1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 63 /* get_process_info passes back a handle. This is what it looks like: */ 64 65 struct handle { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 71 /* define what weighted cpu is. */ 72 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 73 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 74 75 /* what we consider to be process size: */ 76 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 77 78 #define RU(pp) (&(pp)->ki_rusage) 79 80 #define PCTCPU(pp) (pcpu[pp - pbase]) 81 82 /* process state names for the "STATE" column of the display */ 83 /* the extra nulls in the string "run" are for adding a slash and 84 the processor number when needed */ 85 86 static const char *state_abbrev[] = { 87 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 88 }; 89 90 91 static kvm_t *kd; 92 93 /* values that we stash away in _init and use in later routines */ 94 95 static double logcpu; 96 97 /* these are retrieved from the kernel in _init */ 98 99 static load_avg ccpu; 100 101 /* these are used in the get_ functions */ 102 103 static int lastpid; 104 105 /* these are for calculating cpu state percentages */ 106 107 static long cp_time[CPUSTATES]; 108 static long cp_old[CPUSTATES]; 109 static long cp_diff[CPUSTATES]; 110 111 /* these are for detailing the process states */ 112 113 static const char *procstatenames[] = { 114 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 115 " zombie, ", " waiting, ", " lock, ", 116 NULL 117 }; 118 static int process_states[nitems(procstatenames)]; 119 120 /* these are for detailing the cpu states */ 121 122 static int cpu_states[CPUSTATES]; 123 static const char *cpustatenames[] = { 124 "user", "nice", "system", "interrupt", "idle", NULL 125 }; 126 127 /* these are for detailing the memory statistics */ 128 129 static const char *memorynames[] = { 130 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 131 "K Free", NULL 132 }; 133 static int memory_stats[nitems(memorynames)]; 134 135 static const char *arcnames[] = { 136 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 137 NULL 138 }; 139 static int arc_stats[nitems(arcnames)]; 140 141 static const char *carcnames[] = { 142 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 143 NULL 144 }; 145 static int carc_stats[nitems(carcnames)]; 146 147 static const char *swapnames[] = { 148 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 149 NULL 150 }; 151 static int swap_stats[nitems(swapnames)]; 152 153 static int has_swap; 154 155 /* these are for keeping track of the proc array */ 156 157 static int nproc; 158 static int onproc = -1; 159 static int pref_len; 160 static struct kinfo_proc *pbase; 161 static struct kinfo_proc **pref; 162 static struct kinfo_proc *previous_procs; 163 static struct kinfo_proc **previous_pref; 164 static int previous_proc_count = 0; 165 static int previous_proc_count_max = 0; 166 static int previous_thread; 167 168 /* data used for recalculating pctcpu */ 169 static double *pcpu; 170 static struct timespec proc_uptime; 171 static struct timeval proc_wall_time; 172 static struct timeval previous_wall_time; 173 static uint64_t previous_interval = 0; 174 175 /* total number of io operations */ 176 static long total_inblock; 177 static long total_oublock; 178 static long total_majflt; 179 180 /* these are for getting the memory statistics */ 181 182 static int arc_enabled; 183 static int carc_enabled; 184 static int pageshift; /* log base 2 of the pagesize */ 185 186 /* define pagetok in terms of pageshift */ 187 188 #define pagetok(size) ((size) << pageshift) 189 190 /* swap usage */ 191 #define ki_swap(kip) \ 192 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 193 194 /* 195 * Sorting orders. The first element is the default. 196 */ 197 static const char *ordernames[] = { 198 "cpu", "size", "res", "time", "pri", "threads", 199 "total", "read", "write", "fault", "vcsw", "ivcsw", 200 "jid", "swap", "pid", NULL 201 }; 202 203 /* Per-cpu time states */ 204 static int maxcpu; 205 static int maxid; 206 static int ncpus; 207 static unsigned long cpumask; 208 static long *times; 209 static long *pcpu_cp_time; 210 static long *pcpu_cp_old; 211 static long *pcpu_cp_diff; 212 static int *pcpu_cpu_states; 213 214 /* Battery units and states */ 215 static int battery_units; 216 static int battery_life; 217 218 static int compare_swap(const void *a, const void *b); 219 static int compare_jid(const void *a, const void *b); 220 static int compare_pid(const void *a, const void *b); 221 static int compare_tid(const void *a, const void *b); 222 static const char *format_nice(const struct kinfo_proc *pp); 223 static void getsysctl(const char *name, void *ptr, size_t len); 224 static int swapmode(int *retavail, int *retfree); 225 static void update_layout(void); 226 static int find_uid(uid_t needle, int *haystack); 227 228 static int 229 find_uid(uid_t needle, int *haystack) 230 { 231 size_t i = 0; 232 233 for (; i < TOP_MAX_UIDS; ++i) 234 if ((uid_t)haystack[i] == needle) 235 return 1; 236 return (0); 237 } 238 239 void 240 toggle_pcpustats(void) 241 { 242 243 if (ncpus == 1) 244 return; 245 update_layout(); 246 } 247 248 /* Adjust display based on ncpus and the ARC state. */ 249 static void 250 update_layout(void) 251 { 252 253 y_mem = 3; 254 y_arc = 4; 255 y_carc = 5; 256 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 257 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 258 y_message = 4 + arc_enabled + carc_enabled + has_swap; 259 y_header = 5 + arc_enabled + carc_enabled + has_swap; 260 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 261 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 262 263 if (pcpu_stats) { 264 y_mem += ncpus - 1; 265 y_arc += ncpus - 1; 266 y_carc += ncpus - 1; 267 y_swap += ncpus - 1; 268 y_idlecursor += ncpus - 1; 269 y_message += ncpus - 1; 270 y_header += ncpus - 1; 271 y_procs += ncpus - 1; 272 Header_lines += ncpus - 1; 273 } 274 } 275 276 int 277 machine_init(struct statics *statics) 278 { 279 int i, j, empty, pagesize; 280 uint64_t arc_size; 281 int carc_en, nswapdev; 282 size_t size; 283 284 size = sizeof(smpmode); 285 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 286 NULL, 0) != 0 && 287 sysctlbyname("kern.smp.active", &smpmode, &size, 288 NULL, 0) != 0) || 289 size != sizeof(smpmode)) 290 smpmode = 0; 291 292 size = sizeof(arc_size); 293 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 294 NULL, 0) == 0 && arc_size != 0) 295 arc_enabled = 1; 296 size = sizeof(carc_en); 297 if (arc_enabled && 298 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 299 NULL, 0) == 0 && carc_en == 1) 300 carc_enabled = 1; 301 302 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 303 if (kd == NULL) 304 return (-1); 305 306 size = sizeof(nswapdev); 307 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 308 0) == 0 && nswapdev != 0) 309 has_swap = 1; 310 311 GETSYSCTL("kern.ccpu", ccpu); 312 313 /* this is used in calculating WCPU -- calculate it ahead of time */ 314 logcpu = log(loaddouble(ccpu)); 315 316 pbase = NULL; 317 pref = NULL; 318 pcpu = NULL; 319 nproc = 0; 320 onproc = -1; 321 322 /* get the page size and calculate pageshift from it */ 323 pagesize = getpagesize(); 324 pageshift = 0; 325 while (pagesize > 1) { 326 pageshift++; 327 pagesize >>= 1; 328 } 329 330 /* we only need the amount of log(2)1024 for our conversion */ 331 pageshift -= LOG1024; 332 333 /* fill in the statics information */ 334 statics->procstate_names = procstatenames; 335 statics->cpustate_names = cpustatenames; 336 statics->memory_names = memorynames; 337 if (arc_enabled) 338 statics->arc_names = arcnames; 339 else 340 statics->arc_names = NULL; 341 if (carc_enabled) 342 statics->carc_names = carcnames; 343 else 344 statics->carc_names = NULL; 345 if (has_swap) 346 statics->swap_names = swapnames; 347 else 348 statics->swap_names = NULL; 349 statics->order_names = ordernames; 350 351 /* Allocate state for per-CPU stats. */ 352 cpumask = 0; 353 ncpus = 0; 354 GETSYSCTL("kern.smp.maxcpus", maxcpu); 355 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 356 if (times == NULL) 357 err(1, "calloc for kern.smp.maxcpus"); 358 size = sizeof(long) * maxcpu * CPUSTATES; 359 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 360 err(1, "sysctlbyname kern.cp_times"); 361 pcpu_cp_time = calloc(1, size); 362 maxid = (size / CPUSTATES / sizeof(long)) - 1; 363 for (i = 0; i <= maxid; i++) { 364 empty = 1; 365 for (j = 0; empty && j < CPUSTATES; j++) { 366 if (times[i * CPUSTATES + j] != 0) 367 empty = 0; 368 } 369 if (!empty) { 370 cpumask |= (1ul << i); 371 ncpus++; 372 } 373 } 374 assert(ncpus > 0); 375 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 376 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 377 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 378 statics->ncpus = ncpus; 379 380 /* Allocate state of battery units reported via ACPI. */ 381 battery_units = 0; 382 size = sizeof(int); 383 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 384 statics->nbatteries = battery_units; 385 386 update_layout(); 387 388 /* all done! */ 389 return (0); 390 } 391 392 char * 393 format_header(const char *uname_field) 394 { 395 static struct sbuf* header = NULL; 396 397 /* clean up from last time. */ 398 if (header != NULL) { 399 sbuf_clear(header); 400 } else { 401 header = sbuf_new_auto(); 402 } 403 404 switch (displaymode) { 405 case DISP_CPU: { 406 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 407 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 408 ps.jail ? " JID" : ""); 409 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 410 if (!ps.thread) { 411 sbuf_cat(header, "THR "); 412 } 413 sbuf_cat(header, "PRI NICE SIZE RES "); 414 if (ps.swap) { 415 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 416 } 417 sbuf_cat(header, "STATE "); 418 if (smpmode) { 419 sbuf_cat(header, "C "); 420 } 421 sbuf_cat(header, "TIME "); 422 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 423 sbuf_cat(header, "COMMAND"); 424 sbuf_finish(header); 425 break; 426 } 427 case DISP_IO: { 428 sbuf_printf(header, " %s%*s %-*.*s", 429 ps.thread_id ? " THR" : "PID", 430 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 431 namelength, namelength, uname_field); 432 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 433 sbuf_finish(header); 434 break; 435 } 436 case DISP_MAX: 437 assert("displaymode must not be set to DISP_MAX"); 438 } 439 440 return sbuf_data(header); 441 } 442 443 static int swappgsin = -1; 444 static int swappgsout = -1; 445 446 447 void 448 get_system_info(struct system_info *si) 449 { 450 struct loadavg sysload; 451 int mib[2]; 452 struct timeval boottime; 453 uint64_t arc_stat, arc_stat2; 454 int i, j; 455 size_t size; 456 457 /* get the CPU stats */ 458 size = (maxid + 1) * CPUSTATES * sizeof(long); 459 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 460 err(1, "sysctlbyname kern.cp_times"); 461 GETSYSCTL("kern.cp_time", cp_time); 