1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 /* TOP_JID_LEN based on max of 999999 */ 71 #define TOP_JID_LEN 7 72 #define TOP_SWAP_LEN 6 73 static int jidlength; 74 static int swaplength; 75 static int cmdlengthdelta; 76 77 /* Prototypes for top internals */ 78 void quit(int); 79 80 /* get_process_info passes back a handle. This is what it looks like: */ 81 82 struct handle { 83 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 84 int remaining; /* number of pointers remaining */ 85 }; 86 87 /* declarations for load_avg */ 88 #include "loadavg.h" 89 90 /* define what weighted cpu is. */ 91 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 92 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 93 94 /* what we consider to be process size: */ 95 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 96 97 #define RU(pp) (&(pp)->ki_rusage) 98 #define RUTOT(pp) \ 99 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 100 101 #define PCTCPU(pp) (pcpu[pp - pbase]) 102 103 /* definitions for indices in the nlist array */ 104 105 /* 106 * These definitions control the format of the per-process area 107 */ 108 109 static char io_header[] = 110 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 111 112 #define io_Proc_format \ 113 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 114 115 static char smp_header_thr[] = 116 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 117 static char smp_header[] = 118 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 119 120 #define smp_Proc_format \ 121 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s" 122 123 static char up_header_thr[] = 124 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 125 static char up_header[] = 126 " PID%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 127 128 #define up_Proc_format \ 129 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s" 130 131 132 /* process state names for the "STATE" column of the display */ 133 /* the extra nulls in the string "run" are for adding a slash and 134 the processor number when needed */ 135 136 char *state_abbrev[] = { 137 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 138 }; 139 140 141 static kvm_t *kd; 142 143 /* values that we stash away in _init and use in later routines */ 144 145 static double logcpu; 146 147 /* these are retrieved from the kernel in _init */ 148 149 static load_avg ccpu; 150 151 /* these are used in the get_ functions */ 152 153 static int lastpid; 154 155 /* these are for calculating cpu state percentages */ 156 157 static long cp_time[CPUSTATES]; 158 static long cp_old[CPUSTATES]; 159 static long cp_diff[CPUSTATES]; 160 161 /* these are for detailing the process states */ 162 163 int process_states[8]; 164 char *procstatenames[] = { 165 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 166 " zombie, ", " waiting, ", " lock, ", 167 NULL 168 }; 169 170 /* these are for detailing the cpu states */ 171 172 int cpu_states[CPUSTATES]; 173 char *cpustatenames[] = { 174 "user", "nice", "system", "interrupt", "idle", NULL 175 }; 176 177 /* these are for detailing the memory statistics */ 178 179 int memory_stats[7]; 180 char *memorynames[] = { 181 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 182 "K Free", NULL 183 }; 184 185 int arc_stats[7]; 186 char *arcnames[] = { 187 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 188 NULL 189 }; 190 191 int carc_stats[4]; 192 char *carcnames[] = { 193 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 194 NULL 195 }; 196 197 int swap_stats[7]; 198 char *swapnames[] = { 199 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 200 NULL 201 }; 202 203 204 /* these are for keeping track of the proc array */ 205 206 static int nproc; 207 static int onproc = -1; 208 static int pref_len; 209 static struct kinfo_proc *pbase; 210 static struct kinfo_proc **pref; 211 static struct kinfo_proc *previous_procs; 212 static struct kinfo_proc **previous_pref; 213 static int previous_proc_count = 0; 214 static int previous_proc_count_max = 0; 215 static int previous_thread; 216 217 /* data used for recalculating pctcpu */ 218 static double *pcpu; 219 static struct timespec proc_uptime; 220 static struct timeval proc_wall_time; 221 static struct timeval previous_wall_time; 222 static uint64_t previous_interval = 0; 223 224 /* total number of io operations */ 225 static long total_inblock; 226 static long total_oublock; 227 static long total_majflt; 228 229 /* these are for getting the memory statistics */ 230 231 static int arc_enabled; 232 static int carc_enabled; 233 static int pageshift; /* log base 2 of the pagesize */ 234 235 /* define pagetok in terms of pageshift */ 236 237 #define pagetok(size) ((size) << pageshift) 238 239 /* swap usage */ 240 #define ki_swap(kip) \ 241 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 242 243 /* useful externals */ 244 long percentages(int cnt, int *out, long *new, long *old, long *diffs); 245 246 #ifdef ORDER 247 /* 248 * Sorting orders. The first element is the default. 