1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 /* TOP_JID_LEN based on max of 999999 */ 71 #define TOP_JID_LEN 7 72 static int jidlength; 73 static int cmdlengthdelta; 74 75 /* Prototypes for top internals */ 76 void quit(int); 77 78 /* get_process_info passes back a handle. This is what it looks like: */ 79 80 struct handle { 81 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 82 int remaining; /* number of pointers remaining */ 83 }; 84 85 /* declarations for load_avg */ 86 #include "loadavg.h" 87 88 /* define what weighted cpu is. */ 89 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 90 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 91 92 /* what we consider to be process size: */ 93 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 94 95 #define RU(pp) (&(pp)->ki_rusage) 96 #define RUTOT(pp) \ 97 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 98 99 100 /* definitions for indices in the nlist array */ 101 102 /* 103 * These definitions control the format of the per-process area 104 */ 105 106 static char io_header[] = 107 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 108 109 #define io_Proc_format \ 110 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 111 112 static char smp_header_thr[] = 113 " PID%*s %-*.*s THR PRI NICE SIZE RES STATE C TIME %7s COMMAND"; 114 static char smp_header[] = 115 " PID%*s %-*.*s " "PRI NICE SIZE RES STATE C TIME %7s COMMAND"; 116 117 #define smp_Proc_format \ 118 "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %6.2f%% %.*s" 119 120 static char up_header_thr[] = 121 " PID%*s %-*.*s THR PRI NICE SIZE RES STATE TIME %7s COMMAND"; 122 static char up_header[] = 123 " PID%*s %-*.*s " "PRI NICE SIZE RES STATE TIME %7s COMMAND"; 124 125 #define up_Proc_format \ 126 "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %6.2f%% %.*s" 127 128 129 /* process state names for the "STATE" column of the display */ 130 /* the extra nulls in the string "run" are for adding a slash and 131 the processor number when needed */ 132 133 char *state_abbrev[] = { 134 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 135 }; 136 137 138 static kvm_t *kd; 139 140 /* values that we stash away in _init and use in later routines */ 141 142 static double logcpu; 143 144 /* these are retrieved from the kernel in _init */ 145 146 static load_avg ccpu; 147 148 /* these are used in the get_ functions */ 149 150 static int lastpid; 151 152 /* these are for calculating cpu state percentages */ 153 154 static long cp_time[CPUSTATES]; 155 static long cp_old[CPUSTATES]; 156 static long cp_diff[CPUSTATES]; 157 158 /* these are for detailing the process states */ 159 160 int process_states[8]; 161 char *procstatenames[] = { 162 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 163 " zombie, ", " waiting, ", " lock, ", 164 NULL 165 }; 166 167 /* these are for detailing the cpu states */ 168 169 int cpu_states[CPUSTATES]; 170 char *cpustatenames[] = { 171 "user", "nice", "system", "interrupt", "idle", NULL 172 }; 173 174 /* these are for detailing the memory statistics */ 175 176 int memory_stats[7]; 177 char *memorynames[] = { 178 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 179 "K Free", NULL 180 }; 181 182 int arc_stats[7]; 183 char *arcnames[] = { 184 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 185 NULL 186 }; 187 188 int swap_stats[7]; 189 char *swapnames[] = { 190 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 191 NULL 192 }; 193 194 195 /* these are for keeping track of the proc array */ 196 197 static int nproc; 198 static int onproc = -1; 199 static int pref_len; 200 static struct kinfo_proc *pbase; 201 static struct kinfo_proc **pref; 202 static struct kinfo_proc *previous_procs; 203 static struct kinfo_proc **previous_pref; 204 static int previous_proc_count = 0; 205 static int previous_proc_count_max = 0; 206 static int arc_enabled; 207 208 /* total number of io operations */ 209 static long total_inblock; 210 static long total_oublock; 211 static long total_majflt; 212 213 /* these are for getting the memory statistics */ 214 215 static int pageshift; /* log base 2 of the pagesize */ 216 217 /* define pagetok in terms of pageshift */ 218 219 #define pagetok(size) ((size) << pageshift) 220 221 /* useful externals */ 222 long percentages(); 223 224 #ifdef ORDER 225 /* 226 * Sorting orders. The first element is the default. 