462 GETSYSCTL("vm.loadavg", sysload); 463 GETSYSCTL("kern.lastpid", lastpid); 464 465 /* convert load averages to doubles */ 466 for (i = 0; i < 3; i++) 467 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 468 469 /* convert cp_time counts to percentages */ 470 for (i = j = 0; i <= maxid; i++) { 471 if ((cpumask & (1ul << i)) == 0) 472 continue; 473 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 474 &pcpu_cp_time[j * CPUSTATES], 475 &pcpu_cp_old[j * CPUSTATES], 476 &pcpu_cp_diff[j * CPUSTATES]); 477 j++; 478 } 479 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 480 481 /* sum memory & swap statistics */ 482 { 483 static unsigned int swap_delay = 0; 484 static int swapavail = 0; 485 static int swapfree = 0; 486 static long bufspace = 0; 487 static uint64_t nspgsin, nspgsout; 488 489 GETSYSCTL("vfs.bufspace", bufspace); 490 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 491 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 492 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 493 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 494 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 495 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 496 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 497 /* convert memory stats to Kbytes */ 498 memory_stats[0] = pagetok(memory_stats[0]); 499 memory_stats[1] = pagetok(memory_stats[1]); 500 memory_stats[2] = pagetok(memory_stats[2]); 501 memory_stats[3] = pagetok(memory_stats[3]); 502 memory_stats[4] = bufspace / 1024; 503 memory_stats[5] = pagetok(memory_stats[5]); 504 memory_stats[6] = -1; 505 506 /* first interval */ 507 if (swappgsin < 0) { 508 swap_stats[4] = 0; 509 swap_stats[5] = 0; 510 } 511 512 /* compute differences between old and new swap statistic */ 513 else { 514 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 515 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 516 } 517 518 swappgsin = nspgsin; 519 swappgsout = nspgsout; 520 521 /* call CPU heavy swapmode() only for changes */ 522 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 523 swap_stats[3] = swapmode(&swapavail, &swapfree); 524 swap_stats[0] = swapavail; 525 swap_stats[1] = swapavail - swapfree; 526 swap_stats[2] = swapfree; 527 } 528 swap_delay = 1; 529 swap_stats[6] = -1; 530 } 531 532 if (arc_enabled) { 533 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 534 arc_stats[0] = arc_stat >> 10; 535 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 536 arc_stats[1] = arc_stat >> 10; 537 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 538 arc_stats[2] = arc_stat >> 10; 539 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 540 arc_stats[3] = arc_stat >> 10; 541 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 542 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 543 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 544 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 545 arc_stats[5] = arc_stat >> 10; 546 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 547 arc_stats[5] += arc_stat >> 10; 548 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 549 arc_stats[5] += arc_stat >> 10; 550 si->arc = arc_stats; 551 } 552 if (carc_enabled) { 553 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 554 carc_stats[0] = arc_stat >> 10; 555 carc_stats[2] = arc_stat >> 10; /* For ratio */ 556 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 557 carc_stats[1] = arc_stat >> 10; 558 si->carc = carc_stats; 559 } 560 561 /* set arrays and strings */ 562 if (pcpu_stats) { 563 si->cpustates = pcpu_cpu_states; 564 si->ncpus = ncpus; 565 } else { 566 si->cpustates = cpu_states; 567 si->ncpus = 1; 568 } 569 si->memory = memory_stats; 570 si->swap = swap_stats; 571 572 573 if (lastpid > 0) { 574 si->last_pid = lastpid; 575 } else { 576 si->last_pid = -1; 577 } 578 579 /* 580 * Print how long system has been up. 581 * (Found by looking getting "boottime" from the kernel) 582 */ 583 mib[0] = CTL_KERN; 584 mib[1] = KERN_BOOTTIME; 585 size = sizeof(boottime); 586 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 587 boottime.tv_sec != 0) { 588 si->boottime = boottime; 589 } else { 590 si->boottime.tv_sec = -1; 591 } 592 593 battery_life = 0; 594 if (battery_units > 0) { 595 GETSYSCTL("hw.acpi.battery.life", battery_life); 596 } 597 si->battery = battery_life; 598 } 599 600 #define NOPROC ((void *)-1) 601 602 /* 603 * We need to compare data from the old process entry with the new 604 * process entry. 605 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 606 * structure to cache the mapping. We also use a negative cache pointer 607 * of NOPROC to avoid duplicate lookups. 608 * XXX: this could be done when the actual processes are fetched, we do 609 * it here out of laziness. 610 */ 611 static const struct kinfo_proc * 612 get_old_proc(struct kinfo_proc *pp) 613 { 614 const struct kinfo_proc * const *oldpp, *oldp; 615 616 /* 617 * If this is the first fetch of the kinfo_procs then we don't have 618 * any previous entries. 619 */ 620 if (previous_proc_count == 0) 621 return (NULL); 622 /* negative cache? */ 623 if (pp->ki_udata == NOPROC) 624 return (NULL); 625 /* cached? */ 626 if (pp->ki_udata != NULL) 627 return (pp->ki_udata); 628 /* 629 * Not cached, 630 * 1) look up based on pid. 631 * 2) compare process start. 