1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@freebsd.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * 15 * $FreeBSD$ 16 */ 17 18 #include <sys/errno.h> 19 #include <sys/file.h> 20 #include <sys/param.h> 21 #include <sys/proc.h> 22 #include <sys/resource.h> 23 #include <sys/rtprio.h> 24 #include <sys/signal.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 #include <sys/vmmeter.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <kvm.h> 33 #include <math.h> 34 #include <nlist.h> 35 #include <paths.h> 36 #include <pwd.h> 37 #include <stdio.h> 38 #include <stdbool.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <strings.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 #define SMPUNAMELEN 13 55 #define UPUNAMELEN 15 56 57 extern struct timeval timeout; 58 static int smpmode; 59 enum displaymodes displaymode; 60 static int namelength = 8; 61 /* TOP_JID_LEN based on max of 999999 */ 62 #define TOP_JID_LEN 7 63 #define TOP_SWAP_LEN 6 64 static int jidlength; 65 static int swaplength; 66 static int cmdlengthdelta; 67 68 /* get_process_info passes back a handle. This is what it looks like: */ 69 70 struct handle { 71 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 72 int remaining; /* number of pointers remaining */ 73 }; 74 75 76 /* define what weighted cpu is. */ 77 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 78 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 79 80 /* what we consider to be process size: */ 81 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 82 83 #define RU(pp) (&(pp)->ki_rusage) 84 #define RUTOT(pp) \ 85 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 86 87 #define PCTCPU(pp) (pcpu[pp - pbase]) 88 89 /* definitions for indices in the nlist array */ 90 91 /* 92 * These definitions control the format of the per-process area 93 */ 94 95 static const char io_header[] = 96 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 97 98 static const char io_Proc_format[] = 99 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"; 100 101 static const char smp_header_thr_and_pid[] = 102 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 103 static const char smp_header_tid_only[] = 104 " THR%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 105 106 static const char smp_Proc_format[] = 107 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; 108 109 static char up_header_thr_and_pid[] = 110 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 111 static char up_header_tid_only[] = 112 " THR%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 113 114 static char up_Proc_format[] = 115 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; 116 117 118 /* process state names for the "STATE" column of the display */ 119 /* the extra nulls in the string "run" are for adding a slash and 120 the processor number when needed */ 121 122 static const char *state_abbrev[] = { 123 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 124 }; 125 126 127 static kvm_t *kd; 128 129 /* values that we stash away in _init and use in later routines */ 130 131 static double logcpu; 132 133 /* these are retrieved from the kernel in _init */ 134 135 static load_avg ccpu; 136 137 /* these are used in the get_ functions */ 138 139 static int lastpid; 140 141 /* these are for calculating cpu state percentages */ 142 143 static long cp_time[CPUSTATES]; 144 static long cp_old[CPUSTATES]; 145 static long cp_diff[CPUSTATES]; 146 147 /* these are for detailing the process states */ 148 149 static const char *procstatenames[] = { 150 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 151 " zombie, ", " waiting, ", " lock, ", 152 NULL 153 }; 154 static int process_states[nitems(procstatenames)]; 155 156 /* these are for detailing the cpu states */ 157 158 static int cpu_states[CPUSTATES]; 159 static const char *cpustatenames[] = { 160 "user", "nice", "system", "interrupt", "idle", NULL 161 }; 162 163 /* these are for detailing the memory statistics */ 164 165 static const char *memorynames[] = { 166 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 167 "K Free", NULL 168 }; 169 static int memory_stats[nitems(memorynames)]; 170 171 static const char *arcnames[] = { 172 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 173 NULL 174 }; 175 static int arc_stats[nitems(arcnames)]; 176 177 static const char *carcnames[] = { 178 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 179 NULL 180 }; 181 static int carc_stats[nitems(carcnames)]; 182 183 static const char *swapnames[] = { 184 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 185 NULL 186 }; 187 static int swap_stats[nitems(swapnames)]; 188 189 190 /* these are for keeping track of the proc array */ 191 192 static int nproc; 193 static int onproc = -1; 194 static int pref_len; 195 static struct kinfo_proc *pbase; 196 static struct kinfo_proc **pref; 197 static struct kinfo_proc *previous_procs; 198 static struct kinfo_proc **previous_pref; 199 static int previous_proc_count = 0; 200 static int previous_proc_count_max = 0; 201 static int previous_thread; 202 203 /* data used for recalculating pctcpu */ 204 static double *pcpu; 205 static struct timespec proc_uptime; 206 static struct timeval proc_wall_time; 207 static struct timeval previous_wall_time; 208 static uint64_t previous_interval = 0; 209 210 /* total number of io operations */ 211 static long total_inblock; 212 static long total_oublock; 213 static long total_majflt; 214 215 /* these are for getting the memory statistics */ 216 217 static int arc_enabled; 218 static int carc_enabled; 219 static int pageshift; /* log base 2 of the pagesize */ 220 221 /* define pagetok in terms of pageshift */ 222 223 #define pagetok(size) ((size) << pageshift) 224 225 /* swap usage */ 226 #define ki_swap(kip) \ 227 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 228 229 /* 230 * Sorting orders. The first element is the default. 