1 /*
2 * Copyright (c) 2007 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28
29 /*
30 * Stand-alone ZFS file reader.
31 */
32
33 #include <stdbool.h>
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 #include <sys/zfs_bootenv.h>
39 #include <inttypes.h>
40
41 #include "zfsimpl.h"
42 #include "zfssubr.c"
43
44
45 struct zfsmount {
46 const spa_t *spa;
47 objset_phys_t objset;
48 uint64_t rootobj;
49 };
50
51 /*
52 * The indirect_child_t represents the vdev that we will read from, when we
53 * need to read all copies of the data (e.g. for scrub or reconstruction).
54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
56 * ic_vdev is a child of the mirror.
57 */
58 typedef struct indirect_child {
59 void *ic_data;
60 vdev_t *ic_vdev;
61 } indirect_child_t;
62
63 /*
64 * The indirect_split_t represents one mapped segment of an i/o to the
65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
67 * For split blocks, there will be several of these.
68 */
69 typedef struct indirect_split {
70 list_node_t is_node; /* link on iv_splits */
71
72 /*
73 * is_split_offset is the offset into the i/o.
74 * This is the sum of the previous splits' is_size's.
75 */
76 uint64_t is_split_offset;
77
78 vdev_t *is_vdev; /* top-level vdev */
79 uint64_t is_target_offset; /* offset on is_vdev */
80 uint64_t is_size;
81 int is_children; /* number of entries in is_child[] */
82
83 /*
84 * is_good_child is the child that we are currently using to
85 * attempt reconstruction.
86 */
87 int is_good_child;
88
89 indirect_child_t is_child[1]; /* variable-length */
90 } indirect_split_t;
91
92 /*
93 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
95 */
96 typedef struct indirect_vsd {
97 boolean_t iv_split_block;
98 boolean_t iv_reconstruct;
99
100 list_t iv_splits; /* list of indirect_split_t's */
101 } indirect_vsd_t;
102
103 /*
104 * List of all vdevs, chained through v_alllink.
105 */
106 static vdev_list_t zfs_vdevs;
107
108 /*
109 * List of ZFS features supported for read
110 */
111 static const char *features_for_read[] = {
112 "org.illumos:lz4_compress",
113 "com.delphix:hole_birth",
114 "com.delphix:extensible_dataset",
115 "com.delphix:embedded_data",
116 "org.open-zfs:large_blocks",
117 "org.illumos:sha512",
118 "org.illumos:skein",
119 "org.illumos:edonr",
120 "org.zfsonlinux:large_dnode",
121 "com.joyent:multi_vdev_crash_dump",
122 "com.delphix:spacemap_histogram",
123 "com.delphix:zpool_checkpoint",
124 "com.delphix:spacemap_v2",
125 "com.datto:encryption",
126 "com.datto:bookmark_v2",
127 "org.zfsonlinux:allocation_classes",
128 "com.datto:resilver_defer",
129 "com.delphix:device_removal",
130 "com.delphix:obsolete_counts",
131 NULL
132 };
133
134 /*
135 * List of all pools, chained through spa_link.
136 */
137 static spa_list_t zfs_pools;
138
139 static const dnode_phys_t *dnode_cache_obj;
140 static uint64_t dnode_cache_bn;
141 static char *dnode_cache_buf;
142
143 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
144 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
145 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
146 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
147 const char *name, uint64_t integer_size, uint64_t num_integers,
148 void *value);
149 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
150 dnode_phys_t *);
151 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
152 size_t);
153 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
154 size_t);
155 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t,
156 size_t);
157
158 static void
zfs_init(void)159 zfs_init(void)
160 {
161 STAILQ_INIT(&zfs_vdevs);
162 STAILQ_INIT(&zfs_pools);
163
164 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
165
166 zfs_init_crc();
167 }
168
169 static int
nvlist_check_features_for_read(nvlist_t * nvl)170 nvlist_check_features_for_read(nvlist_t *nvl)
171 {
172 nvlist_t *features = NULL;
173 nvs_data_t *data;
174 nvp_header_t *nvp;
175 nv_string_t *nvp_name;
176 int rc;
177
178 /*
179 * We may have all features disabled.
180 */
181 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
182 DATA_TYPE_NVLIST, NULL, &features, NULL);
183 switch (rc) {
184 case 0:
185 break; /* Continue with checks */
186
187 case ENOENT:
188 return (0); /* All features are disabled */
189
190 default:
191 return (rc); /* Error while reading nvlist */
192 }
193
194 data = (nvs_data_t *)features->nv_data;
195 nvp = &data->nvl_pair; /* first pair in nvlist */
196
197 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
198 int i, found;
199
200 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof (*nvp));
201 found = 0;
202
203 for (i = 0; features_for_read[i] != NULL; i++) {
204 if (memcmp(nvp_name->nv_data, features_for_read[i],
205 nvp_name->nv_size) == 0) {
206 found = 1;
207 break;
208 }
209 }
210
211 if (!found) {
212 printf("ZFS: unsupported feature: %.*s\n",
213 nvp_name->nv_size, nvp_name->nv_data);
214 rc = EIO;
215 }
216 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
217 }
218 nvlist_destroy(features);
219
220 return (rc);
221 }
222
223 static int
vdev_read_phys(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t size)224 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
225 off_t offset, size_t size)
226 {
227 size_t psize;
228 int rc;
229
230 if (vdev->v_phys_read == NULL)
231 return (ENOTSUP);
232
233 if (bp) {
234 psize = BP_GET_PSIZE(bp);
235 } else {
236 psize = size;
237 }
238
239 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
240 if (rc == 0) {
241 if (bp != NULL)
242 rc = zio_checksum_verify(vdev->v_spa, bp, buf);
243 }
244
245 return (rc);
246 }
247
248 static int
vdev_write_phys(vdev_t * vdev,void * buf,off_t offset,size_t size)249 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
250 {
251 if (vdev->v_phys_write == NULL)
252 return (ENOTSUP);
253
254 return (vdev->v_phys_write(vdev, offset, buf, size));
255 }
256
257 typedef struct remap_segment {
258 vdev_t *rs_vd;
259 uint64_t rs_offset;
260 uint64_t rs_asize;
261 uint64_t rs_split_offset;
262 list_node_t rs_node;
263 } remap_segment_t;
264
265 static remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)266 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
267 {
268 remap_segment_t *rs = malloc(sizeof (remap_segment_t));
269
270 if (rs != NULL) {
271 rs->rs_vd = vd;
272 rs->rs_offset = offset;
273 rs->rs_asize = asize;
274 rs->rs_split_offset = split_offset;
275 }
276
277 return (rs);
278 }
279
280 vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t * spa,objset_phys_t * os,uint64_t mapping_object)281 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
282 uint64_t mapping_object)
283 {
284 vdev_indirect_mapping_t *vim;
285 vdev_indirect_mapping_phys_t *vim_phys;
286 int rc;
287
288 vim = calloc(1, sizeof (*vim));
289 if (vim == NULL)
290 return (NULL);
291
292 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
293 if (vim->vim_dn == NULL) {
294 free(vim);
295 return (NULL);
296 }
297
298 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
299 if (rc != 0) {
300 free(vim->vim_dn);
301 free(vim);
302 return (NULL);
303 }
304
305 vim->vim_spa = spa;
306 vim->vim_phys = malloc(sizeof (*vim->vim_phys));
307 if (vim->vim_phys == NULL) {
308 free(vim->vim_dn);
309 free(vim);
310 return (NULL);
311 }
312
313 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
314 *vim->vim_phys = *vim_phys;
315
316 vim->vim_objset = os;
317 vim->vim_object = mapping_object;
318 vim->vim_entries = NULL;
319
320 vim->vim_havecounts =
321 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
322
323 return (vim);
324 }
325
326 /*
327 * Compare an offset with an indirect mapping entry; there are three
328 * possible scenarios:
329 *
330 * 1. The offset is "less than" the mapping entry; meaning the
331 * offset is less than the source offset of the mapping entry. In
332 * this case, there is no overlap between the offset and the
333 * mapping entry and -1 will be returned.
334 *
335 * 2. The offset is "greater than" the mapping entry; meaning the
336 * offset is greater than the mapping entry's source offset plus
337 * the entry's size. In this case, there is no overlap between
338 * the offset and the mapping entry and 1 will be returned.
339 *
340 * NOTE: If the offset is actually equal to the entry's offset
341 * plus size, this is considered to be "greater" than the entry,
342 * and this case applies (i.e. 1 will be returned). Thus, the
343 * entry's "range" can be considered to be inclusive at its
344 * start, but exclusive at its end: e.g. [src, src + size).
345 *
346 * 3. The last case to consider is if the offset actually falls
347 * within the mapping entry's range. If this is the case, the
348 * offset is considered to be "equal to" the mapping entry and
349 * 0 will be returned.
350 *
351 * NOTE: If the offset is equal to the entry's source offset,
352 * this case applies and 0 will be returned. If the offset is
353 * equal to the entry's source plus its size, this case does
354 * *not* apply (see "NOTE" above for scenario 2), and 1 will be
355 * returned.
356 */
357 static int
dva_mapping_overlap_compare(const void * v_key,const void * v_array_elem)358 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
359 {
360 const uint64_t *key = v_key;
361 const vdev_indirect_mapping_entry_phys_t *array_elem =
362 v_array_elem;
363 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
364
365 if (*key < src_offset) {
366 return (-1);
367 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
368 return (0);
369 } else {
370 return (1);
371 }
372 }
373
374 /*
375 * Return array entry.
376 */
377 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t * vim,uint64_t index)378 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
379 {
380 uint64_t size;
381 off_t offset = 0;
382 int rc;
383
384 if (vim->vim_phys->vimp_num_entries == 0)
385 return (NULL);
386
387 if (vim->vim_entries == NULL) {
388 uint64_t bsize;
389
390 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
391 size = vim->vim_phys->vimp_num_entries *
392 sizeof (*vim->vim_entries);
393 if (size > bsize) {
394 size = bsize / sizeof (*vim->vim_entries);
395 size *= sizeof (*vim->vim_entries);
396 }
397 vim->vim_entries = malloc(size);
398 if (vim->vim_entries == NULL)
399 return (NULL);
400 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
401 offset = index * sizeof (*vim->vim_entries);
402 }
403
404 /* We have data in vim_entries */
405 if (offset == 0) {
406 if (index >= vim->vim_entry_offset &&
407 index <= vim->vim_entry_offset + vim->vim_num_entries) {
408 index -= vim->vim_entry_offset;
409 return (&vim->vim_entries[index]);
410 }
411 offset = index * sizeof (*vim->vim_entries);
412 }
413
414 vim->vim_entry_offset = index;
415 size = vim->vim_num_entries * sizeof (*vim->vim_entries);
416 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
417 size);
418 if (rc != 0) {
419 /* Read error, invalidate vim_entries. */
420 free(vim->vim_entries);
421 vim->vim_entries = NULL;
422 return (NULL);
423 }
424 index -= vim->vim_entry_offset;
425 return (&vim->vim_entries[index]);
426 }
427
428 /*
429 * Returns the mapping entry for the given offset.
430 *
431 * It's possible that the given offset will not be in the mapping table
432 * (i.e. no mapping entries contain this offset), in which case, the
433 * return value value depends on the "next_if_missing" parameter.
434 *
435 * If the offset is not found in the table and "next_if_missing" is
436 * B_FALSE, then NULL will always be returned. The behavior is intended
437 * to allow consumers to get the entry corresponding to the offset
438 * parameter, iff the offset overlaps with an entry in the table.
439 *
440 * If the offset is not found in the table and "next_if_missing" is
441 * B_TRUE, then the entry nearest to the given offset will be returned,
442 * such that the entry's source offset is greater than the offset
443 * passed in (i.e. the "next" mapping entry in the table is returned, if
444 * the offset is missing from the table). If there are no entries whose
445 * source offset is greater than the passed in offset, NULL is returned.
446 */
447 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t * vim,uint64_t offset)448 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
449 uint64_t offset)
450 {
451 ASSERT(vim->vim_phys->vimp_num_entries > 0);
452
453 vdev_indirect_mapping_entry_phys_t *entry;
454
455 uint64_t last = vim->vim_phys->vimp_num_entries - 1;
456 uint64_t base = 0;
457
458 /*
459 * We don't define these inside of the while loop because we use
460 * their value in the case that offset isn't in the mapping.
461 */
462 uint64_t mid;
463 int result;
464
465 while (last >= base) {
466 mid = base + ((last - base) >> 1);
467
468 entry = vdev_indirect_mapping_entry(vim, mid);
469 if (entry == NULL)
470 break;
471 result = dva_mapping_overlap_compare(&offset, entry);
472
473 if (result == 0) {
474 break;
475 } else if (result < 0) {
476 last = mid - 1;
477 } else {
478 base = mid + 1;
479 }
480 }
481 return (entry);
482 }
483
484 /*
485 * Given an indirect vdev and an extent on that vdev, it duplicates the
486 * physical entries of the indirect mapping that correspond to the extent
487 * to a new array and returns a pointer to it. In addition, copied_entries
488 * is populated with the number of mapping entries that were duplicated.
489 *
490 * Finally, since we are doing an allocation, it is up to the caller to
491 * free the array allocated in this function.
