1 /* 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 29 /* 30 * Stand-alone ZFS file reader. 31 */ 32 33 #include <stdbool.h> 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <sys/zfs_bootenv.h> 39 #include <inttypes.h> 40 41 #include "zfsimpl.h" 42 #include "zfssubr.c" 43 44 45 struct zfsmount { 46 const spa_t *spa; 47 objset_phys_t objset; 48 uint64_t rootobj; 49 }; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.illumos:edonr", 120 "org.zfsonlinux:large_dnode", 121 "com.joyent:multi_vdev_crash_dump", 122 "com.delphix:spacemap_histogram", 123 "com.delphix:zpool_checkpoint", 124 "com.delphix:spacemap_v2", 125 "com.datto:encryption", 126 "com.datto:bookmark_v2", 127 "org.zfsonlinux:allocation_classes", 128 "com.datto:resilver_defer", 129 "com.delphix:device_removal", 130 "com.delphix:obsolete_counts", 131 NULL 132 }; 133 134 /* 135 * List of all pools, chained through spa_link. 136 */ 137 static spa_list_t zfs_pools; 138 139 static const dnode_phys_t *dnode_cache_obj; 140 static uint64_t dnode_cache_bn; 141 static char *dnode_cache_buf; 142 143 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 144 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 145 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 146 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 147 const char *name, uint64_t integer_size, uint64_t num_integers, 148 void *value); 149 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 150 dnode_phys_t *); 151 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 152 size_t); 153 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 154 size_t); 155 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, 156 size_t); 157 158 static void 159 zfs_init(void) 160 { 161 STAILQ_INIT(&zfs_vdevs); 162 STAILQ_INIT(&zfs_pools); 163 164 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 165 166 zfs_init_crc(); 167 } 168 169 static int 170 nvlist_check_features_for_read(nvlist_t *nvl) 171 { 172 nvlist_t *features = NULL; 173 nvs_data_t *data; 174 nvp_header_t *nvp; 175 nv_string_t *nvp_name; 176 int rc; 177 178 /* 179 * We may have all features disabled. 180 */ 181 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 182 DATA_TYPE_NVLIST, NULL, &features, NULL); 183 switch (rc) { 184 case 0: 185 break; /* Continue with checks */ 186 187 case ENOENT: 188 return (0); /* All features are disabled */ 189 190 default: 191 return (rc); /* Error while reading nvlist */ 192 } 193 194 data = (nvs_data_t *)features->nv_data; 195 nvp = &data->nvl_pair; /* first pair in nvlist */ 196 197 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 198 int i, found; 199 200 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof (*nvp)); 201 found = 0; 202 203 for (i = 0; features_for_read[i] != NULL; i++) { 204 if (memcmp(nvp_name->nv_data, features_for_read[i], 205 nvp_name->nv_size) == 0) { 206 found = 1; 207 break; 208 } 209 } 210 211 if (!found) { 212 printf("ZFS: unsupported feature: %.*s\n", 213 nvp_name->nv_size, nvp_name->nv_data); 214 rc = EIO; 215 } 216 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 217 } 218 nvlist_destroy(features); 219 220 return (rc); 221 } 222 223 static int 224 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 225 off_t offset, size_t size) 226 { 227 size_t psize; 228 int rc; 229 230 if (vdev->v_phys_read == NULL) 231 return (ENOTSUP); 232 233 if (bp) { 234 psize = BP_GET_PSIZE(bp); 235 } else { 236 psize = size; 237 } 238 239 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize); 240 if (rc == 0) { 241 if (bp != NULL) 242 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 243 } 244 245 return (rc); 246 } 247 248 static int 249 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size) 250 { 251 if (vdev->v_phys_write == NULL) 252 return (ENOTSUP); 253 254 return (vdev->v_phys_write(vdev, offset, buf, size)); 255 } 256 257 typedef struct remap_segment { 258 vdev_t *rs_vd; 259 uint64_t rs_offset; 260 uint64_t rs_asize; 261 uint64_t rs_split_offset; 262 list_node_t rs_node; 263 } remap_segment_t; 264 265 static remap_segment_t * 266 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 267 { 268 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 269 270 if (rs != NULL) { 271 rs->rs_vd = vd; 272 rs->rs_offset = offset; 273 rs->rs_asize = asize; 274 rs->rs_split_offset = split_offset; 275 } 276 277 return (rs); 278 } 279 280 vdev_indirect_mapping_t * 281 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 282 uint64_t mapping_object) 283 { 284 vdev_indirect_mapping_t *vim; 285 vdev_indirect_mapping_phys_t *vim_phys; 286 int rc; 287 288 vim = calloc(1, sizeof (*vim)); 289 if (vim == NULL) 290 return (NULL); 291 292 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 293 if (vim->vim_dn == NULL) { 294 free(vim); 295 return (NULL); 296 } 297 298 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 299 if (rc != 0) { 300 free(vim->vim_dn); 301 free(vim); 302 return (NULL); 303 } 304 305 vim->vim_spa = spa; 306 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 307 if (vim->vim_phys == NULL) { 308 free(vim->vim_dn); 309 free(vim); 310 return (NULL); 311 } 312 313 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 314 *vim->vim_phys = *vim_phys; 315 316 vim->vim_objset = os; 317 vim->vim_object = mapping_object; 318 vim->vim_entries = NULL; 319 320 vim->vim_havecounts = 321 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 322 323 return (vim); 324 } 325 326 /* 327 * Compare an offset with an indirect mapping entry; there are three 328 * possible scenarios: 329 * 330 * 1. The offset is "less than" the mapping entry; meaning the 331 * offset is less than the source offset of the mapping entry. In 332 * this case, there is no overlap between the offset and the 333 * mapping entry and -1 will be returned. 334 * 335 * 2. The offset is "greater than" the mapping entry; meaning the 336 * offset is greater than the mapping entry's source offset plus 337 * the entry's size. In this case, there is no overlap between 338 * the offset and the mapping entry and 1 will be returned. 339 * 340 * NOTE: If the offset is actually equal to the entry's offset 341 * plus size, this is considered to be "greater" than the entry, 342 * and this case applies (i.e. 1 will be returned). Thus, the 343 * entry's "range" can be considered to be inclusive at its 344 * start, but exclusive at its end: e.g. [src, src + size). 345 * 346 * 3. The last case to consider is if the offset actually falls 347 * within the mapping entry's range. If this is the case, the 348 * offset is considered to be "equal to" the mapping entry and 349 * 0 will be returned. 350 * 351 * NOTE: If the offset is equal to the entry's source offset, 352 * this case applies and 0 will be returned. If the offset is 353 * equal to the entry's source plus its size, this case does 354 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 355 * returned. 356 */ 357 static int 358 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 359 { 360 const uint64_t *key = v_key; 361 const vdev_indirect_mapping_entry_phys_t *array_elem = 362 v_array_elem; 363 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 364 365 if (*key < src_offset) { 366 return (-1); 367 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 368 return (0); 369 } else { 370 return (1); 371 } 372 } 373 374 /* 375 * Return array entry. 376 */ 377 static vdev_indirect_mapping_entry_phys_t * 378 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 379 { 380 uint64_t size; 381 off_t offset = 0; 382 int rc; 383 384 if (vim->vim_phys->vimp_num_entries == 0) 385 return (NULL); 386 387 if (vim->vim_entries == NULL) { 388 uint64_t bsize; 389 390 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 391 size = vim->vim_phys->vimp_num_entries * 392 sizeof (*vim->vim_entries); 393 if (size > bsize) { 394 size = bsize / sizeof (*vim->vim_entries); 395 size *= sizeof (*vim->vim_entries); 396 } 397 vim->vim_entries = malloc(size); 398 if (vim->vim_entries == NULL) 399 return (NULL); 400 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 401 offset = index * sizeof (*vim->vim_entries); 402 } 403 404 /* We have data in vim_entries */ 405 if (offset == 0) { 406 if (index >= vim->vim_entry_offset && 407 index <= vim->vim_entry_offset + vim->vim_num_entries) { 408 index -= vim->vim_entry_offset; 409 return (&vim->vim_entries[index]); 410 } 411 offset = index * sizeof (*vim->vim_entries); 412 } 413 414 vim->vim_entry_offset = index; 415 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 416 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 417 size); 418 if (rc != 0) { 419 /* Read error, invalidate vim_entries. */ 420 free(vim->vim_entries); 421 vim->vim_entries = NULL; 422 return (NULL); 423 } 424 index -= vim->vim_entry_offset; 425 return (&vim->vim_entries[index]); 426 } 427 428 /* 429 * Returns the mapping entry for the given offset. 430 * 431 * It's possible that the given offset will not be in the mapping table 432 * (i.e. no mapping entries contain this offset), in which case, the 433 * return value value depends on the "next_if_missing" parameter. 434 * 435 * If the offset is not found in the table and "next_if_missing" is 436 * B_FALSE, then NULL will always be returned. The behavior is intended 437 * to allow consumers to get the entry corresponding to the offset 438 * parameter, iff the offset overlaps with an entry in the table. 439 * 440 * If the offset is not found in the table and "next_if_missing" is 441 * B_TRUE, then the entry nearest to the given offset will be returned, 442 * such that the entry's source offset is greater than the offset 443 * passed in (i.e. the "next" mapping entry in the table is returned, if 444 * the offset is missing from the table). If there are no entries whose 445 * source offset is greater than the passed in offset, NULL is returned. 446 */ 447 static vdev_indirect_mapping_entry_phys_t * 448 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 449 uint64_t offset) 450 { 451 ASSERT(vim->vim_phys->vimp_num_entries > 0); 452 453 vdev_indirect_mapping_entry_phys_t *entry; 454 455 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 456 uint64_t base = 0; 457 458 /* 459 * We don't define these inside of the while loop because we use 460 * their value in the case that offset isn't in the mapping. 461 */ 462 uint64_t mid; 463 int result; 464 465 while (last >= base) { 466 mid = base + ((last - base) >> 1); 467 468 entry = vdev_indirect_mapping_entry(vim, mid); 469 if (entry == NULL) 470 break; 471 result = dva_mapping_overlap_compare(&offset, entry); 472 473 if (result == 0) { 474 break; 475 } else if (result < 0) { 476 last = mid - 1; 477 } else { 478 base = mid + 1; 479 } 480 } 481 return (entry); 482 } 483 484 /* 485 * Given an indirect vdev and an extent on that vdev, it duplicates the 486 * physical entries of the indirect mapping that correspond to the extent 487 * to a new array and returns a pointer to it. In addition, copied_entries 488 * is populated with the number of mapping entries that were duplicated. 489 * 490 * Finally, since we are doing an allocation, it is up to the caller to 491 * free the array allocated in this function. 492 */ 493 vdev_indirect_mapping_entry_phys_t * 494 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 495 uint64_t asize, uint64_t *copied_entries) 496 { 497 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 498 vdev_indirect_mapping_t *vim = vd->v_mapping; 499 uint64_t entries = 0; 500 501 vdev_indirect_mapping_entry_phys_t *first_mapping = 502 vdev_indirect_mapping_entry_for_offset(vim, offset); 503 ASSERT3P(first_mapping, !