1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <kvm.h> 32 #include <math.h> 33 #include <paths.h> 34 #include <stdio.h> 35 #include <stdbool.h> 36 #include <stdint.h> 37 #include <stdlib.h> 38 #include <string.h> 39 #include <time.h> 40 #include <unistd.h> 41 #include <vis.h> 42 43 #include "top.h" 44 #include "display.h" 45 #include "machine.h" 46 #include "loadavg.h" 47 #include "screen.h" 48 #include "utils.h" 49 #include "layout.h" 50 51 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 52 #define SMPUNAMELEN 13 53 #define UPUNAMELEN 15 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static int namelength = 8; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 7 61 #define TOP_SWAP_LEN 6 62 static int jidlength; 63 static int swaplength; 64 static int cmdlengthdelta; 65 66 /* get_process_info passes back a handle. This is what it looks like: */ 67 68 struct handle { 69 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 70 int remaining; /* number of pointers remaining */ 71 }; 72 73 74 /* define what weighted cpu is. */ 75 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 76 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 77 78 /* what we consider to be process size: */ 79 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 80 81 #define RU(pp) (&(pp)->ki_rusage) 82 #define RUTOT(pp) \ 83 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 84 85 #define PCTCPU(pp) (pcpu[pp - pbase]) 86 87 /* 88 * These definitions control the format of the per-process area 89 */ 90 91 static const char io_header[] = 92 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 93 94 static const char io_Proc_format[] = 95 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"; 96 97 /* XXX: build up header instead of statically defining them. 98 * This will also allow for a "format string" to be supplied 99 * as an argument to top(1) instead of having predefined options */ 100 static const char smp_header_thr_and_pid[] = 101 " %s%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 102 static const char smp_header_id_only[] = 103 " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 104 static const char smp_Proc_format[] = 105 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; 106 107 static char up_header_thr_and_pid[] = 108 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 109 static char up_header_id_only[] = 110 " %s%*s %-*.*s PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 111 static char up_Proc_format[] = 112 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; 113 114 115 /* process state names for the "STATE" column of the display */ 116 /* the extra nulls in the string "run" are for adding a slash and 117 the processor number when needed */ 118 119 static const char *state_abbrev[] = { 120 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 121 }; 122 123 124 static kvm_t *kd; 125 126 /* values that we stash away in _init and use in later routines */ 127 128 static double logcpu; 129 130 /* these are retrieved from the kernel in _init */ 131 132 static load_avg ccpu; 133 134 /* these are used in the get_ functions */ 135 136 static int lastpid; 137 138 /* these are for calculating cpu state percentages */ 139 140 static long cp_time[CPUSTATES]; 141 static long cp_old[CPUSTATES]; 142 static long cp_diff[CPUSTATES]; 143 144 /* these are for detailing the process states */ 145 146 static const char *procstatenames[] = { 147 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 148 " zombie, ", " waiting, ", " lock, ", 149 NULL 150 }; 151 static int process_states[nitems(procstatenames)]; 152 153 /* these are for detailing the cpu states */ 154 155 static int cpu_states[CPUSTATES]; 156 static const char *cpustatenames[] = { 