492 */
493 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)494 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
495 uint64_t asize, uint64_t *copied_entries)
496 {
497 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
498 vdev_indirect_mapping_t *vim = vd->v_mapping;
499 uint64_t entries = 0;
500
501 vdev_indirect_mapping_entry_phys_t *first_mapping =
502 vdev_indirect_mapping_entry_for_offset(vim, offset);
503 ASSERT3P(first_mapping, !=, NULL);
504
505 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
506 while (asize > 0) {
507 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
508 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
509 uint64_t inner_size = MIN(asize, size - inner_offset);
510
511 offset += inner_size;
512 asize -= inner_size;
513 entries++;
514 m++;
515 }
516
517 size_t copy_length = entries * sizeof (*first_mapping);
518 duplicate_mappings = malloc(copy_length);
519 if (duplicate_mappings != NULL)
520 bcopy(first_mapping, duplicate_mappings, copy_length);
521 else
522 entries = 0;
523
524 *copied_entries = entries;
525
526 return (duplicate_mappings);
527 }
528
529 static vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)530 vdev_lookup_top(spa_t *spa, uint64_t vdev)
531 {
532 vdev_t *rvd;
533 vdev_list_t *vlist;
534
535 vlist = &spa->spa_root_vdev->v_children;
536 STAILQ_FOREACH(rvd, vlist, v_childlink)
537 if (rvd->v_id == vdev)
538 break;
539
540 return (rvd);
541 }
542
543 /*
544 * This is a callback for vdev_indirect_remap() which allocates an
545 * indirect_split_t for each split segment and adds it to iv_splits.
546 */
547 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)548 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
549 uint64_t size, void *arg)
550 {
551 int n = 1;
552 zio_t *zio = arg;
553 indirect_vsd_t *iv = zio->io_vsd;
554
555 if (vd->v_read == vdev_indirect_read)
556 return;
557
558 if (vd->v_read == vdev_mirror_read)
559 n = vd->v_nchildren;
560
561 indirect_split_t *is =
562 malloc(offsetof(indirect_split_t, is_child[n]));
563 if (is == NULL) {
564 zio->io_error = ENOMEM;
565 return;
566 }
567 bzero(is, offsetof(indirect_split_t, is_child[n]));
568
569 is->is_children = n;
570 is->is_size = size;
571 is->is_split_offset = split_offset;
572 is->is_target_offset = offset;
573 is->is_vdev = vd;
574
575 /*
576 * Note that we only consider multiple copies of the data for
577 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
578 * though they use the same ops as mirror, because there's only one
579 * "good" copy under the replacing/spare.
580 */
581 if (vd->v_read == vdev_mirror_read) {
582 int i = 0;
583 vdev_t *kid;
584
585 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
586 is->is_child[i++].ic_vdev = kid;
587 }
588 } else {
589 is->is_child[0].ic_vdev = vd;
590 }
591
592 list_insert_tail(&iv->iv_splits, is);
593 }
594
595 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void * arg)596 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
597 {
598 list_t stack;
599 spa_t *spa = vd->v_spa;
600 zio_t *zio = arg;
601 remap_segment_t *rs;
602
603 list_create(&stack, sizeof (remap_segment_t),
604 offsetof(remap_segment_t, rs_node));
605
606 rs = rs_alloc(vd, offset, asize, 0);
607 if (rs == NULL) {
608 printf("vdev_indirect_remap: out of memory.\n");
609 zio->io_error = ENOMEM;
610 }
611 for (; rs != NULL; rs = list_remove_head(&stack)) {
612 vdev_t *v = rs->rs_vd;
613 uint64_t num_entries = 0;
614 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
615 vdev_indirect_mapping_entry_phys_t *mapping =
616 vdev_indirect_mapping_duplicate_adjacent_entries(v,
617 rs->rs_offset, rs->rs_asize, &num_entries);
618
619 if (num_entries == 0)
620 zio->io_error = ENOMEM;
621
622 for (uint64_t i = 0; i < num_entries; i++) {
623 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
624 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
625 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
626 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
627 uint64_t inner_offset = rs->rs_offset -
628 DVA_MAPPING_GET_SRC_OFFSET(m);
629 uint64_t inner_size =
630 MIN(rs->rs_asize, size - inner_offset);
631 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
632
633 if (dst_v->v_read == vdev_indirect_read) {
634 remap_segment_t *o;
635
636 o = rs_alloc(dst_v, dst_offset + inner_offset,
637 inner_size, rs->rs_split_offset);
638 if (o == NULL) {
639 printf("vdev_indirect_remap: "
640 "out of memory.\n");
641 zio->io_error = ENOMEM;
642 break;
643 }
644
645 list_insert_head(&stack, o);
646 }
647 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
648 dst_offset + inner_offset,
649 inner_size, arg);
650
651 /*
652 * vdev_indirect_gather_splits can have memory
653 * allocation error, we can not recover from it.
654 */
655 if (zio->io_error != 0)
656 break;
657 rs->rs_offset += inner_size;
658 rs->rs_asize -= inner_size;
659 rs->rs_split_offset += inner_size;
660 }
661
662 free(mapping);
663 free(rs);
664 if (zio->io_error != 0)
665 break;
666 }
667
668 list_destroy(&stack);
669 }
670
671 static void
vdev_indirect_map_free(zio_t * zio)672 vdev_indirect_map_free(zio_t *zio)
673 {
674 indirect_vsd_t *iv = zio->io_vsd;
675 indirect_split_t *is;
676
677 while ((is = list_head(&iv->iv_splits)) != NULL) {
678 for (int c = 0; c < is->is_children; c++) {
679 indirect_child_t *ic = &is->is_child[c];
680 free(ic->ic_data);
681 }
682 list_remove(&iv->iv_splits, is);
683 free(is);
684 }
685 free(iv);
686 }
687
688 static int
vdev_indirect_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)689 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
690 off_t offset, size_t bytes)
691 {
692 zio_t zio;
693 spa_t *spa = vdev->v_spa;
694 indirect_vsd_t *iv;
695 indirect_split_t *first;
696 int rc = EIO;
697
698 iv = calloc(1, sizeof (*iv));
699 if (iv == NULL)
700 return (ENOMEM);
701
702 list_create(&iv->iv_splits,
703 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
704
705 bzero(&zio, sizeof (zio));
706 zio.io_spa = spa;
707 zio.io_bp = (blkptr_t *)bp;
708 zio.io_data = buf;
709 zio.io_size = bytes;
710 zio.io_offset = offset;
711 zio.io_vd = vdev;
712 zio.io_vsd = iv;
713
714 if (vdev->v_mapping == NULL) {
715 vdev_indirect_config_t *vic;
716
717 vic = &vdev->vdev_indirect_config;
718 vdev->v_mapping = vdev_indirect_mapping_open(spa,
719 &spa->spa_mos, vic->vic_mapping_object);
720 }
721
722 vdev_indirect_remap(vdev, offset, bytes, &zio);
723 if (zio.io_error != 0)
724 return (zio.io_error);
725
726 first = list_head(&iv->iv_splits);
727 if (first->is_size == zio.io_size) {
728 /*
729 * This is not a split block; we are pointing to the entire
730 * data, which will checksum the same as the original data.
731 * Pass the BP down so that the child i/o can verify the
732 * checksum, and try a different location if available
733 * (e.g. on a mirror).
734 *
735 * While this special case could be handled the same as the
736 * general (split block) case, doing it this way ensures
737 * that the vast majority of blocks on indirect vdevs
738 * (which are not split) are handled identically to blocks
739 * on non-indirect vdevs. This allows us to be less strict
740 * about performance in the general (but rare) case.
741 */
742 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
743 zio.io_data, first->is_target_offset, bytes);
744 } else {
745 iv->iv_split_block = B_TRUE;
746 /*
747 * Read one copy of each split segment, from the
748 * top-level vdev. Since we don't know the
749 * checksum of each split individually, the child
750 * zio can't ensure that we get the right data.
751 * E.g. if it's a mirror, it will just read from a
752 * random (healthy) leaf vdev. We have to verify
753 * the checksum in vdev_indirect_io_done().
754 */
755 for (indirect_split_t *is = list_head(&iv->iv_splits);
756 is != NULL; is = list_next(&iv->iv_splits, is)) {
757 char *ptr = zio.io_data;
758
759 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
760 ptr + is->is_split_offset, is->is_target_offset,
761 is->is_size);
762 }
763 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
764 rc = ECKSUM;
765 else
766 rc = 0;
767 }
768
769 vdev_indirect_map_free(&zio);
770 if (rc == 0)
771 rc = zio.io_error;
772
773 return (rc);
774 }
775
776 static int
vdev_disk_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)777 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
778 off_t offset, size_t bytes)
779 {
780
781 return (vdev_read_phys(vdev, bp, buf,
782 offset + VDEV_LABEL_START_SIZE, bytes));
783 }
784
785 static int
vdev_missing_read(vdev_t * vdev __unused,const blkptr_t * bp __unused,void * buf __unused,off_t offset __unused,size_t bytes __unused)786 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
787 void *buf __unused, off_t offset __unused, size_t bytes __unused)
788 {
789
790 return (ENOTSUP);
791 }
792
793 static int
vdev_mirror_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)794 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
795 off_t offset, size_t bytes)
796 {
797 vdev_t *kid;
798 int rc;
799
800 rc = EIO;
801 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
802 if (kid->v_state != VDEV_STATE_HEALTHY)
803 continue;
804 rc = kid->v_read(kid, bp, buf, offset, bytes);
805 if (!rc)
806 return (0);
807 }
808
809 return (rc);
810 }
811
812 static int
vdev_replacing_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)813 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
814 off_t offset, size_t bytes)
815 {
816 vdev_t *kid;
817
818 /*
819 * Here we should have two kids:
820 * First one which is the one we are replacing and we can trust
821 * only this one to have valid data, but it might not be present.
822 * Second one is that one we are replacing with. It is most likely
823 * healthy, but we can't trust it has needed data, so we won't use it.
824 */
825 kid = STAILQ_FIRST(&vdev->v_children);
826 if (kid == NULL)
827 return (EIO);
828 if (kid->v_state != VDEV_STATE_HEALTHY)
829 return (EIO);
830 return (kid->v_read(kid, bp, buf, offset, bytes));
831 }
832
833 static vdev_t *
vdev_find(uint64_t guid)834 vdev_find(uint64_t guid)
835 {
836 vdev_t *vdev;
837
838 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
839 if (vdev->v_guid == guid)
840 return (vdev);
841
842 return (0);
843 }
844
845 static vdev_t *
vdev_create(uint64_t guid,vdev_read_t * vdev_read)846 vdev_create(uint64_t guid, vdev_read_t *vdev_read)
847 {
848 vdev_t *vdev;
849 vdev_indirect_config_t *vic;
850
851 vdev = calloc(1, sizeof (vdev_t));
852 if (vdev != NULL) {
853 STAILQ_INIT(&vdev->v_children);
854 vdev->v_guid = guid;
855 vdev->v_read = vdev_read;
856
857 /*
858 * root vdev has no read function, we use this fact to
859 * skip setting up data we do not need for root vdev.
860 * We only point root vdev from spa.
861 */
862 if (vdev_read != NULL) {
863 vic = &vdev->vdev_indirect_config;
864 vic->vic_prev_indirect_vdev = UINT64_MAX;
865 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
866 }
867 }
868
869 return (vdev);
870 }
871
872 static void
vdev_set_initial_state(vdev_t * vdev,const nvlist_t * nvlist)873 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
874 {
875 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
876 uint64_t is_log;
877
878 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
879 is_log = 0;
880 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
881 &is_offline, NULL);
882 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
883 &is_removed, NULL);
884 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
885 &is_faulted, NULL);
886 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
887 NULL, &is_degraded, NULL);
888 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
889 NULL, &isnt_present, NULL);
890 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
891 &is_log, NULL);
892
893 if (is_offline != 0)
894 vdev->v_state = VDEV_STATE_OFFLINE;
895 else if (is_removed != 0)
896 vdev->v_state = VDEV_STATE_REMOVED;
897 else if (is_faulted != 0)
898 vdev->v_state = VDEV_STATE_FAULTED;
899 else if (is_degraded != 0)
900 vdev->v_state = VDEV_STATE_DEGRADED;
901 else if (isnt_present != 0)
902 vdev->v_state = VDEV_STATE_CANT_OPEN;
903
904 vdev->v_islog = is_log != 0;
905 }
906
907 static int
vdev_init(uint64_t guid,const nvlist_t * nvlist,vdev_t ** vdevp)908 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
909 {
910 uint64_t id, ashift, asize, nparity;
911 const char *path;
912 const char *type;
913 int len, pathlen;
914 char *name;
915 vdev_t *vdev;
916
917 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
918 NULL) ||
919 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
920 NULL, &type, &len)) {
921 return (ENOENT);
922 }
923
924 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
925 memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
926 #ifdef ZFS_TEST
927 memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
928 #endif
929 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
930 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
931 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
932 memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
933 printf("ZFS: can only boot from disk, mirror, raidz1, "
934 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
935 return (EIO);
936 }
937
938 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
939 vdev = vdev_create(guid, vdev_mirror_read);
940 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
941 vdev = vdev_create(guid, vdev_raidz_read);
942 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
943 vdev = vdev_create(guid, vdev_replacing_read);
944 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
945 vdev_indirect_config_t *vic;
946
947 vdev = vdev_create(guid, vdev_indirect_read);
948 if (vdev != NULL) {
949 vdev->v_state = VDEV_STATE_HEALTHY;
950 vic = &vdev->vdev_indirect_config;
951
952 nvlist_find(nvlist,
953 ZPOOL_CONFIG_INDIRECT_OBJECT,
954 DATA_TYPE_UINT64,
955 NULL, &vic->vic_mapping_object, NULL);
956 nvlist_find(nvlist,
957 ZPOOL_CONFIG_INDIRECT_BIRTHS,
958 DATA_TYPE_UINT64,
959 NULL, &vic->vic_births_object, NULL);
960 nvlist_find(nvlist,
961 ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
962 DATA_TYPE_UINT64,
963 NULL, &vic->vic_prev_indirect_vdev, NULL);
964 }
965 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
966 vdev = vdev_create(guid, vdev_missing_read);
967 } else {
968 vdev = vdev_create(guid, vdev_disk_read);
969 }
970
971 if (vdev == NULL)
972 return (ENOMEM);
973
974 vdev_set_initial_state(vdev, nvlist);
975 vdev->v_id = id;
976 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
977 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
978 vdev->v_ashift = ashift;
979
980 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
981 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
982 vdev->v_psize = asize +
983 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
984 }
985
986 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
987 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
988 vdev->v_nparity = nparity;
989
990 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
991 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
992 char prefix[] = "/dev/dsk/";
993
994 len = strlen(prefix);
995 if (len < pathlen && memcmp(path, prefix, len) == 0) {
996 path += len;
997 pathlen -= len;
998 }
999 name = malloc(pathlen + 1);
1000 if (name != NULL) {
1001 bcopy(path, name, pathlen);
1002 name[pathlen] = '\0';
1003 }
1004 vdev->v_name = name;
1005 vdev->v_phys_path = NULL;
1006 vdev->v_devid = NULL;
1007 if (nvlist_find(nvlist, ZPOOL_CONFIG_PHYS_PATH,
1008 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1009 name = malloc(pathlen + 1);
1010 if (name != NULL) {
1011 bcopy(path, name, pathlen);
1012 name[pathlen] = '\0';
1013 vdev->v_phys_path = name;
1014 }
1015 }
1016 if (nvlist_find(nvlist, ZPOOL_CONFIG_DEVID,
1017 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1018 name = malloc(pathlen + 1);
1019 if (name != NULL) {
1020 bcopy(path, name, pathlen);
1021 name[pathlen] = '\0';
1022 vdev->v_devid = name;
1023 }
1024 }
1025 } else {
1026 name = NULL;
1027 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1028 if (vdev->v_nparity < 1 ||
1029 vdev->v_nparity > 3) {
1030 printf("ZFS: invalid raidz parity: %d\n",
1031 vdev->v_nparity);
1032 return (EIO);
1033 }
1034 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1035 vdev->v_nparity, id);
1036 } else {
1037 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1038 }
1039 vdev->v_name = name;
1040 }
1041 *vdevp = vdev;
1042 return (0);
1043 }
1044
1045 /*
1046 * Find slot for vdev. We return either NULL to signal to use
1047 * STAILQ_INSERT_HEAD, or we return link element to be used with
1048 * STAILQ_INSERT_AFTER.
