1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * 22 * $FreeBSD$ 23 */ 24 25 26 #include <sys/time.h> 27 #include <sys/types.h> 28 #include <sys/signal.h> 29 #include <sys/param.h> 30 31 #include "os.h" 32 #include <stdio.h> 33 #include <nlist.h> 34 #include <math.h> 35 #include <kvm.h> 36 #include <pwd.h> 37 #include <sys/errno.h> 38 #include <sys/sysctl.h> 39 #include <sys/dkstat.h> 40 #include <sys/file.h> 41 #include <sys/time.h> 42 #include <sys/proc.h> 43 #include <sys/user.h> 44 #include <sys/vmmeter.h> 45 #include <sys/resource.h> 46 #include <sys/rtprio.h> 47 48 /* Swap */ 49 #include <stdlib.h> 50 #include <sys/conf.h> 51 52 #include <osreldate.h> /* for changes in kernel structures */ 53 54 #include "top.h" 55 #include "machine.h" 56 #include "screen.h" 57 58 static int check_nlist __P((struct nlist *)); 59 static int getkval __P((unsigned long, int *, int, char *)); 60 extern char* printable __P((char *)); 61 int swapmode __P((int *retavail, int *retfree)); 62 static int smpmode; 63 static int namelength; 64 static int cmdlengthdelta; 65 66 67 /* get_process_info passes back a handle. This is what it looks like: */ 68 69 struct handle 70 { 71 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 72 int remaining; /* number of pointers remaining */ 73 }; 74 75 /* declarations for load_avg */ 76 #include "loadavg.h" 77 78 /* define what weighted cpu is. */ 79 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 80 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 81 82 /* what we consider to be process size: */ 83 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 84 85 /* definitions for indices in the nlist array */ 86 87 static struct nlist nlst[] = { 88 #define X_CCPU 0 89 { "_ccpu" }, 90 #define X_CP_TIME 1 91 { "_cp_time" }, 92 #define X_AVENRUN 2 93 { "_averunnable" }, 94 95 #define X_BUFSPACE 3 96 { "_bufspace" }, /* K in buffer cache */ 97 #define X_CNT 4 98 { "_cnt" }, /* struct vmmeter cnt */ 99 100 /* Last pid */ 101 #define X_LASTPID 5 102 { "_nextpid" }, 103 { 0 } 104 }; 105 106 /* 107 * These definitions control the format of the per-process area 108 */ 109 110 static char smp_header[] = 111 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 112 113 #define smp_Proc_format \ 114 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" 115 116 static char up_header[] = 117 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 118 119 #define up_Proc_format \ 120 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" 121 122 123 124 /* process state names for the "STATE" column of the display */ 125 /* the extra nulls in the string "run" are for adding a slash and 126 the processor number when needed */ 127 128 char *state_abbrev[] = 129 { 130 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "MUTEX" 131 }; 132 133 134 static kvm_t *kd; 135 136 /* values that we stash away in _init and use in later routines */ 137 138 static double logcpu; 139 140 /* these are retrieved from the kernel in _init */ 141 142 static load_avg ccpu; 143 144 /* these are offsets obtained via nlist and used in the get_ functions */ 145 146 static unsigned long cp_time_offset; 147 static unsigned long avenrun_offset; 148 static unsigned long lastpid_offset; 149 static long lastpid; 150 static unsigned long cnt_offset; 151 static unsigned long bufspace_offset; 152 static long cnt; 153 154 /* these are for calculating cpu state percentages */ 155 156 static long cp_time[CPUSTATES]; 157 static long cp_old[CPUSTATES]; 158 static long