227 */ 228 char *ordernames[] = { 229 "cpu", "size", "res", "time", "pri", "threads", 230 "total", "read", "write", "fault", "vcsw", "ivcsw", 231 "jid", "pid", NULL 232 }; 233 #endif 234 235 /* Per-cpu time states */ 236 static int maxcpu; 237 static int maxid; 238 static int ncpus; 239 static u_long cpumask; 240 static long *times; 241 static long *pcpu_cp_time; 242 static long *pcpu_cp_old; 243 static long *pcpu_cp_diff; 244 static int *pcpu_cpu_states; 245 246 static int compare_jid(const void *a, const void *b); 247 static int compare_pid(const void *a, const void *b); 248 static int compare_tid(const void *a, const void *b); 249 static const char *format_nice(const struct kinfo_proc *pp); 250 static void getsysctl(const char *name, void *ptr, size_t len); 251 static int swapmode(int *retavail, int *retfree); 252 static void update_layout(void); 253 254 void 255 toggle_pcpustats(void) 256 { 257 258 if (ncpus == 1) 259 return; 260 update_layout(); 261 } 262 263 /* Adjust display based on ncpus and the ARC state. */ 264 static void 265 update_layout(void) 266 { 267 268 y_mem = 3; 269 y_arc = 4; 270 y_swap = 4 + arc_enabled; 271 y_idlecursor = 5 + arc_enabled; 272 y_message = 5 + arc_enabled; 273 y_header = 6 + arc_enabled; 274 y_procs = 7 + arc_enabled; 275 Header_lines = 7 + arc_enabled; 276 277 if (pcpu_stats) { 278 y_mem += ncpus - 1; 279 y_arc += ncpus - 1; 280 y_swap += ncpus - 1; 281 y_idlecursor += ncpus - 1; 282 y_message += ncpus - 1; 283 y_header += ncpus - 1; 284 y_procs += ncpus - 1; 285 Header_lines += ncpus - 1; 286 } 287 } 288 289 int 290 machine_init(struct statics *statics, char do_unames) 291 { 292 int i, j, empty, pagesize; 293 uint64_t arc_size; 294 size_t size; 295 struct passwd *pw; 296 297 size = sizeof(smpmode); 298 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 299 NULL, 0) != 0 && 300 sysctlbyname("kern.smp.active", &smpmode, &size, 301 NULL, 0) != 0) || 302 size != sizeof(smpmode)) 303 smpmode = 0; 304 305 size = sizeof(arc_size); 306 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 307 NULL, 0) == 0 && arc_size != 0) 308 arc_enabled = 1; 309 310 if (do_unames) { 311 while ((pw = getpwent()) != NULL) { 312 if (strlen(pw->pw_name) > namelength) 313 namelength = strlen(pw->pw_name); 314 } 315 } 316 if (smpmode && namelength > SMPUNAMELEN) 317 namelength = SMPUNAMELEN; 318 else if (namelength > UPUNAMELEN) 319 namelength = UPUNAMELEN; 320 321 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 322 if (kd == NULL) 323 return (-1); 324 325 GETSYSCTL("kern.ccpu", ccpu); 326 327 /* this is used in calculating WCPU -- calculate it ahead of time */ 328 logcpu = log(loaddouble(ccpu)); 329 330 pbase = NULL; 331 pref = NULL; 332 nproc = 0; 333 onproc = -1; 334 335 /* get the page size and calculate pageshift from it */ 336 pagesize = getpagesize(); 337 pageshift = 0; 338 while (pagesize > 1) { 339 pageshift++; 340 pagesize >>= 1; 341 } 342 343 /* we only need the amount of log(2)1024 for our conversion */ 344 pageshift -= LOG1024; 345 346 /* fill in the statics information */ 347 statics->procstate_names = procstatenames; 348 statics->cpustate_names = cpustatenames; 349 statics->memory_names = memorynames; 350 if (arc_enabled) 351 statics->arc_names = arcnames; 352 else 353 statics->arc_names = NULL; 354 statics->swap_names = swapnames; 355 #ifdef ORDER 356 statics->order_names = ordernames; 357 #endif 358 359 /* Allocate state for per-CPU stats. */ 360 cpumask = 0; 361 ncpus = 0; 362 GETSYSCTL("kern.smp.maxcpus", maxcpu); 363 size = sizeof(long) * maxcpu * CPUSTATES; 364 times = malloc(size); 365 if (times == NULL) 366 err(1, "malloc %zd bytes", size); 367 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 368 err(1, "sysctlbyname kern.cp_times"); 369 pcpu_cp_time = calloc(1, size); 370 maxid = (size / CPUSTATES / sizeof(long)) - 1; 371 for (i = 0; i <= maxid; i++) { 372 empty = 1; 373 for (j = 0; empty && j < CPUSTATES; j++) { 374 if (times[i * CPUSTATES + j] != 0) 375 empty = 0; 376 } 377 if (!empty) { 378 cpumask |= (1ul << i); 379 ncpus++; 380 } 381 } 382 size = sizeof(long) * ncpus * CPUSTATES; 383 pcpu_cp_old = calloc(1, size); 384 pcpu_cp_diff = calloc(1, size); 385 pcpu_cpu_states = calloc(1, size); 386 statics->ncpus = ncpus; 387 388 update_layout(); 389 390 /* all done! */ 391 return (0); 392 } 393 394 char * 395 format_header(char *uname_field) 396 { 397 static char Header[128]; 398 const char *prehead; 399 400 if (ps.jail) 401 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 402 else 403 jidlength = 0; 404 405 switch (displaymode) { 406 case DISP_CPU: 407 /* 408 * The logic of picking the right header format seems reverse 409 * here because we only want to display a THR column when 410 * "thread mode" is off (and threads are not listed as 411 * separate lines). 412 */ 413 prehead = smpmode ? 414 (ps.thread ? smp_header : smp_header_thr) : 415 (ps.thread ? up_header : up_header_thr); 416 snprintf(Header, sizeof(Header), prehead, 417 jidlength, ps.jail ? " JID" : "", 418 namelength, namelength, uname_field, 419 ps.wcpu ? "WCPU" : "CPU"); 420 break; 421 case DISP_IO: 422 prehead = io_header; 423 snprintf(Header, sizeof(Header), prehead, 424 jidlength, ps.jail ? " JID" : "", 425 namelength, namelength, uname_field); 426 break; 427 } 428 cmdlengthdelta = strlen(Header) - 7; 429 return (Header); 430 } 431 432 static int swappgsin = -1; 433 static int swappgsout = -1; 434 extern struct timeval timeout; 435 436 437 void 438 get_system_info(struct system_info *si) 439 { 440 long total; 441 struct loadavg sysload; 442 int mib[2]; 443 struct timeval boottime; 444 uint64_t arc_stat, arc_stat2; 445 int i, j; 446 size_t size; 447 