1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <kvm.h> 32 #include <math.h> 33 #include <paths.h> 34 #include <stdio.h> 35 #include <stdbool.h> 36 #include <stdint.h> 37 #include <stdlib.h> 38 #include <string.h> 39 #include <time.h> 40 #include <unistd.h> 41 #include <vis.h> 42 43 #include "top.h" 44 #include "display.h" 45 #include "machine.h" 46 #include "loadavg.h" 47 #include "screen.h" 48 #include "utils.h" 49 #include "layout.h" 50 51 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 52 #define SMPUNAMELEN 13 53 #define UPUNAMELEN 15 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static int namelength = 8; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 7 61 #define TOP_SWAP_LEN 6 62 static int jidlength; 63 static int swaplength; 64 static int cmdlengthdelta; 65 66 /* get_process_info passes back a handle. This is what it looks like: */ 67 68 struct handle { 69 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 70 int remaining; /* number of pointers remaining */ 71 }; 72 73 74 /* define what weighted cpu is. */ 75 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 76 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 77 78 /* what we consider to be process size: */ 79 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 80 81 #define RU(pp) (&(pp)->ki_rusage) 82 83 #define PCTCPU(pp) (pcpu[pp - pbase]) 84 85 /* 86 * These definitions control the format of the per-process area 87 */ 88 89 static const char io_header[] = 90 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 91 92 static const char io_Proc_format[] = 93 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"; 94 95 /* XXX: build up header instead of statically defining them. 96 * This will also allow for a "format string" to be supplied 97 * as an argument to top(1) instead of having predefined options */ 98 static const char smp_header_thr_and_pid[] = 99 " %s%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 100 static const char smp_header_id_only[] = 101 " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 102 static const char smp_Proc_format[] = 103 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; 104 105 static char up_header_thr_and_pid[] = 106 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 107 static char up_header_id_only[] = 108 " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 109 static char up_Proc_format[] = 110 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; 111 112 113 /* process state names for the "STATE" column of the display */ 114 /* the extra nulls in the string "run" are for adding a slash and 115 the processor number when needed */ 116 117 static const char *state_abbrev[] = { 118 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 119 }; 120 121 122 static kvm_t *kd; 123 124 /* values that we stash away in _init and use in later routines */ 125 126 static double logcpu; 127 128 /* these are retrieved from the kernel in _init */ 129 130 static load_avg ccpu; 131 132 /* these are used in the get_ functions */ 133 134 static int lastpid; 135 136 /* these are for calculating cpu state percentages */ 137 138 static long cp_time[CPUSTATES]; 139 static long cp_old[CPUSTATES]; 140 static long cp_diff[CPUSTATES]; 141 142 /* these are for detailing the process states */ 143 144 static const char *procstatenames[] = { 145 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 146 " zombie, ", " waiting, ", " lock, ", 147 NULL 148 }; 149 static int process_states[nitems(procstatenames)]; 150 151 /* these are for detailing the cpu states */ 152 153 static int cpu_states[CPUSTATES]; 154 static const char *cpustatenames[] = { 155 "user", "nice", "system", "interrupt", "idle", NULL 156 }; 157 158 /* these are for detailing the memory statistics */ 159 160 static const char *memorynames[] = { 161 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 162 "K Free", NULL 163 }; 164 static int memory_stats[nitems(memorynames)]; 165 166 static const char *arcnames[] = { 167 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 168 NULL 169 }; 170 static int arc_stats[nitems(arcnames)]; 171 172 static const char *carcnames[] = { 173 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 174 NULL 175 }; 176 static int carc_stats[nitems(carcnames)]; 177 178 static const char *swapnames[] = { 179 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 180 NULL 181 }; 182 static int swap_stats[nitems(swapnames)]; 183 184 185 /* these are for keeping track of the proc array */ 186 187 static int nproc; 188 static int onproc = -1; 189 static int pref_len; 190 static struct kinfo_proc *pbase; 191 static struct kinfo_proc **pref; 192 static struct kinfo_proc *previous_procs; 193 static struct kinfo_proc **previous_pref; 194 static int previous_proc_count = 0; 195 static int previous_proc_count_max = 0; 196 static int previous_thread; 197 198 /* data used for recalculating pctcpu */ 199 static double *pcpu; 200 static struct timespec proc_uptime; 201 static struct timeval proc_wall_time; 202 static struct timeval previous_wall_time; 203 static uint64_t previous_interval = 0; 204 205 /* total number of io operations */ 206 static long total_inblock; 207 static long total_oublock; 208 static long total_majflt; 209 210 /* these are for getting the memory statistics */ 211 212 static int arc_enabled; 213 static int carc_enabled; 214 static int pageshift; /* log base 2 of the pagesize */ 215 216 /* define pagetok in terms of pageshift */ 217 218 #define pagetok(size) ((size) << pageshift) 219 220 /* swap usage */ 221 #define ki_swap(kip) \ 222 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 223 224 /* 225 * Sorting orders. The first element is the default. 