1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 */ 16 17 #include <sys/param.h> 18 #include <sys/cpuset.h> 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/priority.h> 22 #include <sys/proc.h> 23 #include <sys/resource.h> 24 #include <sys/sbuf.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <libgen.h> 32 #include <kvm.h> 33 #include <math.h> 34 #include <paths.h> 35 #include <stdio.h> 36 #include <stdbool.h> 37 #include <stdint.h> 38 #include <stdlib.h> 39 #include <string.h> 40 #include <time.h> 41 #include <unistd.h> 42 #include <vis.h> 43 44 #include "top.h" 45 #include "display.h" 46 #include "machine.h" 47 #include "loadavg.h" 48 #include "screen.h" 49 #include "utils.h" 50 #include "layout.h" 51 52 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 53 54 extern struct timeval timeout; 55 static int smpmode; 56 enum displaymodes displaymode; 57 static const int namelength = 10; 58 /* TOP_JID_LEN based on max of 999999 */ 59 #define TOP_JID_LEN 6 60 #define TOP_SWAP_LEN 5 61 62 /* get_process_info passes back a handle. This is what it looks like: */ 63 64 struct handle { 65 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 66 int remaining; /* number of pointers remaining */ 67 }; 68 69 70 /* define what weighted cpu is. */ 71 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 72 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 73 74 /* what we consider to be process size: */ 75 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 76 77 #define RU(pp) (&(pp)->ki_rusage) 78 79 #define PCTCPU(pp) (pcpu[pp - pbase]) 80 81 /* process state names for the "STATE" column of the display */ 82 /* the extra nulls in the string "run" are for adding a slash and 83 the processor number when needed */ 84 85 static const char *state_abbrev[] = { 86 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 87 }; 88 89 90 static kvm_t *kd; 91 92 /* values that we stash away in _init and use in later routines */ 93 94 static double logcpu; 95 96 /* these are retrieved from the kernel in _init */ 97 98 static load_avg ccpu; 99 100 /* these are used in the get_ functions */ 101 102 static int lastpid; 103 104 /* these are for calculating cpu state percentages */ 105 106 static long cp_time[CPUSTATES]; 107 static long cp_old[CPUSTATES]; 108 static long cp_diff[CPUSTATES]; 109 110 /* these are for detailing the process states */ 111 112 static const char *procstatenames[] = { 113 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 114 " zombie, ", " waiting, ", " lock, ", 115 NULL 116 }; 117 static int process_states[nitems(procstatenames)]; 118 119 /* these are for detailing the cpu states */ 120 121 static int cpu_states[CPUSTATES]; 122 static const char *cpustatenames[] = { 123 "user", "nice", "system", "interrupt", "idle", NULL 124 }; 125 126 /* these are for detailing the memory statistics */ 127 128 static const char *memorynames[] = { 129 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 130 "K Free", NULL 131 }; 132 static int memory_stats[nitems(memorynames)]; 133 134 static const char *arcnames[] = { 135 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 136 NULL 137 }; 138 static int arc_stats[nitems(arcnames)]; 139 140 static const char *carcnames[] = { 141 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 142 NULL 143 }; 144 static int carc_stats[nitems(carcnames)]; 145 146 static const char *swapnames[] = { 147 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 148 NULL 149 }; 150 static int swap_stats[nitems(swapnames)]; 151 152 static int has_swap; 153 154 /* these are for keeping track of the proc array */ 155 156 static int nproc; 157 static int onproc = -1; 158 static int pref_len; 159 static struct kinfo_proc *pbase; 160 static struct kinfo_proc **pref; 161 static struct kinfo_proc *previous_procs; 162 static struct kinfo_proc **previous_pref; 163 static int previous_proc_count = 0; 164 static int previous_proc_count_max = 0; 165 static int previous_thread; 166 167 /* data used for recalculating pctcpu */ 168 static double *pcpu; 169 static struct timespec proc_uptime; 170 static struct timeval proc_wall_time; 171 static struct timeval previous_wall_time; 172 static uint64_t previous_interval = 0; 173 174 /* total number of io operations */ 175 static long total_inblock; 176 static long total_oublock; 177 static long total_majflt; 178 179 /* these are for getting the memory statistics */ 180 181 static int arc_enabled; 182 static int carc_enabled; 183 static int pageshift; /* log base 2 of the pagesize */ 184 185 /* define pagetok in terms of pageshift */ 186 187 #define pagetok(size) ((size) << pageshift) 188 189 /* swap usage */ 190 #define ki_swap(kip) \ 191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 192 193 /* Per-cpu time states */ 194 static int maxcpu; 195 static int maxid; 196 static int ncpus; 197 static cpuset_t cpumask; 198 static long *times; 199 static long *pcpu_cp_time; 200 static long *pcpu_cp_old; 201 static long *pcpu_cp_diff; 202 static int *pcpu_cpu_states; 203 204 /* Battery units and states */ 205 static int battery_units; 206 static int battery_life; 207 208 static int compare_cpu(const void *a, const void *b); 209 static int compare_size(const void *a, const void *b); 210 static int compare_res(const void *a, const void *b); 211 static int compare_time(const void *a, const void *b); 212 static int compare_prio(const void *a, const void *b); 213 static int compare_threads(const void *a, const void *b); 214 static int compare_iototal(const void *a, const void *b); 215 static int compare_ioread(const void *a, const void *b); 216 static int compare_iowrite(const void *a, const void *b); 217 static int compare_iofault(const void *a, const void *b); 218 static int compare_vcsw(const void *a, const void *b); 219 static int compare_ivcsw(const void *a, const void *b); 220 static int compare_swap(const void *a, const void *b); 221 static int compare_jid(const void *a, const void *b); 222 static int compare_pid(const void *a, const void *b); 223 static int compare_tid(const void *a, const void *b); 224 static const char *format_nice(const struct kinfo_proc *pp); 225 static void getsysctl(const char *name, void *ptr, size_t len); 226 static int swapmode(int *retavail, int *retfree); 227 static void update_layout(void); 228 static int find_uid(uid_t needle, int *haystack); 229 static int cmd_matches(struct kinfo_proc *, const char *); 230 231 /* 232 * Sorting orders. The first element is the default. 