1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <kvm.h> 32 #include <math.h> 33 #include <paths.h> 34 #include <stdio.h> 35 #include <stdbool.h> 36 #include <stdint.h> 37 #include <stdlib.h> 38 #include <string.h> 39 #include <time.h> 40 #include <unistd.h> 41 #include <vis.h> 42 43 #include "top.h" 44 #include "display.h" 45 #include "machine.h" 46 #include "loadavg.h" 47 #include "screen.h" 48 #include "utils.h" 49 #include "layout.h" 50 51 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 52 #define SMPUNAMELEN 13 53 #define UPUNAMELEN 15 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static int namelength = 8; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 7 61 #define TOP_SWAP_LEN 6 62 static int jidlength; 63 static int swaplength; 64 static int cmdlengthdelta; 65 66 /* get_process_info passes back a handle. This is what it looks like: */ 67 68 struct handle { 69 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 70 int remaining; /* number of pointers remaining */ 71 }; 72 73 74 /* define what weighted cpu is. */ 75 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 76 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 77 78 /* what we consider to be process size: */ 79 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 80 81 #define RU(pp) (&(pp)->ki_rusage) 82 83 #define PCTCPU(pp) (pcpu[pp - pbase]) 84 85 /* 86 * These definitions control the format of the per-process area 87 */ 88 89 static const char io_header[] = 90 " %s%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 91 92 static const char io_Proc_format[] = 93 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"; 94 95 /* XXX: build up header instead of statically defining them. 96 * This will also allow for a "format string" to be supplied 97 * as an argument to top(1) instead of having predefined options */ 98 static const char smp_header_thr_and_pid[] = 99 " %s%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 100 static const char smp_header_id_only[] = 101 " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 102 static const char smp_Proc_format[] = 103 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; 104 105 static char up_header_thr_and_pid[] = 106 " %s%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 107 static char up_header_id_only[] = 108 " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 109 static char up_Proc_format[] = 110 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; 111 112 113 /* process state names for the "STATE" column of the display */ 114 /* the extra nulls in the string "run" are for adding a slash and 115 the processor number when needed */ 116 117 static const char *state_abbrev[] = { 118 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 119 }; 120 121 122 static kvm_t *kd; 123 124 /* values that we stash away in _init and use in later routines */ 125 126 static double logcpu; 127 128 /* these are retrieved from the kernel in _init */ 129 130 static load_avg ccpu; 131 132 /* these are used in the get_ functions */ 133 134 static int lastpid; 135 136 /* these are for calculating cpu state percentages */ 137 138 static long cp_time[CPUSTATES]; 139 static long cp_old[CPUSTATES]; 140 static long cp_diff[CPUSTATES]; 141 142 /* these are for detailing the process states */ 143 144 static const char *procstatenames[] = { 145 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 146 " zombie, ", " waiting, ", " lock, ", 147 NULL 148 }; 149 static int process_states[nitems(procstatenames)]; 150 151 /* these are for detailing the cpu states */ 152 153 static int cpu_states[CPUSTATES]; 154 static const char *cpustatenames[] = { 155 "user", "nice", "system", "interrupt", "idle", NULL 156 }; 157 158 /* these are for detailing the memory statistics */ 159 160 static const char *memorynames[] = { 161 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 162 "K Free", NULL 163 }; 164 static int memory_stats[nitems(memorynames)]; 165 166 static const char *arcnames[] = { 167 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 168 NULL 169 }; 170 static int arc_stats[nitems(arcnames)]; 171 172 static const char *carcnames[] = { 173 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 174 NULL 175 }; 176 static int carc_stats[nitems(carcnames)]; 177 178 static const char *swapnames[] = { 179 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 180 NULL 181 }; 182 static int swap_stats[nitems(swapnames)]; 183 184 185 /* these are for keeping track of the proc array */ 186 187 static int nproc; 188 static int onproc = -1; 189 static int pref_len; 190 static struct kinfo_proc *pbase; 191 static struct kinfo_proc **pref; 192 static struct kinfo_proc *previous_procs; 193 static struct kinfo_proc **previous_pref; 194 static int previous_proc_count = 0; 195 static int previous_proc_count_max = 0; 196 static int previous_thread; 197 198 /* data used for recalculating pctcpu */ 199 static double *pcpu; 200 static struct timespec proc_uptime; 201 static struct timeval proc_wall_time; 202 static struct timeval previous_wall_time; 203 static uint64_t previous_interval = 0; 204 205 /* total number of io operations */ 206 static long total_inblock; 207 static long total_oublock; 208 static long total_majflt; 209 210 /* these are for getting the memory statistics */ 211 212 static int arc_enabled; 213 static int carc_enabled; 214 static int pageshift; /* log base 2 of the pagesize */ 215 216 /* define pagetok in terms of pageshift */ 217 218 #define pagetok(size) ((size) << pageshift) 219 220 /* swap usage */ 221 #define ki_swap(kip) \ 222 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 223 224 /* 225 * Sorting orders. The first element is the default. 