1049 */
1050 static vdev_t *
vdev_find_previous(vdev_t * top_vdev,vdev_t * vdev)1051 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1052 {
1053 vdev_t *v, *previous;
1054
1055 if (STAILQ_EMPTY(&top_vdev->v_children))
1056 return (NULL);
1057
1058 previous = NULL;
1059 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1060 if (v->v_id > vdev->v_id)
1061 return (previous);
1062
1063 if (v->v_id == vdev->v_id)
1064 return (v);
1065
1066 if (v->v_id < vdev->v_id)
1067 previous = v;
1068 }
1069 return (previous);
1070 }
1071
1072 static size_t
vdev_child_count(vdev_t * vdev)1073 vdev_child_count(vdev_t *vdev)
1074 {
1075 vdev_t *v;
1076 size_t count;
1077
1078 count = 0;
1079 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1080 count++;
1081 }
1082 return (count);
1083 }
1084
1085 /*
1086 * Insert vdev into top_vdev children list. List is ordered by v_id.
1087 */
1088 static void
vdev_insert(vdev_t * top_vdev,vdev_t * vdev)1089 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1090 {
1091 vdev_t *previous;
1092 size_t count;
1093
1094 /*
1095 * The top level vdev can appear in random order, depending how
1096 * the firmware is presenting the disk devices.
1097 * However, we will insert vdev to create list ordered by v_id,
1098 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1099 * as STAILQ does not have insert before.
1100 */
1101 previous = vdev_find_previous(top_vdev, vdev);
1102
1103 if (previous == NULL) {
1104 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1105 } else if (previous->v_id == vdev->v_id) {
1106 /*
1107 * This vdev was configured from label config,
1108 * do not insert duplicate.
1109 */
1110 return;
1111 } else {
1112 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1113 v_childlink);
1114 }
1115
1116 count = vdev_child_count(top_vdev);
1117 if (top_vdev->v_nchildren < count)
1118 top_vdev->v_nchildren = count;
1119 }
1120
1121 static int
vdev_from_nvlist(spa_t * spa,uint64_t top_guid,const nvlist_t * nvlist)1122 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
1123 {
1124 vdev_t *top_vdev, *vdev;
1125 nvlist_t **kids = NULL;
1126 int rc, nkids;
1127
1128 /* Get top vdev. */
1129 top_vdev = vdev_find(top_guid);
1130 if (top_vdev == NULL) {
1131 rc = vdev_init(top_guid, nvlist, &top_vdev);
1132 if (rc != 0)
1133 return (rc);
1134 top_vdev->v_spa = spa;
1135 top_vdev->v_top = top_vdev;
1136 vdev_insert(spa->spa_root_vdev, top_vdev);
1137 }
1138
1139 /* Add children if there are any. */
1140 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1141 &nkids, &kids, NULL);
1142 if (rc == 0) {
1143 for (int i = 0; i < nkids; i++) {
1144 uint64_t guid;
1145
1146 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1147 DATA_TYPE_UINT64, NULL, &guid, NULL);
1148 if (rc != 0)
1149 goto done;
1150
1151 rc = vdev_init(guid, kids[i], &vdev);
1152 if (rc != 0)
1153 goto done;
1154
1155 vdev->v_spa = spa;
1156 vdev->v_top = top_vdev;
1157 vdev_insert(top_vdev, vdev);
1158 }
1159 } else {
1160 /*
1161 * When there are no children, nvlist_find() does return
1162 * error, reset it because leaf devices have no children.
1163 */
1164 rc = 0;
1165 }
1166 done:
1167 if (kids != NULL) {
1168 for (int i = 0; i < nkids; i++)
1169 nvlist_destroy(kids[i]);
1170 free(kids);
1171 }
1172
1173 return (rc);
1174 }
1175
1176 static int
vdev_init_from_label(spa_t * spa,const nvlist_t * nvlist)1177 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1178 {
1179 uint64_t pool_guid, top_guid;
1180 nvlist_t *vdevs;
1181 int rc;
1182
1183 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1184 NULL, &pool_guid, NULL) ||
1185 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1186 NULL, &top_guid, NULL) ||
1187 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1188 NULL, &vdevs, NULL)) {
1189 printf("ZFS: can't find vdev details\n");
1190 return (ENOENT);
1191 }
1192
1193 rc = vdev_from_nvlist(spa, top_guid, vdevs);
1194 nvlist_destroy(vdevs);
1195 return (rc);
1196 }
1197
1198 static void
vdev_set_state(vdev_t * vdev)1199 vdev_set_state(vdev_t *vdev)
1200 {
1201 vdev_t *kid;
1202 int good_kids;
1203 int bad_kids;
1204
1205 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1206 vdev_set_state(kid);
1207 }
1208
1209 /*
1210 * A mirror or raidz is healthy if all its kids are healthy. A
1211 * mirror is degraded if any of its kids is healthy; a raidz
1212 * is degraded if at most nparity kids are offline.
1213 */
1214 if (STAILQ_FIRST(&vdev->v_children)) {
1215 good_kids = 0;
1216 bad_kids = 0;
1217 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1218 if (kid->v_state == VDEV_STATE_HEALTHY)
1219 good_kids++;
1220 else
1221 bad_kids++;
1222 }
1223 if (bad_kids == 0) {
1224 vdev->v_state = VDEV_STATE_HEALTHY;
1225 } else {
1226 if (vdev->v_read == vdev_mirror_read) {
1227 if (good_kids) {
1228 vdev->v_state = VDEV_STATE_DEGRADED;
1229 } else {
1230 vdev->v_state = VDEV_STATE_OFFLINE;
1231 }
1232 } else if (vdev->v_read == vdev_raidz_read) {
1233 if (bad_kids > vdev->v_nparity) {
1234 vdev->v_state = VDEV_STATE_OFFLINE;
1235 } else {
1236 vdev->v_state = VDEV_STATE_DEGRADED;
1237 }
1238 }
1239 }
1240 }
1241 }
1242
1243 static int
vdev_update_from_nvlist(uint64_t top_guid,const nvlist_t * nvlist)1244 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1245 {
1246 vdev_t *vdev;
1247 nvlist_t **kids = NULL;
1248 int rc, nkids;
1249
1250 /* Update top vdev. */
1251 vdev = vdev_find(top_guid);
1252 if (vdev != NULL)
1253 vdev_set_initial_state(vdev, nvlist);
1254
1255 /* Update children if there are any. */
1256 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1257 &nkids, &kids, NULL);
1258 if (rc == 0) {
1259 for (int i = 0; i < nkids; i++) {
1260 uint64_t guid;
1261
1262 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1263 DATA_TYPE_UINT64, NULL, &guid, NULL);
1264 if (rc != 0)
1265 break;
1266
1267 vdev = vdev_find(guid);
1268 if (vdev != NULL)
1269 vdev_set_initial_state(vdev, kids[i]);
1270 }
1271 } else {
1272 rc = 0;
1273 }
1274 if (kids != NULL) {
1275 for (int i = 0; i < nkids; i++)
1276 nvlist_destroy(kids[i]);
1277 free(kids);
1278 }
1279
1280 return (rc);
1281 }
1282
1283 static int
vdev_init_from_nvlist(spa_t * spa,const nvlist_t * nvlist)1284 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1285 {
1286 uint64_t pool_guid, vdev_children;
1287 nvlist_t *vdevs = NULL, **kids = NULL;
1288 int rc, nkids;
1289
1290 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1291 NULL, &pool_guid, NULL) ||
1292 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1293 NULL, &vdev_children, NULL) ||
1294 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1295 NULL, &vdevs, NULL)) {
1296 printf("ZFS: can't find vdev details\n");
1297 return (ENOENT);
1298 }
1299
1300 /* Wrong guid?! */
1301 if (spa->spa_guid != pool_guid) {
1302 nvlist_destroy(vdevs);
1303 return (EINVAL);
1304 }
1305
1306 spa->spa_root_vdev->v_nchildren = vdev_children;
1307
1308 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1309 &nkids, &kids, NULL);
1310 nvlist_destroy(vdevs);
1311
1312 /*
1313 * MOS config has at least one child for root vdev.
1314 */
1315 if (rc != 0)
1316 return (rc);
1317
1318 for (int i = 0; i < nkids; i++) {
1319 uint64_t guid;
1320 vdev_t *vdev;
1321
1322 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1323 NULL, &guid, NULL);
1324 if (rc != 0)
1325 break;
1326 vdev = vdev_find(guid);
1327 /*
1328 * Top level vdev is missing, create it.
1329 */
1330 if (vdev == NULL)
1331 rc = vdev_from_nvlist(spa, guid, kids[i]);
1332 else
1333 rc = vdev_update_from_nvlist(guid, kids[i]);
1334 if (rc != 0)
1335 break;
1336 }
1337 if (kids != NULL) {
1338 for (int i = 0; i < nkids; i++)
1339 nvlist_destroy(kids[i]);
1340 free(kids);
1341 }
1342
1343 /*
1344 * Re-evaluate top-level vdev state.
1345 */
1346 vdev_set_state(spa->spa_root_vdev);
1347
1348 return (rc);
1349 }
1350
1351 static spa_t *
spa_find_by_guid(uint64_t guid)1352 spa_find_by_guid(uint64_t guid)
1353 {
1354 spa_t *spa;
1355
1356 STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1357 if (spa->spa_guid == guid)
1358 return (spa);
1359
1360 return (NULL);
1361 }
1362
1363 static spa_t *
spa_find_by_name(const char * name)1364 spa_find_by_name(const char *name)
1365 {
1366 spa_t *spa;
1367
1368 STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1369 if (strcmp(spa->spa_name, name) == 0)
1370 return (spa);
1371
1372 return (NULL);
1373 }
1374
1375 static spa_t *
spa_find_by_dev(struct zfs_devdesc * dev)1376 spa_find_by_dev(struct zfs_devdesc *dev)
1377 {
1378
1379 if (dev->dd.d_dev->dv_type != DEVT_ZFS)
1380 return (NULL);
1381
1382 if (dev->pool_guid == 0)
1383 return (STAILQ_FIRST(&zfs_pools));
1384
1385 return (spa_find_by_guid(dev->pool_guid));
1386 }
1387
1388 static spa_t *
spa_create(uint64_t guid,const char * name)1389 spa_create(uint64_t guid, const char *name)
1390 {
1391 spa_t *spa;
1392
1393 if ((spa = calloc(1, sizeof (spa_t))) == NULL)
1394 return (NULL);
1395 if ((spa->spa_name = strdup(name)) == NULL) {
1396 free(spa);
1397 return (NULL);
1398 }
1399 spa->spa_guid = guid;
1400 spa->spa_root_vdev = vdev_create(guid, NULL);
1401 if (spa->spa_root_vdev == NULL) {
1402 free(spa->spa_name);
1403 free(spa);
1404 return (NULL);
1405 }
1406 spa->spa_root_vdev->v_name = strdup("root");
1407 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1408
1409 return (spa);
1410 }
1411
1412 static const char *
state_name(vdev_state_t state)1413 state_name(vdev_state_t state)
1414 {
1415 static const char *names[] = {
1416 "UNKNOWN",
1417 "CLOSED",
1418 "OFFLINE",
1419 "REMOVED",
1420 "CANT_OPEN",
1421 "FAULTED",
1422 "DEGRADED",
1423 "ONLINE"
1424 };
1425 return (names[state]);
1426 }
1427
1428 static int
pager_printf(const char * fmt,...)1429 pager_printf(const char *fmt, ...)