=, NULL); 504 505 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 506 while (asize > 0) { 507 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 508 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 509 uint64_t inner_size = MIN(asize, size - inner_offset); 510 511 offset += inner_size; 512 asize -= inner_size; 513 entries++; 514 m++; 515 } 516 517 size_t copy_length = entries * sizeof (*first_mapping); 518 duplicate_mappings = malloc(copy_length); 519 if (duplicate_mappings != NULL) 520 bcopy(first_mapping, duplicate_mappings, copy_length); 521 else 522 entries = 0; 523 524 *copied_entries = entries; 525 526 return (duplicate_mappings); 527 } 528 529 static vdev_t * 530 vdev_lookup_top(spa_t *spa, uint64_t vdev) 531 { 532 vdev_t *rvd; 533 vdev_list_t *vlist; 534 535 vlist = &spa->spa_root_vdev->v_children; 536 STAILQ_FOREACH(rvd, vlist, v_childlink) 537 if (rvd->v_id == vdev) 538 break; 539 540 return (rvd); 541 } 542 543 /* 544 * This is a callback for vdev_indirect_remap() which allocates an 545 * indirect_split_t for each split segment and adds it to iv_splits. 546 */ 547 static void 548 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 549 uint64_t size, void *arg) 550 { 551 int n = 1; 552 zio_t *zio = arg; 553 indirect_vsd_t *iv = zio->io_vsd; 554 555 if (vd->v_read == vdev_indirect_read) 556 return; 557 558 if (vd->v_read == vdev_mirror_read) 559 n = vd->v_nchildren; 560 561 indirect_split_t *is = 562 malloc(offsetof(indirect_split_t, is_child[n])); 563 if (is == NULL) { 564 zio->io_error = ENOMEM; 565 return; 566 } 567 bzero(is, offsetof(indirect_split_t, is_child[n])); 568 569 is->is_children = n; 570 is->is_size = size; 571 is->is_split_offset = split_offset; 572 is->is_target_offset = offset; 573 is->is_vdev = vd; 574 575 /* 576 * Note that we only consider multiple copies of the data for 577 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 578 * though they use the same ops as mirror, because there's only one 579 * "good" copy under the replacing/spare. 580 */ 581 if (vd->v_read == vdev_mirror_read) { 582 int i = 0; 583 vdev_t *kid; 584 585 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 586 is->is_child[i++].ic_vdev = kid; 587 } 588 } else { 589 is->is_child[0].ic_vdev = vd; 590 } 591 592 list_insert_tail(&iv->iv_splits, is); 593 } 594 595 static void 596 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 597 { 598 list_t stack; 599 spa_t *spa = vd->v_spa; 600 zio_t *zio = arg; 601 remap_segment_t *rs; 602 603 list_create(&stack, sizeof (remap_segment_t), 604 offsetof(remap_segment_t, rs_node)); 605 606 rs = rs_alloc(vd, offset, asize, 0); 607 if (rs == NULL) { 608 printf("vdev_indirect_remap: out of memory.\n"); 609 zio->io_error = ENOMEM; 610 } 611 for (; rs != NULL; rs = list_remove_head(&stack)) { 612 vdev_t *v = rs->rs_vd; 613 uint64_t num_entries = 0; 614 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 615 vdev_indirect_mapping_entry_phys_t *mapping = 616 vdev_indirect_mapping_duplicate_adjacent_entries(v, 617 rs->rs_offset, rs->rs_asize, &num_entries); 618 619 if (num_entries == 0) 620 zio->io_error = ENOMEM; 621 622 for (uint64_t i = 0; i < num_entries; i++) { 623 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 624 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 625 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 626 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 627 uint64_t inner_offset = rs->rs_offset - 628 DVA_MAPPING_GET_SRC_OFFSET(m); 629 uint64_t inner_size = 630 MIN(rs->rs_asize, size - inner_offset); 631 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 632 633 if (dst_v->v_read == vdev_indirect_read) { 634 remap_segment_t *o; 635 636 o = rs_alloc(dst_v, dst_offset + inner_offset, 637 inner_size, rs->rs_split_offset); 638 if (o == NULL) { 639 printf("vdev_indirect_remap: " 640 "out of memory.\n"); 641 zio->io_error = ENOMEM; 642 break; 643 } 644 645 list_insert_head(&stack, o); 646 } 647 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 648 dst_offset + inner_offset, 649 inner_size, arg); 650 651 /* 652 * vdev_indirect_gather_splits can have memory 653 * allocation error, we can not recover from it. 654 */ 655 if (zio->io_error != 0) 656 break; 657 rs->rs_offset += inner_size; 658 rs->rs_asize -= inner_size; 659 rs->rs_split_offset += inner_size; 660 } 661 662 free(mapping); 663 free(rs); 664 if (zio->io_error != 0) 665 break; 666 } 667 668 list_destroy(&stack); 669 } 670 671 static void 672 vdev_indirect_map_free(zio_t *zio) 673 { 674 indirect_vsd_t *iv = zio->io_vsd; 675 indirect_split_t *is; 676 677 while ((is = list_head(&iv->iv_splits)) != NULL) { 678 for (int c = 0; c < is->is_children; c++) { 679 indirect_child_t *ic = &is->is_child[c]; 680 free(ic->ic_data); 681 } 682 list_remove(&iv->iv_splits, is); 683 free(is); 684 } 685 free(iv); 686 } 687 688 static int 689 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 690 off_t offset, size_t bytes) 691 { 692 zio_t zio; 693 spa_t *spa = vdev->v_spa; 694 indirect_vsd_t *iv; 695 indirect_split_t *first; 696 int rc = EIO; 697 698 iv = calloc(1, sizeof (*iv)); 699 if (iv == NULL) 700 return (ENOMEM); 701 702 list_create(&iv->iv_splits, 703 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 704 705 bzero(&zio, sizeof (zio)); 706 zio.io_spa = spa; 707 zio.io_bp = (blkptr_t *)bp; 708 zio.io_data = buf; 709 zio.io_size = bytes; 710 zio.io_offset = offset; 711 zio.io_vd = vdev; 712 zio.io_vsd = iv; 713 714 if (vdev->v_mapping == NULL) { 715 vdev_indirect_config_t *vic; 716 717 vic = &vdev->vdev_indirect_config; 718 vdev->v_mapping = vdev_indirect_mapping_open(spa, 719 &spa->spa_mos, vic->vic_mapping_object); 720 } 721 722 vdev_indirect_remap(vdev, offset, bytes, &zio); 723 if (zio.io_error != 0) 724 return (zio.io_error); 725 726 first = list_head(&iv->iv_splits); 727 if (first->is_size == zio.io_size) { 728 /* 729 * This is not a split block; we are pointing to the entire 730 * data, which will checksum the same as the original data. 731 * Pass the BP down so that the child i/o can verify the 732 * checksum, and try a different location if available 733 * (e.g. on a mirror). 734 * 735 * While this special case could be handled the same as the 736 * general (split block) case, doing it this way ensures 737 * that the vast majority of blocks on indirect vdevs 738 * (which are not split) are handled identically to blocks 739 * on non-indirect vdevs. This allows us to be less strict 740 * about performance in the general (but rare) case. 741 */ 742 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 743 zio.io_data, first->is_target_offset, bytes); 744 } else { 745 iv->iv_split_block = B_TRUE; 746 /* 747 * Read one copy of each split segment, from the 748 * top-level vdev. Since we don't know the 749 * checksum of each split individually, the child 750 * zio can't ensure that we get the right data. 751 * E.g. if it's a mirror, it will just read from a 752 * random (healthy) leaf vdev. We have to verify 753 * the checksum in vdev_indirect_io_done(). 754 */ 755 for (indirect_split_t *is = list_head(&iv->iv_splits); 756 is != NULL; is = list_next(&iv->iv_splits, is)) { 757 char *ptr = zio.io_data; 758 759 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 760 ptr + is->is_split_offset, is->is_target_offset, 761 is->is_size); 762 } 763 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 764 rc = ECKSUM; 765 else 766 rc = 0; 767 } 768 769 vdev_indirect_map_free(&zio); 770 if (rc == 0) 771 rc = zio.io_error; 772 773 return (rc); 774 } 775 776 static int 777 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 778 off_t offset, size_t bytes) 779 { 780 781 return (vdev_read_phys(vdev, bp, buf, 782 offset + VDEV_LABEL_START_SIZE, bytes)); 783 } 784 785 static int 786 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 787 void *buf __unused, off_t offset __unused, size_t bytes __unused) 788 { 789 790 return (ENOTSUP); 791 } 792 793 static int 794 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 795 off_t offset, size_t bytes) 796 { 797 vdev_t *kid; 798 int rc; 799 800 rc = EIO; 801 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 802 if (kid->v_state != VDEV_STATE_HEALTHY) 803 continue; 804 rc = kid->v_read(kid, bp, buf, offset, bytes); 805 if (!rc) 806 return (0); 807 } 808 809 return (rc); 810 } 811 812 static int 813 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 814 off_t offset, size_t bytes) 815 { 816 vdev_t *kid; 817 818 /* 819 * Here we should have two kids: 820 * First one which is the one we are replacing and we can trust 821 * only this one to have valid data, but it might not be present. 822 * Second one is that one we are replacing with. It is most likely 823 * healthy, but we can't trust it has needed data, so we won't use it. 824 */ 825 kid = STAILQ_FIRST(&vdev->v_children); 826 if (kid == NULL) 827 return (EIO); 828 if (kid->v_state != VDEV_STATE_HEALTHY) 829 return (EIO); 830 return (kid->v_read(kid, bp, buf, offset, bytes)); 831 } 832 833 static vdev_t * 834 vdev_find(uint64_t guid) 835 { 836 vdev_t *vdev; 837 838 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 839 if (vdev->v_guid == guid) 840 return (vdev); 841 842 return (0); 843 } 844 845 static vdev_t * 846 vdev_create(uint64_t guid, vdev_read_t *vdev_read) 847 { 848 vdev_t *vdev; 849 vdev_indirect_config_t *vic; 850 851 vdev = calloc(1, sizeof (vdev_t)); 852 if (vdev != NULL) { 853 STAILQ_INIT(&vdev->v_children); 854 vdev->v_guid = guid; 855 vdev->v_read = vdev_read; 856 857 /* 858 * root vdev has no read function, we use this fact to 859 * skip setting up data we do not need for root vdev. 860 * We only point root vdev from spa. 861 */ 862 if (vdev_read != NULL) { 863 vic = &vdev->vdev_indirect_config; 864 vic->vic_prev_indirect_vdev = UINT64_MAX; 865 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 866 } 867 } 868 869 return (vdev); 870 } 871 872 static void 873 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 874 { 875 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 876 uint64_t is_log; 877 878 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 879 is_log = 0; 880 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 881 &is_offline, NULL); 882 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 883 &is_removed, NULL); 884 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 885 &is_faulted, NULL); 886 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 887 NULL, &is_degraded, NULL); 888 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 889 NULL, &isnt_present, NULL); 890 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 891 &is_log, NULL); 892 893 if (is_offline != 0) 894 vdev->v_state = VDEV_STATE_OFFLINE; 895 else if (is_removed != 0) 896 vdev->v_state = VDEV_STATE_REMOVED; 897 else if (is_faulted != 0) 898 vdev->v_state = VDEV_STATE_FAULTED; 899 else if (is_degraded != 0) 900 vdev->v_state = VDEV_STATE_DEGRADED; 901 else if (isnt_present != 0) 902 vdev->v_state = VDEV_STATE_CANT_OPEN; 903 904 vdev->v_islog = is_log != 0; 905 } 906 907 static int 908 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 909 { 910 uint64_t id, ashift, asize, nparity; 911 const char *path; 912 const char *type; 913 int len, pathlen; 914 char *name; 915 vdev_t *vdev; 916 917 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 918 NULL) || 919 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 920 NULL, &type, &len)) { 921 return (ENOENT); 922 } 923 924 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 925 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 926 #ifdef ZFS_TEST 927 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 928 #endif 929 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 930 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 931 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 932 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 933 printf("ZFS: can only boot from disk, mirror, raidz1, " 934 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 935 return (EIO); 936 } 937 938 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 939 vdev = vdev_create(guid, vdev_mirror_read); 940 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 941 vdev = vdev_create(guid, vdev_raidz_read); 942 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 943 