cp_diff[CPUSTATES]; 159 160 /* these are for detailing the process states */ 161 162 int process_states[8]; 163 char *procstatenames[] = { 164 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 165 " zombie, ", " waiting, ", " mutex, ", 166 NULL 167 }; 168 169 /* these are for detailing the cpu states */ 170 171 int cpu_states[CPUSTATES]; 172 char *cpustatenames[] = { 173 "user", "nice", "system", "interrupt", "idle", NULL 174 }; 175 176 /* these are for detailing the memory statistics */ 177 178 int memory_stats[7]; 179 char *memorynames[] = { 180 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 181 NULL 182 }; 183 184 int swap_stats[7]; 185 char *swapnames[] = { 186 /* 0 1 2 3 4 5 */ 187 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 188 NULL 189 }; 190 191 192 /* these are for keeping track of the proc array */ 193 194 static int nproc; 195 static int onproc = -1; 196 static int pref_len; 197 static struct kinfo_proc *pbase; 198 static struct kinfo_proc **pref; 199 200 /* these are for getting the memory statistics */ 201 202 static int pageshift; /* log base 2 of the pagesize */ 203 204 /* define pagetok in terms of pageshift */ 205 206 #define pagetok(size) ((size) << pageshift) 207 208 /* useful externals */ 209 long percentages(); 210 211 #ifdef ORDER 212 /* sorting orders. first is default */ 213 char *ordernames[] = { 214 "cpu", "size", "res", "time", "pri", NULL 215 }; 216 #endif 217 218 int 219 machine_init(statics) 220 221 struct statics *statics; 222 223 { 224 register int i = 0; 225 register int pagesize; 226 int modelen; 227 struct passwd *pw; 228 229 modelen = sizeof(smpmode); 230 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && 231 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || 232 modelen != sizeof(smpmode)) 233 smpmode = 0; 234 235 while ((pw = getpwent()) != NULL) { 236 if (strlen(pw->pw_name) > namelength) 237 namelength = strlen(pw->pw_name); 238 } 239 if (namelength < 8) 240 namelength = 8; 241 if (namelength > 15) 242 namelength = 15; 243 244 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) 245 return -1; 246 247 248 /* get the list of symbols we want to access in the kernel */ 249 (void) kvm_nlist(kd, nlst); 250 if (nlst[0].n_type == 0) 251 { 252 fprintf(stderr, "top: nlist failed\n"); 253 return(-1); 254 } 255 256 /* make sure they were all found */ 257 if (i > 0 && check_nlist(nlst) > 0) 258 { 259 return(-1); 260 } 261 262 (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), 263 nlst[X_CCPU].n_name); 264 265 /* stash away certain offsets for later use */ 266 cp_time_offset = nlst[X_CP_TIME].n_value; 267 avenrun_offset = nlst[X_AVENRUN].n_value; 268 lastpid_offset = nlst[X_LASTPID].n_value; 269 cnt_offset = nlst[X_CNT].n_value; 270 bufspace_offset = nlst[X_BUFSPACE].n_value; 271 272 /* this is used in calculating WCPU -- calculate it ahead of time */ 273 logcpu = log(loaddouble(ccpu)); 274 275 pbase = NULL; 276 pref = NULL; 277 nproc = 0; 278 onproc = -1; 279 /* get the page size with "getpagesize" and calculate pageshift from it */ 280 pagesize = getpagesize(); 281 pageshift = 0; 282 while (pagesize > 1) 283 { 284 pageshift++; 285 pagesize >>= 1; 286 } 287 288 /* we only need the amount of log(2)1024 for our conversion */ 289 pageshift -= LOG1024; 290 291 /* fill in the statics information */ 292 statics->procstate_names = procstatenames; 293 statics->cpustate_names = cpustatenames; 294 statics->memory_names = memorynames; 295 statics->swap_names = swapnames; 296 #ifdef ORDER 297 