226 */ 227 static const char *ordernames[] = { 228 "cpu", "size", "res", "time", "pri", "threads", 229 "total", "read", "write", "fault", "vcsw", "ivcsw", 230 "jid", "swap", "pid", NULL 231 }; 232 233 /* Per-cpu time states */ 234 static int maxcpu; 235 static int maxid; 236 static int ncpus; 237 static unsigned long cpumask; 238 static long *times; 239 static long *pcpu_cp_time; 240 static long *pcpu_cp_old; 241 static long *pcpu_cp_diff; 242 static int *pcpu_cpu_states; 243 244 static int compare_swap(const void *a, const void *b); 245 static int compare_jid(const void *a, const void *b); 246 static int compare_pid(const void *a, const void *b); 247 static int compare_tid(const void *a, const void *b); 248 static const char *format_nice(const struct kinfo_proc *pp); 249 static void getsysctl(const char *name, void *ptr, size_t len); 250 static int swapmode(int *retavail, int *retfree); 251 static void update_layout(void); 252 static int find_uid(uid_t needle, int *haystack); 253 254 static int 255 find_uid(uid_t needle, int *haystack) 256 { 257 size_t i = 0; 258 259 for (; i < TOP_MAX_UIDS; ++i) 260 if ((uid_t)haystack[i] == needle) 261 return 1; 262 return (0); 263 } 264 265 void 266 toggle_pcpustats(void) 267 { 268 269 if (ncpus == 1) 270 return; 271 update_layout(); 272 } 273 274 /* Adjust display based on ncpus and the ARC state. */ 275 static void 276 update_layout(void) 277 { 278 279 y_mem = 3; 280 y_arc = 4; 281 y_carc = 5; 282 y_swap = 4 + arc_enabled + carc_enabled; 283 y_idlecursor = 5 + arc_enabled + carc_enabled; 284 y_message = 5 + arc_enabled + carc_enabled; 285 y_header = 6 + arc_enabled + carc_enabled; 286 y_procs = 7 + arc_enabled + carc_enabled; 287 Header_lines = 7 + arc_enabled + carc_enabled; 288 289 if (pcpu_stats) { 290 y_mem += ncpus - 1; 291 y_arc += ncpus - 1; 292 y_carc += ncpus - 1; 293 y_swap += ncpus - 1; 294 y_idlecursor += ncpus - 1; 295 y_message += ncpus - 1; 296 y_header += ncpus - 1; 297 y_procs += ncpus - 1; 298 Header_lines += ncpus - 1; 299 } 300 } 301 302 int 303 machine_init(struct statics *statics) 304 { 305 int i, j, empty, pagesize; 306 uint64_t arc_size; 307 int carc_en; 308 size_t size; 309 310 size = sizeof(smpmode); 311 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 312 NULL, 0) != 0 && 313 sysctlbyname("kern.smp.active", &smpmode, &size, 314 NULL, 0) != 0) || 315 size != sizeof(smpmode)) 316 smpmode = 0; 317 318 size = sizeof(arc_size); 319 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 320 NULL, 0) == 0 && arc_size != 0) 321 arc_enabled = 1; 322 size = sizeof(carc_en); 323 if (arc_enabled && 324 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 325 NULL, 0) == 0 && carc_en == 1) 326 carc_enabled = 1; 327 328 namelength = MAXLOGNAME; 329 if (smpmode && namelength > SMPUNAMELEN) 330 namelength = SMPUNAMELEN; 331 else if (namelength > UPUNAMELEN) 332 namelength = UPUNAMELEN; 333 334 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 335 if (kd == NULL) 336 return (-1); 337 338 GETSYSCTL("kern.ccpu", ccpu); 339 340 /* this is used in calculating WCPU -- calculate it ahead of time */ 341 logcpu = log(loaddouble(ccpu)); 342 343 pbase = NULL; 344 pref = NULL; 345 pcpu = NULL; 346 nproc = 0; 347 onproc = -1; 348 349 /* get the page size and calculate pageshift from it */ 350 pagesize = getpagesize(); 351 pageshift = 0; 352 while (pagesize > 1) { 353 pageshift++; 354 pagesize >>= 1; 355 } 356 357 /* we only need the amount of log(2)1024 for our conversion */ 358 pageshift -= LOG1024; 359 360 /* fill in the statics information */ 361 statics->procstate_names = procstatenames; 362 statics->cpustate_names = cpustatenames; 363 statics->memory_names = memorynames; 364 if (arc_enabled) 365 statics->arc_names = arcnames; 366 else 367 statics->arc_names = NULL; 368 if (carc_enabled) 369 statics->carc_names = carcnames; 370 else 371 statics->carc_names = NULL; 372 statics->swap_names = swapnames; 373 statics->order_names = ordernames; 374 375 /* Allocate state for per-CPU stats. */ 376 cpumask = 0; 377 ncpus = 0; 378 GETSYSCTL("kern.smp.maxcpus", maxcpu); 379 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 380 if (times == NULL) 381 err(1, "calloc for kern.smp.maxcpus"); 382 size = sizeof(long) * maxcpu * CPUSTATES; 383 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 384 err(1, "sysctlbyname kern.cp_times"); 385 pcpu_cp_time = calloc(1, size); 386 maxid = (size / CPUSTATES / sizeof(long)) - 1; 387 for (i = 0; i <= maxid; i++) { 388 empty = 1; 389 for (j = 0; empty && j < CPUSTATES; j++) { 390 if (times[i * CPUSTATES + j] != 0) 391 empty = 0; 392 } 393 if (!empty) { 394 cpumask |= (1ul << i); 395 ncpus++; 396 } 397 } 398 assert(ncpus > 0); 399 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 400 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 401 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 402 statics->ncpus = ncpus; 403 404 update_layout(); 405 406 /* all done! */ 407 return (0); 408 } 409 410 const char * 411 format_header(const char *uname_field) 412 { 413 static char Header[128]; 414 const char *prehead; 415 416 if (ps.jail) 417 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 418 else 419 jidlength = 0; 420 421 if (ps.swap) 422 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 423 else 424 swaplength = 0; 425 426 switch (displaymode) { 427 case DISP_CPU: 428 /* 429 * The logic of picking the right header is confusing, and 430 * depends on too much. We should instead have a struct of 431 * "header name", and "header format" which we build up. 432 * This would also fix the duplicate of effort into up vs smp 433 * mode. 434 */ 435 if (smpmode) { 436 prehead = ps.thread ? 