAIN  0x1
352 #define E82545_NVM_MODE_DATAOUT 0x2
353 	/* EEPROM data */
354 	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
355 };
356 
357 static void e82545_reset(struct e82545_softc *sc, int dev);
358 static void e82545_rx_enable(struct e82545_softc *sc);
359 static void e82545_rx_disable(struct e82545_softc *sc);
360 static void e82545_rx_callback(int fd, enum ev_type type, void *param);
361 static void e82545_tx_start(struct e82545_softc *sc);
362 static void e82545_tx_enable(struct e82545_softc *sc);
363 static void e82545_tx_disable(struct e82545_softc *sc);
364 
365 static inline int __unused
e82545_size_stat_index(uint32_t size)366 e82545_size_stat_index(uint32_t size)
367 {
368 	if (size <= 64) {
369 		return 0;
370 	} else if (size >= 1024) {
371 		return 5;
372 	} else {
373 		/* should be 1-4 */
374 		return (ffs(size) - 6);
375 	}
376 }
377 
378 static void
e82545_init_eeprom(struct e82545_softc * sc)379 e82545_init_eeprom(struct e82545_softc *sc)
380 {
381 	uint16_t checksum, i;
382 
383         /* mac addr */
384 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
385 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
386 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
387 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
388 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
389 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
390 
391 	/* pci ids */
392 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
393 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
394 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
395 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
396 
397 	/* fill in the checksum */
398         checksum = 0;
399 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
400 		checksum += sc->eeprom_data[i];
401 	}
402 	checksum = NVM_SUM - checksum;
403 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
404 	DPRINTF("eeprom checksum: 0x%x", checksum);
405 }
406 
407 static void
e82545_write_mdi(struct e82545_softc * sc __unused,uint8_t reg_addr,uint8_t phy_addr,uint32_t data)408 e82545_write_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr,
409     uint8_t phy_addr, uint32_t data)
410 {
411 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x", reg_addr, phy_addr, data);
412 }
413 
414 static uint32_t
e82545_read_mdi(struct e82545_softc * sc __unused,uint8_t reg_addr,uint8_t phy_addr)415 e82545_read_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr,
416     uint8_t phy_addr)
417 {
418 	//DPRINTF("Read mdi reg:0x%x phy:0x%x", reg_addr, phy_addr);
419 	switch (reg_addr) {
420 	case PHY_STATUS:
421 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
422 			MII_SR_AUTONEG_COMPLETE);
423 	case PHY_AUTONEG_ADV:
424 		return NWAY_AR_SELECTOR_FIELD;
425 	case PHY_LP_ABILITY:
426 		return 0;
427 	case PHY_1000T_STATUS:
428 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
429 			SR_1000T_LOCAL_RX_STATUS);
430 	case PHY_ID1:
431 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
432 	case PHY_ID2:
433 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
434 	default:
435 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x", reg_addr, phy_addr);
436 		return 0;
437 	}
438 	/* not reached */
439 }
440 
441 static void
e82545_eecd_strobe(struct e82545_softc * sc)442 e82545_eecd_strobe(struct e82545_softc *sc)
443 {
444 	/* Microwire state machine */
445 	/*
446 	DPRINTF("eeprom state machine srtobe "
447 		"0x%x 0x%x 0x%x 0x%x",
448 		sc->nvm_mode, sc->nvm_bits,
449 		sc->nvm_opaddr, sc->nvm_data);*/
450 
451 	if (sc->nvm_bits == 0) {
452 		DPRINTF("eeprom state machine not expecting data! "
453 			"0x%x 0x%x 0x%x 0x%x",
454 			sc->nvm_mode, sc->nvm_bits,
455 			sc->nvm_opaddr, sc->nvm_data);
456 		return;
457 	}
458 	sc->nvm_bits--;
459 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
460 		/* shifting out */
461 		if (sc->nvm_data & 0x8000) {
462 			sc->eeprom_control |= E1000_EECD_DO;
463 		} else {
464 			sc->eeprom_control &= ~E1000_EECD_DO;
465 		}
466 		sc->nvm_data <<= 1;
467 		if (sc->nvm_bits == 0) {
468 			/* read done, back to opcode mode. */
469 			sc->nvm_opaddr = 0;
470 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
471 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
472 		}
473 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
474 		/* shifting in */
475 		sc->nvm_data <<= 1;
476 		if (sc->eeprom_control & E1000_EECD_DI) {
477 			sc->nvm_data |= 1;
478 		}
479 		if (sc->nvm_bits == 0) {
480 			/* eeprom write */
481 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
482 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
483 			if (op != E82545_NVM_OPCODE_WRITE) {
484 				DPRINTF("Illegal eeprom write op 0x%x",
485 					sc->nvm_opaddr);
486 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
487 				DPRINTF("Illegal eeprom write addr 0x%x",
488 					sc->nvm_opaddr);
489 			} else {
490 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x",
491 				addr, sc->nvm_data);
492 				sc->eeprom_data[addr] = sc->nvm_data;
493 			}
494 			/* back to opcode mode */
495 			sc->nvm_opaddr = 0;
496 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
497 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
498 		}
499 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
500 		sc->nvm_opaddr <<= 1;
501 		if (sc->eeprom_control & E1000_EECD_DI) {
502 			sc->nvm_opaddr |= 1;
503 		}
504 		if (sc->nvm_bits == 0) {
505 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
506 			switch (op) {
507 			case E82545_NVM_OPCODE_EWEN:
508 				DPRINTF("eeprom write enable: 0x%x",
509 					sc->nvm_opaddr);
510 				/* back to opcode mode */
511 				sc->nvm_opaddr = 0;
512 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
513 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
514 				break;
515 			case E82545_NVM_OPCODE_READ:
516 			{
517 				uint16_t addr = sc->nvm_opaddr &
518 					E82545_NVM_ADDR_MASK;
519 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
520 				sc->nvm_bits = E82545_NVM_DATA_BITS;
521 				if (addr < E82545_NVM_EEPROM_SIZE) {
522 					sc->nvm_data = sc->eeprom_data[addr];
523 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x",
524 						addr, sc->nvm_data);
525 				} else {
526 					DPRINTF("eeprom illegal read: 0x%x",
527 						sc->nvm_opaddr);
528 					sc->nvm_data = 0;
529 				}
530 				break;
531 			}
532 			case E82545_NVM_OPCODE_WRITE:
533 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
534 				sc->nvm_bits = E82545_NVM_DATA_BITS;
535 				sc->nvm_data = 0;
536 				break;
537 			default:
538 				DPRINTF("eeprom unknown op: 0x%x",
539 					sc->nvm_opaddr);
540 				/* back to opcode mode */
541 				sc->nvm_opaddr = 0;
542 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
543 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
544 			}
545 		}
546 	} else {
547 		DPRINTF("eeprom state machine wrong state! "
548 			"0x%x 0x%x 0x%x 0x%x",
549 			sc->nvm_mode, sc->nvm_bits,
550 			sc->nvm_opaddr, sc->nvm_data);
551 	}
552 }
553 
554 static void
e82545_itr_callback(int fd __unused,enum ev_type type __unused,void * param)555 e82545_itr_callback(int fd __unused, enum ev_type type __unused, void *param)
556 {
557 	uint32_t new;
558 	struct e82545_softc *sc = param;
559 
560 	pthread_mutex_lock(&sc->esc_mtx);
561 	new = sc->esc_ICR & sc->esc_IMS;
562 	if (new && !sc->esc_irq_asserted) {
563 		DPRINTF("itr callback: lintr assert %x", new);
564 		sc->esc_irq_asserted = 1;
565 		pci_lintr_assert(sc->esc_pi);
566 	} else {
567 		mevent_delete(sc->esc_mevpitr);
568 		sc->esc_mevpitr = NULL;
569 	}
570 	pthread_mutex_unlock(&sc->esc_mtx);
571 }
572 
573 static void
e82545_icr_assert(struct e82545_softc * sc,uint32_t bits)574 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
575 {
576 	uint32_t new;
577 
578 	DPRINTF("icr assert: 0x%x", bits);
579 
580 	/*
581 	 * An interrupt is only generated if bits are set that
582 	 * aren't already in the ICR, these bits are unmasked,
583 	 * and there isn't an interrupt already pending.
584 	 */
585 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
586 	sc->esc_ICR |= bits;
587 
588 	if (new == 0) {
589 		DPRINTF("icr assert: masked %x, ims %x", new, sc->esc_IMS);
590 	} else if (sc->esc_mevpitr != NULL) {
591 		DPRINTF("icr assert: throttled %x, ims %x", new, sc->esc_IMS);
592 	} else if (!sc->esc_irq_asserted) {
593 		DPRINTF("icr assert: lintr assert %x", new);
594 		sc->esc_irq_asserted = 1;
595 		pci_lintr_assert(sc->esc_pi);
596 		if (sc->esc_ITR != 0) {
597 			sc->esc_mevpitr = mevent_add(
598 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
599 			    EVF_TIMER, e82545_itr_callback, sc);
600 		}
601 	}
602 }
603 
604 static void
e82545_ims_change(struct e82545_softc * sc,uint32_t bits)605 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
606 {
607 	uint32_t new;
608 
609 	/*
610 	 * Changing the mask may allow previously asserted
611 	 * but masked interrupt requests to generate an interrupt.