statics->order_names = ordernames; 298 #endif 299 300 /* all done! */ 301 return(0); 302 } 303 304 char *format_header(uname_field) 305 306 register char *uname_field; 307 308 { 309 register char *ptr; 310 static char Header[128]; 311 312 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, 313 namelength, namelength, uname_field); 314 315 cmdlengthdelta = strlen(Header) - 7; 316 317 return Header; 318 } 319 320 static int swappgsin = -1; 321 static int swappgsout = -1; 322 extern struct timeval timeout; 323 324 void 325 get_system_info(si) 326 327 struct system_info *si; 328 329 { 330 long total; 331 load_avg avenrun[3]; 332 int mib[2]; 333 struct timeval boottime; 334 size_t bt_size; 335 336 /* get the cp_time array */ 337 (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), 338 nlst[X_CP_TIME].n_name); 339 (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), 340 nlst[X_AVENRUN].n_name); 341 342 (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), 343 "!"); 344 345 /* convert load averages to doubles */ 346 { 347 register int i; 348 register double *infoloadp; 349 load_avg *avenrunp; 350 351 #ifdef notyet 352 struct loadavg sysload; 353 int size; 354 getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); 355 #endif 356 357 infoloadp = si->load_avg; 358 avenrunp = avenrun; 359 for (i = 0; i < 3; i++) 360 { 361 #ifdef notyet 362 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 363 #endif 364 *infoloadp++ = loaddouble(*avenrunp++); 365 } 366 } 367 368 /* convert cp_time counts to percentages */ 369 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 370 371 /* sum memory & swap statistics */ 372 { 373 struct vmmeter sum; 374 static unsigned int swap_delay = 0; 375 static int swapavail = 0; 376 static int swapfree = 0; 377 static int bufspace = 0; 378 379 (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), 380 "_cnt"); 381 (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), 382 "_bufspace"); 383 384 /* convert memory stats to Kbytes */ 385 memory_stats[0] = pagetok(sum.v_active_count); 386 memory_stats[1] = pagetok(sum.v_inactive_count); 387 memory_stats[2] = pagetok(sum.v_wire_count); 388 memory_stats[3] = pagetok(sum.v_cache_count); 389 memory_stats[4] = bufspace / 1024; 390 memory_stats[5] = pagetok(sum.v_free_count); 391 memory_stats[6] = -1; 392 393 /* first interval */ 394 if (swappgsin < 0) { 395 swap_stats[4] = 0; 396 swap_stats[5] = 0; 397 } 398 399 /* compute differences between old and new swap statistic */ 400 else { 401 swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); 402 swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); 403 } 404 405 swappgsin = sum.v_swappgsin; 406 swappgsout = sum.v_swappgsout; 407 408 /* call CPU heavy swapmode() only for changes */ 409 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 410 swap_stats[3] = swapmode(&swapavail, &swapfree); 411 swap_stats[0] = swapavail; 412 swap_stats[1] = swapavail - swapfree; 413 swap_stats[2] = swapfree; 414 } 415 swap_delay = 1; 416 swap_stats[6] = -1; 417 } 418 419 /* set arrays and strings */ 420 si->cpustates = cpu_states; 421 si->memory = memory_stats; 422 si->swap = swap_stats; 423 424 425 if(lastpid > 0) { 426 si->last_pid = lastpid; 427 } else { 428 si->last_pid = -1; 429 } 430 431 /* 432 * Print how long system has been up. 433 * (Found by looking getting "boottime" from the kernel) 434 */ 435 mib[0] = CTL_KERN; 436 mib[1] = KERN_BOOTTIME; 437 bt_size = sizeof(boottime); 438 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 