231 */ 232 static const char *ordernames[] = { 233 "cpu", "size", "res", "time", "pri", "threads", 234 "total", "read", "write", "fault", "vcsw", "ivcsw", 235 "jid", "swap", "pid", NULL 236 }; 237 238 /* Per-cpu time states */ 239 static int maxcpu; 240 static int maxid; 241 static int ncpus; 242 static u_long cpumask; 243 static long *times; 244 static long *pcpu_cp_time; 245 static long *pcpu_cp_old; 246 static long *pcpu_cp_diff; 247 static int *pcpu_cpu_states; 248 249 static int compare_swap(const void *a, const void *b); 250 static int compare_jid(const void *a, const void *b); 251 static int compare_pid(const void *a, const void *b); 252 static int compare_tid(const void *a, const void *b); 253 static const char *format_nice(const struct kinfo_proc *pp); 254 static void getsysctl(const char *name, void *ptr, size_t len); 255 static int swapmode(int *retavail, int *retfree); 256 static void update_layout(void); 257 static int find_uid(uid_t needle, int *haystack); 258 259 static int 260 find_uid(uid_t needle, int *haystack) 261 { 262 size_t i = 0; 263 264 for (; i < TOP_MAX_UIDS; ++i) 265 if ((uid_t)haystack[i] == needle) 266 return 1; 267 return 0; 268 } 269 270 void 271 toggle_pcpustats(void) 272 { 273 274 if (ncpus == 1) 275 return; 276 update_layout(); 277 } 278 279 /* Adjust display based on ncpus and the ARC state. */ 280 static void 281 update_layout(void) 282 { 283 284 y_mem = 3; 285 y_arc = 4; 286 y_carc = 5; 287 y_swap = 4 + arc_enabled + carc_enabled; 288 y_idlecursor = 5 + arc_enabled + carc_enabled; 289 y_message = 5 + arc_enabled + carc_enabled; 290 y_header = 6 + arc_enabled + carc_enabled; 291 y_procs = 7 + arc_enabled + carc_enabled; 292 Header_lines = 7 + arc_enabled + carc_enabled; 293 294 if (pcpu_stats) { 295 y_mem += ncpus - 1; 296 y_arc += ncpus - 1; 297 y_carc += ncpus - 1; 298 y_swap += ncpus - 1; 299 y_idlecursor += ncpus - 1; 300 y_message += ncpus - 1; 301 y_header += ncpus - 1; 302 y_procs += ncpus - 1; 303 Header_lines += ncpus - 1; 304 } 305 } 306 307 int 308 machine_init(struct statics *statics) 309 { 310 int i, j, empty, pagesize; 311 uint64_t arc_size; 312 bool carc_en; 313 size_t size; 314 315 size = sizeof(smpmode); 316 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 317 NULL, 0) != 0 && 318 sysctlbyname("kern.smp.active", &smpmode, &size, 319 NULL, 0) != 0) || 320 size != sizeof(smpmode)) 321 smpmode = 0; 322 323 size = sizeof(arc_size); 324 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 325 NULL, 0) == 0 && arc_size != 0) 326 arc_enabled = 1; 327 size = sizeof(carc_en); 328 if (arc_enabled && 329 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 330 NULL, 0) == 0 && carc_en == 1) 331 carc_enabled = 1; 332 333 namelength = MAXLOGNAME; 334 if (smpmode && namelength > SMPUNAMELEN) 335 namelength = SMPUNAMELEN; 336 else if (namelength > UPUNAMELEN) 337 namelength = UPUNAMELEN; 338 339 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 340 if (kd == NULL) 341 return (-1); 342 343 GETSYSCTL("kern.ccpu", ccpu); 344 345 /* this is used in calculating WCPU -- calculate it ahead of time */ 346 logcpu = log(loaddouble(ccpu)); 347 348 pbase = NULL; 349 pref = NULL; 350 pcpu = NULL; 351 nproc = 0; 352 onproc = -1; 353 354 /* get the page size and calculate pageshift from it */ 355 pagesize = getpagesize(); 356 pageshift = 0; 357 while (pagesize > 1) { 358 pageshift++; 359 pagesize >>= 1; 360 } 361 362 /* we only need the amount of log(2)1024 for our conversion */ 363 pageshift -= LOG1024; 364 365 /* fill in the statics information */ 366 statics->procstate_names = procstatenames; 367 statics->cpustate_names = cpustatenames; 368 statics->memory_names = memorynames; 369 if (arc_enabled) 370 statics->arc_names = arcnames; 371 else 372 statics->arc_names = NULL; 373 if (carc_enabled) 374 statics->carc_names = carcnames; 375 else 376 statics->carc_names = NULL; 377 statics->swap_names = swapnames; 378 statics->order_names = ordernames; 379 380 /* Allocate state for per-CPU stats. */ 381 cpumask = 0; 382 ncpus = 0; 383 GETSYSCTL("kern.smp.maxcpus", maxcpu); 384 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 385 if (times == NULL) 386 err(1, "calloc %zu bytes", size); 387 size = sizeof(long) * maxcpu * CPUSTATES; 388 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 389 err(1, "sysctlbyname kern.cp_times"); 390 pcpu_cp_time = calloc(1, size); 391 maxid = (size / CPUSTATES / sizeof(long)) - 1; 392 for (i = 0; i <= maxid; i++) { 393 empty = 1; 394 for (j = 0; empty && j < CPUSTATES; j++) { 395 if (times[i * CPUSTATES + j] != 0) 396 empty = 0; 397 } 398 if (!empty) { 399 cpumask |= (1ul << i); 400 ncpus++; 401 } 402 } 403 assert(ncpus > 0); 404 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 405 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 406 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 407 statics->ncpus = ncpus; 408 409 update_layout(); 410 411 /* all done! */ 412 return (0); 413 } 414 415 const char * 416 format_header(const char *uname_field) 417 { 418 static char Header[128]; 419 const char *prehead; 420 421 if (ps.jail) 422 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 423 else 424 jidlength = 0; 425 426 if (ps.swap) 427 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 428 else 429 swaplength = 0; 430 431 switch (displaymode) { 432 case DISP_CPU: 433 /* 434 * The logic of picking the right header format seems reverse 435 * here because we only want to display a THR column when 436 * "thread mode" is off (and threads are not listed as 437 * separate lines). 438 */ 439 prehead = smpmode ? 