249 */ 250 char *ordernames[] = { 251 "cpu", "size", "res", "time", "pri", "threads", 252 "total", "read", "write", "fault", "vcsw", "ivcsw", 253 "jid", "swap", "pid", NULL 254 }; 255 #endif 256 257 /* Per-cpu time states */ 258 static int maxcpu; 259 static int maxid; 260 static int ncpus; 261 static u_long cpumask; 262 static long *times; 263 static long *pcpu_cp_time; 264 static long *pcpu_cp_old; 265 static long *pcpu_cp_diff; 266 static int *pcpu_cpu_states; 267 268 static int compare_swap(const void *a, const void *b); 269 static int compare_jid(const void *a, const void *b); 270 static int compare_pid(const void *a, const void *b); 271 static int compare_tid(const void *a, const void *b); 272 static const char *format_nice(const struct kinfo_proc *pp); 273 static void getsysctl(const char *name, void *ptr, size_t len); 274 static int swapmode(int *retavail, int *retfree); 275 static void update_layout(void); 276 static int find_uid(uid_t needle, int *haystack); 277 278 static int 279 find_uid(uid_t needle, int *haystack) 280 { 281 size_t i = 0; 282 283 for (; i < TOP_MAX_UIDS; ++i) 284 if ((uid_t)haystack[i] == needle) 285 return 1; 286 return 0; 287 } 288 289 void 290 toggle_pcpustats(void) 291 { 292 293 if (ncpus == 1) 294 return; 295 update_layout(); 296 } 297 298 /* Adjust display based on ncpus and the ARC state. */ 299 static void 300 update_layout(void) 301 { 302 303 y_mem = 3; 304 y_arc = 4; 305 y_carc = 5; 306 y_swap = 4 + arc_enabled + carc_enabled; 307 y_idlecursor = 5 + arc_enabled + carc_enabled; 308 y_message = 5 + arc_enabled + carc_enabled; 309 y_header = 6 + arc_enabled + carc_enabled; 310 y_procs = 7 + arc_enabled + carc_enabled; 311 Header_lines = 7 + arc_enabled + carc_enabled; 312 313 if (pcpu_stats) { 314 y_mem += ncpus - 1; 315 y_arc += ncpus - 1; 316 y_carc += ncpus - 1; 317 y_swap += ncpus - 1; 318 y_idlecursor += ncpus - 1; 319 y_message += ncpus - 1; 320 y_header += ncpus - 1; 321 y_procs += ncpus - 1; 322 Header_lines += ncpus - 1; 323 } 324 } 325 326 int 327 machine_init(struct statics *statics, char do_unames) 328 { 329 int i, j, empty, pagesize; 330 uint64_t arc_size; 331 boolean_t carc_en; 332 size_t size; 333 struct passwd *pw; 334 335 size = sizeof(smpmode); 336 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 337 NULL, 0) != 0 && 338 sysctlbyname("kern.smp.active", &smpmode, &size, 339 NULL, 0) != 0) || 340 size != sizeof(smpmode)) 341 smpmode = 0; 342 343 size = sizeof(arc_size); 344 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 345 NULL, 0) == 0 && arc_size != 0) 346 arc_enabled = 1; 347 size = sizeof(carc_en); 348 if (arc_enabled && 349 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 350 NULL, 0) == 0 && carc_en == 1) 351 carc_enabled = 1; 352 353 if (do_unames) { 354 while ((pw = getpwent()) != NULL) { 355 if (strlen(pw->pw_name) > namelength) 356 namelength = strlen(pw->pw_name); 357 } 358 } 359 if (smpmode && namelength > SMPUNAMELEN) 360 namelength = SMPUNAMELEN; 361 else if (namelength > UPUNAMELEN) 362 namelength = UPUNAMELEN; 363 364 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 365 if (kd == NULL) 366 return (-1); 367 368 GETSYSCTL("kern.ccpu", ccpu); 369 370 /* this is used in calculating WCPU -- calculate it ahead of time */ 371 logcpu = log(loaddouble(ccpu)); 372 373 pbase = NULL; 374 pref = NULL; 375 pcpu = NULL; 376 nproc = 0; 377 onproc = -1; 378 379 /* get the page size and calculate pageshift from it */ 380 pagesize = getpagesize(); 381 pageshift = 0; 382 while (pagesize > 1) { 383 pageshift++; 384 pagesize >>= 1; 385 } 386 387 /* we only need the amount of log(2)1024 for our conversion */ 388 pageshift -= LOG1024; 389 390 /* fill in the statics information */ 391 statics->procstate_names = procstatenames; 392 statics->cpustate_names = cpustatenames; 393 statics->memory_names = memorynames; 394 if (arc_enabled) 395 statics->arc_names = arcnames; 396 else 397 statics->arc_names = NULL; 398 if (carc_enabled) 399 statics->carc_names = carcnames; 400 else 401 statics->carc_names = NULL; 402 statics->swap_names = swapnames; 403 #ifdef ORDER 404 statics->order_names = ordernames; 405 #endif 406 407 /* Allocate state for per-CPU stats. */ 408 cpumask = 0; 409 ncpus = 0; 410 GETSYSCTL("kern.smp.maxcpus", maxcpu); 411 size = sizeof(long) * maxcpu * CPUSTATES; 412 times = malloc(size); 413 if (times == NULL) 414 err(1, "malloc %zu bytes", size); 415 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 416 err(1, "sysctlbyname kern.cp_times"); 417 pcpu_cp_time = calloc(1, size); 418 maxid = (size / CPUSTATES / sizeof(long)) - 1; 419 for (i = 0; i <= maxid; i++) { 420 empty = 1; 421 for (j = 0; empty && j < CPUSTATES; j++) { 422 if (times[i * CPUSTATES + j] != 0) 423 empty = 0; 424 } 425 if (!empty) { 426 cpumask |= (1ul << i); 427 ncpus++; 428 } 429 } 430 size = sizeof(long) * ncpus * CPUSTATES; 431 pcpu_cp_old = calloc(1, size); 432 pcpu_cp_diff = calloc(1, size); 433 pcpu_cpu_states = calloc(1, size); 434 statics->ncpus = ncpus; 435 436 update_layout(); 437 438 /* all done! */ 439 return (0); 440 } 441 442 char * 443 format_header(char *uname_field) 444 { 445 static char Header[128]; 446 const char *prehead; 447 448 if (ps.jail) 449 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 450 else 451 jidlength = 0; 452 453 if (ps.swap) 454 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 455 else 456 swaplength = 0; 457 458 switch (displaymode) { 459 case DISP_CPU: 460 /* 461 * The logic of picking the right header format seems reverse 462 * here because we only want to display a THR column when 463 * "thread mode" is off (and threads are not listed as 464 * separate lines). 465 */ 466 prehead = smpmode ? 