1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x system 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * 10 * This is the machine-dependent module for FreeBSD 2.2 11 * Works for: 12 * FreeBSD 2.2, and probably FreeBSD 2.1.x 13 * 14 * LIBS: -lkvm 15 * 16 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 17 * Steven Wallace <swallace@freebsd.org> 18 * Wolfram Schneider <wosch@FreeBSD.org> 19 * 20 * $Id: machine.c,v 1.4 1997/07/12 10:51:54 peter Exp $ 21 */ 22 23 24 #include <sys/types.h> 25 #include <sys/signal.h> 26 #include <sys/param.h> 27 28 #include "os.h" 29 #include <stdio.h> 30 #include <nlist.h> 31 #include <math.h> 32 #include <kvm.h> 33 #include <pwd.h> 34 #include <sys/errno.h> 35 #include <sys/sysctl.h> 36 #include <sys/dkstat.h> 37 #include <sys/file.h> 38 #include <sys/time.h> 39 #include <sys/proc.h> 40 #include <sys/user.h> 41 #include <sys/vmmeter.h> 42 43 /* Swap */ 44 #include <stdlib.h> 45 #include <sys/rlist.h> 46 #include <sys/conf.h> 47 48 #include <osreldate.h> /* for changes in kernel structures */ 49 50 #include "top.h" 51 #include "machine.h" 52 53 static int check_nlist __P((struct nlist *)); 54 static int getkval __P((unsigned long, int *, int, char *)); 55 extern char* printable __P((char *)); 56 int swapmode __P((int *retavail, int *retfree)); 57 static int smpmode; 58 static int namelength; 59 static int cmdlength; 60 61 62 /* get_process_info passes back a handle. This is what it looks like: */ 63 64 struct handle 65 { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 /* declarations for load_avg */ 71 #include "loadavg.h" 72 73 #define PP(pp, field) ((pp)->kp_proc . field) 74 #define EP(pp, field) ((pp)->kp_eproc . field) 75 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) 76 77 /* define what weighted cpu is. */ 78 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ 79 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) 80 81 /* what we consider to be process size: */ 82 #define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize)) 83 84 /* definitions for indices in the nlist array */ 85 86 87 static struct nlist nlst[] = { 88 #define X_CCPU 0 89 { "_ccpu" }, /* 0 */ 90 #define X_CP_TIME 1 91 { "_cp_time" }, /* 1 */ 92 #define X_HZ 2 93 { "_hz" }, /* 2 */ 94 #define X_STATHZ 3 95 { "_stathz" }, /* 3 */ 96 #define X_AVENRUN 4 97 { "_averunnable" }, /* 4 */ 98 99 /* Swap */ 100 #define VM_SWAPLIST 5 101 { "_swaplist" },/* list of free swap areas */ 102 #define VM_SWDEVT 6 103 { "_swdevt" }, /* list of swap devices and sizes */ 104 #define VM_NSWAP 7 105 { "_nswap" }, /* size of largest swap device */ 106 #define VM_NSWDEV 8 107 { "_nswdev" }, /* number of swap devices */ 108 #define VM_DMMAX 9 109 { "_dmmax" }, /* maximum size of a swap block */ 110 #define X_BUFSPACE 10 111 { "_bufspace" }, /* K in buffer cache */ 112 #define X_CNT 11 113 { "_cnt" }, /* struct vmmeter cnt */ 114 115 /* Last pid */ 116 #define X_LASTPID 12 117 { "_nextpid" }, 118 { 0 } 119 }; 120 121 /* 122 * These definitions control the format of the per-process area 123 */ 124 125 static char smp_header[] = 126 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 127 128 #define smp_Proc_format \ 129 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%1x%7s %5.2f%% %5.2f%% %.*s" 130 131 static char up_header[] = 132 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 133 134 #define up_Proc_format \ 135 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" 136 137 138 139 /* process state names for the "STATE" column of the display */ 140 /* the extra nulls in the string "run" are for adding a slash and 141 the processor number when needed */ 142 143 char *state_abbrev[] = 144 { 145 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", 146 }; 147 148 149 static kvm_t *kd; 150 151 /* values that we stash away in _init and use in later routines */ 152 153 static double logcpu; 154 155 /* these are retrieved from the kernel in _init */ 156 157 static long hz; 158 static load_avg ccpu; 159 160 /* these are offsets obtained via nlist and used in the get_ functions */ 161 162 static unsigned long cp_time_offset; 163 static unsigned long avenrun_offset; 164 static unsigned long lastpid_offset; 165 static long lastpid; 166 static unsigned long cnt_offset; 167 static unsigned long bufspace_offset; 168 static long cnt; 169 170 /* these are for calculating cpu state percentages */ 171 172 static long cp_time[CPUSTATES]; 173 static long cp_old[CPUSTATES]; 174 static long cp_diff[CPUSTATES]; 175 176 /* these are for detailing the process states */ 177 178 int process_states[6]; 179 char *procstatenames[] = { 180 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 181 " zombie, ", 182 NULL 183 }; 184 185 /* these are for detailing the cpu states */ 186 187 int cpu_states[CPUSTATES]; 188 char *cpustatenames[] = { 189 "user", "nice", "system", "interrupt", "idle", NULL 190 }; 191 192 /* these are for detailing the memory statistics */ 193 194 int memory_stats[7]; 195 char *memorynames[] = { 196 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 197 NULL 198 }; 199 200 int swap_stats[7]; 201 char *swapnames[] = { 202 /* 0 1 2 3 4 5 */ 203 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 204 NULL 205 }; 206 207 208 /* these are for keeping track of the proc array */ 209 210 static int nproc; 211 static int onproc = -1; 212 static int pref_len; 213 static struct kinfo_proc *pbase; 214 static struct kinfo_proc **pref; 215 216 /* these are for getting the memory statistics */ 217 218 static int pageshift; /* log base 2 of the pagesize */ 219 220 /* define pagetok in terms of pageshift */ 221 222 #define pagetok(size) ((size) << pageshift) 223 224 /* useful externals */ 225 long percentages(); 226 227 int 228 machine_init(statics) 229 230 struct statics *statics; 231 232 { 233 register int i = 0; 234 register int pagesize; 235 int modelen; 236 struct passwd *pw; 237 238 modelen = sizeof(smpmode); 239 if (sysctlbyname("kern.smp_active", &smpmode, &modelen, NULL, 0) < 0 || 240 modelen != sizeof(smpmode)) 241 smpmode = 0; 242 243 while ((pw = getpwent()) != NULL) { 244 if (strlen(pw->pw_name) > namelength) 245 namelength = strlen(pw->pw_name); 246 } 247 if (namelength < 8) 248 namelength = 8; 249 if (namelength > 16) 250 namelength = 16; 251 252 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) 253 return -1; 254 255 256 /* get the list of symbols we want to access in the kernel */ 257 (void) kvm_nlist(kd, nlst); 258 if (nlst[0].n_type == 0) 259 { 260 fprintf(stderr, "top: nlist failed\n"); 261 return(-1); 262 } 263 264 /* make sure they were all found */ 265 if (i > 0 && check_nlist(nlst) > 0) 266 { 267 return(-1); 268 } 269 270 /* get the symbol values out of kmem */ 271 (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!"); 272 if (!hz) { 273 (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), 274 nlst[X_HZ].n_name); 275 } 276 277 (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), 278 nlst[X_CCPU].n_name); 279 280 /* stash away certain offsets for later use */ 281 cp_time_offset = nlst[X_CP_TIME].n_value; 282 avenrun_offset = nlst[X_AVENRUN].n_value; 283 lastpid_offset = nlst[X_LASTPID].n_value; 284 cnt_offset = nlst[X_CNT].n_value; 285 bufspace_offset = nlst[X_BUFSPACE].n_value; 286 287 /* this is used in calculating WCPU -- calculate it ahead of time */ 288 logcpu = log(loaddouble(ccpu)); 289 290 pbase = NULL; 291 pref = NULL; 292 nproc = 0; 293 onproc = -1; 294 /* get the page size with "getpagesize" and calculate pageshift from it */ 295 pagesize = getpagesize(); 296 pageshift = 0; 297 while (pagesize > 1) 298 { 299 pageshift++; 300 pagesize >>= 1; 301 } 302 303 /* we only need the amount of log(2)1024 for our conversion */ 304 pageshift -= LOG1024; 305 306 /* fill in the statics information */ 307 statics->procstate_names = procstatenames; 308 statics->cpustate_names = cpustatenames; 309 statics->memory_names = memorynames; 310 statics->swap_names = swapnames; 311 312 /* all done! */ 313 return(0); 314 } 315 316 char *format_header(uname_field) 317 318 register char *uname_field; 319 320 { 321 register char *ptr; 322 static char Header[128]; 