233 */ 234 235 typedef int (compare_fn)(const void *arg1, const void *arg2); 236 static const struct sort_info { 237 const char *si_name; 238 compare_fn *si_compare; 239 } sortdata[] = { 240 { 241 .si_name = "cpu", 242 .si_compare = &compare_cpu, 243 }, 244 { 245 .si_name = "size", 246 .si_compare = &compare_size, 247 }, 248 { 249 .si_name = "res", 250 .si_compare = &compare_res, 251 }, 252 { 253 .si_name = "time", 254 .si_compare = &compare_time, 255 }, 256 { 257 .si_name = "pri", 258 .si_compare = &compare_prio, 259 }, 260 { 261 .si_name = "threads", 262 .si_compare = &compare_threads, 263 }, 264 { 265 .si_name = "total", 266 .si_compare = &compare_iototal, 267 }, 268 { 269 .si_name = "read", 270 .si_compare = &compare_ioread, 271 }, 272 { 273 .si_name = "write", 274 .si_compare = &compare_iowrite, 275 }, 276 { 277 .si_name = "fault", 278 .si_compare = &compare_iofault, 279 }, 280 { 281 .si_name = "vcsw", 282 .si_compare = &compare_vcsw, 283 }, 284 { 285 .si_name = "ivcsw", 286 .si_compare = &compare_ivcsw, 287 }, 288 { 289 .si_name = "jid", 290 .si_compare = &compare_jid, 291 }, 292 { 293 .si_name = "swap", 294 .si_compare = &compare_swap, 295 }, 296 { 297 .si_name = "pid", 298 .si_compare = &compare_pid, 299 }, 300 }; 301 302 static int 303 find_uid(uid_t needle, int *haystack) 304 { 305 size_t i = 0; 306 307 for (; i < TOP_MAX_UIDS; ++i) 308 if ((uid_t)haystack[i] == needle) 309 return 1; 310 return (0); 311 } 312 313 void 314 toggle_pcpustats(void) 315 { 316 317 if (ncpus == 1) 318 return; 319 update_layout(); 320 } 321 322 /* Adjust display based on ncpus and the ARC state. */ 323 static void 324 update_layout(void) 325 { 326 327 y_mem = 3; 328 y_arc = 4; 329 y_carc = 5; 330 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 331 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 332 y_message = 4 + arc_enabled + carc_enabled + has_swap; 333 y_header = 5 + arc_enabled + carc_enabled + has_swap; 334 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 335 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 336 337 if (pcpu_stats) { 338 y_mem += ncpus - 1; 339 y_arc += ncpus - 1; 340 y_carc += ncpus - 1; 341 y_swap += ncpus - 1; 342 y_idlecursor += ncpus - 1; 343 y_message += ncpus - 1; 344 y_header += ncpus - 1; 345 y_procs += ncpus - 1; 346 Header_lines += ncpus - 1; 347 } 348 } 349 350 int 351 machine_init(struct statics *statics) 352 { 353 int i, j, empty, pagesize; 354 uint64_t arc_size; 355 int carc_en, nswapdev; 356 size_t size; 357 358 size = sizeof(smpmode); 359 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || 360 size != sizeof(smpmode)) 361 smpmode = 0; 362 363 size = sizeof(arc_size); 364 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 365 NULL, 0) == 0 && arc_size != 0) 366 arc_enabled = 1; 367 size = sizeof(carc_en); 368 if (arc_enabled && 369 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 370 NULL, 0) == 0 && carc_en == 1) { 371 uint64_t uncomp_sz; 372 373 /* 374 * Don't report compression stats if no data is in the ARC. 375 * Otherwise, we end up printing a blank line. 376 */ 377 size = sizeof(uncomp_sz); 378 if (sysctlbyname("kstat.zfs.misc.arcstats.uncompressed_size", 379 &uncomp_sz, &size, NULL, 0) == 0 && uncomp_sz != 0) 380 carc_enabled = 1; 381 } 382 383 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 384 if (kd == NULL) 385 return (-1); 386 387 size = sizeof(nswapdev); 388 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 0) == 0 && 389 nswapdev != 0) 390 has_swap = 1; 391 392 GETSYSCTL("kern.ccpu", ccpu); 393 394 /* this is used in calculating WCPU -- calculate it ahead of time */ 395 logcpu = log(loaddouble(ccpu)); 396 397 pbase = NULL; 398 pref = NULL; 399 pcpu = NULL; 400 nproc = 0; 401 onproc = -1; 402 403 /* get the page size and calculate pageshift from it */ 404 pagesize = getpagesize(); 405 pageshift = 0; 406 while (pagesize > 1) { 407 pageshift++; 408 pagesize >>= 1; 409 } 410 411 /* we only need the amount of log(2)1024 for our conversion */ 412 pageshift -= LOG1024; 413 414 /* fill in the statics information */ 415 statics->procstate_names = procstatenames; 416 statics->cpustate_names = cpustatenames; 417 statics->memory_names = memorynames; 418 if (arc_enabled) 419 statics->arc_names = arcnames; 420 else 421 statics->arc_names = NULL; 422 if (carc_enabled) 423 statics->carc_names = carcnames; 424 else 425 statics->carc_names = NULL; 426 if (has_swap) 427 statics->swap_names = swapnames; 428 else 429 statics->swap_names = NULL; 430 431 /* Allocate state for per-CPU stats. */ 432 GETSYSCTL("kern.smp.maxcpus", maxcpu); 433 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 434 if (times == NULL) 435 err(1, "calloc for kern.smp.maxcpus"); 436 size = sizeof(long) * maxcpu * CPUSTATES; 437 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 438 err(1, "sysctlbyname kern.cp_times"); 439 pcpu_cp_time = calloc(1, size); 440 maxid = MIN(size / CPUSTATES / sizeof(long) - 1, CPU_SETSIZE - 1); 441 CPU_ZERO(&cpumask); 442 for (i = 0; i <= maxid; i++) { 443 empty = 1; 444 for (j = 0; empty && j < CPUSTATES; j++) { 445 if (times[i * CPUSTATES + j] != 0) 446 empty = 0; 447 } 448 if (!empty) 449 CPU_SET(i, &cpumask); 450 } 451 ncpus = CPU_COUNT(&cpumask); 452 assert(ncpus > 0); 453 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 454 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 455 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 456 statics->ncpus = ncpus; 457 458 /* Allocate state of battery units reported via ACPI. */ 459 battery_units = 0; 460 size = sizeof(int); 461 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 462 statics->nbatteries = battery_units; 