1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 63 /* get_process_info passes back a handle. This is what it looks like: */ 64 65 struct handle { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 71 /* define what weighted cpu is. */ 72 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 73 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 74 75 /* what we consider to be process size: */ 76 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 77 78 #define RU(pp) (&(pp)->ki_rusage) 79 80 #define PCTCPU(pp) (pcpu[pp - pbase]) 81 82 /* process state names for the "STATE" column of the display */ 83 /* the extra nulls in the string "run" are for adding a slash and 84 the processor number when needed */ 85 86 static const char *state_abbrev[] = { 87 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 88 }; 89 90 91 static kvm_t *kd; 92 93 /* values that we stash away in _init and use in later routines */ 94 95 static double logcpu; 96 97 /* these are retrieved from the kernel in _init */ 98 99 static load_avg ccpu; 100 101 /* these are used in the get_ functions */ 102 103 static int lastpid; 104 105 /* these are for calculating cpu state percentages */ 106 107 static long cp_time[CPUSTATES]; 108 static long cp_old[CPUSTATES]; 109 static long cp_diff[CPUSTATES]; 110 111 /* these are for detailing the process states */ 112 113 static const char *procstatenames[] = { 114 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 115 " zombie, ", " waiting, ", " lock, ", 116 NULL 117 }; 118 static int process_states[nitems(procstatenames)]; 119 120 /* these are for detailing the cpu states */ 121 122 static int cpu_states[CPUSTATES]; 123 static const char *cpustatenames[] = { 124 "user", "nice", "system", "interrupt", "idle", NULL 125 }; 126 127 /* these are for detailing the memory statistics */ 128 129 static const char *memorynames[] = { 130 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 131 "K Free", NULL 132 }; 133 static int memory_stats[nitems(memorynames)]; 134 135 static const char *arcnames[] = { 136 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 137 NULL 138 }; 139 static int arc_stats[nitems(arcnames)]; 140 141 static const char *carcnames[] = { 142 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 143 NULL 144 }; 145 static int carc_stats[nitems(carcnames)]; 146 147 static const char *swapnames[] = { 148 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 149 NULL 150 }; 151 static int swap_stats[nitems(swapnames)]; 152 153 154 /* these are for keeping track of the proc array */ 155 156 static int nproc; 157 static int onproc = -1; 158 static int pref_len; 159 static struct kinfo_proc *pbase; 160 static struct kinfo_proc **pref; 161 static struct kinfo_proc *previous_procs; 162 static struct kinfo_proc **previous_pref; 163 static int previous_proc_count = 0; 164 static int previous_proc_count_max = 0; 165 static int previous_thread; 166 167 /* data used for recalculating pctcpu */ 168 static double *pcpu; 169 static struct timespec proc_uptime; 170 static struct timeval proc_wall_time; 171 static struct timeval previous_wall_time; 172 static uint64_t previous_interval = 0; 173 174 /* total number of io operations */ 175 static long total_inblock; 176 static long total_oublock; 177 static long total_majflt; 178 179 /* these are for getting the memory statistics */ 180 181 static int arc_enabled; 182 static int carc_enabled; 183 static int pageshift; /* log base 2 of the pagesize */ 184 185 /* define pagetok in terms of pageshift */ 186 187 #define pagetok(size) ((size) << pageshift) 188 189 /* swap usage */ 190 #define ki_swap(kip) \ 191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 192 193 /* 194 * Sorting orders. The first element is the default. 195 */ 196 static const char *ordernames[] = { 197 "cpu", "size", "res", "time", "pri", "threads", 198 "total", "read", "write", "fault", "vcsw", "ivcsw", 199 "jid", "swap", "pid", NULL 200 }; 201 202 /* Per-cpu time states */ 203 static int maxcpu; 204 static int maxid; 205 static int ncpus; 206 static unsigned long cpumask; 207 static long *times; 208 static long *pcpu_cp_time; 209 static long *pcpu_cp_old; 210 static long *pcpu_cp_diff; 211 static int *pcpu_cpu_states; 212 213 static int compare_swap(const void *a, const void *b); 214 static int compare_jid(const void *a, const void *b); 215 static int compare_pid(const void *a, const void *b); 216 static int compare_tid(const void *a, const void *b); 217 static const char *format_nice(const struct kinfo_proc *pp); 218 static void getsysctl(const char *name, void *ptr, size_t len); 219 static int swapmode(int *retavail, int *retfree); 220 static void update_layout(void); 221 static int find_uid(uid_t needle, int *haystack); 222 223 static int 224 find_uid(uid_t needle, int *haystack) 225 { 226 size_t i = 0; 227 228 for (; i < TOP_MAX_UIDS; ++i) 229 if ((uid_t)haystack[i] == needle) 230 return 1; 231 return (0); 232 } 233 234 void 235 toggle_pcpustats(void) 236 { 237 238 if (ncpus == 1) 239 return; 240 update_layout(); 241 } 242 243 /* Adjust display based on ncpus and the ARC state. */ 244 static void 245 update_layout(void) 246 { 247 248 y_mem = 3; 249 y_arc = 4; 250 y_carc = 5; 251 y_swap = 4 + arc_enabled + carc_enabled; 252 y_idlecursor = 5 + arc_enabled + carc_enabled; 253 y_message = 5 + arc_enabled + carc_enabled; 254 y_header = 6 + arc_enabled + carc_enabled; 255 y_procs = 7 + arc_enabled + carc_enabled; 256 Header_lines = 7 + arc_enabled + carc_enabled; 257 258 if (pcpu_stats) { 259 y_mem += ncpus - 1; 260 y_arc += ncpus - 1; 261 y_carc += ncpus - 1; 262 y_swap += ncpus - 1; 263 y_idlecursor += ncpus - 1; 264 y_message += ncpus - 1; 265 y_header += ncpus - 1; 266 y_procs += ncpus - 1; 267 Header_lines += ncpus - 1; 268 } 269 } 270 271 int 272 machine_init(struct statics *statics) 273 { 274 int i, j, empty, pagesize; 275 uint64_t arc_size; 276 int carc_en; 277 size_t size; 278 279 size = sizeof(smpmode); 280 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 281 NULL, 0) != 0 && 282 sysctlbyname("kern.smp.active", &smpmode, &size, 283 NULL, 0) != 0) || 284 size != sizeof(smpmode)) 285 smpmode = 0; 286 287 size = sizeof(arc_size); 288 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 289 NULL, 0) == 0 && arc_size != 0) 290 arc_enabled = 1; 291 size = sizeof(carc_en); 292 if (arc_enabled && 293 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 294 NULL, 0) == 0 && carc_en == 1) 295 carc_enabled = 1; 296 297 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 298 if (kd == NULL) 299 return (-1); 300 301 GETSYSCTL("kern.ccpu", ccpu); 302 303 /* this is used in calculating WCPU -- calculate it ahead of time */ 304 logcpu = log(loaddouble(ccpu)); 305 306 pbase = NULL; 307 pref = NULL; 308 pcpu = NULL; 309 nproc = 0; 310 onproc = -1; 311 312 /* get the page size and calculate pageshift from it */ 313 pagesize = getpagesize(); 314 pageshift = 0; 315 while (pagesize > 1) { 316 pageshift++; 317 pagesize >>= 1; 318 } 319 320 /* we only need the amount of log(2)1024 for our conversion */ 321 pageshift -= LOG1024; 322 323 /* fill in the statics information */ 324 statics->procstate_names = procstatenames; 325 statics->cpustate_names = cpustatenames; 326 statics->memory_names = memorynames; 327 if (arc_enabled) 328 statics->arc_names = arcnames; 329 else 330 statics->arc_names = NULL; 331 if (carc_enabled) 332 statics->carc_names = carcnames; 333 else 334 statics->carc_names = NULL; 335 statics->swap_names = swapnames; 336 statics->order_names = ordernames; 337 338 /* Allocate state for per-CPU stats. */ 339 cpumask = 0; 340 ncpus = 0; 341 GETSYSCTL("kern.smp.maxcpus", maxcpu); 342 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 343 if (times == NULL) 344 err(1, "calloc for kern.smp.maxcpus"); 345 size = sizeof(long) * maxcpu * CPUSTATES; 346 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 347 err(1, "sysctlbyname kern.cp_times"); 348 pcpu_cp_time = calloc(1, size); 349 maxid = (size / CPUSTATES / sizeof(long)) - 1; 350 for (i = 0; i <= maxid; i++) { 351 empty = 1; 352 for (j = 0; empty && j < CPUSTATES; j++) { 353 if (times[i * CPUSTATES + j] != 0) 354 empty = 0; 355 } 356 if (!empty) { 357 cpumask |= (1ul << i); 358 ncpus++; 359 } 360 } 361 assert(ncpus > 0); 362 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 363 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 364 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 365 statics->ncpus = ncpus; 366 367 update_layout(); 368 369 /* all done! */ 370 return (0); 371 } 372 373 char * 374 format_header(const char *uname_field) 375 { 376 static struct sbuf* header = NULL; 377 378 /* clean up from last time. */ 379 if (header != NULL) { 380 sbuf_clear(header); 381 } else { 382 header = sbuf_new_auto(); 383 } 384 385 switch (displaymode) { 386 case DISP_CPU: { 387 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 388 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 389 ps.jail ? " JID" : ""); 390 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 391 sbuf_cat(header, "THR PRI NICE SIZE RES "); 392 if (ps.swap) { 393 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 394 } 395 sbuf_cat(header, "STATE "); 396 if (smpmode) { 397 sbuf_cat(header, "C "); 398 } 399 sbuf_cat(header, "TIME "); 400 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 401 sbuf_cat(header, "COMMAND"); 402 sbuf_finish(header); 403 break; 404 } 405 case DISP_IO: { 406 sbuf_printf(header, " %s%*s %-*.*s", 407 ps.thread_id ? " THR" : "PID", 408 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 409 namelength, namelength, uname_field); 410 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 411 sbuf_finish(header); 412 break; 413 } 414 case DISP_MAX: 415 assert("displaymode must not be set to DISP_MAX"); 416 } 417 418 return sbuf_data(header); 419 } 420 421 static int swappgsin = -1; 422 static int swappgsout = -1; 423 424 425 void 426 get_system_info(struct system_info *si) 427 { 428 struct loadavg sysload; 429 int mib[2]; 430 struct timeval boottime; 431 uint64_t arc_stat, arc_stat2; 432 int i, j; 433 size_t size; 434 435 /* get the CPU stats */ 436 size = (maxid + 1) * CPUSTATES * sizeof(long); 437 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 438 err(1, "sysctlbyname kern.cp_times"); 439 GETSYSCTL("kern.cp_time", cp_time); 440 GETSYSCTL("vm.loadavg", sysload); 441 GETSYSCTL("kern.lastpid", lastpid); 442 443 /* convert load averages to doubles */ 444 for (i = 0; i < 3; i++) 445 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 446 447 /* convert cp_time counts to percentages */ 448 for (i = j = 0; i <= maxid; i++) { 449 if ((cpumask & (1ul << i)) == 0) 450 continue; 451 