323 324 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, 325 namelength, namelength, uname_field); 326 327 cmdlength = 80 - strlen(Header) + 6; 328 329 return Header; 330 } 331 332 static int swappgsin = -1; 333 static int swappgsout = -1; 334 extern struct timeval timeout; 335 336 void 337 get_system_info(si) 338 339 struct system_info *si; 340 341 { 342 long total; 343 load_avg avenrun[3]; 344 345 /* get the cp_time array */ 346 (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), 347 nlst[X_CP_TIME].n_name); 348 (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), 349 nlst[X_AVENRUN].n_name); 350 351 (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), 352 "!"); 353 354 /* convert load averages to doubles */ 355 { 356 register int i; 357 register double *infoloadp; 358 load_avg *avenrunp; 359 360 #ifdef notyet 361 struct loadavg sysload; 362 int size; 363 getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); 364 #endif 365 366 infoloadp = si->load_avg; 367 avenrunp = avenrun; 368 for (i = 0; i < 3; i++) 369 { 370 #ifdef notyet 371 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 372 #endif 373 *infoloadp++ = loaddouble(*avenrunp++); 374 } 375 } 376 377 /* convert cp_time counts to percentages */ 378 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 379 380 /* sum memory & swap statistics */ 381 { 382 struct vmmeter sum; 383 static unsigned int swap_delay = 0; 384 static int swapavail = 0; 385 static int swapfree = 0; 386 static int bufspace = 0; 387 388 (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), 389 "_cnt"); 390 (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), 391 "_bufspace"); 392 393 /* convert memory stats to Kbytes */ 394 memory_stats[0] = pagetok(sum.v_active_count); 395 memory_stats[1] = pagetok(sum.v_inactive_count); 396 memory_stats[2] = pagetok(sum.v_wire_count); 397 memory_stats[3] = pagetok(sum.v_cache_count); 398 memory_stats[4] = bufspace / 1024; 399 memory_stats[5] = pagetok(sum.v_free_count); 400 memory_stats[6] = -1; 401 402 /* first interval */ 403 if (swappgsin < 0) { 404 swap_stats[4] = 0; 405 swap_stats[5] = 0; 406 } 407 408 /* compute differences between old and new swap statistic */ 409 else { 410 swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); 411 swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); 412 } 413 414 swappgsin = sum.v_swappgsin; 415 swappgsout = sum.v_swappgsout; 416 417 /* call CPU heavy swapmode() only for changes */ 418 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 419 swap_stats[3] = swapmode(&swapavail, &swapfree); 420 swap_stats[0] = swapavail; 421 swap_stats[1] = swapavail - swapfree; 422 swap_stats[2] = swapfree; 423 } 424 swap_delay = 1; 425 swap_stats[6] = -1; 426 } 427 428 /* set arrays and strings */ 429 si->cpustates = cpu_states; 430 si->memory = memory_stats; 431 si->swap = swap_stats; 432 433 434 if(lastpid > 0) { 435 si->last_pid = lastpid; 436 } else { 437 si->last_pid = -1; 438 } 439 } 440 441 static struct handle handle; 442 443 caddr_t get_process_info(si, sel, compare) 444 445 struct system_info *si; 446 struct process_select *sel; 447 int (*compare)(); 448 449 { 450 register int i; 451 register int total_procs; 452 register int active_procs; 453 register struct kinfo_proc **prefp; 454 register struct kinfo_proc *pp; 455 456 /* these are copied out of sel for speed */ 457 int show_idle; 458 int show_system; 459 int show_uid; 460 int show_command; 461 462 463 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 464 if (nproc > onproc) 465 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 466 * (onproc = nproc)); 467 if (pref == NULL || pbase == NULL) { 468 (void) fprintf(stderr, "top: Out of memory.\n"); 469 quit(23); 470 } 471 /* get a pointer to the states summary array */ 472 si->procstates = process_states; 473 474 /* set up flags which define what we are going to select */ 475 show_idle = sel->idle; 476 show_system = sel->system; 477 show_uid = sel->uid != -1; 478 show_command = sel->command != NULL; 479 480 /* count up process states and get pointers to interesting procs */ 481 total_procs = 0; 482 active_procs = 0; 483 memset((char *)process_states, 0, sizeof(process_states)); 484 prefp = pref; 485 for (pp = pbase, i = 0; i < nproc; pp++, i++) 486 { 487 /* 488 * Place pointers to each valid proc structure in pref[]. 