440 (ps.thread ? smp_header_tid_only : smp_header_thr_and_pid) : 441 (ps.thread ? up_header_tid_only : up_header_thr_and_pid); 442 snprintf(Header, sizeof(Header), prehead, 443 jidlength, ps.jail ? " JID" : "", 444 namelength, namelength, uname_field, 445 swaplength, ps.swap ? " SWAP" : "", 446 ps.wcpu ? "WCPU" : "CPU"); 447 break; 448 case DISP_IO: 449 prehead = io_header; 450 snprintf(Header, sizeof(Header), prehead, 451 jidlength, ps.jail ? " JID" : "", 452 namelength, namelength, uname_field); 453 break; 454 case DISP_MAX: 455 assert("displaymode must not be set to DISP_MAX"); 456 } 457 cmdlengthdelta = strlen(Header) - 7; 458 return (Header); 459 } 460 461 static int swappgsin = -1; 462 static int swappgsout = -1; 463 464 465 void 466 get_system_info(struct system_info *si) 467 { 468 struct loadavg sysload; 469 int mib[2]; 470 struct timeval boottime; 471 uint64_t arc_stat, arc_stat2; 472 int i, j; 473 size_t size; 474 475 /* get the CPU stats */ 476 size = (maxid + 1) * CPUSTATES * sizeof(long); 477 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 478 err(1, "sysctlbyname kern.cp_times"); 479 GETSYSCTL("kern.cp_time", cp_time); 480 GETSYSCTL("vm.loadavg", sysload); 481 GETSYSCTL("kern.lastpid", lastpid); 482 483 /* convert load averages to doubles */ 484 for (i = 0; i < 3; i++) 485 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 486 487 /* convert cp_time counts to percentages */ 488 for (i = j = 0; i <= maxid; i++) { 489 if ((cpumask & (1ul << i)) == 0) 490 continue; 491 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 492 &pcpu_cp_time[j * CPUSTATES], 493 &pcpu_cp_old[j * CPUSTATES], 494 &pcpu_cp_diff[j * CPUSTATES]); 495 j++; 496 } 497 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 498 499 /* sum memory & swap statistics */ 500 { 501 static unsigned int swap_delay = 0; 502 static int swapavail = 0; 503 static int swapfree = 0; 504 static long bufspace = 0; 505 static uint64_t nspgsin, nspgsout; 506 507 GETSYSCTL("vfs.bufspace", bufspace); 508 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 509 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 510 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 511 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 512 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 513 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 514 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 515 /* convert memory stats to Kbytes */ 516 memory_stats[0] = pagetok(memory_stats[0]); 517 memory_stats[1] = pagetok(memory_stats[1]); 518 memory_stats[2] = pagetok(memory_stats[2]); 519 memory_stats[3] = pagetok(memory_stats[3]); 520 memory_stats[4] = bufspace / 1024; 521 memory_stats[5] = pagetok(memory_stats[5]); 522 memory_stats[6] = -1; 523 524 /* first interval */ 525 if (swappgsin < 0) { 526 swap_stats[4] = 0; 527 swap_stats[5] = 0; 528 } 529 530 /* compute differences between old and new swap statistic */ 531 else { 532 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 533 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 534 } 535 536 swappgsin = nspgsin; 537 swappgsout = nspgsout; 538 539 /* call CPU heavy swapmode() only for changes */ 540 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 541 swap_stats[3] = swapmode(&swapavail, &swapfree); 542 swap_stats[0] = swapavail; 543 swap_stats[1] = swapavail - swapfree; 544 swap_stats[2] = swapfree; 545 } 546 swap_delay = 1; 547 swap_stats[6] = -1; 548 } 549 550 if (arc_enabled) { 551 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 552 arc_stats[0] = arc_stat >> 10; 553 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 554 arc_stats[1] = arc_stat >> 10; 555 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 556 arc_stats[2] = arc_stat >> 10; 557 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 558 arc_stats[3] = arc_stat >> 10; 559 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 560 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 561 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 562 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 563 arc_stats[5] = arc_stat >> 10; 564 si->arc = arc_stats; 565 } 566 if (carc_enabled) { 567 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 568 carc_stats[0] = arc_stat >> 10; 569 carc_stats[2] = arc_stat >> 10; /* For ratio */ 570 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 571 carc_stats[1] = arc_stat >> 10; 572 si->carc = carc_stats; 573 } 574 575 /* set arrays and strings */ 576 if (pcpu_stats) { 577 si->cpustates = pcpu_cpu_states; 578 si->ncpus = ncpus; 579 } else { 580 si->cpustates = cpu_states; 581 si->ncpus = 1; 582 } 583 si->memory = memory_stats; 584 si->swap = swap_stats; 585 586 587 if (lastpid > 0) { 588 si->last_pid = lastpid; 589 } else { 590 si->last_pid = -1; 591 } 592 593 /* 594 * Print how long system has been up. 595 * (Found by looking getting "boottime" from the kernel) 596 */ 597 mib[0] = CTL_KERN; 598 mib[1] = KERN_BOOTTIME; 599 size = sizeof(boottime); 600 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 601 boottime.tv_sec != 0) { 602 si->boottime = boottime; 603 } else { 604 si->boottime.tv_sec = -1; 605 } 606 } 607 608 #define NOPROC ((void *)-1) 609 610 /* 611 * We need to compare data from the old process entry with the new 612 * process entry. 613 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 614 * structure to cache the mapping. We also use a negative cache pointer 615 * of NOPROC to avoid duplicate lookups. 616 * XXX: this could be done when the actual processes are fetched, we do 617 * it here out of laziness. 618 */ 619 static const struct kinfo_proc * 620 get_old_proc(struct kinfo_proc *pp) 621 { 622 struct kinfo_proc **oldpp, *oldp; 623 624 /* 625 * If this is the first fetch of the kinfo_procs then we don't have 626 * any previous entries. 