157 "user", "nice", "system", "interrupt", "idle", NULL 158 }; 159 160 /* these are for detailing the memory statistics */ 161 162 static const char *memorynames[] = { 163 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 164 "K Free", NULL 165 }; 166 static int memory_stats[nitems(memorynames)]; 167 168 static const char *arcnames[] = { 169 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 170 NULL 171 }; 172 static int arc_stats[nitems(arcnames)]; 173 174 static const char *carcnames[] = { 175 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 176 NULL 177 }; 178 static int carc_stats[nitems(carcnames)]; 179 180 static const char *swapnames[] = { 181 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 182 NULL 183 }; 184 static int swap_stats[nitems(swapnames)]; 185 186 187 /* these are for keeping track of the proc array */ 188 189 static int nproc; 190 static int onproc = -1; 191 static int pref_len; 192 static struct kinfo_proc *pbase; 193 static struct kinfo_proc **pref; 194 static struct kinfo_proc *previous_procs; 195 static struct kinfo_proc **previous_pref; 196 static int previous_proc_count = 0; 197 static int previous_proc_count_max = 0; 198 static int previous_thread; 199 200 /* data used for recalculating pctcpu */ 201 static double *pcpu; 202 static struct timespec proc_uptime; 203 static struct timeval proc_wall_time; 204 static struct timeval previous_wall_time; 205 static uint64_t previous_interval = 0; 206 207 /* total number of io operations */ 208 static long total_inblock; 209 static long total_oublock; 210 static long total_majflt; 211 212 /* these are for getting the memory statistics */ 213 214 static int arc_enabled; 215 static int carc_enabled; 216 static int pageshift; /* log base 2 of the pagesize */ 217 218 /* define pagetok in terms of pageshift */ 219 220 #define pagetok(size) ((size) << pageshift) 221 222 /* swap usage */ 223 #define ki_swap(kip) \ 224 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 225 226 /* 227 * Sorting orders. The first element is the default. 228 */ 229 static const char *ordernames[] = { 230 "cpu", "size", "res", "time", "pri", "threads", 231 "total", "read", "write", "fault", "vcsw", "ivcsw", 232 "jid", "swap", "pid", NULL 233 }; 234 235 /* Per-cpu time states */ 236 static int maxcpu; 237 static int maxid; 238 static int ncpus; 239 static unsigned long cpumask; 240 static long *times; 241 static long *pcpu_cp_time; 242 static long *pcpu_cp_old; 243 static long *pcpu_cp_diff; 244 static int *pcpu_cpu_states; 245 246 static int compare_swap(const void *a, const void *b); 247 static int compare_jid(const void *a, const void *b); 248 static int compare_pid(const void *a, const void *b); 249 static int compare_tid(const void *a, const void *b); 250 static const char *format_nice(const struct kinfo_proc *pp); 251 static void getsysctl(const char *name, void *ptr, size_t len); 252 static int swapmode(int *retavail, int *retfree); 253 static void update_layout(void); 254 static int find_uid(uid_t needle, int *haystack); 255 256 static int 257 find_uid(uid_t needle, int *haystack) 258 { 259 size_t i = 0; 260 261 for (; i < TOP_MAX_UIDS; ++i) 262 if ((uid_t)haystack[i] == needle) 263 return 1; 264 return (0); 265 } 266 267 void 268 toggle_pcpustats(void) 269 { 270 271 if (ncpus == 1) 272 return; 273 update_layout(); 274 } 275 276 /* Adjust display based on ncpus and the ARC state. */ 277 static void 278 update_layout(void) 279 { 280 281 y_mem = 3; 282 y_arc = 4; 283 y_carc = 5; 284 y_swap = 4 + arc_enabled + carc_enabled; 285 y_idlecursor = 5 + arc_enabled + carc_enabled; 286 y_message = 5 + arc_enabled + carc_enabled; 287 y_header = 6 + arc_enabled + carc_enabled; 288 y_procs = 7 + arc_enabled + carc_enabled; 