226 */ 227 static const char *ordernames[] = { 228 "cpu", "size", "res", "time", "pri", "threads", 229 "total", "read", "write", "fault", "vcsw", "ivcsw", 230 "jid", "swap", "pid", NULL 231 }; 232 233 /* Per-cpu time states */ 234 static int maxcpu; 235 static int maxid; 236 static int ncpus; 237 static unsigned long cpumask; 238 static long *times; 239 static long *pcpu_cp_time; 240 static long *pcpu_cp_old; 241 static long *pcpu_cp_diff; 242 static int *pcpu_cpu_states; 243 244 static int compare_swap(const void *a, const void *b); 245 static int compare_jid(const void *a, const void *b); 246 static int compare_pid(const void *a, const void *b); 247 static int compare_tid(const void *a, const void *b); 248 static const char *format_nice(const struct kinfo_proc *pp); 249 static void getsysctl(const char *name, void *ptr, size_t len); 250 static int swapmode(int *retavail, int *retfree); 251 static void update_layout(void); 252 static int find_uid(uid_t needle, int *haystack); 253 254 static int 255 find_uid(uid_t needle, int *haystack) 256 { 257 size_t i = 0; 258 259 for (; i < TOP_MAX_UIDS; ++i) 260 if ((uid_t)haystack[i] == needle) 261 return 1; 262 return (0); 263 } 264 265 void 266 toggle_pcpustats(void) 267 { 268 269 if (ncpus == 1) 270 return; 271 update_layout(); 272 } 273 274 /* Adjust display based on ncpus and the ARC state. */ 275 static void 276 update_layout(void) 277 { 278 279 y_mem = 3; 280 y_arc = 4; 281 y_carc = 5; 282 y_swap = 4 + arc_enabled + carc_enabled; 283 y_idlecursor = 5 + arc_enabled + carc_enabled; 284 y_message = 5 + arc_enabled + carc_enabled; 285 y_header = 6 + arc_enabled + carc_enabled; 286 y_procs = 7 + arc_enabled + carc_enabled; 287 Header_lines = 7 + arc_enabled + carc_enabled; 288 289 if (pcpu_stats) { 290 y_mem += ncpus - 1; 291 y_arc += ncpus - 1; 292 y_carc += ncpus - 1; 293 y_swap += ncpus - 1; 294 y_idlecursor += ncpus - 1; 295 y_message += ncpus - 1; 296 y_header += ncpus - 1; 297 y_procs += ncpus - 1; 298 Header_lines += ncpus - 1; 299 } 300 } 301 302 int 303 machine_init(struct statics *statics) 304 { 305 int i, j, empty, pagesize; 306 uint64_t arc_size; 307 int carc_en; 308 size_t size; 309 310 size = sizeof(smpmode); 311 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 312 NULL, 0) != 0 && 313 sysctlbyname("kern.smp.active", &smpmode, &size, 314 NULL, 0) != 0) || 315 size != sizeof(smpmode)) 316 smpmode = 0; 317 318 size = sizeof(arc_size); 319 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 320 NULL, 0) == 0 && arc_size != 0) 321 arc_enabled = 1; 322 size = sizeof(carc_en); 323 if (arc_enabled && 324 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 325 NULL, 0) == 0 && carc_en == 1) 326 carc_enabled = 1; 327 328 namelength = MAXLOGNAME; 329 if (smpmode && namelength > SMPUNAMELEN) 330 namelength = SMPUNAMELEN; 331 else if (namelength > UPUNAMELEN) 332 namelength = UPUNAMELEN; 333 334 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 335 if (kd == NULL) 336 return (-1); 337 338 GETSYSCTL("kern.ccpu", ccpu); 339 340 /* this is used in calculating WCPU -- calculate it ahead of time */ 341 logcpu = log(loaddouble(ccpu)); 342 343 pbase = NULL; 344 pref = NULL; 345 pcpu = NULL; 346 nproc = 0; 347 onproc = -1; 348 349 /* get the page size and calculate pageshift from it */ 350 pagesize = getpagesize(); 351 pageshift = 0; 352 while (pagesize > 1) { 353 pageshift++; 354 pagesize >>= 1; 355 } 356 357 /* we only need the amount of log(2)1024 for our conversion */ 358 pageshift -= LOG1024; 359 360 /* fill in the statics information */ 361 statics->procstate_names = procstatenames; 362 statics->cpustate_names = cpustatenames; 363 statics->memory_names = memorynames; 364 if (arc_enabled) 365 statics->arc_names = arcnames; 366 else 367 statics->arc_names = NULL; 368 if (carc_enabled) 369 statics->carc_names = carcnames; 370 else 371 statics->carc_names = NULL; 372 statics->swap_names = swapnames; 373 statics->order_names = ordernames; 374 375 /* Allocate state for per-CPU stats. */ 376 cpumask = 0; 377 ncpus = 0; 378 GETSYSCTL("kern.smp.maxcpus", maxcpu); 379 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 380 if (times == NULL) 381 err(1, "calloc for kern.smp.maxcpus"); 382 size = sizeof(long) * maxcpu * CPUSTATES; 383 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 384 err(1, "sysctlbyname kern.cp_times"); 385 pcpu_cp_time = calloc(1, size); 386 maxid = (size / CPUSTATES / sizeof(long)) - 1; 387 for (i = 0; i <= maxid; i++) { 388 empty = 1; 389 for (j = 0; empty && j < CPUSTATES; j++) { 390 if (times[i * CPUSTATES + j] != 0) 391 empty = 0; 392 } 393 if (!empty) { 394 cpumask |= (1ul << i); 395 ncpus++; 396 } 397 } 398 assert(ncpus > 0); 399 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 400 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 401 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 402 statics->ncpus = ncpus; 403 404 update_layout(); 405 406 /* all done! */ 407 return (0); 408 } 409 410 const char * 411 format_header(const char *uname_field) 412 { 413 static char Header[128]; 414 const char *prehead; 415 416 if (ps.jail) 417 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 418 else 419 jidlength = 0; 420 421 if (ps.swap) 422 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 423 else 424 swaplength = 0; 425 426 switch (displaymode) { 427 case DISP_CPU: 428 /* 429 * The logic of picking the right header is confusing, and 430 * depends on too much. We should instead have a struct of 431 * "header name", and "header format" which we build up. 432 * This would also fix the duplicate of effort into up vs smp 433 * mode. 434 */ 435 if (smpmode) { 436 prehead = ps.thread ? 