437 smp_header_id_only : smp_header_thr_and_pid; 438 snprintf(Header, sizeof(Header), prehead, 439 ps.thread_id ? " THR" : "PID", 440 jidlength, ps.jail ? " JID" : "", 441 namelength, namelength, uname_field, 442 swaplength, ps.swap ? " SWAP" : "", 443 ps.wcpu ? "WCPU" : "CPU"); 444 } else { 445 prehead = ps.thread ? 446 up_header_id_only : up_header_thr_and_pid; 447 snprintf(Header, sizeof(Header), prehead, 448 ps.thread_id ? " THR" : "PID", 449 jidlength, ps.jail ? " JID" : "", 450 namelength, namelength, uname_field, 451 swaplength, ps.swap ? " SWAP" : "", 452 ps.wcpu ? "WCPU" : "CPU"); 453 } 454 break; 455 case DISP_IO: 456 prehead = io_header; 457 snprintf(Header, sizeof(Header), prehead, 458 jidlength, ps.jail ? " JID" : "", 459 namelength, namelength, uname_field); 460 break; 461 case DISP_MAX: 462 assert("displaymode must not be set to DISP_MAX"); 463 } 464 cmdlengthdelta = strlen(Header) - 7; 465 return (Header); 466 } 467 468 static int swappgsin = -1; 469 static int swappgsout = -1; 470 471 472 void 473 get_system_info(struct system_info *si) 474 { 475 struct loadavg sysload; 476 int mib[2]; 477 struct timeval boottime; 478 uint64_t arc_stat, arc_stat2; 479 int i, j; 480 size_t size; 481 482 /* get the CPU stats */ 483 size = (maxid + 1) * CPUSTATES * sizeof(long); 484 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 485 err(1, "sysctlbyname kern.cp_times"); 486 GETSYSCTL("kern.cp_time", cp_time); 487 GETSYSCTL("vm.loadavg", sysload); 488 GETSYSCTL("kern.lastpid", lastpid); 489 490 /* convert load averages to doubles */ 491 for (i = 0; i < 3; i++) 492 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 493 494 /* convert cp_time counts to percentages */ 495 for (i = j = 0; i <= maxid; i++) { 496 if ((cpumask & (1ul << i)) == 0) 497 continue; 498 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 499 &pcpu_cp_time[j * CPUSTATES], 500 &pcpu_cp_old[j * CPUSTATES], 501 &pcpu_cp_diff[j * CPUSTATES]); 502 j++; 503 } 504 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 505 506 /* sum memory & swap statistics */ 507 { 508 static unsigned int swap_delay = 0; 509 static int swapavail = 0; 510 static int swapfree = 0; 511 static long bufspace = 0; 512 static uint64_t nspgsin, nspgsout; 513 514 GETSYSCTL("vfs.bufspace", bufspace); 515 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 516 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 517 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 518 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 519 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 520 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 521 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 522 /* convert memory stats to Kbytes */ 523 memory_stats[0] = pagetok(memory_stats[0]); 524 memory_stats[1] = pagetok(memory_stats[1]); 525 memory_stats[2] = pagetok(memory_stats[2]); 526 memory_stats[3] = pagetok(memory_stats[3]); 527 memory_stats[4] = bufspace / 1024; 528 memory_stats[5] = pagetok(memory_stats[5]); 529 memory_stats[6] = -1; 530 531 /* first interval */ 532 if (swappgsin < 0) { 533 swap_stats[4] = 0; 534 swap_stats[5] = 0; 535 } 536 537 /* compute differences between old and new swap statistic */ 538 else { 539 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 540 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 541 } 542 543 swappgsin = nspgsin; 544 swappgsout = nspgsout; 545 546 /* call CPU heavy swapmode() only for changes */ 547 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 548 swap_stats[3] = swapmode(&swapavail, &swapfree); 549 swap_stats[0] = swapavail; 550 swap_stats[1] = swapavail - swapfree; 551 swap_stats[2] = swapfree; 552 } 553 swap_delay = 1; 554 swap_stats[6] = -1; 555 } 556 557 if (arc_enabled) { 558 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 559 arc_stats[0] = arc_stat >> 10; 560 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 561 arc_stats[1] = arc_stat >> 10; 562 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 563 arc_stats[2] = arc_stat >> 10; 564 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 565 arc_stats[3] = arc_stat >> 10; 566 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 567 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 568 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 569 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 570 arc_stats[5] = arc_stat >> 10; 571 si->arc = arc_stats; 572 } 573 if (carc_enabled) { 574 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 575 carc_stats[0] = arc_stat >> 10; 576 carc_stats[2] = arc_stat >> 10; /* For ratio */ 577 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 578 carc_stats[1] = arc_stat >> 10; 579 si->carc = carc_stats; 580 } 581 582 /* set arrays and strings */ 583 if (pcpu_stats) { 584 si->cpustates = pcpu_cpu_states; 585 si->ncpus = ncpus; 586 } else { 587 si->cpustates = cpu_states; 588 si->ncpus = 1; 589 } 590 si->memory = memory_stats; 591 si->swap = swap_stats; 592 593 594 if (lastpid > 0) { 595 si->last_pid = lastpid; 596 } else { 597 si->last_pid = -1; 598 } 599 600 /* 601 * Print how long system has been up. 602 * (Found by looking getting "boottime" from the kernel) 603 */ 604 mib[0] = CTL_KERN; 605 mib[1] = KERN_BOOTTIME; 606 size = sizeof(boottime); 607 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 608 boottime.tv_sec != 0) { 609 si->boottime = boottime; 610 } else { 611 si->boottime.tv_sec = -1; 612 } 613 } 614 615 #define NOPROC ((void *)-1) 616 617 /* 618 * We need to compare data from the old process entry with the new 619 * process entry. 620 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 621 * structure to cache the mapping. We also use a negative cache pointer 622 * of NOPROC to avoid duplicate lookups. 623 * XXX: this could be done when the actual processes are fetched, we do 624 * it here out of laziness. 