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 452 &pcpu_cp_time[j * CPUSTATES], 453 &pcpu_cp_old[j * CPUSTATES], 454 &pcpu_cp_diff[j * CPUSTATES]); 455 j++; 456 } 457 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 458 459 /* sum memory & swap statistics */ 460 { 461 static unsigned int swap_delay = 0; 462 static int swapavail = 0; 463 static int swapfree = 0; 464 static long bufspace = 0; 465 static uint64_t nspgsin, nspgsout; 466 467 GETSYSCTL("vfs.bufspace", bufspace); 468 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 469 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 470 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 471 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 472 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 473 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 474 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 475 /* convert memory stats to Kbytes */ 476 memory_stats[0] = pagetok(memory_stats[0]); 477 memory_stats[1] = pagetok(memory_stats[1]); 478 memory_stats[2] = pagetok(memory_stats[2]); 479 memory_stats[3] = pagetok(memory_stats[3]); 480 memory_stats[4] = bufspace / 1024; 481 memory_stats[5] = pagetok(memory_stats[5]); 482 memory_stats[6] = -1; 483 484 /* first interval */ 485 if (swappgsin < 0) { 486 swap_stats[4] = 0; 487 swap_stats[5] = 0; 488 } 489 490 /* compute differences between old and new swap statistic */ 491 else { 492 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 493 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 494 } 495 496 swappgsin = nspgsin; 497 swappgsout = nspgsout; 498 499 /* call CPU heavy swapmode() only for changes */ 500 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 501 swap_stats[3] = swapmode(&swapavail, &swapfree); 502 swap_stats[0] = swapavail; 503 swap_stats[1] = swapavail - swapfree; 504 swap_stats[2] = swapfree; 505 } 506 swap_delay = 1; 507 swap_stats[6] = -1; 508 } 509 510 if (arc_enabled) { 511 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 512 arc_stats[0] = arc_stat >> 10; 513 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 514 arc_stats[1] = arc_stat >> 10; 515 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 516 arc_stats[2] = arc_stat >> 10; 517 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 518 arc_stats[3] = arc_stat >> 10; 519 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 520 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 521 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 522 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 523 arc_stats[5] = arc_stat >> 10; 524 si->arc = arc_stats; 525 } 526 if (carc_enabled) { 527 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 528 carc_stats[0] = arc_stat >> 10; 529 carc_stats[2] = arc_stat >> 10; /* For ratio */ 530 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 531 carc_stats[1] = arc_stat >> 10; 532 si->carc = carc_stats; 533 } 534 535 /* set arrays and strings */ 536 if (pcpu_stats) { 537 si->cpustates = pcpu_cpu_states; 538 si->ncpus = ncpus; 539 } else { 540 si->cpustates = cpu_states; 541 si->ncpus = 1; 542 } 543 si->memory = memory_stats; 544 si->swap = swap_stats; 545 546 547 if (lastpid > 0) { 548 si->last_pid = lastpid; 549 } else { 550 si->last_pid = -1; 551 } 552 553 /* 554 * Print how long system has been up. 555 * (Found by looking getting "boottime" from the kernel) 556 */ 557 mib[0] = CTL_KERN; 558 mib[1] = KERN_BOOTTIME; 559 size = sizeof(boottime); 560 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 561 boottime.tv_sec != 0) { 562 si->boottime = boottime; 563 } else { 564 si->boottime.tv_sec = -1; 565 } 566 } 567 568 #define NOPROC ((void *)-1) 569 570 /* 571 * We need to compare data from the old process entry with the new 572 * process entry. 573 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 574 * structure to cache the mapping. We also use a negative cache pointer 575 * of NOPROC to avoid duplicate lookups. 576 * XXX: this could be done when the actual processes are fetched, we do 577 * it here out of laziness. 578 */ 579 static const struct kinfo_proc * 580 get_old_proc(struct kinfo_proc *pp) 581 { 582 const struct kinfo_proc * const *oldpp, *oldp; 583 584 /* 585 * If this is the first fetch of the kinfo_procs then we don't have 586 * any previous entries. 587 */ 588 if (previous_proc_count == 0) 589 return (NULL); 590 /* negative cache? */ 591 if (pp->ki_udata == NOPROC) 592 return (NULL); 593 /* cached? */ 594 if (pp->ki_udata != NULL) 595 return (pp->ki_udata); 596 /* 597 * Not cached, 598 * 1) look up based on pid. 599 * 2) compare process start. 600 * If we fail here, then setup a negative cache entry, otherwise 601 * cache it. 602 */ 603 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 604 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 605 if (oldpp == NULL) { 606 pp->ki_udata = NOPROC; 607 return (NULL); 608 } 609 oldp = *oldpp; 610 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 611 pp->ki_udata = NOPROC; 612 return (NULL); 613 } 614 pp->ki_udata = oldp; 615 return (oldp); 616 } 617 618 /* 619 * Return the total amount of IO done in blocks in/out and faults. 