627 */ 628 if (previous_proc_count == 0) 629 return (NULL); 630 /* negative cache? */ 631 if (pp->ki_udata == NOPROC) 632 return (NULL); 633 /* cached? */ 634 if (pp->ki_udata != NULL) 635 return (pp->ki_udata); 636 /* 637 * Not cached, 638 * 1) look up based on pid. 639 * 2) compare process start. 640 * If we fail here, then setup a negative cache entry, otherwise 641 * cache it. 642 */ 643 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 644 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 645 if (oldpp == NULL) { 646 pp->ki_udata = NOPROC; 647 return (NULL); 648 } 649 oldp = *oldpp; 650 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 651 pp->ki_udata = NOPROC; 652 return (NULL); 653 } 654 pp->ki_udata = oldp; 655 return (oldp); 656 } 657 658 /* 659 * Return the total amount of IO done in blocks in/out and faults. 660 * store the values individually in the pointers passed in. 661 */ 662 static long 663 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 664 long *vcsw, long *ivcsw) 665 { 666 const struct kinfo_proc *oldp; 667 static struct kinfo_proc dummy; 668 long ret; 669 670 oldp = get_old_proc(pp); 671 if (oldp == NULL) { 672 bzero(&dummy, sizeof(dummy)); 673 oldp = &dummy; 674 } 675 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 676 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 677 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 678 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 679 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 680 ret = 681 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 682 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 683 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 684 return (ret); 685 } 686 687 /* 688 * If there was a previous update, use the delta in ki_runtime over 689 * the previous interval to calculate pctcpu. Otherwise, fall back 690 * to using the kernel's ki_pctcpu. 691 */ 692 static double 693 proc_calc_pctcpu(struct kinfo_proc *pp) 694 { 695 const struct kinfo_proc *oldp; 696 697 if (previous_interval != 0) { 698 oldp = get_old_proc(pp); 699 if (oldp != NULL) 700 return ((double)(pp->ki_runtime - oldp->ki_runtime) 701 / previous_interval); 702 703 /* 704 * If this process/thread was created during the previous 705 * interval, charge it's total runtime to the previous 706 * interval. 707 */ 708 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 709 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 710 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 711 return ((double)pp->ki_runtime / previous_interval); 712 } 713 return (pctdouble(pp->ki_pctcpu)); 714 } 715 716 /* 717 * Return true if this process has used any CPU time since the 718 * previous update. 719 */ 720 static int 721 proc_used_cpu(struct kinfo_proc *pp) 722 { 723 const struct kinfo_proc *oldp; 724 725 oldp = get_old_proc(pp); 726 if (oldp == NULL) 727 return (PCTCPU(pp) != 0); 728 return (pp->ki_runtime != oldp->ki_runtime || 729 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 730 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 731 } 732 733 /* 734 * Return the total number of block in/out and faults by a process. 735 */ 736 static long 737 get_io_total(const struct kinfo_proc *pp) 738 { 739 long dummy; 740 741 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 742 } 743 744 static struct handle handle; 745 746 void * 747 get_process_info(struct system_info *si, struct process_select *sel, 748 int (*compare)(const void *, const void *)) 749 { 750 int i; 751 int total_procs; 752 long p_io; 753 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 754 long nsec; 755 int active_procs; 756 struct kinfo_proc **prefp; 757 struct kinfo_proc *pp; 758 struct timespec previous_proc_uptime; 759 760 /* these are copied out of sel for speed */ 761 int show_idle; 762 int show_jid; 763 int show_self; 764 int show_system; 765 int show_uid; 766 int show_pid; 767 int show_kidle; 768 769 /* 770 * If thread state was toggled, don't cache the previous processes. 771 */ 772 if (previous_thread != sel->thread) 773 nproc = 0; 774 previous_thread = sel->thread; 775 776 /* 777 * Save the previous process info. 778 */ 779 if (previous_proc_count_max < nproc) { 780 free(previous_procs); 781 previous_procs = calloc(nproc, sizeof(*previous_procs)); 782 free(previous_pref); 783 previous_pref = calloc(nproc, sizeof(*previous_pref)); 784 if (previous_procs == NULL || previous_pref == NULL) { 785 fprintf(stderr, "top: Out of memory.\n"); 786 quit(TOP_EX_SYS_ERROR); 787 } 788 previous_proc_count_max = nproc; 789 } 790 if (nproc) { 791 for (i = 0; i < nproc; i++) 792 previous_pref[i] = &previous_procs[i]; 793 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 794 qsort(previous_pref, nproc, sizeof(*previous_pref), 795 ps.thread ? compare_tid : compare_pid); 796 } 797 previous_proc_count = nproc; 798 previous_proc_uptime = proc_uptime; 799 previous_wall_time = proc_wall_time; 800 previous_interval = 0; 801 802 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 803 0, &nproc); 804 (void)gettimeofday(&proc_wall_time, NULL); 805 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 806 memset(&proc_uptime, 0, sizeof(proc_uptime)); 807 else if (previous_proc_uptime.tv_sec != 0 && 808 previous_proc_uptime.tv_nsec != 0) { 809 previous_interval = (proc_uptime.tv_sec - 810 previous_proc_uptime.tv_sec) * 1000000; 811 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 812 if (nsec < 0) { 813 previous_interval -= 1000000; 814 nsec += 1000000000; 815 } 816 previous_interval += nsec / 1000; 817 } 818 if (nproc > onproc) { 819 pref = realloc(pref, sizeof(*pref) * nproc); 820 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 821 onproc = nproc; 822 } 823 if (pref == NULL || pbase == NULL || pcpu == NULL) { 824 (void) fprintf(stderr, "top: Out of memory.