612 	 */
613 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
614 	sc->esc_IMS |= bits;
615 
616 	if (new == 0) {
617 		DPRINTF("ims change: masked %x, ims %x", new, sc->esc_IMS);
618 	} else if (sc->esc_mevpitr != NULL) {
619 		DPRINTF("ims change: throttled %x, ims %x", new, sc->esc_IMS);
620 	} else if (!sc->esc_irq_asserted) {
621 		DPRINTF("ims change: lintr assert %x", new);
622 		sc->esc_irq_asserted = 1;
623 		pci_lintr_assert(sc->esc_pi);
624 		if (sc->esc_ITR != 0) {
625 			sc->esc_mevpitr = mevent_add(
626 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
627 			    EVF_TIMER, e82545_itr_callback, sc);
628 		}
629 	}
630 }
631 
632 static void
e82545_icr_deassert(struct e82545_softc * sc,uint32_t bits)633 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
634 {
635 
636 	DPRINTF("icr deassert: 0x%x", bits);
637 	sc->esc_ICR &= ~bits;
638 
639 	/*
640 	 * If there are no longer any interrupt sources and there
641 	 * was an asserted interrupt, clear it
642 	 */
643 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
644 		DPRINTF("icr deassert: lintr deassert %x", bits);
645 		pci_lintr_deassert(sc->esc_pi);
646 		sc->esc_irq_asserted = 0;
647 	}
648 }
649 
650 static void
e82545_intr_write(struct e82545_softc * sc,uint32_t offset,uint32_t value)651 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
652 {
653 
654 	DPRINTF("intr_write: off %x, val %x", offset, value);
655 
656 	switch (offset) {
657 	case E1000_ICR:
658 		e82545_icr_deassert(sc, value);
659 		break;
660 	case E1000_ITR:
661 		sc->esc_ITR = value;
662 		break;
663 	case E1000_ICS:
664 		sc->esc_ICS = value;	/* not used: store for debug */
665 		e82545_icr_assert(sc, value);
666 		break;
667 	case E1000_IMS:
668 		e82545_ims_change(sc, value);
669 		break;
670 	case E1000_IMC:
671 		sc->esc_IMC = value;	/* for debug */
672 		sc->esc_IMS &= ~value;
673 		// XXX clear interrupts if all ICR bits now masked
674 		// and interrupt was pending ?
675 		break;
676 	default:
677 		break;
678 	}
679 }
680 
681 static uint32_t
e82545_intr_read(struct e82545_softc * sc,uint32_t offset)682 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
683 {
684 	uint32_t retval;
685 
686 	retval = 0;
687 
688 	DPRINTF("intr_read: off %x", offset);
689 
690 	switch (offset) {
691 	case E1000_ICR:
692 		retval = sc->esc_ICR;
693 		sc->esc_ICR = 0;
694 		e82545_icr_deassert(sc, ~0);
695 		break;
696 	case E1000_ITR:
697 		retval = sc->esc_ITR;
698 		break;
699 	case E1000_ICS:
700 		/* write-only register */
701 		break;
702 	case E1000_IMS:
703 		retval = sc->esc_IMS;
704 		break;
705 	case E1000_IMC:
706 		/* write-only register */
707 		break;
708 	default:
709 		break;
710 	}
711 
712 	return (retval);
713 }
714 
715 static void
e82545_devctl(struct e82545_softc * sc,uint32_t val)716 e82545_devctl(struct e82545_softc *sc, uint32_t val)
717 {
718 
719 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
720 
721 	if (val & E1000_CTRL_RST) {
722 		DPRINTF("e1k: s/w reset, ctl %x", val);
723 		e82545_reset(sc, 1);
724 	}
725 	/* XXX check for phy reset ? */
726 }
727 
728 static void
e82545_rx_update_rdba(struct e82545_softc * sc)729 e82545_rx_update_rdba(struct e82545_softc *sc)
730 {
731 
732 	/* XXX verify desc base/len within phys mem range */
733 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
734 	    sc->esc_RDBAL;
735 
736 	/* Cache host mapping of guest descriptor array */
737 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
738 	    sc->esc_rdba, sc->esc_RDLEN);
739 }
740 
741 static void
e82545_rx_ctl(struct e82545_softc * sc,uint32_t val)742 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
743 {
744 	int on;
745 
746 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
747 
748 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
749 	sc->esc_RCTL = val & ~0xF9204c01;
750 
751 	DPRINTF("rx_ctl - %s RCTL %x, val %x",
752 		on ? "on" : "off", sc->esc_RCTL, val);
753 
754 	/* state change requested */
755 	if (on != sc->esc_rx_enabled) {
756 		if (on) {
757 			/* Catch disallowed/unimplemented settings */
758 			//assert(!(val & E1000_RCTL_LBM_TCVR));
759 
760 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
761 				sc->esc_rx_loopback = 1;
762 			} else {
763 				sc->esc_rx_loopback = 0;
764 			}
765 
766 			e82545_rx_update_rdba(sc);
767 			e82545_rx_enable(sc);
768 		} else {
769 			e82545_rx_disable(sc);
770 			sc->esc_rx_loopback = 0;
771 			sc->esc_rdba = 0;
772 			sc->esc_rxdesc = NULL;
773 		}
774 	}
775 }
776 
777 static void
e82545_tx_update_tdba(struct e82545_softc * sc)778 e82545_tx_update_tdba(struct e82545_softc *sc)
779 {
780 
781 	/* XXX verify desc base/len within phys mem range */
782 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
783 
784 	/* Cache host mapping of guest descriptor array */
785 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
786             sc->esc_TDLEN);
787 }
788 
789 static void
e82545_tx_ctl(struct e82545_softc * sc,uint32_t val)790 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
791 {
792 	int on;
793 
794 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
795 
796 	/* ignore TCTL_EN settings that don't change state */
797 	if (on == sc->esc_tx_enabled)
798 		return;
799 
800 	if (on) {
801 		e82545_tx_update_tdba(sc);
802 		e82545_tx_enable(sc);
803 	} else {
804 		e82545_tx_disable(sc);
805 		sc->esc_tdba = 0;
806 		sc->esc_txdesc = NULL;
807 	}
808 
809 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
810 	sc->esc_TCTL = val & ~0xFE800005;
811 }
812 
813 static int
e82545_bufsz(uint32_t rctl)814 e82545_bufsz(uint32_t rctl)
815 {
816 
817 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
818 	case (E1000_RCTL_SZ_2048): return (2048);
819 	case (E1000_RCTL_SZ_1024): return (1024);
820 	case (E1000_RCTL_SZ_512): return (512);
821 	case (E1000_RCTL_SZ_256): return (256);
822 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
823 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
824 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
825 	}
826 	return (256);	/* Forbidden value. */
827 }
828 
829 /* XXX one packet at a time until this is debugged */
830 static void
e82545_rx_callback(int fd __unused,enum ev_type type __unused,void * param)831 e82545_rx_callback(int fd __unused, enum ev_type type __unused, void *param)
832 {
833 	struct e82545_softc *sc = param;
834 	struct e1000_rx_desc *rxd;
835 	struct iovec vec[64];
836 	ssize_t len;
837 	int left, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
838 	uint32_t cause = 0;
839 	uint16_t *tp, tag, head;
840 
841 	pthread_mutex_lock(&sc->esc_mtx);
842 	DPRINTF("rx_run: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
843 
844 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
845 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped",
846 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
847 		while (netbe_rx_discard(sc->esc_be) > 0) {
848 		}
849 		goto done1;
850 	}
851 	bufsz = e82545_bufsz(sc->esc_RCTL);
852 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
853 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
854 	size = sc->esc_RDLEN / 16;
855 	head = sc->esc_RDH;
856 	left = (size + sc->esc_RDT - head) % size;
857 	if (left < maxpktdesc) {
858 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped",
859 		    left, maxpktdesc);
860 		while (netbe_rx_discard(sc->esc_be) > 0) {
861 		}
862 		goto done1;
863 	}
864 
865 	sc->esc_rx_active = 1;
866 	pthread_mutex_unlock(&sc->esc_mtx);
867 
868 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
869 
870 		/* Grab rx descriptor pointed to by the head pointer */
871 		for (i = 0; i < maxpktdesc; i++) {
872 			rxd = &sc->esc_rxdesc[(head + i) % size];
873 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
874 			    rxd->buffer_addr, bufsz);
875 			vec[i].iov_len = bufsz;
876 		}
877 		len = netbe_recv(sc->esc_be, vec, maxpktdesc);
878 		if (len <= 0) {
879 			DPRINTF("netbe_recv() returned %zd", len);
880 			goto done;
881 		}
882 
883 		/*
884 		 * Adjust the packet length based on whether the CRC needs
885 		 * to be stripped or if the packet is less than the minimum
886 		 * eth packet size.