289 Header_lines = 7 + arc_enabled + carc_enabled; 290 291 if (pcpu_stats) { 292 y_mem += ncpus - 1; 293 y_arc += ncpus - 1; 294 y_carc += ncpus - 1; 295 y_swap += ncpus - 1; 296 y_idlecursor += ncpus - 1; 297 y_message += ncpus - 1; 298 y_header += ncpus - 1; 299 y_procs += ncpus - 1; 300 Header_lines += ncpus - 1; 301 } 302 } 303 304 int 305 machine_init(struct statics *statics) 306 { 307 int i, j, empty, pagesize; 308 uint64_t arc_size; 309 bool carc_en; 310 size_t size; 311 312 size = sizeof(smpmode); 313 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 314 NULL, 0) != 0 && 315 sysctlbyname("kern.smp.active", &smpmode, &size, 316 NULL, 0) != 0) || 317 size != sizeof(smpmode)) 318 smpmode = 0; 319 320 size = sizeof(arc_size); 321 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 322 NULL, 0) == 0 && arc_size != 0) 323 arc_enabled = 1; 324 size = sizeof(carc_en); 325 if (arc_enabled && 326 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 327 NULL, 0) == 0 && carc_en == 1) 328 carc_enabled = 1; 329 330 namelength = MAXLOGNAME; 331 if (smpmode && namelength > SMPUNAMELEN) 332 namelength = SMPUNAMELEN; 333 else if (namelength > UPUNAMELEN) 334 namelength = UPUNAMELEN; 335 336 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 337 if (kd == NULL) 338 return (-1); 339 340 GETSYSCTL("kern.ccpu", ccpu); 341 342 /* this is used in calculating WCPU -- calculate it ahead of time */ 343 logcpu = log(loaddouble(ccpu)); 344 345 pbase = NULL; 346 pref = NULL; 347 pcpu = NULL; 348 nproc = 0; 349 onproc = -1; 350 351 /* get the page size and calculate pageshift from it */ 352 pagesize = getpagesize(); 353 pageshift = 0; 354 while (pagesize > 1) { 355 pageshift++; 356 pagesize >>= 1; 357 } 358 359 /* we only need the amount of log(2)1024 for our conversion */ 360 pageshift -= LOG1024; 361 362 /* fill in the statics information */ 363 statics->procstate_names = procstatenames; 364 statics->cpustate_names = cpustatenames; 365 statics->memory_names = memorynames; 366 if (arc_enabled) 367 statics->arc_names = arcnames; 368 else 369 statics->arc_names = NULL; 370 if (carc_enabled) 371 statics->carc_names = carcnames; 372 else 373 statics->carc_names = NULL; 374 statics->swap_names = swapnames; 375 statics->order_names = ordernames; 376 377 /* Allocate state for per-CPU stats. */ 378 cpumask = 0; 379 ncpus = 0; 380 GETSYSCTL("kern.smp.maxcpus", maxcpu); 381 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 382 if (times == NULL) 383 err(1, "calloc for kern.smp.maxcpus"); 384 size = sizeof(long) * maxcpu * CPUSTATES; 385 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 386 err(1, "sysctlbyname kern.cp_times"); 387 pcpu_cp_time = calloc(1, size); 388 maxid = (size / CPUSTATES / sizeof(long)) - 1; 389 for (i = 0; i <= maxid; i++) { 390 empty = 1; 391 for (j = 0; empty && j < CPUSTATES; j++) { 392 if (times[i * CPUSTATES + j] != 0) 393 empty = 0; 394 } 395 if (!empty) { 396 cpumask |= (1ul << i); 397 ncpus++; 398 } 399 } 400 assert(ncpus > 0); 401 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 402 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 403 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 404 statics->ncpus = ncpus; 405 406 update_layout(); 407 408 /* all done! */ 409 return (0); 410 } 411 412 const char * 413 format_header(const char *uname_field) 414 { 415 static char Header[128]; 416 const char *prehead; 417 418 if (ps.jail) 419 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 420 else 421 jidlength = 0; 422 423 if (ps.swap) 424 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 425 else 426 swaplength = 0; 427 428 switch (displaymode) { 429 case DISP_CPU: 430 /* 431 * The logic of picking the right header is confusing, and 432 * depends on too much. We should instead have a struct of 433 * "header name", and "header format" which we build up. 434 * This would also fix the duplicate of effort into up vs smp 435 * mode. 436 */ 437 if (smpmode) { 438 prehead = ps.thread ? 