\n"); 825 quit(TOP_EX_SYS_ERROR); 826 } 827 /* get a pointer to the states summary array */ 828 si->procstates = process_states; 829 830 /* set up flags which define what we are going to select */ 831 show_idle = sel->idle; 832 show_jid = sel->jid != -1; 833 show_self = sel->self == -1; 834 show_system = sel->system; 835 show_uid = sel->uid[0] != -1; 836 show_pid = sel->pid != -1; 837 show_kidle = sel->kidle; 838 839 /* count up process states and get pointers to interesting procs */ 840 total_procs = 0; 841 active_procs = 0; 842 total_inblock = 0; 843 total_oublock = 0; 844 total_majflt = 0; 845 memset(process_states, 0, sizeof(process_states)); 846 prefp = pref; 847 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 848 849 if (pp->ki_stat == 0) 850 /* not in use */ 851 continue; 852 853 if (!show_self && pp->ki_pid == sel->self) 854 /* skip self */ 855 continue; 856 857 if (!show_system && (pp->ki_flag & P_SYSTEM)) 858 /* skip system process */ 859 continue; 860 861 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 862 &p_vcsw, &p_ivcsw); 863 total_inblock += p_inblock; 864 total_oublock += p_oublock; 865 total_majflt += p_majflt; 866 total_procs++; 867 process_states[(unsigned char)pp->ki_stat]++; 868 869 if (pp->ki_stat == SZOMB) 870 /* skip zombies */ 871 continue; 872 873 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 874 /* skip kernel idle process */ 875 continue; 876 877 PCTCPU(pp) = proc_calc_pctcpu(pp); 878 if (sel->thread && PCTCPU(pp) > 1.0) 879 PCTCPU(pp) = 1.0; 880 if (displaymode == DISP_CPU && !show_idle && 881 (!proc_used_cpu(pp) || 882 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 883 /* skip idle or non-running processes */ 884 continue; 885 886 if (displaymode == DISP_IO && !show_idle && p_io == 0) 887 /* skip processes that aren't doing I/O */ 888 continue; 889 890 if (show_jid && pp->ki_jid != sel->jid) 891 /* skip proc. that don't belong to the selected JID */ 892 continue; 893 894 if (show_uid && !find_uid(pp->ki_ruid, sel->uid)) 895 /* skip proc. that don't belong to the selected UID */ 896 continue; 897 898 if (show_pid && pp->ki_pid != sel->pid) 899 continue; 900 901 *prefp++ = pp; 902 active_procs++; 903 } 904 905 /* if requested, sort the "interesting" processes */ 906 if (compare != NULL) 907 qsort(pref, active_procs, sizeof(*pref), compare); 908 909 /* remember active and total counts */ 910 si->p_total = total_procs; 911 si->p_pactive = pref_len = active_procs; 912 913 /* pass back a handle */ 914 handle.next_proc = pref; 915 handle.remaining = active_procs; 916 return ((void*)&handle); 917 } 918 919 static char fmt[512]; /* static area where result is built */ 920 921 char * 922 format_next_process(void* xhandle, char *(*get_userid)(int), int flags) 923 { 924 struct kinfo_proc *pp; 925 const struct kinfo_proc *oldp; 926 long cputime; 927 double pct; 928 struct handle *hp; 929 char status[22]; 930 int cpu; 931 size_t state; 932 struct rusage ru, *rup; 933 long p_tot, s_tot; 934 const char *proc_fmt; 935 char thr_buf[6]; 936 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 937 char *cmdbuf = NULL; 938 char **args; 939 const int cmdlen = 128; 940 941 /* find and remember the next proc structure */ 942 hp = (struct handle *)xhandle; 943 pp = *(hp->next_proc++); 944 hp->remaining--; 945 946 /* get the process's command name */ 947 if ((pp->ki_flag & P_INMEM) == 0) { 948 /* 949 * Print swapped processes as <pname> 950 */ 951 size_t len; 952 953 len = strlen(pp->ki_comm); 954 if (len > sizeof(pp->ki_comm) - 3) 955 len = sizeof(pp->ki_comm) - 3; 956 memmove(pp->ki_comm + 1, pp->ki_comm, len); 957 pp->ki_comm[0] = '<'; 958 pp->ki_comm[len + 1] = '>'; 959 pp->ki_comm[len + 2] = '\0'; 960 } 961 962 /* 963 * Convert the process's runtime from microseconds to seconds. This 964 * time includes the interrupt time although that is not wanted here. 965 * ps(1) is similarly sloppy. 966 */ 967 cputime = (pp->ki_runtime + 500000) / 1000000; 968 969 /* calculate the base for cpu percentages */ 970 pct = PCTCPU(pp); 971 972 /* generate "STATE" field */ 973 switch (state = pp->ki_stat) { 974 case SRUN: 975 if (smpmode && pp->ki_oncpu != NOCPU) 976 sprintf(status, "CPU%d", pp->ki_oncpu); 977 else 978 strcpy(status, "RUN"); 979 break; 980 case SLOCK: 981 if (pp->ki_kiflag & KI_LOCKBLOCK) { 982 sprintf(status, "*%.6s", pp->ki_lockname); 983 break; 984 } 985 /* fall through */ 986 case SSLEEP: 987 sprintf(status, "%.6s", pp->ki_wmesg); 988 break; 989 default: 990 991 if (state < nitems(state_abbrev)) { 992 sprintf(status, "%.6s", state_abbrev[state]); 993 } else { 994 sprintf(status, "?%5zu", state); 995 } 996 break; 997 } 998 999 cmdbuf = calloc(cmdlen + 1, 1); 1000 if (cmdbuf == NULL) { 1001 warn("calloc(%d)", cmdlen + 1); 1002 return NULL; 1003 } 1004 1005 if (!(flags & FMT_SHOWARGS)) { 1006 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1007 pp->ki_tdname[0]) { 1008 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1009 pp->ki_tdname, pp->ki_moretdname); 1010 } else { 1011 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1012 } 1013 } else { 1014 if (pp->ki_flag & P_SYSTEM || 1015 pp->ki_args == NULL || 1016 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1017 !