439 boottime.tv_sec != 0) { 440 si->boottime = boottime; 441 } else { 442 si->boottime.tv_sec = -1; 443 } 444 } 445 446 static struct handle handle; 447 448 caddr_t get_process_info(si, sel, compare) 449 450 struct system_info *si; 451 struct process_select *sel; 452 int (*compare)(); 453 454 { 455 register int i; 456 register int total_procs; 457 register int active_procs; 458 register struct kinfo_proc **prefp; 459 register struct kinfo_proc *pp; 460 461 /* these are copied out of sel for speed */ 462 int show_idle; 463 int show_self; 464 int show_system; 465 int show_uid; 466 int show_command; 467 468 469 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 470 if (nproc > onproc) 471 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 472 * (onproc = nproc)); 473 if (pref == NULL || pbase == NULL) { 474 (void) fprintf(stderr, "top: Out of memory.\n"); 475 quit(23); 476 } 477 /* get a pointer to the states summary array */ 478 si->procstates = process_states; 479 480 /* set up flags which define what we are going to select */ 481 show_idle = sel->idle; 482 show_self = sel->self; 483 show_system = sel->system; 484 show_uid = sel->uid != -1; 485 show_command = sel->command != NULL; 486 487 /* count up process states and get pointers to interesting procs */ 488 total_procs = 0; 489 active_procs = 0; 490 memset((char *)process_states, 0, sizeof(process_states)); 491 prefp = pref; 492 for (pp = pbase, i = 0; i < nproc; pp++, i++) 493 { 494 /* 495 * Place pointers to each valid proc structure in pref[]. 496 * Process slots that are actually in use have a non-zero 497 * status field. Processes with P_SYSTEM set are system 498 * processes---these get ignored unless show_sysprocs is set. 499 */ 500 if (pp->ki_stat != 0 && 501 (show_self != pp->ki_pid) && 502 (show_system || ((pp->ki_flag & P_SYSTEM) == 0))) 503 { 504 total_procs++; 505 process_states[(unsigned char) pp->ki_stat]++; 506 if ((pp->ki_stat != SZOMB) && 507 (show_idle || (pp->ki_pctcpu != 0) || 508 (pp->ki_stat == SRUN)) && 509 (!show_uid || pp->ki_ruid == (uid_t)sel->uid)) 510 { 511 *prefp++ = pp; 512 active_procs++; 513 } 514 } 515 } 516 517 /* if requested, sort the "interesting" processes */ 518 if (compare != NULL) 519 { 520 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 521 } 522 523 /* remember active and total counts */ 524 si->p_total = total_procs; 525 si->p_active = pref_len = active_procs; 526 527 /* pass back a handle */ 528 handle.next_proc = pref; 529 handle.remaining = active_procs; 530 return((caddr_t)&handle); 531 } 532 533 char fmt[128]; /* static area where result is built */ 534 535 char *format_next_process(handle, get_userid) 536 537 caddr_t handle; 538 char *(*get_userid)(); 539 540 { 541 register struct kinfo_proc *pp; 542 register long cputime; 543 register double pct; 544 struct handle *hp; 545 char status[16]; 546 int state; 547 548 /* find and remember the next proc structure */ 549 hp = (struct handle *)handle; 550 pp = *(hp->next_proc++); 551 hp->remaining--; 552 553 /* get the process's command name */ 554 if ((pp->ki_sflag & PS_INMEM) == 0) { 555 /* 556 * Print swapped processes as <pname> 557 */ 558 char *comm = pp->ki_comm; 559 #define COMSIZ sizeof(pp->ki_comm) 560 char buf[COMSIZ]; 561 (void) strncpy(buf, comm, COMSIZ); 562 comm[0] = '<'; 563 (void) strncpy(&comm[1], buf, COMSIZ - 2); 564 comm[COMSIZ - 2] = '\0'; 565 (void) strncat(comm, ">", COMSIZ - 1); 566 comm[COMSIZ - 1] = '\0'; 567 } 568 569 /* 570 * Convert the process's runtime from microseconds to seconds. This 571 * time includes the interrupt time although that is not wanted here. 572 * ps(1) is similarly sloppy. 