1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 27 #include <sys/time.h> 28 #include <sys/types.h> 29 #include <sys/signal.h> 30 #include <sys/param.h> 31 32 #include "os.h" 33 #include <stdio.h> 34 #include <nlist.h> 35 #include <math.h> 36 #include <kvm.h> 37 #include <pwd.h> 38 #include <sys/errno.h> 39 #include <sys/sysctl.h> 40 #include <sys/file.h> 41 #include <sys/time.h> 42 #include <sys/proc.h> 43 #include <sys/user.h> 44 #include <sys/vmmeter.h> 45 #include <sys/resource.h> 46 #include <sys/rtprio.h> 47 48 /* Swap */ 49 #include <stdlib.h> 50 51 #include <unistd.h> 52 #include <osreldate.h> /* for changes in kernel structures */ 53 54 #include "top.h" 55 #include "machine.h" 56 #include "screen.h" 57 #include "utils.h" 58 59 static void getsysctl(char *, void *, size_t); 60 61 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 62 63 extern char* printable(char *); 64 int swapmode(int *retavail, int *retfree); 65 static int smpmode; 66 enum displaymodes displaymode; 67 static int namelength; 68 static int cmdlengthdelta; 69 70 /* Prototypes for top internals */ 71 void quit(int); 72 int compare_pid(const void *a, const void *b); 73 74 /* get_process_info passes back a handle. This is what it looks like: */ 75 76 struct handle 77 { 78 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 79 int remaining; /* number of pointers remaining */ 80 }; 81 82 /* declarations for load_avg */ 83 #include "loadavg.h" 84 85 /* define what weighted cpu is. */ 86 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 87 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 88 89 /* what we consider to be process size: */ 90 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 91 92 #define RU(pp) (&(pp)->ki_rusage) 93 #define RUTOT(pp) \ 94 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 95 96 97 /* definitions for indices in the nlist array */ 98 99 /* 100 * These definitions control the format of the per-process area 101 */ 102 103 static char io_header[] = 104 " PID %-*.*s READ WRITE FAULT TOTAL PERCENT COMMAND"; 105 106 #define io_Proc_format \ 107 "%5d %-*.*s %6d %6d %6d %6d %6.2f%% %.*s" 108 109 static char smp_header[] = 110 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 111 112 #define smp_Proc_format \ 113 "%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" 114 115 static char up_header[] = 116 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 117 118 #define up_Proc_format \ 119 "%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" 120 121 122 123 /* process state names for the "STATE" column of the display */ 124 /* the extra nulls in the string "run" are for adding a slash and 125 the processor number when needed */ 126 127 char *state_abbrev[] = 128 { 129 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 130 }; 131 132 133 static kvm_t *kd; 134 135 /* values that we stash away in _init and use in later routines */ 136 137 static double logcpu; 138 139 /* these are retrieved from the kernel in _init */ 140 141 static load_avg ccpu; 142 143 /* these are used in the get_ functions */ 144 145 static int lastpid; 146 147 /* these are for calculating cpu state percentages */ 148 149 static long cp_time[CPUSTATES]; 150 static long cp_old[CPUSTATES]; 151 static long cp_diff[CPUSTATES]; 152 153 /* these are for detailing the process states */ 154 155 int process_states[8]; 156 char *procstatenames[] = { 157 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 158 " zombie, ", " waiting, ", " lock, ", 159 NULL 160 }; 161 162 /* these are for detailing the cpu states */ 163 164 int cpu_states[CPUSTATES]; 165 char *cpustatenames[] = { 166 "user", "nice", "system", "interrupt", "idle", NULL 167 }; 168 169 /* these