620 * store the values individually in the pointers passed in. 621 */ 622 static long 623 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 624 long *vcsw, long *ivcsw) 625 { 626 const struct kinfo_proc *oldp; 627 static struct kinfo_proc dummy; 628 long ret; 629 630 oldp = get_old_proc(pp); 631 if (oldp == NULL) { 632 memset(&dummy, 0, sizeof(dummy)); 633 oldp = &dummy; 634 } 635 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 636 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 637 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 638 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 639 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 640 ret = 641 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 642 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 643 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 644 return (ret); 645 } 646 647 /* 648 * If there was a previous update, use the delta in ki_runtime over 649 * the previous interval to calculate pctcpu. Otherwise, fall back 650 * to using the kernel's ki_pctcpu. 651 */ 652 static double 653 proc_calc_pctcpu(struct kinfo_proc *pp) 654 { 655 const struct kinfo_proc *oldp; 656 657 if (previous_interval != 0) { 658 oldp = get_old_proc(pp); 659 if (oldp != NULL) 660 return ((double)(pp->ki_runtime - oldp->ki_runtime) 661 / previous_interval); 662 663 /* 664 * If this process/thread was created during the previous 665 * interval, charge it's total runtime to the previous 666 * interval. 667 */ 668 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 669 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 670 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 671 return ((double)pp->ki_runtime / previous_interval); 672 } 673 return (pctdouble(pp->ki_pctcpu)); 674 } 675 676 /* 677 * Return true if this process has used any CPU time since the 678 * previous update. 679 */ 680 static int 681 proc_used_cpu(struct kinfo_proc *pp) 682 { 683 const struct kinfo_proc *oldp; 684 685 oldp = get_old_proc(pp); 686 if (oldp == NULL) 687 return (PCTCPU(pp) != 0); 688 return (pp->ki_runtime != oldp->ki_runtime || 689 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 690 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 691 } 692 693 /* 694 * Return the total number of block in/out and faults by a process. 695 */ 696 static long 697 get_io_total(const struct kinfo_proc *pp) 698 { 699 long dummy; 700 701 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 702 } 703 704 static struct handle handle; 705 706 void * 707 get_process_info(struct system_info *si, struct process_select *sel, 708 int (*compare)(const void *, const void *)) 709 { 710 int i; 711 int total_procs; 712 long p_io; 713 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 714 long nsec; 715 int active_procs; 716 struct kinfo_proc **prefp; 717 struct kinfo_proc *pp; 718 struct timespec previous_proc_uptime; 719 720 /* 721 * If thread state was toggled, don't cache the previous processes. 722 */ 723 if (previous_thread != sel->thread) 724 nproc = 0; 725 previous_thread = sel->thread; 726 727 /* 728 * Save the previous process info. 729 */ 730 if (previous_proc_count_max < nproc) { 731 free(previous_procs); 732 previous_procs = calloc(nproc, sizeof(*previous_procs)); 733 free(previous_pref); 734 previous_pref = calloc(nproc, sizeof(*previous_pref)); 735 if (previous_procs == NULL || previous_pref == NULL) { 736 fprintf(stderr, "top: Out of memory.\n"); 737 quit(TOP_EX_SYS_ERROR); 738 } 739 previous_proc_count_max = nproc; 740 } 741 if (nproc) { 742 for (i = 0; i < nproc; i++) 743 previous_pref[i] = &previous_procs[i]; 744 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 745 qsort(previous_pref, nproc, sizeof(*previous_pref), 746 ps.thread ? compare_tid : compare_pid); 747 } 748 previous_proc_count = nproc; 749 previous_proc_uptime = proc_uptime; 750 previous_wall_time = proc_wall_time; 751 previous_interval = 0; 752 753 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 754 0, &nproc); 755 gettimeofday(&proc_wall_time, NULL); 756 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 757 memset(&proc_uptime, 0, sizeof(proc_uptime)); 758 else if (previous_proc_uptime.tv_sec != 0 && 759 previous_proc_uptime.tv_nsec != 0) { 760 previous_interval = (proc_uptime.tv_sec - 761 previous_proc_uptime.tv_sec) * 1000000; 762 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 763 if (nsec < 0) { 764 previous_interval -= 1000000; 765 nsec += 1000000000; 766 } 767 previous_interval += nsec / 1000; 768 } 769 if (nproc > onproc) { 770 pref = realloc(pref, sizeof(*pref) * nproc); 771 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 772 onproc = nproc; 773 } 774 if (pref == NULL || pbase == NULL || pcpu == NULL) { 775 fprintf(stderr, "top: Out of memory.