1430 {
1431 char line[80];
1432 va_list args;
1433
1434 va_start(args, fmt);
1435 vsnprintf(line, sizeof (line), fmt, args);
1436 va_end(args);
1437 return (pager_output(line));
1438 }
1439
1440 #define STATUS_FORMAT " %s %s\n"
1441
1442 static int
print_state(int indent,const char * name,vdev_state_t state)1443 print_state(int indent, const char *name, vdev_state_t state)
1444 {
1445 int i;
1446 char buf[512];
1447
1448 buf[0] = 0;
1449 for (i = 0; i < indent; i++)
1450 strcat(buf, " ");
1451 strcat(buf, name);
1452 return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1453 }
1454
1455 static int
vdev_status(vdev_t * vdev,int indent)1456 vdev_status(vdev_t *vdev, int indent)
1457 {
1458 vdev_t *kid;
1459 int ret;
1460
1461 if (vdev->v_islog) {
1462 (void) pager_output(" logs\n");
1463 indent++;
1464 }
1465
1466 ret = print_state(indent, vdev->v_name, vdev->v_state);
1467 if (ret != 0)
1468 return (ret);
1469
1470 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1471 ret = vdev_status(kid, indent + 1);
1472 if (ret != 0)
1473 return (ret);
1474 }
1475 return (ret);
1476 }
1477
1478 static int
spa_status(spa_t * spa)1479 spa_status(spa_t *spa)
1480 {
1481 static char bootfs[ZFS_MAXNAMELEN];
1482 uint64_t rootid;
1483 vdev_list_t *vlist;
1484 vdev_t *vdev;
1485 int good_kids, bad_kids, degraded_kids, ret;
1486 vdev_state_t state;
1487
1488 ret = pager_printf(" pool: %s\n", spa->spa_name);
1489 if (ret != 0)
1490 return (ret);
1491
1492 if (zfs_get_root(spa, &rootid) == 0 &&
1493 zfs_rlookup(spa, rootid, bootfs) == 0) {
1494 if (bootfs[0] == '\0')
1495 ret = pager_printf("bootfs: %s\n", spa->spa_name);
1496 else
1497 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1498 bootfs);
1499 if (ret != 0)
1500 return (ret);
1501 }
1502 ret = pager_printf("config:\n\n");
1503 if (ret != 0)
1504 return (ret);
1505 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1506 if (ret != 0)
1507 return (ret);
1508
1509 good_kids = 0;
1510 degraded_kids = 0;
1511 bad_kids = 0;
1512 vlist = &spa->spa_root_vdev->v_children;
1513 STAILQ_FOREACH(vdev, vlist, v_childlink) {
1514 if (vdev->v_state == VDEV_STATE_HEALTHY)
1515 good_kids++;
1516 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1517 degraded_kids++;
1518 else
1519 bad_kids++;
1520 }
1521
1522 state = VDEV_STATE_CLOSED;
1523 if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1524 state = VDEV_STATE_HEALTHY;
1525 else if ((good_kids + degraded_kids) > 0)
1526 state = VDEV_STATE_DEGRADED;
1527
1528 ret = print_state(0, spa->spa_name, state);
1529 if (ret != 0)
1530 return (ret);
1531
1532 STAILQ_FOREACH(vdev, vlist, v_childlink) {
1533 ret = vdev_status(vdev, 1);
1534 if (ret != 0)
1535 return (ret);
1536 }
1537 return (ret);
1538 }
1539
1540 int
spa_all_status(void)1541 spa_all_status(void)
1542 {
1543 spa_t *spa;
1544 int first = 1, ret = 0;
1545
1546 STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1547 if (!first) {
1548 ret = pager_printf("\n");
1549 if (ret != 0)
1550 return (ret);
1551 }
1552 first = 0;
1553 ret = spa_status(spa);
1554 if (ret != 0)
1555 return (ret);
1556 }
1557 return (ret);
1558 }
1559
1560 uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)1561 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1562 {
1563 uint64_t label_offset;
1564
1565 if (l < VDEV_LABELS / 2)
1566 label_offset = 0;
1567 else
1568 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1569
1570 return (offset + l * sizeof (vdev_label_t) + label_offset);
1571 }
1572
1573 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1574 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1575 {
1576 unsigned int seq1 = 0;
1577 unsigned int seq2 = 0;
1578 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1579
1580 if (cmp != 0)
1581 return (cmp);
1582
1583 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1584 if (cmp != 0)
1585 return (cmp);
1586
1587 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1588 seq1 = MMP_SEQ(ub1);
1589
1590 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1591 seq2 = MMP_SEQ(ub2);
1592
1593 return (AVL_CMP(seq1, seq2));
1594 }
1595
1596 static int
uberblock_verify(uberblock_t * ub)1597 uberblock_verify(uberblock_t *ub)
1598 {
1599 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1600 byteswap_uint64_array(ub, sizeof (uberblock_t));
1601 }
1602
1603 if (ub->ub_magic != UBERBLOCK_MAGIC ||
1604 !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1605 return (EINVAL);
1606
1607 return (0);
1608 }
1609
1610 static int
vdev_label_read(vdev_t * vd,int l,void * buf,uint64_t offset,size_t size)1611 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1612 size_t size)
1613 {
1614 blkptr_t bp;
1615 off_t off;
1616
1617 off = vdev_label_offset(vd->v_psize, l, offset);
1618
1619 BP_ZERO(&bp);
1620 BP_SET_LSIZE(&bp, size);
1621 BP_SET_PSIZE(&bp, size);
1622 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1623 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1624 DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1625 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1626
1627 return (vdev_read_phys(vd, &bp, buf, off, size));
1628 }
1629
1630 /*
1631 * We do need to be sure we write to correct location.
1632 * Our vdev label does consist of 4 fields:
1633 * pad1 (8k), reserved.
1634 * bootenv (8k), checksummed, previously reserved, may contain garbage.
1635 * vdev_phys (112k), checksummed
1636 * uberblock ring (128k), checksummed.
1637 *
1638 * Since bootenv area may contain garbage, we can not reliably read it, as
1639 * we can get checksum errors.
1640 * Next best thing is vdev_phys - it is just after bootenv. It still may
1641 * be corrupted, but in such case we will miss this one write.
1642 */
1643 static int
vdev_label_write_validate(vdev_t * vd,int l,uint64_t offset)1644 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1645 {
1646 uint64_t off, o_phys;
1647 void *buf;
1648 size_t size = VDEV_PHYS_SIZE;
1649 int rc;
1650
1651 o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1652 off = vdev_label_offset(vd->v_psize, l, o_phys);
1653
1654 /* off should be 8K from bootenv */
1655 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1656 return (EINVAL);
1657
1658 buf = malloc(size);
1659 if (buf == NULL)
1660 return (ENOMEM);
1661
1662 /* Read vdev_phys */
1663 rc = vdev_label_read(vd, l, buf, o_phys, size);
1664 free(buf);
1665 return (rc);
1666 }
1667
1668 static int
vdev_label_write(vdev_t * vd,int l,vdev_boot_envblock_t * be,uint64_t offset)1669 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1670 {
1671 zio_checksum_info_t *ci;
1672 zio_cksum_t cksum;
1673 off_t off;
1674 size_t size = VDEV_PAD_SIZE;
1675 int rc;
1676
1677 if (vd->v_phys_write == NULL)
1678 return (ENOTSUP);
1679
1680 off = vdev_label_offset(vd->v_psize, l, offset);
1681
1682 rc = vdev_label_write_validate(vd, l, offset);
1683 if (rc != 0) {
1684 return (rc);
1685 }
1686
1687 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1688 be->vbe_zbt.zec_magic = ZEC_MAGIC;
1689 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1690 ci->ci_func[0](be, size, NULL, &cksum);
1691 be->vbe_zbt.zec_cksum = cksum;
1692
1693 return (vdev_write_phys(vd, be, off, size));
1694 }
1695
1696 static int
vdev_write_bootenv_impl(vdev_t * vdev,vdev_boot_envblock_t * be)1697 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1698 {
1699 vdev_t *kid;
1700 int rv = 0, err;
1701
1702 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1703 if (kid->v_state != VDEV_STATE_HEALTHY)
1704 continue;
1705 err = vdev_write_bootenv_impl(kid, be);
1706 if (err != 0)
1707 rv = err;
1708 }
1709
1710 /*
1711 * Non-leaf vdevs do not have v_phys_write.
1712 */
1713 if (vdev->v_phys_write == NULL)
1714 return (rv);
1715
1716 for (int l = 0; l < VDEV_LABELS; l++) {
1717 err = vdev_label_write(vdev, l, be,
1718 offsetof(vdev_label_t, vl_be));
1719 if (err != 0) {
1720 printf("failed to write bootenv to %s label %d: %d\n",
1721 vdev->v_name ? vdev->v_name : "unknown", l, err);
1722 rv = err;
1723 }
1724 }
1725 return (rv);
1726 }
1727
1728 int
vdev_write_bootenv(vdev_t * vdev,nvlist_t * nvl)1729 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1730 {
1731 vdev_boot_envblock_t *be;
1732 nvlist_t nv, *nvp;
1733 uint64_t version;
1734 int rv;
1735
1736 if (nvl->nv_size > sizeof (be->vbe_bootenv))
1737 return (E2BIG);
1738
1739 version = VB_RAW;
1740 nvp = vdev_read_bootenv(vdev);
1741 if (nvp != NULL) {
1742 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1743 &version, NULL);
1744 nvlist_destroy(nvp);
1745 }
1746
1747 be = calloc(1, sizeof (*be));
1748 if (be == NULL)
1749 return (ENOMEM);
1750
1751 be->vbe_version = version;
1752 switch (version) {
1753 case VB_RAW:
1754 /*
1755 * If there is no envmap, we will just wipe bootenv.
1756 */
1757 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1758 be->vbe_bootenv, NULL);
1759 rv = 0;
1760 break;
1761
1762 case VB_NVLIST:
1763 nv.nv_header = nvl->nv_header;
1764 nv.nv_asize = nvl->nv_asize;
1765 nv.nv_size = nvl->nv_size;
1766
1767 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof (nv.nv_header));
1768 nv.nv_data = (uint8_t *)be->vbe_bootenv + sizeof (nvs_header_t);
1769 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1770 rv = nvlist_export(&nv);
1771 break;
1772
1773 default:
1774 rv = EINVAL;
1775 break;
1776 }
1777
1778 if (rv == 0) {
1779 be->vbe_version = htobe64(be->vbe_version);
1780 rv = vdev_write_bootenv_impl(vdev, be);
1781 }
1782 free(be);
1783 return (rv);
1784 }
1785
1786 /*
1787 * Read the bootenv area from pool label, return the nvlist from it.
1788 * We return from first successful read.
1789 */
1790 nvlist_t *
vdev_read_bootenv(vdev_t * vdev)1791 vdev_read_bootenv(vdev_t *vdev)
1792 {
1793 vdev_t *kid;
1794 nvlist_t *benv;
1795 vdev_boot_envblock_t *be;
1796 char *command;
1797 bool ok;
1798 int rv;
1799
1800 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1801 if (kid->v_state != VDEV_STATE_HEALTHY)
1802 continue;
1803
1804 benv = vdev_read_bootenv(kid);
1805 if (benv != NULL)
1806 return (benv);
1807 }
1808
1809 be = malloc(sizeof (*be));
1810 if (be == NULL)
1811 return (NULL);
1812
1813 rv = 0;
1814 for (int l = 0; l < VDEV_LABELS; l++) {
1815 rv = vdev_label_read(vdev, l, be,
1816 offsetof(vdev_label_t, vl_be),
1817 sizeof (*be));
1818 if (rv == 0)
1819 break;
1820 }
1821 if (rv != 0) {
1822 free(be);
1823 return (NULL);
1824 }
1825
1826 be->vbe_version = be64toh(be->vbe_version);
1827 switch (be->vbe_version) {
1828 case VB_RAW:
1829 /*
1830 * if we have textual data in vbe_bootenv, create nvlist
1831 * with key "envmap".
1832 */
1833 benv = nvlist_create(NV_UNIQUE_NAME);
1834 if (benv != NULL) {
1835 if (*be->vbe_bootenv == '\0') {
1836 nvlist_add_uint64(benv, BOOTENV_VERSION,
1837 VB_NVLIST);
1838 break;
1839 }
1840 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1841 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1842 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1843 }
1844 break;
1845
1846 case VB_NVLIST:
1847 benv = nvlist_import(be->vbe_bootenv, sizeof (be->vbe_bootenv));
1848 break;
1849
1850 default:
1851 command = (char *)be;
1852 ok = false;
1853
1854 /* Check for legacy zfsbootcfg command string */
1855 for (int i = 0; command[i] != '\0'; i++) {
1856 if (iscntrl(command[i])) {
1857 ok = false;
1858 break;
1859 } else {
1860 ok = true;
1861 }
1862 }
1863 benv = nvlist_create(NV_UNIQUE_NAME);
1864 if (benv != NULL) {
1865 if (ok)
1866 nvlist_add_string(benv, FREEBSD_BOOTONCE,
1867 command);
1868 else
1869 nvlist_add_uint64(benv, BOOTENV_VERSION,
1870 VB_NVLIST);
1871 }
1872 break;
1873 }
1874 free(be);
1875 return (benv);
1876 }
1877
1878 static uint64_t
vdev_get_label_asize(nvlist_t * nvl)1879 vdev_get_label_asize(nvlist_t *nvl)
1880 {
1881 nvlist_t *vdevs;
1882 uint64_t asize;
1883 const char *type;
1884 int len;
1885
1886 asize = 0;
1887 /* Get vdev tree */
1888 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1889 NULL, &vdevs, NULL) != 0)
1890 return (asize);
1891
1892 /*
1893 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1894 * For raidz, the asize is raw size of all children.