(*args)) { 1018 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1019 pp->ki_tdname[0]) { 1020 snprintf(cmdbuf, cmdlen, 1021 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1022 pp->ki_moretdname); 1023 } else { 1024 snprintf(cmdbuf, cmdlen, 1025 "[%s]", pp->ki_comm); 1026 } 1027 } else { 1028 const char *src; 1029 char *dst, *argbuf; 1030 const char *cmd; 1031 size_t argbuflen; 1032 size_t len; 1033 1034 argbuflen = cmdlen * 4; 1035 argbuf = calloc(argbuflen + 1, 1); 1036 if (argbuf == NULL) { 1037 warn("calloc(%zu)", argbuflen + 1); 1038 free(cmdbuf); 1039 return NULL; 1040 } 1041 1042 dst = argbuf; 1043 1044 /* Extract cmd name from argv */ 1045 cmd = strrchr(*args, '/'); 1046 if (cmd == NULL) 1047 cmd = *args; 1048 else 1049 cmd++; 1050 1051 for (; (src = *args++) != NULL; ) { 1052 if (*src == '\0') 1053 continue; 1054 len = (argbuflen - (dst - argbuf) - 1) / 4; 1055 strvisx(dst, src, 1056 MIN(strlen(src), len), 1057 VIS_NL | VIS_CSTYLE); 1058 while (*dst != '\0') 1059 dst++; 1060 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1061 *dst++ = ' '; /* add delimiting space */ 1062 } 1063 if (dst != argbuf && dst[-1] == ' ') 1064 dst--; 1065 *dst = '\0'; 1066 1067 if (strcmp(cmd, pp->ki_comm) != 0) { 1068 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1069 pp->ki_tdname[0]) 1070 snprintf(cmdbuf, cmdlen, 1071 "%s (%s){%s%s}", argbuf, 1072 pp->ki_comm, pp->ki_tdname, 1073 pp->ki_moretdname); 1074 else 1075 snprintf(cmdbuf, cmdlen, 1076 "%s (%s)", argbuf, pp->ki_comm); 1077 } else { 1078 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1079 pp->ki_tdname[0]) 1080 snprintf(cmdbuf, cmdlen, 1081 "%s{%s%s}", argbuf, pp->ki_tdname, 1082 pp->ki_moretdname); 1083 else 1084 strlcpy(cmdbuf, argbuf, cmdlen); 1085 } 1086 free(argbuf); 1087 } 1088 } 1089 1090 if (ps.jail == 0) 1091 jid_buf[0] = '\0'; 1092 else 1093 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1094 jidlength - 1, pp->ki_jid); 1095 1096 if (ps.swap == 0) 1097 swap_buf[0] = '\0'; 1098 else 1099 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1100 swaplength - 1, 1101 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1102 1103 if (displaymode == DISP_IO) { 1104 oldp = get_old_proc(pp); 1105 if (oldp != NULL) { 1106 ru.ru_inblock = RU(pp)->ru_inblock - 1107 RU(oldp)->ru_inblock; 1108 ru.ru_oublock = RU(pp)->ru_oublock - 1109 RU(oldp)->ru_oublock; 1110 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1111 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1112 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1113 rup = &ru; 1114 } else { 1115 rup = RU(pp); 1116 } 1117 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1118 s_tot = total_inblock + total_oublock + total_majflt; 1119 1120 snprintf(fmt, sizeof(fmt), io_Proc_format, 1121 pp->ki_pid, 1122 jidlength, jid_buf, 1123 namelength, namelength, (*get_userid)(pp->ki_ruid), 1124 rup->ru_nvcsw, 1125 rup->ru_nivcsw, 1126 rup->ru_inblock, 1127 rup->ru_oublock, 1128 rup->ru_majflt, 1129 p_tot, 1130 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1131 screen_width > cmdlengthdelta ? 1132 screen_width - cmdlengthdelta : 0, 1133 printable(cmdbuf)); 1134 1135 free(cmdbuf); 1136 1137 return (fmt); 1138 } 1139 1140 /* format this entry */ 1141 if (smpmode) { 1142 if (state == SRUN && pp->ki_oncpu != NOCPU) 1143 cpu = pp->ki_oncpu; 1144 else 1145 cpu = pp->ki_lastcpu; 1146 } else 1147 cpu = 0; 1148 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1149 if (ps.thread != 0) 1150 thr_buf[0] = '\0'; 1151 else 1152 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1153 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1154 1155 snprintf(fmt, sizeof(fmt), proc_fmt, 1156 (ps.thread) ? pp->ki_tid : pp->ki_pid, 1157 jidlength, jid_buf, 1158 namelength, namelength, (*get_userid)(pp->ki_ruid), 1159 thr_buf, 1160 pp->ki_pri.pri_level - PZERO, 1161 format_nice(pp), 1162 format_k2(PROCSIZE(pp)), 1163 format_k2(pagetok(pp->ki_rssize)), 1164 swaplength, swaplength, swap_buf, 1165 status, 1166 cpu, 1167 format_time(cputime), 1168 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1169 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1170 printable(cmdbuf)); 1171 1172 free(cmdbuf); 1173 1174 /* return the result */ 1175 return (fmt); 1176 } 1177 1178 static void 1179 getsysctl(const char *name, void *ptr, size_t len) 1180 { 1181 size_t nlen = len; 1182 1183 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1184 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1185 strerror(errno)); 1186 quit(TOP_EX_SYS_ERROR); 1187 } 1188 if (nlen != len) { 1189 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1190 name, (unsigned long)len, (unsigned long)nlen); 1191 quit(TOP_EX_SYS_ERROR); 1192 } 1193 } 1194 1195 static const char * 1196 format_nice(const struct kinfo_proc *pp) 1197 { 1198 const char *fifo, *kproc; 1199 int rtpri; 1200 static char nicebuf[4 + 1]; 1201 1202 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1203 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1204 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1205 case PRI_ITHD: 1206 return ("-"); 1207 case PRI_REALTIME: 1208 /* 1209 * XXX: the kernel doesn't tell us the original rtprio and 1210 * doesn't really know what it was, so to recover it we 1211 * must be more chummy with the implementation than the 1212 * implementation is with itself. pri_user gives a 1213 * constant "base" priority, but is only initialized 1214 * properly for user threads. pri_native gives what the 1215 * kernel calls the "base" priority, but it isn't constant 1216 * since it is changed by priority propagation. pri_native 1217 * also isn't properly initialized for all threads, but it 1218 * is properly initialized for kernel realtime and idletime 1219 * threads. Thus we use pri_user for the base priority of 1220 * user threads (it is always correct) and pri_native for 1221 * the base priority of kernel realtime and idletime threads 1222 * (there is nothing better, and it is usually correct). 1223 * 1224 * The field width and thus the buffer are too small for 1225 * values like "kr31F", but such values shouldn't occur, 1226 * and if they do then the tailing "F" is not displayed. 