448 /* get the CPU stats */ 449 size = (maxid + 1) * CPUSTATES * sizeof(long); 450 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 451 err(1, "sysctlbyname kern.cp_times"); 452 GETSYSCTL("kern.cp_time", cp_time); 453 GETSYSCTL("vm.loadavg", sysload); 454 GETSYSCTL("kern.lastpid", lastpid); 455 456 /* convert load averages to doubles */ 457 for (i = 0; i < 3; i++) 458 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 459 460 /* convert cp_time counts to percentages */ 461 for (i = j = 0; i <= maxid; i++) { 462 if ((cpumask & (1ul << i)) == 0) 463 continue; 464 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 465 &pcpu_cp_time[j * CPUSTATES], 466 &pcpu_cp_old[j * CPUSTATES], 467 &pcpu_cp_diff[j * CPUSTATES]); 468 j++; 469 } 470 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 471 472 /* sum memory & swap statistics */ 473 { 474 static unsigned int swap_delay = 0; 475 static int swapavail = 0; 476 static int swapfree = 0; 477 static long bufspace = 0; 478 static int nspgsin, nspgsout; 479 480 GETSYSCTL("vfs.bufspace", bufspace); 481 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 482 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 483 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 484 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 485 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 486 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 487 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 488 /* convert memory stats to Kbytes */ 489 memory_stats[0] = pagetok(memory_stats[0]); 490 memory_stats[1] = pagetok(memory_stats[1]); 491 memory_stats[2] = pagetok(memory_stats[2]); 492 memory_stats[3] = pagetok(memory_stats[3]); 493 memory_stats[4] = bufspace / 1024; 494 memory_stats[5] = pagetok(memory_stats[5]); 495 memory_stats[6] = -1; 496 497 /* first interval */ 498 if (swappgsin < 0) { 499 swap_stats[4] = 0; 500 swap_stats[5] = 0; 501 } 502 503 /* compute differences between old and new swap statistic */ 504 else { 505 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 506 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 507 } 508 509 swappgsin = nspgsin; 510 swappgsout = nspgsout; 511 512 /* call CPU heavy swapmode() only for changes */ 513 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 514 swap_stats[3] = swapmode(&swapavail, &swapfree); 515 swap_stats[0] = swapavail; 516 swap_stats[1] = swapavail - swapfree; 517 swap_stats[2] = swapfree; 518 } 519 swap_delay = 1; 520 swap_stats[6] = -1; 521 } 522 523 if (arc_enabled) { 524 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 525 arc_stats[0] = arc_stat >> 10; 526 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 527 arc_stats[1] = arc_stat >> 10; 528 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 529 arc_stats[2] = arc_stat >> 10; 530 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 531 arc_stats[3] = arc_stat >> 10; 532 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 533 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 534 arc_stats[4] = arc_stat + arc_stat2 >> 10; 535 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 536 arc_stats[5] = arc_stat >> 10; 537 si->arc = arc_stats; 538 } 539 540 /* set arrays and strings */ 541 if (pcpu_stats) { 542 si->cpustates = pcpu_cpu_states; 543 si->ncpus = ncpus; 544 } else { 545 si->cpustates = cpu_states; 546 si->ncpus = 1; 547 } 548 si->memory = memory_stats; 549 si->swap = swap_stats; 550 551 552 if (lastpid > 0) { 553 si->last_pid = lastpid; 554 } else { 555 si->last_pid = -1; 556 } 557 558 /* 559 * Print how long system has been up. 560 * (Found by looking getting "boottime" from the kernel) 561 */ 562 mib[0] = CTL_KERN; 563 mib[1] = KERN_BOOTTIME; 564 size = sizeof(boottime); 565 if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 && 566 boottime.tv_sec != 0) { 567 si->boottime = boottime; 568 } else { 569 si->boottime.tv_sec = -1; 570 } 571 } 572 573 #define NOPROC ((void *)-1) 574 575 /* 576 * We need to compare data from the old process entry with the new 577 * process entry. 578 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 579 * structure to cache the mapping. We also use a negative cache pointer 580 * of NOPROC to avoid duplicate lookups. 581 * XXX: this could be done when the actual processes are fetched, we do 582 * it here out of laziness. 583 */ 584 const struct kinfo_proc * 585 get_old_proc(struct kinfo_proc *pp) 586 { 587 struct kinfo_proc **oldpp, *oldp; 588 589 /* 590 * If this is the first fetch of the kinfo_procs then we don't have 591 * any previous entries. 592 */ 593 if (previous_proc_count == 0) 594 return (NULL); 595 /* negative cache? */ 596 if (pp->ki_udata == NOPROC) 597 return (NULL); 598 /* cached? */ 599 if (pp->ki_udata != NULL) 600 return (pp->ki_udata); 601 /* 602 * Not cached, 603 * 1) look up based on pid. 604 * 2) compare process start. 