463 464 update_layout(); 465 466 /* all done! */ 467 return (0); 468 } 469 470 char * 471 format_header(const char *uname_field) 472 { 473 static struct sbuf* header = NULL; 474 475 /* clean up from last time. */ 476 if (header != NULL) { 477 sbuf_clear(header); 478 } else { 479 header = sbuf_new_auto(); 480 } 481 482 switch (displaymode) { 483 case DISP_CPU: { 484 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 485 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 486 ps.jail ? " JID" : ""); 487 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 488 if (!ps.thread) { 489 sbuf_cat(header, "THR "); 490 } 491 sbuf_cat(header, "PRI NICE SIZE RES "); 492 if (ps.swap) { 493 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 494 } 495 sbuf_cat(header, "STATE "); 496 if (smpmode) { 497 sbuf_cat(header, "C "); 498 } 499 sbuf_cat(header, "TIME "); 500 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 501 sbuf_cat(header, "COMMAND"); 502 sbuf_finish(header); 503 break; 504 } 505 case DISP_IO: { 506 sbuf_printf(header, " %s%*s %-*.*s", 507 ps.thread_id ? " THR" : "PID", 508 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 509 namelength, namelength, uname_field); 510 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 511 sbuf_finish(header); 512 break; 513 } 514 case DISP_MAX: 515 assert("displaymode must not be set to DISP_MAX"); 516 } 517 518 return sbuf_data(header); 519 } 520 521 static int swappgsin = -1; 522 static int swappgsout = -1; 523 524 525 void 526 get_system_info(struct system_info *si) 527 { 528 struct loadavg sysload; 529 int mib[2]; 530 struct timeval boottime; 531 uint64_t arc_stat, arc_stat2; 532 int i, j; 533 size_t size; 534 535 /* get the CPU stats */ 536 size = (maxid + 1) * CPUSTATES * sizeof(long); 537 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 538 err(1, "sysctlbyname kern.cp_times"); 539 GETSYSCTL("kern.cp_time", cp_time); 540 GETSYSCTL("vm.loadavg", sysload); 541 GETSYSCTL("kern.lastpid", lastpid); 542 543 /* convert load averages to doubles */ 544 for (i = 0; i < 3; i++) 545 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 546 547 /* convert cp_time counts to percentages */ 548 for (i = j = 0; i <= maxid; i++) { 549 if (!CPU_ISSET(i, &cpumask)) 550 continue; 551 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 552 &pcpu_cp_time[j * CPUSTATES], 553 &pcpu_cp_old[j * CPUSTATES], 554 &pcpu_cp_diff[j * CPUSTATES]); 555 j++; 556 } 557 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 558 559 /* sum memory & swap statistics */ 560 { 561 static unsigned int swap_delay = 0; 562 static int swapavail = 0; 563 static int swapfree = 0; 564 static long bufspace = 0; 565 static uint64_t nspgsin, nspgsout; 566 567 GETSYSCTL("vfs.bufspace", bufspace); 568 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 569 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 570 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 571 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 572 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 573 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 574 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 575 /* convert memory stats to Kbytes */ 576 memory_stats[0] = pagetok(memory_stats[0]); 577 memory_stats[1] = pagetok(memory_stats[1]); 578 memory_stats[2] = pagetok(memory_stats[2]); 579 memory_stats[3] = pagetok(memory_stats[3]); 580 memory_stats[4] = bufspace / 1024; 581 memory_stats[5] = pagetok(memory_stats[5]); 582 memory_stats[6] = -1; 583 584 /* first interval */ 585 if (swappgsin < 0) { 586 swap_stats[4] = 0; 587 swap_stats[5] = 0; 588 } 589 590 /* compute differences between old and new swap statistic */ 591 else { 592 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 593 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 594 } 595 596 swappgsin = nspgsin; 597 swappgsout = nspgsout; 598 599 /* call CPU heavy swapmode() only for changes */ 600 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 601 swap_stats[3] = swapmode(&swapavail, &swapfree); 602 swap_stats[0] = swapavail; 603 swap_stats[1] = swapavail - swapfree; 604 swap_stats[2] = swapfree; 605 } 606 swap_delay = 1; 607 swap_stats[6] = -1; 608 } 609 610 if (arc_enabled) { 611 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 612 arc_stats[0] = arc_stat >> 10; 613 GETSYSCTL("kstat.zfs.misc.arcstats.mfu_size", arc_stat); 614 arc_stats[1] = arc_stat >> 10; 615 GETSYSCTL("kstat.zfs.misc.arcstats.mru_size", arc_stat); 616 arc_stats[2] = arc_stat >> 10; 617 GETSYSCTL("kstat.zfs.misc.arcstats.anon_size", arc_stat); 618 arc_stats[3] = arc_stat >> 10; 619 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 620 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 621 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 622 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 623 arc_stats[5] = arc_stat >> 10; 624 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 625 arc_stats[5] += arc_stat >> 10; 626 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 627 arc_stats[5] += arc_stat >> 10; 628 si->arc = arc_stats; 629 } 630 if (carc_enabled) { 631 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 632 carc_stats[0] = arc_stat >> 10; 633 carc_stats[2] = arc_stat >> 10; /* For ratio */ 634 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 635 carc_stats[1] = arc_stat >> 10; 636 si->carc = carc_stats; 637 } 638 639 /* set arrays and strings */ 640 if (pcpu_stats) { 641 si->cpustates = pcpu_cpu_states; 642 si->ncpus = ncpus; 643 } else { 644 si->cpustates = cpu_states; 645 si->ncpus = 1; 646 } 647 si->memory = memory_stats; 648 si->swap = swap_stats; 649 650 651 if (lastpid > 0) { 652 si->last_pid = lastpid; 653 } else { 654 si->last_pid = -1; 655 } 656 657 /* 658 * Print how long system has been up. 659 * (Found by looking getting "boottime" from the kernel) 660 */ 661 mib[0] = CTL_KERN; 662 mib[1] = KERN_BOOTTIME; 663 size = sizeof(boottime); 664 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 665 boottime.tv_sec != 0) { 666 si->boottime = boottime; 667 } else { 668 si->boottime.tv_sec = -1; 669 } 670 671 battery_life = 0; 672 if (battery_units > 0) { 673 GETSYSCTL("hw.acpi.battery.life", battery_life); 674 } 675 si->battery = battery_life; 676 } 677 678 #define NOPROC ((void *)-1) 679 680 /* 681 * We need to compare data from the old process entry with the new 682 * process entry. 