632 * If we fail here, then setup a negative cache entry, otherwise 633 * cache it. 634 */ 635 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 636 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 637 if (oldpp == NULL) { 638 pp->ki_udata = NOPROC; 639 return (NULL); 640 } 641 oldp = *oldpp; 642 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 643 pp->ki_udata = NOPROC; 644 return (NULL); 645 } 646 pp->ki_udata = __DECONST(void *, oldp); 647 return (oldp); 648 } 649 650 /* 651 * Return the total amount of IO done in blocks in/out and faults. 652 * store the values individually in the pointers passed in. 653 */ 654 static long 655 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 656 long *vcsw, long *ivcsw) 657 { 658 const struct kinfo_proc *oldp; 659 static struct kinfo_proc dummy; 660 long ret; 661 662 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 663 if (oldp == NULL) { 664 memset(&dummy, 0, sizeof(dummy)); 665 oldp = &dummy; 666 } 667 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 668 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 669 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 670 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 671 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 672 ret = 673 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 674 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 675 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 676 return (ret); 677 } 678 679 /* 680 * If there was a previous update, use the delta in ki_runtime over 681 * the previous interval to calculate pctcpu. Otherwise, fall back 682 * to using the kernel's ki_pctcpu. 683 */ 684 static double 685 proc_calc_pctcpu(struct kinfo_proc *pp) 686 { 687 const struct kinfo_proc *oldp; 688 689 if (previous_interval != 0) { 690 oldp = get_old_proc(pp); 691 if (oldp != NULL) 692 return ((double)(pp->ki_runtime - oldp->ki_runtime) 693 / previous_interval); 694 695 /* 696 * If this process/thread was created during the previous 697 * interval, charge it's total runtime to the previous 698 * interval. 699 */ 700 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 701 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 702 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 703 return ((double)pp->ki_runtime / previous_interval); 704 } 705 return (pctdouble(pp->ki_pctcpu)); 706 } 707 708 /* 709 * Return true if this process has used any CPU time since the 710 * previous update. 711 */ 712 static int 713 proc_used_cpu(struct kinfo_proc *pp) 714 { 715 const struct kinfo_proc *oldp; 716 717 oldp = get_old_proc(pp); 718 if (oldp == NULL) 719 return (PCTCPU(pp) != 0); 720 return (pp->ki_runtime != oldp->ki_runtime || 721 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 722 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 723 } 724 725 /* 726 * Return the total number of block in/out and faults by a process. 727 */ 728 static long 729 get_io_total(const struct kinfo_proc *pp) 730 { 731 long dummy; 732 733 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 734 } 735 736 static struct handle handle; 737 738 void * 739 get_process_info(struct system_info *si, struct process_select *sel, 740 int (*compare)(const void *, const void *)) 741 { 742 int i; 743 int total_procs; 744 long p_io; 745 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 746 long nsec; 747 int active_procs; 748 struct kinfo_proc **prefp; 749 struct kinfo_proc *pp; 750 struct timespec previous_proc_uptime; 751 752 /* 753 * If thread state was toggled, don't cache the previous processes. 754 */ 755 if (previous_thread != sel->thread) 756 nproc = 0; 757 previous_thread = sel->thread; 758 759 /* 760 * Save the previous process info. 761 */ 762 if (previous_proc_count_max < nproc) { 763 free(previous_procs); 764 previous_procs = calloc(nproc, sizeof(*previous_procs)); 765 free(previous_pref); 766 previous_pref = calloc(nproc, sizeof(*previous_pref)); 767 if (previous_procs == NULL || previous_pref == NULL) { 768 fprintf(stderr, "top: Out of memory.\n"); 769 quit(TOP_EX_SYS_ERROR); 770 } 771 previous_proc_count_max = nproc; 772 } 773 if (nproc) { 774 for (i = 0; i < nproc; i++) 775 previous_pref[i] = &previous_procs[i]; 776 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 777 qsort(previous_pref, nproc, sizeof(*previous_pref), 778 ps.thread ? compare_tid : compare_pid); 779 } 780 previous_proc_count = nproc; 781 previous_proc_uptime = proc_uptime; 782 previous_wall_time = proc_wall_time; 783 previous_interval = 0; 784 785 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 786 0, &nproc); 787 gettimeofday(&proc_wall_time, NULL); 788 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 789 memset(&proc_uptime, 0, sizeof(proc_uptime)); 790 else if (previous_proc_uptime.tv_sec != 0 && 791 previous_proc_uptime.tv_nsec != 0) { 792 previous_interval = (proc_uptime.tv_sec - 793 previous_proc_uptime.tv_sec) * 1000000; 794 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 795 if (nsec < 0) { 796 previous_interval -= 1000000; 797 nsec += 1000000000; 798 } 799 previous_interval += nsec / 1000; 800 } 801 if (nproc > onproc) { 802 pref = realloc(pref, sizeof(*pref) * nproc); 803 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 804 onproc = nproc; 805 } 806 if (pref == NULL || pbase == NULL || pcpu == NULL) { 807 fprintf(stderr, "top: Out of memory.