437 smp_header_id_only : smp_header_thr_and_pid; 438 snprintf(Header, sizeof(Header), prehead, 439 ps.thread_id ? " THR" : "PID", 440 jidlength, ps.jail ? " JID" : "", 441 namelength, namelength, uname_field, 442 swaplength, ps.swap ? " SWAP" : "", 443 ps.wcpu ? "WCPU" : "CPU"); 444 } else { 445 prehead = ps.thread ? 446 up_header_id_only : up_header_thr_and_pid; 447 snprintf(Header, sizeof(Header), prehead, 448 ps.thread_id ? " THR" : "PID", 449 jidlength, ps.jail ? " JID" : "", 450 namelength, namelength, uname_field, 451 swaplength, ps.swap ? " SWAP" : "", 452 ps.wcpu ? "WCPU" : "CPU"); 453 } 454 break; 455 case DISP_IO: 456 prehead = io_header; 457 snprintf(Header, sizeof(Header), prehead, 458 ps.thread_id ? " THR" : "PID", 459 jidlength, ps.jail ? " JID" : "", 460 namelength, namelength, uname_field); 461 break; 462 case DISP_MAX: 463 assert("displaymode must not be set to DISP_MAX"); 464 } 465 cmdlengthdelta = strlen(Header) - 7; 466 return (Header); 467 } 468 469 static int swappgsin = -1; 470 static int swappgsout = -1; 471 472 473 void 474 get_system_info(struct system_info *si) 475 { 476 struct loadavg sysload; 477 int mib[2]; 478 struct timeval boottime; 479 uint64_t arc_stat, arc_stat2; 480 int i, j; 481 size_t size; 482 483 /* get the CPU stats */ 484 size = (maxid + 1) * CPUSTATES * sizeof(long); 485 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 486 err(1, "sysctlbyname kern.cp_times"); 487 GETSYSCTL("kern.cp_time", cp_time); 488 GETSYSCTL("vm.loadavg", sysload); 489 GETSYSCTL("kern.lastpid", lastpid); 490 491 /* convert load averages to doubles */ 492 for (i = 0; i < 3; i++) 493 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 494 495 /* convert cp_time counts to percentages */ 496 for (i = j = 0; i <= maxid; i++) { 497 if ((cpumask & (1ul << i)) == 0) 498 continue; 499 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 500 &pcpu_cp_time[j * CPUSTATES], 501 &pcpu_cp_old[j * CPUSTATES], 502 &pcpu_cp_diff[j * CPUSTATES]); 503 j++; 504 } 505 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 506 507 /* sum memory & swap statistics */ 508 { 509 static unsigned int swap_delay = 0; 510 static int swapavail = 0; 511 static int swapfree = 0; 512 static long bufspace = 0; 513 static uint64_t nspgsin, nspgsout; 514 515 GETSYSCTL("vfs.bufspace", bufspace); 516 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 517 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 518 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 519 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 520 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 521 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 522 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 523 /* convert memory stats to Kbytes */ 524 memory_stats[0] = pagetok(memory_stats[0]); 525 memory_stats[1] = pagetok(memory_stats[1]); 526 memory_stats[2] = pagetok(memory_stats[2]); 527 memory_stats[3] = pagetok(memory_stats[3]); 528 memory_stats[4] = bufspace / 1024; 529 memory_stats[5] = pagetok(memory_stats[5]); 530 memory_stats[6] = -1; 531 532 /* first interval */ 533 if (swappgsin < 0) { 534 swap_stats[4] = 0; 535 swap_stats[5] = 0; 536 } 537 538 /* compute differences between old and new swap statistic */ 539 else { 540 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 541 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 542 } 543 544 swappgsin = nspgsin; 545 swappgsout = nspgsout; 546 547 /* call CPU heavy swapmode() only for changes */ 548 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 549 swap_stats[3] = swapmode(&swapavail, &swapfree); 550 swap_stats[0] = swapavail; 551 swap_stats[1] = swapavail - swapfree; 552 swap_stats[2] = swapfree; 553 } 554 swap_delay = 1; 555 swap_stats[6] = -1; 556 } 557 558 if (arc_enabled) { 559 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 560 arc_stats[0] = arc_stat >> 10; 561 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 562 arc_stats[1] = arc_stat >> 10; 563 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 564 arc_stats[2] = arc_stat >> 10; 565 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 566 arc_stats[3] = arc_stat >> 10; 567 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 568 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 569 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 570 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 571 arc_stats[5] = arc_stat >> 10; 572 si->arc = arc_stats; 573 } 574 if (carc_enabled) { 575 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 576 carc_stats[0] = arc_stat >> 10; 577 carc_stats[2] = arc_stat >> 10; /* For ratio */ 578 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 579 carc_stats[1] = arc_stat >> 10; 580 si->carc = carc_stats; 581 } 582 583 /* set arrays and strings */ 584 if (pcpu_stats) { 585 si->cpustates = pcpu_cpu_states; 586 si->ncpus = ncpus; 587 } else { 588 si->cpustates = cpu_states; 589 si->ncpus = 1; 590 } 591 si->memory = memory_stats; 592 si->swap = swap_stats; 593 594 595 if (lastpid > 0) { 596 si->last_pid = lastpid; 597 } else { 598 si->last_pid = -1; 599 } 600 601 /* 602 * Print how long system has been up. 603 * (Found by looking getting "boottime" from the kernel) 604 */ 605 mib[0] = CTL_KERN; 606 mib[1] = KERN_BOOTTIME; 607 size = sizeof(boottime); 608 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 609 boottime.tv_sec != 0) { 610 si->boottime = boottime; 611 } else { 612 si->boottime.tv_sec = -1; 613 } 614 } 615 616 #define NOPROC ((void *)-1) 617 618 /* 619 * We need to compare data from the old process entry with the new 620 * process entry. 621 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 622 * structure to cache the mapping. We also use a negative cache pointer 623 * of NOPROC to avoid duplicate lookups. 624 * XXX: this could be done when the actual processes are fetched, we do 625 * it here out of laziness. 