625 */ 626 static const struct kinfo_proc * 627 get_old_proc(struct kinfo_proc *pp) 628 { 629 const struct kinfo_proc * const *oldpp, *oldp; 630 631 /* 632 * If this is the first fetch of the kinfo_procs then we don't have 633 * any previous entries. 634 */ 635 if (previous_proc_count == 0) 636 return (NULL); 637 /* negative cache? */ 638 if (pp->ki_udata == NOPROC) 639 return (NULL); 640 /* cached? */ 641 if (pp->ki_udata != NULL) 642 return (pp->ki_udata); 643 /* 644 * Not cached, 645 * 1) look up based on pid. 646 * 2) compare process start. 647 * If we fail here, then setup a negative cache entry, otherwise 648 * cache it. 649 */ 650 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 651 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 652 if (oldpp == NULL) { 653 pp->ki_udata = NOPROC; 654 return (NULL); 655 } 656 oldp = *oldpp; 657 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 658 pp->ki_udata = NOPROC; 659 return (NULL); 660 } 661 pp->ki_udata = oldp; 662 return (oldp); 663 } 664 665 /* 666 * Return the total amount of IO done in blocks in/out and faults. 667 * store the values individually in the pointers passed in. 668 */ 669 static long 670 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 671 long *vcsw, long *ivcsw) 672 { 673 const struct kinfo_proc *oldp; 674 static struct kinfo_proc dummy; 675 long ret; 676 677 oldp = get_old_proc(pp); 678 if (oldp == NULL) { 679 memset(&dummy, 0, sizeof(dummy)); 680 oldp = &dummy; 681 } 682 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 683 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 684 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 685 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 686 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 687 ret = 688 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 689 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 690 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 691 return (ret); 692 } 693 694 /* 695 * If there was a previous update, use the delta in ki_runtime over 696 * the previous interval to calculate pctcpu. Otherwise, fall back 697 * to using the kernel's ki_pctcpu. 698 */ 699 static double 700 proc_calc_pctcpu(struct kinfo_proc *pp) 701 { 702 const struct kinfo_proc *oldp; 703 704 if (previous_interval != 0) { 705 oldp = get_old_proc(pp); 706 if (oldp != NULL) 707 return ((double)(pp->ki_runtime - oldp->ki_runtime) 708 / previous_interval); 709 710 /* 711 * If this process/thread was created during the previous 712 * interval, charge it's total runtime to the previous 713 * interval. 714 */ 715 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 716 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 717 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 718 return ((double)pp->ki_runtime / previous_interval); 719 } 720 return (pctdouble(pp->ki_pctcpu)); 721 } 722 723 /* 724 * Return true if this process has used any CPU time since the 725 * previous update. 726 */ 727 static int 728 proc_used_cpu(struct kinfo_proc *pp) 729 { 730 const struct kinfo_proc *oldp; 731 732 oldp = get_old_proc(pp); 733 if (oldp == NULL) 734 return (PCTCPU(pp) != 0); 735 return (pp->ki_runtime != oldp->ki_runtime || 736 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 737 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 738 } 739 740 /* 741 * Return the total number of block in/out and faults by a process. 742 */ 743 static long 744 get_io_total(const struct kinfo_proc *pp) 745 { 746 long dummy; 747 748 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 749 } 750 751 static struct handle handle; 752 753 void * 754 get_process_info(struct system_info *si, struct process_select *sel, 755 int (*compare)(const void *, const void *)) 756 { 757 int i; 758 int total_procs; 759 long p_io; 760 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 761 long nsec; 762 int active_procs; 763 struct kinfo_proc **prefp; 764 struct kinfo_proc *pp; 765 struct timespec previous_proc_uptime; 766 767 /* 768 * If thread state was toggled, don't cache the previous processes. 769 */ 770 if (previous_thread != sel->thread) 771 nproc = 0; 772 previous_thread = sel->thread; 773 774 /* 775 * Save the previous process info. 776 */ 777 if (previous_proc_count_max < nproc) { 778 free(previous_procs); 779 previous_procs = calloc(nproc, sizeof(*previous_procs)); 780 free(previous_pref); 781 previous_pref = calloc(nproc, sizeof(*previous_pref)); 782 if (previous_procs == NULL || previous_pref == NULL) { 783 fprintf(stderr, "top: Out of memory.\n"); 784 quit(TOP_EX_SYS_ERROR); 785 } 786 previous_proc_count_max = nproc; 787 } 788 if (nproc) { 789 for (i = 0; i < nproc; i++) 790 previous_pref[i] = &previous_procs[i]; 791 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 792 qsort(previous_pref, nproc, sizeof(*previous_pref), 793 ps.thread ? compare_tid : compare_pid); 794 } 795 previous_proc_count = nproc; 796 previous_proc_uptime = proc_uptime; 797 previous_wall_time = proc_wall_time; 798 previous_interval = 0; 799 800 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 801 0, &nproc); 802 gettimeofday(&proc_wall_time, NULL); 803 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 804 memset(&proc_uptime, 0, sizeof(proc_uptime)); 805 else if (previous_proc_uptime.tv_sec != 0 && 806 previous_proc_uptime.tv_nsec != 0) { 807 previous_interval = (proc_uptime.tv_sec - 808 previous_proc_uptime.tv_sec) * 1000000; 809 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 810 if (nsec < 0) { 811 previous_interval -= 1000000; 812 nsec += 1000000000; 813 } 814 previous_interval += nsec / 1000; 815 } 816 if (nproc > onproc) { 817 pref = realloc(pref, sizeof(*pref) * nproc); 818 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 819 onproc = nproc; 820 } 821 if (pref == NULL || pbase == NULL || pcpu == NULL) { 822 fprintf(stderr, "top: Out of memory.