887 		 */
888 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
889 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
890 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
891 			len += ETHER_CRC_LEN;
892 		n = (len + bufsz - 1) / bufsz;
893 
894 		DPRINTF("packet read %zd bytes, %d segs, head %d",
895 		    len, n, head);
896 
897 		/* Apply VLAN filter. */
898 		tp = (uint16_t *)vec[0].iov_base + 6;
899 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
900 		    (ntohs(tp[0]) == sc->esc_VET)) {
901 			tag = ntohs(tp[1]) & 0x0fff;
902 			if ((sc->esc_fvlan[tag >> 5] &
903 			    (1 << (tag & 0x1f))) != 0) {
904 				DPRINTF("known VLAN %d", tag);
905 			} else {
906 				DPRINTF("unknown VLAN %d", tag);
907 				n = 0;
908 				continue;
909 			}
910 		}
911 
912 		/* Update all consumed descriptors. */
913 		for (i = 0; i < n - 1; i++) {
914 			rxd = &sc->esc_rxdesc[(head + i) % size];
915 			rxd->length = bufsz;
916 			rxd->csum = 0;
917 			rxd->errors = 0;
918 			rxd->special = 0;
919 			rxd->status = E1000_RXD_STAT_DD;
920 		}
921 		rxd = &sc->esc_rxdesc[(head + i) % size];
922 		rxd->length = len % bufsz;
923 		rxd->csum = 0;
924 		rxd->errors = 0;
925 		rxd->special = 0;
926 		/* XXX signal no checksum for now */
927 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
928 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
929 
930 		/* Schedule receive interrupts. */
931 		if ((uint32_t)len <= sc->esc_RSRPD) {
932 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
933 		} else {
934 			/* XXX: RDRT and RADV timers should be here. */
935 			cause |= E1000_ICR_RXT0;
936 		}
937 
938 		head = (head + n) % size;
939 		left -= n;
940 	}
941 
942 done:
943 	pthread_mutex_lock(&sc->esc_mtx);
944 	sc->esc_rx_active = 0;
945 	if (sc->esc_rx_enabled == 0)
946 		pthread_cond_signal(&sc->esc_rx_cond);
947 
948 	sc->esc_RDH = head;
949 	/* Respect E1000_RCTL_RDMTS */
950 	left = (size + sc->esc_RDT - head) % size;
951 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
952 		cause |= E1000_ICR_RXDMT0;
953 	/* Assert all accumulated interrupts. */
954 	if (cause != 0)
955 		e82545_icr_assert(sc, cause);
956 done1:
957 	DPRINTF("rx_run done: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
958 	pthread_mutex_unlock(&sc->esc_mtx);
959 }
960 
961 static uint16_t
e82545_carry(uint32_t sum)962 e82545_carry(uint32_t sum)
963 {
964 
965 	sum = (sum & 0xFFFF) + (sum >> 16);
966 	if (sum > 0xFFFF)
967 		sum -= 0xFFFF;
968 	return (sum);
969 }
970 
971 static uint16_t
e82545_buf_checksum(uint8_t * buf,int len)972 e82545_buf_checksum(uint8_t *buf, int len)
973 {
974 	int i;
975 	uint32_t sum = 0;
976 
977 	/* Checksum all the pairs of bytes first... */
978 	for (i = 0; i < (len & ~1); i += 2)
979 		sum += *((u_int16_t *)(buf + i));
980 
981 	/*
982 	 * If there's a single byte left over, checksum it, too.
983 	 * Network byte order is big-endian, so the remaining byte is
984 	 * the high byte.
985 	 */
986 	if (i < len)
987 		sum += htons(buf[i] << 8);
988 
989 	return (e82545_carry(sum));
990 }
991 
992 static uint16_t
e82545_iov_checksum(struct iovec * iov,int iovcnt,unsigned int off,unsigned int len)993 e82545_iov_checksum(struct iovec *iov, int iovcnt, unsigned int off,
994     unsigned int len)
995 {
996 	unsigned int now, odd;
997 	uint32_t sum = 0, s;
998 
999 	/* Skip completely unneeded vectors. */
1000 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
1001 		off -= iov->iov_len;
1002 		iov++;
1003 		iovcnt--;
1004 	}
1005 
1006 	/* Calculate checksum of requested range. */
1007 	odd = 0;
1008 	while (len > 0 && iovcnt > 0) {
1009 		now = MIN(len, iov->iov_len - off);
1010 		s = e82545_buf_checksum((uint8_t *)iov->iov_base + off, now);
1011 		sum += odd ? (s << 8) : s;
1012 		odd ^= (now & 1);
1013 		len -= now;
1014 		off = 0;
1015 		iov++;
1016 		iovcnt--;
1017 	}
1018 
1019 	return (e82545_carry(sum));
1020 }
1021 
1022 /*
1023  * Return the transmit descriptor type.
1024  */
1025 static int
e82545_txdesc_type(uint32_t lower)1026 e82545_txdesc_type(uint32_t lower)
1027 {
1028 	int type;
1029 
1030 	type = 0;
1031 
1032 	if (lower & E1000_TXD_CMD_DEXT)
1033 		type = lower & E1000_TXD_MASK;
1034 
1035 	return (type);
1036 }
1037 
1038 static void
e82545_transmit_checksum(struct iovec * iov,int iovcnt,struct ck_info * ck)1039 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1040 {
1041 	uint16_t cksum;
1042 	unsigned int cklen;
1043 
1044 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d",
1045 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1046 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1U : UINT_MAX;
1047 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1048 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1049 }
1050 
1051 static void
e82545_transmit_backend(struct e82545_softc * sc,struct iovec * iov,int iovcnt)1052 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1053 {
1054 
1055 	if (sc->esc_be == NULL)
1056 		return;
1057 
1058 	(void) netbe_send(sc->esc_be, iov, iovcnt);
1059 }
1060 
1061 static void
e82545_transmit_done(struct e82545_softc * sc,uint16_t head,uint16_t tail,uint16_t dsize,int * tdwb)1062 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1063     uint16_t dsize, int *tdwb)
1064 {
1065 	union e1000_tx_udesc *dsc;
1066 
1067 	for ( ; head != tail; head = (head + 1) % dsize) {
1068 		dsc = &sc->esc_txdesc[head];
1069 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1070 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1071 			*tdwb = 1;
1072 		}
1073 	}
1074 }
1075 
1076 static int
e82545_transmit(struct e82545_softc * sc,uint16_t head,uint16_t tail,uint16_t dsize,uint16_t * rhead,int * tdwb)1077 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1078     uint16_t dsize, uint16_t *rhead, int *tdwb)
1079 {
1080 	uint8_t *hdr, *hdrp;
1081 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1082 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1083 	struct e1000_context_desc *cd;
1084 	struct ck_info ckinfo[2];
1085 	struct iovec *iov;
1086 	union  e1000_tx_udesc *dsc;
1087 	int desc, dtype, ntype, iovcnt, tcp, tso, paylen, seg, tiovcnt, pv;
1088 	unsigned hdrlen, vlen, pktlen, len, left, mss, now, nnow, nleft, pvoff;
1089 	uint32_t tcpsum, tcpseq;
1090 	uint16_t ipcs, tcpcs, ipid, ohead;
1091 	bool invalid;
1092 
1093 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1094 	iovcnt = 0;
1095 	ntype = 0;
1096 	tso = 0;
1097 	pktlen = 0;
1098 	ohead = head;
1099 	invalid = false;
1100 
1101 	/* iovb[0/1] may be used for writable copy of headers. */
1102 	iov = &iovb[2];
1103 
1104 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1105 		if (head == tail) {
1106 			*rhead = head;
1107 			return (0);
1108 		}
1109 		dsc = &sc->esc_txdesc[head];
1110 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1111 
1112 		if (desc == 0) {
1113 			switch (dtype) {
1114 			case E1000_TXD_TYP_C:
1115 				DPRINTF("tx ctxt desc idx %d: %016jx "
1116 				    "%08x%08x",
1117 				    head, dsc->td.buffer_addr,
1118 				    dsc->td.upper.data, dsc->td.lower.data);
1119 				/* Save context and return */
1120 				sc->esc_txctx = dsc->cd;
1121 				goto done;
1122 			case E1000_TXD_TYP_L:
1123 				DPRINTF("tx legacy desc idx %d: %08x%08x",
1124 				    head, dsc->td.upper.data, dsc->td.lower.data);
1125 				/*
1126 				 * legacy cksum start valid in first descriptor
1127 				 */
1128 				ntype = dtype;
1129 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1130 				break;
1131 			case E1000_TXD_TYP_D:
1132 				DPRINTF("tx data desc idx %d: %08x%08x",
1133 				    head, dsc->td.upper.data, dsc->td.lower.data);
1134 				ntype = dtype;
1135 				break;
1136 			default:
1137 				break;
1138 			}
1139 		} else {
1140 			/* Descriptor type must be consistent */
1141 			assert(dtype == ntype);
1142 			DPRINTF("tx next desc idx %d: %08x%08x",
1143 			    head, dsc->td.upper.data, dsc->td.lower.data);
1144 		}
1145 
1146 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1147 		    dsc->dd.lower.data & 0xFFFFF;
1148 
1149 		/* Strip checksum supplied by guest. */
1150 		if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1151 		    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0) {
1152 			if (len <= 2) {
1153 				WPRINTF("final descriptor too short (%d) -- dropped",
1154 				    len);
1155 				invalid = true;
1156 			} else
1157 				len -= 2;
1158 		}
1159 
1160 		if (len > 0 && iovcnt < I82545_MAX_TXSEGS) {
1161 			iov[iovcnt].iov_base = paddr_guest2host(sc->esc_ctx,
1162 			    dsc->td.buffer_addr, len);
1163 			iov[iovcnt].iov_len = len;
1164 			iovcnt++;
1165 			pktlen += len;
1166 		}
1167 
1168 		/*
1169 		 * Pull out info that is valid in the final descriptor
1170 		 * and exit descriptor loop.