1895 */
1896 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1897 NULL, &type, &len) != 0)
1898 goto done;
1899
1900 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1901 memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1902 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1903 goto done;
1904
1905 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1906 NULL, &asize, NULL) != 0)
1907 goto done;
1908
1909 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1910 nvlist_t **kids;
1911 int nkids;
1912
1913 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1914 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1915 asize = 0;
1916 goto done;
1917 }
1918
1919 asize /= nkids;
1920 for (int i = 0; i < nkids; i++)
1921 nvlist_destroy(kids[i]);
1922 free(kids);
1923 }
1924
1925 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1926 done:
1927 nvlist_destroy(vdevs);
1928 return (asize);
1929 }
1930
1931 static nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)1932 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1933 {
1934 vdev_phys_t *label;
1935 uint64_t best_txg = 0;
1936 uint64_t label_txg = 0;
1937 uint64_t asize;
1938 nvlist_t *nvl = NULL, *tmp;
1939 int error;
1940
1941 label = malloc(sizeof (vdev_phys_t));
1942 if (label == NULL)
1943 return (NULL);
1944
1945 for (int l = 0; l < VDEV_LABELS; l++) {
1946 if (vdev_label_read(vd, l, label,
1947 offsetof(vdev_label_t, vl_vdev_phys),
1948 sizeof (vdev_phys_t)))
1949 continue;
1950
1951 tmp = nvlist_import(label->vp_nvlist,
1952 sizeof (label->vp_nvlist));
1953 if (tmp == NULL)
1954 continue;
1955
1956 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1957 DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1958 if (error != 0 || label_txg == 0) {
1959 nvlist_destroy(nvl);
1960 nvl = tmp;
1961 goto done;
1962 }
1963
1964 if (label_txg <= txg && label_txg > best_txg) {
1965 best_txg = label_txg;
1966 nvlist_destroy(nvl);
1967 nvl = tmp;
1968 tmp = NULL;
1969
1970 /*
1971 * Use asize from pool config. We need this
1972 * because we can get bad value from BIOS.
1973 */
1974 asize = vdev_get_label_asize(nvl);
1975 if (asize != 0) {
1976 vd->v_psize = asize;
1977 }
1978 }
1979 nvlist_destroy(tmp);
1980 }
1981
1982 if (best_txg == 0) {
1983 nvlist_destroy(nvl);
1984 nvl = NULL;
1985 }
1986 done:
1987 free(label);
1988 return (nvl);
1989 }
1990
1991 static void
vdev_uberblock_load(vdev_t * vd,uberblock_t * ub)1992 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1993 {
1994 uberblock_t *buf;
1995
1996 buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1997 if (buf == NULL)
1998 return;
1999
2000 for (int l = 0; l < VDEV_LABELS; l++) {
2001 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
2002 if (vdev_label_read(vd, l, buf,
2003 VDEV_UBERBLOCK_OFFSET(vd, n),
2004 VDEV_UBERBLOCK_SIZE(vd)))
2005 continue;
2006 if (uberblock_verify(buf) != 0)
2007 continue;
2008
2009 if (vdev_uberblock_compare(buf, ub) > 0)
2010 *ub = *buf;
2011 }
2012 }
2013 free(buf);
2014 }
2015
2016 static int
vdev_probe(vdev_phys_read_t * _read,vdev_phys_write_t * _write,void * priv,spa_t ** spap)2017 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2018 spa_t **spap)
2019 {
2020 vdev_t vtmp;
2021 spa_t *spa;
2022 vdev_t *vdev;
2023 nvlist_t *nvl;
2024 uint64_t val;
2025 uint64_t guid, vdev_children;
2026 uint64_t pool_txg, pool_guid;
2027 const char *pool_name;
2028 int rc, namelen;
2029
2030 /*
2031 * Load the vdev label and figure out which
2032 * uberblock is most current.
2033 */
2034 memset(&vtmp, 0, sizeof (vtmp));
2035 vtmp.v_phys_read = _read;
2036 vtmp.v_phys_write = _write;
2037 vtmp.v_priv = priv;
2038 vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2039 (uint64_t)sizeof (vdev_label_t));
2040
2041 /* Test for minimum device size. */
2042 if (vtmp.v_psize < SPA_MINDEVSIZE)
2043 return (EIO);
2044
2045 nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2046 if (nvl == NULL)
2047 return (EIO);
2048
2049 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2050 NULL, &val, NULL) != 0) {
2051 nvlist_destroy(nvl);
2052 return (EIO);
2053 }
2054
2055 if (!SPA_VERSION_IS_SUPPORTED(val)) {
2056 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2057 (unsigned)val, (unsigned)SPA_VERSION);
2058 nvlist_destroy(nvl);
2059 return (EIO);
2060 }
2061
2062 /* Check ZFS features for read */
2063 rc = nvlist_check_features_for_read(nvl);
2064 if (rc != 0) {
2065 nvlist_destroy(nvl);
2066 return (EIO);
2067 }
2068
2069 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2070 NULL, &val, NULL) != 0) {
2071 nvlist_destroy(nvl);
2072 return (EIO);
2073 }
2074
2075 if (val == POOL_STATE_DESTROYED) {
2076 /* We don't boot only from destroyed pools. */
2077 nvlist_destroy(nvl);
2078 return (EIO);
2079 }
2080
2081 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2082 NULL, &pool_txg, NULL) != 0 ||
2083 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2084 NULL, &pool_guid, NULL) != 0 ||
2085 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2086 NULL, &pool_name, &namelen) != 0) {
2087 /*
2088 * Cache and spare devices end up here - just ignore
2089 * them.
2090 */
2091 nvlist_destroy(nvl);
2092 return (EIO);
2093 }
2094
2095 /*
2096 * Create the pool if this is the first time we've seen it.
2097 */
2098 spa = spa_find_by_guid(pool_guid);
2099 if (spa == NULL) {
2100 char *name;
2101
2102 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN,
2103 DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
2104 name = malloc(namelen + 1);
2105 if (name == NULL) {
2106 nvlist_destroy(nvl);
2107 return (ENOMEM);
2108 }
2109 bcopy(pool_name, name, namelen);
2110 name[namelen] = '\0';
2111 spa = spa_create(pool_guid, name);
2112 free(name);
2113 if (spa == NULL) {
2114 nvlist_destroy(nvl);
2115 return (ENOMEM);
2116 }
2117 spa->spa_root_vdev->v_nchildren = vdev_children;
2118 }
2119 if (pool_txg > spa->spa_txg)
2120 spa->spa_txg = pool_txg;
2121
2122 /*
2123 * Get the vdev tree and create our in-core copy of it.
2124 * If we already have a vdev with this guid, this must
2125 * be some kind of alias (overlapping slices, dangerously dedicated
2126 * disks etc).
2127 */
2128 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2129 NULL, &guid, NULL) != 0) {
2130 nvlist_destroy(nvl);
2131 return (EIO);
2132 }
2133 vdev = vdev_find(guid);
2134 /* Has this vdev already been inited? */
2135 if (vdev && vdev->v_phys_read) {
2136 nvlist_destroy(nvl);
2137 return (EIO);
2138 }
2139
2140 rc = vdev_init_from_label(spa, nvl);
2141 nvlist_destroy(nvl);
2142 if (rc != 0)
2143 return (rc);
2144
2145 /*
2146 * We should already have created an incomplete vdev for this
2147 * vdev. Find it and initialise it with our read proc.
2148 */
2149 vdev = vdev_find(guid);
2150 if (vdev != NULL) {
2151 vdev->v_phys_read = _read;
2152 vdev->v_phys_write = _write;
2153 vdev->v_priv = priv;
2154 vdev->v_psize = vtmp.v_psize;
2155 /*
2156 * If no other state is set, mark vdev healthy.
2157 */
2158 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2159 vdev->v_state = VDEV_STATE_HEALTHY;
2160 } else {
2161 printf("ZFS: inconsistent nvlist contents\n");
2162 return (EIO);
2163 }
2164
2165 if (vdev->v_islog)
2166 spa->spa_with_log = vdev->v_islog;
2167
2168 /* Record boot vdev for spa. */
2169 if (spa->spa_boot_vdev == NULL)
2170 spa->spa_boot_vdev = vdev;
2171
2172 /*
2173 * Re-evaluate top-level vdev state.
2174 */
2175 vdev_set_state(vdev->v_top);
2176
2177 /*
2178 * Ok, we are happy with the pool so far. Lets find
2179 * the best uberblock and then we can actually access
2180 * the contents of the pool.
2181 */
2182 vdev_uberblock_load(vdev, &spa->spa_uberblock);
2183
2184 if (spap != NULL)
2185 *spap = spa;
2186 return (0);
2187 }
2188
2189 static int
ilog2(int n)2190 ilog2(int n)
2191 {
2192 int v;
2193
2194 for (v = 0; v < 32; v++)
2195 if (n == (1 << v))
2196 return (v);
2197 return (-1);
2198 }
2199
2200 static int
zio_read_gang(const spa_t * spa,const blkptr_t * bp,void * buf)2201 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2202 {
2203 blkptr_t gbh_bp;
2204 zio_gbh_phys_t zio_gb;
2205 char *pbuf;
2206 int i;
2207
2208 /* Artificial BP for gang block header. */
2209 gbh_bp = *bp;
2210 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2211 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2212 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2213 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2214 for (i = 0; i < SPA_DVAS_PER_BP; i++)
2215 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2216
2217 /* Read gang header block using the artificial BP. */
2218 if (zio_read(spa, &gbh_bp, &zio_gb))
2219 return (EIO);
2220
2221 pbuf = buf;
2222 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2223 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2224
2225 if (BP_IS_HOLE(gbp))
2226 continue;
2227 if (zio_read(spa, gbp, pbuf))
2228 return (EIO);
2229 pbuf += BP_GET_PSIZE(gbp);
2230 }
2231
2232 if (zio_checksum_verify(spa, bp, buf))
2233 return (EIO);
2234 return (0);
2235 }
2236
2237 static int
zio_read(const spa_t * spa,const blkptr_t * bp,void * buf)2238 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2239 {
2240 int cpfunc = BP_GET_COMPRESS(bp);
2241 uint64_t align, size;
2242 void *pbuf;
2243 int i, error;
2244
2245 /*
2246 * Process data embedded in block pointer
2247 */
2248 if (BP_IS_EMBEDDED(bp)) {
2249 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2250
2251 size = BPE_GET_PSIZE(bp);
2252 ASSERT(size <= BPE_PAYLOAD_SIZE);
2253
2254 if (cpfunc != ZIO_COMPRESS_OFF)
2255 pbuf = malloc(size);
2256 else
2257 pbuf = buf;
2258
2259 if (pbuf == NULL)
2260 return (ENOMEM);
2261
2262 decode_embedded_bp_compressed(bp, pbuf);
2263 error = 0;
2264
2265 if (cpfunc != ZIO_COMPRESS_OFF) {
2266 error = zio_decompress_data(cpfunc, pbuf,
2267 size, buf, BP_GET_LSIZE(bp));
2268 free(pbuf);
2269 }
2270 if (error != 0)
2271 printf("ZFS: i/o error - unable to decompress "
2272 "block pointer data, error %d\n", error);
2273 return (error);
2274 }
2275
2276 error = EIO;
2277
2278 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2279 const dva_t *dva = &bp->blk_dva[i];
2280 vdev_t *vdev;
2281 vdev_list_t *vlist;
2282 uint64_t vdevid;
2283 off_t offset;
2284
2285 if (!dva->dva_word[0] && !dva->dva_word[1])
2286 continue;
2287
2288 vdevid = DVA_GET_VDEV(dva);
2289 offset = DVA_GET_OFFSET(dva);
2290 vlist = &spa->spa_root_vdev->v_children;
2291 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2292 if (vdev->v_id == vdevid)
2293 break;
2294 }
2295 if (!vdev || !vdev->v_read)
2296 continue;
2297
2298 size = BP_GET_PSIZE(bp);
2299 if (vdev->v_read == vdev_raidz_read) {
2300 align = 1ULL << vdev->v_ashift;
2301 if (P2PHASE(size, align) != 0)
2302 size = P2ROUNDUP(size, align);
2303 }
2304 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2305 pbuf = malloc(size);
2306 else
2307 pbuf = buf;
2308
2309 if (pbuf == NULL) {
2310 error = ENOMEM;
2311 break;
2312 }
2313
2314 if (DVA_GET_GANG(dva))
2315 error = zio_read_gang(spa, bp, pbuf);
2316 else
2317 error = vdev->v_read(vdev, bp, pbuf, offset, size);
2318 if (error == 0) {
2319 if (cpfunc != ZIO_COMPRESS_OFF)
2320 error = zio_decompress_data(cpfunc, pbuf,
2321 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2322 else if (size != BP_GET_PSIZE(bp))
2323 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2324 }
2325 if (buf != pbuf)
2326 free(pbuf);
2327 if (error == 0)
2328 break;
2329 }
2330 if (error != 0)
2331 printf("ZFS: i/o error - all block copies unavailable\n");
2332
2333 return (error);
2334 }
2335
2336 static int
dnode_read(const spa_t * spa,const dnode_phys_t * dnode,off_t offset,void * buf,size_t buflen)2337 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2338 void *buf, size_t buflen)
2339 {
2340 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2341 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2342 int nlevels = dnode->dn_nlevels;
2343 int i, rc;
2344
2345 if (bsize > SPA_MAXBLOCKSIZE) {
2346 printf("ZFS: I/O error - blocks larger than %llu are not "
2347 "supported\n", SPA_MAXBLOCKSIZE);
2348 return (EIO);
2349 }
2350
2351 /*
2352 * Handle odd block sizes, mirrors dmu_read_impl(). Data can't exist
2353 * past the first block, so we'll clip the read to the portion of the
2354 * buffer within bsize and zero out the remainder.