605 * If we fail here, then setup a negative cache entry, otherwise 606 * cache it. 607 */ 608 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 609 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 610 if (oldpp == NULL) { 611 pp->ki_udata = NOPROC; 612 return (NULL); 613 } 614 oldp = *oldpp; 615 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 616 pp->ki_udata = NOPROC; 617 return (NULL); 618 } 619 pp->ki_udata = oldp; 620 return (oldp); 621 } 622 623 /* 624 * Return the total amount of IO done in blocks in/out and faults. 625 * store the values individually in the pointers passed in. 626 */ 627 long 628 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 629 long *vcsw, long *ivcsw) 630 { 631 const struct kinfo_proc *oldp; 632 static struct kinfo_proc dummy; 633 long ret; 634 635 oldp = get_old_proc(pp); 636 if (oldp == NULL) { 637 bzero(&dummy, sizeof(dummy)); 638 oldp = &dummy; 639 } 640 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 641 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 642 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 643 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 644 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 645 ret = 646 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 647 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 648 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 649 return (ret); 650 } 651 652 /* 653 * Return the total number of block in/out and faults by a process. 654 */ 655 long 656 get_io_total(struct kinfo_proc *pp) 657 { 658 long dummy; 659 660 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 661 } 662 663 static struct handle handle; 664 665 caddr_t 666 get_process_info(struct system_info *si, struct process_select *sel, 667 int (*compare)(const void *, const void *)) 668 { 669 int i; 670 int total_procs; 671 long p_io; 672 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 673 int active_procs; 674 struct kinfo_proc **prefp; 675 struct kinfo_proc *pp; 676 677 /* these are copied out of sel for speed */ 678 int show_idle; 679 int show_jid; 680 int show_self; 681 int show_system; 682 int show_uid; 683 int show_command; 684 int show_kidle; 685 686 /* 687 * Save the previous process info. 688 */ 689 if (previous_proc_count_max < nproc) { 690 free(previous_procs); 691 previous_procs = malloc(nproc * sizeof(*previous_procs)); 692 free(previous_pref); 693 previous_pref = malloc(nproc * sizeof(*previous_pref)); 694 if (previous_procs == NULL || previous_pref == NULL) { 695 (void) fprintf(stderr, "top: Out of memory.\n"); 696 quit(23); 697 } 698 previous_proc_count_max = nproc; 699 } 700 if (nproc) { 701 for (i = 0; i < nproc; i++) 702 previous_pref[i] = &previous_procs[i]; 703 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 704 qsort(previous_pref, nproc, sizeof(*previous_pref), 705 ps.thread ? compare_tid : compare_pid); 706 } 707 previous_proc_count = nproc; 708 709 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 710 0, &nproc); 711 if (nproc > onproc) 712 pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); 713 if (pref == NULL || pbase == NULL) { 714 (void) fprintf(stderr, "top: Out of memory.\n"); 715 quit(23); 716 } 717 /* get a pointer to the states summary array */ 718 si->procstates = process_states; 719 720 /* set up flags which define what we are going to select */ 721 show_idle = sel->idle; 722 show_jid = sel->jid != -1; 723 show_self = sel->self == -1; 724 show_system = sel->system; 725 show_uid = sel->uid != -1; 726 show_command = sel->command != NULL; 727 show_kidle = sel->kidle; 728 729 /* count up process states and get pointers to interesting procs */ 730 total_procs = 0; 731 active_procs = 0; 732 total_inblock = 0; 733 total_oublock = 0; 734 total_majflt = 0; 735 memset((char *)process_states, 0, sizeof(process_states)); 736 prefp = pref; 737 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 738 739 if (pp->ki_stat == 0) 740 /* not in use */ 741 continue; 742 743 if (!show_self && pp->ki_pid == sel->self) 744 /* skip self */ 745 continue; 746 747 if (!show_system && (pp->ki_flag & P_SYSTEM)) 748 /* skip system process */ 749 continue; 750 751 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 752 &p_vcsw, &p_ivcsw); 753 total_inblock += p_inblock; 754 total_oublock += p_oublock; 755 total_majflt += p_majflt; 756 total_procs++; 757 process_states[pp->ki_stat]++; 758 759 if (pp->ki_stat == SZOMB) 760 /* skip zombies */ 761 continue; 762 763 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 764 /* skip kernel idle process */ 765 continue; 766 767 if (displaymode == DISP_CPU && !show_idle && 768 (pp->ki_pctcpu == 0 || 769 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 770 /* skip idle or non-running processes */ 771 continue; 772 773 if (displaymode == DISP_IO && !show_idle && p_io == 0) 774 /* skip processes that aren't doing I/O */ 775 continue; 776 777 if (show_jid && pp->ki_jid != sel->jid) 778 /* skip proc. that don't belong to the selected JID */ 779 continue; 780 781 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 782 /* skip proc. that don't belong to the selected UID */ 783 continue; 784 785 *prefp++ = pp; 786 active_procs++; 