\n"); 808 quit(TOP_EX_SYS_ERROR); 809 } 810 /* get a pointer to the states summary array */ 811 si->procstates = process_states; 812 813 /* count up process states and get pointers to interesting procs */ 814 total_procs = 0; 815 active_procs = 0; 816 total_inblock = 0; 817 total_oublock = 0; 818 total_majflt = 0; 819 memset(process_states, 0, sizeof(process_states)); 820 prefp = pref; 821 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 822 823 if (pp->ki_stat == 0) 824 /* not in use */ 825 continue; 826 827 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 828 /* skip self */ 829 continue; 830 831 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 832 /* skip system process */ 833 continue; 834 835 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 836 &p_vcsw, &p_ivcsw); 837 total_inblock += p_inblock; 838 total_oublock += p_oublock; 839 total_majflt += p_majflt; 840 total_procs++; 841 process_states[(unsigned char)pp->ki_stat]++; 842 843 if (pp->ki_stat == SZOMB) 844 /* skip zombies */ 845 continue; 846 847 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 848 /* skip kernel idle process */ 849 continue; 850 851 PCTCPU(pp) = proc_calc_pctcpu(pp); 852 if (sel->thread && PCTCPU(pp) > 1.0) 853 PCTCPU(pp) = 1.0; 854 if (displaymode == DISP_CPU && !sel->idle && 855 (!proc_used_cpu(pp) || 856 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 857 /* skip idle or non-running processes */ 858 continue; 859 860 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 861 /* skip processes that aren't doing I/O */ 862 continue; 863 864 if (sel->jid != -1 && pp->ki_jid != sel->jid) 865 /* skip proc. that don't belong to the selected JID */ 866 continue; 867 868 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 869 /* skip proc. that don't belong to the selected UID */ 870 continue; 871 872 if (sel->pid != -1 && pp->ki_pid != sel->pid) 873 continue; 874 875 *prefp++ = pp; 876 active_procs++; 877 } 878 879 /* if requested, sort the "interesting" processes */ 880 if (compare != NULL) 881 qsort(pref, active_procs, sizeof(*pref), compare); 882 883 /* remember active and total counts */ 884 si->p_total = total_procs; 885 si->p_pactive = pref_len = active_procs; 886 887 /* pass back a handle */ 888 handle.next_proc = pref; 889 handle.remaining = active_procs; 890 return (&handle); 891 } 892 893 char * 894 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 895 { 896 struct kinfo_proc *pp; 897 const struct kinfo_proc *oldp; 898 long cputime; 899 char status[22]; 900 size_t state; 901 struct rusage ru, *rup; 902 long p_tot, s_tot; 903 char *cmdbuf = NULL; 904 char **args; 905 static struct sbuf* procbuf = NULL; 906 907 /* clean up from last time. */ 908 if (procbuf != NULL) { 909 sbuf_clear(procbuf); 910 } else { 911 procbuf = sbuf_new_auto(); 912 } 913 914 915 /* find and remember the next proc structure */ 916 pp = *(xhandle->next_proc++); 917 xhandle->remaining--; 918 919 /* get the process's command name */ 920 if ((pp->ki_flag & P_INMEM) == 0) { 921 /* 922 * Print swapped processes as <pname> 923 */ 924 size_t len; 925 926 len = strlen(pp->ki_comm); 927 if (len > sizeof(pp->ki_comm) - 3) 928 len = sizeof(pp->ki_comm) - 3; 929 memmove(pp->ki_comm + 1, pp->ki_comm, len); 930 pp->ki_comm[0] = '<'; 931 pp->ki_comm[len + 1] = '>'; 932 pp->ki_comm[len + 2] = '\0'; 933 } 934 935 /* 936 * Convert the process's runtime from microseconds to seconds. This 937 * time includes the interrupt time although that is not wanted here. 938 * ps(1) is similarly sloppy. 939 */ 940 cputime = (pp->ki_runtime + 500000) / 1000000; 941 942 /* generate "STATE" field */ 943 switch (state = pp->ki_stat) { 944 case SRUN: 945 if (smpmode && pp->ki_oncpu != NOCPU) 946 sprintf(status, "CPU%d", pp->ki_oncpu); 947 else 948 strcpy(status, "RUN"); 949 break; 950 case SLOCK: 951 if (pp->ki_kiflag & KI_LOCKBLOCK) { 952 sprintf(status, "*%.6s", pp->ki_lockname); 953 break; 954 } 955 /* fall through */ 956 case SSLEEP: 957 sprintf(status, "%.6s", pp->ki_wmesg); 958 break; 959 default: 960 961 if (state < nitems(state_abbrev)) { 962 sprintf(status, "%.6s", state_abbrev[state]); 963 } else { 964 sprintf(status, "?%5zu", state); 965 } 966 break; 967 } 968 969 cmdbuf = calloc(screen_width + 1, 1); 970 if (cmdbuf == NULL) { 971 warn("calloc(%d)", screen_width + 1); 972 return NULL; 973 } 974 975 if (!(flags & FMT_SHOWARGS)) { 976 if (ps.thread && pp->ki_flag & P_HADTHREADS && 977 pp->ki_tdname[0]) { 978 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 979 pp->ki_tdname, pp->ki_moretdname); 980 } else { 981 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 982 } 983 } else { 984 if (pp->ki_flag & P_SYSTEM || 985 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 986 !(*args)) { 987 if (ps.thread && pp->ki_flag & P_HADTHREADS && 988 pp->ki_tdname[0]) { 989 snprintf(cmdbuf, screen_width, 990 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 991 pp->ki_moretdname); 992 } else { 993 snprintf(cmdbuf, screen_width, 994 "[%s]", pp->ki_comm); 995 } 996 } else { 997 const char *src; 998 char *dst, *argbuf; 999 const char *cmd; 1000 size_t argbuflen; 1001 size_t len; 1002 1003 argbuflen = screen_width * 4; 1004 argbuf = calloc(argbuflen + 1, 1); 1005 if (argbuf == NULL) { 1006 warn("calloc(%zu)", argbuflen + 1); 1007 free(cmdbuf); 1008 return NULL; 1009 } 1010 1011 dst = argbuf; 1012 1013 /* Extract cmd name from argv */ 1014 cmd = basename(*args); 1015 1016 for (; (src = *args++) != NULL; ) { 1017 if (*src == '\0') 1018 continue; 1019 len = (argbuflen - (dst - argbuf) - 1) / 4; 1020 strvisx(dst, src, 1021 MIN(strlen(src), len), 1022 VIS_NL | VIS_CSTYLE | VIS_OCTAL | VIS_SAFE); 1023 while (*dst != '\0') 1024 dst++; 1025 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1026 *dst++ = ' '; /* add