2355 */
2356 if (dnode->dn_maxblkid == 0) {
2357 size_t newbuflen;
2358
2359 newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2360 bzero((char *)buf + newbuflen, buflen - newbuflen);
2361 buflen = newbuflen;
2362 }
2363
2364 /*
2365 * Note: bsize may not be a power of two here so we need to do an
2366 * actual divide rather than a bitshift.
2367 */
2368 while (buflen > 0) {
2369 uint64_t bn = offset / bsize;
2370 int boff = offset % bsize;
2371 int ibn;
2372 const blkptr_t *indbp;
2373 blkptr_t bp;
2374
2375 if (bn > dnode->dn_maxblkid) {
2376 printf("warning: zfs bug: bn %llx > dn_maxblkid %llx\n",
2377 (unsigned long long)bn,
2378 (unsigned long long)dnode->dn_maxblkid);
2379 /*
2380 * zfs bug, will not return error
2381 * return (EIO);
2382 */
2383 }
2384
2385 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2386 goto cached;
2387
2388 indbp = dnode->dn_blkptr;
2389 for (i = 0; i < nlevels; i++) {
2390 /*
2391 * Copy the bp from the indirect array so that
2392 * we can re-use the scratch buffer for multi-level
2393 * objects.
2394 */
2395 ibn = bn >> ((nlevels - i - 1) * ibshift);
2396 ibn &= ((1 << ibshift) - 1);
2397 bp = indbp[ibn];
2398 if (BP_IS_HOLE(&bp)) {
2399 memset(dnode_cache_buf, 0, bsize);
2400 break;
2401 }
2402 rc = zio_read(spa, &bp, dnode_cache_buf);
2403 if (rc)
2404 return (rc);
2405 indbp = (const blkptr_t *) dnode_cache_buf;
2406 }
2407 dnode_cache_obj = dnode;
2408 dnode_cache_bn = bn;
2409 cached:
2410
2411 /*
2412 * The buffer contains our data block. Copy what we
2413 * need from it and loop.
2414 */
2415 i = bsize - boff;
2416 if (i > buflen) i = buflen;
2417 memcpy(buf, &dnode_cache_buf[boff], i);
2418 buf = ((char *)buf) + i;
2419 offset += i;
2420 buflen -= i;
2421 }
2422
2423 return (0);
2424 }
2425
2426 /*
2427 * Lookup a value in a microzap directory.
2428 */
2429 static int
mzap_lookup(const mzap_phys_t * mz,size_t size,const char * name,uint64_t * value)2430 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2431 uint64_t *value)
2432 {
2433 const mzap_ent_phys_t *mze;
2434 int chunks, i;
2435
2436 /*
2437 * Microzap objects use exactly one block. Read the whole
2438 * thing.
2439 */
2440 chunks = size / MZAP_ENT_LEN - 1;
2441 for (i = 0; i < chunks; i++) {
2442 mze = &mz->mz_chunk[i];
2443 if (strcmp(mze->mze_name, name) == 0) {
2444 *value = mze->mze_value;
2445 return (0);
2446 }
2447 }
2448
2449 return (ENOENT);
2450 }
2451
2452 /*
2453 * Compare a name with a zap leaf entry. Return non-zero if the name
2454 * matches.
2455 */
2456 static int
fzap_name_equal(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,const char * name)2457 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2458 const char *name)
2459 {
2460 size_t namelen;
2461 const zap_leaf_chunk_t *nc;
2462 const char *p;
2463
2464 namelen = zc->l_entry.le_name_numints;
2465
2466 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2467 p = name;
2468 while (namelen > 0) {
2469 size_t len;
2470
2471 len = namelen;
2472 if (len > ZAP_LEAF_ARRAY_BYTES)
2473 len = ZAP_LEAF_ARRAY_BYTES;
2474 if (memcmp(p, nc->l_array.la_array, len))
2475 return (0);
2476 p += len;
2477 namelen -= len;
2478 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2479 }
2480
2481 return (1);
2482 }
2483
2484 /*
2485 * Extract a uint64_t value from a zap leaf entry.
2486 */
2487 static uint64_t
fzap_leaf_value(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc)2488 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2489 {
2490 const zap_leaf_chunk_t *vc;
2491 int i;
2492 uint64_t value;
2493 const uint8_t *p;
2494
2495 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2496 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2497 value = (value << 8) | p[i];
2498 }
2499
2500 return (value);
2501 }
2502
2503 static void
stv(int len,void * addr,uint64_t value)2504 stv(int len, void *addr, uint64_t value)
2505 {
2506 switch (len) {
2507 case 1:
2508 *(uint8_t *)addr = value;
2509 return;
2510 case 2:
2511 *(uint16_t *)addr = value;
2512 return;
2513 case 4:
2514 *(uint32_t *)addr = value;
2515 return;
2516 case 8:
2517 *(uint64_t *)addr = value;
2518 return;
2519 }
2520 }
2521
2522 /*
2523 * Extract a array from a zap leaf entry.
2524 */
2525 static void
fzap_leaf_array(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,uint64_t integer_size,uint64_t num_integers,void * buf)2526 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2527 uint64_t integer_size, uint64_t num_integers, void *buf)
2528 {
2529 uint64_t array_int_len = zc->l_entry.le_value_intlen;
2530 uint64_t value = 0;
2531 uint64_t *u64 = buf;
2532 char *p = buf;
2533 int len = MIN(zc->l_entry.le_value_numints, num_integers);
2534 int chunk = zc->l_entry.le_value_chunk;
2535 int byten = 0;
2536
2537 if (integer_size == 8 && len == 1) {
2538 *u64 = fzap_leaf_value(zl, zc);
2539 return;
2540 }
2541
2542 while (len > 0) {
2543 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2544 int i;
2545
2546 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2547 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2548 value = (value << 8) | la->la_array[i];
2549 byten++;
2550 if (byten == array_int_len) {
2551 stv(integer_size, p, value);
2552 byten = 0;
2553 len--;
2554 if (len == 0)
2555 return;
2556 p += integer_size;
2557 }
2558 }
2559 chunk = la->la_next;
2560 }
2561 }
2562
2563 static int
fzap_check_size(uint64_t integer_size,uint64_t num_integers)2564 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2565 {
2566
2567 switch (integer_size) {
2568 case 1:
2569 case 2:
2570 case 4:
2571 case 8:
2572 break;
2573 default:
2574 return (EINVAL);
2575 }
2576
2577 if (integer_size * num_integers > ZAP_MAXVALUELEN)
2578 return (E2BIG);
2579
2580 return (0);
2581 }
2582
2583 static void
zap_leaf_free(zap_leaf_t * leaf)2584 zap_leaf_free(zap_leaf_t *leaf)
2585 {
2586 free(leaf->l_phys);
2587 free(leaf);
2588 }
2589
2590 static int
zap_get_leaf_byblk(fat_zap_t * zap,uint64_t blk,zap_leaf_t ** lp)2591 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2592 {
2593 int bs = FZAP_BLOCK_SHIFT(zap);
2594 int err;
2595
2596 *lp = malloc(sizeof (**lp));
2597 if (*lp == NULL)
2598 return (ENOMEM);
2599
2600 (*lp)->l_bs = bs;
2601 (*lp)->l_phys = malloc(1 << bs);
2602
2603 if ((*lp)->l_phys == NULL) {
2604 free(*lp);
2605 return (ENOMEM);
2606 }
2607 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2608 1 << bs);
2609 if (err != 0) {
2610 zap_leaf_free(*lp);
2611 }
2612 return (err);
2613 }
2614
2615 static int
zap_table_load(fat_zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)2616 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2617 uint64_t *valp)
2618 {
2619 int bs = FZAP_BLOCK_SHIFT(zap);
2620 uint64_t blk = idx >> (bs - 3);
2621 uint64_t off = idx & ((1 << (bs - 3)) - 1);
2622 uint64_t *buf;
2623 int rc;
2624
2625 buf = malloc(1 << zap->zap_block_shift);
2626 if (buf == NULL)
2627 return (ENOMEM);
2628 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2629 buf, 1 << zap->zap_block_shift);
2630 if (rc == 0)
2631 *valp = buf[off];
2632 free(buf);
2633 return (rc);
2634 }
2635
2636 static int
zap_idx_to_blk(fat_zap_t * zap,uint64_t idx,uint64_t * valp)2637 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2638 {
2639 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2640 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2641 return (0);
2642 } else {
2643 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2644 idx, valp));
2645 }
2646 }
2647
2648 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2649 static int
zap_deref_leaf(fat_zap_t * zap,uint64_t h,zap_leaf_t ** lp)2650 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2651 {
2652 uint64_t idx, blk;
2653 int err;
2654
2655 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2656 err = zap_idx_to_blk(zap, idx, &blk);
2657 if (err != 0)
2658 return (err);
2659 return (zap_get_leaf_byblk(zap, blk, lp));
2660 }
2661
2662 #define CHAIN_END 0xffff /* end of the chunk chain */
2663 #define LEAF_HASH(l, h) \
2664 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2665 ((h) >> \
2666 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2667 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2668
2669 static int
zap_leaf_lookup(zap_leaf_t * zl,uint64_t hash,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2670 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2671 uint64_t integer_size, uint64_t num_integers, void *value)
2672 {
2673 int rc;
2674 uint16_t *chunkp;
2675 struct zap_leaf_entry *le;
2676
2677 /*
2678 * Make sure this chunk matches our hash.
2679 */
2680 if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2681 zl->l_phys->l_hdr.lh_prefix !=
2682 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2683 return (EIO);
2684
2685 rc = ENOENT;
2686 for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2687 *chunkp != CHAIN_END; chunkp = &le->le_next) {
2688 zap_leaf_chunk_t *zc;
2689 uint16_t chunk = *chunkp;
2690
2691 le = ZAP_LEAF_ENTRY(zl, chunk);
2692 if (le->le_hash != hash)
2693 continue;
2694 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2695 if (fzap_name_equal(zl, zc, name)) {
2696 if (zc->l_entry.le_value_intlen > integer_size) {
2697 rc = EINVAL;
2698 } else {
2699 fzap_leaf_array(zl, zc, integer_size,
2700 num_integers, value);
2701 rc = 0;
2702 }
2703 break;
2704 }
2705 }
2706 return (rc);
2707 }
2708
2709 /*
2710 * Lookup a value in a fatzap directory.
2711 */
2712 static int
fzap_lookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2713 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2714 const char *name, uint64_t integer_size, uint64_t num_integers,
2715 void *value)
2716 {
2717 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2718 fat_zap_t z;
2719 zap_leaf_t *zl;
2720 uint64_t hash;
2721 int rc;
2722
2723 if (zh->zap_magic != ZAP_MAGIC)
2724 return (EIO);
2725
2726 if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
2727 return (rc);
2728
2729 z.zap_block_shift = ilog2(bsize);
2730 z.zap_phys = zh;
2731 z.zap_spa = spa;
2732 z.zap_dnode = dnode;
2733
2734 hash = zap_hash(zh->zap_salt, name);
2735 rc = zap_deref_leaf(&z, hash, &zl);
2736 if (rc != 0)
2737 return (rc);
2738
2739 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2740
2741 zap_leaf_free(zl);
2742 return (rc);
2743 }
2744
2745 /*
2746 * Lookup a name in a zap object and return its value as a uint64_t.
2747 */
2748 static int
zap_lookup(const spa_t * spa,const dnode_phys_t * dnode,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2749 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2750 uint64_t integer_size, uint64_t num_integers, void *value)
2751 {
2752 int rc;
2753 zap_phys_t *zap;
2754 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2755
2756 zap = malloc(size);
2757 if (zap == NULL)
2758 return (ENOMEM);
2759
2760 rc = dnode_read(spa, dnode, 0, zap, size);
2761 if (rc)
2762 goto done;
2763
2764 switch (zap->zap_block_type) {
2765 case ZBT_MICRO:
2766 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2767 break;
2768 case ZBT_HEADER:
2769 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2770 num_integers, value);
2771 break;
2772 default:
2773 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2774 zap->zap_block_type);
2775 rc = EIO;
2776 }
2777 done:
2778 free(zap);
2779 return (rc);
2780 }
2781
2782 /*
2783 * List a microzap directory.
2784 */
2785 static int
mzap_list(const mzap_phys_t * mz,size_t size,int (* callback)(const char *,uint64_t))2786 mzap_list(const mzap_phys_t *mz, size_t size,
2787 int (*callback)(const char *, uint64_t))
2788 {
2789 const mzap_ent_phys_t *mze;
2790 int chunks, i, rc;
2791
2792 /*
2793 * Microzap objects use exactly one block. Read the whole
2794 * thing.
2795 */
2796 rc = 0;
2797 chunks = size / MZAP_ENT_LEN - 1;
2798 for (i = 0; i < chunks; i++) {
2799 mze = &mz->mz_chunk[i];
2800 if (mze->mze_name[0]) {
2801 rc = callback(mze->mze_name, mze->mze_value);
2802 if (rc != 0)
2803 break;
2804 }
2805 }
2806
2807 return (rc);
2808 }
2809
2810 /*
2811 * List a fatzap directory.
2812 */
2813 static int
fzap_list(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,int (* callback)(const char *,uint64_t))2814 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2815 int (*callback)(const char *, uint64_t))
2816 {
2817 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2818 fat_zap_t z;
2819 int i, j, rc;
2820
2821 if (zh->zap_magic != ZAP_MAGIC)
2822 return (EIO);
2823
2824 z.zap_block_shift = ilog2(bsize);
2825 z.zap_phys = zh;
2826
2827 /*
2828 * This assumes that the leaf blocks start at block 1. The
2829 * documentation isn't exactly clear on this.