626 */ 627 static const struct kinfo_proc * 628 get_old_proc(struct kinfo_proc *pp) 629 { 630 const struct kinfo_proc * const *oldpp, *oldp; 631 632 /* 633 * If this is the first fetch of the kinfo_procs then we don't have 634 * any previous entries. 635 */ 636 if (previous_proc_count == 0) 637 return (NULL); 638 /* negative cache? */ 639 if (pp->ki_udata == NOPROC) 640 return (NULL); 641 /* cached? */ 642 if (pp->ki_udata != NULL) 643 return (pp->ki_udata); 644 /* 645 * Not cached, 646 * 1) look up based on pid. 647 * 2) compare process start. 648 * If we fail here, then setup a negative cache entry, otherwise 649 * cache it. 650 */ 651 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 652 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 653 if (oldpp == NULL) { 654 pp->ki_udata = NOPROC; 655 return (NULL); 656 } 657 oldp = *oldpp; 658 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 659 pp->ki_udata = NOPROC; 660 return (NULL); 661 } 662 pp->ki_udata = oldp; 663 return (oldp); 664 } 665 666 /* 667 * Return the total amount of IO done in blocks in/out and faults. 668 * store the values individually in the pointers passed in. 669 */ 670 static long 671 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 672 long *vcsw, long *ivcsw) 673 { 674 const struct kinfo_proc *oldp; 675 static struct kinfo_proc dummy; 676 long ret; 677 678 oldp = get_old_proc(pp); 679 if (oldp == NULL) { 680 memset(&dummy, 0, sizeof(dummy)); 681 oldp = &dummy; 682 } 683 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 684 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 685 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 686 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 687 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 688 ret = 689 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 690 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 691 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 692 return (ret); 693 } 694 695 /* 696 * If there was a previous update, use the delta in ki_runtime over 697 * the previous interval to calculate pctcpu. Otherwise, fall back 698 * to using the kernel's ki_pctcpu. 699 */ 700 static double 701 proc_calc_pctcpu(struct kinfo_proc *pp) 702 { 703 const struct kinfo_proc *oldp; 704 705 if (previous_interval != 0) { 706 oldp = get_old_proc(pp); 707 if (oldp != NULL) 708 return ((double)(pp->ki_runtime - oldp->ki_runtime) 709 / previous_interval); 710 711 /* 712 * If this process/thread was created during the previous 713 * interval, charge it's total runtime to the previous 714 * interval. 715 */ 716 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 717 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 718 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 719 return ((double)pp->ki_runtime / previous_interval); 720 } 721 return (pctdouble(pp->ki_pctcpu)); 722 } 723 724 /* 725 * Return true if this process has used any CPU time since the 726 * previous update. 727 */ 728 static int 729 proc_used_cpu(struct kinfo_proc *pp) 730 { 731 const struct kinfo_proc *oldp; 732 733 oldp = get_old_proc(pp); 734 if (oldp == NULL) 735 return (PCTCPU(pp) != 0); 736 return (pp->ki_runtime != oldp->ki_runtime || 737 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 738 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 739 } 740 741 /* 742 * Return the total number of block in/out and faults by a process. 743 */ 744 static long 745 get_io_total(const struct kinfo_proc *pp) 746 { 747 long dummy; 748 749 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 750 } 751 752 static struct handle handle; 753 754 void * 755 get_process_info(struct system_info *si, struct process_select *sel, 756 int (*compare)(const void *, const void *)) 757 { 758 int i; 759 int total_procs; 760 long p_io; 761 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 762 long nsec; 763 int active_procs; 764 struct kinfo_proc **prefp; 765 struct kinfo_proc *pp; 766 struct timespec previous_proc_uptime; 767 768 /* 769 * If thread state was toggled, don't cache the previous processes. 770 */ 771 if (previous_thread != sel->thread) 772 nproc = 0; 773 previous_thread = sel->thread; 774 775 /* 776 * Save the previous process info. 777 */ 778 if (previous_proc_count_max < nproc) { 779 free(previous_procs); 780 previous_procs = calloc(nproc, sizeof(*previous_procs)); 781 free(previous_pref); 782 previous_pref = calloc(nproc, sizeof(*previous_pref)); 783 if (previous_procs == NULL || previous_pref == NULL) { 784 fprintf(stderr, "top: Out of memory.\n"); 785 quit(TOP_EX_SYS_ERROR); 786 } 787 previous_proc_count_max = nproc; 788 } 789 if (nproc) { 790 for (i = 0; i < nproc; i++) 791 previous_pref[i] = &previous_procs[i]; 792 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 793 qsort(previous_pref, nproc, sizeof(*previous_pref), 794 ps.thread ? compare_tid : compare_pid); 795 } 796 previous_proc_count = nproc; 797 previous_proc_uptime = proc_uptime; 798 previous_wall_time = proc_wall_time; 799 previous_interval = 0; 800 801 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 802 0, &nproc); 803 gettimeofday(&proc_wall_time, NULL); 804 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 805 memset(&proc_uptime, 0, sizeof(proc_uptime)); 806 else if (previous_proc_uptime.tv_sec != 0 && 807 previous_proc_uptime.tv_nsec != 0) { 808 previous_interval = (proc_uptime.tv_sec - 809 previous_proc_uptime.tv_sec) * 1000000; 810 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 811 if (nsec < 0) { 812 previous_interval -= 1000000; 813 nsec += 1000000000; 814 } 815 previous_interval += nsec / 1000; 816 } 817 if (nproc > onproc) { 818 pref = realloc(pref, sizeof(*pref) * nproc); 819 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 820 onproc = nproc; 821 } 822 if (pref == NULL || pbase == NULL || pcpu == NULL) { 823 fprintf(stderr, "top: Out of memory.