vdev = vdev_create(guid, vdev_replacing_read); 944 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 945 vdev_indirect_config_t *vic; 946 947 vdev = vdev_create(guid, vdev_indirect_read); 948 if (vdev != NULL) { 949 vdev->v_state = VDEV_STATE_HEALTHY; 950 vic = &vdev->vdev_indirect_config; 951 952 nvlist_find(nvlist, 953 ZPOOL_CONFIG_INDIRECT_OBJECT, 954 DATA_TYPE_UINT64, 955 NULL, &vic->vic_mapping_object, NULL); 956 nvlist_find(nvlist, 957 ZPOOL_CONFIG_INDIRECT_BIRTHS, 958 DATA_TYPE_UINT64, 959 NULL, &vic->vic_births_object, NULL); 960 nvlist_find(nvlist, 961 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 962 DATA_TYPE_UINT64, 963 NULL, &vic->vic_prev_indirect_vdev, NULL); 964 } 965 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 966 vdev = vdev_create(guid, vdev_missing_read); 967 } else { 968 vdev = vdev_create(guid, vdev_disk_read); 969 } 970 971 if (vdev == NULL) 972 return (ENOMEM); 973 974 vdev_set_initial_state(vdev, nvlist); 975 vdev->v_id = id; 976 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 977 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 978 vdev->v_ashift = ashift; 979 980 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 981 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 982 vdev->v_psize = asize + 983 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 984 } 985 986 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 987 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 988 vdev->v_nparity = nparity; 989 990 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 991 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 992 char prefix[] = "/dev/dsk/"; 993 994 len = strlen(prefix); 995 if (len < pathlen && memcmp(path, prefix, len) == 0) { 996 path += len; 997 pathlen -= len; 998 } 999 name = malloc(pathlen + 1); 1000 if (name != NULL) { 1001 bcopy(path, name, pathlen); 1002 name[pathlen] = '\0'; 1003 } 1004 vdev->v_name = name; 1005 vdev->v_phys_path = NULL; 1006 vdev->v_devid = NULL; 1007 if (nvlist_find(nvlist, ZPOOL_CONFIG_PHYS_PATH, 1008 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 1009 name = malloc(pathlen + 1); 1010 if (name != NULL) { 1011 bcopy(path, name, pathlen); 1012 name[pathlen] = '\0'; 1013 vdev->v_phys_path = name; 1014 } 1015 } 1016 if (nvlist_find(nvlist, ZPOOL_CONFIG_DEVID, 1017 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 1018 name = malloc(pathlen + 1); 1019 if (name != NULL) { 1020 bcopy(path, name, pathlen); 1021 name[pathlen] = '\0'; 1022 vdev->v_devid = name; 1023 } 1024 } 1025 } else { 1026 name = NULL; 1027 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1028 if (vdev->v_nparity < 1 || 1029 vdev->v_nparity > 3) { 1030 printf("ZFS: invalid raidz parity: %d\n", 1031 vdev->v_nparity); 1032 return (EIO); 1033 } 1034 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 1035 vdev->v_nparity, id); 1036 } else { 1037 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 1038 } 1039 vdev->v_name = name; 1040 } 1041 *vdevp = vdev; 1042 return (0); 1043 } 1044 1045 /* 1046 * Find slot for vdev. We return either NULL to signal to use 1047 * STAILQ_INSERT_HEAD, or we return link element to be used with 1048 * STAILQ_INSERT_AFTER. 1049 */ 1050 static vdev_t * 1051 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1052 { 1053 vdev_t *v, *previous; 1054 1055 if (STAILQ_EMPTY(&top_vdev->v_children)) 1056 return (NULL); 1057 1058 previous = NULL; 1059 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1060 if (v->v_id > vdev->v_id) 1061 return (previous); 1062 1063 if (v->v_id == vdev->v_id) 1064 return (v); 1065 1066 if (v->v_id < vdev->v_id) 1067 previous = v; 1068 } 1069 return (previous); 1070 } 1071 1072 static size_t 1073 vdev_child_count(vdev_t *vdev) 1074 { 1075 vdev_t *v; 1076 size_t count; 1077 1078 count = 0; 1079 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1080 count++; 1081 } 1082 return (count); 1083 } 1084 1085 /* 1086 * Insert vdev into top_vdev children list. List is ordered by v_id. 1087 */ 1088 static void 1089 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1090 { 1091 vdev_t *previous; 1092 size_t count; 1093 1094 /* 1095 * The top level vdev can appear in random order, depending how 1096 * the firmware is presenting the disk devices. 1097 * However, we will insert vdev to create list ordered by v_id, 1098 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1099 * as STAILQ does not have insert before. 1100 */ 1101 previous = vdev_find_previous(top_vdev, vdev); 1102 1103 if (previous == NULL) { 1104 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1105 } else if (previous->v_id == vdev->v_id) { 1106 /* 1107 * This vdev was configured from label config, 1108 * do not insert duplicate. 1109 */ 1110 return; 1111 } else { 1112 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1113 v_childlink); 1114 } 1115 1116 count = vdev_child_count(top_vdev); 1117 if (top_vdev->v_nchildren < count) 1118 top_vdev->v_nchildren = count; 1119 } 1120 1121 static int 1122 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1123 { 1124 vdev_t *top_vdev, *vdev; 1125 nvlist_t **kids = NULL; 1126 int rc, nkids; 1127 1128 /* Get top vdev. */ 1129 top_vdev = vdev_find(top_guid); 1130 if (top_vdev == NULL) { 1131 rc = vdev_init(top_guid, nvlist, &top_vdev); 1132 if (rc != 0) 1133 return (rc); 1134 top_vdev->v_spa = spa; 1135 top_vdev->v_top = top_vdev; 1136 vdev_insert(spa->spa_root_vdev, top_vdev); 1137 } 1138 1139 /* Add children if there are any. */ 1140 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1141 &nkids, &kids, NULL); 1142 if (rc == 0) { 1143 for (int i = 0; i < nkids; i++) { 1144 uint64_t guid; 1145 1146 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1147 DATA_TYPE_UINT64, NULL, &guid, NULL); 1148 if (rc != 0) 1149 goto done; 1150 1151 rc = vdev_init(guid, kids[i], &vdev); 1152 if (rc != 0) 1153 goto done; 1154 1155 vdev->v_spa = spa; 1156 vdev->v_top = top_vdev; 1157 vdev_insert(top_vdev, vdev); 1158 } 1159 } else { 1160 /* 1161 * When there are no children, nvlist_find() does return 1162 * error, reset it because leaf devices have no children. 1163 */ 1164 rc = 0; 1165 } 1166 done: 1167 if (kids != NULL) { 1168 for (int i = 0; i < nkids; i++) 1169 nvlist_destroy(kids[i]); 1170 free(kids); 1171 } 1172 1173 return (rc); 1174 } 1175 1176 static int 1177 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1178 { 1179 uint64_t pool_guid, top_guid; 1180 nvlist_t *vdevs; 1181 int rc; 1182 1183 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1184 NULL, &pool_guid, NULL) || 1185 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1186 NULL, &top_guid, NULL) || 1187 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1188 NULL, &vdevs, NULL)) { 1189 printf("ZFS: can't find vdev details\n"); 1190 return (ENOENT); 1191 } 1192 1193 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1194 nvlist_destroy(vdevs); 1195 return (rc); 1196 } 1197 1198 static void 1199 vdev_set_state(vdev_t *vdev) 1200 { 1201 vdev_t *kid; 1202 int good_kids; 1203 int bad_kids; 1204 1205 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1206 vdev_set_state(kid); 1207 } 1208 1209 /* 1210 * A mirror or raidz is healthy if all its kids are healthy. A 1211 * mirror is degraded if any of its kids is healthy; a raidz 1212 * is degraded if at most nparity kids are offline. 1213 */ 1214 if (STAILQ_FIRST(&vdev->v_children)) { 1215 good_kids = 0; 1216 bad_kids = 0; 1217 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1218 if (kid->v_state == VDEV_STATE_HEALTHY) 1219 good_kids++; 1220 else 1221 bad_kids++; 1222 } 1223 if (bad_kids == 0) { 1224 vdev->v_state = VDEV_STATE_HEALTHY; 1225 } else { 1226 if (vdev->v_read == vdev_mirror_read) { 1227 if (good_kids) { 1228 vdev->v_state = VDEV_STATE_DEGRADED; 1229 } else { 1230 vdev->v_state = VDEV_STATE_OFFLINE; 1231 } 1232 } else if (vdev->v_read == vdev_raidz_read) { 1233 if (bad_kids > vdev->v_nparity) { 1234 vdev->v_state = VDEV_STATE_OFFLINE; 1235 } else { 1236 vdev->v_state = VDEV_STATE_DEGRADED; 1237 } 1238 } 1239 } 1240 } 1241 } 1242 1243 static int 1244 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1245 { 1246 vdev_t *vdev; 1247 nvlist_t **kids = NULL; 1248 int rc, nkids; 1249 1250 /* Update top vdev. */ 1251 vdev = vdev_find(top_guid); 1252 if (vdev != NULL) 1253 vdev_set_initial_state(vdev, nvlist); 1254 1255 /* Update children if there are any. */ 1256 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1257 &nkids, &kids, NULL); 1258 if (rc == 0) { 1259 for (int i = 0; i < nkids; i++) { 1260 uint64_t guid; 1261 1262 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1263 DATA_TYPE_UINT64, NULL, &guid, NULL); 1264 if (rc != 0) 1265 break; 1266 1267 vdev = vdev_find(guid); 1268 if (vdev != NULL) 1269 vdev_set_initial_state(vdev, kids[i]); 1270 } 1271 } else { 1272 rc = 0; 1273 } 1274 if (kids != NULL) { 1275 for (int i = 0; i < nkids; i++) 1276 nvlist_destroy(kids[i]); 1277 free(kids); 1278 } 1279 1280 return (rc); 1281 } 1282 1283 static int 1284 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1285 { 1286 uint64_t pool_guid, vdev_children; 1287 nvlist_t *vdevs = NULL, **kids = NULL; 1288 int rc, nkids; 1289 1290 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1291 NULL, &pool_guid, NULL) || 1292 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1293 NULL, &vdev_children, NULL) || 1294 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1295 NULL, &vdevs, NULL)) { 1296 printf("ZFS: can't find vdev details\n"); 1297 return (ENOENT); 1298 } 1299 1300 /* Wrong guid?! */ 1301 if (spa->spa_guid != pool_guid) { 1302 nvlist_destroy(vdevs); 1303 return (EINVAL); 1304 } 1305 1306 spa->spa_root_vdev->v_nchildren = vdev_children; 1307 1308 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1309 &nkids, &kids, NULL); 1310 nvlist_destroy(vdevs); 1311 1312 /* 1313 * MOS config has at least one child for root vdev. 1314 */ 1315 if (rc != 0) 1316 return (rc); 1317 1318 for (int i = 0; i < nkids; i++) { 1319 uint64_t guid; 1320 vdev_t *vdev; 1321 1322 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1323 NULL, &guid, NULL); 1324 if (rc != 0) 1325 break; 1326 vdev = vdev_find(guid); 1327 /* 1328 * Top level vdev is missing, create it. 1329 */ 1330 if (vdev == NULL) 1331 rc = vdev_from_nvlist(spa, guid, kids[i]); 1332 else 1333 rc = vdev_update_from_nvlist(guid, kids[i]); 1334 if (rc != 0) 1335 break; 1336 } 1337 if (kids != NULL) { 1338 for (int i = 0; i < nkids; i++) 1339 nvlist_destroy(kids[i]); 1340 free(kids); 1341 } 1342 1343 /* 1344 * Re-evaluate top-level vdev state. 1345 */ 1346 vdev_set_state(spa->spa_root_vdev); 1347 1348 return (rc); 1349 } 1350 1351 static spa_t * 1352 spa_find_by_guid(uint64_t guid) 1353 { 1354 spa_t *spa; 1355 1356 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1357 if (spa->spa_guid == guid) 1358 return (spa); 1359 1360 return (NULL); 1361 } 1362 1363 static spa_t * 1364 spa_find_by_name(const char *name) 1365 { 1366 spa_t *spa; 1367 1368 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1369 if (strcmp(spa->spa_name, name) == 0) 1370 return (spa); 1371 1372 return (NULL); 1373 } 1374 1375 static spa_t * 1376 spa_find_by_dev(struct zfs_devdesc *dev) 1377 { 1378 1379 if (dev->dd.d_dev->dv_type != DEVT_ZFS) 1380 return (NULL); 1381 1382 if (dev->pool_guid == 0) 1383 return (STAILQ_FIRST(&zfs_pools)); 1384 1385 return (spa_find_by_guid(dev->pool_guid)); 1386 } 1387 1388 static spa_t * 1389 spa_create(uint64_t guid, const char *name) 1390 { 1391 spa_t *spa; 1392 1393 if ((spa = calloc(1, sizeof (spa_t))) == NULL) 1394 return (NULL); 1395 if ((spa->spa_name = strdup(name)) == NULL) { 1396 free(spa); 1397 return (NULL); 1398 } 1399 spa->spa_guid = guid; 1400 spa->spa_root_vdev = vdev_create(guid, NULL); 1401 if (spa->spa_root_vdev == NULL) { 1402 free(spa->spa_name); 1403 free(spa); 1404 return (NULL); 1405 } 1406 spa->spa_root_vdev->v_name = strdup("root"); 1407 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1408 1409 return (spa); 1410 } 1411 1412 static const char * 1413 state_name(vdev_state_t state) 1414 { 1415 static const char *names[] = { 1416 "UNKNOWN", 1417 "CLOSED", 1418 "OFFLINE", 1419 "REMOVED", 1420 "CANT_OPEN", 1421 "FAULTED", 1422 "DEGRADED", 1423 "ONLINE" 1424 }; 1425 return (names[state]); 1426 } 1427 1428 static int 1429 pager_printf(const char *fmt, ...) 