683 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 684 * structure to cache the mapping. We also use a negative cache pointer 685 * of NOPROC to avoid duplicate lookups. 686 * XXX: this could be done when the actual processes are fetched, we do 687 * it here out of laziness. 688 */ 689 static const struct kinfo_proc * 690 get_old_proc(struct kinfo_proc *pp) 691 { 692 const struct kinfo_proc * const *oldpp, *oldp; 693 694 /* 695 * If this is the first fetch of the kinfo_procs then we don't have 696 * any previous entries. 697 */ 698 if (previous_proc_count == 0) 699 return (NULL); 700 /* negative cache? */ 701 if (pp->ki_udata == NOPROC) 702 return (NULL); 703 /* cached? */ 704 if (pp->ki_udata != NULL) 705 return (pp->ki_udata); 706 /* 707 * Not cached, 708 * 1) look up based on pid. 709 * 2) compare process start. 710 * If we fail here, then setup a negative cache entry, otherwise 711 * cache it. 712 */ 713 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 714 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 715 if (oldpp == NULL) { 716 pp->ki_udata = NOPROC; 717 return (NULL); 718 } 719 oldp = *oldpp; 720 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 721 pp->ki_udata = NOPROC; 722 return (NULL); 723 } 724 pp->ki_udata = __DECONST(void *, oldp); 725 return (oldp); 726 } 727 728 /* 729 * Return the total amount of IO done in blocks in/out and faults. 730 * store the values individually in the pointers passed in. 731 */ 732 static long 733 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 734 long *vcsw, long *ivcsw) 735 { 736 const struct kinfo_proc *oldp; 737 static struct kinfo_proc dummy; 738 long ret; 739 740 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 741 if (oldp == NULL) { 742 memset(&dummy, 0, sizeof(dummy)); 743 oldp = &dummy; 744 } 745 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 746 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 747 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 748 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 749 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 750 ret = 751 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 752 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 753 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 754 return (ret); 755 } 756 757 /* 758 * If there was a previous update, use the delta in ki_runtime over 759 * the previous interval to calculate pctcpu. Otherwise, fall back 760 * to using the kernel's ki_pctcpu. 761 */ 762 static double 763 proc_calc_pctcpu(struct kinfo_proc *pp) 764 { 765 const struct kinfo_proc *oldp; 766 767 if (previous_interval != 0) { 768 oldp = get_old_proc(pp); 769 if (oldp != NULL) 770 return ((double)(pp->ki_runtime - oldp->ki_runtime) 771 / previous_interval); 772 773 /* 774 * If this process/thread was created during the previous 775 * interval, charge it's total runtime to the previous 776 * interval. 777 */ 778 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 779 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 780 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 781 return ((double)pp->ki_runtime / previous_interval); 782 } 783 return (pctdouble(pp->ki_pctcpu)); 784 } 785 786 /* 787 * Return true if this process has used any CPU time since the 788 * previous update. 789 */ 790 static int 791 proc_used_cpu(struct kinfo_proc *pp) 792 { 793 const struct kinfo_proc *oldp; 794 795 oldp = get_old_proc(pp); 796 if (oldp == NULL) 797 return (PCTCPU(pp) != 0); 798 return (pp->ki_runtime != oldp->ki_runtime || 799 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 800 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 801 } 802 803 /* 804 * Return the total number of block in/out and faults by a process. 805 */ 806 static long 807 get_io_total(const struct kinfo_proc *pp) 808 { 809 long dummy; 810 811 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 812 } 813 814 static struct handle handle; 815 816 void * 817 get_process_info(struct system_info *si, struct process_select *sel, 818 const struct sort_info *sort_info) 819 { 820 int i; 821 int total_procs; 822 long p_io; 823 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 824 long nsec; 825 int active_procs; 826 struct kinfo_proc **prefp; 827 struct kinfo_proc *pp; 828 struct timespec previous_proc_uptime; 829 compare_fn *compare; 830 831 compare = sort_info->si_compare; 832 833 /* 834 * If thread state was toggled, don't cache the previous processes. 835 */ 836 if (previous_thread != sel->thread) 837 nproc = 0; 838 previous_thread = sel->thread; 839 840 /* 841 * Save the previous process info. 842 */ 843 if (previous_proc_count_max < nproc) { 844 free(previous_procs); 845 previous_procs = calloc(nproc, sizeof(*previous_procs)); 846 free(previous_pref); 847 previous_pref = calloc(nproc, sizeof(*previous_pref)); 848 if (previous_procs == NULL || previous_pref == NULL) { 849 fprintf(stderr, "top: Out of memory.\n"); 850 quit(TOP_EX_SYS_ERROR); 851 } 852 previous_proc_count_max = nproc; 853 } 854 if (nproc) { 855 for (i = 0; i < nproc; i++) 856 previous_pref[i] = &previous_procs[i]; 857 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 858 qsort(previous_pref, nproc, sizeof(*previous_pref), 859 ps.thread ? compare_tid : compare_pid); 860 } 861 previous_proc_count = nproc; 862 previous_proc_uptime = proc_uptime; 863 previous_wall_time = proc_wall_time; 864 previous_interval = 0; 865 866 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 867 0, &nproc); 868 gettimeofday(&proc_wall_time, NULL); 869 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 870 memset(&proc_uptime, 0, sizeof(proc_uptime)); 871 else if (previous_proc_uptime.tv_sec != 0 && 872 previous_proc_uptime.tv_nsec != 0) { 873 previous_interval = (proc_uptime.tv_sec - 874 previous_proc_uptime.tv_sec) * 1000000; 875 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 876 if (nsec < 0) { 877 previous_interval -= 1000000; 878 nsec += 1000000000; 879 } 880 previous_interval += nsec / 1000; 881 } 882 if (nproc > onproc) { 883 pref = realloc(pref, sizeof(*pref) * nproc); 884 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 885 onproc = nproc; 886 } 887 if (pref == NULL || pbase == NULL || pcpu == NULL) { 888 fprintf(stderr, "top: Out of memory.