are for detailing the memory statistics */ 170 171 int memory_stats[7]; 172 char *memorynames[] = { 173 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 174 NULL 175 }; 176 177 int swap_stats[7]; 178 char *swapnames[] = { 179 /* 0 1 2 3 4 5 */ 180 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 181 NULL 182 }; 183 184 185 /* these are for keeping track of the proc array */ 186 187 static int nproc; 188 static int onproc = -1; 189 static int pref_len; 190 static struct kinfo_proc *pbase; 191 static struct kinfo_proc **pref; 192 static struct kinfo_proc *previous_procs; 193 static struct kinfo_proc **previous_pref; 194 static int previous_proc_count = 0; 195 static int previous_proc_count_max = 0; 196 197 /* total number of io operations */ 198 static long total_inblock; 199 static long total_oublock; 200 static long total_majflt; 201 202 /* these are for getting the memory statistics */ 203 204 static int pageshift; /* log base 2 of the pagesize */ 205 206 /* define pagetok in terms of pageshift */ 207 208 #define pagetok(size) ((size) << pageshift) 209 210 /* useful externals */ 211 long percentages(); 212 213 #ifdef ORDER 214 /* sorting orders. first is default */ 215 char *ordernames[] = { 216 "cpu", "size", "res", "time", "pri", NULL 217 }; 218 #endif 219 220 int 221 machine_init(statics) 222 struct statics *statics; 223 { 224 int pagesize; 225 size_t modelen; 226 struct passwd *pw; 227 228 modelen = sizeof(smpmode); 229 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && 230 sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) || 231 modelen != sizeof(smpmode)) 232 smpmode = 0; 233 234 while ((pw = getpwent()) != NULL) { 235 if (strlen(pw->pw_name) > namelength) 236 namelength = strlen(pw->pw_name); 237 } 238 if (namelength < 8) 239 namelength = 8; 240 if (smpmode && namelength > 13) 241 namelength = 13; 242 else if (namelength > 15) 243 namelength = 15; 244 245 if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) 246 return -1; 247 248 GETSYSCTL("kern.ccpu", ccpu); 249 250 /* this is used in calculating WCPU -- calculate it ahead of time */ 251 logcpu = log(loaddouble(ccpu)); 252 253 pbase = NULL; 254 pref = NULL; 255 nproc = 0; 256 onproc = -1; 257 /* get the page size with "getpagesize" and calculate pageshift from it */ 258 pagesize = getpagesize(); 259 pageshift = 0; 260 while (pagesize > 1) 261 { 262 pageshift++; 263 pagesize >>= 1; 264 } 265 266 /* we only need the amount of log(2)1024 for our conversion */ 267 pageshift -= LOG1024; 268 269 /* fill in the statics information */ 270 statics->procstate_names = procstatenames; 271 statics->cpustate_names = cpustatenames; 272 statics->memory_names = memorynames; 273 statics->swap_names = swapnames; 274 #ifdef ORDER 275 statics->order_names = ordernames; 276 #endif 277 278 /* all done! */ 279 return(0); 280 } 281 282 char * 283 format_header(uname_field) 284 char *uname_field; 285 286 { 287 static char Header[128]; 288 const char *prehead; 289 290 switch (displaymode) { 291 case DISP_CPU: 292 prehead = smpmode ? smp_header : up_header; 293 break; 294 case DISP_IO: 295 prehead = io_header; 296 break; 297 } 298 299 snprintf(Header, sizeof(Header), prehead, 300 namelength, namelength, uname_field); 301 302 cmdlengthdelta = strlen(Header) - 7; 303 304 return Header; 305 } 306 307 static int swappgsin = -1; 308 static int swappgsout = -1; 309 extern struct timeval timeout; 310 311 void 312 get_system_info(si) 313 struct system_info *si; 314 { 315 long total; 316 struct loadavg sysload; 317 int mib[2]; 318 struct timeval boottime; 319 size_t bt_size; 320 321 /* get the cp_time array */ 322 GETSYSCTL("kern.cp_time", cp_time); 323 GETSYSCTL("vm.loadavg", sysload); 324 