1430 { 1431 char line[80]; 1432 va_list args; 1433 1434 va_start(args, fmt); 1435 vsnprintf(line, sizeof (line), fmt, args); 1436 va_end(args); 1437 return (pager_output(line)); 1438 } 1439 1440 #define STATUS_FORMAT " %s %s\n" 1441 1442 static int 1443 print_state(int indent, const char *name, vdev_state_t state) 1444 { 1445 int i; 1446 char buf[512]; 1447 1448 buf[0] = 0; 1449 for (i = 0; i < indent; i++) 1450 strcat(buf, " "); 1451 strcat(buf, name); 1452 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1453 } 1454 1455 static int 1456 vdev_status(vdev_t *vdev, int indent) 1457 { 1458 vdev_t *kid; 1459 int ret; 1460 1461 if (vdev->v_islog) { 1462 (void) pager_output(" logs\n"); 1463 indent++; 1464 } 1465 1466 ret = print_state(indent, vdev->v_name, vdev->v_state); 1467 if (ret != 0) 1468 return (ret); 1469 1470 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1471 ret = vdev_status(kid, indent + 1); 1472 if (ret != 0) 1473 return (ret); 1474 } 1475 return (ret); 1476 } 1477 1478 static int 1479 spa_status(spa_t *spa) 1480 { 1481 static char bootfs[ZFS_MAXNAMELEN]; 1482 uint64_t rootid; 1483 vdev_list_t *vlist; 1484 vdev_t *vdev; 1485 int good_kids, bad_kids, degraded_kids, ret; 1486 vdev_state_t state; 1487 1488 ret = pager_printf(" pool: %s\n", spa->spa_name); 1489 if (ret != 0) 1490 return (ret); 1491 1492 if (zfs_get_root(spa, &rootid) == 0 && 1493 zfs_rlookup(spa, rootid, bootfs) == 0) { 1494 if (bootfs[0] == '\0') 1495 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1496 else 1497 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1498 bootfs); 1499 if (ret != 0) 1500 return (ret); 1501 } 1502 ret = pager_printf("config:\n\n"); 1503 if (ret != 0) 1504 return (ret); 1505 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1506 if (ret != 0) 1507 return (ret); 1508 1509 good_kids = 0; 1510 degraded_kids = 0; 1511 bad_kids = 0; 1512 vlist = &spa->spa_root_vdev->v_children; 1513 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1514 if (vdev->v_state == VDEV_STATE_HEALTHY) 1515 good_kids++; 1516 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1517 degraded_kids++; 1518 else 1519 bad_kids++; 1520 } 1521 1522 state = VDEV_STATE_CLOSED; 1523 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1524 state = VDEV_STATE_HEALTHY; 1525 else if ((good_kids + degraded_kids) > 0) 1526 state = VDEV_STATE_DEGRADED; 1527 1528 ret = print_state(0, spa->spa_name, state); 1529 if (ret != 0) 1530 return (ret); 1531 1532 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1533 ret = vdev_status(vdev, 1); 1534 if (ret != 0) 1535 return (ret); 1536 } 1537 return (ret); 1538 } 1539 1540 int 1541 spa_all_status(void) 1542 { 1543 spa_t *spa; 1544 int first = 1, ret = 0; 1545 1546 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1547 if (!first) { 1548 ret = pager_printf("\n"); 1549 if (ret != 0) 1550 return (ret); 1551 } 1552 first = 0; 1553 ret = spa_status(spa); 1554 if (ret != 0) 1555 return (ret); 1556 } 1557 return (ret); 1558 } 1559 1560 uint64_t 1561 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1562 { 1563 uint64_t label_offset; 1564 1565 if (l < VDEV_LABELS / 2) 1566 label_offset = 0; 1567 else 1568 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1569 1570 return (offset + l * sizeof (vdev_label_t) + label_offset); 1571 } 1572 1573 static int 1574 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1575 { 1576 unsigned int seq1 = 0; 1577 unsigned int seq2 = 0; 1578 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1579 1580 if (cmp != 0) 1581 return (cmp); 1582 1583 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1584 if (cmp != 0) 1585 return (cmp); 1586 1587 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1588 seq1 = MMP_SEQ(ub1); 1589 1590 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1591 seq2 = MMP_SEQ(ub2); 1592 1593 return (AVL_CMP(seq1, seq2)); 1594 } 1595 1596 static int 1597 uberblock_verify(uberblock_t *ub) 1598 { 1599 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1600 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1601 } 1602 1603 if (ub->ub_magic != UBERBLOCK_MAGIC || 1604 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1605 return (EINVAL); 1606 1607 return (0); 1608 } 1609 1610 static int 1611 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1612 size_t size) 1613 { 1614 blkptr_t bp; 1615 off_t off; 1616 1617 off = vdev_label_offset(vd->v_psize, l, offset); 1618 1619 BP_ZERO(&bp); 1620 BP_SET_LSIZE(&bp, size); 1621 BP_SET_PSIZE(&bp, size); 1622 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1623 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1624 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1625 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1626 1627 return (vdev_read_phys(vd, &bp, buf, off, size)); 1628 } 1629 1630 /* 1631 * We do need to be sure we write to correct location. 1632 * Our vdev label does consist of 4 fields: 1633 * pad1 (8k), reserved. 1634 * bootenv (8k), checksummed, previously reserved, may contain garbage. 1635 * vdev_phys (112k), checksummed 1636 * uberblock ring (128k), checksummed. 1637 * 1638 * Since bootenv area may contain garbage, we can not reliably read it, as 1639 * we can get checksum errors. 1640 * Next best thing is vdev_phys - it is just after bootenv. It still may 1641 * be corrupted, but in such case we will miss this one write. 1642 */ 1643 static int 1644 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset) 1645 { 1646 uint64_t off, o_phys; 1647 void *buf; 1648 size_t size = VDEV_PHYS_SIZE; 1649 int rc; 1650 1651 o_phys = offsetof(vdev_label_t, vl_vdev_phys); 1652 off = vdev_label_offset(vd->v_psize, l, o_phys); 1653 1654 /* off should be 8K from bootenv */ 1655 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off) 1656 return (EINVAL); 1657 1658 buf = malloc(size); 1659 if (buf == NULL) 1660 return (ENOMEM); 1661 1662 /* Read vdev_phys */ 1663 rc = vdev_label_read(vd, l, buf, o_phys, size); 1664 free(buf); 1665 return (rc); 1666 } 1667 1668 static int 1669 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset) 1670 { 1671 zio_checksum_info_t *ci; 1672 zio_cksum_t cksum; 1673 off_t off; 1674 size_t size = VDEV_PAD_SIZE; 1675 int rc; 1676 1677 if (vd->v_phys_write == NULL) 1678 return (ENOTSUP); 1679 1680 off = vdev_label_offset(vd->v_psize, l, offset); 1681 1682 rc = vdev_label_write_validate(vd, l, offset); 1683 if (rc != 0) { 1684 return (rc); 1685 } 1686 1687 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 1688 be->vbe_zbt.zec_magic = ZEC_MAGIC; 1689 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off); 1690 ci->ci_func[0](be, size, NULL, &cksum); 1691 be->vbe_zbt.zec_cksum = cksum; 1692 1693 return (vdev_write_phys(vd, be, off, size)); 1694 } 1695 1696 static int 1697 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be) 1698 { 1699 vdev_t *kid; 1700 int rv = 0, err; 1701 1702 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1703 if (kid->v_state != VDEV_STATE_HEALTHY) 1704 continue; 1705 err = vdev_write_bootenv_impl(kid, be); 1706 if (err != 0) 1707 rv = err; 1708 } 1709 1710 /* 1711 * Non-leaf vdevs do not have v_phys_write. 1712 */ 1713 if (vdev->v_phys_write == NULL) 1714 return (rv); 1715 1716 for (int l = 0; l < VDEV_LABELS; l++) { 1717 err = vdev_label_write(vdev, l, be, 1718 offsetof(vdev_label_t, vl_be)); 1719 if (err != 0) { 1720 printf("failed to write bootenv to %s label %d: %d\n", 1721 vdev->v_name ? vdev->v_name : "unknown", l, err); 1722 rv = err; 1723 } 1724 } 1725 return (rv); 1726 } 1727 1728 int 1729 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl) 1730 { 1731 vdev_boot_envblock_t *be; 1732 nvlist_t nv, *nvp; 1733 uint64_t version; 1734 int rv; 1735 1736 if (nvl->nv_size > sizeof (be->vbe_bootenv)) 1737 return (E2BIG); 1738 1739 version = VB_RAW; 1740 nvp = vdev_read_bootenv(vdev); 1741 if (nvp != NULL) { 1742 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL, 1743 &version, NULL); 1744 nvlist_destroy(nvp); 1745 } 1746 1747 be = calloc(1, sizeof (*be)); 1748 if (be == NULL) 1749 return (ENOMEM); 1750 1751 be->vbe_version = version; 1752 switch (version) { 1753 case VB_RAW: 1754 /* 1755 * If there is no envmap, we will just wipe bootenv. 1756 */ 1757 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL, 1758 be->vbe_bootenv, NULL); 1759 rv = 0; 1760 break; 1761 1762 case VB_NVLIST: 1763 nv.nv_header = nvl->nv_header; 1764 nv.nv_asize = nvl->nv_asize; 1765 nv.nv_size = nvl->nv_size; 1766 1767 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof (nv.nv_header)); 1768 nv.nv_data = (uint8_t *)be->vbe_bootenv + sizeof (nvs_header_t); 1769 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size); 1770 rv = nvlist_export(&nv); 1771 break; 1772 1773 default: 1774 rv = EINVAL; 1775 break; 1776 } 1777 1778 if (rv == 0) { 1779 be->vbe_version = htobe64(be->vbe_version); 1780 rv = vdev_write_bootenv_impl(vdev, be); 1781 } 1782 free(be); 1783 return (rv); 1784 } 1785 1786 /* 1787 * Read the bootenv area from pool label, return the nvlist from it. 1788 * We return from first successful read. 1789 */ 1790 nvlist_t * 1791 vdev_read_bootenv(vdev_t *vdev) 1792 { 1793 vdev_t *kid; 1794 nvlist_t *benv; 1795 vdev_boot_envblock_t *be; 1796 char *command; 1797 bool ok; 1798 int rv; 1799 1800 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1801 if (kid->v_state != VDEV_STATE_HEALTHY) 1802 continue; 1803 1804 benv = vdev_read_bootenv(kid); 1805 if (benv != NULL) 1806 return (benv); 1807 } 1808 1809 be = malloc(sizeof (*be)); 1810 if (be == NULL) 1811 return (NULL); 1812 1813 rv = 0; 1814 for (int l = 0; l < VDEV_LABELS; l++) { 1815 rv = vdev_label_read(vdev, l, be, 1816 offsetof(vdev_label_t, vl_be), 1817 sizeof (*be)); 1818 if (rv == 0) 1819 break; 1820 } 1821 if (rv != 0) { 1822 free(be); 1823 return (NULL); 1824 } 1825 1826 be->vbe_version = be64toh(be->vbe_version); 1827 switch (be->vbe_version) { 1828 case VB_RAW: 1829 /* 1830 * if we have textual data in vbe_bootenv, create nvlist 1831 * with key "envmap". 1832 */ 1833 benv = nvlist_create(NV_UNIQUE_NAME); 1834 if (benv != NULL) { 1835 if (*be->vbe_bootenv == '\0') { 1836 nvlist_add_uint64(benv, BOOTENV_VERSION, 1837 VB_NVLIST); 1838 break; 1839 } 1840 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW); 1841 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0'; 1842 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv); 1843 } 1844 break; 1845 1846 case VB_NVLIST: 1847 benv = nvlist_import(be->vbe_bootenv, sizeof (be->vbe_bootenv)); 1848 break; 1849 1850 default: 1851 command = (char *)be; 1852 ok = false; 1853 1854 /* Check for legacy zfsbootcfg command string */ 1855 for (int i = 0; command[i] != '\0'; i++) { 1856 if (iscntrl(command[i])) { 1857 ok = false; 1858 break; 1859 } else { 1860 ok = true; 1861 } 1862 } 1863 benv = nvlist_create(NV_UNIQUE_NAME); 1864 if (benv != NULL) { 1865 if (ok) 1866 nvlist_add_string(benv, FREEBSD_BOOTONCE, 1867 command); 1868 else 1869 nvlist_add_uint64(benv, BOOTENV_VERSION, 1870 VB_NVLIST); 1871 } 1872 break; 1873 } 1874 free(be); 1875 return (benv); 1876 } 1877 1878 static uint64_t 1879 vdev_get_label_asize(nvlist_t *nvl) 1880 { 1881 nvlist_t *vdevs; 1882 uint64_t asize; 1883 const char *type; 1884 int len; 1885 1886 asize = 0; 1887 /* Get vdev tree */ 1888 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1889 NULL, &vdevs, NULL) != 0) 1890 return (asize); 1891 1892 /* 1893 * Get vdev type. We will calculate asize for raidz, mirror and disk. 1894 * For raidz, the asize is raw size of all children. 