573 */ 574 cputime = (pp->ki_runtime + 500000) / 1000000; 575 576 /* calculate the base for cpu percentages */ 577 pct = pctdouble(pp->ki_pctcpu); 578 579 /* generate "STATE" field */ 580 switch (state = pp->ki_stat) { 581 case SRUN: 582 if (smpmode && pp->ki_oncpu != 0xff) 583 sprintf(status, "CPU%d", pp->ki_oncpu); 584 else 585 strcpy(status, "RUN"); 586 break; 587 case SMTX: 588 if (pp->ki_kiflag & KI_MTXBLOCK) { 589 sprintf(status, "*%.6s", pp->ki_mtxname); 590 break; 591 } 592 /* fall through */ 593 case SSLEEP: 594 if (pp->ki_wmesg != NULL) { 595 sprintf(status, "%.6s", pp->ki_wmesg); 596 break; 597 } 598 /* fall through */ 599 default: 600 601 if (state >= 0 && 602 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 603 sprintf(status, "%.6s", state_abbrev[(unsigned char) state]); 604 else 605 sprintf(status, "?%5d", state); 606 break; 607 } 608 609 /* format this entry */ 610 sprintf(fmt, 611 smpmode ? smp_Proc_format : up_Proc_format, 612 pp->ki_pid, 613 namelength, namelength, 614 (*get_userid)(pp->ki_ruid), 615 pp->ki_pri.pri_level - PZERO, 616 617 /* 618 * normal time -> nice value -20 - +20 619 * real time 0 - 31 -> nice value -52 - -21 620 * idle time 0 - 31 -> nice value +21 - +52 621 */ 622 (pp->ki_pri.pri_class == PRI_TIMESHARE ? 623 pp->ki_nice - NZERO : 624 (PRI_IS_REALTIME(pp->ki_pri.pri_class) ? 625 (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) : 626 (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))), 627 format_k2(PROCSIZE(pp)), 628 format_k2(pagetok(pp->ki_rssize)), 629 status, 630 smpmode ? pp->ki_lastcpu : 0, 631 format_time(cputime), 632 100.0 * weighted_cpu(pct, pp), 633 100.0 * pct, 634 screen_width > cmdlengthdelta ? 635 screen_width - cmdlengthdelta : 636 0, 637 printable(pp->ki_comm)); 638 639 /* return the result */ 640 return(fmt); 641 } 642 643 644 /* 645 * check_nlist(nlst) - checks the nlist to see if any symbols were not 646 * found. For every symbol that was not found, a one-line 647 * message is printed to stderr. The routine returns the 648 * number of symbols NOT found. 649 */ 650 651 static int check_nlist(nlst) 652 653 register struct nlist *nlst; 654 655 { 656 register int i; 657 658 /* check to see if we got ALL the symbols we requested */ 659 /* this will write one line to stderr for every symbol not found */ 660 661 i = 0; 662 while (nlst->n_name != NULL) 663 { 664 if (nlst->n_type == 0) 665 { 666 /* this one wasn't found */ 667 (void) fprintf(stderr, "kernel: no symbol named `%s'\n", 668 nlst->n_name); 669 i = 1; 670 } 671 nlst++; 672 } 673 674 return(i); 675 } 676 677 678 /* 679 * getkval(offset, ptr, size, refstr) - get a value out of the kernel. 680 * "offset" is the byte offset into the kernel for the desired value, 681 * "ptr" points to a buffer into which the value is retrieved, 682 * "size" is the size of the buffer (and the object to retrieve), 683 * "refstr" is a reference string used when printing error meessages, 684 * if "refstr" starts with a '!', then a failure on read will not 685 * be fatal (this may seem like a silly way to do things, but I 686 * really didn't want the overhead of another argument). 687 * 688 */ 689 690 static int getkval(offset, ptr, size, refstr) 691 692 unsigned long offset; 693 int *ptr; 694 int size; 695 char *refstr; 696 697 { 698 if (kvm_read(kd, offset, (char *) ptr, size) != size) 699 { 700 if (*refstr == '!') 