\n"); 823 quit(TOP_EX_SYS_ERROR); 824 } 825 /* get a pointer to the states summary array */ 826 si->procstates = process_states; 827 828 /* count up process states and get pointers to interesting procs */ 829 total_procs = 0; 830 active_procs = 0; 831 total_inblock = 0; 832 total_oublock = 0; 833 total_majflt = 0; 834 memset(process_states, 0, sizeof(process_states)); 835 prefp = pref; 836 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 837 838 if (pp->ki_stat == 0) 839 /* not in use */ 840 continue; 841 842 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 843 /* skip self */ 844 continue; 845 846 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 847 /* skip system process */ 848 continue; 849 850 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 851 &p_vcsw, &p_ivcsw); 852 total_inblock += p_inblock; 853 total_oublock += p_oublock; 854 total_majflt += p_majflt; 855 total_procs++; 856 process_states[(unsigned char)pp->ki_stat]++; 857 858 if (pp->ki_stat == SZOMB) 859 /* skip zombies */ 860 continue; 861 862 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 863 /* skip kernel idle process */ 864 continue; 865 866 PCTCPU(pp) = proc_calc_pctcpu(pp); 867 if (sel->thread && PCTCPU(pp) > 1.0) 868 PCTCPU(pp) = 1.0; 869 if (displaymode == DISP_CPU && !sel->idle && 870 (!proc_used_cpu(pp) || 871 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 872 /* skip idle or non-running processes */ 873 continue; 874 875 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 876 /* skip processes that aren't doing I/O */ 877 continue; 878 879 if (sel->jid != -1 && pp->ki_jid != sel->jid) 880 /* skip proc. that don't belong to the selected JID */ 881 continue; 882 883 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 884 /* skip proc. that don't belong to the selected UID */ 885 continue; 886 887 if (sel->pid != -1 && pp->ki_pid != sel->pid) 888 continue; 889 890 *prefp++ = pp; 891 active_procs++; 892 } 893 894 /* if requested, sort the "interesting" processes */ 895 if (compare != NULL) 896 qsort(pref, active_procs, sizeof(*pref), compare); 897 898 /* remember active and total counts */ 899 si->p_total = total_procs; 900 si->p_pactive = pref_len = active_procs; 901 902 /* pass back a handle */ 903 handle.next_proc = pref; 904 handle.remaining = active_procs; 905 return (&handle); 906 } 907 908 static char fmt[512]; /* static area where result is built */ 909 910 char * 911 format_next_process(void* xhandle, char *(*get_userid)(int), int flags) 912 { 913 struct kinfo_proc *pp; 914 const struct kinfo_proc *oldp; 915 long cputime; 916 double pct; 917 struct handle *hp; 918 char status[22]; 919 int cpu; 920 size_t state; 921 struct rusage ru, *rup; 922 long p_tot, s_tot; 923 const char *proc_fmt; 924 char thr_buf[6]; 925 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 926 char *cmdbuf = NULL; 927 char **args; 928 const int cmdlen = 128; 929 930 /* find and remember the next proc structure */ 931 hp = (struct handle *)xhandle; 932 pp = *(hp->next_proc++); 933 hp->remaining--; 934 935 /* get the process's command name */ 936 if ((pp->ki_flag & P_INMEM) == 0) { 937 /* 938 * Print swapped processes as <pname> 939 */ 940 size_t len; 941 942 len = strlen(pp->ki_comm); 943 if (len > sizeof(pp->ki_comm) - 3) 944 len = sizeof(pp->ki_comm) - 3; 945 memmove(pp->ki_comm + 1, pp->ki_comm, len); 946 pp->ki_comm[0] = '<'; 947 pp->ki_comm[len + 1] = '>'; 948 pp->ki_comm[len + 2] = '\0'; 949 } 950 951 /* 952 * Convert the process's runtime from microseconds to seconds. This 953 * time includes the interrupt time although that is not wanted here. 954 * ps(1) is similarly sloppy. 955 */ 956 cputime = (pp->ki_runtime + 500000) / 1000000; 957 958 /* calculate the base for cpu percentages */ 959 pct = PCTCPU(pp); 960 961 /* generate "STATE" field */ 962 switch (state = pp->ki_stat) { 963 case SRUN: 964 if (smpmode && pp->ki_oncpu != NOCPU) 965 sprintf(status, "CPU%d", pp->ki_oncpu); 966 else 967 strcpy(status, "RUN"); 968 break; 969 case SLOCK: 970 if (pp->ki_kiflag & KI_LOCKBLOCK) { 971 sprintf(status, "*%.6s", pp->ki_lockname); 972 break; 973 } 974 /* fall through */ 975 case SSLEEP: 976 sprintf(status, "%.6s", pp->ki_wmesg); 977 break; 978 default: 979 980 if (state < nitems(state_abbrev)) { 981 sprintf(status, "%.6s", state_abbrev[state]); 982 } else { 983 sprintf(status, "?%5zu", state); 984 } 985 break; 986 } 987 988 cmdbuf = calloc(cmdlen + 1, 1); 989 if (cmdbuf == NULL) { 990 warn("calloc(%d)", cmdlen + 1); 991 return NULL; 992 } 993 994 if (!(flags & FMT_SHOWARGS)) { 995 if (ps.thread && pp->ki_flag & P_HADTHREADS && 996 pp->ki_tdname[0]) { 997 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 998 pp->ki_tdname, pp->ki_moretdname); 999 } else { 1000 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1001 } 1002 } else { 1003 if (pp->ki_flag & P_SYSTEM || 1004 pp->ki_args == NULL || 1005 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1006 !