\n"); 776 quit(TOP_EX_SYS_ERROR); 777 } 778 /* get a pointer to the states summary array */ 779 si->procstates = process_states; 780 781 /* count up process states and get pointers to interesting procs */ 782 total_procs = 0; 783 active_procs = 0; 784 total_inblock = 0; 785 total_oublock = 0; 786 total_majflt = 0; 787 memset(process_states, 0, sizeof(process_states)); 788 prefp = pref; 789 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 790 791 if (pp->ki_stat == 0) 792 /* not in use */ 793 continue; 794 795 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 796 /* skip self */ 797 continue; 798 799 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 800 /* skip system process */ 801 continue; 802 803 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 804 &p_vcsw, &p_ivcsw); 805 total_inblock += p_inblock; 806 total_oublock += p_oublock; 807 total_majflt += p_majflt; 808 total_procs++; 809 process_states[(unsigned char)pp->ki_stat]++; 810 811 if (pp->ki_stat == SZOMB) 812 /* skip zombies */ 813 continue; 814 815 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 816 /* skip kernel idle process */ 817 continue; 818 819 PCTCPU(pp) = proc_calc_pctcpu(pp); 820 if (sel->thread && PCTCPU(pp) > 1.0) 821 PCTCPU(pp) = 1.0; 822 if (displaymode == DISP_CPU && !sel->idle && 823 (!proc_used_cpu(pp) || 824 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 825 /* skip idle or non-running processes */ 826 continue; 827 828 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 829 /* skip processes that aren't doing I/O */ 830 continue; 831 832 if (sel->jid != -1 && pp->ki_jid != sel->jid) 833 /* skip proc. that don't belong to the selected JID */ 834 continue; 835 836 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 837 /* skip proc. that don't belong to the selected UID */ 838 continue; 839 840 if (sel->pid != -1 && pp->ki_pid != sel->pid) 841 continue; 842 843 *prefp++ = pp; 844 active_procs++; 845 } 846 847 /* if requested, sort the "interesting" processes */ 848 if (compare != NULL) 849 qsort(pref, active_procs, sizeof(*pref), compare); 850 851 /* remember active and total counts */ 852 si->p_total = total_procs; 853 si->p_pactive = pref_len = active_procs; 854 855 /* pass back a handle */ 856 handle.next_proc = pref; 857 handle.remaining = active_procs; 858 return (&handle); 859 } 860 861 char * 862 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 863 { 864 struct kinfo_proc *pp; 865 const struct kinfo_proc *oldp; 866 long cputime; 867 char status[22]; 868 size_t state; 869 struct rusage ru, *rup; 870 long p_tot, s_tot; 871 char *cmdbuf = NULL; 872 char **args; 873 static struct sbuf* procbuf = NULL; 874 875 /* clean up from last time. */ 876 if (procbuf != NULL) { 877 sbuf_clear(procbuf); 878 } else { 879 procbuf = sbuf_new_auto(); 880 } 881 882 883 /* find and remember the next proc structure */ 884 pp = *(xhandle->next_proc++); 885 xhandle->remaining--; 886 887 /* get the process's command name */ 888 if ((pp->ki_flag & P_INMEM) == 0) { 889 /* 890 * Print swapped processes as <pname> 891 */ 892 size_t len; 893 894 len = strlen(pp->ki_comm); 895 if (len > sizeof(pp->ki_comm) - 3) 896 len = sizeof(pp->ki_comm) - 3; 897 memmove(pp->ki_comm + 1, pp->ki_comm, len); 898 pp->ki_comm[0] = '<'; 899 pp->ki_comm[len + 1] = '>'; 900 pp->ki_comm[len + 2] = '\0'; 901 } 902 903 /* 904 * Convert the process's runtime from microseconds to seconds. This 905 * time includes the interrupt time although that is not wanted here. 906 * ps(1) is similarly sloppy. 907 */ 908 cputime = (pp->ki_runtime + 500000) / 1000000; 909 910 /* generate "STATE" field */ 911 switch (state = pp->ki_stat) { 912 case SRUN: 913 if (smpmode && pp->ki_oncpu != NOCPU) 914 sprintf(status, "CPU%d", pp->ki_oncpu); 915 else 916 strcpy(status, "RUN"); 917 break; 918 case SLOCK: 919 if (pp->ki_kiflag & KI_LOCKBLOCK) { 920 sprintf(status, "*%.6s", pp->ki_lockname); 921 break; 922 } 923 /* fall through */ 924 case SSLEEP: 925 sprintf(status, "%.6s", pp->ki_wmesg); 926 break; 927 default: 928 929 if (state < nitems(state_abbrev)) { 930 sprintf(status, "%.6s", state_abbrev[state]); 931 } else { 932 sprintf(status, "?%5zu", state); 933 } 934 break; 935 } 936 937 cmdbuf = calloc(screen_width + 1, 1); 938 if (cmdbuf == NULL) { 939 warn("calloc(%d)", screen_width + 1); 940 return NULL; 941 } 942 943 if (!(flags & FMT_SHOWARGS)) { 944 if (ps.thread && pp->ki_flag & P_HADTHREADS && 945 pp->ki_tdname[0]) { 946 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 947 pp->ki_tdname, pp->ki_moretdname); 948 } else { 949 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 950 } 951 } else { 952 if (pp->ki_flag & P_SYSTEM || 953 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 954 !(*args)) { 955 if (ps.thread && pp->ki_flag & P_HADTHREADS && 956 pp->ki_tdname[0]) { 957 snprintf(cmdbuf, screen_width, 958 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 959 pp->ki_moretdname); 960 } else { 961 snprintf(cmdbuf, screen_width, 962 "[%s]", pp->ki_comm); 963 } 964 } else { 965 const char *src; 966 char *dst, *argbuf; 967 const char *cmd; 968 size_t argbuflen; 969 size_t len; 970 971 argbuflen = screen_width * 4; 972 argbuf = calloc(argbuflen + 1, 1); 973 if (argbuf == NULL) { 974 warn("calloc(%zu)", argbuflen + 1); 975 free(cmdbuf); 976 return NULL; 977 } 978 979 dst = argbuf; 980 981 /* Extract cmd name from argv */ 982 cmd = basename(*args); 983 984 for (; (src = *args++) != NULL; ) { 985 if (*src == '\0') 986 continue; 987 len = (argbuflen - (dst - argbuf) - 1) / 4; 988 strvisx(dst, src, 989 MIN(strlen(src), len), 990 VIS_NL | VIS_CSTYLE); 991 while (*dst != '\0') 992 dst++; 993 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 994 *dst++ = ' '; /* add delimiting space */ 995 } 996 if (dst != argbuf && dst[-1] == ' ') 997 dst--; 998 *dst = '\0'; 999 1000 if (strcmp(cmd, pp->ki_comm) != 0) { 1001 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1002 pp->ki_tdname[0]) 1003 snprintf(cmdbuf, screen_width, 1004 "%s (%s){%s%s}", argbuf, 1005 pp->ki_comm, pp->ki_tdname, 1006 pp->ki_moretdname); 1007 else 1008 snprintf(cmdbuf, screen_width, 