2830 */
2831 zap_leaf_t zl;
2832 zl.l_bs = z.zap_block_shift;
2833 zl.l_phys = malloc(bsize);
2834 if (zl.l_phys == NULL)
2835 return (ENOMEM);
2836
2837 for (i = 0; i < zh->zap_num_leafs; i++) {
2838 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2839 char name[256], *p;
2840 uint64_t value;
2841
2842 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2843 free(zl.l_phys);
2844 return (EIO);
2845 }
2846
2847 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2848 zap_leaf_chunk_t *zc, *nc;
2849 int namelen;
2850
2851 zc = &ZAP_LEAF_CHUNK(&zl, j);
2852 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2853 continue;
2854 namelen = zc->l_entry.le_name_numints;
2855 if (namelen > sizeof (name))
2856 namelen = sizeof (name);
2857
2858 /*
2859 * Paste the name back together.
2860 */
2861 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2862 p = name;
2863 while (namelen > 0) {
2864 int len;
2865 len = namelen;
2866 if (len > ZAP_LEAF_ARRAY_BYTES)
2867 len = ZAP_LEAF_ARRAY_BYTES;
2868 memcpy(p, nc->l_array.la_array, len);
2869 p += len;
2870 namelen -= len;
2871 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2872 }
2873
2874 /*
2875 * Assume the first eight bytes of the value are
2876 * a uint64_t.
2877 */
2878 value = fzap_leaf_value(&zl, zc);
2879
2880 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2881 rc = callback((const char *)name, value);
2882 if (rc != 0) {
2883 free(zl.l_phys);
2884 return (rc);
2885 }
2886 }
2887 }
2888
2889 free(zl.l_phys);
2890 return (0);
2891 }
2892
zfs_printf(const char * name,uint64_t value __unused)2893 static int zfs_printf(const char *name, uint64_t value __unused)
2894 {
2895
2896 printf("%s\n", name);
2897
2898 return (0);
2899 }
2900
2901 /*
2902 * List a zap directory.
2903 */
2904 static int
zap_list(const spa_t * spa,const dnode_phys_t * dnode)2905 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2906 {
2907 zap_phys_t *zap;
2908 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2909 int rc;
2910
2911 zap = malloc(size);
2912 if (zap == NULL)
2913 return (ENOMEM);
2914
2915 rc = dnode_read(spa, dnode, 0, zap, size);
2916 if (rc == 0) {
2917 if (zap->zap_block_type == ZBT_MICRO)
2918 rc = mzap_list((const mzap_phys_t *)zap, size,
2919 zfs_printf);
2920 else
2921 rc = fzap_list(spa, dnode, zap, zfs_printf);
2922 }
2923 free(zap);
2924 return (rc);
2925 }
2926
2927 static int
objset_get_dnode(const spa_t * spa,const objset_phys_t * os,uint64_t objnum,dnode_phys_t * dnode)2928 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2929 dnode_phys_t *dnode)
2930 {
2931 off_t offset;
2932
2933 offset = objnum * sizeof (dnode_phys_t);
2934 return (dnode_read(spa, &os->os_meta_dnode, offset,
2935 dnode, sizeof (dnode_phys_t)));
2936 }
2937
2938 /*
2939 * Lookup a name in a microzap directory.
2940 */
2941 static int
mzap_rlookup(const mzap_phys_t * mz,size_t size,char * name,uint64_t value)2942 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2943 {
2944 const mzap_ent_phys_t *mze;
2945 int chunks, i;
2946
2947 /*
2948 * Microzap objects use exactly one block. Read the whole
2949 * thing.
2950 */
2951 chunks = size / MZAP_ENT_LEN - 1;
2952 for (i = 0; i < chunks; i++) {
2953 mze = &mz->mz_chunk[i];
2954 if (value == mze->mze_value) {
2955 strcpy(name, mze->mze_name);
2956 return (0);
2957 }
2958 }
2959
2960 return (ENOENT);
2961 }
2962
2963 static void
fzap_name_copy(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,char * name)2964 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2965 {
2966 size_t namelen;
2967 const zap_leaf_chunk_t *nc;
2968 char *p;
2969
2970 namelen = zc->l_entry.le_name_numints;
2971
2972 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2973 p = name;
2974 while (namelen > 0) {
2975 size_t len;
2976 len = namelen;
2977 if (len > ZAP_LEAF_ARRAY_BYTES)
2978 len = ZAP_LEAF_ARRAY_BYTES;
2979 memcpy(p, nc->l_array.la_array, len);
2980 p += len;
2981 namelen -= len;
2982 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2983 }
2984
2985 *p = '\0';
2986 }
2987
2988 static int
fzap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,char * name,uint64_t value)2989 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2990 char *name, uint64_t value)
2991 {
2992 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2993 fat_zap_t z;
2994 uint64_t i;
2995 int j, rc;
2996
2997 if (zh->zap_magic != ZAP_MAGIC)
2998 return (EIO);
2999
3000 z.zap_block_shift = ilog2(bsize);
3001 z.zap_phys = zh;
3002
3003 /*
3004 * This assumes that the leaf blocks start at block 1. The
3005 * documentation isn't exactly clear on this.
3006 */
3007 zap_leaf_t zl;
3008 zl.l_bs = z.zap_block_shift;
3009 zl.l_phys = malloc(bsize);
3010 if (zl.l_phys == NULL)
3011 return (ENOMEM);
3012
3013 for (i = 0; i < zh->zap_num_leafs; i++) {
3014 off_t off = ((off_t)(i + 1)) << zl.l_bs;
3015
3016 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
3017 if (rc != 0)
3018 goto done;
3019
3020 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
3021 zap_leaf_chunk_t *zc;
3022
3023 zc = &ZAP_LEAF_CHUNK(&zl, j);
3024 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3025 continue;
3026 if (zc->l_entry.le_value_intlen != 8 ||
3027 zc->l_entry.le_value_numints != 1)
3028 continue;
3029
3030 if (fzap_leaf_value(&zl, zc) == value) {
3031 fzap_name_copy(&zl, zc, name);
3032 goto done;
3033 }
3034 }
3035 }
3036
3037 rc = ENOENT;
3038 done:
3039 free(zl.l_phys);
3040 return (rc);
3041 }
3042
3043 static int
zap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,char * name,uint64_t value)3044 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3045 uint64_t value)
3046 {
3047 zap_phys_t *zap;
3048 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3049 int rc;
3050
3051 zap = malloc(size);
3052 if (zap == NULL)
3053 return (ENOMEM);
3054
3055 rc = dnode_read(spa, dnode, 0, zap, size);
3056 if (rc == 0) {
3057 if (zap->zap_block_type == ZBT_MICRO)
3058 rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3059 name, value);
3060 else
3061 rc = fzap_rlookup(spa, dnode, zap, name, value);
3062 }
3063 free(zap);
3064 return (rc);
3065 }
3066
3067 static int
zfs_rlookup(const spa_t * spa,uint64_t objnum,char * result)3068 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3069 {
3070 char name[256];
3071 char component[256];
3072 uint64_t dir_obj, parent_obj, child_dir_zapobj;
3073 dnode_phys_t child_dir_zap, dataset, dir, parent;
3074 dsl_dir_phys_t *dd;
3075 dsl_dataset_phys_t *ds;
3076 char *p;
3077 int len;
3078
3079 p = &name[sizeof (name) - 1];
3080 *p = '\0';
3081
3082 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3083 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3084 return (EIO);
3085 }
3086 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3087 dir_obj = ds->ds_dir_obj;
3088
3089 for (;;) {
3090 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
3091 return (EIO);
3092 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3093
3094 /* Actual loop condition. */
3095 parent_obj = dd->dd_parent_obj;
3096 if (parent_obj == 0)
3097 break;
3098
3099 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
3100 &parent) != 0)
3101 return (EIO);
3102 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3103 child_dir_zapobj = dd->dd_child_dir_zapobj;
3104 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3105 &child_dir_zap) != 0)
3106 return (EIO);
3107 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3108 return (EIO);
3109
3110 len = strlen(component);
3111 p -= len;
3112 memcpy(p, component, len);
3113 --p;
3114 *p = '/';
3115
3116 /* Actual loop iteration. */
3117 dir_obj = parent_obj;
3118 }
3119
3120 if (*p != '\0')
3121 ++p;
3122 strcpy(result, p);
3123
3124 return (0);
3125 }
3126
3127 static int
zfs_lookup_dataset(const spa_t * spa,const char * name,uint64_t * objnum)3128 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3129 {
3130 char element[256];
3131 uint64_t dir_obj, child_dir_zapobj;
3132 dnode_phys_t child_dir_zap, dir;
3133 dsl_dir_phys_t *dd;
3134 const char *p, *q;
3135
3136 if (objset_get_dnode(spa, &spa->spa_mos,
3137 DMU_POOL_DIRECTORY_OBJECT, &dir))
3138 return (EIO);
3139 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3140 1, &dir_obj))
3141 return (EIO);
3142
3143 p = name;
3144 for (;;) {
3145 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
3146 return (EIO);
3147 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3148
3149 while (*p == '/')
3150 p++;
3151 /* Actual loop condition #1. */
3152 if (*p == '\0')
3153 break;
3154
3155 q = strchr(p, '/');
3156 if (q) {
3157 memcpy(element, p, q - p);
3158 element[q - p] = '\0';
3159 p = q + 1;
3160 } else {
3161 strcpy(element, p);
3162 p += strlen(p);
3163 }
3164
3165 child_dir_zapobj = dd->dd_child_dir_zapobj;
3166 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3167 &child_dir_zap) != 0)
3168 return (EIO);
3169
3170 /* Actual loop condition #2. */
3171 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3172 1, &dir_obj) != 0)
3173 return (ENOENT);
3174 }
3175
3176 *objnum = dd->dd_head_dataset_obj;
3177 return (0);
3178 }
3179
3180 #pragma GCC diagnostic ignored "-Wstrict-aliasing"
3181 static int
zfs_list_dataset(const spa_t * spa,uint64_t objnum)3182 zfs_list_dataset(const spa_t *spa, uint64_t objnum)
3183 {
3184 uint64_t dir_obj, child_dir_zapobj;
3185 dnode_phys_t child_dir_zap, dir, dataset;
3186 dsl_dataset_phys_t *ds;
3187 dsl_dir_phys_t *dd;
3188
3189 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3190 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3191 return (EIO);
3192 }
3193 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3194 dir_obj = ds->ds_dir_obj;
3195
3196 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
3197 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3198 return (EIO);
3199 }
3200 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3201
3202 child_dir_zapobj = dd->dd_child_dir_zapobj;
3203 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3204 &child_dir_zap) != 0) {
3205 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3206 return (EIO);
3207 }
3208
3209 return (zap_list(spa, &child_dir_zap) != 0);
3210 }
3211
3212 int
zfs_callback_dataset(const spa_t * spa,uint64_t objnum,int (* callback)(const char *,uint64_t))3213 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3214 int (*callback)(const char *, uint64_t))
3215 {
3216 uint64_t dir_obj, child_dir_zapobj;
3217 dnode_phys_t child_dir_zap, dir, dataset;
3218 dsl_dataset_phys_t *ds;
3219 dsl_dir_phys_t *dd;
3220 zap_phys_t *zap;
3221 size_t size;
3222 int err;
3223
3224 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
3225 if (err != 0) {
3226 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3227 return (err);
3228 }
3229 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3230 dir_obj = ds->ds_dir_obj;
3231
3232 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
3233 if (err != 0) {
3234 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3235 return (err);
3236 }
3237 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3238
3239 child_dir_zapobj = dd->dd_child_dir_zapobj;
3240 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3241 &child_dir_zap);
3242 if (err != 0) {
3243 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3244 return (err);
3245 }
3246
3247 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3248 zap = malloc(size);
3249 if (zap != NULL) {
3250 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3251 if (err != 0)
3252 goto done;
3253
3254 if (zap->zap_block_type == ZBT_MICRO)
3255 err = mzap_list((const mzap_phys_t *)zap, size,
3256 callback);
3257 else
3258 err = fzap_list(spa, &child_dir_zap, zap, callback);
3259 } else {
3260 err = ENOMEM;
3261 }
3262 done:
3263 free(zap);
3264 return (err);
3265 }
3266
3267 /*
3268 * Find the object set given the object number of its dataset object
3269 * and return its details in *objset
3270 */
3271 static int
zfs_mount_dataset(const spa_t * spa,uint64_t objnum,objset_phys_t * objset)3272 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3273 {
3274 dnode_phys_t dataset;
3275 dsl_dataset_phys_t *ds;
3276
3277 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3278 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3279 return (EIO);
3280 }
3281
3282 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3283 if (zio_read(spa, &ds->ds_bp, objset)) {
3284 printf("ZFS: can't read object set for dataset %ju\n",
3285 (uintmax_t)objnum);
3286 return (EIO);
3287 }
3288
3289 return (0);
3290 }
3291
3292 /*
3293 * Find the object set pointed to by the BOOTFS property or the root
3294 * dataset if there is none and return its details in *objset
3295 */
3296 static int
zfs_get_root(const spa_t * spa,uint64_t * objid)3297 zfs_get_root(const spa_t *spa, uint64_t *objid)
3298 {
3299 dnode_phys_t dir, propdir;
3300 uint64_t props, bootfs, root;
3301
3302 *objid = 0;
3303
3304 /*
3305 * Start with the MOS directory object.
3306 */
3307 if (objset_get_dnode(spa, &spa->spa_mos,
3308 DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3309 printf("ZFS: can't read MOS object directory\n");
3310 return (EIO);
3311 }
3312
3313 /*
3314 * Lookup the pool_props and see if we can find a bootfs.