\n"); 889 quit(TOP_EX_SYS_ERROR); 890 } 891 /* get a pointer to the states summary array */ 892 si->procstates = process_states; 893 894 /* count up process states and get pointers to interesting procs */ 895 total_procs = 0; 896 active_procs = 0; 897 total_inblock = 0; 898 total_oublock = 0; 899 total_majflt = 0; 900 memset(process_states, 0, sizeof(process_states)); 901 prefp = pref; 902 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 903 904 if (pp->ki_stat == 0) 905 /* not in use */ 906 continue; 907 908 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 909 /* skip self */ 910 continue; 911 912 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 913 /* skip system process */ 914 continue; 915 916 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 917 &p_vcsw, &p_ivcsw); 918 total_inblock += p_inblock; 919 total_oublock += p_oublock; 920 total_majflt += p_majflt; 921 total_procs++; 922 process_states[(unsigned char)pp->ki_stat]++; 923 924 if (pp->ki_stat == SZOMB) 925 /* skip zombies */ 926 continue; 927 928 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 929 /* skip kernel idle process */ 930 continue; 931 932 PCTCPU(pp) = proc_calc_pctcpu(pp); 933 if (sel->thread && PCTCPU(pp) > 1.0) 934 PCTCPU(pp) = 1.0; 935 if (displaymode == DISP_CPU && !sel->idle && 936 (!proc_used_cpu(pp) || 937 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 938 /* skip idle or non-running processes */ 939 continue; 940 941 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 942 /* skip processes that aren't doing I/O */ 943 continue; 944 945 if (sel->jid != -1 && pp->ki_jid != sel->jid) 946 /* skip proc. that don't belong to the selected JID */ 947 continue; 948 949 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 950 /* skip proc. that don't belong to the selected UID */ 951 continue; 952 953 if (sel->pid != -1 && pp->ki_pid != sel->pid) 954 continue; 955 956 if (!cmd_matches(pp, sel->command)) 957 /* skip proc. that doesn't match grep string */ 958 continue; 959 960 *prefp++ = pp; 961 active_procs++; 962 } 963 964 /* if requested, sort the "interesting" processes */ 965 if (compare != NULL) 966 qsort(pref, active_procs, sizeof(*pref), compare); 967 968 /* remember active and total counts */ 969 si->p_total = total_procs; 970 si->p_pactive = pref_len = active_procs; 971 972 /* pass back a handle */ 973 handle.next_proc = pref; 974 handle.remaining = active_procs; 975 return (&handle); 976 } 977 978 /* 979 * Returns the sort info associated with the specified order. Currently, that's 980 * really only the comparator that we'll later use. Specifying a NULL ordername 981 * will return the default comparator. 982 */ 983 const struct sort_info * 984 get_sort_info(const char *ordername) 985 { 986 const struct sort_info *info; 987 size_t idx; 988 989 if (ordername == NULL) 990 return (&sortdata[0]); 991 992 for (idx = 0; idx < nitems(sortdata); idx++) { 993 info = &sortdata[idx]; 994 995 if (strcmp(info->si_name, ordername) == 0) 996 return (info); 997 } 998 999 return (NULL); 1000 } 1001 1002 void 1003 dump_sort_names(FILE *fp) 1004 { 1005 const struct sort_info *info; 1006 size_t idx; 1007 1008 for (idx = 0; idx < nitems(sortdata); idx++) { 1009 info = &sortdata[idx]; 1010 1011 fprintf(fp, " %s", info->si_name); 1012 } 1013 } 1014 1015 static int 1016 cmd_matches(struct kinfo_proc *proc, const char *term) 1017 { 1018 char **args = NULL; 1019 1020 if (!term) { 1021 /* No command filter set */ 1022 return 1; 1023 } else { 1024 /* Filter set, does process name contain term? */ 1025 if (strstr(proc->ki_comm, term)) 1026 return 1; 1027 /* Search arguments only if arguments are displayed */ 1028 if (show_args) { 1029 args = kvm_getargv(kd, proc, 1024); 1030 if (args == NULL) { 1031 /* Failed to get arguments so can't search them */ 1032 return 0; 1033 } 1034 while (*args != NULL) { 1035 if (strstr(*args, term)) 1036 return 1; 1037 args++; 1038 } 1039 } 1040 } 1041 return 0; 1042 } 1043 1044 char * 1045 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 1046 { 1047 struct kinfo_proc *pp; 1048 const struct kinfo_proc *oldp; 1049 long cputime; 1050 char status[22]; 1051 size_t state; 1052 struct rusage ru, *rup; 1053 long p_tot, s_tot; 1054 char *cmdbuf = NULL; 1055 char **args; 1056 static struct sbuf* procbuf = NULL; 1057 1058 /* clean up from last time. */ 1059 if (procbuf != NULL) { 1060 sbuf_clear(procbuf); 1061 } else { 1062 procbuf = sbuf_new_auto(); 1063 } 1064 1065 1066 /* find and remember the next proc structure */ 1067 pp = *(xhandle->next_proc++); 1068 xhandle->remaining--; 1069 1070 /* get the process's command name */ 1071 if ((pp->ki_flag & P_INMEM) == 0) { 1072 /* 1073 * Print swapped processes as <pname> 1074 */ 1075 size_t len; 1076 1077 len = strlen(pp->ki_comm); 1078 if (len > sizeof(pp->ki_comm) - 3) 1079 len = sizeof(pp->ki_comm) - 3; 1080 memmove(pp->ki_comm + 1, pp->ki_comm, len); 1081 pp->ki_comm[0] = '<'; 1082 pp->ki_comm[len + 1] = '>'; 1083 pp->ki_comm[len + 2] = '\0'; 1084 } 1085 1086 /* 1087 * Convert the process's runtime from microseconds to seconds. This 1088 * time includes the interrupt time although that is not wanted here. 1089 * ps(1) is similarly sloppy. 1090 */ 1091 cputime = (pp->ki_runtime + 500000) / 1000000; 1092 1093 /* generate "STATE" field */ 1094 switch (state = pp->ki_stat) { 1095 case SRUN: 1096 if (smpmode && pp->ki_oncpu != NOCPU) 1097 sprintf(status, "CPU%d", pp->ki_oncpu); 1098 else 1099 strcpy(status, "RUN"); 1100 break; 1101 case SLOCK: 1102 if (pp->ki_kiflag & KI_LOCKBLOCK) { 1103 sprintf(status, "*%.6s", pp->ki_lockname); 1104 break; 1105 } 1106 /* fall through */ 1107 case SSLEEP: 1108 sprintf(status, "%.6s", pp->ki_wmesg); 1109 break; 1110 default: 1111 1112 if (state < nitems(state_abbrev)) { 1113 sprintf(status, "%.6s", state_abbrev[state]); 1114 } else { 1115 sprintf(status, "?