489 * Process slots that are actually in use have a non-zero 490 * status field. Processes with P_SYSTEM set are system 491 * processes---these get ignored unless show_sysprocs is set. 492 */ 493 if (PP(pp, p_stat) != 0 && 494 (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) 495 { 496 total_procs++; 497 process_states[(unsigned char) PP(pp, p_stat)]++; 498 if ((PP(pp, p_stat) != SZOMB) && 499 (show_idle || (PP(pp, p_pctcpu) != 0) || 500 (PP(pp, p_stat) == SRUN)) && 501 (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) 502 { 503 *prefp++ = pp; 504 active_procs++; 505 } 506 } 507 } 508 509 /* if requested, sort the "interesting" processes */ 510 if (compare != NULL) 511 { 512 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 513 } 514 515 /* remember active and total counts */ 516 si->p_total = total_procs; 517 si->p_active = pref_len = active_procs; 518 519 /* pass back a handle */ 520 handle.next_proc = pref; 521 handle.remaining = active_procs; 522 return((caddr_t)&handle); 523 } 524 525 char fmt[128]; /* static area where result is built */ 526 527 char *format_next_process(handle, get_userid) 528 529 caddr_t handle; 530 char *(*get_userid)(); 531 532 { 533 register struct kinfo_proc *pp; 534 register long cputime; 535 register double pct; 536 struct handle *hp; 537 char status[16]; 538 539 /* find and remember the next proc structure */ 540 hp = (struct handle *)handle; 541 pp = *(hp->next_proc++); 542 hp->remaining--; 543 544 545 /* get the process's user struct and set cputime */ 546 if ((PP(pp, p_flag) & P_INMEM) == 0) { 547 /* 548 * Print swapped processes as <pname> 549 */ 550 char *comm = PP(pp, p_comm); 551 #define COMSIZ sizeof(PP(pp, p_comm)) 552 char buf[COMSIZ]; 553 (void) strncpy(buf, comm, COMSIZ); 554 comm[0] = '<'; 555 (void) strncpy(&comm[1], buf, COMSIZ - 2); 556 comm[COMSIZ - 2] = '\0'; 557 (void) strncat(comm, ">", COMSIZ - 1); 558 comm[COMSIZ - 1] = '\0'; 559 } 560 561 #if 0 562 /* This does not produce the correct results */ 563 cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); 564 #endif 565 cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */ 566 567 /* calculate the base for cpu percentages */ 568 pct = pctdouble(PP(pp, p_pctcpu)); 569 570 /* generate "STATE" field */ 571 switch (PP(pp, p_stat)) { 572 case SRUN: 573 if (smpmode && PP(pp, p_oncpu) >= 0) 574 sprintf(status, "CPU%d", PP(pp, p_oncpu)); 575 else 576 strcpy(status, "RUN"); 577 break; 578 case SSLEEP: 579 if (PP(pp, p_wmesg) != NULL) { 580 sprintf(status, "%.6s", EP(pp, e_wmesg)); 581 break; 582 } 583 /* fall through */ 584 default: 585 sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]); 586 break; 587 } 588 589 /* format this entry */ 590 sprintf(fmt, 591 smpmode ? smp_Proc_format : up_Proc_format, 592 PP(pp, p_pid), 593 namelength, namelength, 594 (*get_userid)(EP(pp, e_pcred.p_ruid)), 595 PP(pp, p_priority) - PZERO, 596 PP(pp, p_nice) - NZERO, 597 format_k2(pagetok(PROCSIZE(pp))), 598 format_k2(pagetok(VP(pp, vm_rssize))), 599 status, 600 smpmode ? PP(pp, p_lastcpu) : 0, 601 format_time(cputime), 602 10000.0 * weighted_cpu(pct, pp) / hz, 603 10000.0 * pct / hz, 604 cmdlength, 605 printable(PP(pp, p_comm))); 606 607 /* return the result */ 608 return(fmt); 609 } 610 611 612 /* 613 * check_nlist(nlst) - checks the nlist to see if any symbols were not 614 * found. For every symbol that was not found, a one-line 615 * message is printed to stderr. The routine returns the 616 * number of symbols NOT found. 617 */ 618 619 static int check_nlist(nlst) 620 621 register struct nlist *nlst; 622 623 { 624 register int i; 625 626 /* check to see if we got ALL the symbols we requested */ 627 /* this will write one line to stderr for every symbol not found */ 628 629 i = 0; 630 while (nlst->n_name != NULL) 631 { 632 if (nlst->n_type == 0) 633 { 634 /* this one wasn't found */ 635 (void) fprintf(stderr, "kernel: no symbol named `%s'\n", 636 nlst->n_name); 637 i = 1; 638 } 639 nlst++; 640 } 641 642 return(i); 643 } 644 645 646 /* 647 * getkval(offset, ptr, size, refstr) - get a value out of the kernel. 