467 (ps.thread ? smp_header : smp_header_thr) : 468 (ps.thread ? up_header : up_header_thr); 469 snprintf(Header, sizeof(Header), prehead, 470 jidlength, ps.jail ? " JID" : "", 471 namelength, namelength, uname_field, 472 swaplength, ps.swap ? " SWAP" : "", 473 ps.wcpu ? "WCPU" : "CPU"); 474 break; 475 case DISP_IO: 476 prehead = io_header; 477 snprintf(Header, sizeof(Header), prehead, 478 jidlength, ps.jail ? " JID" : "", 479 namelength, namelength, uname_field); 480 break; 481 } 482 cmdlengthdelta = strlen(Header) - 7; 483 return (Header); 484 } 485 486 static int swappgsin = -1; 487 static int swappgsout = -1; 488 extern struct timeval timeout; 489 490 491 void 492 get_system_info(struct system_info *si) 493 { 494 long total; 495 struct loadavg sysload; 496 int mib[2]; 497 struct timeval boottime; 498 uint64_t arc_stat, arc_stat2; 499 int i, j; 500 size_t size; 501 502 /* get the CPU stats */ 503 size = (maxid + 1) * CPUSTATES * sizeof(long); 504 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 505 err(1, "sysctlbyname kern.cp_times"); 506 GETSYSCTL("kern.cp_time", cp_time); 507 GETSYSCTL("vm.loadavg", sysload); 508 GETSYSCTL("kern.lastpid", lastpid); 509 510 /* convert load averages to doubles */ 511 for (i = 0; i < 3; i++) 512 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 513 514 /* convert cp_time counts to percentages */ 515 for (i = j = 0; i <= maxid; i++) { 516 if ((cpumask & (1ul << i)) == 0) 517 continue; 518 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 519 &pcpu_cp_time[j * CPUSTATES], 520 &pcpu_cp_old[j * CPUSTATES], 521 &pcpu_cp_diff[j * CPUSTATES]); 522 j++; 523 } 524 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 525 526 /* sum memory & swap statistics */ 527 { 528 static unsigned int swap_delay = 0; 529 static int swapavail = 0; 530 static int swapfree = 0; 531 static long bufspace = 0; 532 static uint64_t nspgsin, nspgsout; 533 534 GETSYSCTL("vfs.bufspace", bufspace); 535 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 536 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 537 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 538 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 539 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 540 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 541 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 542 /* convert memory stats to Kbytes */ 543 memory_stats[0] = pagetok(memory_stats[0]); 544 memory_stats[1] = pagetok(memory_stats[1]); 545 memory_stats[2] = pagetok(memory_stats[2]); 546 memory_stats[3] = pagetok(memory_stats[3]); 547 memory_stats[4] = bufspace / 1024; 548 memory_stats[5] = pagetok(memory_stats[5]); 549 memory_stats[6] = -1; 550 551 /* first interval */ 552 if (swappgsin < 0) { 553 swap_stats[4] = 0; 554 swap_stats[5] = 0; 555 } 556 557 /* compute differences between old and new swap statistic */ 558 else { 559 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 560 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 561 } 562 563 swappgsin = nspgsin; 564 swappgsout = nspgsout; 565 566 /* call CPU heavy swapmode() only for changes */ 567 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 568 swap_stats[3] = swapmode(&swapavail, &swapfree); 569 swap_stats[0] = swapavail; 570 swap_stats[1] = swapavail - swapfree; 571 swap_stats[2] = swapfree; 572 } 573 swap_delay = 1; 574 swap_stats[6] = -1; 575 } 576 577 if (arc_enabled) { 578 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 579 arc_stats[0] = arc_stat >> 10; 580 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 581 arc_stats[1] = arc_stat >> 10; 582 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 583 arc_stats[2] = arc_stat >> 10; 584 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 585 arc_stats[3] = arc_stat >> 10; 586 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 587 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 588 arc_stats[4] = arc_stat + arc_stat2 >> 10; 589 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 590 arc_stats[5] = arc_stat >> 10; 591 si->arc = arc_stats; 592 } 593 if (carc_enabled) { 594 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 595 carc_stats[0] = arc_stat >> 10; 596 carc_stats[2] = arc_stat >> 10; /* For ratio */ 597 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 598 carc_stats[1] = arc_stat >> 10; 599 si->carc = carc_stats; 600 } 601 602 /* set arrays and strings */ 603 if (pcpu_stats) { 604 si->cpustates = pcpu_cpu_states; 605 si->ncpus = ncpus; 606 } else { 607 si->cpustates = cpu_states; 608 si->ncpus = 1; 609 } 610 si->memory = memory_stats; 611 si->swap = swap_stats; 612 613 614 if (lastpid > 0) { 615 si->last_pid = lastpid; 616 } else { 617 si->last_pid = -1; 618 } 619 620 /* 621 * Print how long system has been up. 622 * (Found by looking getting "boottime" from the kernel) 623 */ 624 mib[0] = CTL_KERN; 625 mib[1] = KERN_BOOTTIME; 626 size = sizeof(boottime); 627 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 628 boottime.tv_sec != 0) { 629 si->boottime = boottime; 630 } else { 631 si->boottime.tv_sec = -1; 632 } 633 } 634 635 #define NOPROC ((void *)-1) 636 637 /* 638 * We need to compare data from the old process entry with the new 639 * process entry. 640 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 641 * structure to cache the mapping. We also use a negative cache pointer 642 * of NOPROC to avoid duplicate lookups. 643 * XXX: this could be done when the actual processes are fetched, we do 644 * it here out of laziness. 645 */ 646 const struct kinfo_proc * 647 get_old_proc(struct kinfo_proc *pp) 648 { 649 struct kinfo_proc **oldpp, *oldp; 650 651 /* 652 * If this is the first fetch of the kinfo_procs then we don't have 653 * any previous entries. 654 */ 655 if (previous_proc_count == 0) 656 return (NULL); 657 /* negative cache? */ 658 if (pp->ki_udata == NOPROC) 659 return (NULL); 660 /* cached? */ 661 if (pp->ki_udata != NULL) 662 return (pp->ki_udata); 663 /* 664 * Not cached, 665 * 1) look up based on pid. 666 * 2) compare process start. 667 * If we fail here, then setup a negative cache entry, otherwise 668 * cache it. 669 */ 670 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 671 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 672 if (oldpp == NULL) { 673 pp->ki_udata = NOPROC; 674 return (NULL); 675 } 676 oldp = *oldpp; 677 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 678 pp->ki_udata = NOPROC; 679 return (NULL); 680 } 681 pp->ki_udata = oldp; 682 return (oldp); 683 } 684 685 /* 686 * Return the total amount of IO done in blocks in/out and faults. 