1009 "%s (%s)", argbuf, pp->ki_comm); 1010 } else { 1011 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1012 pp->ki_tdname[0]) 1013 snprintf(cmdbuf, screen_width, 1014 "%s{%s%s}", argbuf, pp->ki_tdname, 1015 pp->ki_moretdname); 1016 else 1017 strlcpy(cmdbuf, argbuf, screen_width); 1018 } 1019 free(argbuf); 1020 } 1021 } 1022 1023 if (displaymode == DISP_IO) { 1024 oldp = get_old_proc(pp); 1025 if (oldp != NULL) { 1026 ru.ru_inblock = RU(pp)->ru_inblock - 1027 RU(oldp)->ru_inblock; 1028 ru.ru_oublock = RU(pp)->ru_oublock - 1029 RU(oldp)->ru_oublock; 1030 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1031 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1032 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1033 rup = &ru; 1034 } else { 1035 rup = RU(pp); 1036 } 1037 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1038 s_tot = total_inblock + total_oublock + total_majflt; 1039 1040 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1041 1042 if (ps.jail) { 1043 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1044 } 1045 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1046 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1047 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1048 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1049 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1050 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1051 sbuf_printf(procbuf, "%6ld ", p_tot); 1052 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1053 1054 } else { 1055 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1056 if (ps.jail) { 1057 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1058 } 1059 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1060 1061 if (!ps.thread) { 1062 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1063 } 1064 1065 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1066 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1067 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1068 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1069 if (ps.swap) { 1070 sbuf_printf(procbuf, "%*s ", 1071 TOP_SWAP_LEN - 1, 1072 format_k(pagetok(ki_swap(pp)))); 1073 } 1074 sbuf_printf(procbuf, "%-6.6s ", status); 1075 if (smpmode) { 1076 int cpu; 1077 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1078 cpu = pp->ki_oncpu; 1079 } else { 1080 cpu = pp->ki_lastcpu; 1081 } 1082 sbuf_printf(procbuf, "%3d ", cpu); 1083 } 1084 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1085 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1086 } 1087 sbuf_printf(procbuf, "%s", printable(cmdbuf)); 1088 free(cmdbuf); 1089 return (sbuf_data(procbuf)); 1090 } 1091 1092 static void 1093 getsysctl(const char *name, void *ptr, size_t len) 1094 { 1095 size_t nlen = len; 1096 1097 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1098 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1099 strerror(errno)); 1100 quit(TOP_EX_SYS_ERROR); 1101 } 1102 if (nlen != len) { 1103 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1104 name, (unsigned long)len, (unsigned long)nlen); 1105 quit(TOP_EX_SYS_ERROR); 1106 } 1107 } 1108 1109 static const char * 1110 format_nice(const struct kinfo_proc *pp) 1111 { 1112 const char *fifo, *kproc; 1113 int rtpri; 1114 static char nicebuf[4 + 1]; 1115 1116 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1117 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1118 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1119 case PRI_ITHD: 1120 return ("-"); 1121 case PRI_REALTIME: 1122 /* 1123 * XXX: the kernel doesn't tell us the original rtprio and 1124 * doesn't really know what it was, so to recover it we 1125 * must be more chummy with the implementation than the 1126 * implementation is with itself. pri_user gives a 1127 * constant "base" priority, but is only initialized 1128 * properly for user threads. pri_native gives what the 1129 * kernel calls the "base" priority, but it isn't constant 1130 * since it is changed by priority propagation. pri_native 1131 * also isn't properly initialized for all threads, but it 1132 * is properly initialized for kernel realtime and idletime 1133 * threads. Thus we use pri_user for the base priority of 1134 * user threads (it is always correct) and pri_native for 1135 * the base priority of kernel realtime and idletime threads 1136 * (there is nothing better, and it is usually correct). 1137 * 1138 * The field width and thus the buffer are too small for 1139 * values like "kr31F", but such values shouldn't occur, 1140 * and if they do then the tailing "F" is not displayed. 