\n"); 824 quit(TOP_EX_SYS_ERROR); 825 } 826 /* get a pointer to the states summary array */ 827 si->procstates = process_states; 828 829 /* count up process states and get pointers to interesting procs */ 830 total_procs = 0; 831 active_procs = 0; 832 total_inblock = 0; 833 total_oublock = 0; 834 total_majflt = 0; 835 memset(process_states, 0, sizeof(process_states)); 836 prefp = pref; 837 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 838 839 if (pp->ki_stat == 0) 840 /* not in use */ 841 continue; 842 843 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 844 /* skip self */ 845 continue; 846 847 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 848 /* skip system process */ 849 continue; 850 851 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 852 &p_vcsw, &p_ivcsw); 853 total_inblock += p_inblock; 854 total_oublock += p_oublock; 855 total_majflt += p_majflt; 856 total_procs++; 857 process_states[(unsigned char)pp->ki_stat]++; 858 859 if (pp->ki_stat == SZOMB) 860 /* skip zombies */ 861 continue; 862 863 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 864 /* skip kernel idle process */ 865 continue; 866 867 PCTCPU(pp) = proc_calc_pctcpu(pp); 868 if (sel->thread && PCTCPU(pp) > 1.0) 869 PCTCPU(pp) = 1.0; 870 if (displaymode == DISP_CPU && !sel->idle && 871 (!proc_used_cpu(pp) || 872 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 873 /* skip idle or non-running processes */ 874 continue; 875 876 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 877 /* skip processes that aren't doing I/O */ 878 continue; 879 880 if (sel->jid != -1 && pp->ki_jid != sel->jid) 881 /* skip proc. that don't belong to the selected JID */ 882 continue; 883 884 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 885 /* skip proc. that don't belong to the selected UID */ 886 continue; 887 888 if (sel->pid != -1 && pp->ki_pid != sel->pid) 889 continue; 890 891 *prefp++ = pp; 892 active_procs++; 893 } 894 895 /* if requested, sort the "interesting" processes */ 896 if (compare != NULL) 897 qsort(pref, active_procs, sizeof(*pref), compare); 898 899 /* remember active and total counts */ 900 si->p_total = total_procs; 901 si->p_pactive = pref_len = active_procs; 902 903 /* pass back a handle */ 904 handle.next_proc = pref; 905 handle.remaining = active_procs; 906 return (&handle); 907 } 908 909 static char fmt[512]; /* static area where result is built */ 910 911 char * 912 format_next_process(void* xhandle, char *(*get_userid)(int), int flags) 913 { 914 struct kinfo_proc *pp; 915 const struct kinfo_proc *oldp; 916 long cputime; 917 double pct; 918 struct handle *hp; 919 char status[22]; 920 int cpu; 921 size_t state; 922 struct rusage ru, *rup; 923 long p_tot, s_tot; 924 const char *proc_fmt; 925 char thr_buf[6]; 926 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 927 char *cmdbuf = NULL; 928 char **args; 929 const int cmdlen = 128; 930 931 /* find and remember the next proc structure */ 932 hp = (struct handle *)xhandle; 933 pp = *(hp->next_proc++); 934 hp->remaining--; 935 936 /* get the process's command name */ 937 if ((pp->ki_flag & P_INMEM) == 0) { 938 /* 939 * Print swapped processes as <pname> 940 */ 941 size_t len; 942 943 len = strlen(pp->ki_comm); 944 if (len > sizeof(pp->ki_comm) - 3) 945 len = sizeof(pp->ki_comm) - 3; 946 memmove(pp->ki_comm + 1, pp->ki_comm, len); 947 pp->ki_comm[0] = '<'; 948 pp->ki_comm[len + 1] = '>'; 949 pp->ki_comm[len + 2] = '\0'; 950 } 951 952 /* 953 * Convert the process's runtime from microseconds to seconds. This 954 * time includes the interrupt time although that is not wanted here. 955 * ps(1) is similarly sloppy. 956 */ 957 cputime = (pp->ki_runtime + 500000) / 1000000; 958 959 /* calculate the base for cpu percentages */ 960 pct = PCTCPU(pp); 961 962 /* generate "STATE" field */ 963 switch (state = pp->ki_stat) { 964 case SRUN: 965 if (smpmode && pp->ki_oncpu != NOCPU) 966 sprintf(status, "CPU%d", pp->ki_oncpu); 967 else 968 strcpy(status, "RUN"); 969 break; 970 case SLOCK: 971 if (pp->ki_kiflag & KI_LOCKBLOCK) { 972 sprintf(status, "*%.6s", pp->ki_lockname); 973 break; 974 } 975 /* fall through */ 976 case SSLEEP: 977 sprintf(status, "%.6s", pp->ki_wmesg); 978 break; 979 default: 980 981 if (state < nitems(state_abbrev)) { 982 sprintf(status, "%.6s", state_abbrev[state]); 983 } else { 984 sprintf(status, "?%5zu", state); 985 } 986 break; 987 } 988 989 cmdbuf = calloc(cmdlen + 1, 1); 990 if (cmdbuf == NULL) { 991 warn("calloc(%d)", cmdlen + 1); 992 return NULL; 993 } 994 995 if (!(flags & FMT_SHOWARGS)) { 996 if (ps.thread && pp->ki_flag & P_HADTHREADS && 997 pp->ki_tdname[0]) { 998 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 999 pp->ki_tdname, pp->ki_moretdname); 1000 } else { 1001 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1002 } 1003 } else { 1004 if (pp->ki_flag & P_SYSTEM || 1005 pp->ki_args == NULL || 1006 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1007 !