GETSYSCTL("kern.lastpid", lastpid); 325 326 /* convert load averages to doubles */ 327 { 328 int i; 329 double *infoloadp; 330 331 infoloadp = si->load_avg; 332 for (i = 0; i < 3; i++) 333 { 334 #ifdef notyet 335 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 336 #endif 337 *infoloadp++ = loaddouble(sysload.ldavg[i]); 338 } 339 } 340 341 /* convert cp_time counts to percentages */ 342 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 343 344 /* sum memory & swap statistics */ 345 { 346 static unsigned int swap_delay = 0; 347 static int swapavail = 0; 348 static int swapfree = 0; 349 static int bufspace = 0; 350 static int nspgsin, nspgsout; 351 352 GETSYSCTL("vfs.bufspace", bufspace); 353 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 354 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 355 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 356 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 357 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 358 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 359 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 360 /* convert memory stats to Kbytes */ 361 memory_stats[0] = pagetok(memory_stats[0]); 362 memory_stats[1] = pagetok(memory_stats[1]); 363 memory_stats[2] = pagetok(memory_stats[2]); 364 memory_stats[3] = pagetok(memory_stats[3]); 365 memory_stats[4] = bufspace / 1024; 366 memory_stats[5] = pagetok(memory_stats[5]); 367 memory_stats[6] = -1; 368 369 /* first interval */ 370 if (swappgsin < 0) { 371 swap_stats[4] = 0; 372 swap_stats[5] = 0; 373 } 374 375 /* compute differences between old and new swap statistic */ 376 else { 377 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 378 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 379 } 380 381 swappgsin = nspgsin; 382 swappgsout = nspgsout; 383 384 /* call CPU heavy swapmode() only for changes */ 385 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 386 swap_stats[3] = swapmode(&swapavail, &swapfree); 387 swap_stats[0] = swapavail; 388 swap_stats[1] = swapavail - swapfree; 389 swap_stats[2] = swapfree; 390 } 391 swap_delay = 1; 392 swap_stats[6] = -1; 393 } 394 395 /* set arrays and strings */ 396 si->cpustates = cpu_states; 397 si->memory = memory_stats; 398 si->swap = swap_stats; 399 400 401 if(lastpid > 0) { 402 si->last_pid = lastpid; 403 } else { 404 si->last_pid = -1; 405 } 406 407 /* 408 * Print how long system has been up. 409 * (Found by looking getting "boottime" from the kernel) 410 */ 411 mib[0] = CTL_KERN; 412 mib[1] = KERN_BOOTTIME; 413 bt_size = sizeof(boottime); 414 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 415 boottime.tv_sec != 0) { 416 si->boottime = boottime; 417 } else { 418 si->boottime.tv_sec = -1; 419 } 420 } 421 422 const struct kinfo_proc * 423 get_old_proc(struct kinfo_proc *pp) 424 { 425 struct kinfo_proc **oldpp, *oldp; 426 427 if (previous_proc_count == 0) 428 return (NULL); 429 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 430 sizeof(struct kinfo_proc *), compare_pid); 431 if (oldpp == NULL) 432 return (NULL); 433 oldp = *oldpp; 434 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) 435 return (NULL); 436 return (oldp); 437 } 438 439 long 440 get_io_stats(pp, inp, oup, flp) 441 struct kinfo_proc *pp; 442 long *inp, *oup, *flp; 443 { 444 const struct kinfo_proc *oldp; 445 static struct kinfo_proc dummy; 446 long ret; 447 448 oldp = get_old_proc(pp); 449 if (oldp == NULL) { 450 bzero(&dummy, sizeof(dummy)); 451 oldp = &dummy; 452 } 453 454 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 455 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 456 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 457 ret = 458 