1227 */ 1228 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1229 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1230 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1231 kproc, rtpri, fifo); 1232 break; 1233 case PRI_TIMESHARE: 1234 if (pp->ki_flag & P_KPROC) 1235 return ("-"); 1236 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1237 break; 1238 case PRI_IDLE: 1239 /* XXX: as above. */ 1240 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1241 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1242 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1243 kproc, rtpri, fifo); 1244 break; 1245 default: 1246 return ("?"); 1247 } 1248 return (nicebuf); 1249 } 1250 1251 /* comparison routines for qsort */ 1252 1253 static int 1254 compare_pid(const void *p1, const void *p2) 1255 { 1256 const struct kinfo_proc * const *pp1 = p1; 1257 const struct kinfo_proc * const *pp2 = p2; 1258 1259 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1260 1261 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1262 } 1263 1264 static int 1265 compare_tid(const void *p1, const void *p2) 1266 { 1267 const struct kinfo_proc * const *pp1 = p1; 1268 const struct kinfo_proc * const *pp2 = p2; 1269 1270 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1271 1272 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1273 } 1274 1275 /* 1276 * proc_compare - comparison function for "qsort" 1277 * Compares the resource consumption of two processes using five 1278 * distinct keys. The keys (in descending order of importance) are: 1279 * percent cpu, cpu ticks, state, resident set size, total virtual 1280 * memory usage. The process states are ordered as follows (from least 1281 * to most important): WAIT, zombie, sleep, stop, start, run. The 1282 * array declaration below maps a process state index into a number 1283 * that reflects this ordering. 1284 */ 1285 1286 static int sorted_state[] = { 1287 0, /* not used */ 1288 3, /* sleep */ 1289 1, /* ABANDONED (WAIT) */ 1290 6, /* run */ 1291 5, /* start */ 1292 2, /* zombie */ 1293 4 /* stop */ 1294 }; 1295 1296 1297 #define ORDERKEY_PCTCPU(a, b) do { \ 1298 double diff; \ 1299 if (ps.wcpu) \ 1300 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1301 weighted_cpu(PCTCPU((a)), (a)); \ 1302 else \ 1303 diff = PCTCPU((b)) - PCTCPU((a)); \ 1304 if (diff != 0) \ 1305 return (diff > 0 ? 1 : -1); \ 1306 } while (0) 1307 1308 #define ORDERKEY_CPTICKS(a, b) do { \ 1309 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1310 if (diff != 0) \ 1311 return (diff > 0 ? 1 : -1); \ 1312 } while (0) 1313 1314 #define ORDERKEY_STATE(a, b) do { \ 1315 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1316 if (diff != 0) \ 1317 return (diff > 0 ? 1 : -1); \ 1318 } while (0) 1319 1320 #define ORDERKEY_PRIO(a, b) do { \ 1321 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1322 if (diff != 0) \ 1323 return (diff > 0 ? 1 : -1); \ 1324 } while (0) 1325 1326 #define ORDERKEY_THREADS(a, b) do { \ 1327 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1328 if (diff != 0) \ 1329 return (diff > 0 ? 1 : -1); \ 1330 } while (0) 1331 1332 #define ORDERKEY_RSSIZE(a, b) do { \ 1333 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1334 if (diff != 0) \ 1335 return (diff > 0 ? 1 : -1); \ 1336 } while (0) 1337 1338 #define ORDERKEY_MEM(a, b) do { \ 1339 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1340 if (diff != 0) \ 1341 return (diff > 0 ? 1 : -1); \ 1342 } while (0) 1343 1344 #define ORDERKEY_JID(a, b) do { \ 1345 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1346 if (diff != 0) \ 1347 return (diff > 0 ? 1 : -1); \ 1348 } while (0) 1349 1350 #define ORDERKEY_SWAP(a, b) do { \ 1351 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1352 if (diff != 0) \ 1353 return (diff > 0 ? 1 : -1); \ 1354 } while (0) 1355 1356 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1357 1358 static int 1359 compare_cpu(const void *arg1, const void *arg2) 1360 { 1361 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1362 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1363 1364 ORDERKEY_PCTCPU(p1, p2); 1365 ORDERKEY_CPTICKS(p1, p2); 1366 ORDERKEY_STATE(p1, p2); 1367 ORDERKEY_PRIO(p1, p2); 1368 ORDERKEY_RSSIZE(p1, p2); 1369 ORDERKEY_MEM(p1, p2); 1370 1371 return (0); 1372 } 1373 1374 /* compare_size - the comparison function for sorting by total memory usage */ 1375 1376 static int 1377 compare_size(const void *arg1, const void *arg2) 1378 { 1379 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1380 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1381 1382 ORDERKEY_MEM(p1, p2); 1383 ORDERKEY_RSSIZE(p1, p2); 1384 ORDERKEY_PCTCPU(p1, p2); 1385 ORDERKEY_CPTICKS(p1, p2); 1386 ORDERKEY_STATE(p1, p2); 1387 ORDERKEY_PRIO(p1, p2); 1388 1389 return (0); 1390 } 1391 1392 /* compare_res - the comparison function for sorting by resident set size */ 1393 1394 static int 1395 compare_res(const void *arg1, const void *arg2) 1396 { 1397 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1398 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1399 1400 ORDERKEY_RSSIZE(p1, p2); 1401 ORDERKEY_MEM(p1, p2); 1402 ORDERKEY_PCTCPU(p1, p2); 1403 ORDERKEY_CPTICKS(p1, p2); 1404 ORDERKEY_STATE(p1, p2); 1405 ORDERKEY_PRIO(p1, p2); 1406 1407 return (0); 1408 } 1409 1410 /* compare_time - the comparison function for sorting by total cpu time */ 1411 1412 static int 1413 compare_time(const void *arg1, const void *arg2) 1414 { 1415 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1416 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1417 1418 ORDERKEY_CPTICKS(p1, p2); 1419 ORDERKEY_PCTCPU(p1, p2); 1420 ORDERKEY_STATE(p1, p2); 1421 ORDERKEY_PRIO(p1, p2); 1422 ORDERKEY_RSSIZE(p1, p2); 1423 ORDERKEY_MEM(p1, p2); 1424 1425 return (0); 1426 } 1427 1428 /* compare_prio - the comparison function for sorting by priority */ 1429 1430 static int 1431 compare_prio(const void *arg1, const void *arg2) 1432 { 1433 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1434 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1435 