%5zu", state); 1116 } 1117 break; 1118 } 1119 1120 cmdbuf = calloc(screen_width + 1, 1); 1121 if (cmdbuf == NULL) { 1122 warn("calloc(%d)", screen_width + 1); 1123 return NULL; 1124 } 1125 1126 if (!(flags & FMT_SHOWARGS)) { 1127 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1128 pp->ki_tdname[0]) { 1129 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 1130 pp->ki_tdname, pp->ki_moretdname); 1131 } else { 1132 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 1133 } 1134 } else { 1135 if (pp->ki_flag & P_SYSTEM || 1136 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 1137 !(*args)) { 1138 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1139 pp->ki_tdname[0]) { 1140 snprintf(cmdbuf, screen_width, 1141 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1142 pp->ki_moretdname); 1143 } else { 1144 snprintf(cmdbuf, screen_width, 1145 "[%s]", pp->ki_comm); 1146 } 1147 } else { 1148 const char *src; 1149 char *dst, *argbuf; 1150 const char *cmd; 1151 size_t argbuflen; 1152 size_t len; 1153 1154 argbuflen = screen_width * 4; 1155 argbuf = calloc(argbuflen + 1, 1); 1156 if (argbuf == NULL) { 1157 warn("calloc(%zu)", argbuflen + 1); 1158 free(cmdbuf); 1159 return NULL; 1160 } 1161 1162 dst = argbuf; 1163 1164 /* Extract cmd name from argv */ 1165 cmd = basename(*args); 1166 1167 for (; (src = *args++) != NULL; ) { 1168 if (*src == '\0') 1169 continue; 1170 len = (argbuflen - (dst - argbuf) - 1) / 4; 1171 strvisx(dst, src, 1172 MIN(strlen(src), len), 1173 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL); 1174 while (*dst != '\0') 1175 dst++; 1176 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1177 *dst++ = ' '; /* add delimiting space */ 1178 } 1179 if (dst != argbuf && dst[-1] == ' ') 1180 dst--; 1181 *dst = '\0'; 1182 1183 if (strcmp(cmd, pp->ki_comm) != 0) { 1184 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1185 pp->ki_tdname[0]) 1186 snprintf(cmdbuf, screen_width, 1187 "%s (%s){%s%s}", argbuf, 1188 pp->ki_comm, pp->ki_tdname, 1189 pp->ki_moretdname); 1190 else 1191 snprintf(cmdbuf, screen_width, 1192 "%s (%s)", argbuf, pp->ki_comm); 1193 } else { 1194 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1195 pp->ki_tdname[0]) 1196 snprintf(cmdbuf, screen_width, 1197 "%s{%s%s}", argbuf, pp->ki_tdname, 1198 pp->ki_moretdname); 1199 else 1200 strlcpy(cmdbuf, argbuf, screen_width); 1201 } 1202 free(argbuf); 1203 } 1204 } 1205 1206 if (displaymode == DISP_IO) { 1207 oldp = get_old_proc(pp); 1208 if (oldp != NULL) { 1209 ru.ru_inblock = RU(pp)->ru_inblock - 1210 RU(oldp)->ru_inblock; 1211 ru.ru_oublock = RU(pp)->ru_oublock - 1212 RU(oldp)->ru_oublock; 1213 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1214 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1215 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1216 rup = &ru; 1217 } else { 1218 rup = RU(pp); 1219 } 1220 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1221 s_tot = total_inblock + total_oublock + total_majflt; 1222 1223 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1224 1225 if (ps.jail) { 1226 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1227 } 1228 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1229 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1230 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1231 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1232 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1233 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1234 sbuf_printf(procbuf, "%6ld ", p_tot); 1235 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1236 1237 } else { 1238 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1239 if (ps.jail) { 1240 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1241 } 1242 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1243 1244 if (!ps.thread) { 1245 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1246 } else { 1247 sbuf_printf(procbuf, " "); 1248 } 1249 1250 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PUSER); 1251 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1252 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1253 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1254 if (ps.swap) { 1255 sbuf_printf(procbuf, "%*s ", 1256 TOP_SWAP_LEN - 1, 1257 format_k(pagetok(ki_swap(pp)))); 1258 } 1259 sbuf_printf(procbuf, "%-6.6s ", status); 1260 if (smpmode) { 1261 int cpu; 1262 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1263 cpu = pp->ki_oncpu; 1264 } else { 1265 cpu = pp->ki_lastcpu; 1266 } 1267 sbuf_printf(procbuf, "%3d ", cpu); 1268 } 1269 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1270 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1271 } 1272 sbuf_printf(procbuf, "%s", cmdbuf); 1273 free(cmdbuf); 1274 return (sbuf_data(procbuf)); 1275 } 1276 1277 static void 1278 getsysctl(const char *name, void *ptr, size_t len) 1279 { 1280 size_t nlen = len; 1281 1282 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1283 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1284 strerror(errno)); 1285 quit(TOP_EX_SYS_ERROR); 1286 } 1287 if (nlen != len) { 1288 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1289 name, (unsigned long)len, (unsigned long)nlen); 1290 quit(TOP_EX_SYS_ERROR); 1291 } 1292 } 1293 1294 static const char * 1295 format_nice(const struct kinfo_proc *pp) 1296 { 1297 const char *fifo, *kproc; 1298 int rtpri; 1299 static char nicebuf[4 + 1]; 1300 1301 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1302 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1303 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1304 case PRI_ITHD: 1305 return ("-"); 1306 case PRI_REALTIME: 1307 /* 1308 * XXX: the kernel doesn't tell us the original rtprio and 1309 * doesn't really know what it was, so to recover it we 1310 * must be more chummy with the implementation than the 1311 * implementation is with itself. pri_user gives a 1312 * constant "base" priority, but is only initialized 1313 * properly for user threads. pri_native gives what the 1314 * kernel calls the "base" priority, but it isn't constant 1315 * since it is changed by priority propagation. pri_native 1316 * also isn't properly initialized for all threads, but it 1317 * is properly initialized for kernel realtime and idletime 1318 * threads. Thus we use pri_user for the base priority of 1319 * user threads (it is always correct) and pri_native for 1320 * the base priority of kernel realtime and idletime threads 1321 * (there is nothing better, and it is usually correct). 