439 smp_header_id_only : smp_header_thr_and_pid; 440 snprintf(Header, sizeof(Header), prehead, 441 ps.thread_id ? " THR" : "PID", 442 jidlength, ps.jail ? " JID" : "", 443 namelength, namelength, uname_field, 444 swaplength, ps.swap ? " SWAP" : "", 445 ps.wcpu ? "WCPU" : "CPU"); 446 } else { 447 prehead = ps.thread ? 448 up_header_id_only : up_header_thr_and_pid; 449 snprintf(Header, sizeof(Header), prehead, 450 ps.thread_id ? " THR" : "PID", 451 jidlength, ps.jail ? " JID" : "", 452 namelength, namelength, uname_field, 453 swaplength, ps.swap ? " SWAP" : "", 454 ps.wcpu ? "WCPU" : "CPU"); 455 } 456 break; 457 case DISP_IO: 458 prehead = io_header; 459 snprintf(Header, sizeof(Header), prehead, 460 jidlength, ps.jail ? " JID" : "", 461 namelength, namelength, uname_field); 462 break; 463 case DISP_MAX: 464 assert("displaymode must not be set to DISP_MAX"); 465 } 466 cmdlengthdelta = strlen(Header) - 7; 467 return (Header); 468 } 469 470 static int swappgsin = -1; 471 static int swappgsout = -1; 472 473 474 void 475 get_system_info(struct system_info *si) 476 { 477 struct loadavg sysload; 478 int mib[2]; 479 struct timeval boottime; 480 uint64_t arc_stat, arc_stat2; 481 int i, j; 482 size_t size; 483 484 /* get the CPU stats */ 485 size = (maxid + 1) * CPUSTATES * sizeof(long); 486 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 487 err(1, "sysctlbyname kern.cp_times"); 488 GETSYSCTL("kern.cp_time", cp_time); 489 GETSYSCTL("vm.loadavg", sysload); 490 GETSYSCTL("kern.lastpid", lastpid); 491 492 /* convert load averages to doubles */ 493 for (i = 0; i < 3; i++) 494 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 495 496 /* convert cp_time counts to percentages */ 497 for (i = j = 0; i <= maxid; i++) { 498 if ((cpumask & (1ul << i)) == 0) 499 continue; 500 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 501 &pcpu_cp_time[j * CPUSTATES], 502 &pcpu_cp_old[j * CPUSTATES], 503 &pcpu_cp_diff[j * CPUSTATES]); 504 j++; 505 } 506 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 507 508 /* sum memory & swap statistics */ 509 { 510 static unsigned int swap_delay = 0; 511 static int swapavail = 0; 512 static int swapfree = 0; 513 static long bufspace = 0; 514 static uint64_t nspgsin, nspgsout; 515 516 GETSYSCTL("vfs.bufspace", bufspace); 517 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 518 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 519 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 520 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 521 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 522 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 523 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 524 /* convert memory stats to Kbytes */ 525 memory_stats[0] = pagetok(memory_stats[0]); 526 memory_stats[1] = pagetok(memory_stats[1]); 527 memory_stats[2] = pagetok(memory_stats[2]); 528 memory_stats[3] = pagetok(memory_stats[3]); 529 memory_stats[4] = bufspace / 1024; 530 memory_stats[5] = pagetok(memory_stats[5]); 531 memory_stats[6] = -1; 532 533 /* first interval */ 534 if (swappgsin < 0) { 535 swap_stats[4] = 0; 536 swap_stats[5] = 0; 537 } 538 539 /* compute differences between old and new swap statistic */ 540 else { 541 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 542 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 543 } 544 545 swappgsin = nspgsin; 546 swappgsout = nspgsout; 547 548 /* call CPU heavy swapmode() only for changes */ 549 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 