1141 */ 1142 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1143 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1144 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1145 kproc, rtpri, fifo); 1146 break; 1147 case PRI_TIMESHARE: 1148 if (pp->ki_flag & P_KPROC) 1149 return ("-"); 1150 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1151 break; 1152 case PRI_IDLE: 1153 /* XXX: as above. */ 1154 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1155 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1156 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1157 kproc, rtpri, fifo); 1158 break; 1159 default: 1160 return ("?"); 1161 } 1162 return (nicebuf); 1163 } 1164 1165 /* comparison routines for qsort */ 1166 1167 static int 1168 compare_pid(const void *p1, const void *p2) 1169 { 1170 const struct kinfo_proc * const *pp1 = p1; 1171 const struct kinfo_proc * const *pp2 = p2; 1172 1173 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1174 1175 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1176 } 1177 1178 static int 1179 compare_tid(const void *p1, const void *p2) 1180 { 1181 const struct kinfo_proc * const *pp1 = p1; 1182 const struct kinfo_proc * const *pp2 = p2; 1183 1184 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1185 1186 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1187 } 1188 1189 /* 1190 * proc_compare - comparison function for "qsort" 1191 * Compares the resource consumption of two processes using five 1192 * distinct keys. The keys (in descending order of importance) are: 1193 * percent cpu, cpu ticks, state, resident set size, total virtual 1194 * memory usage. The process states are ordered as follows (from least 1195 * to most important): WAIT, zombie, sleep, stop, start, run. The 1196 * array declaration below maps a process state index into a number 1197 * that reflects this ordering. 1198 */ 1199 1200 static int sorted_state[] = { 1201 0, /* not used */ 1202 3, /* sleep */ 1203 1, /* ABANDONED (WAIT) */ 1204 6, /* run */ 1205 5, /* start */ 1206 2, /* zombie */ 1207 4 /* stop */ 1208 }; 1209 1210 1211 #define ORDERKEY_PCTCPU(a, b) do { \ 1212 double diff; \ 1213 if (ps.wcpu) \ 1214 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1215 weighted_cpu(PCTCPU((a)), (a)); \ 1216 else \ 1217 diff = PCTCPU((b)) - PCTCPU((a)); \ 1218 if (diff != 0) \ 1219 return (diff > 0 ? 1 : -1); \ 1220 } while (0) 1221 1222 #define ORDERKEY_CPTICKS(a, b) do { \ 1223 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1224 if (diff != 0) \ 1225 return (diff > 0 ? 1 : -1); \ 1226 } while (0) 1227 1228 #define ORDERKEY_STATE(a, b) do { \ 1229 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1230 if (diff != 0) \ 1231 return (diff > 0 ? 1 : -1); \ 1232 } while (0) 1233 1234 #define ORDERKEY_PRIO(a, b) do { \ 1235 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1236 if (diff != 0) \ 1237 return (diff > 0 ? 1 : -1); \ 1238 } while (0) 1239 1240 #define ORDERKEY_THREADS(a, b) do { \ 1241 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1242 if (diff != 0) \ 1243 return (diff > 0 ? 1 : -1); \ 1244 } while (0) 1245 1246 #define ORDERKEY_RSSIZE(a, b) do { \ 1247 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1248 if (diff != 0) \ 1249 return (diff > 0 ? 1 : -1); \ 1250 } while (0) 1251 1252 #define ORDERKEY_MEM(a, b) do { \ 1253 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1254 if (diff != 0) \ 1255 return (diff > 0 ? 1 : -1); \ 1256 } while (0) 1257 1258 #define ORDERKEY_JID(a, b) do { \ 1259 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1260 if (diff != 0) \ 1261 return (diff > 0 ? 1 : -1); \ 1262 } while (0) 1263 1264 #define ORDERKEY_SWAP(a, b) do { \ 1265 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1266 if (diff != 0) \ 1267 return (diff > 0 ? 1 : -1); \ 1268 } while (0) 1269 1270 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1271 1272 static int 1273 compare_cpu(const void *arg1, const void *arg2) 1274 { 1275 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1276 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1277 1278 ORDERKEY_PCTCPU(p1, p2); 1279 ORDERKEY_CPTICKS(p1, p2); 1280 ORDERKEY_STATE(p1, p2); 1281 ORDERKEY_PRIO(p1, p2); 1282 ORDERKEY_RSSIZE(p1, p2); 1283 ORDERKEY_MEM(p1, p2); 1284 1285 return (0); 1286 } 1287 1288 /* compare_size - the comparison function for sorting by total memory usage */ 1289 1290 static int 1291 compare_size(const void *arg1, const void *arg2) 1292 { 1293 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1294 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1295 1296 ORDERKEY_MEM(p1, p2); 1297 ORDERKEY_RSSIZE(p1, p2); 1298 ORDERKEY_PCTCPU(p1, p2); 1299 ORDERKEY_CPTICKS(p1, p2); 1300 ORDERKEY_STATE(p1, p2); 1301 ORDERKEY_PRIO(p1, p2); 1302 1303 return (0); 1304 } 1305 1306 /* compare_res - the comparison function for sorting by resident set size */ 1307 1308 static int 1309 compare_res(const void *arg1, const void *arg2) 1310 { 1311 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1312 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1313 1314 ORDERKEY_RSSIZE(p1, p2); 1315 ORDERKEY_MEM(p1, p2); 1316 ORDERKEY_PCTCPU(p1, p2); 1317 ORDERKEY_CPTICKS(p1, p2); 1318 ORDERKEY_STATE(p1, p2); 1319 ORDERKEY_PRIO(p1, p2); 1320 1321 return (0); 1322 } 1323 1324 /* compare_time - the comparison function for sorting by total cpu time */ 1325 1326 static int 1327 compare_time(const void *arg1, const void *arg2) 1328 { 1329 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1330 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1331 1332 ORDERKEY_CPTICKS(p1, p2); 1333 ORDERKEY_PCTCPU(p1, p2); 1334 ORDERKEY_STATE(p1, p2); 1335 ORDERKEY_PRIO(p1, p2); 1336 ORDERKEY_RSSIZE(p1, p2); 1337 ORDERKEY_MEM(p1, p2); 1338 1339 return (0); 1340 } 1341 1342 /* compare_prio - the comparison function for sorting by priority */ 1343 1344 static int 1345 compare_prio(const void *arg1, const void *arg2) 1346 { 1347 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1348 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1349 1350 ORDERKEY_PRIO(p1, p2); 1351 