687 * store the values individually in the pointers passed in. 688 */ 689 long 690 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 691 long *vcsw, long *ivcsw) 692 { 693 const struct kinfo_proc *oldp; 694 static struct kinfo_proc dummy; 695 long ret; 696 697 oldp = get_old_proc(pp); 698 if (oldp == NULL) { 699 bzero(&dummy, sizeof(dummy)); 700 oldp = &dummy; 701 } 702 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 703 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 704 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 705 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 706 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 707 ret = 708 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 709 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 710 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 711 return (ret); 712 } 713 714 /* 715 * If there was a previous update, use the delta in ki_runtime over 716 * the previous interval to calculate pctcpu. Otherwise, fall back 717 * to using the kernel's ki_pctcpu. 718 */ 719 static double 720 proc_calc_pctcpu(struct kinfo_proc *pp) 721 { 722 const struct kinfo_proc *oldp; 723 724 if (previous_interval != 0) { 725 oldp = get_old_proc(pp); 726 if (oldp != NULL) 727 return ((double)(pp->ki_runtime - oldp->ki_runtime) 728 / previous_interval); 729 730 /* 731 * If this process/thread was created during the previous 732 * interval, charge it's total runtime to the previous 733 * interval. 734 */ 735 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 736 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 737 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 738 return ((double)pp->ki_runtime / previous_interval); 739 } 740 return (pctdouble(pp->ki_pctcpu)); 741 } 742 743 /* 744 * Return true if this process has used any CPU time since the 745 * previous update. 746 */ 747 static int 748 proc_used_cpu(struct kinfo_proc *pp) 749 { 750 const struct kinfo_proc *oldp; 751 752 oldp = get_old_proc(pp); 753 if (oldp == NULL) 754 return (PCTCPU(pp) != 0); 755 return (pp->ki_runtime != oldp->ki_runtime || 756 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 757 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 758 } 759 760 /* 761 * Return the total number of block in/out and faults by a process. 762 */ 763 long 764 get_io_total(struct kinfo_proc *pp) 765 { 766 long dummy; 767 768 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 769 } 770 771 static struct handle handle; 772 773 caddr_t 774 get_process_info(struct system_info *si, struct process_select *sel, 775 int (*compare)(const void *, const void *)) 776 { 777 int i; 778 int total_procs; 779 long p_io; 780 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 781 long nsec; 782 int active_procs; 783 struct kinfo_proc **prefp; 784 struct kinfo_proc *pp; 785 struct timespec previous_proc_uptime; 786 787 /* these are copied out of sel for speed */ 788 int show_idle; 789 int show_jid; 790 int show_self; 791 int show_system; 792 int show_uid; 793 int show_command; 794 int show_kidle; 795 796 /* 797 * If thread state was toggled, don't cache the previous processes. 798 */ 799 if (previous_thread != sel->thread) 800 nproc = 0; 801 previous_thread = sel->thread; 802 803 /* 804 * Save the previous process info. 805 */ 806 if (previous_proc_count_max < nproc) { 807 free(previous_procs); 808 previous_procs = malloc(nproc * sizeof(*previous_procs)); 809 free(previous_pref); 810 previous_pref = malloc(nproc * sizeof(*previous_pref)); 811 if (previous_procs == NULL || previous_pref == NULL) { 812 (void) fprintf(stderr, "top: Out of memory.\n"); 813 quit(23); 814 } 815 previous_proc_count_max = nproc; 816 } 817 if (nproc) { 818 for (i = 0; i < nproc; i++) 819 previous_pref[i] = &previous_procs[i]; 820 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 821 qsort(previous_pref, nproc, sizeof(*previous_pref), 822 ps.thread ? compare_tid : compare_pid); 823 } 824 previous_proc_count = nproc; 825 previous_proc_uptime = proc_uptime; 826 previous_wall_time = proc_wall_time; 827 previous_interval = 0; 828 829 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 830 0, &nproc); 831 (void)gettimeofday(&proc_wall_time, NULL); 832 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 833 memset(&proc_uptime, 0, sizeof(proc_uptime)); 834 else if (previous_proc_uptime.tv_sec != 0 && 835 previous_proc_uptime.tv_nsec != 0) { 836 previous_interval = (proc_uptime.tv_sec - 837 previous_proc_uptime.tv_sec) * 1000000; 838 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 839 if (nsec < 0) { 840 previous_interval -= 1000000; 841 nsec += 1000000000; 842 } 843 previous_interval += nsec / 1000; 844 } 845 if (nproc > onproc) { 846 pref = realloc(pref, sizeof(*pref) * nproc); 847 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 848 onproc = nproc; 849 } 850 if (pref == NULL || pbase == NULL || pcpu == NULL) { 851 (void) fprintf(stderr, "top: Out of memory.