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 459 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 460 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 461 return (ret); 462 } 463 464 long 465 get_io_total(struct kinfo_proc *pp) 466 { 467 long dummy; 468 469 return (get_io_stats(pp, &dummy, &dummy, &dummy)); 470 } 471 472 static struct handle handle; 473 474 caddr_t 475 get_process_info(si, sel, compare) 476 struct system_info *si; 477 struct process_select *sel; 478 int (*compare)(); 479 { 480 int i; 481 int total_procs; 482 long p_io; 483 long p_inblock, p_oublock, p_majflt; 484 int active_procs; 485 struct kinfo_proc **prefp; 486 struct kinfo_proc *pp; 487 struct kinfo_proc *prev_pp = NULL; 488 489 /* these are copied out of sel for speed */ 490 int show_idle; 491 int show_self; 492 int show_system; 493 int show_uid; 494 int show_command; 495 496 /* 497 * Save the previous process info. 498 */ 499 if (previous_proc_count_max < nproc) { 500 free(previous_procs); 501 previous_procs = malloc(nproc * sizeof(struct kinfo_proc)); 502 free(previous_pref); 503 previous_pref = malloc(nproc * sizeof(struct kinfo_proc *)); 504 if (previous_procs == NULL || previous_pref == NULL) { 505 (void) fprintf(stderr, "top: Out of memory.\n"); 506 quit(23); 507 } 508 previous_proc_count_max = nproc; 509 } 510 if (nproc) { 511 for (i = 0; i < nproc; i++) 512 previous_pref[i] = &previous_procs[i]; 513 bcopy(pbase, previous_procs, nproc * sizeof(struct kinfo_proc)); 514 qsort(previous_pref, nproc, 515 sizeof(struct kinfo_proc *), compare_pid); 516 } 517 previous_proc_count = nproc; 518 519 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 520 if (nproc > onproc) 521 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 522 * (onproc = nproc)); 523 if (pref == NULL || pbase == NULL) { 524 (void) fprintf(stderr, "top: Out of memory.\n"); 525 quit(23); 526 } 527 /* get a pointer to the states summary array */ 528 si->procstates = process_states; 529 530 /* set up flags which define what we are going to select */ 531 show_idle = sel->idle; 532 show_self = sel->self; 533 show_system = sel->system; 534 show_uid = sel->uid != -1; 535 show_command = sel->command != NULL; 536 537 /* count up process states and get pointers to interesting procs */ 538 total_procs = 0; 539 active_procs = 0; 540 total_inblock = 0; 541 total_oublock = 0; 542 total_majflt = 0; 543 memset((char *)process_states, 0, sizeof(process_states)); 544 prefp = pref; 545 for (pp = pbase, i = 0; i < nproc; pp++, i++) 546 { 547 /* 548 * Place pointers to each valid proc structure in pref[]. 549 * Process slots that are actually in use have a non-zero 550 * status field. Processes with P_SYSTEM set are system 551 * processes---these get ignored unless show_sysprocs is set. 552 */ 553 554 if (pp->ki_stat != 0 && 555 (show_self != pp->ki_pid) && 556 (show_system || ((pp->ki_flag & P_SYSTEM) == 0))) 557 { 558 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt); 559 total_inblock += p_inblock; 560 total_oublock += p_oublock; 561 total_majflt += p_majflt; 562 total_procs++; 563 process_states[(unsigned char) pp->ki_stat]++; 564 if ((pp->ki_stat != SZOMB) && 565 (displaymode == DISP_CPU && 566 (show_idle || (pp->ki_pctcpu != 0) || pp->ki_stat == SRUN)) || 567 (show_idle || (displaymode == DISP_IO && p_io != 0)) && 568 (!show_uid || pp->ki_ruid == (uid_t)sel->uid)) 569 { 570 /* 571 * When not showing threads, take the first thread 572 * for output and add the fields that we can from 573 * the rest of the process's threads rather than 574 * using the system's mostly-broken KERN_PROC_PROC. 575 */ 576 if (sel->thread || prev_pp == NULL || 577 prev_pp->ki_pid != pp->ki_pid) 578 { 579 *prefp++ = pp; 580 active_procs++; 581 