(*args)) { 1007 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1008 pp->ki_tdname[0]) { 1009 snprintf(cmdbuf, cmdlen, 1010 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1011 pp->ki_moretdname); 1012 } else { 1013 snprintf(cmdbuf, cmdlen, 1014 "[%s]", pp->ki_comm); 1015 } 1016 } else { 1017 const char *src; 1018 char *dst, *argbuf; 1019 const char *cmd; 1020 size_t argbuflen; 1021 size_t len; 1022 1023 argbuflen = cmdlen * 4; 1024 argbuf = calloc(argbuflen + 1, 1); 1025 if (argbuf == NULL) { 1026 warn("calloc(%zu)", argbuflen + 1); 1027 free(cmdbuf); 1028 return NULL; 1029 } 1030 1031 dst = argbuf; 1032 1033 /* Extract cmd name from argv */ 1034 cmd = strrchr(*args, '/'); 1035 if (cmd == NULL) 1036 cmd = *args; 1037 else 1038 cmd++; 1039 1040 for (; (src = *args++) != NULL; ) { 1041 if (*src == '\0') 1042 continue; 1043 len = (argbuflen - (dst - argbuf) - 1) / 4; 1044 strvisx(dst, src, 1045 MIN(strlen(src), len), 1046 VIS_NL | VIS_CSTYLE); 1047 while (*dst != '\0') 1048 dst++; 1049 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1050 *dst++ = ' '; /* add delimiting space */ 1051 } 1052 if (dst != argbuf && dst[-1] == ' ') 1053 dst--; 1054 *dst = '\0'; 1055 1056 if (strcmp(cmd, pp->ki_comm) != 0) { 1057 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1058 pp->ki_tdname[0]) 1059 snprintf(cmdbuf, cmdlen, 1060 "%s (%s){%s%s}", argbuf, 1061 pp->ki_comm, pp->ki_tdname, 1062 pp->ki_moretdname); 1063 else 1064 snprintf(cmdbuf, cmdlen, 1065 "%s (%s)", argbuf, pp->ki_comm); 1066 } else { 1067 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1068 pp->ki_tdname[0]) 1069 snprintf(cmdbuf, cmdlen, 1070 "%s{%s%s}", argbuf, pp->ki_tdname, 1071 pp->ki_moretdname); 1072 else 1073 strlcpy(cmdbuf, argbuf, cmdlen); 1074 } 1075 free(argbuf); 1076 } 1077 } 1078 1079 if (ps.jail == 0) 1080 jid_buf[0] = '\0'; 1081 else 1082 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1083 jidlength - 1, pp->ki_jid); 1084 1085 if (ps.swap == 0) 1086 swap_buf[0] = '\0'; 1087 else 1088 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1089 swaplength - 1, 1090 format_k(pagetok(ki_swap(pp)))); /* XXX */ 1091 1092 if (displaymode == DISP_IO) { 1093 oldp = get_old_proc(pp); 1094 if (oldp != NULL) { 1095 ru.ru_inblock = RU(pp)->ru_inblock - 1096 RU(oldp)->ru_inblock; 1097 ru.ru_oublock = RU(pp)->ru_oublock - 1098 RU(oldp)->ru_oublock; 1099 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1100 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1101 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1102 rup = &ru; 1103 } else { 1104 rup = RU(pp); 1105 } 1106 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1107 s_tot = total_inblock + total_oublock + total_majflt; 1108 1109 snprintf(fmt, sizeof(fmt), io_Proc_format, 1110 pp->ki_pid, 1111 jidlength, jid_buf, 1112 namelength, namelength, (*get_userid)(pp->ki_ruid), 1113 rup->ru_nvcsw, 1114 rup->ru_nivcsw, 1115 rup->ru_inblock, 1116 rup->ru_oublock, 1117 rup->ru_majflt, 1118 p_tot, 1119 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1120 screen_width > cmdlengthdelta ? 1121 screen_width - cmdlengthdelta : 0, 1122 printable(cmdbuf)); 1123 1124 free(cmdbuf); 1125 1126 return (fmt); 1127 } 1128 1129 /* format this entry */ 1130 if (smpmode) { 1131 if (state == SRUN && pp->ki_oncpu != NOCPU) 1132 cpu = pp->ki_oncpu; 1133 else 1134 cpu = pp->ki_lastcpu; 1135 } else 1136 cpu = 0; 1137 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1138 if (ps.thread != 0) 1139 thr_buf[0] = '\0'; 1140 else 1141 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1142 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1143 1144 snprintf(fmt, sizeof(fmt), proc_fmt, 1145 (ps.thread_id) ? pp->ki_tid : pp->ki_pid, 1146 jidlength, jid_buf, 1147 namelength, namelength, (*get_userid)(pp->ki_ruid), 1148 thr_buf, 1149 pp->ki_pri.pri_level - PZERO, 1150 format_nice(pp), 1151 format_k(PROCSIZE(pp)), 1152 format_k(pagetok(pp->ki_rssize)), 1153 swaplength, swaplength, swap_buf, 1154 status, 1155 cpu, 1156 format_time(cputime), 1157 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1158 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1159 printable(cmdbuf)); 1160 1161 free(cmdbuf); 1162 1163 /* return the result */ 1164 return (fmt); 1165 } 1166 1167 static void 1168 getsysctl(const char *name, void *ptr, size_t len) 1169 { 1170 size_t nlen = len; 1171 1172 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1173 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1174 strerror(errno)); 1175 quit(TOP_EX_SYS_ERROR); 1176 } 1177 if (nlen != len) { 1178 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1179 name, (unsigned long)len, (unsigned long)nlen); 1180 quit(TOP_EX_SYS_ERROR); 1181 } 1182 } 1183 1184 static const char * 1185 format_nice(const struct kinfo_proc *pp) 1186 { 1187 const char *fifo, *kproc; 1188 int rtpri; 1189 static char nicebuf[4 + 1]; 1190 1191 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1192 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1193 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1194 case PRI_ITHD: 1195 return ("-"); 1196 case PRI_REALTIME: 1197 /* 1198 * XXX: the kernel doesn't tell us the original rtprio and 1199 * doesn't really know what it was, so to recover it we 1200 * must be more chummy with the implementation than the 1201 * implementation is with itself. pri_user gives a 1202 * constant "base" priority, but is only initialized 1203 * properly for user threads. pri_native gives what the 1204 * kernel calls the "base" priority, but it isn't constant 1205 * since it is changed by priority propagation. pri_native 1206 * also isn't properly initialized for all threads, but it 1207 * is properly initialized for kernel realtime and idletime 1208 * threads. Thus we use pri_user for the base priority of 1209 * user threads (it is always correct) and pri_native for 1210 * the base priority of kernel realtime and idletime threads 1211 * (there is nothing better, and it is usually correct). 1212 * 1213 * The field width and thus the buffer are too small for 1214 * values like "kr31F", but such values shouldn't occur, 1215 * and if they do then the tailing "F" is not displayed. 