\n"); 852 quit(23); 853 } 854 /* get a pointer to the states summary array */ 855 si->procstates = process_states; 856 857 /* set up flags which define what we are going to select */ 858 show_idle = sel->idle; 859 show_jid = sel->jid != -1; 860 show_self = sel->self == -1; 861 show_system = sel->system; 862 show_uid = sel->uid[0] != -1; 863 show_command = sel->command != NULL; 864 show_kidle = sel->kidle; 865 866 /* count up process states and get pointers to interesting procs */ 867 total_procs = 0; 868 active_procs = 0; 869 total_inblock = 0; 870 total_oublock = 0; 871 total_majflt = 0; 872 memset((char *)process_states, 0, sizeof(process_states)); 873 prefp = pref; 874 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 875 876 if (pp->ki_stat == 0) 877 /* not in use */ 878 continue; 879 880 if (!show_self && pp->ki_pid == sel->self) 881 /* skip self */ 882 continue; 883 884 if (!show_system && (pp->ki_flag & P_SYSTEM)) 885 /* skip system process */ 886 continue; 887 888 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 889 &p_vcsw, &p_ivcsw); 890 total_inblock += p_inblock; 891 total_oublock += p_oublock; 892 total_majflt += p_majflt; 893 total_procs++; 894 process_states[pp->ki_stat]++; 895 896 if (pp->ki_stat == SZOMB) 897 /* skip zombies */ 898 continue; 899 900 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 901 /* skip kernel idle process */ 902 continue; 903 904 PCTCPU(pp) = proc_calc_pctcpu(pp); 905 if (sel->thread && PCTCPU(pp) > 1.0) 906 PCTCPU(pp) = 1.0; 907 if (displaymode == DISP_CPU && !show_idle && 908 (!proc_used_cpu(pp) || 909 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 910 /* skip idle or non-running processes */ 911 continue; 912 913 if (displaymode == DISP_IO && !show_idle && p_io == 0) 914 /* skip processes that aren't doing I/O */ 915 continue; 916 917 if (show_jid && pp->ki_jid != sel->jid) 918 /* skip proc. that don't belong to the selected JID */ 919 continue; 920 921 if (show_uid && !find_uid(pp->ki_ruid, sel->uid)) 922 /* skip proc. that don't belong to the selected UID */ 923 continue; 924 925 *prefp++ = pp; 926 active_procs++; 927 } 928 929 /* if requested, sort the "interesting" processes */ 930 if (compare != NULL) 931 qsort(pref, active_procs, sizeof(*pref), compare); 932 933 /* remember active and total counts */ 934 si->p_total = total_procs; 935 si->p_active = pref_len = active_procs; 936 937 /* pass back a handle */ 938 handle.next_proc = pref; 939 handle.remaining = active_procs; 940 return ((caddr_t)&handle); 941 } 942 943 static char fmt[512]; /* static area where result is built */ 944 945 char * 946 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 947 { 948 struct kinfo_proc *pp; 949 const struct kinfo_proc *oldp; 950 long cputime; 951 double pct; 952 struct handle *hp; 953 char status[16]; 954 int cpu, state; 955 struct rusage ru, *rup; 956 long p_tot, s_tot; 957 char *proc_fmt, thr_buf[6]; 958 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 959 char *cmdbuf = NULL; 960 char **args; 961 const int cmdlen = 128; 962 963 /* find and remember the next proc structure */ 964 hp = (struct handle *)handle; 965 pp = *(hp->next_proc++); 966 hp->remaining--; 967 968 /* get the process's command name */ 969 if ((pp->ki_flag & P_INMEM) == 0) { 970 /* 971 * Print swapped processes as <pname> 972 */ 973 size_t len; 974 975 len = strlen(pp->ki_comm); 976 if (len > sizeof(pp->ki_comm) - 3) 977 len = sizeof(pp->ki_comm) - 3; 978 memmove(pp->ki_comm + 1, pp->ki_comm, len); 979 pp->ki_comm[0] = '<'; 980 pp->ki_comm[len + 1] = '>'; 981 pp->ki_comm[len + 2] = '\0'; 982 } 983 984 /* 985 * Convert the process's runtime from microseconds to seconds. This 986 * time includes the interrupt time although that is not wanted here. 987 * ps(1) is similarly sloppy. 988 */ 989 cputime = (pp->ki_runtime + 500000) / 1000000; 990 991 /* calculate the base for cpu percentages */ 992 pct = PCTCPU(pp); 993 994 /* generate "STATE" field */ 995 switch (state = pp->ki_stat) { 996 case SRUN: 997 if (smpmode && pp->ki_oncpu != NOCPU) 998 sprintf(status, "CPU%d", pp->ki_oncpu); 999 else 1000 strcpy(status, "RUN"); 1001 break; 1002 case SLOCK: 1003 if (pp->ki_kiflag & KI_LOCKBLOCK) { 1004 sprintf(status, "*%.6s", pp->ki_lockname); 1005 break; 1006 } 1007 /* fall through */ 1008 case SSLEEP: 1009 if (pp->ki_wmesg != NULL) { 1010 sprintf(status, "%.6s", pp->ki_wmesg); 1011 break; 1012 } 1013 /* FALLTHROUGH */ 1014 default: 1015 1016 if (state >= 0 && 1017 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 1018 sprintf(status, "%.6s", state_abbrev[state]); 1019 else 1020 sprintf(status, "?%5d", state); 1021 break; 1022 } 1023 1024 cmdbuf = (char *)malloc(cmdlen + 1); 1025 if (cmdbuf == NULL) { 1026 warn("malloc(%d)", cmdlen + 1); 1027 return NULL; 1028 } 1029 1030 if (!(flags & FMT_SHOWARGS)) { 1031 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1032 pp->ki_tdname[0]) { 1033 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1034 pp->ki_tdname, pp->ki_moretdname); 1035 } else { 1036 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1037 } 1038 } else { 1039 if (pp->ki_flag & P_SYSTEM || 1040 pp->ki_args == NULL || 1041 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1042 !(*args)) { 1043 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1044 pp->ki_tdname[0]) { 1045 snprintf(cmdbuf, cmdlen, 1046 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1047 pp->ki_moretdname); 1048 } else { 1049 snprintf(cmdbuf, cmdlen, 1050 "[%s]", pp->ki_comm); 1051 } 1052 } else { 1053 char *src, *dst, *argbuf; 1054 char *cmd; 1055 size_t argbuflen; 1056 size_t len; 1057 1058 argbuflen = cmdlen * 4; 1059 argbuf = (char *)malloc(argbuflen + 1); 1060 if (argbuf == NULL) { 1061 warn("malloc(%zu)", argbuflen + 1); 1062 free(cmdbuf); 1063 return NULL; 1064 } 1065 1066 dst = argbuf; 1067 1068 /* Extract cmd name from argv */ 1069 cmd = strrchr(*args, '/'); 1070 if (cmd == NULL) 1071 cmd = *args; 1072 else 1073 cmd++; 1074 1075 for (; (src = *args++) != NULL; ) { 1076 if (*src == '\0') 1077 continue; 1078 len = (argbuflen - (dst - argbuf) - 1) / 4; 1079 strvisx(dst, src, 1080 MIN(strlen(src), len), 1081 VIS_NL | VIS_CSTYLE); 1082 while (*dst != '\0') 1083 dst++; 1084 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1085 *dst++ = ' '; /* add delimiting space */ 1086 } 1087 if (dst != argbuf && dst[-1] == ' ') 1088 dst--; 1089 *dst = '\0'; 1090 1091 if (strcmp(cmd, pp->ki_comm) != 0) { 1092 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1093 pp->ki_tdname[0]) 1094 snprintf(cmdbuf, cmdlen, 