1322 * 1323 * The field width and thus the buffer are too small for 1324 * values like "kr31F", but such values shouldn't occur, 1325 * and if they do then the tailing "F" is not displayed. 1326 */ 1327 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1328 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1329 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1330 kproc, rtpri, fifo); 1331 break; 1332 case PRI_TIMESHARE: 1333 if (pp->ki_flag & P_KPROC) 1334 return ("-"); 1335 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1336 break; 1337 case PRI_IDLE: 1338 /* XXX: as above. */ 1339 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1340 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1341 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1342 kproc, rtpri, fifo); 1343 break; 1344 default: 1345 return ("?"); 1346 } 1347 return (nicebuf); 1348 } 1349 1350 /* comparison routines for qsort */ 1351 1352 static int 1353 compare_pid(const void *p1, const void *p2) 1354 { 1355 const struct kinfo_proc * const *pp1 = p1; 1356 const struct kinfo_proc * const *pp2 = p2; 1357 1358 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1359 1360 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1361 } 1362 1363 static int 1364 compare_tid(const void *p1, const void *p2) 1365 { 1366 const struct kinfo_proc * const *pp1 = p1; 1367 const struct kinfo_proc * const *pp2 = p2; 1368 1369 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1370 1371 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1372 } 1373 1374 /* 1375 * proc_compare - comparison function for "qsort" 1376 * Compares the resource consumption of two processes using five 1377 * distinct keys. The keys (in descending order of importance) are: 1378 * percent cpu, cpu ticks, state, resident set size, total virtual 1379 * memory usage. The process states are ordered as follows (from least 1380 * to most important): run, zombie, idle, interrupt wait, stop, sleep. 1381 * The array declaration below maps a process state index into a 1382 * number that reflects this ordering. 1383 */ 1384 1385 static const int sorted_state[] = { 1386 [SIDL] = 3, /* being created */ 1387 [SRUN] = 1, /* running/runnable */ 1388 [SSLEEP] = 6, /* sleeping */ 1389 [SSTOP] = 5, /* stopped/suspended */ 1390 [SZOMB] = 2, /* zombie */ 1391 [SWAIT] = 4, /* intr */ 1392 [SLOCK] = 7, /* blocked on lock */ 1393 }; 1394 1395 1396 #define ORDERKEY_PCTCPU(a, b) do { \ 1397 double diff; \ 1398 if (ps.wcpu) \ 1399 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1400 weighted_cpu(PCTCPU((a)), (a)); \ 1401 else \ 1402 diff = PCTCPU((b)) - PCTCPU((a)); \ 1403 if (diff != 0) \ 1404 return (diff > 0 ? 1 : -1); \ 1405 } while (0) 1406 1407 #define ORDERKEY_CPTICKS(a, b) do { \ 1408 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1409 if (diff != 0) \ 1410 return (diff > 0 ? 1 : -1); \ 1411 } while (0) 1412 1413 #define ORDERKEY_STATE(a, b) do { \ 1414 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1415 if (diff != 0) \ 1416 return (diff > 0 ? 1 : -1); \ 1417 } while (0) 1418 1419 #define ORDERKEY_PRIO(a, b) do { \ 1420 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1421 if (diff != 0) \ 1422 return (diff > 0 ? 1 : -1); \ 1423 } while (0) 1424 1425 #define ORDERKEY_THREADS(a, b) do { \ 1426 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1427 if (diff != 0) \ 1428 return (diff > 0 ? 1 : -1); \ 1429 } while (0) 1430 1431 #define ORDERKEY_RSSIZE(a, b) do { \ 1432 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1433 if (diff != 0) \ 1434 return (diff > 0 ? 1 : -1); \ 1435 } while (0) 1436 1437 #define ORDERKEY_MEM(a, b) do { \ 1438 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1439 if (diff != 0) \ 1440 return (diff > 0 ? 1 : -1); \ 1441 } while (0) 1442 1443 #define ORDERKEY_JID(a, b) do { \ 1444 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1445 if (diff != 0) \ 1446 return (diff > 0 ? 1 : -1); \ 1447 } while (0) 1448 1449 #define ORDERKEY_SWAP(a, b) do { \ 1450 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1451 if (diff != 0) \ 1452 return (diff > 0 ? 1 : -1); \ 1453 } while (0) 1454 1455 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1456 1457 static int 1458 compare_cpu(const void *arg1, const void *arg2) 1459 { 1460 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1461 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1462 1463 ORDERKEY_PCTCPU(p1, p2); 1464 ORDERKEY_CPTICKS(p1, p2); 1465 ORDERKEY_STATE(p1, p2); 1466 ORDERKEY_PRIO(p1, p2); 1467 ORDERKEY_RSSIZE(p1, p2); 1468 ORDERKEY_MEM(p1, p2); 1469 1470 return (0); 1471 } 1472 1473 /* compare_size - the comparison function for sorting by total memory usage */ 1474 1475 static int 1476 compare_size(const void *arg1, const void *arg2) 1477 { 1478 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1479 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1480 1481 ORDERKEY_MEM(p1, p2); 1482 ORDERKEY_RSSIZE(p1, p2); 1483 ORDERKEY_PCTCPU(p1, p2); 1484 ORDERKEY_CPTICKS(p1, p2); 1485 ORDERKEY_STATE(p1, p2); 1486 ORDERKEY_PRIO(p1, p2); 1487 1488 return (0); 1489 } 1490 1491 /* compare_res - the comparison function for sorting by resident set size */ 1492 1493 static int 1494 compare_res(const void *arg1, const void *arg2) 1495 { 1496 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1497 