701 { 702 return(0); 703 } 704 else 705 { 706 fprintf(stderr, "top: kvm_read for %s: %s\n", 707 refstr, strerror(errno)); 708 quit(23); 709 } 710 } 711 return(1); 712 } 713 714 /* comparison routines for qsort */ 715 716 /* 717 * proc_compare - comparison function for "qsort" 718 * Compares the resource consumption of two processes using five 719 * distinct keys. The keys (in descending order of importance) are: 720 * percent cpu, cpu ticks, state, resident set size, total virtual 721 * memory usage. The process states are ordered as follows (from least 722 * to most important): WAIT, zombie, sleep, stop, start, run. The 723 * array declaration below maps a process state index into a number 724 * that reflects this ordering. 725 */ 726 727 static unsigned char sorted_state[] = 728 { 729 0, /* not used */ 730 3, /* sleep */ 731 1, /* ABANDONED (WAIT) */ 732 6, /* run */ 733 5, /* start */ 734 2, /* zombie */ 735 4 /* stop */ 736 }; 737 738 739 #define ORDERKEY_PCTCPU \ 740 if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \ 741 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 742 743 #define ORDERKEY_CPTICKS \ 744 if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \ 745 p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0) 746 747 #define ORDERKEY_STATE \ 748 if ((result = sorted_state[(unsigned char) p2->ki_stat] - \ 749 sorted_state[(unsigned char) p1->ki_stat]) == 0) 750 751 #define ORDERKEY_PRIO \ 752 if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0) 753 754 #define ORDERKEY_RSSIZE \ 755 if ((result = p2->ki_rssize - p1->ki_rssize) == 0) 756 757 #define ORDERKEY_MEM \ 758 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) 759 760 /* compare_cpu - the comparison function for sorting by cpu percentage */ 761 762 int 763 #ifdef ORDER 764 compare_cpu(pp1, pp2) 765 #else 766 proc_compare(pp1, pp2) 767 #endif 768 769 struct proc **pp1; 770 struct proc **pp2; 771 772 { 773 register struct kinfo_proc *p1; 774 register struct kinfo_proc *p2; 775 register int result; 776 register pctcpu lresult; 777 778 /* remove one level of indirection */ 779 p1 = *(struct kinfo_proc **) pp1; 780 p2 = *(struct kinfo_proc **) pp2; 781 782 ORDERKEY_PCTCPU 783 ORDERKEY_CPTICKS 784 ORDERKEY_STATE 785 ORDERKEY_PRIO 786 ORDERKEY_RSSIZE 787 ORDERKEY_MEM 788 ; 789 790 return(result); 791 } 792 793 #ifdef ORDER 794 /* compare routines */ 795 int compare_size(), compare_res(), compare_time(), compare_prio(); 796 797 int (*proc_compares[])() = { 798 compare_cpu, 799 compare_size, 800 compare_res, 801 compare_time, 802 compare_prio, 803 NULL 804 }; 805 806 /* compare_size - the comparison function for sorting by total memory usage */ 807 808 int 809 compare_size(pp1, pp2) 810 811 struct proc **pp1; 812 struct proc **pp2; 813 814 { 815 register struct kinfo_proc *p1; 816 register struct kinfo_proc *p2; 817 register int result; 818 register pctcpu lresult; 819 820 /* remove one level of indirection */ 821 p1 = *(struct kinfo_proc **) pp1; 822 p2 = *(struct kinfo_proc **) pp2; 823 824 ORDERKEY_MEM 825 ORDERKEY_RSSIZE 826 ORDERKEY_PCTCPU 827 ORDERKEY_CPTICKS 828 ORDERKEY_STATE 829 ORDERKEY_PRIO 830 ; 831 832 return(result); 833 } 834 835 /* compare_res - the comparison function for sorting by resident set size */ 836 837 int 838 compare_res(pp1, pp2) 839 840 struct proc **pp1; 841 struct proc **pp2; 842 843 { 844 register struct kinfo_proc *p1; 845 register struct kinfo_proc *p2; 846 register int result; 847 register pctcpu lresult; 848 849 /* remove one level of indirection */ 850 p1 = *(struct kinfo_proc **) pp1; 851 p2 = *(struct kinfo_proc **) pp2; 852 853 ORDERKEY_RSSIZE 854 ORDERKEY_MEM 855 ORDERKEY_PCTCPU 856 ORDERKEY_CPTICKS 857 ORDERKEY_STATE 858 ORDERKEY_PRIO 859 ; 860 861 return(result); 862 } 863 864 /* compare_time - the comparison function for sorting by total cpu time */ 865 866 int 867 compare_time(pp1, pp2) 868 869 struct proc **pp1; 870 struct proc **pp2; 871 872 { 873 register struct kinfo_proc *p1; 874 register struct kinfo_proc *p2; 875 register int result; 876 register pctcpu lresult; 877 878 /* remove one level of indirection */ 879 p1 = *(struct kinfo_proc **) pp1; 880 p2 = *(struct kinfo_proc **) pp2; 881 882 ORDERKEY_CPTICKS 883 ORDERKEY_PCTCPU 884 ORDERKEY_STATE 885 ORDERKEY_PRIO 886 ORDERKEY_RSSIZE 887 ORDERKEY_MEM 888 ; 889 890 return(result); 891 } 892 893 /* compare_prio - the comparison function for sorting by cpu percentage */ 894 895 int 896 compare_prio(pp1, pp2) 897 898 struct proc **pp1; 899 struct proc **pp2; 900 901 { 902 register struct kinfo_proc *p1; 903 register struct kinfo_proc *p2; 904 register int result; 905 register pctcpu lresult; 906 907 /* remove one level of indirection */ 908 p1 = *(struct kinfo_proc **) pp1; 909 p2 = *(struct kinfo_proc **) pp2; 910 911 ORDERKEY_PRIO 912 ORDERKEY_CPTICKS 913 ORDERKEY_PCTCPU 914 ORDERKEY_STATE 915 ORDERKEY_RSSIZE 916 ORDERKEY_MEM 917 ; 918 919 return(result); 920 } 921 #endif 922 923 /* 924 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 925 * the process does not exist. 926 * It is EXTREMLY IMPORTANT that this function work correctly. 927 * If top runs setuid root (as in SVR4), then this function 928 * is the only thing that stands in the way of a serious 929 * security problem. It validates requests for the "kill" 930 * and "renice" commands. 931 */ 932 933 int proc_owner(pid) 934 935 int pid; 936 937 { 938 register int cnt; 939 register struct kinfo_proc **prefp; 940 register struct kinfo_proc *pp; 941 942 prefp = pref; 943 cnt = pref_len; 944 while (--cnt >= 0) 945 { 946 pp = *prefp++; 947 if (pp->ki_pid == (pid_t)pid) 948 { 949 return((int)pp->ki_ruid); 950 } 951 } 952 return(-1); 953 } 954 955 956 /* 957 * swapmode is based on a program called swapinfo written 958 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 959 */ 960 961 #define SVAR(var) __STRING(var) /* to force expansion */ 962 #define KGET(idx, var) \ 963 KGET1(idx, &var, sizeof(var), SVAR(var)) 964 #define KGET1(idx, p, s, msg) \ 965 KGET2(nlst[idx].n_value, p, s, msg) 966 #define KGET2(addr, p, s, msg) \ 967 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 968 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 969 return (0); \ 970 } 971 #define KGETRET(addr, p, s, msg) \ 972 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 973 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 974 return (0); \ 975 } 976 977 978 int 979 swapmode(retavail, retfree) 980 int *retavail; 981 int *retfree; 982 { 983 int n; 984 int pagesize = getpagesize(); 985 struct kvm_swap swapary[1]; 986 987 *retavail = 0; 988 *retfree = 0; 989 990 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 991 992 n = kvm_getswapinfo(kd, swapary, 1, 0); 993 if (n < 0 || swapary[0].ksw_total == 0) 994 return(0); 995 996 *retavail = CONVERT(swapary[0].ksw_total); 997 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 998 999 n = (int)((double)swapary[0].ksw_used * 100.0 / 1000 (double)swapary[0].ksw_total); 1001 return(n); 1002 } 1003 1004