787 } 788 789 /* if requested, sort the "interesting" processes */ 790 if (compare != NULL) 791 qsort(pref, active_procs, sizeof(*pref), compare); 792 793 /* remember active and total counts */ 794 si->p_total = total_procs; 795 si->p_active = pref_len = active_procs; 796 797 /* pass back a handle */ 798 handle.next_proc = pref; 799 handle.remaining = active_procs; 800 return ((caddr_t)&handle); 801 } 802 803 static char fmt[512]; /* static area where result is built */ 804 805 char * 806 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 807 { 808 struct kinfo_proc *pp; 809 const struct kinfo_proc *oldp; 810 long cputime; 811 double pct; 812 struct handle *hp; 813 char status[16]; 814 int cpu, state; 815 struct rusage ru, *rup; 816 long p_tot, s_tot; 817 char *proc_fmt, thr_buf[6], jid_buf[TOP_JID_LEN + 1]; 818 char *cmdbuf = NULL; 819 char **args; 820 const int cmdlen = 128; 821 822 /* find and remember the next proc structure */ 823 hp = (struct handle *)handle; 824 pp = *(hp->next_proc++); 825 hp->remaining--; 826 827 /* get the process's command name */ 828 if ((pp->ki_flag & P_INMEM) == 0) { 829 /* 830 * Print swapped processes as <pname> 831 */ 832 size_t len; 833 834 len = strlen(pp->ki_comm); 835 if (len > sizeof(pp->ki_comm) - 3) 836 len = sizeof(pp->ki_comm) - 3; 837 memmove(pp->ki_comm + 1, pp->ki_comm, len); 838 pp->ki_comm[0] = '<'; 839 pp->ki_comm[len + 1] = '>'; 840 pp->ki_comm[len + 2] = '\0'; 841 } 842 843 /* 844 * Convert the process's runtime from microseconds to seconds. This 845 * time includes the interrupt time although that is not wanted here. 846 * ps(1) is similarly sloppy. 847 */ 848 cputime = (pp->ki_runtime + 500000) / 1000000; 849 850 /* calculate the base for cpu percentages */ 851 pct = pctdouble(pp->ki_pctcpu); 852 853 /* generate "STATE" field */ 854 switch (state = pp->ki_stat) { 855 case SRUN: 856 if (smpmode && pp->ki_oncpu != 0xff) 857 sprintf(status, "CPU%d", pp->ki_oncpu); 858 else 859 strcpy(status, "RUN"); 860 break; 861 case SLOCK: 862 if (pp->ki_kiflag & KI_LOCKBLOCK) { 863 sprintf(status, "*%.6s", pp->ki_lockname); 864 break; 865 } 866 /* fall through */ 867 case SSLEEP: 868 if (pp->ki_wmesg != NULL) { 869 sprintf(status, "%.6s", pp->ki_wmesg); 870 break; 871 } 872 /* FALLTHROUGH */ 873 default: 874 875 if (state >= 0 && 876 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 877 sprintf(status, "%.6s", state_abbrev[state]); 878 else 879 sprintf(status, "?%5d", state); 880 break; 881 } 882 883 cmdbuf = (char *)malloc(cmdlen + 1); 884 if (cmdbuf == NULL) { 885 warn("malloc(%d)", cmdlen + 1); 886 return NULL; 887 } 888 889 if (!(flags & FMT_SHOWARGS)) { 890 if (ps.thread && pp->ki_flag & P_HADTHREADS && 891 pp->ki_tdname[0]) { 892 snprintf(cmdbuf, cmdlen, "%s{%s}", pp->ki_comm, 893 pp->ki_tdname); 894 } else { 895 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 896 } 897 } else { 898 if (pp->ki_flag & P_SYSTEM || 899 pp->ki_args == NULL || 900 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 901 !(*args)) { 902 if (ps.thread && pp->ki_flag & P_HADTHREADS && 903 pp->ki_tdname[0]) { 904 snprintf(cmdbuf, cmdlen, 905 "[%s{%s}]", pp->ki_comm, pp->ki_tdname); 906 } else { 907 snprintf(cmdbuf, cmdlen, 908 "[%s]", pp->ki_comm); 909 } 910 } else { 911 char *src, *dst, *argbuf; 912 char *cmd; 913 size_t argbuflen; 914 size_t len; 915 916 argbuflen = cmdlen * 4; 917 argbuf = (char *)malloc(argbuflen + 1); 918 if (argbuf == NULL) { 919 warn("malloc(%d)", argbuflen + 1); 920 free(cmdbuf); 921 return NULL; 922 } 923 924 dst = argbuf; 925 926 /* Extract cmd name from argv */ 927 cmd = strrchr(*args, '/'); 928 if (cmd == NULL) 929 cmd = *args; 930 else 931 cmd++; 932 933 for (; (src = *args++) != NULL; ) { 934 if (*src == '\0') 935 continue; 936 len = (argbuflen - (dst - argbuf) - 1) / 4; 937 strvisx(dst, src, 938 strlen(src) < len ? strlen(src) : len, 939 VIS_NL | VIS_CSTYLE); 940 while (*dst != '\0') 941 dst++; 942 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 943 *dst++ = ' '; /* add delimiting space */ 944 } 945 if (dst != argbuf && dst[-1] == ' ') 946 dst--; 947 *dst = '\0'; 948 949 if (strcmp(cmd, pp->ki_comm) != 0) { 950 if (ps.thread && pp->ki_flag & P_HADTHREADS && 951 pp->ki_tdname[0]) 952 snprintf(cmdbuf, cmdlen, 953 "%s (%s){%s}", argbuf, pp->ki_comm, 954 pp->ki_tdname); 955 else 956 snprintf(cmdbuf, cmdlen, 957 "%s (%s)", argbuf, pp->ki_comm); 958 } else { 959 if (ps.thread && pp->ki_flag & P_HADTHREADS && 960 pp->ki_tdname[0]) 961 snprintf(cmdbuf, cmdlen, 962 "%s{%s}", argbuf, pp->ki_tdname); 963 else 964 strlcpy(cmdbuf, argbuf, cmdlen); 965 } 966 free(argbuf); 967 } 968 } 969 970 if (ps.jail == 0) 971 jid_buf[0] = '\0'; 972 else 973 snprintf(jid_buf, sizeof(jid_buf), "%*d", 974 jidlength - 1, pp->ki_jid); 975 976 if (displaymode == DISP_IO) { 977 oldp = get_old_proc(pp); 978 if (oldp != NULL) { 979 ru.ru_inblock = RU(pp)->ru_inblock - 980 RU(oldp)->ru_inblock; 981 ru.ru_oublock = RU(pp)->ru_oublock - 982 RU(oldp)->ru_oublock; 983 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 984 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 985 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 986 rup = &ru; 987 } else { 988 rup = RU(pp); 989 } 990 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 991 s_tot = total_inblock + total_oublock + total_majflt; 992 993 snprintf(fmt, sizeof(fmt), io_Proc_format, 994 pp->ki_pid, 995 jidlength, jid_buf, 996 namelength, namelength, (*get_userid)(pp->ki_ruid), 997 rup->ru_nvcsw, 998 rup->ru_nivcsw, 999 rup->ru_inblock, 1000 rup->ru_oublock, 1001 rup->ru_majflt, 1002 p_tot, 1003 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1004 screen_width > cmdlengthdelta ? 