550 swap_stats[3] = swapmode(&swapavail, &swapfree); 551 swap_stats[0] = swapavail; 552 swap_stats[1] = swapavail - swapfree; 553 swap_stats[2] = swapfree; 554 } 555 swap_delay = 1; 556 swap_stats[6] = -1; 557 } 558 559 if (arc_enabled) { 560 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 561 arc_stats[0] = arc_stat >> 10; 562 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 563 arc_stats[1] = arc_stat >> 10; 564 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 565 arc_stats[2] = arc_stat >> 10; 566 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 567 arc_stats[3] = arc_stat >> 10; 568 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 569 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 570 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 571 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 572 arc_stats[5] = arc_stat >> 10; 573 si->arc = arc_stats; 574 } 575 if (carc_enabled) { 576 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 577 carc_stats[0] = arc_stat >> 10; 578 carc_stats[2] = arc_stat >> 10; /* For ratio */ 579 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 580 carc_stats[1] = arc_stat >> 10; 581 si->carc = carc_stats; 582 } 583 584 /* set arrays and strings */ 585 if (pcpu_stats) { 586 si->cpustates = pcpu_cpu_states; 587 si->ncpus = ncpus; 588 } else { 589 si->cpustates = cpu_states; 590 si->ncpus = 1; 591 } 592 si->memory = memory_stats; 593 si->swap = swap_stats; 594 595 596 if (lastpid > 0) { 597 si->last_pid = lastpid; 598 } else { 599 si->last_pid = -1; 600 } 601 602 /* 603 * Print how long system has been up. 604 * (Found by looking getting "boottime" from the kernel) 605 */ 606 mib[0] = CTL_KERN; 607 mib[1] = KERN_BOOTTIME; 608 size = sizeof(boottime); 609 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 610 boottime.tv_sec != 0) { 611 si->boottime = boottime; 612 } else { 613 si->boottime.tv_sec = -1; 614 } 615 } 616 617 #define NOPROC ((void *)-1) 618 619 /* 620 * We need to compare data from the old process entry with the new 621 * process entry. 622 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 623 * structure to cache the mapping. We also use a negative cache pointer 624 * of NOPROC to avoid duplicate lookups. 625 * XXX: this could be done when the actual processes are fetched, we do 626 * it here out of laziness. 627 */ 628 static const struct kinfo_proc * 629 get_old_proc(struct kinfo_proc *pp) 630 { 631 const struct kinfo_proc * const *oldpp, *oldp; 632 633 /* 634 * If this is the first fetch of the kinfo_procs then we don't have 635 * any previous entries. 636 */ 637 if (previous_proc_count == 0) 638 return (NULL); 639 /* negative cache? */ 640 if (pp->ki_udata == NOPROC) 641 return (NULL); 642 /* cached? */ 643 if (pp->ki_udata != NULL) 644 return (pp->ki_udata); 645 /* 646 * Not cached, 647 * 1) look up based on pid. 648 * 2) compare process start. 649 * If we fail here, then setup a negative cache entry, otherwise 650 * cache it. 651 */ 652 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 653 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 654 if (oldpp == NULL) { 655 pp->ki_udata = NOPROC; 656 return (NULL); 657 } 658 oldp = *oldpp; 659 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 660 pp->ki_udata = NOPROC; 661 return (NULL); 662 } 663 pp->ki_udata = oldp; 664 return (oldp); 665 } 666 667 /* 668 * Return the total amount of IO done in blocks in/out and faults. 