(*args)) { 1008 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1009 pp->ki_tdname[0]) { 1010 snprintf(cmdbuf, cmdlen, 1011 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1012 pp->ki_moretdname); 1013 } else { 1014 snprintf(cmdbuf, cmdlen, 1015 "[%s]", pp->ki_comm); 1016 } 1017 } else { 1018 const char *src; 1019 char *dst, *argbuf; 1020 const char *cmd; 1021 size_t argbuflen; 1022 size_t len; 1023 1024 argbuflen = cmdlen * 4; 1025 argbuf = calloc(argbuflen + 1, 1); 1026 if (argbuf == NULL) { 1027 warn("calloc(%zu)", argbuflen + 1); 1028 free(cmdbuf); 1029 return NULL; 1030 } 1031 1032 dst = argbuf; 1033 1034 /* Extract cmd name from argv */ 1035 cmd = strrchr(*args, '/'); 1036 if (cmd == NULL) 1037 cmd = *args; 1038 else 1039 cmd++; 1040 1041 for (; (src = *args++) != NULL; ) { 1042 if (*src == '\0') 1043 continue; 1044 len = (argbuflen - (dst - argbuf) - 1) / 4; 1045 strvisx(dst, src, 1046 MIN(strlen(src), len), 1047 VIS_NL | VIS_CSTYLE); 1048 while (*dst != '\0') 1049 dst++; 1050 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1051 *dst++ = ' '; /* add delimiting space */ 1052 } 1053 if (dst != argbuf && dst[-1] == ' ') 1054 dst--; 1055 *dst = '\0'; 1056 1057 if (strcmp(cmd, pp->ki_comm) != 0) { 1058 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1059 pp->ki_tdname[0]) 1060 snprintf(cmdbuf, cmdlen, 1061 "%s (%s){%s%s}", argbuf, 1062 pp->ki_comm, pp->ki_tdname, 1063 pp->ki_moretdname); 1064 else 1065 snprintf(cmdbuf, cmdlen, 1066 "%s (%s)", argbuf, pp->ki_comm); 1067 } else { 1068 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1069 pp->ki_tdname[0]) 1070 snprintf(cmdbuf, cmdlen, 1071 "%s{%s%s}", argbuf, pp->ki_tdname, 1072 pp->ki_moretdname); 1073 else 1074 strlcpy(cmdbuf, argbuf, cmdlen); 1075 } 1076 free(argbuf); 1077 } 1078 } 1079 1080 if (ps.jail == 0) 1081 jid_buf[0] = '\0'; 1082 else 1083 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1084 jidlength - 1, pp->ki_jid); 1085 1086 if (ps.swap == 0) 1087 swap_buf[0] = '\0'; 1088 else 1089 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1090 swaplength - 1, 1091 format_k(pagetok(ki_swap(pp)))); /* XXX */ 1092 1093 if (displaymode == DISP_IO) { 1094 oldp = get_old_proc(pp); 1095 if (oldp != NULL) { 1096 ru.ru_inblock = RU(pp)->ru_inblock - 1097 RU(oldp)->ru_inblock; 1098 ru.ru_oublock = RU(pp)->ru_oublock - 1099 RU(oldp)->ru_oublock; 1100 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1101 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1102 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1103 rup = &ru; 1104 } else { 1105 rup = RU(pp); 1106 } 1107 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1108 s_tot = total_inblock + total_oublock + total_majflt; 1109 1110 snprintf(fmt, sizeof(fmt), io_Proc_format, 1111 pp->ki_pid, 1112 jidlength, jid_buf, 1113 namelength, namelength, (*get_userid)(pp->ki_ruid), 1114 rup->ru_nvcsw, 1115 rup->ru_nivcsw, 1116 rup->ru_inblock, 1117 rup->ru_oublock, 1118 rup->ru_majflt, 1119 p_tot, 1120 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1121 screen_width > cmdlengthdelta ? 1122 screen_width - cmdlengthdelta : 0, 1123 printable(cmdbuf)); 1124 1125 free(cmdbuf); 1126 1127 return (fmt); 1128 } 1129 1130 /* format this entry */ 1131 if (smpmode) { 1132 if (state == SRUN && pp->ki_oncpu != NOCPU) 1133 cpu = pp->ki_oncpu; 1134 else 1135 cpu = pp->ki_lastcpu; 1136 } else 1137 cpu = 0; 1138 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1139 if (ps.thread != 0) 1140 thr_buf[0] = '\0'; 1141 else 1142 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1143 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1144 1145 snprintf(fmt, sizeof(fmt), proc_fmt, 1146 (ps.thread_id) ? pp->ki_tid : pp->ki_pid, 1147 jidlength, jid_buf, 1148 namelength, namelength, (*get_userid)(pp->ki_ruid), 1149 thr_buf, 1150 pp->ki_pri.pri_level - PZERO, 1151 format_nice(pp), 1152 format_k(PROCSIZE(pp)), 1153 format_k(pagetok(pp->ki_rssize)), 1154 swaplength, swaplength, swap_buf, 1155 status, 1156 cpu, 1157 format_time(cputime), 1158 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1159 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1160 printable(cmdbuf)); 1161 1162 free(cmdbuf); 1163 1164 /* return the result */ 1165 return (fmt); 1166 } 1167 1168 static void 1169 getsysctl(const char *name, void *ptr, size_t len) 1170 { 1171 size_t nlen = len; 1172 1173 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1174 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1175 strerror(errno)); 1176 quit(TOP_EX_SYS_ERROR); 1177 } 1178 if (nlen != len) { 1179 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1180 name, (unsigned long)len, (unsigned long)nlen); 1181 quit(TOP_EX_SYS_ERROR); 1182 } 1183 } 1184 1185 static const char * 1186 format_nice(const struct kinfo_proc *pp) 1187 { 1188 const char *fifo, *kproc; 1189 int rtpri; 1190 static char nicebuf[4 + 1]; 1191 1192 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1193 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1194 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1195 case PRI_ITHD: 1196 return ("-"); 1197 case PRI_REALTIME: 1198 /* 1199 * XXX: the kernel doesn't tell us the original rtprio and 1200 * doesn't really know what it was, so to recover it we 1201 * must be more chummy with the implementation than the 1202 * implementation is with itself. pri_user gives a 1203 * constant "base" priority, but is only initialized 1204 * properly for user threads. pri_native gives what the 1205 * kernel calls the "base" priority, but it isn't constant 1206 * since it is changed by priority propagation. pri_native 1207 * also isn't properly initialized for all threads, but it 1208 * is properly initialized for kernel realtime and idletime 1209 * threads. Thus we use pri_user for the base priority of 1210 * user threads (it is always correct) and pri_native for 1211 * the base priority of kernel realtime and idletime threads 1212 * (there is nothing better, and it is usually correct). 1213 * 1214 * The field width and thus the buffer are too small for 1215 * values like "kr31F", but such values shouldn't occur, 1216 * and if they do then the tailing "F" is not displayed. 