1171 		 */
1172 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1173 			if (dtype == E1000_TXD_TYP_L) {
1174 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1175 					ckinfo[0].ck_valid = 1;
1176 					ckinfo[0].ck_off =
1177 					    dsc->td.lower.flags.cso;
1178 					ckinfo[0].ck_len = 0;
1179 				}
1180 			} else {
1181 				cd = &sc->esc_txctx;
1182 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1183 					tso = 1;
1184 				if (dsc->dd.upper.fields.popts &
1185 				    E1000_TXD_POPTS_IXSM)
1186 					ckinfo[0].ck_valid = 1;
1187 				if (dsc->dd.upper.fields.popts &
1188 				    E1000_TXD_POPTS_IXSM || tso) {
1189 					ckinfo[0].ck_start =
1190 					    cd->lower_setup.ip_fields.ipcss;
1191 					ckinfo[0].ck_off =
1192 					    cd->lower_setup.ip_fields.ipcso;
1193 					ckinfo[0].ck_len =
1194 					    cd->lower_setup.ip_fields.ipcse;
1195 				}
1196 				if (dsc->dd.upper.fields.popts &
1197 				    E1000_TXD_POPTS_TXSM)
1198 					ckinfo[1].ck_valid = 1;
1199 				if (dsc->dd.upper.fields.popts &
1200 				    E1000_TXD_POPTS_TXSM || tso) {
1201 					ckinfo[1].ck_start =
1202 					    cd->upper_setup.tcp_fields.tucss;
1203 					ckinfo[1].ck_off =
1204 					    cd->upper_setup.tcp_fields.tucso;
1205 					ckinfo[1].ck_len =
1206 					    cd->upper_setup.tcp_fields.tucse;
1207 				}
1208 			}
1209 			break;
1210 		}
1211 	}
1212 
1213 	if (invalid)
1214 		goto done;
1215 
1216 	if (iovcnt > I82545_MAX_TXSEGS) {
1217 		WPRINTF("tx too many descriptors (%d > %d) -- dropped",
1218 		    iovcnt, I82545_MAX_TXSEGS);
1219 		goto done;
1220 	}
1221 
1222 	hdrlen = vlen = 0;
1223 	/* Estimate writable space for VLAN header insertion. */
1224 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1225 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1226 		hdrlen = ETHER_ADDR_LEN*2;
1227 		vlen = ETHER_VLAN_ENCAP_LEN;
1228 	}
1229 	if (!tso) {
1230 		/* Estimate required writable space for checksums. */
1231 		if (ckinfo[0].ck_valid)
1232 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2U);
1233 		if (ckinfo[1].ck_valid)
1234 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2U);
1235 		/* Round up writable space to the first vector. */
1236 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1237 		    iov[0].iov_len < hdrlen + 100)
1238 			hdrlen = iov[0].iov_len;
1239 	} else {
1240 		/* In case of TSO header length provided by software. */
1241 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1242 
1243 		/*
1244 		 * Cap the header length at 240 based on 7.2.4.5 of
1245 		 * the Intel 82576EB (Rev 2.63) datasheet.
1246 		 */
1247 		if (hdrlen > 240) {
1248 			WPRINTF("TSO hdrlen too large: %d", hdrlen);
1249 			goto done;
1250 		}
1251 
1252 		/*
1253 		 * If VLAN insertion is requested, ensure the header
1254 		 * at least holds the amount of data copied during
1255 		 * VLAN insertion below.
1256 		 *
1257 		 * XXX: Realistic packets will include a full Ethernet
1258 		 * header before the IP header at ckinfo[0].ck_start,
1259 		 * but this check is sufficient to prevent
1260 		 * out-of-bounds access below.
1261 		 */
1262 		if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) {
1263 			WPRINTF("TSO hdrlen too small for vlan insertion "
1264 			    "(%d vs %d) -- dropped", hdrlen,
1265 			    ETHER_ADDR_LEN*2);
1266 			goto done;
1267 		}
1268 
1269 		/*
1270 		 * Ensure that the header length covers the used fields
1271 		 * in the IP and TCP headers as well as the IP and TCP
1272 		 * checksums.  The following fields are accessed below:
1273 		 *
1274 		 * Header | Field | Offset | Length
1275 		 * -------+-------+--------+-------
1276 		 * IPv4   | len   | 2      | 2
1277 		 * IPv4   | ID    | 4      | 2
1278 		 * IPv6   | len   | 4      | 2
1279 		 * TCP    | seq # | 4      | 4
1280 		 * TCP    | flags | 13     | 1
1281 		 * UDP    | len   | 4      | 4
1282 		 */
1283 		if (hdrlen < ckinfo[0].ck_start + 6U ||
1284 		    hdrlen < ckinfo[0].ck_off + 2U) {
1285 			WPRINTF("TSO hdrlen too small for IP fields (%d) "
1286 			    "-- dropped", hdrlen);
1287 			goto done;
1288 		}
1289 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) {
1290 			if (hdrlen < ckinfo[1].ck_start + 14U) {
1291 				WPRINTF("TSO hdrlen too small for TCP fields "
1292 				    "(%d) -- dropped", hdrlen);
1293 				goto done;
1294 			}
1295 		} else {
1296 			if (hdrlen < ckinfo[1].ck_start + 8U) {
1297 				WPRINTF("TSO hdrlen too small for UDP fields "
1298 				    "(%d) -- dropped", hdrlen);
1299 				goto done;
1300 			}
1301 		}
1302 		if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2U) {
1303 			WPRINTF("TSO hdrlen too small for TCP/UDP fields "
1304 			    "(%d) -- dropped", hdrlen);
1305 			goto done;
1306 		}
1307 		if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2) {
1308 			WPRINTF("TSO hdrlen too small for TCP/UDP fields "
1309 			    "(%d) -- dropped", hdrlen);
1310 			goto done;
1311 		}
1312 	}
1313 
1314 	if (pktlen < hdrlen + vlen) {
1315 		WPRINTF("packet too small for writable header");
1316 		goto done;
1317 	}
1318 
1319 	/* Allocate, fill and prepend writable header vector. */
1320 	if (hdrlen + vlen != 0) {
1321 		hdr = __builtin_alloca(hdrlen + vlen);
1322 		hdr += vlen;
1323 		for (left = hdrlen, hdrp = hdr; left > 0;
1324 		    left -= now, hdrp += now) {
1325 			now = MIN(left, iov->iov_len);
1326 			memcpy(hdrp, iov->iov_base, now);
1327 #ifdef	__FreeBSD__
1328 			iov->iov_base = (uint8_t *)iov->iov_base + now;
1329 #else
1330 			/*
1331 			 * The type of iov_base changed in SUS (XPG4v2) from
1332 			 * caddr_t (char * - note signed) to 'void *'. On
1333 			 * illumos, bhyve is not currently compiled with XPG4v2
1334 			 * or higher, and so we can't cast the RHS to unsigned.
1335 			 * error: pointer targets in assignment differ in
1336 			 *	  signedness
1337 			 * This also means that we need to apply some casts to
1338 			 * (caddr_t) below.