1216 */ 1217 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1218 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1219 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1220 kproc, rtpri, fifo); 1221 break; 1222 case PRI_TIMESHARE: 1223 if (pp->ki_flag & P_KPROC) 1224 return ("-"); 1225 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1226 break; 1227 case PRI_IDLE: 1228 /* XXX: as above. */ 1229 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1230 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1231 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1232 kproc, rtpri, fifo); 1233 break; 1234 default: 1235 return ("?"); 1236 } 1237 return (nicebuf); 1238 } 1239 1240 /* comparison routines for qsort */ 1241 1242 static int 1243 compare_pid(const void *p1, const void *p2) 1244 { 1245 const struct kinfo_proc * const *pp1 = p1; 1246 const struct kinfo_proc * const *pp2 = p2; 1247 1248 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1249 1250 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1251 } 1252 1253 static int 1254 compare_tid(const void *p1, const void *p2) 1255 { 1256 const struct kinfo_proc * const *pp1 = p1; 1257 const struct kinfo_proc * const *pp2 = p2; 1258 1259 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1260 1261 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1262 } 1263 1264 /* 1265 * proc_compare - comparison function for "qsort" 1266 * Compares the resource consumption of two processes using five 1267 * distinct keys. The keys (in descending order of importance) are: 1268 * percent cpu, cpu ticks, state, resident set size, total virtual 1269 * memory usage. The process states are ordered as follows (from least 1270 * to most important): WAIT, zombie, sleep, stop, start, run. The 1271 * array declaration below maps a process state index into a number 1272 * that reflects this ordering. 1273 */ 1274 1275 static int sorted_state[] = { 1276 0, /* not used */ 1277 3, /* sleep */ 1278 1, /* ABANDONED (WAIT) */ 1279 6, /* run */ 1280 5, /* start */ 1281 2, /* zombie */ 1282 4 /* stop */ 1283 }; 1284 1285 1286 #define ORDERKEY_PCTCPU(a, b) do { \ 1287 double diff; \ 1288 if (ps.wcpu) \ 1289 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1290 weighted_cpu(PCTCPU((a)), (a)); \ 1291 else \ 1292 diff = PCTCPU((b)) - PCTCPU((a)); \ 1293 if (diff != 0) \ 1294 return (diff > 0 ? 1 : -1); \ 1295 } while (0) 1296 1297 #define ORDERKEY_CPTICKS(a, b) do { \ 1298 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1299 if (diff != 0) \ 1300 return (diff > 0 ? 1 : -1); \ 1301 } while (0) 1302 1303 #define ORDERKEY_STATE(a, b) do { \ 1304 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1305 if (diff != 0) \ 1306 return (diff > 0 ? 1 : -1); \ 1307 } while (0) 1308 1309 #define ORDERKEY_PRIO(a, b) do { \ 1310 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1311 if (diff != 0) \ 1312 return (diff > 0 ? 1 : -1); \ 1313 } while (0) 1314 1315 #define ORDERKEY_THREADS(a, b) do { \ 1316 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1317 if (diff != 0) \ 1318 return (diff > 0 ? 1 : -1); \ 1319 } while (0) 1320 1321 #define ORDERKEY_RSSIZE(a, b) do { \ 1322 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1323 if (diff != 0) \ 1324 return (diff > 0 ? 1 : -1); \ 1325 } while (0) 1326 1327 #define ORDERKEY_MEM(a, b) do { \ 1328 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1329 if (diff != 0) \ 1330 return (diff > 0 ? 1 : -1); \ 1331 } while (0) 1332 1333 #define ORDERKEY_JID(a, b) do { \ 1334 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1335 if (diff != 0) \ 1336 return (diff > 0 ? 1 : -1); \ 1337 } while (0) 1338 1339 #define ORDERKEY_SWAP(a, b) do { \ 1340 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1341 if (diff != 0) \ 1342 return (diff > 0 ? 1 : -1); \ 1343 } while (0) 1344 1345 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1346 1347 static int 1348 compare_cpu(const void *arg1, const void *arg2) 1349 { 1350 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1351 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1352 1353 ORDERKEY_PCTCPU(p1, p2); 1354 ORDERKEY_CPTICKS(p1, p2); 1355 ORDERKEY_STATE(p1, p2); 1356 ORDERKEY_PRIO(p1, p2); 1357 ORDERKEY_RSSIZE(p1, p2); 1358 ORDERKEY_MEM(p1, p2); 1359 1360 return (0); 1361 } 1362 1363 /* compare_size - the comparison function for sorting by total memory usage */ 1364 1365 static int 1366 compare_size(const void *arg1, const void *arg2) 1367 { 1368 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1369 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1370 1371 ORDERKEY_MEM(p1, p2); 1372 ORDERKEY_RSSIZE(p1, p2); 1373 ORDERKEY_PCTCPU(p1, p2); 1374 ORDERKEY_CPTICKS(p1, p2); 1375 ORDERKEY_STATE(p1, p2); 1376 ORDERKEY_PRIO(p1, p2); 1377 1378 return (0); 1379 } 1380 1381 /* compare_res - the comparison function for sorting by resident set size */ 1382 1383 static int 1384 compare_res(const void *arg1, const void *arg2) 1385 { 1386 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1387 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1388 1389 ORDERKEY_RSSIZE(p1, p2); 1390 ORDERKEY_MEM(p1, p2); 1391 ORDERKEY_PCTCPU(p1, p2); 1392 ORDERKEY_CPTICKS(p1, p2); 1393 ORDERKEY_STATE(p1, p2); 1394 ORDERKEY_PRIO(p1, p2); 1395 1396 return (0); 1397 } 1398 1399 /* compare_time - the comparison function for sorting by total cpu time */ 1400 1401 static int 1402 compare_time(const void *arg1, const void *arg2) 1403 { 1404 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1405 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1406 1407 ORDERKEY_CPTICKS(p1, p2); 1408 ORDERKEY_PCTCPU(p1, p2); 1409 ORDERKEY_STATE(p1, p2); 1410 ORDERKEY_PRIO(p1, p2); 1411 ORDERKEY_RSSIZE(p1, p2); 1412 ORDERKEY_MEM(p1, p2); 1413 1414 return (0); 1415 } 1416 1417 /* compare_prio - the comparison function for sorting by priority */ 1418 1419 static int 1420 compare_prio(const void *arg1, const void *arg2) 1421 { 1422 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1423 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1424 1425 ORDERKEY_PRIO(p1, p2); 