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1498 1499 ORDERKEY_RSSIZE(p1, p2); 1500 ORDERKEY_MEM(p1, p2); 1501 ORDERKEY_PCTCPU(p1, p2); 1502 ORDERKEY_CPTICKS(p1, p2); 1503 ORDERKEY_STATE(p1, p2); 1504 ORDERKEY_PRIO(p1, p2); 1505 1506 return (0); 1507 } 1508 1509 /* compare_time - the comparison function for sorting by total cpu time */ 1510 1511 static int 1512 compare_time(const void *arg1, const void *arg2) 1513 { 1514 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1515 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1516 1517 ORDERKEY_CPTICKS(p1, p2); 1518 ORDERKEY_PCTCPU(p1, p2); 1519 ORDERKEY_STATE(p1, p2); 1520 ORDERKEY_PRIO(p1, p2); 1521 ORDERKEY_RSSIZE(p1, p2); 1522 ORDERKEY_MEM(p1, p2); 1523 1524 return (0); 1525 } 1526 1527 /* compare_prio - the comparison function for sorting by priority */ 1528 1529 static int 1530 compare_prio(const void *arg1, const void *arg2) 1531 { 1532 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1533 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1534 1535 ORDERKEY_PRIO(p1, p2); 1536 ORDERKEY_CPTICKS(p1, p2); 1537 ORDERKEY_PCTCPU(p1, p2); 1538 ORDERKEY_STATE(p1, p2); 1539 ORDERKEY_RSSIZE(p1, p2); 1540 ORDERKEY_MEM(p1, p2); 1541 1542 return (0); 1543 } 1544 1545 /* compare_threads - the comparison function for sorting by threads */ 1546 static int 1547 compare_threads(const void *arg1, const void *arg2) 1548 { 1549 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1550 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1551 1552 ORDERKEY_THREADS(p1, p2); 1553 ORDERKEY_PCTCPU(p1, p2); 1554 ORDERKEY_CPTICKS(p1, p2); 1555 ORDERKEY_STATE(p1, p2); 1556 ORDERKEY_PRIO(p1, p2); 1557 ORDERKEY_RSSIZE(p1, p2); 1558 ORDERKEY_MEM(p1, p2); 1559 1560 return (0); 1561 } 1562 1563 /* compare_jid - the comparison function for sorting by jid */ 1564 static int 1565 compare_jid(const void *arg1, const void *arg2) 1566 { 1567 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1568 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1569 1570 ORDERKEY_JID(p1, p2); 1571 ORDERKEY_PCTCPU(p1, p2); 1572 ORDERKEY_CPTICKS(p1, p2); 1573 ORDERKEY_STATE(p1, p2); 1574 ORDERKEY_PRIO(p1, p2); 1575 ORDERKEY_RSSIZE(p1, p2); 1576 ORDERKEY_MEM(p1, p2); 1577 1578 return (0); 1579 } 1580 1581 /* compare_swap - the comparison function for sorting by swap */ 1582 static int 1583 compare_swap(const void *arg1, const void *arg2) 1584 { 1585 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1586 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1587 1588 ORDERKEY_SWAP(p1, p2); 1589 ORDERKEY_PCTCPU(p1, p2); 1590 ORDERKEY_CPTICKS(p1, p2); 1591 ORDERKEY_STATE(p1, p2); 1592 ORDERKEY_PRIO(p1, p2); 1593 ORDERKEY_RSSIZE(p1, p2); 1594 ORDERKEY_MEM(p1, p2); 1595 1596 return (0); 1597 } 1598 1599 /* assorted comparison functions for sorting by i/o */ 1600 1601 static int 1602 compare_iototal(const void *arg1, const void *arg2) 1603 { 1604 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1605 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1606 1607 return (get_io_total(p2) - get_io_total(p1)); 1608 } 1609 1610 static int 1611 compare_ioread(const void *arg1, const void *arg2) 1612 { 1613 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1614 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1615 long dummy, inp1, inp2; 1616 1617 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1618 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1619 1620 return (inp2 - inp1); 1621 } 1622 1623 static int 1624 compare_iowrite(const void *arg1, const void *arg2) 1625 { 1626 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1627 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1628 long dummy, oup1, oup2; 1629 1630 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1631 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1632 1633 return (oup2 - oup1); 1634 } 1635 1636 static int 1637 compare_iofault(const void *arg1, const void *arg2) 1638 { 1639 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1640 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1641 long dummy, flp1, flp2; 1642 1643 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1644 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1645 1646 return (flp2 - flp1); 1647 } 1648 1649 static int 1650 compare_vcsw(const void *arg1, const void *arg2) 1651 { 1652 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1653 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1654 long dummy, flp1, flp2; 1655 1656 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1657 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1658 1659 return (flp2 - flp1); 1660 } 1661 1662 static int 1663 compare_ivcsw(const void *arg1, const void *arg2) 1664 { 1665 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1666 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1667 long dummy, flp1, flp2; 1668 1669 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1670 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1671 1672 return (flp2 - flp1); 1673 } 1674 1675 static int 1676 swapmode(int *retavail, int *retfree) 1677 { 1678 int n; 1679 struct kvm_swap swapary[1]; 1680 static int pagesize = 0; 1681 static unsigned long swap_maxpages = 0; 1682 1683 *retavail = 0; 1684 *retfree = 0; 1685 1686 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1687 1688 n = kvm_getswapinfo(kd, swapary, 1, 0); 1689 if (n < 0 || swapary[0].ksw_total == 0) 1690 return (0); 1691 1692 if (pagesize == 0) 1693 pagesize = getpagesize(); 1694 if (swap_maxpages == 0) 1695 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1696 1697 /* ksw_total contains the total size of swap all devices which may 1698 exceed the maximum swap size allocatable in the system */ 1699 if ( swapary[0].ksw_total > swap_maxpages ) 1700 swapary[0].ksw_total = swap_maxpages; 1701 1702 *retavail = CONVERT(swapary[0].ksw_total); 1703 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1704 1705 #undef CONVERT 1706 1707 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1708 return (n); 1709 } 1710