delimiting space */ 1027 } 1028 if (dst != argbuf && dst[-1] == ' ') 1029 dst--; 1030 *dst = '\0'; 1031 1032 if (strcmp(cmd, pp->ki_comm) != 0) { 1033 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1034 pp->ki_tdname[0]) 1035 snprintf(cmdbuf, screen_width, 1036 "%s (%s){%s%s}", argbuf, 1037 pp->ki_comm, pp->ki_tdname, 1038 pp->ki_moretdname); 1039 else 1040 snprintf(cmdbuf, screen_width, 1041 "%s (%s)", argbuf, pp->ki_comm); 1042 } else { 1043 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1044 pp->ki_tdname[0]) 1045 snprintf(cmdbuf, screen_width, 1046 "%s{%s%s}", argbuf, pp->ki_tdname, 1047 pp->ki_moretdname); 1048 else 1049 strlcpy(cmdbuf, argbuf, screen_width); 1050 } 1051 free(argbuf); 1052 } 1053 } 1054 1055 if (displaymode == DISP_IO) { 1056 oldp = get_old_proc(pp); 1057 if (oldp != NULL) { 1058 ru.ru_inblock = RU(pp)->ru_inblock - 1059 RU(oldp)->ru_inblock; 1060 ru.ru_oublock = RU(pp)->ru_oublock - 1061 RU(oldp)->ru_oublock; 1062 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1063 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1064 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1065 rup = &ru; 1066 } else { 1067 rup = RU(pp); 1068 } 1069 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1070 s_tot = total_inblock + total_oublock + total_majflt; 1071 1072 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1073 1074 if (ps.jail) { 1075 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1076 } 1077 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1078 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1079 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1080 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1081 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1082 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1083 sbuf_printf(procbuf, "%6ld ", p_tot); 1084 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1085 1086 } else { 1087 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1088 if (ps.jail) { 1089 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1090 } 1091 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1092 1093 if (!ps.thread) { 1094 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1095 } else { 1096 sbuf_printf(procbuf, " "); 1097 } 1098 1099 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1100 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1101 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1102 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1103 if (ps.swap) { 1104 sbuf_printf(procbuf, "%*s ", 1105 TOP_SWAP_LEN - 1, 1106 format_k(pagetok(ki_swap(pp)))); 1107 } 1108 sbuf_printf(procbuf, "%-6.6s ", status); 1109 if (smpmode) { 1110 int cpu; 1111 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1112 cpu = pp->ki_oncpu; 1113 } else { 1114 cpu = pp->ki_lastcpu; 1115 } 1116 sbuf_printf(procbuf, "%3d ", cpu); 1117 } 1118 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1119 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1120 } 1121 sbuf_printf(procbuf, "%s", cmdbuf); 1122 free(cmdbuf); 1123 return (sbuf_data(procbuf)); 1124 } 1125 1126 static void 1127 getsysctl(const char *name, void *ptr, size_t len) 1128 { 1129 size_t nlen = len; 1130 1131 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1132 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1133 strerror(errno)); 1134 quit(TOP_EX_SYS_ERROR); 1135 } 1136 if (nlen != len) { 1137 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1138 name, (unsigned long)len, (unsigned long)nlen); 1139 quit(TOP_EX_SYS_ERROR); 1140 } 1141 } 1142 1143 static const char * 1144 format_nice(const struct kinfo_proc *pp) 1145 { 1146 const char *fifo, *kproc; 1147 int rtpri; 1148 static char nicebuf[4 + 1]; 1149 1150 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1151 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1152 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1153 case PRI_ITHD: 1154 return ("-"); 1155 case PRI_REALTIME: 1156 /* 1157 * XXX: the kernel doesn't tell us the original rtprio and 1158 * doesn't really know what it was, so to recover it we 1159 * must be more chummy with the implementation than the 1160 * implementation is with itself. pri_user gives a 1161 * constant "base" priority, but is only initialized 1162 * properly for user threads. pri_native gives what the 1163 * kernel calls the "base" priority, but it isn't constant 1164 * since it is changed by priority propagation. pri_native 1165 * also isn't properly initialized for all threads, but it 1166 * is properly initialized for kernel realtime and idletime 1167 * threads. Thus we use pri_user for the base priority of 1168 * user threads (it is always correct) and pri_native for 1169 * the base priority of kernel realtime and idletime threads 1170 * (there is nothing better, and it is usually correct). 1171 * 1172 * The field width and thus the buffer are too small for 1173 * values like "kr31F", but such values shouldn't occur, 1174 * and if they do then the tailing "F" is not displayed. 