1426 ORDERKEY_CPTICKS(p1, p2); 1427 ORDERKEY_PCTCPU(p1, p2); 1428 ORDERKEY_STATE(p1, p2); 1429 ORDERKEY_RSSIZE(p1, p2); 1430 ORDERKEY_MEM(p1, p2); 1431 1432 return (0); 1433 } 1434 1435 /* compare_threads - the comparison function for sorting by threads */ 1436 static int 1437 compare_threads(const void *arg1, const void *arg2) 1438 { 1439 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1440 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1441 1442 ORDERKEY_THREADS(p1, p2); 1443 ORDERKEY_PCTCPU(p1, p2); 1444 ORDERKEY_CPTICKS(p1, p2); 1445 ORDERKEY_STATE(p1, p2); 1446 ORDERKEY_PRIO(p1, p2); 1447 ORDERKEY_RSSIZE(p1, p2); 1448 ORDERKEY_MEM(p1, p2); 1449 1450 return (0); 1451 } 1452 1453 /* compare_jid - the comparison function for sorting by jid */ 1454 static int 1455 compare_jid(const void *arg1, const void *arg2) 1456 { 1457 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1458 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1459 1460 ORDERKEY_JID(p1, p2); 1461 ORDERKEY_PCTCPU(p1, p2); 1462 ORDERKEY_CPTICKS(p1, p2); 1463 ORDERKEY_STATE(p1, p2); 1464 ORDERKEY_PRIO(p1, p2); 1465 ORDERKEY_RSSIZE(p1, p2); 1466 ORDERKEY_MEM(p1, p2); 1467 1468 return (0); 1469 } 1470 1471 /* compare_swap - the comparison function for sorting by swap */ 1472 static int 1473 compare_swap(const void *arg1, const void *arg2) 1474 { 1475 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1476 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1477 1478 ORDERKEY_SWAP(p1, p2); 1479 ORDERKEY_PCTCPU(p1, p2); 1480 ORDERKEY_CPTICKS(p1, p2); 1481 ORDERKEY_STATE(p1, p2); 1482 ORDERKEY_PRIO(p1, p2); 1483 ORDERKEY_RSSIZE(p1, p2); 1484 ORDERKEY_MEM(p1, p2); 1485 1486 return (0); 1487 } 1488 1489 /* assorted comparison functions for sorting by i/o */ 1490 1491 static int 1492 compare_iototal(const void *arg1, const void *arg2) 1493 { 1494 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1495 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1496 1497 return (get_io_total(p2) - get_io_total(p1)); 1498 } 1499 1500 static int 1501 compare_ioread(const void *arg1, const void *arg2) 1502 { 1503 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1504 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1505 long dummy, inp1, inp2; 1506 1507 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1508 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1509 1510 return (inp2 - inp1); 1511 } 1512 1513 static int 1514 compare_iowrite(const void *arg1, const void *arg2) 1515 { 1516 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1517 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1518 long dummy, oup1, oup2; 1519 1520 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1521 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1522 1523 return (oup2 - oup1); 1524 } 1525 1526 static int 1527 compare_iofault(const void *arg1, const void *arg2) 1528 { 1529 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1530 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1531 long dummy, flp1, flp2; 1532 1533 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1534 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1535 1536 return (flp2 - flp1); 1537 } 1538 1539 static int 1540 compare_vcsw(const void *arg1, const void *arg2) 1541 { 1542 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1543 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1544 long dummy, flp1, flp2; 1545 1546 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1547 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1548 1549 return (flp2 - flp1); 1550 } 1551 1552 static int 1553 compare_ivcsw(const void *arg1, const void *arg2) 1554 { 1555 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1556 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1557 long dummy, flp1, flp2; 1558 1559 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1560 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1561 1562 return (flp2 - flp1); 1563 } 1564 1565 int (*compares[])(const void *arg1, const void *arg2) = { 1566 compare_cpu, 1567 compare_size, 1568 compare_res, 1569 compare_time, 1570 compare_prio, 1571 compare_threads, 1572 compare_iototal, 1573 compare_ioread, 1574 compare_iowrite, 1575 compare_iofault, 1576 compare_vcsw, 1577 compare_ivcsw, 1578 compare_jid, 1579 compare_swap, 1580 NULL 1581 }; 1582 1583 1584 /* 1585 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1586 * the process does not exist. 1587 */ 1588 1589 int 1590 proc_owner(int pid) 1591 { 1592 int cnt; 1593 struct kinfo_proc **prefp; 1594 struct kinfo_proc *pp; 1595 1596 prefp = pref; 1597 cnt = pref_len; 1598 while (--cnt >= 0) { 1599 pp = *prefp++; 1600 if (pp->ki_pid == (pid_t)pid) 1601 return ((int)pp->ki_ruid); 1602 } 1603 return (-1); 1604 } 1605 1606 static int 1607 swapmode(int *retavail, int *retfree) 1608 { 1609 int n; 1610 struct kvm_swap swapary[1]; 1611 static int pagesize = 0; 1612 static unsigned long swap_maxpages = 0; 1613 1614 *retavail = 0; 1615 *retfree = 0; 1616 1617 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1618 1619 n = kvm_getswapinfo(kd, swapary, 1, 0); 1620 if (n < 0 || swapary[0].ksw_total == 0) 1621 return (0); 1622 1623 if (pagesize == 0) 1624 pagesize = getpagesize(); 1625 if (swap_maxpages == 0) 1626 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1627 1628 /* ksw_total contains the total size of swap all devices which may 1629 exceed the maximum swap size allocatable in the system */ 1630 if ( swapary[0].ksw_total > swap_maxpages ) 1631 swapary[0].ksw_total = swap_maxpages; 1632 1633 *retavail = CONVERT(swapary[0].ksw_total); 1634 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1635 1636 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1637 return (n); 1638 } 1639