669 * store the values individually in the pointers passed in. 670 */ 671 static long 672 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 673 long *vcsw, long *ivcsw) 674 { 675 const struct kinfo_proc *oldp; 676 static struct kinfo_proc dummy; 677 long ret; 678 679 oldp = get_old_proc(pp); 680 if (oldp == NULL) { 681 memset(&dummy, 0, sizeof(dummy)); 682 oldp = &dummy; 683 } 684 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 685 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 686 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 687 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 688 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 689 ret = 690 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 691 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 692 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 693 return (ret); 694 } 695 696 /* 697 * If there was a previous update, use the delta in ki_runtime over 698 * the previous interval to calculate pctcpu. Otherwise, fall back 699 * to using the kernel's ki_pctcpu. 700 */ 701 static double 702 proc_calc_pctcpu(struct kinfo_proc *pp) 703 { 704 const struct kinfo_proc *oldp; 705 706 if (previous_interval != 0) { 707 oldp = get_old_proc(pp); 708 if (oldp != NULL) 709 return ((double)(pp->ki_runtime - oldp->ki_runtime) 710 / previous_interval); 711 712 /* 713 * If this process/thread was created during the previous 714 * interval, charge it's total runtime to the previous 715 * interval. 716 */ 717 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 718 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 719 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 720 return ((double)pp->ki_runtime / previous_interval); 721 } 722 return (pctdouble(pp->ki_pctcpu)); 723 } 724 725 /* 726 * Return true if this process has used any CPU time since the 727 * previous update. 728 */ 729 static int 730 proc_used_cpu(struct kinfo_proc *pp) 731 { 732 const struct kinfo_proc *oldp; 733 734 oldp = get_old_proc(pp); 735 if (oldp == NULL) 736 return (PCTCPU(pp) != 0); 737 return (pp->ki_runtime != oldp->ki_runtime || 738 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 739 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 740 } 741 742 /* 743 * Return the total number of block in/out and faults by a process. 744 */ 745 static long 746 get_io_total(const struct kinfo_proc *pp) 747 { 748 long dummy; 749 750 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 751 } 752 753 static struct handle handle; 754 755 void * 756 get_process_info(struct system_info *si, struct process_select *sel, 757 int (*compare)(const void *, const void *)) 758 { 759 int i; 760 int total_procs; 761 long p_io; 762 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 763 long nsec; 764 int active_procs; 765 struct kinfo_proc **prefp; 766 struct kinfo_proc *pp; 767 struct timespec previous_proc_uptime; 768 769 /* 770 * If thread state was toggled, don't cache the previous processes. 771 */ 772 if (previous_thread != sel->thread) 773 nproc = 0; 774 previous_thread = sel->thread; 775 776 /* 777 * Save the previous process info. 778 */ 779 if (previous_proc_count_max < nproc) { 780 free(previous_procs); 781 previous_procs = calloc(nproc, sizeof(*previous_procs)); 782 free(previous_pref); 783 previous_pref = calloc(nproc, sizeof(*previous_pref)); 784 if (previous_procs == NULL || previous_pref == NULL) { 785 fprintf(stderr, "top: Out of memory.