ORDERKEY_CPTICKS(p1, p2); 1352 ORDERKEY_PCTCPU(p1, p2); 1353 ORDERKEY_STATE(p1, p2); 1354 ORDERKEY_RSSIZE(p1, p2); 1355 ORDERKEY_MEM(p1, p2); 1356 1357 return (0); 1358 } 1359 1360 /* compare_threads - the comparison function for sorting by threads */ 1361 static int 1362 compare_threads(const void *arg1, const void *arg2) 1363 { 1364 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1365 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1366 1367 ORDERKEY_THREADS(p1, p2); 1368 ORDERKEY_PCTCPU(p1, p2); 1369 ORDERKEY_CPTICKS(p1, p2); 1370 ORDERKEY_STATE(p1, p2); 1371 ORDERKEY_PRIO(p1, p2); 1372 ORDERKEY_RSSIZE(p1, p2); 1373 ORDERKEY_MEM(p1, p2); 1374 1375 return (0); 1376 } 1377 1378 /* compare_jid - the comparison function for sorting by jid */ 1379 static int 1380 compare_jid(const void *arg1, const void *arg2) 1381 { 1382 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1383 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1384 1385 ORDERKEY_JID(p1, p2); 1386 ORDERKEY_PCTCPU(p1, p2); 1387 ORDERKEY_CPTICKS(p1, p2); 1388 ORDERKEY_STATE(p1, p2); 1389 ORDERKEY_PRIO(p1, p2); 1390 ORDERKEY_RSSIZE(p1, p2); 1391 ORDERKEY_MEM(p1, p2); 1392 1393 return (0); 1394 } 1395 1396 /* compare_swap - the comparison function for sorting by swap */ 1397 static int 1398 compare_swap(const void *arg1, const void *arg2) 1399 { 1400 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1401 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1402 1403 ORDERKEY_SWAP(p1, p2); 1404 ORDERKEY_PCTCPU(p1, p2); 1405 ORDERKEY_CPTICKS(p1, p2); 1406 ORDERKEY_STATE(p1, p2); 1407 ORDERKEY_PRIO(p1, p2); 1408 ORDERKEY_RSSIZE(p1, p2); 1409 ORDERKEY_MEM(p1, p2); 1410 1411 return (0); 1412 } 1413 1414 /* assorted comparison functions for sorting by i/o */ 1415 1416 static int 1417 compare_iototal(const void *arg1, const void *arg2) 1418 { 1419 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1420 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1421 1422 return (get_io_total(p2) - get_io_total(p1)); 1423 } 1424 1425 static int 1426 compare_ioread(const void *arg1, const void *arg2) 1427 { 1428 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1429 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1430 long dummy, inp1, inp2; 1431 1432 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1433 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1434 1435 return (inp2 - inp1); 1436 } 1437 1438 static int 1439 compare_iowrite(const void *arg1, const void *arg2) 1440 { 1441 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1442 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1443 long dummy, oup1, oup2; 1444 1445 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1446 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1447 1448 return (oup2 - oup1); 1449 } 1450 1451 static int 1452 compare_iofault(const void *arg1, const void *arg2) 1453 { 1454 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1455 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1456 long dummy, flp1, flp2; 1457 1458 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1459 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1460 1461 return (flp2 - flp1); 1462 } 1463 1464 static int 1465 compare_vcsw(const void *arg1, const void *arg2) 1466 { 1467 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1468 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1469 long dummy, flp1, flp2; 1470 1471 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1472 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1473 1474 return (flp2 - flp1); 1475 } 1476 1477 static int 1478 compare_ivcsw(const void *arg1, const void *arg2) 1479 { 1480 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1481 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1482 long dummy, flp1, flp2; 1483 1484 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1485 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1486 1487 return (flp2 - flp1); 1488 } 1489 1490 int (*compares[])(const void *arg1, const void *arg2) = { 1491 compare_cpu, 1492 compare_size, 1493 compare_res, 1494 compare_time, 1495 compare_prio, 1496 compare_threads, 1497 compare_iototal, 1498 compare_ioread, 1499 compare_iowrite, 1500 compare_iofault, 1501 compare_vcsw, 1502 compare_ivcsw, 1503 compare_jid, 1504 compare_swap, 1505 NULL 1506 }; 1507 1508 1509 static int 1510 swapmode(int *retavail, int *retfree) 1511 { 1512 int n; 1513 struct kvm_swap swapary[1]; 1514 static int pagesize = 0; 1515 static unsigned long swap_maxpages = 0; 1516 1517 *retavail = 0; 1518 *retfree = 0; 1519 1520 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1521 1522 n = kvm_getswapinfo(kd, swapary, 1, 0); 1523 if (n < 0 || swapary[0].ksw_total == 0) 1524 return (0); 1525 1526 if (pagesize == 0) 1527 pagesize = getpagesize(); 1528 if (swap_maxpages == 0) 1529 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1530 1531 /* ksw_total contains the total size of swap all devices which may 1532 exceed the maximum swap size allocatable in the system */ 1533 if ( swapary[0].ksw_total > swap_maxpages ) 1534 swapary[0].ksw_total = swap_maxpages; 1535 1536 *retavail = CONVERT(swapary[0].ksw_total); 1537 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1538 1539 #undef CONVERT 1540 1541 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1542 return (n); 1543 } 1544