prev_pp = pp; 582 } else { 583 prev_pp->ki_pctcpu += pp->ki_pctcpu; 584 } 585 } 586 } 587 } 588 589 /* if requested, sort the "interesting" processes */ 590 if (compare != NULL) 591 { 592 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 593 } 594 595 /* remember active and total counts */ 596 si->p_total = total_procs; 597 si->p_active = pref_len = active_procs; 598 599 /* pass back a handle */ 600 handle.next_proc = pref; 601 handle.remaining = active_procs; 602 return((caddr_t)&handle); 603 } 604 605 char fmt[128]; /* static area where result is built */ 606 607 char * 608 format_next_process(handle, get_userid) 609 caddr_t handle; 610 char *(*get_userid)(); 611 { 612 struct kinfo_proc *pp; 613 const struct kinfo_proc *oldp; 614 long cputime; 615 double pct; 616 struct handle *hp; 617 char status[16]; 618 int state; 619 struct rusage ru, *rup; 620 long p_tot, s_tot; 621 622 /* find and remember the next proc structure */ 623 hp = (struct handle *)handle; 624 pp = *(hp->next_proc++); 625 hp->remaining--; 626 627 /* get the process's command name */ 628 if ((pp->ki_sflag & PS_INMEM) == 0) { 629 /* 630 * Print swapped processes as <pname> 631 */ 632 char *comm = pp->ki_comm; 633 #define COMSIZ sizeof(pp->ki_comm) 634 char buf[COMSIZ]; 635 (void) strncpy(buf, comm, COMSIZ); 636 comm[0] = '<'; 637 (void) strncpy(&comm[1], buf, COMSIZ - 2); 638 comm[COMSIZ - 2] = '\0'; 639 (void) strncat(comm, ">", COMSIZ - 1); 640 comm[COMSIZ - 1] = '\0'; 641 } 642 643 /* 644 * Convert the process's runtime from microseconds to seconds. This 645 * time includes the interrupt time although that is not wanted here. 646 * ps(1) is similarly sloppy. 647 */ 648 cputime = (pp->ki_runtime + 500000) / 1000000; 649 650 /* calculate the base for cpu percentages */ 651 pct = pctdouble(pp->ki_pctcpu); 652 653 /* generate "STATE" field */ 654 switch (state = pp->ki_stat) { 655 case SRUN: 656 if (smpmode && pp->ki_oncpu != 0xff) 657 sprintf(status, "CPU%d", pp->ki_oncpu); 658 else 659 strcpy(status, "RUN"); 660 break; 661 case SLOCK: 662 if (pp->ki_kiflag & KI_LOCKBLOCK) { 663 sprintf(status, "*%.6s", pp->ki_lockname); 664 break; 665 } 666 /* fall through */ 667 case SSLEEP: 668 if (pp->ki_wmesg != NULL) { 669 sprintf(status, "%.6s", pp->ki_wmesg); 670 break; 671 } 672 /* FALLTHROUGH */ 673 default: 674 675 if (state >= 0 && 676 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 677 sprintf(status, "%.6s", state_abbrev[(unsigned char) state]); 678 else 679 sprintf(status, "?%5d", state); 680 break; 681 } 682 683 if (displaymode == DISP_IO) { 684 oldp = get_old_proc(pp); 685 if (oldp != NULL) { 686 ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 687 ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 688 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 689 rup = &ru; 690 } else { 691 rup = RU(pp); 692 } 693 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 694 s_tot = total_inblock + total_oublock + total_majflt; 695 696 sprintf(fmt, io_Proc_format, 697 pp->ki_pid, 698 namelength, namelength, 699 (*get_userid)(pp->ki_ruid), 700 (int)rup->ru_inblock, 701 (int)rup->ru_oublock, 702 (int)rup->ru_majflt, 703 (int)p_tot, 704 p_tot == 0 ? 0.0 : ((float)(p_tot * 100))/(float)s_tot, 705 screen_width > cmdlengthdelta ? 706 screen_width - cmdlengthdelta : 0, 707 printable(pp->ki_comm)); 708 return (fmt); 709 } 710 /* format this entry */ 711 sprintf(fmt, 712 smpmode ? smp_Proc_format : up_Proc_format, 713 pp->ki_pid, 714 namelength, namelength, 715 (*get_userid)(pp->ki_ruid), 716 pp->ki_pri.pri_level - PZERO, 717 718 /* 719 * normal time -> nice value -20 - +20 720 * real time 0 - 31 -> nice value -52 - -21 721 * idle time 0 - 31 -> nice value +21 - +52 722 */ 723 (pp->ki_pri.pri_class == PRI_TIMESHARE ? 