1217 */ 1218 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1219 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1220 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1221 kproc, rtpri, fifo); 1222 break; 1223 case PRI_TIMESHARE: 1224 if (pp->ki_flag & P_KPROC) 1225 return ("-"); 1226 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1227 break; 1228 case PRI_IDLE: 1229 /* XXX: as above. */ 1230 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1231 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1232 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1233 kproc, rtpri, fifo); 1234 break; 1235 default: 1236 return ("?"); 1237 } 1238 return (nicebuf); 1239 } 1240 1241 /* comparison routines for qsort */ 1242 1243 static int 1244 compare_pid(const void *p1, const void *p2) 1245 { 1246 const struct kinfo_proc * const *pp1 = p1; 1247 const struct kinfo_proc * const *pp2 = p2; 1248 1249 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1250 1251 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1252 } 1253 1254 static int 1255 compare_tid(const void *p1, const void *p2) 1256 { 1257 const struct kinfo_proc * const *pp1 = p1; 1258 const struct kinfo_proc * const *pp2 = p2; 1259 1260 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1261 1262 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1263 } 1264 1265 /* 1266 * proc_compare - comparison function for "qsort" 1267 * Compares the resource consumption of two processes using five 1268 * distinct keys. The keys (in descending order of importance) are: 1269 * percent cpu, cpu ticks, state, resident set size, total virtual 1270 * memory usage. The process states are ordered as follows (from least 1271 * to most important): WAIT, zombie, sleep, stop, start, run. The 1272 * array declaration below maps a process state index into a number 1273 * that reflects this ordering. 1274 */ 1275 1276 static int sorted_state[] = { 1277 0, /* not used */ 1278 3, /* sleep */ 1279 1, /* ABANDONED (WAIT) */ 1280 6, /* run */ 1281 5, /* start */ 1282 2, /* zombie */ 1283 4 /* stop */ 1284 }; 1285 1286 1287 #define ORDERKEY_PCTCPU(a, b) do { \ 1288 double diff; \ 1289 if (ps.wcpu) \ 1290 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1291 weighted_cpu(PCTCPU((a)), (a)); \ 1292 else \ 1293 diff = PCTCPU((b)) - PCTCPU((a)); \ 1294 if (diff != 0) \ 1295 return (diff > 0 ? 1 : -1); \ 1296 } while (0) 1297 1298 #define ORDERKEY_CPTICKS(a, b) do { \ 1299 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1300 if (diff != 0) \ 1301 return (diff > 0 ? 1 : -1); \ 1302 } while (0) 1303 1304 #define ORDERKEY_STATE(a, b) do { \ 1305 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1306 if (diff != 0) \ 1307 return (diff > 0 ? 1 : -1); \ 1308 } while (0) 1309 1310 #define ORDERKEY_PRIO(a, b) do { \ 1311 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1312 if (diff != 0) \ 1313 return (diff > 0 ? 1 : -1); \ 1314 } while (0) 1315 1316 #define ORDERKEY_THREADS(a, b) do { \ 1317 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1318 if (diff != 0) \ 1319 return (diff > 0 ? 1 : -1); \ 1320 } while (0) 1321 1322 #define ORDERKEY_RSSIZE(a, b) do { \ 1323 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1324 if (diff != 0) \ 1325 return (diff > 0 ? 1 : -1); \ 1326 } while (0) 1327 1328 #define ORDERKEY_MEM(a, b) do { \ 1329 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1330 if (diff != 0) \ 1331 return (diff > 0 ? 1 : -1); \ 1332 } while (0) 1333 1334 #define ORDERKEY_JID(a, b) do { \ 1335 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1336 if (diff != 0) \ 1337 return (diff > 0 ? 1 : -1); \ 1338 } while (0) 1339 1340 #define ORDERKEY_SWAP(a, b) do { \ 1341 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1342 if (diff != 0) \ 1343 return (diff > 0 ? 1 : -1); \ 1344 } while (0) 1345 1346 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1347 1348 static int 1349 compare_cpu(const void *arg1, const void *arg2) 1350 { 1351 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1352 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1353 1354 ORDERKEY_PCTCPU(p1, p2); 1355 ORDERKEY_CPTICKS(p1, p2); 1356 ORDERKEY_STATE(p1, p2); 1357 ORDERKEY_PRIO(p1, p2); 1358 ORDERKEY_RSSIZE(p1, p2); 1359 ORDERKEY_MEM(p1, p2); 1360 1361 return (0); 1362 } 1363 1364 /* compare_size - the comparison function for sorting by total memory usage */ 1365 1366 static int 1367 compare_size(const void *arg1, const void *arg2) 1368 { 1369 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1370 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1371 1372 ORDERKEY_MEM(p1, p2); 1373 ORDERKEY_RSSIZE(p1, p2); 1374 ORDERKEY_PCTCPU(p1, p2); 1375 ORDERKEY_CPTICKS(p1, p2); 1376 ORDERKEY_STATE(p1, p2); 1377 ORDERKEY_PRIO(p1, p2); 1378 1379 return (0); 1380 } 1381 1382 /* compare_res - the comparison function for sorting by resident set size */ 1383 1384 static int 1385 compare_res(const void *arg1, const void *arg2) 1386 { 1387 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1388 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1389 1390 ORDERKEY_RSSIZE(p1, p2); 1391 ORDERKEY_MEM(p1, p2); 1392 ORDERKEY_PCTCPU(p1, p2); 1393 ORDERKEY_CPTICKS(p1, p2); 1394 ORDERKEY_STATE(p1, p2); 1395 ORDERKEY_PRIO(p1, p2); 1396 1397 return (0); 1398 } 1399 1400 /* compare_time - the comparison function for sorting by total cpu time */ 1401 1402 static int 1403 compare_time(const void *arg1, const void *arg2) 1404 { 1405 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1406 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1407 1408 ORDERKEY_CPTICKS(p1, p2); 1409 ORDERKEY_PCTCPU(p1, p2); 1410 ORDERKEY_STATE(p1, p2); 1411 ORDERKEY_PRIO(p1, p2); 1412 ORDERKEY_RSSIZE(p1, p2); 1413 ORDERKEY_MEM(p1, p2); 1414 1415 return (0); 1416 } 1417 1418 /* compare_prio - the comparison function for sorting by priority */ 1419 1420 static int 1421 compare_prio(const void *arg1, const void *arg2) 1422 { 1423 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1424 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1425 1426 ORDERKEY_PRIO(p1, p2); 