1339 			 */
1340 			iov->iov_base += now;
1341 #endif
1342 			iov->iov_len -= now;
1343 			if (iov->iov_len == 0) {
1344 				iov++;
1345 				iovcnt--;
1346 			}
1347 		}
1348 		iov--;
1349 		iovcnt++;
1350 #ifdef __FreeBSD__
1351 		iov->iov_base = hdr;
1352 #else
1353 		iov->iov_base = (caddr_t)hdr;
1354 #endif
1355 		iov->iov_len = hdrlen;
1356 	} else
1357 		hdr = NULL;
1358 
1359 	/* Insert VLAN tag. */
1360 	if (vlen != 0) {
1361 		hdr -= ETHER_VLAN_ENCAP_LEN;
1362 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1363 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1364 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1365 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1366 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1367 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1368 #ifdef __FreeBSD__
1369 		iov->iov_base = hdr;
1370 #else
1371 		iov->iov_base = (caddr_t)hdr;
1372 #endif
1373 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1374 		/* Correct checksum offsets after VLAN tag insertion. */
1375 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1376 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1377 		if (ckinfo[0].ck_len != 0)
1378 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1379 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1380 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1381 		if (ckinfo[1].ck_len != 0)
1382 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1383 	}
1384 
1385 	/* Simple non-TSO case. */
1386 	if (!tso) {
1387 		/* Calculate checksums and transmit. */
1388 		if (ckinfo[0].ck_valid)
1389 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1390 		if (ckinfo[1].ck_valid)
1391 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1392 		e82545_transmit_backend(sc, iov, iovcnt);
1393 		goto done;
1394 	}
1395 
1396 	/* Doing TSO. */
1397 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1398 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1399 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1400 	DPRINTF("tx %s segmentation offload %d+%d/%u bytes %d iovs",
1401 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1402 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1403 	tcpseq = 0;
1404 	if (tcp)
1405 		tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1406 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1407 	tcpcs = 0;
1408 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1409 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1410 	pv = 1;
1411 	pvoff = 0;
1412 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1413 		now = MIN(left, mss);
1414 
1415 		/* Construct IOVs for the segment. */
1416 		/* Include whole original header. */
1417 #ifdef __FreeBSD__
1418 		tiov[0].iov_base = hdr;
1419 #else
1420 		tiov[0].iov_base = (caddr_t)hdr;
1421 #endif
1422 		tiov[0].iov_len = hdrlen;
1423 		tiovcnt = 1;
1424 		/* Include respective part of payload IOV. */
1425 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1426 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1427 #ifdef	__FreeBSD__
1428 			tiov[tiovcnt].iov_base = (uint8_t *)iov[pv].iov_base +
1429 			    pvoff;
1430 #else
1431 			tiov[tiovcnt].iov_base += pvoff;
1432 #endif
1433 			tiov[tiovcnt++].iov_len = nnow;
1434 			if (pvoff + nnow == iov[pv].iov_len) {
1435 				pv++;
1436 				pvoff = 0;
1437 			} else
1438 				pvoff += nnow;
1439 		}
1440 		DPRINTF("tx segment %d %d+%d bytes %d iovs",
1441 		    seg, hdrlen, now, tiovcnt);
1442 
1443 		/* Update IP header. */
1444 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1445 			/* IPv4 -- set length and ID */
1446 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1447 			    htons(hdrlen - ckinfo[0].ck_start + now);
1448 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1449 			    htons(ipid + seg);
1450 		} else {
1451 			/* IPv6 -- set length */
1452 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1453 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1454 				  now);
1455 		}
1456 
1457 		/* Update pseudo-header checksum. */
1458 		tcpsum = tcpcs;
1459 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1460 
1461 		/* Update TCP/UDP headers. */
1462 		if (tcp) {
1463 			/* Update sequence number and FIN/PUSH flags. */
1464 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1465 			    htonl(tcpseq + paylen - left);
1466 			if (now < left) {
1467 				hdr[ckinfo[1].ck_start + 13] &=
1468 				    ~(TH_FIN | TH_PUSH);
1469 			}
1470 		} else {
1471 			/* Update payload length. */
1472 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1473 			    hdrlen - ckinfo[1].ck_start + now;
1474 		}
1475 
1476 		/* Calculate checksums and transmit. */
1477 		if (ckinfo[0].ck_valid) {
1478 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1479 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1480 		}
1481 		if (ckinfo[1].ck_valid) {
1482 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1483 			    e82545_carry(tcpsum);
1484 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1485 		}
1486 		e82545_transmit_backend(sc, tiov, tiovcnt);
1487 	}
1488 
1489 done:
1490 	head = (head + 1) % dsize;
1491 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1492 
1493 	*rhead = head;
1494 	return (desc + 1);
1495 }
1496 
1497 static void
e82545_tx_run(struct e82545_softc * sc)1498 e82545_tx_run(struct e82545_softc *sc)
1499 {
1500 	uint32_t cause;
1501 	uint16_t head, rhead, tail, size;
1502 	int lim, tdwb, sent;
1503 
1504 	size = sc->esc_TDLEN / 16;
1505 	if (size == 0)
1506 		return;
1507 
1508 	head = sc->esc_TDH % size;
1509 	tail = sc->esc_TDT % size;
1510 	DPRINTF("tx_run: head %x, rhead %x, tail %x",
1511 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1512 
1513 	pthread_mutex_unlock(&sc->esc_mtx);
1514 	rhead = head;
1515 	tdwb = 0;
1516 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1517 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1518 		if (sent == 0)
1519 			break;
1520 		head = rhead;
1521 	}
1522 	pthread_mutex_lock(&sc->esc_mtx);
1523 
1524 	sc->esc_TDH = head;
1525 	sc->esc_TDHr = rhead;
1526 	cause = 0;
1527 	if (tdwb)
1528 		cause |= E1000_ICR_TXDW;
1529 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1530 		cause |= E1000_ICR_TXQE;
1531 	if (cause)
1532 		e82545_icr_assert(sc, cause);
1533 
1534 	DPRINTF("tx_run done: head %x, rhead %x, tail %x",
1535 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1536 }
1537 
1538 static _Noreturn void *
e82545_tx_thread(void * param)1539 e82545_tx_thread(void *param)
1540 {
1541 	struct e82545_softc *sc = param;
1542 
1543 	pthread_mutex_lock(&sc->esc_mtx);
1544 	for (;;) {
1545 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1546 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1547 				break;
1548 			sc->esc_tx_active = 0;
1549 			if (sc->esc_tx_enabled == 0)
1550 				pthread_cond_signal(&sc->esc_tx_cond);
1551 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1552 		}
1553 		sc->esc_tx_active = 1;
1554 
1555 		/* Process some tx descriptors.  Lock dropped inside. */
1556 		e82545_tx_run(sc);
1557 	}
1558 }
1559 
1560 static void
e82545_tx_start(struct e82545_softc * sc)1561 e82545_tx_start(struct e82545_softc *sc)
1562 {
1563 
1564 	if (sc->esc_tx_active == 0)
1565 		pthread_cond_signal(&sc->esc_tx_cond);
1566 }
1567 
1568 static void
e82545_tx_enable(struct e82545_softc * sc)1569 e82545_tx_enable(struct e82545_softc *sc)
1570 {
1571 
1572 	sc->esc_tx_enabled = 1;
1573 }
1574 
1575 static void
e82545_tx_disable(struct e82545_softc * sc)1576 e82545_tx_disable(struct e82545_softc *sc)
1577 {
1578 
1579 	sc->esc_tx_enabled = 0;
1580 	while (sc->esc_tx_active)
1581 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1582 }
1583 
1584 static void
e82545_rx_enable(struct e82545_softc * sc)1585 e82545_rx_enable(struct e82545_softc *sc)