1895 */ 1896 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1897 NULL, &type, &len) != 0) 1898 goto done; 1899 1900 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 1901 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 1902 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0) 1903 goto done; 1904 1905 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, 1906 NULL, &asize, NULL) != 0) 1907 goto done; 1908 1909 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1910 nvlist_t **kids; 1911 int nkids; 1912 1913 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, 1914 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) { 1915 asize = 0; 1916 goto done; 1917 } 1918 1919 asize /= nkids; 1920 for (int i = 0; i < nkids; i++) 1921 nvlist_destroy(kids[i]); 1922 free(kids); 1923 } 1924 1925 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1926 done: 1927 return (asize); 1928 } 1929 1930 static nvlist_t * 1931 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1932 { 1933 vdev_phys_t *label; 1934 uint64_t best_txg = 0; 1935 uint64_t label_txg = 0; 1936 uint64_t asize; 1937 nvlist_t *nvl = NULL, *tmp; 1938 int error; 1939 1940 label = malloc(sizeof (vdev_phys_t)); 1941 if (label == NULL) 1942 return (NULL); 1943 1944 for (int l = 0; l < VDEV_LABELS; l++) { 1945 if (vdev_label_read(vd, l, label, 1946 offsetof(vdev_label_t, vl_vdev_phys), 1947 sizeof (vdev_phys_t))) 1948 continue; 1949 1950 tmp = nvlist_import(label->vp_nvlist, 1951 sizeof (label->vp_nvlist)); 1952 if (tmp == NULL) 1953 continue; 1954 1955 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1956 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1957 if (error != 0 || label_txg == 0) { 1958 nvlist_destroy(nvl); 1959 nvl = tmp; 1960 goto done; 1961 } 1962 1963 if (label_txg <= txg && label_txg > best_txg) { 1964 best_txg = label_txg; 1965 nvlist_destroy(nvl); 1966 nvl = tmp; 1967 tmp = NULL; 1968 1969 /* 1970 * Use asize from pool config. We need this 1971 * because we can get bad value from BIOS. 1972 */ 1973 asize = vdev_get_label_asize(nvl); 1974 if (asize != 0) { 1975 vd->v_psize = asize; 1976 } 1977 } 1978 nvlist_destroy(tmp); 1979 } 1980 1981 if (best_txg == 0) { 1982 nvlist_destroy(nvl); 1983 nvl = NULL; 1984 } 1985 done: 1986 free(label); 1987 return (nvl); 1988 } 1989 1990 static void 1991 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1992 { 1993 uberblock_t *buf; 1994 1995 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1996 if (buf == NULL) 1997 return; 1998 1999 for (int l = 0; l < VDEV_LABELS; l++) { 2000 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 2001 if (vdev_label_read(vd, l, buf, 2002 VDEV_UBERBLOCK_OFFSET(vd, n), 2003 VDEV_UBERBLOCK_SIZE(vd))) 2004 continue; 2005 if (uberblock_verify(buf) != 0) 2006 continue; 2007 2008 if (vdev_uberblock_compare(buf, ub) > 0) 2009 *ub = *buf; 2010 } 2011 } 2012 free(buf); 2013 } 2014 2015 static int 2016 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv, 2017 spa_t **spap) 2018 { 2019 vdev_t vtmp; 2020 spa_t *spa; 2021 vdev_t *vdev; 2022 nvlist_t *nvl; 2023 uint64_t val; 2024 uint64_t guid, vdev_children; 2025 uint64_t pool_txg, pool_guid; 2026 const char *pool_name; 2027 int rc, namelen; 2028 2029 /* 2030 * Load the vdev label and figure out which 2031 * uberblock is most current. 2032 */ 2033 memset(&vtmp, 0, sizeof (vtmp)); 2034 vtmp.v_phys_read = _read; 2035 vtmp.v_phys_write = _write; 2036 vtmp.v_priv = priv; 2037 vtmp.v_psize = P2ALIGN(ldi_get_size(priv), 2038 (uint64_t)sizeof (vdev_label_t)); 2039 2040 /* Test for minimum device size. */ 2041 if (vtmp.v_psize < SPA_MINDEVSIZE) 2042 return (EIO); 2043 2044 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 2045 if (nvl == NULL) 2046 return (EIO); 2047 2048 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 2049 NULL, &val, NULL) != 0) { 2050 nvlist_destroy(nvl); 2051 return (EIO); 2052 } 2053 2054 if (!SPA_VERSION_IS_SUPPORTED(val)) { 2055 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 2056 (unsigned)val, (unsigned)SPA_VERSION); 2057 nvlist_destroy(nvl); 2058 return (EIO); 2059 } 2060 2061 /* Check ZFS features for read */ 2062 rc = nvlist_check_features_for_read(nvl); 2063 if (rc != 0) { 2064 nvlist_destroy(nvl); 2065 return (EIO); 2066 } 2067 2068 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 2069 NULL, &val, NULL) != 0) { 2070 nvlist_destroy(nvl); 2071 return (EIO); 2072 } 2073 2074 if (val == POOL_STATE_DESTROYED) { 2075 /* We don't boot only from destroyed pools. */ 2076 nvlist_destroy(nvl); 2077 return (EIO); 2078 } 2079 2080 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 2081 NULL, &pool_txg, NULL) != 0 || 2082 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 2083 NULL, &pool_guid, NULL) != 0 || 2084 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 2085 NULL, &pool_name, &namelen) != 0) { 2086 /* 2087 * Cache and spare devices end up here - just ignore 2088 * them. 2089 */ 2090 nvlist_destroy(nvl); 2091 return (EIO); 2092 } 2093 2094 /* 2095 * Create the pool if this is the first time we've seen it. 2096 */ 2097 spa = spa_find_by_guid(pool_guid); 2098 if (spa == NULL) { 2099 char *name; 2100 2101 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 2102 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 2103 name = malloc(namelen + 1); 2104 if (name == NULL) { 2105 nvlist_destroy(nvl); 2106 return (ENOMEM); 2107 } 2108 bcopy(pool_name, name, namelen); 2109 name[namelen] = '\0'; 2110 spa = spa_create(pool_guid, name); 2111 free(name); 2112 if (spa == NULL) { 2113 nvlist_destroy(nvl); 2114 return (ENOMEM); 2115 } 2116 spa->spa_root_vdev->v_nchildren = vdev_children; 2117 } 2118 if (pool_txg > spa->spa_txg) 2119 spa->spa_txg = pool_txg; 2120 2121 /* 2122 * Get the vdev tree and create our in-core copy of it. 2123 * If we already have a vdev with this guid, this must 2124 * be some kind of alias (overlapping slices, dangerously dedicated 2125 * disks etc). 2126 */ 2127 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2128 NULL, &guid, NULL) != 0) { 2129 nvlist_destroy(nvl); 2130 return (EIO); 2131 } 2132 vdev = vdev_find(guid); 2133 /* Has this vdev already been inited? */ 2134 if (vdev && vdev->v_phys_read) { 2135 nvlist_destroy(nvl); 2136 return (EIO); 2137 } 2138 2139 rc = vdev_init_from_label(spa, nvl); 2140 nvlist_destroy(nvl); 2141 if (rc != 0) 2142 return (rc); 2143 2144 /* 2145 * We should already have created an incomplete vdev for this 2146 * vdev. Find it and initialise it with our read proc. 2147 */ 2148 vdev = vdev_find(guid); 2149 if (vdev != NULL) { 2150 vdev->v_phys_read = _read; 2151 vdev->v_phys_write = _write; 2152 vdev->v_priv = priv; 2153 vdev->v_psize = vtmp.v_psize; 2154 /* 2155 * If no other state is set, mark vdev healthy. 2156 */ 2157 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2158 vdev->v_state = VDEV_STATE_HEALTHY; 2159 } else { 2160 printf("ZFS: inconsistent nvlist contents\n"); 2161 return (EIO); 2162 } 2163 2164 if (vdev->v_islog) 2165 spa->spa_with_log = vdev->v_islog; 2166 2167 /* Record boot vdev for spa. */ 2168 if (spa->spa_boot_vdev == NULL) 2169 spa->spa_boot_vdev = vdev; 2170 2171 /* 2172 * Re-evaluate top-level vdev state. 2173 */ 2174 vdev_set_state(vdev->v_top); 2175 2176 /* 2177 * Ok, we are happy with the pool so far. Lets find 2178 * the best uberblock and then we can actually access 2179 * the contents of the pool. 2180 */ 2181 vdev_uberblock_load(vdev, &spa->spa_uberblock); 2182 2183 if (spap != NULL) 2184 *spap = spa; 2185 return (0); 2186 } 2187 2188 static int 2189 ilog2(int n) 2190 { 2191 int v; 2192 2193 for (v = 0; v < 32; v++) 2194 if (n == (1 << v)) 2195 return (v); 2196 return (-1); 2197 } 2198 2199 static int 2200 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2201 { 2202 blkptr_t gbh_bp; 2203 zio_gbh_phys_t zio_gb; 2204 char *pbuf; 2205 int i; 2206 2207 /* Artificial BP for gang block header. */ 2208 gbh_bp = *bp; 2209 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2210 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2211 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2212 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2213 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2214 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2215 2216 /* Read gang header block using the artificial BP. */ 2217 if (zio_read(spa, &gbh_bp, &zio_gb)) 2218 return (EIO); 2219 2220 pbuf = buf; 2221 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2222 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2223 2224 if (BP_IS_HOLE(gbp)) 2225 continue; 2226 if (zio_read(spa, gbp, pbuf)) 2227 return (EIO); 2228 pbuf += BP_GET_PSIZE(gbp); 2229 } 2230 2231 if (zio_checksum_verify(spa, bp, buf)) 2232 return (EIO); 2233 return (0); 2234 } 2235 2236 static int 2237 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2238 { 2239 int cpfunc = BP_GET_COMPRESS(bp); 2240 uint64_t align, size; 2241 void *pbuf; 2242 int i, error; 2243 2244 /* 2245 * Process data embedded in block pointer 2246 */ 2247 if (BP_IS_EMBEDDED(bp)) { 2248 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2249 2250 size = BPE_GET_PSIZE(bp); 2251 ASSERT(size <= BPE_PAYLOAD_SIZE); 2252 2253 if (cpfunc != ZIO_COMPRESS_OFF) 2254 pbuf = malloc(size); 2255 else 2256 pbuf = buf; 2257 2258 if (pbuf == NULL) 2259 return (ENOMEM); 2260 2261 decode_embedded_bp_compressed(bp, pbuf); 2262 error = 0; 2263 2264 if (cpfunc != ZIO_COMPRESS_OFF) { 2265 error = zio_decompress_data(cpfunc, pbuf, 2266 size, buf, BP_GET_LSIZE(bp)); 2267 free(pbuf); 2268 } 2269 if (error != 0) 2270 printf("ZFS: i/o error - unable to decompress " 2271 "block pointer data, error %d\n", error); 2272 return (error); 2273 } 2274 2275 error = EIO; 2276 2277 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2278 const dva_t *dva = &bp->blk_dva[i]; 2279 vdev_t *vdev; 2280 vdev_list_t *vlist; 2281 uint64_t vdevid; 2282 off_t offset; 2283 2284 if (!dva->dva_word[0] && !dva->dva_word[1]) 2285 continue; 2286 2287 vdevid = DVA_GET_VDEV(dva); 2288 offset = DVA_GET_OFFSET(dva); 2289 vlist = &spa->spa_root_vdev->v_children; 2290 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2291 if (vdev->v_id == vdevid) 2292 break; 2293 } 2294 if (!vdev || !vdev->v_read) 2295 continue; 2296 2297 size = BP_GET_PSIZE(bp); 2298 if (vdev->v_read == vdev_raidz_read) { 2299 align = 1ULL << vdev->v_ashift; 2300 if (P2PHASE(size, align) != 0) 2301 size = P2ROUNDUP(size, align); 2302 } 2303 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2304 pbuf = malloc(size); 2305 else 2306 pbuf = buf; 2307 2308 if (pbuf == NULL) { 2309 error = ENOMEM; 2310 break; 2311 } 2312 2313 if (DVA_GET_GANG(dva)) 2314 error = zio_read_gang(spa, bp, pbuf); 2315 else 2316 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2317 if (error == 0) { 2318 if (cpfunc != ZIO_COMPRESS_OFF) 2319 error = zio_decompress_data(cpfunc, pbuf, 2320 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2321 else if (size != BP_GET_PSIZE(bp)) 2322 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2323 } 2324 if (buf != pbuf) 2325 free(pbuf); 2326 if (error == 0) 2327 break; 2328 } 2329 if (error != 0) 2330 printf("ZFS: i/o error - all block copies unavailable\n"); 2331 2332 return (error); 2333 } 2334 2335 static int 2336 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2337 void *buf, size_t buflen) 2338 { 2339 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2340 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2341 int nlevels = dnode->dn_nlevels; 2342 int i, rc; 2343 2344 if (bsize > SPA_MAXBLOCKSIZE) { 2345 printf("ZFS: I/O error - blocks larger than %llu are not " 2346 "supported\n", SPA_MAXBLOCKSIZE); 2347 return (EIO); 2348 } 2349 2350 /* 2351 * Handle odd block sizes, mirrors dmu_read_impl(). Data can't exist 2352 * past the first block, so we'll clip the read to the portion of the 2353 * buffer within bsize and zero out the remainder. 