1427 ORDERKEY_CPTICKS(p1, p2); 1428 ORDERKEY_PCTCPU(p1, p2); 1429 ORDERKEY_STATE(p1, p2); 1430 ORDERKEY_RSSIZE(p1, p2); 1431 ORDERKEY_MEM(p1, p2); 1432 1433 return (0); 1434 } 1435 1436 /* compare_threads - the comparison function for sorting by threads */ 1437 static int 1438 compare_threads(const void *arg1, const void *arg2) 1439 { 1440 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1441 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1442 1443 ORDERKEY_THREADS(p1, p2); 1444 ORDERKEY_PCTCPU(p1, p2); 1445 ORDERKEY_CPTICKS(p1, p2); 1446 ORDERKEY_STATE(p1, p2); 1447 ORDERKEY_PRIO(p1, p2); 1448 ORDERKEY_RSSIZE(p1, p2); 1449 ORDERKEY_MEM(p1, p2); 1450 1451 return (0); 1452 } 1453 1454 /* compare_jid - the comparison function for sorting by jid */ 1455 static int 1456 compare_jid(const void *arg1, const void *arg2) 1457 { 1458 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1459 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1460 1461 ORDERKEY_JID(p1, p2); 1462 ORDERKEY_PCTCPU(p1, p2); 1463 ORDERKEY_CPTICKS(p1, p2); 1464 ORDERKEY_STATE(p1, p2); 1465 ORDERKEY_PRIO(p1, p2); 1466 ORDERKEY_RSSIZE(p1, p2); 1467 ORDERKEY_MEM(p1, p2); 1468 1469 return (0); 1470 } 1471 1472 /* compare_swap - the comparison function for sorting by swap */ 1473 static int 1474 compare_swap(const void *arg1, const void *arg2) 1475 { 1476 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1477 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1478 1479 ORDERKEY_SWAP(p1, p2); 1480 ORDERKEY_PCTCPU(p1, p2); 1481 ORDERKEY_CPTICKS(p1, p2); 1482 ORDERKEY_STATE(p1, p2); 1483 ORDERKEY_PRIO(p1, p2); 1484 ORDERKEY_RSSIZE(p1, p2); 1485 ORDERKEY_MEM(p1, p2); 1486 1487 return (0); 1488 } 1489 1490 /* assorted comparison functions for sorting by i/o */ 1491 1492 static int 1493 compare_iototal(const void *arg1, const void *arg2) 1494 { 1495 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1496 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1497 1498 return (get_io_total(p2) - get_io_total(p1)); 1499 } 1500 1501 static int 1502 compare_ioread(const void *arg1, const void *arg2) 1503 { 1504 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1505 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1506 long dummy, inp1, inp2; 1507 1508 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1509 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1510 1511 return (inp2 - inp1); 1512 } 1513 1514 static int 1515 compare_iowrite(const void *arg1, const void *arg2) 1516 { 1517 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1518 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1519 long dummy, oup1, oup2; 1520 1521 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1522 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1523 1524 return (oup2 - oup1); 1525 } 1526 1527 static int 1528 compare_iofault(const void *arg1, const void *arg2) 1529 { 1530 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1531 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1532 long dummy, flp1, flp2; 1533 1534 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1535 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1536 1537 return (flp2 - flp1); 1538 } 1539 1540 static int 1541 compare_vcsw(const void *arg1, const void *arg2) 1542 { 1543 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1544 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1545 long dummy, flp1, flp2; 1546 1547 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1548 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1549 1550 return (flp2 - flp1); 1551 } 1552 1553 static int 1554 compare_ivcsw(const void *arg1, const void *arg2) 1555 { 1556 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1557 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1558 long dummy, flp1, flp2; 1559 1560 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1561 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1562 1563 return (flp2 - flp1); 1564 } 1565 1566 int (*compares[])(const void *arg1, const void *arg2) = { 1567 compare_cpu, 1568 compare_size, 1569 compare_res, 1570 compare_time, 1571 compare_prio, 1572 compare_threads, 1573 compare_iototal, 1574 compare_ioread, 1575 compare_iowrite, 1576 compare_iofault, 1577 compare_vcsw, 1578 compare_ivcsw, 1579 compare_jid, 1580 compare_swap, 1581 NULL 1582 }; 1583 1584 1585 /* 1586 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1587 * the process does not exist. 1588 */ 1589 1590 int 1591 proc_owner(int pid) 1592 { 1593 int cnt; 1594 struct kinfo_proc **prefp; 1595 struct kinfo_proc *pp; 1596 1597 prefp = pref; 1598 cnt = pref_len; 1599 while (--cnt >= 0) { 1600 pp = *prefp++; 1601 if (pp->ki_pid == (pid_t)pid) 1602 return ((int)pp->ki_ruid); 1603 } 1604 return (-1); 1605 } 1606 1607 static int 1608 swapmode(int *retavail, int *retfree) 1609 { 1610 int n; 1611 struct kvm_swap swapary[1]; 1612 static int pagesize = 0; 1613 static unsigned long swap_maxpages = 0; 1614 1615 *retavail = 0; 1616 *retfree = 0; 1617 1618 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1619 1620 n = kvm_getswapinfo(kd, swapary, 1, 0); 1621 if (n < 0 || swapary[0].ksw_total == 0) 1622 return (0); 1623 1624 if (pagesize == 0) 1625 pagesize = getpagesize(); 1626 if (swap_maxpages == 0) 1627 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1628 1629 /* ksw_total contains the total size of swap all devices which may 1630 exceed the maximum swap size allocatable in the system */ 1631 if ( swapary[0].ksw_total > swap_maxpages ) 1632 swapary[0].ksw_total = swap_maxpages; 1633 1634 *retavail = CONVERT(swapary[0].ksw_total); 1635 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1636 1637 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1638 return (n); 1639 } 1640