1095 "%s (%s){%s%s}", argbuf, 1096 pp->ki_comm, pp->ki_tdname, 1097 pp->ki_moretdname); 1098 else 1099 snprintf(cmdbuf, cmdlen, 1100 "%s (%s)", argbuf, pp->ki_comm); 1101 } else { 1102 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1103 pp->ki_tdname[0]) 1104 snprintf(cmdbuf, cmdlen, 1105 "%s{%s%s}", argbuf, pp->ki_tdname, 1106 pp->ki_moretdname); 1107 else 1108 strlcpy(cmdbuf, argbuf, cmdlen); 1109 } 1110 free(argbuf); 1111 } 1112 } 1113 1114 if (ps.jail == 0) 1115 jid_buf[0] = '\0'; 1116 else 1117 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1118 jidlength - 1, pp->ki_jid); 1119 1120 if (ps.swap == 0) 1121 swap_buf[0] = '\0'; 1122 else 1123 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1124 swaplength - 1, 1125 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1126 1127 if (displaymode == DISP_IO) { 1128 oldp = get_old_proc(pp); 1129 if (oldp != NULL) { 1130 ru.ru_inblock = RU(pp)->ru_inblock - 1131 RU(oldp)->ru_inblock; 1132 ru.ru_oublock = RU(pp)->ru_oublock - 1133 RU(oldp)->ru_oublock; 1134 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1135 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1136 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1137 rup = &ru; 1138 } else { 1139 rup = RU(pp); 1140 } 1141 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1142 s_tot = total_inblock + total_oublock + total_majflt; 1143 1144 snprintf(fmt, sizeof(fmt), io_Proc_format, 1145 pp->ki_pid, 1146 jidlength, jid_buf, 1147 namelength, namelength, (*get_userid)(pp->ki_ruid), 1148 rup->ru_nvcsw, 1149 rup->ru_nivcsw, 1150 rup->ru_inblock, 1151 rup->ru_oublock, 1152 rup->ru_majflt, 1153 p_tot, 1154 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1155 screen_width > cmdlengthdelta ? 1156 screen_width - cmdlengthdelta : 0, 1157 printable(cmdbuf)); 1158 1159 free(cmdbuf); 1160 1161 return (fmt); 1162 } 1163 1164 /* format this entry */ 1165 if (smpmode) { 1166 if (state == SRUN && pp->ki_oncpu != NOCPU) 1167 cpu = pp->ki_oncpu; 1168 else 1169 cpu = pp->ki_lastcpu; 1170 } else 1171 cpu = 0; 1172 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1173 if (ps.thread != 0) 1174 thr_buf[0] = '\0'; 1175 else 1176 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1177 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1178 1179 snprintf(fmt, sizeof(fmt), proc_fmt, 1180 pp->ki_pid, 1181 jidlength, jid_buf, 1182 namelength, namelength, (*get_userid)(pp->ki_ruid), 1183 thr_buf, 1184 pp->ki_pri.pri_level - PZERO, 1185 format_nice(pp), 1186 format_k2(PROCSIZE(pp)), 1187 format_k2(pagetok(pp->ki_rssize)), 1188 swaplength, swaplength, swap_buf, 1189 status, 1190 cpu, 1191 format_time(cputime), 1192 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1193 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1194 printable(cmdbuf)); 1195 1196 free(cmdbuf); 1197 1198 /* return the result */ 1199 return (fmt); 1200 } 1201 1202 static void 1203 getsysctl(const char *name, void *ptr, size_t len) 1204 { 1205 size_t nlen = len; 1206 1207 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1208 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1209 strerror(errno)); 1210 quit(23); 1211 } 1212 if (nlen != len) { 1213 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1214 name, (unsigned long)len, (unsigned long)nlen); 1215 quit(23); 1216 } 1217 } 1218 1219 static const char * 1220 format_nice(const struct kinfo_proc *pp) 1221 { 1222 const char *fifo, *kproc; 1223 int rtpri; 1224 static char nicebuf[4 + 1]; 1225 1226 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1227 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1228 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1229 case PRI_ITHD: 1230 return ("-"); 1231 case PRI_REALTIME: 1232 /* 1233 * XXX: the kernel doesn't tell us the original rtprio and 1234 * doesn't really know what it was, so to recover it we 1235 * must be more chummy with the implementation than the 1236 * implementation is with itself. pri_user gives a 1237 * constant "base" priority, but is only initialized 1238 * properly for user threads. pri_native gives what the 1239 * kernel calls the "base" priority, but it isn't constant 1240 * since it is changed by priority propagation. pri_native 1241 * also isn't properly initialized for all threads, but it 1242 * is properly initialized for kernel realtime and idletime 1243 * threads. Thus we use pri_user for the base priority of 1244 * user threads (it is always correct) and pri_native for 1245 * the base priority of kernel realtime and idletime threads 1246 * (there is nothing better, and it is usually correct). 1247 * 1248 * The field width and thus the buffer are too small for 1249 * values like "kr31F", but such values shouldn't occur, 1250 * and if they do then the tailing "F" is not displayed. 1251 */ 1252 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1253 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1254 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1255 kproc, rtpri, fifo); 1256 break; 1257 case PRI_TIMESHARE: 1258 if (pp->ki_flag & P_KPROC) 1259 return ("-"); 1260 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1261 break; 1262 case PRI_IDLE: 1263 /* XXX: as above. */ 1264 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1265 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1266 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1267 kproc, rtpri, fifo); 1268 break; 1269 default: 1270 return ("?"); 1271 } 1272 return (nicebuf); 1273 } 1274 1275 /* comparison routines for qsort */ 1276 1277 static int 1278 compare_pid(const void *p1, const void *p2) 1279 { 1280 const struct kinfo_proc * const *pp1 = p1; 1281 const struct kinfo_proc * const *pp2 = p2; 1282 1283 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1284 