1586 {
1587 
1588 	sc->esc_rx_enabled = 1;
1589 }
1590 
1591 static void
e82545_rx_disable(struct e82545_softc * sc)1592 e82545_rx_disable(struct e82545_softc *sc)
1593 {
1594 
1595 	sc->esc_rx_enabled = 0;
1596 	while (sc->esc_rx_active)
1597 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1598 }
1599 
1600 static void
e82545_write_ra(struct e82545_softc * sc,int reg,uint32_t wval)1601 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1602 {
1603 	struct eth_uni *eu;
1604 	int idx;
1605 
1606 	idx = reg >> 1;
1607 	assert(idx < 15);
1608 
1609 	eu = &sc->esc_uni[idx];
1610 
1611 	if (reg & 0x1) {
1612 		/* RAH */
1613 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1614 		eu->eu_addrsel = (wval >> 16) & 0x3;
1615 		eu->eu_eth.octet[5] = wval >> 8;
1616 		eu->eu_eth.octet[4] = wval;
1617 	} else {
1618 		/* RAL */
1619 		eu->eu_eth.octet[3] = wval >> 24;
1620 		eu->eu_eth.octet[2] = wval >> 16;
1621 		eu->eu_eth.octet[1] = wval >> 8;
1622 		eu->eu_eth.octet[0] = wval;
1623 	}
1624 }
1625 
1626 static uint32_t
e82545_read_ra(struct e82545_softc * sc,int reg)1627 e82545_read_ra(struct e82545_softc *sc, int reg)
1628 {
1629 	struct eth_uni *eu;
1630 	uint32_t retval;
1631 	int idx;
1632 
1633 	idx = reg >> 1;
1634 	assert(idx < 15);
1635 
1636 	eu = &sc->esc_uni[idx];
1637 
1638 	if (reg & 0x1) {
1639 		/* RAH */
1640 		retval = (eu->eu_valid << 31) |
1641 			 (eu->eu_addrsel << 16) |
1642 			 (eu->eu_eth.octet[5] << 8) |
1643 			 eu->eu_eth.octet[4];
1644 	} else {
1645 		/* RAL */
1646 		retval = (eu->eu_eth.octet[3] << 24) |
1647 			 (eu->eu_eth.octet[2] << 16) |
1648 			 (eu->eu_eth.octet[1] << 8) |
1649 			 eu->eu_eth.octet[0];
1650 	}
1651 
1652 	return (retval);
1653 }
1654 
1655 static void
e82545_write_register(struct e82545_softc * sc,uint32_t offset,uint32_t value)1656 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1657 {
1658 	int ridx;
1659 
1660 	if (offset & 0x3) {
1661 		DPRINTF("Unaligned register write offset:0x%x value:0x%x", offset, value);
1662 		return;
1663 	}
1664 	DPRINTF("Register write: 0x%x value: 0x%x", offset, value);
1665 
1666 	switch (offset) {
1667 	case E1000_CTRL:
1668 	case E1000_CTRL_DUP:
1669 		e82545_devctl(sc, value);
1670 		break;
1671 	case E1000_FCAL:
1672 		sc->esc_FCAL = value;
1673 		break;
1674 	case E1000_FCAH:
1675 		sc->esc_FCAH = value & ~0xFFFF0000;
1676 		break;
1677 	case E1000_FCT:
1678 		sc->esc_FCT = value & ~0xFFFF0000;
1679 		break;
1680 	case E1000_VET:
1681 		sc->esc_VET = value & ~0xFFFF0000;
1682 		break;
1683 	case E1000_FCTTV:
1684 		sc->esc_FCTTV = value & ~0xFFFF0000;
1685 		break;
1686 	case E1000_LEDCTL:
1687 		sc->esc_LEDCTL = value & ~0x30303000;
1688 		break;
1689 	case E1000_PBA:
1690 		sc->esc_PBA = value & 0x0000FF80;
1691 		break;
1692 	case E1000_ICR:
1693 	case E1000_ITR:
1694 	case E1000_ICS:
1695 	case E1000_IMS:
1696 	case E1000_IMC:
1697 		e82545_intr_write(sc, offset, value);
1698 		break;
1699 	case E1000_RCTL:
1700 		e82545_rx_ctl(sc, value);
1701 		break;
1702 	case E1000_FCRTL:
1703 		sc->esc_FCRTL = value & ~0xFFFF0007;
1704 		break;
1705 	case E1000_FCRTH:
1706 		sc->esc_FCRTH = value & ~0xFFFF0007;
1707 		break;
1708 	case E1000_RDBAL(0):
1709 		sc->esc_RDBAL = value & ~0xF;
1710 		if (sc->esc_rx_enabled) {
1711 			/* Apparently legal: update cached address */
1712 			e82545_rx_update_rdba(sc);
1713 		}
1714 		break;
1715 	case E1000_RDBAH(0):
1716 		assert(!sc->esc_rx_enabled);
1717 		sc->esc_RDBAH = value;
1718 		break;
1719 	case E1000_RDLEN(0):
1720 		assert(!sc->esc_rx_enabled);
1721 		sc->esc_RDLEN = value & ~0xFFF0007F;
1722 		break;
1723 	case E1000_RDH(0):
1724 		/* XXX should only ever be zero ? Range check ? */
1725 		sc->esc_RDH = value;
1726 		break;
1727 	case E1000_RDT(0):
1728 		/* XXX if this opens up the rx ring, do something ? */
1729 		sc->esc_RDT = value;
1730 		break;
1731 	case E1000_RDTR:
1732 		/* ignore FPD bit 31 */
1733 		sc->esc_RDTR = value & ~0xFFFF0000;
1734 		break;
1735 	case E1000_RXDCTL(0):
1736 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1737 		break;
1738 	case E1000_RADV:
1739 		sc->esc_RADV = value & ~0xFFFF0000;
1740 		break;
1741 	case E1000_RSRPD:
1742 		sc->esc_RSRPD = value & ~0xFFFFF000;
1743 		break;
1744 	case E1000_RXCSUM:
1745 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1746 		break;
1747 	case E1000_TXCW:
1748 		sc->esc_TXCW = value & ~0x3FFF0000;
1749 		break;
1750 	case E1000_TCTL:
1751 		e82545_tx_ctl(sc, value);
1752 		break;
1753 	case E1000_TIPG:
1754 		sc->esc_TIPG = value;
1755 		break;
1756 	case E1000_AIT:
1757 		sc->esc_AIT = value;
1758 		break;
1759 	case E1000_TDBAL(0):
1760 		sc->esc_TDBAL = value & ~0xF;
1761 		if (sc->esc_tx_enabled)
1762 			e82545_tx_update_tdba(sc);
1763 		break;
1764 	case E1000_TDBAH(0):
1765 		sc->esc_TDBAH = value;
1766 		if (sc->esc_tx_enabled)
1767 			e82545_tx_update_tdba(sc);
1768 		break;
1769 	case E1000_TDLEN(0):
1770 		sc->esc_TDLEN = value & ~0xFFF0007F;
1771 		if (sc->esc_tx_enabled)
1772 			e82545_tx_update_tdba(sc);
1773 		break;
1774 	case E1000_TDH(0):
1775 		if (sc->esc_tx_enabled) {
1776 			WPRINTF("ignoring write to TDH while transmit enabled");
1777 			break;
1778 		}
1779 		if (value != 0) {
1780 			WPRINTF("ignoring non-zero value written to TDH");
1781 			break;
1782 		}
1783 		sc->esc_TDHr = sc->esc_TDH = value;
1784 		break;
1785 	case E1000_TDT(0):
1786 		sc->esc_TDT = value;
1787 		if (sc->esc_tx_enabled)
1788 			e82545_tx_start(sc);
1789 		break;
1790 	case E1000_TIDV:
1791 		sc->esc_TIDV = value & ~0xFFFF0000;
1792 		break;
1793 	case E1000_TXDCTL(0):
1794 		//assert(!sc->esc_tx_enabled);
1795 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1796 		break;
1797 	case E1000_TADV:
1798 		sc->esc_TADV = value & ~0xFFFF0000;
1799 		break;
1800 	case E1000_RAL(0) ... E1000_RAH(15):
1801 		/* convert to u32 offset */
1802 		ridx = (offset - E1000_RAL(0)) >> 2;
1803 		e82545_write_ra(sc, ridx, value);
1804 		break;
1805 	case E1000_MTA ... (E1000_MTA + (127*4)):
1806 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1807 		break;
1808 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1809 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1810 		break;
1811 	case E1000_EECD:
1812 	{
1813 		//DPRINTF("EECD write 0x%x -> 0x%x", sc->eeprom_control, value);
1814 		/* edge triggered low->high */
1815 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1816 			0 : (value & E1000_EECD_SK));
1817 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1818 					E1000_EECD_DI|E1000_EECD_REQ);
1819 		sc->eeprom_control &= ~eecd_mask;
1820 		sc->eeprom_control |= (value & eecd_mask);
1821 		/* grant/revoke immediately */
1822 		if (value & E1000_EECD_REQ) {
1823 			sc->eeprom_control |= E1000_EECD_GNT;
1824 		} else {
1825                         sc->eeprom_control &= ~E1000_EECD_GNT;
1826 		}
1827 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1828 			e82545_eecd_strobe(sc);
1829 		}
1830 		return;
1831 	}
1832 	case E1000_MDIC:
1833 	{
1834 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1835 						E1000_MDIC_REG_SHIFT);
1836 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1837 						E1000_MDIC_PHY_SHIFT);
1838 		sc->mdi_control =
1839 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1840 		if ((value & E1000_MDIC_READY) != 0) {
1841 			DPRINTF("Incorrect MDIC ready bit: 0x%x", value);
1842 			return;
1843 		}
1844 		switch (value & E82545_MDIC_OP_MASK) {
1845 		case E1000_MDIC_OP_READ:
1846 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1847 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1848 			break;
1849 		case E1000_MDIC_OP_WRITE:
1850 			e82545_write_mdi(sc, reg_addr, phy_addr,
1851 				value & E82545_MDIC_DATA_MASK);
1852 			break;