2354 */ 2355 if (dnode->dn_maxblkid == 0) { 2356 size_t newbuflen; 2357 2358 newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset); 2359 bzero((char *)buf + newbuflen, buflen - newbuflen); 2360 buflen = newbuflen; 2361 } 2362 2363 /* 2364 * Note: bsize may not be a power of two here so we need to do an 2365 * actual divide rather than a bitshift. 2366 */ 2367 while (buflen > 0) { 2368 uint64_t bn = offset / bsize; 2369 int boff = offset % bsize; 2370 int ibn; 2371 const blkptr_t *indbp; 2372 blkptr_t bp; 2373 2374 if (bn > dnode->dn_maxblkid) { 2375 printf("warning: zfs bug: bn %llx > dn_maxblkid %llx\n", 2376 (unsigned long long)bn, 2377 (unsigned long long)dnode->dn_maxblkid); 2378 /* 2379 * zfs bug, will not return error 2380 * return (EIO); 2381 */ 2382 } 2383 2384 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2385 goto cached; 2386 2387 indbp = dnode->dn_blkptr; 2388 for (i = 0; i < nlevels; i++) { 2389 /* 2390 * Copy the bp from the indirect array so that 2391 * we can re-use the scratch buffer for multi-level 2392 * objects. 2393 */ 2394 ibn = bn >> ((nlevels - i - 1) * ibshift); 2395 ibn &= ((1 << ibshift) - 1); 2396 bp = indbp[ibn]; 2397 if (BP_IS_HOLE(&bp)) { 2398 memset(dnode_cache_buf, 0, bsize); 2399 break; 2400 } 2401 rc = zio_read(spa, &bp, dnode_cache_buf); 2402 if (rc) 2403 return (rc); 2404 indbp = (const blkptr_t *) dnode_cache_buf; 2405 } 2406 dnode_cache_obj = dnode; 2407 dnode_cache_bn = bn; 2408 cached: 2409 2410 /* 2411 * The buffer contains our data block. Copy what we 2412 * need from it and loop. 2413 */ 2414 i = bsize - boff; 2415 if (i > buflen) i = buflen; 2416 memcpy(buf, &dnode_cache_buf[boff], i); 2417 buf = ((char *)buf) + i; 2418 offset += i; 2419 buflen -= i; 2420 } 2421 2422 return (0); 2423 } 2424 2425 /* 2426 * Lookup a value in a microzap directory. 2427 */ 2428 static int 2429 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2430 uint64_t *value) 2431 { 2432 const mzap_ent_phys_t *mze; 2433 int chunks, i; 2434 2435 /* 2436 * Microzap objects use exactly one block. Read the whole 2437 * thing. 2438 */ 2439 chunks = size / MZAP_ENT_LEN - 1; 2440 for (i = 0; i < chunks; i++) { 2441 mze = &mz->mz_chunk[i]; 2442 if (strcmp(mze->mze_name, name) == 0) { 2443 *value = mze->mze_value; 2444 return (0); 2445 } 2446 } 2447 2448 return (ENOENT); 2449 } 2450 2451 /* 2452 * Compare a name with a zap leaf entry. Return non-zero if the name 2453 * matches. 2454 */ 2455 static int 2456 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2457 const char *name) 2458 { 2459 size_t namelen; 2460 const zap_leaf_chunk_t *nc; 2461 const char *p; 2462 2463 namelen = zc->l_entry.le_name_numints; 2464 2465 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2466 p = name; 2467 while (namelen > 0) { 2468 size_t len; 2469 2470 len = namelen; 2471 if (len > ZAP_LEAF_ARRAY_BYTES) 2472 len = ZAP_LEAF_ARRAY_BYTES; 2473 if (memcmp(p, nc->l_array.la_array, len)) 2474 return (0); 2475 p += len; 2476 namelen -= len; 2477 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2478 } 2479 2480 return (1); 2481 } 2482 2483 /* 2484 * Extract a uint64_t value from a zap leaf entry. 2485 */ 2486 static uint64_t 2487 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2488 { 2489 const zap_leaf_chunk_t *vc; 2490 int i; 2491 uint64_t value; 2492 const uint8_t *p; 2493 2494 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2495 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2496 value = (value << 8) | p[i]; 2497 } 2498 2499 return (value); 2500 } 2501 2502 static void 2503 stv(int len, void *addr, uint64_t value) 2504 { 2505 switch (len) { 2506 case 1: 2507 *(uint8_t *)addr = value; 2508 return; 2509 case 2: 2510 *(uint16_t *)addr = value; 2511 return; 2512 case 4: 2513 *(uint32_t *)addr = value; 2514 return; 2515 case 8: 2516 *(uint64_t *)addr = value; 2517 return; 2518 } 2519 } 2520 2521 /* 2522 * Extract a array from a zap leaf entry. 2523 */ 2524 static void 2525 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2526 uint64_t integer_size, uint64_t num_integers, void *buf) 2527 { 2528 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2529 uint64_t value = 0; 2530 uint64_t *u64 = buf; 2531 char *p = buf; 2532 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2533 int chunk = zc->l_entry.le_value_chunk; 2534 int byten = 0; 2535 2536 if (integer_size == 8 && len == 1) { 2537 *u64 = fzap_leaf_value(zl, zc); 2538 return; 2539 } 2540 2541 while (len > 0) { 2542 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2543 int i; 2544 2545 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2546 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2547 value = (value << 8) | la->la_array[i]; 2548 byten++; 2549 if (byten == array_int_len) { 2550 stv(integer_size, p, value); 2551 byten = 0; 2552 len--; 2553 if (len == 0) 2554 return; 2555 p += integer_size; 2556 } 2557 } 2558 chunk = la->la_next; 2559 } 2560 } 2561 2562 static int 2563 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2564 { 2565 2566 switch (integer_size) { 2567 case 1: 2568 case 2: 2569 case 4: 2570 case 8: 2571 break; 2572 default: 2573 return (EINVAL); 2574 } 2575 2576 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2577 return (E2BIG); 2578 2579 return (0); 2580 } 2581 2582 static void 2583 zap_leaf_free(zap_leaf_t *leaf) 2584 { 2585 free(leaf->l_phys); 2586 free(leaf); 2587 } 2588 2589 static int 2590 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2591 { 2592 int bs = FZAP_BLOCK_SHIFT(zap); 2593 int err; 2594 2595 *lp = malloc(sizeof (**lp)); 2596 if (*lp == NULL) 2597 return (ENOMEM); 2598 2599 (*lp)->l_bs = bs; 2600 (*lp)->l_phys = malloc(1 << bs); 2601 2602 if ((*lp)->l_phys == NULL) { 2603 free(*lp); 2604 return (ENOMEM); 2605 } 2606 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2607 1 << bs); 2608 if (err != 0) { 2609 zap_leaf_free(*lp); 2610 } 2611 return (err); 2612 } 2613 2614 static int 2615 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2616 uint64_t *valp) 2617 { 2618 int bs = FZAP_BLOCK_SHIFT(zap); 2619 uint64_t blk = idx >> (bs - 3); 2620 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2621 uint64_t *buf; 2622 int rc; 2623 2624 buf = malloc(1 << zap->zap_block_shift); 2625 if (buf == NULL) 2626 return (ENOMEM); 2627 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2628 buf, 1 << zap->zap_block_shift); 2629 if (rc == 0) 2630 *valp = buf[off]; 2631 free(buf); 2632 return (rc); 2633 } 2634 2635 static int 2636 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2637 { 2638 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2639 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2640 return (0); 2641 } else { 2642 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2643 idx, valp)); 2644 } 2645 } 2646 2647 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2648 static int 2649 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2650 { 2651 uint64_t idx, blk; 2652 int err; 2653 2654 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2655 err = zap_idx_to_blk(zap, idx, &blk); 2656 if (err != 0) 2657 return (err); 2658 return (zap_get_leaf_byblk(zap, blk, lp)); 2659 } 2660 2661 #define CHAIN_END 0xffff /* end of the chunk chain */ 2662 #define LEAF_HASH(l, h) \ 2663 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2664 ((h) >> \ 2665 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2666 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2667 2668 static int 2669 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2670 uint64_t integer_size, uint64_t num_integers, void *value) 2671 { 2672 int rc; 2673 uint16_t *chunkp; 2674 struct zap_leaf_entry *le; 2675 2676 /* 2677 * Make sure this chunk matches our hash. 2678 */ 2679 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2680 zl->l_phys->l_hdr.lh_prefix != 2681 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2682 return (EIO); 2683 2684 rc = ENOENT; 2685 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2686 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2687 zap_leaf_chunk_t *zc; 2688 uint16_t chunk = *chunkp; 2689 2690 le = ZAP_LEAF_ENTRY(zl, chunk); 2691 if (le->le_hash != hash) 2692 continue; 2693 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2694 if (fzap_name_equal(zl, zc, name)) { 2695 if (zc->l_entry.le_value_intlen > integer_size) { 2696 rc = EINVAL; 2697 } else { 2698 fzap_leaf_array(zl, zc, integer_size, 2699 num_integers, value); 2700 rc = 0; 2701 } 2702 break; 2703 } 2704 } 2705 return (rc); 2706 } 2707 2708 /* 2709 * Lookup a value in a fatzap directory. 2710 */ 2711 static int 2712 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2713 const char *name, uint64_t integer_size, uint64_t num_integers, 2714 void *value) 2715 { 2716 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2717 fat_zap_t z; 2718 zap_leaf_t *zl; 2719 uint64_t hash; 2720 int rc; 2721 2722 if (zh->zap_magic != ZAP_MAGIC) 2723 return (EIO); 2724 2725 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) 2726 return (rc); 2727 2728 z.zap_block_shift = ilog2(bsize); 2729 z.zap_phys = zh; 2730 z.zap_spa = spa; 2731 z.zap_dnode = dnode; 2732 2733 hash = zap_hash(zh->zap_salt, name); 2734 rc = zap_deref_leaf(&z, hash, &zl); 2735 if (rc != 0) 2736 return (rc); 2737 2738 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2739 2740 zap_leaf_free(zl); 2741 return (rc); 2742 } 2743 2744 /* 2745 * Lookup a name in a zap object and return its value as a uint64_t. 2746 */ 2747 static int 2748 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2749 uint64_t integer_size, uint64_t num_integers, void *value) 2750 { 2751 int rc; 2752 zap_phys_t *zap; 2753 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2754 2755 zap = malloc(size); 2756 if (zap == NULL) 2757 return (ENOMEM); 2758 2759 rc = dnode_read(spa, dnode, 0, zap, size); 2760 if (rc) 2761 goto done; 2762 2763 switch (zap->zap_block_type) { 2764 case ZBT_MICRO: 2765 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2766 break; 2767 case ZBT_HEADER: 2768 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2769 num_integers, value); 2770 break; 2771 default: 2772 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2773 zap->zap_block_type); 2774 rc = EIO; 2775 } 2776 done: 2777 free(zap); 2778 return (rc); 2779 } 2780 2781 /* 2782 * List a microzap directory. 2783 */ 2784 static int 2785 mzap_list(const mzap_phys_t *mz, size_t size, 2786 int (*callback)(const char *, uint64_t)) 2787 { 2788 const mzap_ent_phys_t *mze; 2789 int chunks, i, rc; 2790 2791 /* 2792 * Microzap objects use exactly one block. Read the whole 2793 * thing. 2794 */ 2795 rc = 0; 2796 chunks = size / MZAP_ENT_LEN - 1; 2797 for (i = 0; i < chunks; i++) { 2798 mze = &mz->mz_chunk[i]; 2799 if (mze->mze_name[0]) { 2800 rc = callback(mze->mze_name, mze->mze_value); 2801 if (rc != 0) 2802 break; 2803 } 2804 } 2805 2806 return (rc); 2807 } 2808 2809 /* 2810 * List a fatzap directory. 2811 */ 2812 static int 2813 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2814 int (*callback)(const char *, uint64_t)) 2815 { 2816 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2817 fat_zap_t z; 2818 int i, j, rc; 2819 2820 if (zh->zap_magic != ZAP_MAGIC) 2821 return (EIO); 2822 2823 z.zap_block_shift = ilog2(bsize); 2824 z.zap_phys = zh; 2825 2826 /* 2827 * This assumes that the leaf blocks start at block 1. The 2828 * documentation isn't exactly clear on this. 2829 */ 2830 zap_leaf_t zl; 2831 zl.l_bs = z.zap_block_shift; 2832 zl.l_phys = malloc(bsize); 2833 if (zl.l_phys == NULL) 2834 return (ENOMEM); 2835 2836 for (i = 0; i < zh->zap_num_leafs; i++) { 2837 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2838 char name[256], *p; 2839 uint64_t value; 2840 2841 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2842 free(zl.l_phys); 2843 return (EIO); 2844 } 2845 2846 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2847 zap_leaf_chunk_t *zc, *nc; 2848 int namelen; 2849 2850 zc = &ZAP_LEAF_CHUNK(&zl, j); 2851 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2852 continue; 2853 namelen = zc->l_entry.le_name_numints; 2854 if (namelen > sizeof (name)) 2855 namelen = sizeof (name); 2856 2857 /* 2858 * Paste the name back together. 