abort(); 1285 1286 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1287 } 1288 1289 static int 1290 compare_tid(const void *p1, const void *p2) 1291 { 1292 const struct kinfo_proc * const *pp1 = p1; 1293 const struct kinfo_proc * const *pp2 = p2; 1294 1295 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1296 abort(); 1297 1298 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1299 } 1300 1301 /* 1302 * proc_compare - comparison function for "qsort" 1303 * Compares the resource consumption of two processes using five 1304 * distinct keys. The keys (in descending order of importance) are: 1305 * percent cpu, cpu ticks, state, resident set size, total virtual 1306 * memory usage. The process states are ordered as follows (from least 1307 * to most important): WAIT, zombie, sleep, stop, start, run. The 1308 * array declaration below maps a process state index into a number 1309 * that reflects this ordering. 1310 */ 1311 1312 static int sorted_state[] = { 1313 0, /* not used */ 1314 3, /* sleep */ 1315 1, /* ABANDONED (WAIT) */ 1316 6, /* run */ 1317 5, /* start */ 1318 2, /* zombie */ 1319 4 /* stop */ 1320 }; 1321 1322 1323 #define ORDERKEY_PCTCPU(a, b) do { \ 1324 double diff; \ 1325 if (ps.wcpu) \ 1326 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1327 weighted_cpu(PCTCPU((a)), (a)); \ 1328 else \ 1329 diff = PCTCPU((b)) - PCTCPU((a)); \ 1330 if (diff != 0) \ 1331 return (diff > 0 ? 1 : -1); \ 1332 } while (0) 1333 1334 #define ORDERKEY_CPTICKS(a, b) do { \ 1335 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1336 if (diff != 0) \ 1337 return (diff > 0 ? 1 : -1); \ 1338 } while (0) 1339 1340 #define ORDERKEY_STATE(a, b) do { \ 1341 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1342 if (diff != 0) \ 1343 return (diff > 0 ? 1 : -1); \ 1344 } while (0) 1345 1346 #define ORDERKEY_PRIO(a, b) do { \ 1347 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1348 if (diff != 0) \ 1349 return (diff > 0 ? 1 : -1); \ 1350 } while (0) 1351 1352 #define ORDERKEY_THREADS(a, b) do { \ 1353 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1354 if (diff != 0) \ 1355 return (diff > 0 ? 1 : -1); \ 1356 } while (0) 1357 1358 #define ORDERKEY_RSSIZE(a, b) do { \ 1359 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1360 if (diff != 0) \ 1361 return (diff > 0 ? 1 : -1); \ 1362 } while (0) 1363 1364 #define ORDERKEY_MEM(a, b) do { \ 1365 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1366 if (diff != 0) \ 1367 return (diff > 0 ? 1 : -1); \ 1368 } while (0) 1369 1370 #define ORDERKEY_JID(a, b) do { \ 1371 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1372 if (diff != 0) \ 1373 return (diff > 0 ? 1 : -1); \ 1374 } while (0) 1375 1376 #define ORDERKEY_SWAP(a, b) do { \ 1377 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1378 if (diff != 0) \ 1379 return (diff > 0 ? 1 : -1); \ 1380 } while (0) 1381 1382 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1383 1384 int 1385 #ifdef ORDER 1386 compare_cpu(void *arg1, void *arg2) 1387 #else 1388 proc_compare(void *arg1, void *arg2) 1389 #endif 1390 { 1391 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1392 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1393 1394 ORDERKEY_PCTCPU(p1, p2); 1395 ORDERKEY_CPTICKS(p1, p2); 1396 ORDERKEY_STATE(p1, p2); 1397 ORDERKEY_PRIO(p1, p2); 1398 ORDERKEY_RSSIZE(p1, p2); 1399 ORDERKEY_MEM(p1, p2); 1400 1401 return (0); 1402 } 1403 1404 #ifdef ORDER 1405 /* "cpu" compare routines */ 1406 int compare_size(), compare_res(), compare_time(), compare_prio(), 1407 compare_threads(); 1408 1409 /* 1410 * "io" compare routines. Context switches aren't i/o, but are displayed 1411 * on the "io" display. 1412 */ 1413 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1414 compare_vcsw(), compare_ivcsw(); 1415 1416 int (*compares[])() = { 1417 compare_cpu, 1418 compare_size, 1419 compare_res, 1420 compare_time, 1421 compare_prio, 1422 compare_threads, 1423 compare_iototal, 1424 compare_ioread, 1425 compare_iowrite, 1426 compare_iofault, 1427 compare_vcsw, 1428 compare_ivcsw, 1429 compare_jid, 1430 compare_swap, 1431 NULL 1432 }; 1433 1434 /* compare_size - the comparison function for sorting by total memory usage */ 1435 1436 int 1437 compare_size(void *arg1, void *arg2) 1438 { 1439 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1440 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1441 1442 ORDERKEY_MEM(p1, p2); 1443 ORDERKEY_RSSIZE(p1, p2); 1444 ORDERKEY_PCTCPU(p1, p2); 1445 ORDERKEY_CPTICKS(p1, p2); 1446 ORDERKEY_STATE(p1, p2); 1447 ORDERKEY_PRIO(p1, p2); 1448 1449 return (0); 1450 } 1451 1452 /* compare_res - the comparison function for sorting by resident set size */ 1453 1454 int 1455 compare_res(void *arg1, void *arg2) 1456 { 1457 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1458 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1459 1460 ORDERKEY_RSSIZE(p1, p2); 1461 ORDERKEY_MEM(p1, p2); 1462 ORDERKEY_PCTCPU(p1, p2); 1463 ORDERKEY_CPTICKS(p1, p2); 1464 ORDERKEY_STATE(p1, p2); 1465 ORDERKEY_PRIO(p1, p2); 1466 1467 return (0); 1468 } 1469 1470 /* compare_time - the comparison function for sorting by total cpu time */ 1471 1472 int 1473 compare_time(void *arg1, void *arg2) 1474 { 1475 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1476 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1477 1478 ORDERKEY_CPTICKS(p1, p2); 1479 ORDERKEY_PCTCPU(p1, p2); 1480 ORDERKEY_STATE(p1, p2); 1481 ORDERKEY_PRIO(p1, p2); 1482 ORDERKEY_RSSIZE(p1, p2); 1483 ORDERKEY_MEM(p1, p2); 1484 1485 return (0); 1486 } 1487 1488 /* compare_prio - the comparison function for sorting by priority */ 1489 1490 int 1491 compare_prio(void *arg1, void *arg2) 1492 { 1493 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1494 