1853 		default:
1854 			DPRINTF("Unknown MDIC op: 0x%x", value);
1855 			return;
1856 		}
1857 		/* TODO: barrier? */
1858 		sc->mdi_control |= E1000_MDIC_READY;
1859 		if (value & E82545_MDIC_IE) {
1860 			// TODO: generate interrupt
1861 		}
1862 		return;
1863 	}
1864 	case E1000_MANC:
1865 	case E1000_STATUS:
1866 		return;
1867 	default:
1868 		DPRINTF("Unknown write register: 0x%x value:%x", offset, value);
1869 		return;
1870 	}
1871 }
1872 
1873 static uint32_t
e82545_read_register(struct e82545_softc * sc,uint32_t offset)1874 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1875 {
1876 	uint32_t retval;
1877 	int ridx;
1878 
1879 	if (offset & 0x3) {
1880 		DPRINTF("Unaligned register read offset:0x%x", offset);
1881 		return 0;
1882 	}
1883 
1884 	DPRINTF("Register read: 0x%x", offset);
1885 
1886 	switch (offset) {
1887 	case E1000_CTRL:
1888 		retval = sc->esc_CTRL;
1889 		break;
1890 	case E1000_STATUS:
1891 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1892 		    E1000_STATUS_SPEED_1000;
1893 		break;
1894 	case E1000_FCAL:
1895 		retval = sc->esc_FCAL;
1896 		break;
1897 	case E1000_FCAH:
1898 		retval = sc->esc_FCAH;
1899 		break;
1900 	case E1000_FCT:
1901 		retval = sc->esc_FCT;
1902 		break;
1903 	case E1000_VET:
1904 		retval = sc->esc_VET;
1905 		break;
1906 	case E1000_FCTTV:
1907 		retval = sc->esc_FCTTV;
1908 		break;
1909 	case E1000_LEDCTL:
1910 		retval = sc->esc_LEDCTL;
1911 		break;
1912 	case E1000_PBA:
1913 		retval = sc->esc_PBA;
1914 		break;
1915 	case E1000_ICR:
1916 	case E1000_ITR:
1917 	case E1000_ICS:
1918 	case E1000_IMS:
1919 	case E1000_IMC:
1920 		retval = e82545_intr_read(sc, offset);
1921 		break;
1922 	case E1000_RCTL:
1923 		retval = sc->esc_RCTL;
1924 		break;
1925 	case E1000_FCRTL:
1926 		retval = sc->esc_FCRTL;
1927 		break;
1928 	case E1000_FCRTH:
1929 		retval = sc->esc_FCRTH;
1930 		break;
1931 	case E1000_RDBAL(0):
1932 		retval = sc->esc_RDBAL;
1933 		break;
1934 	case E1000_RDBAH(0):
1935 		retval = sc->esc_RDBAH;
1936 		break;
1937 	case E1000_RDLEN(0):
1938 		retval = sc->esc_RDLEN;
1939 		break;
1940 	case E1000_RDH(0):
1941 		retval = sc->esc_RDH;
1942 		break;
1943 	case E1000_RDT(0):
1944 		retval = sc->esc_RDT;
1945 		break;
1946 	case E1000_RDTR:
1947 		retval = sc->esc_RDTR;
1948 		break;
1949 	case E1000_RXDCTL(0):
1950 		retval = sc->esc_RXDCTL;
1951 		break;
1952 	case E1000_RADV:
1953 		retval = sc->esc_RADV;
1954 		break;
1955 	case E1000_RSRPD:
1956 		retval = sc->esc_RSRPD;
1957 		break;
1958 	case E1000_RXCSUM:
1959 		retval = sc->esc_RXCSUM;
1960 		break;
1961 	case E1000_TXCW:
1962 		retval = sc->esc_TXCW;
1963 		break;
1964 	case E1000_TCTL:
1965 		retval = sc->esc_TCTL;
1966 		break;
1967 	case E1000_TIPG:
1968 		retval = sc->esc_TIPG;
1969 		break;
1970 	case E1000_AIT:
1971 		retval = sc->esc_AIT;
1972 		break;
1973 	case E1000_TDBAL(0):
1974 		retval = sc->esc_TDBAL;
1975 		break;
1976 	case E1000_TDBAH(0):
1977 		retval = sc->esc_TDBAH;
1978 		break;
1979 	case E1000_TDLEN(0):
1980 		retval = sc->esc_TDLEN;
1981 		break;
1982 	case E1000_TDH(0):
1983 		retval = sc->esc_TDH;
1984 		break;
1985 	case E1000_TDT(0):
1986 		retval = sc->esc_TDT;
1987 		break;
1988 	case E1000_TIDV:
1989 		retval = sc->esc_TIDV;
1990 		break;
1991 	case E1000_TXDCTL(0):
1992 		retval = sc->esc_TXDCTL;
1993 		break;
1994 	case E1000_TADV:
1995 		retval = sc->esc_TADV;
1996 		break;
1997 	case E1000_RAL(0) ... E1000_RAH(15):
1998 		/* convert to u32 offset */
1999 		ridx = (offset - E1000_RAL(0)) >> 2;
2000 		retval = e82545_read_ra(sc, ridx);
2001 		break;
2002 	case E1000_MTA ... (E1000_MTA + (127*4)):
2003 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
2004 		break;
2005 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
2006 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
2007 		break;
2008 	case E1000_EECD:
2009 		//DPRINTF("EECD read %x", sc->eeprom_control);
2010 		retval = sc->eeprom_control;
2011 		break;
2012 	case E1000_MDIC:
2013 		retval = sc->mdi_control;
2014 		break;
2015 	case E1000_MANC:
2016 		retval = 0;
2017 		break;
2018 	/* stats that we emulate. */
2019 	case E1000_MPC:
2020 		retval = sc->missed_pkt_count;
2021 		break;
2022 	case E1000_PRC64:
2023 		retval = sc->pkt_rx_by_size[0];
2024 		break;
2025 	case E1000_PRC127:
2026 		retval = sc->pkt_rx_by_size[1];
2027 		break;
2028 	case E1000_PRC255:
2029 		retval = sc->pkt_rx_by_size[2];
2030 		break;
2031 	case E1000_PRC511:
2032 		retval = sc->pkt_rx_by_size[3];
2033 		break;
2034 	case E1000_PRC1023:
2035 		retval = sc->pkt_rx_by_size[4];
2036 		break;
2037 	case E1000_PRC1522:
2038 		retval = sc->pkt_rx_by_size[5];
2039 		break;
2040 	case E1000_GPRC:
2041 		retval = sc->good_pkt_rx_count;
2042 		break;
2043 	case E1000_BPRC:
2044 		retval = sc->bcast_pkt_rx_count;
2045 		break;
2046 	case E1000_MPRC:
2047 		retval = sc->mcast_pkt_rx_count;
2048 		break;
2049 	case E1000_GPTC:
2050 	case E1000_TPT:
2051 		retval = sc->good_pkt_tx_count;
2052 		break;
2053 	case E1000_GORCL:
2054 		retval = (uint32_t)sc->good_octets_rx;
2055 		break;
2056 	case E1000_GORCH:
2057 		retval = (uint32_t)(sc->good_octets_rx >> 32);
2058 		break;
2059 	case E1000_TOTL:
2060 	case E1000_GOTCL:
2061 		retval = (uint32_t)sc->good_octets_tx;
2062 		break;
2063 	case E1000_TOTH:
2064 	case E1000_GOTCH:
2065 		retval = (uint32_t)(sc->good_octets_tx >> 32);
2066 		break;
2067 	case E1000_ROC:
2068 		retval = sc->oversize_rx_count;
2069 		break;
2070 	case E1000_TORL:
2071 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
2072 		break;
2073 	case E1000_TORH:
2074 		retval = (uint32_t)((sc->good_octets_rx +
2075 		    sc->missed_octets) >> 32);
2076 		break;
2077 	case E1000_TPR:
2078 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
2079 		    sc->oversize_rx_count;
2080 		break;
2081 	case E1000_PTC64:
2082 		retval = sc->pkt_tx_by_size[0];
2083 		break;
2084 	case E1000_PTC127:
2085 		retval = sc->pkt_tx_by_size[1];
2086 		break;
2087 	case E1000_PTC255:
2088 		retval = sc->pkt_tx_by_size[2];
2089 		break;
2090 	case E1000_PTC511:
2091 		retval = sc->pkt_tx_by_size[3];
2092 		break;
2093 	case E1000_PTC1023:
2094 		retval = sc->pkt_tx_by_size[4];
2095 		break;
2096 	case E1000_PTC1522:
2097 		retval = sc->pkt_tx_by_size[5];
2098 		break;
2099 	case E1000_MPTC:
2100 		retval = sc->mcast_pkt_tx_count;
2101 		break;
2102 	case E1000_BPTC:
2103 		retval = sc->bcast_pkt_tx_count;
2104 		break;
2105 	case E1000_TSCTC:
2106 		retval = sc->tso_tx_count;
2107 		break;
2108 	/* stats that are always 0. */
2109 	case E1000_CRCERRS:
2110 	case E1000_ALGNERRC:
2111 	case E1000_SYMERRS:
2112 	case E1000_RXERRC:
2113 	case E1000_SCC:
2114 	case E1000_ECOL:
2115 	case E1000_MCC:
2116 	case E1000_LATECOL:
2117 	case E1000_COLC:
2118 	case E1000_DC:
2119 	case E1000_TNCRS:
2120 	case E1000_SEC:
2121 	case E1000_CEXTERR:
2122 	case E1000_RLEC:
2123 	case E1000_XONRXC:
2124 	case E1000_XONTXC:
2125 	case E1000_XOFFRXC:
2126 	case E1000_XOFFTXC:
2127 	case E1000_FCRUC:
2128 	case E1000_RNBC:
2129 	case E1000_RUC:
2130 	case E1000_RFC:
2131 	case E1000_RJC:
2132 	case E1000_MGTPRC:
2133 	case E1000_MGTPDC:
2134 	case E1000_MGTPTC:
2135 	case E1000_TSCTFC:
2136 		retval = 0;
2137 		break;
2138 	default:
2139 		DPRINTF("Unknown read register: 0x%x", offset);
2140 		retval = 0;
2141 		break;
2142 	}
2143 
2144 	return (retval);
2145 }
2146 
2147 static void
e82545_write(struct pci_devinst * pi,int baridx,uint64_t offset,int size,uint64_t value)2148 e82545_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2149     uint64_t value)
2150 {
2151 	struct e82545_softc *sc;
2152 
2153 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d", baridx, offset, value, size);
2154 
2155 	sc = pi->pi_arg;
2156 
2157 	pthread_mutex_lock(&sc->esc_mtx);