2859 */ 2860 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2861 p = name; 2862 while (namelen > 0) { 2863 int len; 2864 len = namelen; 2865 if (len > ZAP_LEAF_ARRAY_BYTES) 2866 len = ZAP_LEAF_ARRAY_BYTES; 2867 memcpy(p, nc->l_array.la_array, len); 2868 p += len; 2869 namelen -= len; 2870 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2871 } 2872 2873 /* 2874 * Assume the first eight bytes of the value are 2875 * a uint64_t. 2876 */ 2877 value = fzap_leaf_value(&zl, zc); 2878 2879 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2880 rc = callback((const char *)name, value); 2881 if (rc != 0) { 2882 free(zl.l_phys); 2883 return (rc); 2884 } 2885 } 2886 } 2887 2888 free(zl.l_phys); 2889 return (0); 2890 } 2891 2892 static int zfs_printf(const char *name, uint64_t value __unused) 2893 { 2894 2895 printf("%s\n", name); 2896 2897 return (0); 2898 } 2899 2900 /* 2901 * List a zap directory. 2902 */ 2903 static int 2904 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2905 { 2906 zap_phys_t *zap; 2907 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2908 int rc; 2909 2910 zap = malloc(size); 2911 if (zap == NULL) 2912 return (ENOMEM); 2913 2914 rc = dnode_read(spa, dnode, 0, zap, size); 2915 if (rc == 0) { 2916 if (zap->zap_block_type == ZBT_MICRO) 2917 rc = mzap_list((const mzap_phys_t *)zap, size, 2918 zfs_printf); 2919 else 2920 rc = fzap_list(spa, dnode, zap, zfs_printf); 2921 } 2922 free(zap); 2923 return (rc); 2924 } 2925 2926 static int 2927 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2928 dnode_phys_t *dnode) 2929 { 2930 off_t offset; 2931 2932 offset = objnum * sizeof (dnode_phys_t); 2933 return (dnode_read(spa, &os->os_meta_dnode, offset, 2934 dnode, sizeof (dnode_phys_t))); 2935 } 2936 2937 /* 2938 * Lookup a name in a microzap directory. 2939 */ 2940 static int 2941 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2942 { 2943 const mzap_ent_phys_t *mze; 2944 int chunks, i; 2945 2946 /* 2947 * Microzap objects use exactly one block. Read the whole 2948 * thing. 2949 */ 2950 chunks = size / MZAP_ENT_LEN - 1; 2951 for (i = 0; i < chunks; i++) { 2952 mze = &mz->mz_chunk[i]; 2953 if (value == mze->mze_value) { 2954 strcpy(name, mze->mze_name); 2955 return (0); 2956 } 2957 } 2958 2959 return (ENOENT); 2960 } 2961 2962 static void 2963 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2964 { 2965 size_t namelen; 2966 const zap_leaf_chunk_t *nc; 2967 char *p; 2968 2969 namelen = zc->l_entry.le_name_numints; 2970 2971 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2972 p = name; 2973 while (namelen > 0) { 2974 size_t len; 2975 len = namelen; 2976 if (len > ZAP_LEAF_ARRAY_BYTES) 2977 len = ZAP_LEAF_ARRAY_BYTES; 2978 memcpy(p, nc->l_array.la_array, len); 2979 p += len; 2980 namelen -= len; 2981 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2982 } 2983 2984 *p = '\0'; 2985 } 2986 2987 static int 2988 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2989 char *name, uint64_t value) 2990 { 2991 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2992 fat_zap_t z; 2993 uint64_t i; 2994 int j, rc; 2995 2996 if (zh->zap_magic != ZAP_MAGIC) 2997 return (EIO); 2998 2999 z.zap_block_shift = ilog2(bsize); 3000 z.zap_phys = zh; 3001 3002 /* 3003 * This assumes that the leaf blocks start at block 1. The 3004 * documentation isn't exactly clear on this. 3005 */ 3006 zap_leaf_t zl; 3007 zl.l_bs = z.zap_block_shift; 3008 zl.l_phys = malloc(bsize); 3009 if (zl.l_phys == NULL) 3010 return (ENOMEM); 3011 3012 for (i = 0; i < zh->zap_num_leafs; i++) { 3013 off_t off = ((off_t)(i + 1)) << zl.l_bs; 3014 3015 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 3016 if (rc != 0) 3017 goto done; 3018 3019 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 3020 zap_leaf_chunk_t *zc; 3021 3022 zc = &ZAP_LEAF_CHUNK(&zl, j); 3023 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 3024 continue; 3025 if (zc->l_entry.le_value_intlen != 8 || 3026 zc->l_entry.le_value_numints != 1) 3027 continue; 3028 3029 if (fzap_leaf_value(&zl, zc) == value) { 3030 fzap_name_copy(&zl, zc, name); 3031 goto done; 3032 } 3033 } 3034 } 3035 3036 rc = ENOENT; 3037 done: 3038 free(zl.l_phys); 3039 return (rc); 3040 } 3041 3042 static int 3043 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 3044 uint64_t value) 3045 { 3046 zap_phys_t *zap; 3047 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 3048 int rc; 3049 3050 zap = malloc(size); 3051 if (zap == NULL) 3052 return (ENOMEM); 3053 3054 rc = dnode_read(spa, dnode, 0, zap, size); 3055 if (rc == 0) { 3056 if (zap->zap_block_type == ZBT_MICRO) 3057 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 3058 name, value); 3059 else 3060 rc = fzap_rlookup(spa, dnode, zap, name, value); 3061 } 3062 free(zap); 3063 return (rc); 3064 } 3065 3066 static int 3067 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 3068 { 3069 char name[256]; 3070 char component[256]; 3071 uint64_t dir_obj, parent_obj, child_dir_zapobj; 3072 dnode_phys_t child_dir_zap, dataset, dir, parent; 3073 dsl_dir_phys_t *dd; 3074 dsl_dataset_phys_t *ds; 3075 char *p; 3076 int len; 3077 3078 p = &name[sizeof (name) - 1]; 3079 *p = '\0'; 3080 3081 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3082 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3083 return (EIO); 3084 } 3085 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3086 dir_obj = ds->ds_dir_obj; 3087 3088 for (;;) { 3089 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 3090 return (EIO); 3091 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3092 3093 /* Actual loop condition. */ 3094 parent_obj = dd->dd_parent_obj; 3095 if (parent_obj == 0) 3096 break; 3097 3098 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, 3099 &parent) != 0) 3100 return (EIO); 3101 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 3102 child_dir_zapobj = dd->dd_child_dir_zapobj; 3103 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3104 &child_dir_zap) != 0) 3105 return (EIO); 3106 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 3107 return (EIO); 3108 3109 len = strlen(component); 3110 p -= len; 3111 memcpy(p, component, len); 3112 --p; 3113 *p = '/'; 3114 3115 /* Actual loop iteration. */ 3116 dir_obj = parent_obj; 3117 } 3118 3119 if (*p != '\0') 3120 ++p; 3121 strcpy(result, p); 3122 3123 return (0); 3124 } 3125 3126 static int 3127 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 3128 { 3129 char element[256]; 3130 uint64_t dir_obj, child_dir_zapobj; 3131 dnode_phys_t child_dir_zap, dir; 3132 dsl_dir_phys_t *dd; 3133 const char *p, *q; 3134 3135 if (objset_get_dnode(spa, &spa->spa_mos, 3136 DMU_POOL_DIRECTORY_OBJECT, &dir)) 3137 return (EIO); 3138 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 3139 1, &dir_obj)) 3140 return (EIO); 3141 3142 p = name; 3143 for (;;) { 3144 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 3145 return (EIO); 3146 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3147 3148 while (*p == '/') 3149 p++; 3150 /* Actual loop condition #1. */ 3151 if (*p == '\0') 3152 break; 3153 3154 q = strchr(p, '/'); 3155 if (q) { 3156 memcpy(element, p, q - p); 3157 element[q - p] = '\0'; 3158 p = q + 1; 3159 } else { 3160 strcpy(element, p); 3161 p += strlen(p); 3162 } 3163 3164 child_dir_zapobj = dd->dd_child_dir_zapobj; 3165 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3166 &child_dir_zap) != 0) 3167 return (EIO); 3168 3169 /* Actual loop condition #2. */ 3170 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 3171 1, &dir_obj) != 0) 3172 return (ENOENT); 3173 } 3174 3175 *objnum = dd->dd_head_dataset_obj; 3176 return (0); 3177 } 3178 3179 #pragma GCC diagnostic ignored "-Wstrict-aliasing" 3180 static int 3181 zfs_list_dataset(const spa_t *spa, uint64_t objnum) 3182 { 3183 uint64_t dir_obj, child_dir_zapobj; 3184 dnode_phys_t child_dir_zap, dir, dataset; 3185 dsl_dataset_phys_t *ds; 3186 dsl_dir_phys_t *dd; 3187 3188 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3189 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3190 return (EIO); 3191 } 3192 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3193 dir_obj = ds->ds_dir_obj; 3194 3195 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 3196 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3197 return (EIO); 3198 } 3199 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3200 3201 child_dir_zapobj = dd->dd_child_dir_zapobj; 3202 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3203 &child_dir_zap) != 0) { 3204 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3205 return (EIO); 3206 } 3207 3208 return (zap_list(spa, &child_dir_zap) != 0); 3209 } 3210 3211 int 3212 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 3213 int (*callback)(const char *, uint64_t)) 3214 { 3215 uint64_t dir_obj, child_dir_zapobj; 3216 dnode_phys_t child_dir_zap, dir, dataset; 3217 dsl_dataset_phys_t *ds; 3218 dsl_dir_phys_t *dd; 3219 zap_phys_t *zap; 3220 size_t size; 3221 int err; 3222 3223 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 3224 if (err != 0) { 3225 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3226 return (err); 3227 } 3228 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3229 dir_obj = ds->ds_dir_obj; 3230 3231 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 3232 if (err != 0) { 3233 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3234 return (err); 3235 } 3236 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3237 3238 child_dir_zapobj = dd->dd_child_dir_zapobj; 3239 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3240 &child_dir_zap); 3241 if (err != 0) { 3242 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3243 return (err); 3244 } 3245 3246 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3247 zap = malloc(size); 3248 if (zap != NULL) { 3249 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 3250 if (err != 0) 3251 goto done; 3252 3253 if (zap->zap_block_type == ZBT_MICRO) 3254 err = mzap_list((const mzap_phys_t *)zap, size, 3255 callback); 3256 else 3257 err = fzap_list(spa, &child_dir_zap, zap, callback); 3258 } else { 3259 err = ENOMEM; 3260 } 3261 done: 3262 free(zap); 3263 return (err); 3264 } 3265 3266 /* 3267 * Find the object set given the object number of its dataset object 3268 * and return its details in *objset 3269 */ 3270 static int 3271 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3272 { 3273 dnode_phys_t dataset; 3274 dsl_dataset_phys_t *ds; 3275 3276 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3277 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3278 return (EIO); 3279 } 3280 3281 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3282 if (zio_read(spa, &ds->ds_bp, objset)) { 3283 printf("ZFS: can't read object set for dataset %ju\n", 3284 (uintmax_t)objnum); 3285 return (EIO); 3286 } 3287 3288 return (0); 3289 } 3290 3291 /* 3292 * Find the object set pointed to by the BOOTFS property or the root 3293 * dataset if there is none and return its details in *objset 3294 */ 3295 static int 3296 zfs_get_root(const spa_t *spa, uint64_t *objid) 3297 { 3298 dnode_phys_t dir, propdir; 3299 uint64_t props, bootfs, root; 3300 3301 *objid = 0; 3302 3303 /* 3304 * Start with the MOS directory object. 3305 */ 3306 if (objset_get_dnode(spa, &spa->spa_mos, 3307 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3308 printf("ZFS: can't read MOS object directory\n"); 3309 return (EIO); 3310 } 3311 3312 /* 3313 * Lookup the pool_props and see if we can find a bootfs. 