3315 */
3316 if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3317 sizeof (props), 1, &props) == 0 &&
3318 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
3319 zap_lookup(spa, &propdir, "bootfs",
3320 sizeof (bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3321 *objid = bootfs;
3322 return (0);
3323 }
3324 /*
3325 * Lookup the root dataset directory
3326 */
3327 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3328 sizeof (root), 1, &root) ||
3329 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
3330 printf("ZFS: can't find root dsl_dir\n");
3331 return (EIO);
3332 }
3333
3334 /*
3335 * Use the information from the dataset directory's bonus buffer
3336 * to find the dataset object and from that the object set itself.
3337 */
3338 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3339 *objid = dd->dd_head_dataset_obj;
3340 return (0);
3341 }
3342
3343 static int
zfs_mount(const spa_t * spa,uint64_t rootobj,struct zfsmount * mnt)3344 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mnt)
3345 {
3346
3347 mnt->spa = spa;
3348
3349 /*
3350 * Find the root object set if not explicitly provided
3351 */
3352 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3353 printf("ZFS: can't find root filesystem\n");
3354 return (EIO);
3355 }
3356
3357 if (zfs_mount_dataset(spa, rootobj, &mnt->objset)) {
3358 printf("ZFS: can't open root filesystem\n");
3359 return (EIO);
3360 }
3361
3362 mnt->rootobj = rootobj;
3363
3364 return (0);
3365 }
3366
3367 /*
3368 * callback function for feature name checks.
3369 */
3370 static int
check_feature(const char * name,uint64_t value)3371 check_feature(const char *name, uint64_t value)
3372 {
3373 int i;
3374
3375 if (value == 0)
3376 return (0);
3377 if (name[0] == '\0')
3378 return (0);
3379
3380 for (i = 0; features_for_read[i] != NULL; i++) {
3381 if (strcmp(name, features_for_read[i]) == 0)
3382 return (0);
3383 }
3384 printf("ZFS: unsupported feature: %s\n", name);
3385 return (EIO);
3386 }
3387
3388 /*
3389 * Checks whether the MOS features that are active are supported.
3390 */
3391 static int
check_mos_features(const spa_t * spa)3392 check_mos_features(const spa_t *spa)
3393 {
3394 dnode_phys_t dir;
3395 zap_phys_t *zap;
3396 uint64_t objnum;
3397 size_t size;
3398 int rc;
3399
3400 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3401 &dir)) != 0)
3402 return (rc);
3403 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3404 sizeof (objnum), 1, &objnum)) != 0) {
3405 /*
3406 * It is older pool without features. As we have already
3407 * tested the label, just return without raising the error.
3408 */
3409 if (rc == ENOENT)
3410 rc = 0;
3411 return (rc);
3412 }
3413
3414 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
3415 return (rc);
3416
3417 if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3418 return (EIO);
3419
3420 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3421 zap = malloc(size);
3422 if (zap == NULL)
3423 return (ENOMEM);
3424
3425 if (dnode_read(spa, &dir, 0, zap, size)) {
3426 free(zap);
3427 return (EIO);
3428 }
3429
3430 if (zap->zap_block_type == ZBT_MICRO)
3431 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3432 else
3433 rc = fzap_list(spa, &dir, zap, check_feature);
3434
3435 free(zap);
3436 return (rc);
3437 }
3438
3439 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)3440 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3441 {
3442 dnode_phys_t dir;
3443 size_t size;
3444 int rc;
3445 char *nv;
3446
3447 *value = NULL;
3448 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
3449 return (rc);
3450 if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3451 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3452 return (EIO);
3453 }
3454
3455 if (dir.dn_bonuslen != sizeof (uint64_t))
3456 return (EIO);
3457
3458 size = *(uint64_t *)DN_BONUS(&dir);
3459 nv = malloc(size);
3460 if (nv == NULL)
3461 return (ENOMEM);
3462
3463 rc = dnode_read(spa, &dir, 0, nv, size);
3464 if (rc != 0) {
3465 free(nv);
3466 nv = NULL;
3467 return (rc);
3468 }
3469 *value = nvlist_import(nv, size);
3470 free(nv);
3471 return (rc);
3472 }
3473
3474 static int
zfs_spa_init(spa_t * spa)3475 zfs_spa_init(spa_t *spa)
3476 {
3477 dnode_phys_t dir;
3478 uint64_t config_object;
3479 nvlist_t *nvlist;
3480 int rc;
3481
3482 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
3483 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3484 return (EIO);
3485 }
3486 if (spa->spa_mos.os_type != DMU_OST_META) {
3487 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3488 return (EIO);
3489 }
3490
3491 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
3492 &dir)) {
3493 printf("ZFS: failed to read pool %s directory object\n",
3494 spa->spa_name);
3495 return (EIO);
3496 }
3497 /* this is allowed to fail, older pools do not have salt */
3498 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3499 sizeof (spa->spa_cksum_salt.zcs_bytes),
3500 spa->spa_cksum_salt.zcs_bytes);
3501
3502 rc = check_mos_features(spa);
3503 if (rc != 0) {
3504 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3505 return (rc);
3506 }
3507
3508 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3509 sizeof (config_object), 1, &config_object);
3510 if (rc != 0) {
3511 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3512 return (EIO);
3513 }
3514 rc = load_nvlist(spa, config_object, &nvlist);
3515 if (rc != 0)
3516 return (rc);
3517
3518 /*
3519 * Update vdevs from MOS config. Note, we do skip encoding bytes
3520 * here. See also vdev_label_read_config().
3521 */
3522 rc = vdev_init_from_nvlist(spa, nvlist);
3523 nvlist_destroy(nvlist);
3524 return (rc);
3525 }
3526
3527 static int
zfs_dnode_stat(const spa_t * spa,dnode_phys_t * dn,struct stat * sb)3528 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3529 {
3530
3531 if (dn->dn_bonustype != DMU_OT_SA) {
3532 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3533
3534 sb->st_mode = zp->zp_mode;
3535 sb->st_uid = zp->zp_uid;
3536 sb->st_gid = zp->zp_gid;
3537 sb->st_size = zp->zp_size;
3538 } else {
3539 sa_hdr_phys_t *sahdrp;
3540 int hdrsize;
3541 size_t size = 0;
3542 void *buf = NULL;
3543
3544 if (dn->dn_bonuslen != 0)
3545 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3546 else {
3547 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3548 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3549 int error;
3550
3551 size = BP_GET_LSIZE(bp);
3552 buf = malloc(size);
3553 if (buf == NULL)
3554 error = ENOMEM;
3555 else
3556 error = zio_read(spa, bp, buf);
3557
3558 if (error != 0) {
3559 free(buf);
3560 return (error);
3561 }
3562 sahdrp = buf;
3563 } else {
3564 return (EIO);
3565 }
3566 }
3567 hdrsize = SA_HDR_SIZE(sahdrp);
3568 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3569 SA_MODE_OFFSET);
3570 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3571 SA_UID_OFFSET);
3572 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3573 SA_GID_OFFSET);
3574 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3575 SA_SIZE_OFFSET);
3576 free(buf);
3577 }
3578
3579 return (0);
3580 }
3581
3582 static int
zfs_dnode_readlink(const spa_t * spa,dnode_phys_t * dn,char * path,size_t psize)3583 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3584 {
3585 int rc = 0;
3586
3587 if (dn->dn_bonustype == DMU_OT_SA) {
3588 sa_hdr_phys_t *sahdrp = NULL;
3589 size_t size = 0;
3590 void *buf = NULL;
3591 int hdrsize;
3592 char *p;
3593
3594 if (dn->dn_bonuslen != 0) {
3595 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3596 } else {
3597 blkptr_t *bp;
3598
3599 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3600 return (EIO);
3601 bp = DN_SPILL_BLKPTR(dn);
3602
3603 size = BP_GET_LSIZE(bp);
3604 buf = malloc(size);
3605 if (buf == NULL)
3606 rc = ENOMEM;
3607 else
3608 rc = zio_read(spa, bp, buf);
3609 if (rc != 0) {
3610 free(buf);
3611 return (rc);
3612 }
3613 sahdrp = buf;
3614 }
3615 hdrsize = SA_HDR_SIZE(sahdrp);
3616 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3617 memcpy(path, p, psize);
3618 free(buf);
3619 return (0);
3620 }
3621 /*
3622 * Second test is purely to silence bogus compiler
3623 * warning about accessing past the end of dn_bonus.
3624 */
3625 if (psize + sizeof (znode_phys_t) <= dn->dn_bonuslen &&
3626 sizeof (znode_phys_t) <= sizeof (dn->dn_bonus)) {
3627 memcpy(path, &dn->dn_bonus[sizeof (znode_phys_t)], psize);
3628 } else {
3629 rc = dnode_read(spa, dn, 0, path, psize);
3630 }
3631 return (rc);
3632 }
3633
3634 struct obj_list {
3635 uint64_t objnum;
3636 STAILQ_ENTRY(obj_list) entry;
3637 };
3638
3639 /*
3640 * Lookup a file and return its dnode.
3641 */
3642 static int
zfs_lookup(const struct zfsmount * mnt,const char * upath,dnode_phys_t * dnode)3643 zfs_lookup(const struct zfsmount *mnt, const char *upath, dnode_phys_t *dnode)
3644 {
3645 int rc;
3646 uint64_t objnum;
3647 const spa_t *spa;
3648 dnode_phys_t dn;
3649 const char *p, *q;
3650 char element[256];
3651 char path[1024];
3652 int symlinks_followed = 0;
3653 struct stat sb;
3654 struct obj_list *entry, *tentry;
3655 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3656
3657 spa = mnt->spa;
3658 if (mnt->objset.os_type != DMU_OST_ZFS) {
3659 printf("ZFS: unexpected object set type %ju\n",
3660 (uintmax_t)mnt->objset.os_type);
3661 return (EIO);
3662 }
3663
3664 if ((entry = malloc(sizeof (struct obj_list))) == NULL)
3665 return (ENOMEM);
3666
3667 /*
3668 * Get the root directory dnode.
3669 */
3670 rc = objset_get_dnode(spa, &mnt->objset, MASTER_NODE_OBJ, &dn);
3671 if (rc) {
3672 free(entry);
3673 return (rc);
3674 }
3675
3676 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum);
3677 if (rc) {
3678 free(entry);
3679 return (rc);
3680 }
3681 entry->objnum = objnum;
3682 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3683
3684 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn);
3685 if (rc != 0)
3686 goto done;
3687
3688 p = upath;
3689 while (p && *p) {
3690 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn);
3691 if (rc != 0)
3692 goto done;
3693
3694 while (*p == '/')
3695 p++;
3696 if (*p == '\0')
3697 break;
3698 q = p;
3699 while (*q != '\0' && *q != '/')
3700 q++;
3701
3702 /* skip dot */
3703 if (p + 1 == q && p[0] == '.') {
3704 p++;
3705 continue;
3706 }
3707 /* double dot */
3708 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3709 p += 2;
3710 if (STAILQ_FIRST(&on_cache) ==
3711 STAILQ_LAST(&on_cache, obj_list, entry)) {
3712 rc = ENOENT;
3713 goto done;
3714 }
3715 entry = STAILQ_FIRST(&on_cache);
3716 STAILQ_REMOVE_HEAD(&on_cache, entry);
3717 free(entry);
3718 objnum = (STAILQ_FIRST(&on_cache))->objnum;
3719 continue;
3720 }
3721 if (q - p + 1 > sizeof (element)) {
3722 rc = ENAMETOOLONG;
3723 goto done;
3724 }
3725 memcpy(element, p, q - p);
3726 element[q - p] = 0;
3727 p = q;
3728
3729 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3730 goto done;
3731 if (!S_ISDIR(sb.st_mode)) {
3732 rc = ENOTDIR;
3733 goto done;
3734 }
3735
3736 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3737 if (rc)
3738 goto done;
3739 objnum = ZFS_DIRENT_OBJ(objnum);
3740
3741 if ((entry = malloc(sizeof (struct obj_list))) == NULL) {
3742 rc = ENOMEM;
3743 goto done;
3744 }
3745 entry->objnum = objnum;
3746 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3747 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn);
3748 if (rc)
3749 goto done;
3750
3751 /*
3752 * Check for symlink.
3753 */
3754 rc = zfs_dnode_stat(spa, &dn, &sb);
3755 if (rc)
3756 goto done;
3757 if (S_ISLNK(sb.st_mode)) {
3758 if (symlinks_followed > 10) {
3759 rc = EMLINK;
3760 goto done;
3761 }
3762 symlinks_followed++;
3763
3764 /*
3765 * Read the link value and copy the tail of our
3766 * current path onto the end.
3767 */
3768 if (sb.st_size + strlen(p) + 1 > sizeof (path)) {
3769 rc = ENAMETOOLONG;
3770 goto done;
3771 }
3772 strcpy(&path[sb.st_size], p);
3773
3774 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3775 if (rc != 0)
3776 goto done;
3777
3778 /*
3779 * Restart with the new path, starting either at
3780 * the root or at the parent depending whether or
3781 * not the link is relative.
3782 */
3783 p = path;
3784 if (*p == '/') {
3785 while (STAILQ_FIRST(&on_cache) !=
3786 STAILQ_LAST(&on_cache, obj_list, entry)) {
3787 entry = STAILQ_FIRST(&on_cache);
3788 STAILQ_REMOVE_HEAD(&on_cache, entry);
3789 free(entry);
3790 }
3791 } else {
3792 entry = STAILQ_FIRST(&on_cache);
3793 STAILQ_REMOVE_HEAD(&on_cache, entry);
3794 free(entry);
3795 }
3796 objnum = (STAILQ_FIRST(&on_cache))->objnum;
3797 }
3798 }
3799
3800 *dnode = dn;
3801 done:
3802 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3803 free(entry);
3804 return (rc);
3805 }
3806