1175 */ 1176 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1177 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1178 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1179 kproc, rtpri, fifo); 1180 break; 1181 case PRI_TIMESHARE: 1182 if (pp->ki_flag & P_KPROC) 1183 return ("-"); 1184 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1185 break; 1186 case PRI_IDLE: 1187 /* XXX: as above. */ 1188 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1189 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1190 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1191 kproc, rtpri, fifo); 1192 break; 1193 default: 1194 return ("?"); 1195 } 1196 return (nicebuf); 1197 } 1198 1199 /* comparison routines for qsort */ 1200 1201 static int 1202 compare_pid(const void *p1, const void *p2) 1203 { 1204 const struct kinfo_proc * const *pp1 = p1; 1205 const struct kinfo_proc * const *pp2 = p2; 1206 1207 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1208 1209 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1210 } 1211 1212 static int 1213 compare_tid(const void *p1, const void *p2) 1214 { 1215 const struct kinfo_proc * const *pp1 = p1; 1216 const struct kinfo_proc * const *pp2 = p2; 1217 1218 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1219 1220 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1221 } 1222 1223 /* 1224 * proc_compare - comparison function for "qsort" 1225 * Compares the resource consumption of two processes using five 1226 * distinct keys. The keys (in descending order of importance) are: 1227 * percent cpu, cpu ticks, state, resident set size, total virtual 1228 * memory usage. The process states are ordered as follows (from least 1229 * to most important): WAIT, zombie, sleep, stop, start, run. The 1230 * array declaration below maps a process state index into a number 1231 * that reflects this ordering. 1232 */ 1233 1234 static int sorted_state[] = { 1235 0, /* not used */ 1236 3, /* sleep */ 1237 1, /* ABANDONED (WAIT) */ 1238 6, /* run */ 1239 5, /* start */ 1240 2, /* zombie */ 1241 4 /* stop */ 1242 }; 1243 1244 1245 #define ORDERKEY_PCTCPU(a, b) do { \ 1246 double diff; \ 1247 if (ps.wcpu) \ 1248 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1249 weighted_cpu(PCTCPU((a)), (a)); \ 1250 else \ 1251 diff = PCTCPU((b)) - PCTCPU((a)); \ 1252 if (diff != 0) \ 1253 return (diff > 0 ? 1 : -1); \ 1254 } while (0) 1255 1256 #define ORDERKEY_CPTICKS(a, b) do { \ 1257 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1258 if (diff != 0) \ 1259 return (diff > 0 ? 1 : -1); \ 1260 } while (0) 1261 1262 #define ORDERKEY_STATE(a, b) do { \ 1263 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1264 if (diff != 0) \ 1265 return (diff > 0 ? 1 : -1); \ 1266 } while (0) 1267 1268 #define ORDERKEY_PRIO(a, b) do { \ 1269 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1270 if (diff != 0) \ 1271 return (diff > 0 ? 1 : -1); \ 1272 } while (0) 1273 1274 #define ORDERKEY_THREADS(a, b) do { \ 1275 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1276 if (diff != 0) \ 1277 return (diff > 0 ? 1 : -1); \ 1278 } while (0) 1279 1280 #define ORDERKEY_RSSIZE(a, b) do { \ 1281 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1282 if (diff != 0) \ 1283 return (diff > 0 ? 1 : -1); \ 1284 } while (0) 1285 1286 #define ORDERKEY_MEM(a, b) do { \ 1287 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1288 if (diff != 0) \ 1289 return (diff > 0 ? 1 : -1); \ 1290 } while (0) 1291 1292 #define ORDERKEY_JID(a, b) do { \ 1293 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1294 if (diff != 0) \ 1295 return (diff > 0 ? 1 : -1); \ 1296 } while (0) 1297 1298 #define ORDERKEY_SWAP(a, b) do { \ 1299 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1300 if (diff != 0) \ 1301 return (diff > 0 ? 1 : -1); \ 1302 } while (0) 1303 1304 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1305 1306 static int 1307 compare_cpu(const void *arg1, const void *arg2) 1308 { 1309 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1310 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1311 1312 ORDERKEY_PCTCPU(p1, p2); 1313 ORDERKEY_CPTICKS(p1, p2); 1314 ORDERKEY_STATE(p1, p2); 1315 ORDERKEY_PRIO(p1, p2); 1316 ORDERKEY_RSSIZE(p1, p2); 1317 ORDERKEY_MEM(p1, p2); 1318 1319 return (0); 1320 } 1321 1322 /* compare_size - the comparison function for sorting by total memory usage */ 1323 1324 static int 1325 compare_size(const void *arg1, const void *arg2) 1326 { 1327 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1328 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1329 1330 ORDERKEY_MEM(p1, p2); 1331 ORDERKEY_RSSIZE(p1, p2); 1332 ORDERKEY_PCTCPU(p1, p2); 1333 ORDERKEY_CPTICKS(p1, p2); 1334 ORDERKEY_STATE(p1, p2); 1335 ORDERKEY_PRIO(p1, p2); 1336 1337 return (0); 1338 } 1339 1340 /* compare_res - the comparison function for sorting by resident set size */ 1341 1342 static int 1343 compare_res(const void *arg1, const void *arg2) 1344 { 1345 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1346 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1347 1348 ORDERKEY_RSSIZE(p1, p2); 1349 ORDERKEY_MEM(p1, p2); 1350 ORDERKEY_PCTCPU(p1, p2); 1351 ORDERKEY_CPTICKS(p1, p2); 1352 ORDERKEY_STATE(p1, p2); 1353 ORDERKEY_PRIO(p1, p2); 1354 1355 return (0); 1356 } 1357 1358 /* compare_time - the comparison function for sorting by total cpu time */ 1359 1360 static int 1361 compare_time(const void *arg1, const void *arg2) 1362 { 1363 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1364 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1365 1366 ORDERKEY_CPTICKS(p1, p2); 1367 ORDERKEY_PCTCPU(p1, p2); 1368 ORDERKEY_STATE(p1, p2); 1369 ORDERKEY_PRIO(p1, p2); 1370 ORDERKEY_RSSIZE(p1, p2); 1371 ORDERKEY_MEM(p1, p2); 1372 1373 return (0); 1374 } 1375 1376 /* compare_prio - the comparison function for sorting by priority */ 1377 1378 static int 1379 compare_prio(const void *arg1, const void *arg2) 1380 { 1381 