3314 */ 3315 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3316 sizeof (props), 1, &props) == 0 && 3317 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && 3318 zap_lookup(spa, &propdir, "bootfs", 3319 sizeof (bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3320 *objid = bootfs; 3321 return (0); 3322 } 3323 /* 3324 * Lookup the root dataset directory 3325 */ 3326 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3327 sizeof (root), 1, &root) || 3328 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 3329 printf("ZFS: can't find root dsl_dir\n"); 3330 return (EIO); 3331 } 3332 3333 /* 3334 * Use the information from the dataset directory's bonus buffer 3335 * to find the dataset object and from that the object set itself. 3336 */ 3337 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3338 *objid = dd->dd_head_dataset_obj; 3339 return (0); 3340 } 3341 3342 static int 3343 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mnt) 3344 { 3345 3346 mnt->spa = spa; 3347 3348 /* 3349 * Find the root object set if not explicitly provided 3350 */ 3351 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3352 printf("ZFS: can't find root filesystem\n"); 3353 return (EIO); 3354 } 3355 3356 if (zfs_mount_dataset(spa, rootobj, &mnt->objset)) { 3357 printf("ZFS: can't open root filesystem\n"); 3358 return (EIO); 3359 } 3360 3361 mnt->rootobj = rootobj; 3362 3363 return (0); 3364 } 3365 3366 /* 3367 * callback function for feature name checks. 3368 */ 3369 static int 3370 check_feature(const char *name, uint64_t value) 3371 { 3372 int i; 3373 3374 if (value == 0) 3375 return (0); 3376 if (name[0] == '\0') 3377 return (0); 3378 3379 for (i = 0; features_for_read[i] != NULL; i++) { 3380 if (strcmp(name, features_for_read[i]) == 0) 3381 return (0); 3382 } 3383 printf("ZFS: unsupported feature: %s\n", name); 3384 return (EIO); 3385 } 3386 3387 /* 3388 * Checks whether the MOS features that are active are supported. 3389 */ 3390 static int 3391 check_mos_features(const spa_t *spa) 3392 { 3393 dnode_phys_t dir; 3394 zap_phys_t *zap; 3395 uint64_t objnum; 3396 size_t size; 3397 int rc; 3398 3399 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3400 &dir)) != 0) 3401 return (rc); 3402 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3403 sizeof (objnum), 1, &objnum)) != 0) { 3404 /* 3405 * It is older pool without features. As we have already 3406 * tested the label, just return without raising the error. 3407 */ 3408 if (rc == ENOENT) 3409 rc = 0; 3410 return (rc); 3411 } 3412 3413 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 3414 return (rc); 3415 3416 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3417 return (EIO); 3418 3419 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3420 zap = malloc(size); 3421 if (zap == NULL) 3422 return (ENOMEM); 3423 3424 if (dnode_read(spa, &dir, 0, zap, size)) { 3425 free(zap); 3426 return (EIO); 3427 } 3428 3429 if (zap->zap_block_type == ZBT_MICRO) 3430 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3431 else 3432 rc = fzap_list(spa, &dir, zap, check_feature); 3433 3434 free(zap); 3435 return (rc); 3436 } 3437 3438 static int 3439 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3440 { 3441 dnode_phys_t dir; 3442 size_t size; 3443 int rc; 3444 char *nv; 3445 3446 *value = NULL; 3447 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 3448 return (rc); 3449 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3450 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3451 return (EIO); 3452 } 3453 3454 if (dir.dn_bonuslen != sizeof (uint64_t)) 3455 return (EIO); 3456 3457 size = *(uint64_t *)DN_BONUS(&dir); 3458 nv = malloc(size); 3459 if (nv == NULL) 3460 return (ENOMEM); 3461 3462 rc = dnode_read(spa, &dir, 0, nv, size); 3463 if (rc != 0) { 3464 free(nv); 3465 nv = NULL; 3466 return (rc); 3467 } 3468 *value = nvlist_import(nv, size); 3469 free(nv); 3470 return (rc); 3471 } 3472 3473 static int 3474 zfs_spa_init(spa_t *spa) 3475 { 3476 dnode_phys_t dir; 3477 uint64_t config_object; 3478 nvlist_t *nvlist; 3479 int rc; 3480 3481 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 3482 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3483 return (EIO); 3484 } 3485 if (spa->spa_mos.os_type != DMU_OST_META) { 3486 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3487 return (EIO); 3488 } 3489 3490 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 3491 &dir)) { 3492 printf("ZFS: failed to read pool %s directory object\n", 3493 spa->spa_name); 3494 return (EIO); 3495 } 3496 /* this is allowed to fail, older pools do not have salt */ 3497 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3498 sizeof (spa->spa_cksum_salt.zcs_bytes), 3499 spa->spa_cksum_salt.zcs_bytes); 3500 3501 rc = check_mos_features(spa); 3502 if (rc != 0) { 3503 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3504 return (rc); 3505 } 3506 3507 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3508 sizeof (config_object), 1, &config_object); 3509 if (rc != 0) { 3510 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3511 return (EIO); 3512 } 3513 rc = load_nvlist(spa, config_object, &nvlist); 3514 if (rc != 0) 3515 return (rc); 3516 3517 /* 3518 * Update vdevs from MOS config. Note, we do skip encoding bytes 3519 * here. See also vdev_label_read_config(). 3520 */ 3521 rc = vdev_init_from_nvlist(spa, nvlist); 3522 nvlist_destroy(nvlist); 3523 return (rc); 3524 } 3525 3526 static int 3527 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3528 { 3529 3530 if (dn->dn_bonustype != DMU_OT_SA) { 3531 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3532 3533 sb->st_mode = zp->zp_mode; 3534 sb->st_uid = zp->zp_uid; 3535 sb->st_gid = zp->zp_gid; 3536 sb->st_size = zp->zp_size; 3537 } else { 3538 sa_hdr_phys_t *sahdrp; 3539 int hdrsize; 3540 size_t size = 0; 3541 void *buf = NULL; 3542 3543 if (dn->dn_bonuslen != 0) 3544 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3545 else { 3546 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3547 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3548 int error; 3549 3550 size = BP_GET_LSIZE(bp); 3551 buf = malloc(size); 3552 if (buf == NULL) 3553 error = ENOMEM; 3554 else 3555 error = zio_read(spa, bp, buf); 3556 3557 if (error != 0) { 3558 free(buf); 3559 return (error); 3560 } 3561 sahdrp = buf; 3562 } else { 3563 return (EIO); 3564 } 3565 } 3566 hdrsize = SA_HDR_SIZE(sahdrp); 3567 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3568 SA_MODE_OFFSET); 3569 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3570 SA_UID_OFFSET); 3571 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3572 SA_GID_OFFSET); 3573 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3574 SA_SIZE_OFFSET); 3575 free(buf); 3576 } 3577 3578 return (0); 3579 } 3580 3581 static int 3582 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3583 { 3584 int rc = 0; 3585 3586 if (dn->dn_bonustype == DMU_OT_SA) { 3587 sa_hdr_phys_t *sahdrp = NULL; 3588 size_t size = 0; 3589 void *buf = NULL; 3590 int hdrsize; 3591 char *p; 3592 3593 if (dn->dn_bonuslen != 0) { 3594 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3595 } else { 3596 blkptr_t *bp; 3597 3598 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3599 return (EIO); 3600 bp = DN_SPILL_BLKPTR(dn); 3601 3602 size = BP_GET_LSIZE(bp); 3603 buf = malloc(size); 3604 if (buf == NULL) 3605 rc = ENOMEM; 3606 else 3607 rc = zio_read(spa, bp, buf); 3608 if (rc != 0) { 3609 free(buf); 3610 return (rc); 3611 } 3612 sahdrp = buf; 3613 } 3614 hdrsize = SA_HDR_SIZE(sahdrp); 3615 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3616 memcpy(path, p, psize); 3617 free(buf); 3618 return (0); 3619 } 3620 /* 3621 * Second test is purely to silence bogus compiler 3622 * warning about accessing past the end of dn_bonus. 3623 */ 3624 if (psize + sizeof (znode_phys_t) <= dn->dn_bonuslen && 3625 sizeof (znode_phys_t) <= sizeof (dn->dn_bonus)) { 3626 memcpy(path, &dn->dn_bonus[sizeof (znode_phys_t)], psize); 3627 } else { 3628 rc = dnode_read(spa, dn, 0, path, psize); 3629 } 3630 return (rc); 3631 } 3632 3633 struct obj_list { 3634 uint64_t objnum; 3635 STAILQ_ENTRY(obj_list) entry; 3636 }; 3637 3638 /* 3639 * Lookup a file and return its dnode. 3640 */ 3641 static int 3642 zfs_lookup(const struct zfsmount *mnt, const char *upath, dnode_phys_t *dnode) 3643 { 3644 int rc; 3645 uint64_t objnum; 3646 const spa_t *spa; 3647 dnode_phys_t dn; 3648 const char *p, *q; 3649 char element[256]; 3650 char path[1024]; 3651 int symlinks_followed = 0; 3652 struct stat sb; 3653 struct obj_list *entry, *tentry; 3654 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3655 3656 spa = mnt->spa; 3657 if (mnt->objset.os_type != DMU_OST_ZFS) { 3658 printf("ZFS: unexpected object set type %ju\n", 3659 (uintmax_t)mnt->objset.os_type); 3660 return (EIO); 3661 } 3662 3663 if ((entry = malloc(sizeof (struct obj_list))) == NULL) 3664 return (ENOMEM); 3665 3666 /* 3667 * Get the root directory dnode. 3668 */ 3669 rc = objset_get_dnode(spa, &mnt->objset, MASTER_NODE_OBJ, &dn); 3670 if (rc) { 3671 free(entry); 3672 return (rc); 3673 } 3674 3675 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); 3676 if (rc) { 3677 free(entry); 3678 return (rc); 3679 } 3680 entry->objnum = objnum; 3681 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3682 3683 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); 3684 if (rc != 0) 3685 goto done; 3686 3687 p = upath; 3688 while (p && *p) { 3689 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); 3690 if (rc != 0) 3691 goto done; 3692 3693 while (*p == '/') 3694 p++; 3695 if (*p == '\0') 3696 break; 3697 q = p; 3698 while (*q != '\0' && *q != '/') 3699 q++; 3700 3701 /* skip dot */ 3702 if (p + 1 == q && p[0] == '.') { 3703 p++; 3704 continue; 3705 } 3706 /* double dot */ 3707 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3708 p += 2; 3709 if (STAILQ_FIRST(&on_cache) == 3710 STAILQ_LAST(&on_cache, obj_list, entry)) { 3711 rc = ENOENT; 3712 goto done; 3713 } 3714 entry = STAILQ_FIRST(&on_cache); 3715 STAILQ_REMOVE_HEAD(&on_cache, entry); 3716 free(entry); 3717 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3718 continue; 3719 } 3720 if (q - p + 1 > sizeof (element)) { 3721 rc = ENAMETOOLONG; 3722 goto done; 3723 } 3724 memcpy(element, p, q - p); 3725 element[q - p] = 0; 3726 p = q; 3727 3728 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3729 goto done; 3730 if (!S_ISDIR(sb.st_mode)) { 3731 rc = ENOTDIR; 3732 goto done; 3733 } 3734 3735 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3736 if (rc) 3737 goto done; 3738 objnum = ZFS_DIRENT_OBJ(objnum); 3739 3740 if ((entry = malloc(sizeof (struct obj_list))) == NULL) { 3741 rc = ENOMEM; 3742 goto done; 3743 } 3744 entry->objnum = objnum; 3745 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3746 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); 3747 if (rc) 3748 goto done; 3749 3750 /* 3751 * Check for symlink. 3752 */ 3753 rc = zfs_dnode_stat(spa, &dn, &sb); 3754 if (rc) 3755 goto done; 3756 if (S_ISLNK(sb.st_mode)) { 3757 if (symlinks_followed > 10) { 3758 rc = EMLINK; 3759 goto done; 3760 } 3761 symlinks_followed++; 3762 3763 /* 3764 * Read the link value and copy the tail of our 3765 * current path onto the end. 3766 */ 3767 if (sb.st_size + strlen(p) + 1 > sizeof (path)) { 3768 rc = ENAMETOOLONG; 3769 goto done; 3770 } 3771 strcpy(&path[sb.st_size], p); 3772 3773 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3774 if (rc != 0) 3775 goto done; 3776 3777 /* 3778 * Restart with the new path, starting either at 3779 * the root or at the parent depending whether or 3780 * not the link is relative. 3781 */ 3782 p = path; 3783 if (*p == '/') { 3784 while (STAILQ_FIRST(&on_cache) != 3785 STAILQ_LAST(&on_cache, obj_list, entry)) { 3786 entry = STAILQ_FIRST(&on_cache); 3787 STAILQ_REMOVE_HEAD(&on_cache, entry); 3788 free(entry); 3789 } 3790 } else { 3791 entry = STAILQ_FIRST(&on_cache); 3792 STAILQ_REMOVE_HEAD(&on_cache, entry); 3793 free(entry); 3794 } 3795 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3796 } 3797 } 3798 3799 *dnode = dn; 3800 done: 3801 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3802 free(entry); 3803 return (rc); 3804 } 3805