1005 screen_width - cmdlengthdelta : 0, 1006 printable(cmdbuf)); 1007 1008 free(cmdbuf); 1009 1010 return (fmt); 1011 } 1012 1013 /* format this entry */ 1014 if (smpmode) { 1015 if (state == SRUN && pp->ki_oncpu != 0xff) 1016 cpu = pp->ki_oncpu; 1017 else 1018 cpu = pp->ki_lastcpu; 1019 } else 1020 cpu = 0; 1021 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1022 if (ps.thread != 0) 1023 thr_buf[0] = '\0'; 1024 else 1025 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1026 sizeof(thr_buf) - 2, pp->ki_numthreads); 1027 1028 snprintf(fmt, sizeof(fmt), proc_fmt, 1029 pp->ki_pid, 1030 jidlength, jid_buf, 1031 namelength, namelength, (*get_userid)(pp->ki_ruid), 1032 thr_buf, 1033 pp->ki_pri.pri_level - PZERO, 1034 format_nice(pp), 1035 format_k2(PROCSIZE(pp)), 1036 format_k2(pagetok(pp->ki_rssize)), 1037 status, 1038 cpu, 1039 format_time(cputime), 1040 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1041 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1042 printable(cmdbuf)); 1043 1044 free(cmdbuf); 1045 1046 /* return the result */ 1047 return (fmt); 1048 } 1049 1050 static void 1051 getsysctl(const char *name, void *ptr, size_t len) 1052 { 1053 size_t nlen = len; 1054 1055 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1056 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1057 strerror(errno)); 1058 quit(23); 1059 } 1060 if (nlen != len) { 1061 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1062 name, (unsigned long)len, (unsigned long)nlen); 1063 quit(23); 1064 } 1065 } 1066 1067 static const char * 1068 format_nice(const struct kinfo_proc *pp) 1069 { 1070 const char *fifo, *kthread; 1071 int rtpri; 1072 static char nicebuf[4 + 1]; 1073 1074 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1075 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; 1076 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1077 case PRI_ITHD: 1078 return ("-"); 1079 case PRI_REALTIME: 1080 /* 1081 * XXX: the kernel doesn't tell us the original rtprio and 1082 * doesn't really know what it was, so to recover it we 1083 * must be more chummy with the implementation than the 1084 * implementation is with itself. pri_user gives a 1085 * constant "base" priority, but is only initialized 1086 * properly for user threads. pri_native gives what the 1087 * kernel calls the "base" priority, but it isn't constant 1088 * since it is changed by priority propagation. pri_native 1089 * also isn't properly initialized for all threads, but it 1090 * is properly initialized for kernel realtime and idletime 1091 * threads. Thus we use pri_user for the base priority of 1092 * user threads (it is always correct) and pri_native for 1093 * the base priority of kernel realtime and idletime threads 1094 * (there is nothing better, and it is usually correct). 1095 * 1096 * The field width and thus the buffer are too small for 1097 * values like "kr31F", but such values shouldn't occur, 1098 * and if they do then the tailing "F" is not displayed. 1099 */ 1100 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1101 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1102 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1103 kthread, rtpri, fifo); 1104 break; 1105 case PRI_TIMESHARE: 1106 if (pp->ki_flag & P_KTHREAD) 1107 return ("-"); 1108 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1109 break; 1110 case PRI_IDLE: 1111 /* XXX: as above. */ 1112 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1113 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1114 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1115 kthread, rtpri, fifo); 1116 break; 1117 default: 1118 return ("?"); 1119 } 1120 return (nicebuf); 1121 } 1122 1123 /* comparison routines for qsort */ 1124 1125 static int 1126 compare_pid(const void *p1, const void *p2) 1127 { 1128 const struct kinfo_proc * const *pp1 = p1; 1129 const struct kinfo_proc * const *pp2 = p2; 1130 1131 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1132 abort(); 1133 1134 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1135 } 1136 1137 static int 1138 compare_tid(const void *p1, const void *p2) 1139 { 1140 const struct kinfo_proc * const *pp1 = p1; 1141 const struct kinfo_proc * const *pp2 = p2; 1142 1143 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1144 abort(); 1145 1146 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1147 } 1148 1149 /* 1150 * proc_compare - comparison function for "qsort" 1151 * Compares the resource consumption of two processes using five 1152 * distinct keys. The keys (in descending order of importance) are: 1153 * percent cpu, cpu ticks, state, resident set size, total virtual 1154 * memory usage. The process states are ordered as follows (from least 1155 * to most important): WAIT, zombie, sleep, stop, start, run. The 1156 * array declaration below maps a process state index into a number 1157 * that reflects this ordering. 