1436 ORDERKEY_PRIO(p1, p2); 1437 ORDERKEY_CPTICKS(p1, p2); 1438 ORDERKEY_PCTCPU(p1, p2); 1439 ORDERKEY_STATE(p1, p2); 1440 ORDERKEY_RSSIZE(p1, p2); 1441 ORDERKEY_MEM(p1, p2); 1442 1443 return (0); 1444 } 1445 1446 /* compare_threads - the comparison function for sorting by threads */ 1447 static int 1448 compare_threads(const void *arg1, const void *arg2) 1449 { 1450 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1451 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1452 1453 ORDERKEY_THREADS(p1, p2); 1454 ORDERKEY_PCTCPU(p1, p2); 1455 ORDERKEY_CPTICKS(p1, p2); 1456 ORDERKEY_STATE(p1, p2); 1457 ORDERKEY_PRIO(p1, p2); 1458 ORDERKEY_RSSIZE(p1, p2); 1459 ORDERKEY_MEM(p1, p2); 1460 1461 return (0); 1462 } 1463 1464 /* compare_jid - the comparison function for sorting by jid */ 1465 static int 1466 compare_jid(const void *arg1, const void *arg2) 1467 { 1468 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1469 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1470 1471 ORDERKEY_JID(p1, p2); 1472 ORDERKEY_PCTCPU(p1, p2); 1473 ORDERKEY_CPTICKS(p1, p2); 1474 ORDERKEY_STATE(p1, p2); 1475 ORDERKEY_PRIO(p1, p2); 1476 ORDERKEY_RSSIZE(p1, p2); 1477 ORDERKEY_MEM(p1, p2); 1478 1479 return (0); 1480 } 1481 1482 /* compare_swap - the comparison function for sorting by swap */ 1483 static int 1484 compare_swap(const void *arg1, const void *arg2) 1485 { 1486 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1487 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1488 1489 ORDERKEY_SWAP(p1, p2); 1490 ORDERKEY_PCTCPU(p1, p2); 1491 ORDERKEY_CPTICKS(p1, p2); 1492 ORDERKEY_STATE(p1, p2); 1493 ORDERKEY_PRIO(p1, p2); 1494 ORDERKEY_RSSIZE(p1, p2); 1495 ORDERKEY_MEM(p1, p2); 1496 1497 return (0); 1498 } 1499 1500 /* assorted comparison functions for sorting by i/o */ 1501 1502 static int 1503 compare_iototal(const void *arg1, const void *arg2) 1504 { 1505 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1506 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1507 1508 return (get_io_total(p2) - get_io_total(p1)); 1509 } 1510 1511 static int 1512 compare_ioread(const void *arg1, const void *arg2) 1513 { 1514 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1515 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1516 long dummy, inp1, inp2; 1517 1518 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1519 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1520 1521 return (inp2 - inp1); 1522 } 1523 1524 static int 1525 compare_iowrite(const void *arg1, const void *arg2) 1526 { 1527 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1528 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1529 long dummy, oup1, oup2; 1530 1531 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1532 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1533 1534 return (oup2 - oup1); 1535 } 1536 1537 static int 1538 compare_iofault(const void *arg1, const void *arg2) 1539 { 1540 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1541 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1542 long dummy, flp1, flp2; 1543 1544 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1545 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1546 1547 return (flp2 - flp1); 1548 } 1549 1550 static int 1551 compare_vcsw(const void *arg1, const void *arg2) 1552 { 1553 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1554 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1555 long dummy, flp1, flp2; 1556 1557 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1558 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1559 1560 return (flp2 - flp1); 1561 } 1562 1563 static int 1564 compare_ivcsw(const void *arg1, const void *arg2) 1565 { 1566 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1567 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1568 long dummy, flp1, flp2; 1569 1570 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1571 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1572 1573 return (flp2 - flp1); 1574 } 1575 1576 int (*compares[])(const void *arg1, const void *arg2) = { 1577 compare_cpu, 1578 compare_size, 1579 compare_res, 1580 compare_time, 1581 compare_prio, 1582 compare_threads, 1583 compare_iototal, 1584 compare_ioread, 1585 compare_iowrite, 1586 compare_iofault, 1587 compare_vcsw, 1588 compare_ivcsw, 1589 compare_jid, 1590 compare_swap, 1591 NULL 1592 }; 1593 1594 1595 /* 1596 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1597 * the process does not exist. 1598 */ 1599 1600 int 1601 proc_owner(int pid) 1602 { 1603 int cnt; 1604 struct kinfo_proc **prefp; 1605 struct kinfo_proc *pp; 1606 1607 prefp = pref; 1608 cnt = pref_len; 1609 while (--cnt >= 0) { 1610 pp = *prefp++; 1611 if (pp->ki_pid == (pid_t)pid) 1612 return ((int)pp->ki_ruid); 1613 } 1614 return (-1); 1615 } 1616 1617 static int 1618 swapmode(int *retavail, int *retfree) 1619 { 1620 int n; 1621 struct kvm_swap swapary[1]; 1622 static int pagesize = 0; 1623 static u_long swap_maxpages = 0; 1624 1625 *retavail = 0; 1626 *retfree = 0; 1627 1628 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1629 1630 n = kvm_getswapinfo(kd, swapary, 1, 0); 1631 if (n < 0 || swapary[0].ksw_total == 0) 1632 return (0); 1633 1634 if (pagesize == 0) 1635 pagesize = getpagesize(); 1636 if (swap_maxpages == 0) 1637 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1638 1639 /* ksw_total contains the total size of swap all devices which may 1640 exceed the maximum swap size allocatable in the system */ 1641 if ( swapary[0].ksw_total > swap_maxpages ) 1642 swapary[0].ksw_total = swap_maxpages; 1643 1644 *retavail = CONVERT(swapary[0].ksw_total); 1645 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1646 1647 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1648 return (n); 1649 } 1650