2158 
2159 	switch (baridx) {
2160 	case E82545_BAR_IO:
2161 		switch (offset) {
2162 		case E82545_IOADDR:
2163 			if (size != 4) {
2164 				DPRINTF("Wrong io addr write sz:%d value:0x%lx", size, value);
2165 			} else
2166 				sc->io_addr = (uint32_t)value;
2167 			break;
2168 		case E82545_IODATA:
2169 			if (size != 4) {
2170 				DPRINTF("Wrong io data write size:%d value:0x%lx", size, value);
2171 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2172 				DPRINTF("Non-register io write addr:0x%x value:0x%lx", sc->io_addr, value);
2173 			} else
2174 				e82545_write_register(sc, sc->io_addr,
2175 						      (uint32_t)value);
2176 			break;
2177 		default:
2178 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d", offset, value, size);
2179 			break;
2180 		}
2181 		break;
2182 	case E82545_BAR_REGISTER:
2183 		if (size != 4) {
2184 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx", size, offset, value);
2185 		} else
2186 			e82545_write_register(sc, (uint32_t)offset,
2187 					      (uint32_t)value);
2188 		break;
2189 	default:
2190 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d",
2191 			baridx, offset, value, size);
2192 	}
2193 
2194 	pthread_mutex_unlock(&sc->esc_mtx);
2195 }
2196 
2197 static uint64_t
e82545_read(struct pci_devinst * pi,int baridx,uint64_t offset,int size)2198 e82545_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2199 {
2200 	struct e82545_softc *sc;
2201 	uint64_t retval;
2202 
2203 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d", baridx, offset, size);
2204 	sc = pi->pi_arg;
2205 	retval = 0;
2206 
2207 	pthread_mutex_lock(&sc->esc_mtx);
2208 
2209 	switch (baridx) {
2210 	case E82545_BAR_IO:
2211 		switch (offset) {
2212 		case E82545_IOADDR:
2213 			if (size != 4) {
2214 				DPRINTF("Wrong io addr read sz:%d", size);
2215 			} else
2216 				retval = sc->io_addr;
2217 			break;
2218 		case E82545_IODATA:
2219 			if (size != 4) {
2220 				DPRINTF("Wrong io data read sz:%d", size);
2221 			}
2222 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2223 				DPRINTF("Non-register io read addr:0x%x",
2224 					sc->io_addr);
2225 			} else
2226 				retval = e82545_read_register(sc, sc->io_addr);
2227 			break;
2228 		default:
2229 			DPRINTF("Unknown io bar read offset:0x%lx size:%d",
2230 				offset, size);
2231 			break;
2232 		}
2233 		break;
2234 	case E82545_BAR_REGISTER:
2235 		if (size != 4) {
2236 			DPRINTF("Wrong register read size:%d offset:0x%lx",
2237 				size, offset);
2238 		} else
2239 			retval = e82545_read_register(sc, (uint32_t)offset);
2240 		break;
2241 	default:
2242 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d",
2243 			baridx, offset, size);
2244 		break;
2245 	}
2246 
2247 	pthread_mutex_unlock(&sc->esc_mtx);
2248 
2249 	return (retval);
2250 }
2251 
2252 static void
e82545_reset(struct e82545_softc * sc,int drvr)2253 e82545_reset(struct e82545_softc *sc, int drvr)
2254 {
2255 	int i;
2256 
2257 	e82545_rx_disable(sc);
2258 	e82545_tx_disable(sc);
2259 
2260 	/* clear outstanding interrupts */
2261 	if (sc->esc_irq_asserted)
2262 		pci_lintr_deassert(sc->esc_pi);
2263 
2264 	/* misc */
2265 	if (!drvr) {
2266 		sc->esc_FCAL = 0;
2267 		sc->esc_FCAH = 0;
2268 		sc->esc_FCT = 0;
2269 		sc->esc_VET = 0;
2270 		sc->esc_FCTTV = 0;
2271 	}
2272 	sc->esc_LEDCTL = 0x07061302;
2273 	sc->esc_PBA = 0x00100030;
2274 
2275 	/* start nvm in opcode mode. */
2276 	sc->nvm_opaddr = 0;
2277 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2278 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2279 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2280 	e82545_init_eeprom(sc);
2281 
2282 	/* interrupt */
2283 	sc->esc_ICR = 0;
2284 	sc->esc_ITR = 250;
2285 	sc->esc_ICS = 0;
2286 	sc->esc_IMS = 0;
2287 	sc->esc_IMC = 0;
2288 
2289 	/* L2 filters */
2290 	if (!drvr) {
2291 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2292 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2293 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2294 
2295 		/* XXX not necessary on 82545 ?? */
2296 		sc->esc_uni[0].eu_valid = 1;
2297 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2298 		    ETHER_ADDR_LEN);
2299 	} else {
2300 		/* Clear RAH valid bits */
2301 		for (i = 0; i < 16; i++)
2302 			sc->esc_uni[i].eu_valid = 0;
2303 	}
2304 
2305 	/* receive */
2306 	if (!drvr) {
2307 		sc->esc_RDBAL = 0;
2308 		sc->esc_RDBAH = 0;
2309 	}
2310 	sc->esc_RCTL = 0;
2311 	sc->esc_FCRTL = 0;
2312 	sc->esc_FCRTH = 0;
2313 	sc->esc_RDLEN = 0;
2314 	sc->esc_RDH = 0;
2315 	sc->esc_RDT = 0;
2316 	sc->esc_RDTR = 0;
2317 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2318 	sc->esc_RADV = 0;
2319 	sc->esc_RXCSUM = 0;
2320 
2321 	/* transmit */
2322 	if (!drvr) {
2323 		sc->esc_TDBAL = 0;
2324 		sc->esc_TDBAH = 0;
2325 		sc->esc_TIPG = 0;
2326 		sc->esc_AIT = 0;
2327 		sc->esc_TIDV = 0;
2328 		sc->esc_TADV = 0;
2329 	}
2330 	sc->esc_tdba = 0;
2331 	sc->esc_txdesc = NULL;
2332 	sc->esc_TXCW = 0;
2333 	sc->esc_TCTL = 0;
2334 	sc->esc_TDLEN = 0;
2335 	sc->esc_TDT = 0;
2336 	sc->esc_TDHr = sc->esc_TDH = 0;
2337 	sc->esc_TXDCTL = 0;
2338 }
2339 
2340 static int
e82545_init(struct pci_devinst * pi,nvlist_t * nvl)2341 e82545_init(struct pci_devinst *pi, nvlist_t *nvl)
2342 {
2343 	char nstr[80];
2344 	struct e82545_softc *sc;
2345 	const char *mac;
2346 	int err;
2347 
2348 	/* Setup our softc */
2349 	sc = calloc(1, sizeof(*sc));
2350 
2351 	pi->pi_arg = sc;
2352 	sc->esc_pi = pi;
2353 	sc->esc_ctx = pi->pi_vmctx;
2354 
2355 	pthread_mutex_init(&sc->esc_mtx, NULL);
2356 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2357 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2358 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2359 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2360 	    pi->pi_func);
2361         pthread_set_name_np(sc->esc_tx_tid, nstr);
2362 
2363 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2364 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2365 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2366 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2367 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2368 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2369 
2370 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2371 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2372 
2373 	/* TODO: this card also supports msi, but the freebsd driver for it
2374 	 * does not, so I have not implemented it. */
2375 	pci_lintr_request(pi);
2376 
2377 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2378 		E82545_BAR_REGISTER_LEN);
2379 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2380 		E82545_BAR_FLASH_LEN);
2381 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2382 		E82545_BAR_IO_LEN);
2383 
2384 	mac = get_config_value_node(nvl, "mac");
2385 	if (mac != NULL) {
2386 		err = net_parsemac(mac, sc->esc_mac.octet);
2387 		if (err) {
2388 			free(sc);
2389 			return (err);
2390 		}
2391 	} else
2392 		net_genmac(pi, sc->esc_mac.octet);
2393 
2394 	err = netbe_init(&sc->esc_be, nvl, e82545_rx_callback, sc);
2395 	if (err) {
2396 		free(sc);
2397 		return (err);
2398 	}
2399 
2400 #ifndef __FreeBSD__
2401 	size_t buflen = sizeof (sc->esc_mac.octet);
2402 
2403 	err = netbe_get_mac(sc->esc_be, sc->esc_mac.octet, &buflen);
2404 	if (err != 0) {
2405 		free(sc);
2406 		return (err);
2407 	}
2408 #endif
2409 
2410 	netbe_rx_enable(sc->esc_be);
2411 
2412 	/* H/w initiated reset */
2413 	e82545_reset(sc, 0);
2414 
2415 	return (0);
2416 }
2417 
2418 static const struct pci_devemu pci_de_e82545 = {
2419 	.pe_emu = 	"e1000",
2420 	.pe_init =	e82545_init,
2421 	.pe_legacy_config = netbe_legacy_config,
2422 	.pe_barwrite =	e82545_write,
2423 	.pe_barread =	e82545_read,
2424 };
2425 PCI_EMUL_SET(pci_de_e82545);
2426