724 pp->ki_nice - NZERO : 725 (PRI_IS_REALTIME(pp->ki_pri.pri_class) ? 726 (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) : 727 (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))), 728 format_k2(PROCSIZE(pp)), 729 format_k2(pagetok(pp->ki_rssize)), 730 status, 731 smpmode ? pp->ki_lastcpu : 0, 732 format_time(cputime), 733 100.0 * weighted_cpu(pct, pp), 734 100.0 * pct, 735 screen_width > cmdlengthdelta ? 736 screen_width - cmdlengthdelta : 737 0, 738 printable(pp->ki_comm)); 739 740 /* return the result */ 741 return(fmt); 742 } 743 744 static void 745 getsysctl(name, ptr, len) 746 char *name; 747 void *ptr; 748 size_t len; 749 { 750 size_t nlen = len; 751 752 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 753 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 754 strerror(errno)); 755 quit(23); 756 } 757 if (nlen != len) { 758 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name, 759 (unsigned long)len, (unsigned long)nlen); 760 quit(23); 761 } 762 } 763 764 /* comparison routines for qsort */ 765 766 int 767 compare_pid(p1, p2) 768 const void *p1, *p2; 769 { 770 const struct kinfo_proc * const *pp1 = p1; 771 const struct kinfo_proc * const *pp2 = p2; 772 773 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 774 abort(); 775 776 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 777 } 778 779 /* 780 * proc_compare - comparison function for "qsort" 781 * Compares the resource consumption of two processes using five 782 * distinct keys. The keys (in descending order of importance) are: 783 * percent cpu, cpu ticks, state, resident set size, total virtual 784 * memory usage. The process states are ordered as follows (from least 785 * to most important): WAIT, zombie, sleep, stop, start, run. The 786 * array declaration below maps a process state index into a number 787 * that reflects this ordering. 788 */ 789 790 static unsigned char sorted_state[] = 791 { 792 0, /* not used */ 793 3, /* sleep */ 794 1, /* ABANDONED (WAIT) */ 795 6, /* run */ 796 5, /* start */ 797 2, /* zombie */ 798 4 /* stop */ 799 }; 800 801 802 #define ORDERKEY_PCTCPU \ 803 if (lresult = (long) p2->ki_pctcpu - (long) p1->ki_pctcpu, \ 804 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 805 806 #define ORDERKEY_CPTICKS \ 807 if ((result = p2->ki_runtime > p1->ki_runtime ? 1 : \ 808 p2->ki_runtime < p1->ki_runtime ? -1 : 0) == 0) 809 810 #define ORDERKEY_STATE \ 811 if ((result = sorted_state[(unsigned char) p2->ki_stat] - \ 812 sorted_state[(unsigned char) p1->ki_stat]) == 0) 813 814 #define ORDERKEY_PRIO \ 815 if ((result = p2->ki_pri.pri_level - p1->ki_pri.pri_level) == 0) 816 817 #define ORDERKEY_RSSIZE \ 818 if ((result = p2->ki_rssize - p1->ki_rssize) == 0) 819 820 #define ORDERKEY_MEM \ 821 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) 822 823 /* compare_cpu - the comparison function for sorting by cpu percentage */ 824 825 int 826 #ifdef ORDER 827 compare_cpu(pp1, pp2) 828 #else 829 proc_compare(pp1, pp2) 830 #endif 831 struct proc **pp1; 832 struct proc **pp2; 833 { 834 struct kinfo_proc *p1; 835 struct kinfo_proc *p2; 836 int result; 837 pctcpu lresult; 838 839 /* remove one level of indirection */ 840 p1 = *(struct kinfo_proc **) pp1; 841 p2 = *(struct kinfo_proc **) pp2; 842 843 ORDERKEY_PCTCPU 844 ORDERKEY_CPTICKS 845 ORDERKEY_STATE 846 ORDERKEY_PRIO 847 ORDERKEY_RSSIZE 848 ORDERKEY_MEM 849 ; 850 851 return(result); 852 } 853 854 #ifdef ORDER 855 /* compare routines */ 856 int compare_size(), compare_res(), compare_time(), compare_prio(); 857 858 int (*proc_compares[])() = { 859 compare_cpu, 860 compare_size, 861 compare_res, 862 compare_time, 863 compare_prio, 864 NULL 865 }; 866 867 /* compare_size - the comparison function for sorting by total memory usage */ 868 869 int 870 compare_size(pp1, pp2) 871 struct proc **pp1; 872 struct proc **pp2; 873 { 874 struct kinfo_proc *p1; 875 struct kinfo_proc *p2; 876 int result; 877 pctcpu lresult; 878 879 /* remove one level of indirection */ 880 p1 = *(struct kinfo_proc **) pp1; 881 p2 = *(struct kinfo_proc **) pp2; 882 883 ORDERKEY_MEM 884 ORDERKEY_RSSIZE 885 ORDERKEY_PCTCPU 886 ORDERKEY_CPTICKS 887 ORDERKEY_STATE 888 ORDERKEY_PRIO 889 ; 890 891 return(result); 892 } 893 894 /* compare_res - the comparison function for sorting by resident set size */ 895 896 int 897 compare_res(pp1, pp2) 898 struct proc **pp1; 899 struct proc **pp2; 900 { 901 struct kinfo_proc *p1; 902 struct kinfo_proc *p2; 903 int result; 904 pctcpu lresult; 905 906 /* remove one level of indirection */ 907 p1 = *(struct kinfo_proc **) pp1; 908 p2 = *(struct kinfo_proc **) pp2; 909 910 ORDERKEY_RSSIZE 911 ORDERKEY_MEM 912 ORDERKEY_PCTCPU 913 ORDERKEY_CPTICKS 914 ORDERKEY_STATE 915 ORDERKEY_PRIO 916 ; 917 918 return(result); 919 } 920 921 /* compare_time - the comparison function for sorting by total cpu time */ 922 923 int 924 compare_time(pp1, pp2) 925 struct proc **pp1; 926 struct proc **pp2; 927 { 928 struct kinfo_proc *p1; 929 struct kinfo_proc *p2; 930 int result; 931 pctcpu lresult; 932 933 /* remove one level of indirection */ 934 p1 = *(struct kinfo_proc **) pp1; 935 p2 = *(struct kinfo_proc **) pp2; 936 937 ORDERKEY_CPTICKS 938 ORDERKEY_PCTCPU 939 ORDERKEY_STATE 940 ORDERKEY_PRIO 941 ORDERKEY_RSSIZE 942 ORDERKEY_MEM 943 ; 944 945 return(result); 946 } 947 948 /* compare_prio - the comparison function for sorting by cpu percentage */ 949 950 int 951 compare_prio(pp1, pp2) 952 struct proc **pp1; 953 struct proc **pp2; 954 { 955 struct kinfo_proc *p1; 956 struct kinfo_proc *p2; 957 int result; 958 pctcpu lresult; 959 960 /* remove one level of indirection */ 961 p1 = *(struct kinfo_proc **) pp1; 962 p2 = *(struct kinfo_proc **) pp2; 963 964 ORDERKEY_PRIO 965 ORDERKEY_CPTICKS 966 ORDERKEY_PCTCPU 967 ORDERKEY_STATE 968 ORDERKEY_RSSIZE 969 ORDERKEY_MEM 970 ; 971 972 return(result); 973 } 974 #endif 975 976 int 977 io_compare(pp1, pp2) 978 struct kinfo_proc **pp1, **pp2; 979 { 980 long t1, t2; 981 982 t1 = get_io_total(*pp1); 983 t2 = get_io_total(*pp2); 984 return (t2 - t1); 985 } 986 /* 987 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 988 * the process does not exist. 989 * It is EXTREMLY IMPORTANT that this function work correctly. 990 * If top runs setuid root (as in SVR4), then this function 991 * is the only thing that stands in the way of a serious 992 * security problem. It validates requests for the "kill" 993 * and "renice" commands. 994 */ 995 996 int 997 proc_owner(pid) 998 int pid; 999 { 1000 int cnt; 1001 struct kinfo_proc **prefp; 1002 struct kinfo_proc *pp; 1003 1004 prefp = pref; 1005 cnt = pref_len; 1006 while (--cnt >= 0) 1007 { 1008 pp = *prefp++; 1009 if (pp->ki_pid == (pid_t)pid) 1010 { 1011 return((int)pp->ki_ruid); 1012 } 1013 } 1014 return(-1); 1015 } 1016 1017 int 1018 swapmode(retavail, retfree) 1019 int *retavail; 1020 int *retfree; 1021 { 1022 int n; 1023 int pagesize = getpagesize(); 1024 struct kvm_swap swapary[1]; 1025 1026 *retavail = 0; 1027 *retfree = 0; 1028 1029 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1030 1031 n = kvm_getswapinfo(kd, swapary, 1, 0); 1032 if (n < 0 || swapary[0].ksw_total == 0) 1033 return(0); 1034 1035 *retavail = CONVERT(swapary[0].ksw_total); 1036 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1037 1038 n = (int)((double)swapary[0].ksw_used * 100.0 / 1039 (double)swapary[0].ksw_total); 1040 return(n); 1041 } 1042 1043