1158 */ 1159 1160 static int sorted_state[] = { 1161 0, /* not used */ 1162 3, /* sleep */ 1163 1, /* ABANDONED (WAIT) */ 1164 6, /* run */ 1165 5, /* start */ 1166 2, /* zombie */ 1167 4 /* stop */ 1168 }; 1169 1170 1171 #define ORDERKEY_PCTCPU(a, b) do { \ 1172 long diff; \ 1173 if (ps.wcpu) \ 1174 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ 1175 (b))) - \ 1176 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ 1177 (a))); \ 1178 else \ 1179 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ 1180 if (diff != 0) \ 1181 return (diff > 0 ? 1 : -1); \ 1182 } while (0) 1183 1184 #define ORDERKEY_CPTICKS(a, b) do { \ 1185 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1186 if (diff != 0) \ 1187 return (diff > 0 ? 1 : -1); \ 1188 } while (0) 1189 1190 #define ORDERKEY_STATE(a, b) do { \ 1191 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1192 if (diff != 0) \ 1193 return (diff > 0 ? 1 : -1); \ 1194 } while (0) 1195 1196 #define ORDERKEY_PRIO(a, b) do { \ 1197 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1198 if (diff != 0) \ 1199 return (diff > 0 ? 1 : -1); \ 1200 } while (0) 1201 1202 #define ORDERKEY_THREADS(a, b) do { \ 1203 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1204 if (diff != 0) \ 1205 return (diff > 0 ? 1 : -1); \ 1206 } while (0) 1207 1208 #define ORDERKEY_RSSIZE(a, b) do { \ 1209 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1210 if (diff != 0) \ 1211 return (diff > 0 ? 1 : -1); \ 1212 } while (0) 1213 1214 #define ORDERKEY_MEM(a, b) do { \ 1215 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1216 if (diff != 0) \ 1217 return (diff > 0 ? 1 : -1); \ 1218 } while (0) 1219 1220 #define ORDERKEY_JID(a, b) do { \ 1221 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1222 if (diff != 0) \ 1223 return (diff > 0 ? 1 : -1); \ 1224 } while (0) 1225 1226 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1227 1228 int 1229 #ifdef ORDER 1230 compare_cpu(void *arg1, void *arg2) 1231 #else 1232 proc_compare(void *arg1, void *arg2) 1233 #endif 1234 { 1235 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1236 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1237 1238 ORDERKEY_PCTCPU(p1, p2); 1239 ORDERKEY_CPTICKS(p1, p2); 1240 ORDERKEY_STATE(p1, p2); 1241 ORDERKEY_PRIO(p1, p2); 1242 ORDERKEY_RSSIZE(p1, p2); 1243 ORDERKEY_MEM(p1, p2); 1244 1245 return (0); 1246 } 1247 1248 #ifdef ORDER 1249 /* "cpu" compare routines */ 1250 int compare_size(), compare_res(), compare_time(), compare_prio(), 1251 compare_threads(); 1252 1253 /* 1254 * "io" compare routines. Context switches aren't i/o, but are displayed 1255 * on the "io" display. 1256 */ 1257 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1258 compare_vcsw(), compare_ivcsw(); 1259 1260 int (*compares[])() = { 1261 compare_cpu, 1262 compare_size, 1263 compare_res, 1264 compare_time, 1265 compare_prio, 1266 compare_threads, 1267 compare_iototal, 1268 compare_ioread, 1269 compare_iowrite, 1270 compare_iofault, 1271 compare_vcsw, 1272 compare_ivcsw, 1273 compare_jid, 1274 NULL 1275 }; 1276 1277 /* compare_size - the comparison function for sorting by total memory usage */ 1278 1279 int 1280 compare_size(void *arg1, void *arg2) 1281 { 1282 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1283 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1284 1285 ORDERKEY_MEM(p1, p2); 1286 ORDERKEY_RSSIZE(p1, p2); 1287 ORDERKEY_PCTCPU(p1, p2); 1288 ORDERKEY_CPTICKS(p1, p2); 1289 ORDERKEY_STATE(p1, p2); 1290 ORDERKEY_PRIO(p1, p2); 1291 1292 return (0); 1293 } 1294 1295 /* compare_res - the comparison function for sorting by resident set size */ 1296 1297 int 1298 compare_res(void *arg1, void *arg2) 1299 { 1300 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1301 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1302 1303 ORDERKEY_RSSIZE(p1, p2); 1304 ORDERKEY_MEM(p1, p2); 1305 ORDERKEY_PCTCPU(p1, p2); 1306 ORDERKEY_CPTICKS(p1, p2); 1307 ORDERKEY_STATE(p1, p2); 1308 ORDERKEY_PRIO(p1, p2); 1309 1310 return (0); 1311 } 1312 1313 /* compare_time - the comparison function for sorting by total cpu time */ 1314 1315 int 1316 compare_time(void *arg1, void *arg2) 1317 { 1318 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1319 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1320 1321 ORDERKEY_CPTICKS(p1, p2); 1322 ORDERKEY_PCTCPU(p1, p2); 1323 ORDERKEY_STATE(p1, p2); 1324 ORDERKEY_PRIO(p1, p2); 1325 ORDERKEY_RSSIZE(p1, p2); 1326 ORDERKEY_MEM(p1, p2); 1327 1328 return (0); 1329 } 1330 1331 /* compare_prio - the comparison function for sorting by priority */ 1332 1333 int 1334 compare_prio(void *arg1, void *arg2) 1335 { 1336 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1337 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1338 1339 ORDERKEY_PRIO(p1, p2); 1340 ORDERKEY_CPTICKS(p1, p2); 1341 ORDERKEY_PCTCPU(p1, p2); 1342 ORDERKEY_STATE(p1, p2); 1343 ORDERKEY_RSSIZE(p1, p2); 1344 ORDERKEY_MEM(p1, p2); 1345 1346 return (0); 1347 } 1348 1349 /* compare_threads - the comparison function for sorting by threads */ 1350 int 1351 compare_threads(void *arg1, void *arg2) 1352 { 1353 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1354 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1355 1356 ORDERKEY_THREADS(p1, p2); 1357 ORDERKEY_PCTCPU(p1, p2); 1358 ORDERKEY_CPTICKS(p1, p2); 1359 ORDERKEY_STATE(p1, p2); 1360 ORDERKEY_PRIO(p1, p2); 1361 ORDERKEY_RSSIZE(p1, p2); 1362 ORDERKEY_MEM(p1, p2); 1363 1364 return (0); 1365 } 1366 1367 /* compare_jid - the comparison function for sorting by jid */ 1368 static int 1369 compare_jid(const void *arg1, const void *arg2) 1370 { 1371 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1372 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1373 1374 ORDERKEY_JID(p1, p2); 1375 ORDERKEY_PCTCPU(p1, p2); 1376 ORDERKEY_CPTICKS(p1, p2); 1377 ORDERKEY_STATE(p1, p2); 1378 ORDERKEY_PRIO(p1, p2); 1379 ORDERKEY_RSSIZE(p1, p2); 1380 ORDERKEY_MEM(p1, p2); 1381 1382 return (0); 1383 } 1384 #endif /* ORDER */ 1385 1386 /* assorted comparison functions for sorting by i/o */ 1387 1388 int 1389 #ifdef ORDER 1390 compare_iototal(void *arg1, void *arg2) 1391 #else 1392 io_compare(void *arg1, void *arg2) 1393 #endif 1394 { 1395 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1396 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1397 1398 return (get_io_total(p2) - get_io_total(p1)); 1399 } 1400 1401 #ifdef ORDER 1402 int 1403 compare_ioread(void *arg1, void *arg2) 1404 { 1405 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1406 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1407 long dummy, inp1, inp2; 1408 1409 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1410 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1411 1412 return (inp2 - inp1); 1413 } 1414 1415 int 1416 compare_iowrite(void *arg1, void *arg2) 1417 { 1418 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1419 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1420 long dummy, oup1, oup2; 1421 1422 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1423 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1424 1425 return (oup2 - oup1); 1426 } 1427 1428 int 1429 compare_iofault(void *arg1, void *arg2) 1430 { 1431 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1432 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1433 long dummy, flp1, flp2; 1434 1435 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1436 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1437 1438 return (flp2 - flp1); 1439 } 1440 1441 int 1442 compare_vcsw(void *arg1, void *arg2) 1443 { 1444 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1445 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1446 long dummy, flp1, flp2; 1447 1448 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1449 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1450 1451 return (flp2 - flp1); 1452 } 1453 1454 int 1455 compare_ivcsw(void *arg1, void *arg2) 1456 { 1457 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1458 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1459 long dummy, flp1, flp2; 1460 1461 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1462 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1463 1464 return (flp2 - flp1); 1465 } 1466 #endif /* ORDER */ 1467 1468 /* 1469 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1470 * the process does not exist. 1471 * It is EXTREMELY IMPORTANT that this function work correctly. 1472 * If top runs setuid root (as in SVR4), then this function 1473 * is the only thing that stands in the way of a serious 1474 * security problem. It validates requests for the "kill" 1475 * and "renice" commands. 1476 */ 1477 1478 int 1479 proc_owner(int pid) 1480 { 1481 int cnt; 1482 struct kinfo_proc **prefp; 1483 struct kinfo_proc *pp; 1484 1485 prefp = pref; 1486 cnt = pref_len; 1487 while (--cnt >= 0) { 1488 pp = *prefp++; 1489 if (pp->ki_pid == (pid_t)pid) 1490 return ((int)pp->ki_ruid); 1491 } 1492 return (-1); 1493 } 1494 1495 static int 1496 swapmode(int *retavail, int *retfree) 1497 { 1498 int n; 1499 int pagesize = getpagesize(); 1500 struct kvm_swap swapary[1]; 1501 1502 *retavail = 0; 1503 *retfree = 0; 1504 1505 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1506 1507 n = kvm_getswapinfo(kd, swapary, 1, 0); 1508 if (n < 0 || swapary[0].ksw_total == 0) 1509 return (0); 1510 1511 *retavail = CONVERT(swapary[0].ksw_total); 1512 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1513 1514 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1515 return (n); 1516 } 1517