648 * "offset" is the byte offset into the kernel for the desired value, 649 * "ptr" points to a buffer into which the value is retrieved, 650 * "size" is the size of the buffer (and the object to retrieve), 651 * "refstr" is a reference string used when printing error meessages, 652 * if "refstr" starts with a '!', then a failure on read will not 653 * be fatal (this may seem like a silly way to do things, but I 654 * really didn't want the overhead of another argument). 655 * 656 */ 657 658 static int getkval(offset, ptr, size, refstr) 659 660 unsigned long offset; 661 int *ptr; 662 int size; 663 char *refstr; 664 665 { 666 if (kvm_read(kd, offset, (char *) ptr, size) != size) 667 { 668 if (*refstr == '!') 669 { 670 return(0); 671 } 672 else 673 { 674 fprintf(stderr, "top: kvm_read for %s: %s\n", 675 refstr, strerror(errno)); 676 quit(23); 677 } 678 } 679 return(1); 680 } 681 682 /* comparison routine for qsort */ 683 684 /* 685 * proc_compare - comparison function for "qsort" 686 * Compares the resource consumption of two processes using five 687 * distinct keys. The keys (in descending order of importance) are: 688 * percent cpu, cpu ticks, state, resident set size, total virtual 689 * memory usage. The process states are ordered as follows (from least 690 * to most important): WAIT, zombie, sleep, stop, start, run. The 691 * array declaration below maps a process state index into a number 692 * that reflects this ordering. 693 */ 694 695 static unsigned char sorted_state[] = 696 { 697 0, /* not used */ 698 3, /* sleep */ 699 1, /* ABANDONED (WAIT) */ 700 6, /* run */ 701 5, /* start */ 702 2, /* zombie */ 703 4 /* stop */ 704 }; 705 706 int 707 proc_compare(pp1, pp2) 708 709 struct proc **pp1; 710 struct proc **pp2; 711 712 { 713 register struct kinfo_proc *p1; 714 register struct kinfo_proc *p2; 715 register int result; 716 register pctcpu lresult; 717 718 /* remove one level of indirection */ 719 p1 = *(struct kinfo_proc **) pp1; 720 p2 = *(struct kinfo_proc **) pp2; 721 722 /* compare percent cpu (pctcpu) */ 723 if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0) 724 { 725 /* use cpticks to break the tie */ 726 if ((result = PP(p2, p_cpticks) - PP(p1, p_cpticks)) == 0) 727 { 728 /* use process state to break the tie */ 729 if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - 730 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) 731 { 732 /* use priority to break the tie */ 733 if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) 734 { 735 /* use resident set size (rssize) to break the tie */ 736 if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) 737 { 738 /* use total memory to break the tie */ 739 result = PROCSIZE(p2) - PROCSIZE(p1); 740 } 741 } 742 } 743 } 744 } 745 else 746 { 747 result = lresult < 0 ? -1 : 1; 748 } 749 750 return(result); 751 } 752 753 754 /* 755 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 756 * the process does not exist. 757 * It is EXTREMLY IMPORTANT that this function work correctly. 758 * If top runs setuid root (as in SVR4), then this function 759 * is the only thing that stands in the way of a serious 760 * security problem. It validates requests for the "kill" 761 * and "renice" commands. 