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1382 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1383 1384 ORDERKEY_PRIO(p1, p2); 1385 ORDERKEY_CPTICKS(p1, p2); 1386 ORDERKEY_PCTCPU(p1, p2); 1387 ORDERKEY_STATE(p1, p2); 1388 ORDERKEY_RSSIZE(p1, p2); 1389 ORDERKEY_MEM(p1, p2); 1390 1391 return (0); 1392 } 1393 1394 /* compare_threads - the comparison function for sorting by threads */ 1395 static int 1396 compare_threads(const void *arg1, const void *arg2) 1397 { 1398 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1399 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1400 1401 ORDERKEY_THREADS(p1, p2); 1402 ORDERKEY_PCTCPU(p1, p2); 1403 ORDERKEY_CPTICKS(p1, p2); 1404 ORDERKEY_STATE(p1, p2); 1405 ORDERKEY_PRIO(p1, p2); 1406 ORDERKEY_RSSIZE(p1, p2); 1407 ORDERKEY_MEM(p1, p2); 1408 1409 return (0); 1410 } 1411 1412 /* compare_jid - the comparison function for sorting by jid */ 1413 static int 1414 compare_jid(const void *arg1, const void *arg2) 1415 { 1416 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1417 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1418 1419 ORDERKEY_JID(p1, p2); 1420 ORDERKEY_PCTCPU(p1, p2); 1421 ORDERKEY_CPTICKS(p1, p2); 1422 ORDERKEY_STATE(p1, p2); 1423 ORDERKEY_PRIO(p1, p2); 1424 ORDERKEY_RSSIZE(p1, p2); 1425 ORDERKEY_MEM(p1, p2); 1426 1427 return (0); 1428 } 1429 1430 /* compare_swap - the comparison function for sorting by swap */ 1431 static int 1432 compare_swap(const void *arg1, const void *arg2) 1433 { 1434 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1435 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1436 1437 ORDERKEY_SWAP(p1, p2); 1438 ORDERKEY_PCTCPU(p1, p2); 1439 ORDERKEY_CPTICKS(p1, p2); 1440 ORDERKEY_STATE(p1, p2); 1441 ORDERKEY_PRIO(p1, p2); 1442 ORDERKEY_RSSIZE(p1, p2); 1443 ORDERKEY_MEM(p1, p2); 1444 1445 return (0); 1446 } 1447 1448 /* assorted comparison functions for sorting by i/o */ 1449 1450 static int 1451 compare_iototal(const void *arg1, const void *arg2) 1452 { 1453 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1454 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1455 1456 return (get_io_total(p2) - get_io_total(p1)); 1457 } 1458 1459 static int 1460 compare_ioread(const void *arg1, const void *arg2) 1461 { 1462 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1463 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1464 long dummy, inp1, inp2; 1465 1466 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1467 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1468 1469 return (inp2 - inp1); 1470 } 1471 1472 static int 1473 compare_iowrite(const void *arg1, const void *arg2) 1474 { 1475 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1476 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1477 long dummy, oup1, oup2; 1478 1479 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1480 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1481 1482 return (oup2 - oup1); 1483 } 1484 1485 static int 1486 compare_iofault(const void *arg1, const void *arg2) 1487 { 1488 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1489 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1490 long dummy, flp1, flp2; 1491 1492 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1493 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1494 1495 return (flp2 - flp1); 1496 } 1497 1498 static int 1499 compare_vcsw(const void *arg1, const void *arg2) 1500 { 1501 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1502 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1503 long dummy, flp1, flp2; 1504 1505 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1506 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1507 1508 return (flp2 - flp1); 1509 } 1510 1511 static int 1512 compare_ivcsw(const void *arg1, const void *arg2) 1513 { 1514 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1515 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1516 long dummy, flp1, flp2; 1517 1518 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1519 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1520 1521 return (flp2 - flp1); 1522 } 1523 1524 int (*compares[])(const void *arg1, const void *arg2) = { 1525 compare_cpu, 1526 compare_size, 1527 compare_res, 1528 compare_time, 1529 compare_prio, 1530 compare_threads, 1531 compare_iototal, 1532 compare_ioread, 1533 compare_iowrite, 1534 compare_iofault, 1535 compare_vcsw, 1536 compare_ivcsw, 1537 compare_jid, 1538 compare_swap, 1539 NULL 1540 }; 1541 1542 1543 static int 1544 swapmode(int *retavail, int *retfree) 1545 { 1546 int n; 1547 struct kvm_swap swapary[1]; 1548 static int pagesize = 0; 1549 static unsigned long swap_maxpages = 0; 1550 1551 *retavail = 0; 1552 *retfree = 0; 1553 1554 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1555 1556 n = kvm_getswapinfo(kd, swapary, 1, 0); 1557 if (n < 0 || swapary[0].ksw_total == 0) 1558 return (0); 1559 1560 if (pagesize == 0) 1561 pagesize = getpagesize(); 1562 if (swap_maxpages == 0) 1563 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1564 1565 /* ksw_total contains the total size of swap all devices which may 1566 exceed the maximum swap size allocatable in the system */ 1567 if ( swapary[0].ksw_total > swap_maxpages ) 1568 swapary[0].ksw_total = swap_maxpages; 1569 1570 *retavail = CONVERT(swapary[0].ksw_total); 1571 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1572 1573 #undef CONVERT 1574 1575 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1576 return (n); 1577 } 1578