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1495 1496 ORDERKEY_PRIO(p1, p2); 1497 ORDERKEY_CPTICKS(p1, p2); 1498 ORDERKEY_PCTCPU(p1, p2); 1499 ORDERKEY_STATE(p1, p2); 1500 ORDERKEY_RSSIZE(p1, p2); 1501 ORDERKEY_MEM(p1, p2); 1502 1503 return (0); 1504 } 1505 1506 /* compare_threads - the comparison function for sorting by threads */ 1507 int 1508 compare_threads(void *arg1, void *arg2) 1509 { 1510 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1511 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1512 1513 ORDERKEY_THREADS(p1, p2); 1514 ORDERKEY_PCTCPU(p1, p2); 1515 ORDERKEY_CPTICKS(p1, p2); 1516 ORDERKEY_STATE(p1, p2); 1517 ORDERKEY_PRIO(p1, p2); 1518 ORDERKEY_RSSIZE(p1, p2); 1519 ORDERKEY_MEM(p1, p2); 1520 1521 return (0); 1522 } 1523 1524 /* compare_jid - the comparison function for sorting by jid */ 1525 static int 1526 compare_jid(const void *arg1, const void *arg2) 1527 { 1528 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1529 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1530 1531 ORDERKEY_JID(p1, p2); 1532 ORDERKEY_PCTCPU(p1, p2); 1533 ORDERKEY_CPTICKS(p1, p2); 1534 ORDERKEY_STATE(p1, p2); 1535 ORDERKEY_PRIO(p1, p2); 1536 ORDERKEY_RSSIZE(p1, p2); 1537 ORDERKEY_MEM(p1, p2); 1538 1539 return (0); 1540 } 1541 1542 /* compare_swap - the comparison function for sorting by swap */ 1543 static int 1544 compare_swap(const void *arg1, const void *arg2) 1545 { 1546 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1547 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1548 1549 ORDERKEY_SWAP(p1, p2); 1550 ORDERKEY_PCTCPU(p1, p2); 1551 ORDERKEY_CPTICKS(p1, p2); 1552 ORDERKEY_STATE(p1, p2); 1553 ORDERKEY_PRIO(p1, p2); 1554 ORDERKEY_RSSIZE(p1, p2); 1555 ORDERKEY_MEM(p1, p2); 1556 1557 return (0); 1558 } 1559 #endif /* ORDER */ 1560 1561 /* assorted comparison functions for sorting by i/o */ 1562 1563 int 1564 #ifdef ORDER 1565 compare_iototal(void *arg1, void *arg2) 1566 #else 1567 io_compare(void *arg1, void *arg2) 1568 #endif 1569 { 1570 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1571 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1572 1573 return (get_io_total(p2) - get_io_total(p1)); 1574 } 1575 1576 #ifdef ORDER 1577 int 1578 compare_ioread(void *arg1, void *arg2) 1579 { 1580 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1581 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1582 long dummy, inp1, inp2; 1583 1584 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1585 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1586 1587 return (inp2 - inp1); 1588 } 1589 1590 int 1591 compare_iowrite(void *arg1, void *arg2) 1592 { 1593 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1594 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1595 long dummy, oup1, oup2; 1596 1597 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1598 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1599 1600 return (oup2 - oup1); 1601 } 1602 1603 int 1604 compare_iofault(void *arg1, void *arg2) 1605 { 1606 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1607 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1608 long dummy, flp1, flp2; 1609 1610 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1611 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1612 1613 return (flp2 - flp1); 1614 } 1615 1616 int 1617 compare_vcsw(void *arg1, void *arg2) 1618 { 1619 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1620 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1621 long dummy, flp1, flp2; 1622 1623 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1624 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1625 1626 return (flp2 - flp1); 1627 } 1628 1629 int 1630 compare_ivcsw(void *arg1, void *arg2) 1631 { 1632 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1633 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1634 long dummy, flp1, flp2; 1635 1636 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1637 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1638 1639 return (flp2 - flp1); 1640 } 1641 #endif /* ORDER */ 1642 1643 /* 1644 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1645 * the process does not exist. 1646 * It is EXTREMELY IMPORTANT that this function work correctly. 1647 * If top runs setuid root (as in SVR4), then this function 1648 * is the only thing that stands in the way of a serious 1649 * security problem. It validates requests for the "kill" 1650 * and "renice" commands. 1651 */ 1652 1653 int 1654 proc_owner(int pid) 1655 { 1656 int cnt; 1657 struct kinfo_proc **prefp; 1658 struct kinfo_proc *pp; 1659 1660 prefp = pref; 1661 cnt = pref_len; 1662 while (--cnt >= 0) { 1663 pp = *prefp++; 1664 if (pp->ki_pid == (pid_t)pid) 1665 return ((int)pp->ki_ruid); 1666 } 1667 return (-1); 1668 } 1669 1670 static int 1671 swapmode(int *retavail, int *retfree) 1672 { 1673 int n; 1674 struct kvm_swap swapary[1]; 1675 static int pagesize = 0; 1676 static u_long swap_maxpages = 0; 1677 1678 *retavail = 0; 1679 *retfree = 0; 1680 1681 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1682 1683 n = kvm_getswapinfo(kd, swapary, 1, 0); 1684 if (n < 0 || swapary[0].ksw_total == 0) 1685 return (0); 1686 1687 if (pagesize == 0) 1688 pagesize = getpagesize(); 1689 if (swap_maxpages == 0) 1690 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1691 1692 /* ksw_total contains the total size of swap all devices which may 1693 exceed the maximum swap size allocatable in the system */ 1694 if ( swapary[0].ksw_total > swap_maxpages ) 1695 swapary[0].ksw_total = swap_maxpages; 1696 1697 *retavail = CONVERT(swapary[0].ksw_total); 1698 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1699 1700 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1701 return (n); 1702 } 1703