762 */ 763 764 int proc_owner(pid) 765 766 int pid; 767 768 { 769 register int cnt; 770 register struct kinfo_proc **prefp; 771 register struct kinfo_proc *pp; 772 773 prefp = pref; 774 cnt = pref_len; 775 while (--cnt >= 0) 776 { 777 pp = *prefp++; 778 if (PP(pp, p_pid) == (pid_t)pid) 779 { 780 return((int)EP(pp, e_pcred.p_ruid)); 781 } 782 } 783 return(-1); 784 } 785 786 787 /* 788 * swapmode is based on a program called swapinfo written 789 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 790 */ 791 792 #define SVAR(var) __STRING(var) /* to force expansion */ 793 #define KGET(idx, var) \ 794 KGET1(idx, &var, sizeof(var), SVAR(var)) 795 #define KGET1(idx, p, s, msg) \ 796 KGET2(nlst[idx].n_value, p, s, msg) 797 #define KGET2(addr, p, s, msg) \ 798 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 799 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 800 return (0); \ 801 } 802 #define KGETRET(addr, p, s, msg) \ 803 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 804 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 805 return (0); \ 806 } 807 808 809 int 810 swapmode(retavail, retfree) 811 int *retavail; 812 int *retfree; 813 { 814 char *header; 815 int hlen, nswap, nswdev, dmmax; 816 int i, div, avail, nfree, npfree, used; 817 struct swdevt *sw; 818 long blocksize, *perdev; 819 u_long ptr; 820 struct rlist head; 821 #if __FreeBSD_version >= 220000 822 struct rlisthdr swaplist; 823 #else 824 struct rlist *swaplist; 825 #endif 826 struct rlist *swapptr; 827 828 /* 829 * Counter for error messages. If we reach the limit, 830 * stop reading information from swap devices and 831 * return zero. This prevent endless 'bad address' 832 * messages. 833 */ 834 static warning = 10; 835 836 if (warning <= 0) { 837 /* a single warning */ 838 if (!warning) { 839 warning--; 840 fprintf(stderr, 841 "Too much errors, stop reading swap devices ...\n"); 842 (void)sleep(3); 843 } 844 return(0); 845 } 846 warning--; /* decrease counter, see end of function */ 847 848 KGET(VM_NSWAP, nswap); 849 if (!nswap) { 850 fprintf(stderr, "No swap space available\n"); 851 return(0); 852 } 853 854 KGET(VM_NSWDEV, nswdev); 855 KGET(VM_DMMAX, dmmax); 856 KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist"); 857 if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL || 858 (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL) 859 err(1, "malloc"); 860 KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt"); 861 KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt"); 862 863 /* Count up swap space. */ 864 nfree = 0; 865 memset(perdev, 0, nswdev * sizeof(*perdev)); 866 #if __FreeBSD_version >= 220000 867 swapptr = swaplist.rlh_list; 868 while (swapptr) { 869 #else 870 while (swaplist) { 871 #endif 872 int top, bottom, next_block; 873 #if __FreeBSD_version >= 220000 874 KGET2(swapptr, &head, sizeof(struct rlist), "swapptr"); 875 #else 876 KGET2(swaplist, &head, sizeof(struct rlist), "swaplist"); 877 #endif 878 879 top = head.rl_end; 880 bottom = head.rl_start; 881 882 nfree += top - bottom + 1; 883 884 /* 885 * Swap space is split up among the configured disks. 886 * 887 * For interleaved swap devices, the first dmmax blocks 888 * of swap space some from the first disk, the next dmmax 889 * blocks from the next, and so on up to nswap blocks. 890 * 891 * The list of free space joins adjacent free blocks, 892 * ignoring device boundries. If we want to keep track 893 * of this information per device, we'll just have to 894 * extract it ourselves. 895 */ 896 while (top / dmmax != bottom / dmmax) { 897 next_block = ((bottom + dmmax) / dmmax); 898 perdev[(bottom / dmmax) % nswdev] += 899 next_block * dmmax - bottom; 900 bottom = next_block * dmmax; 901 } 902 perdev[(bottom / dmmax) % nswdev] += 903 top - bottom + 1; 904 905 #if __FreeBSD_version >= 220000 906 swapptr = head.rl_next; 907 #else 908 swaplist = head.rl_next; 909 #endif 910 } 911 912 header = getbsize(&hlen, &blocksize); 913 div = blocksize / 512; 914 avail = npfree = 0; 915 for (i = 0; i < nswdev; i++) { 916 int xsize, xfree; 917 918 /* 919 * Don't report statistics for partitions which have not 920 * yet been activated via swapon(8). 921 */ 922 923 xsize = sw[i].sw_nblks; 924 xfree = perdev[i]; 925 used = xsize - xfree; 926 npfree++; 927 avail += xsize; 928 } 929 930 /* 931 * If only one partition has been set up via swapon(8), we don't 932 * need to bother with totals. 933 */ 934 *retavail = avail / 2; 935 *retfree = nfree / 2; 936 used = avail - nfree; 937 free(sw); free(perdev); 938 939 /* increase counter, no errors occurs */ 940 warning++; 941 942 return (int)(((double)used / (double)avail * 100.0) + 0.5); 943 } 944