\n"); 786 quit(TOP_EX_SYS_ERROR); 787 } 788 previous_proc_count_max = nproc; 789 } 790 if (nproc) { 791 for (i = 0; i < nproc; i++) 792 previous_pref[i] = &previous_procs[i]; 793 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 794 qsort(previous_pref, nproc, sizeof(*previous_pref), 795 ps.thread ? compare_tid : compare_pid); 796 } 797 previous_proc_count = nproc; 798 previous_proc_uptime = proc_uptime; 799 previous_wall_time = proc_wall_time; 800 previous_interval = 0; 801 802 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 803 0, &nproc); 804 gettimeofday(&proc_wall_time, NULL); 805 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 806 memset(&proc_uptime, 0, sizeof(proc_uptime)); 807 else if (previous_proc_uptime.tv_sec != 0 && 808 previous_proc_uptime.tv_nsec != 0) { 809 previous_interval = (proc_uptime.tv_sec - 810 previous_proc_uptime.tv_sec) * 1000000; 811 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 812 if (nsec < 0) { 813 previous_interval -= 1000000; 814 nsec += 1000000000; 815 } 816 previous_interval += nsec / 1000; 817 } 818 if (nproc > onproc) { 819 pref = realloc(pref, sizeof(*pref) * nproc); 820 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 821 onproc = nproc; 822 } 823 if (pref == NULL || pbase == NULL || pcpu == NULL) { 824 fprintf(stderr, "top: Out of memory.\n"); 825 quit(TOP_EX_SYS_ERROR); 826 } 827 /* get a pointer to the states summary array */ 828 si->procstates = process_states; 829 830 /* count up process states and get pointers to interesting procs */ 831 total_procs = 0; 832 active_procs = 0; 833 total_inblock = 0; 834 total_oublock = 0; 835 total_majflt = 0; 836 memset(process_states, 0, sizeof(process_states)); 837 prefp = pref; 838 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 839 840 if (pp->ki_stat == 0) 841 /* not in use */ 842 continue; 843 844 if (!sel->self && pp->ki_pid == mypid) 845 /* skip self */ 846 continue; 847 848 if (!sel->system && (pp->ki_flag & P_SYSTEM)) 849 /* skip system process */ 850 continue; 851 852 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 853 &p_vcsw, &p_ivcsw); 854 total_inblock += p_inblock; 855 total_oublock += p_oublock; 856 total_majflt += p_majflt; 857 total_procs++; 858 process_states[(unsigned char)pp->ki_stat]++; 859 860 if (pp->ki_stat == SZOMB) 861 /* skip zombies */ 862 continue; 863 864 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD) 865 /* skip kernel idle process */ 866 continue; 867 868 PCTCPU(pp) = proc_calc_pctcpu(pp); 869 if (sel->thread && PCTCPU(pp) > 1.0) 870 PCTCPU(pp) = 1.0; 871 if (displaymode == DISP_CPU && !sel->idle && 872 (!proc_used_cpu(pp) || 873 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 874 /* skip idle or non-running processes */ 875 continue; 876 877 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 878 /* skip processes that aren't doing I/O */ 879 continue; 880 881 if (sel->jid != -1 && pp->ki_jid != sel->jid) 882 /* skip proc. that don't belong to the selected JID */ 883 continue; 884 885 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 886 /* skip proc. that don't belong to the selected UID */ 887 continue; 888 889 if (sel->pid != -1 && pp->ki_pid != sel->pid) 890 continue; 891 892 *prefp++ = pp; 893 active_procs++; 894 } 895 896 /* if requested, sort the "interesting" processes */ 897 if (compare != NULL) 898 qsort(pref, active_procs, sizeof(*pref), compare); 899 900 /* remember active and total counts */ 901 si->p_total = total_procs; 902 si->p_pactive = pref_len = active_procs; 903 904 /* pass back a handle */ 905 handle.next_proc = pref; 906 handle.remaining = active_procs; 907 return (&handle); 908 } 909 910 static char fmt[512]; /* static area where result is built */ 911 912 char * 913 format_next_process(void* xhandle, char *(*get_userid)(int), int flags) 914 { 915 struct kinfo_proc *pp; 916 const struct kinfo_proc *oldp; 917 long cputime; 918 double pct; 919 struct handle *hp; 920 char status[22]; 921 int cpu; 922 size_t state; 923 struct rusage ru, *rup; 924 long p_tot, s_tot; 925 const char *proc_fmt; 926 char thr_buf[6]; 927 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 928 char *cmdbuf = NULL; 929 char **args; 930 const int cmdlen = 128; 931 932 /* find and remember the next proc structure */ 933 hp = (struct handle *)xhandle; 934 pp = *(hp->next_proc++); 935 hp->remaining--; 936 937 /* get the process's command name */ 938 if ((pp->ki_flag & P_INMEM) == 0) { 939 /* 940 * Print swapped processes as <pname> 941 */ 942 size_t len; 943 944 len = strlen(pp->ki_comm); 945 if (len > sizeof(pp->ki_comm) - 3) 946 len = sizeof(pp->ki_comm) - 3; 947 memmove(pp->ki_comm + 1, pp->ki_comm, len); 948 pp->ki_comm[0] = '<'; 949 pp->ki_comm[len + 1] = '>'; 950 pp->ki_comm[len + 2] = '\0'; 951 } 952 953 /* 954 * Convert the process's runtime from microseconds to seconds. This 955 * time includes the interrupt time although that is not wanted here. 956 * ps(1) is similarly sloppy. 957 */ 958 cputime = (pp->ki_runtime + 500000) / 1000000; 959 960 /* calculate the base for cpu percentages */ 961 pct = PCTCPU(pp); 962 963 /* generate "STATE" field */ 964 switch (state = pp->ki_stat) { 965 case SRUN: 966 if (smpmode && pp->ki_oncpu != NOCPU) 967 sprintf(status, "CPU%d", pp->ki_oncpu); 968 else 969 strcpy(status, "RUN"); 970 break; 971 case SLOCK: 972 if (pp->ki_kiflag & KI_LOCKBLOCK) { 973 sprintf(status, "*%.6s", pp->ki_lockname); 974 break; 975 } 976 /* fall through */ 977 case SSLEEP: 978 sprintf(status, "%.6s", pp->ki_wmesg); 979 break; 980 default: 981 982 if (state < nitems(state_abbrev)) { 983 sprintf(status, "%.6s", state_abbrev[state]); 984 } else { 985 sprintf(status, "?%5zu", state); 986 } 987 break; 988 } 989 990 cmdbuf = calloc(cmdlen + 1, 1); 991 if (cmdbuf == NULL) { 992 warn("calloc(%d)", cmdlen + 1); 993 return NULL; 994 } 995 996 if (!(flags & FMT_SHOWARGS)) { 997 if (ps.thread && pp->ki_flag & P_HADTHREADS && 998 pp->ki_tdname[0]) { 999 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1000 pp->ki_tdname, pp->ki_moretdname); 1001 } else { 1002 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1003 } 1004 } else { 1005 if (pp->ki_flag & P_SYSTEM || 1006 pp->ki_args == NULL || 1007 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1008 !(*args)) { 1009 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1010 pp->ki_tdname[0]) { 1011 snprintf(cmdbuf, cmdlen, 1012 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1013 pp->ki_moretdname); 1014 } else { 1015 snprintf(cmdbuf, cmdlen, 1016 "[%s]", pp->ki_comm); 1017 } 1018 } else { 1019 const char *src; 1020 char *dst, *argbuf; 1021 const char *cmd; 1022 size_t argbuflen; 1023 size_t len; 1024 1025 argbuflen = cmdlen * 4; 1026 argbuf = calloc(argbuflen + 1, 1); 1027 if (argbuf == NULL) { 1028 warn("calloc(%zu)", argbuflen + 1); 1029 free(cmdbuf); 1030 return NULL; 1031 } 1032 1033 dst = argbuf; 1034 1035 /* Extract cmd name from argv */ 1036 cmd = strrchr(*args, '/'); 1037 if (cmd == NULL) 1038 cmd = *args; 1039 else 1040 cmd++; 1041 1042 for (; (src = *args++) != NULL; ) { 1043 if (*src == '\0') 1044 continue; 1045 len = (argbuflen - (dst - argbuf) - 1) / 4; 1046 strvisx(dst, src, 1047 MIN(strlen(src), len), 1048 VIS_NL | VIS_CSTYLE); 1049 while (*dst != '\0') 1050 dst++; 1051 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1052 *dst++ = ' '; /* add delimiting space */ 1053 } 1054 if (dst != argbuf && dst[-1] == ' ') 1055 dst--; 1056 *dst = '\0'; 1057 1058 if (strcmp(cmd, pp->ki_comm) != 0) { 1059 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1060 pp->ki_tdname[0]) 1061 snprintf(cmdbuf, cmdlen, 1062 "%s (%s){%s%s}", argbuf, 1063 pp->ki_comm, pp->ki_tdname, 1064 pp->ki_moretdname); 1065 else 1066 snprintf(cmdbuf, cmdlen, 1067 "%s (%s)", argbuf, pp->ki_comm); 1068 } else { 1069 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1070 pp->ki_tdname[0]) 1071 snprintf(cmdbuf, cmdlen, 1072 "%s{%s%s}", argbuf, pp->ki_tdname, 1073 pp->ki_moretdname); 1074 else 1075 strlcpy(cmdbuf, argbuf, cmdlen); 1076 } 1077 free(argbuf); 1078 } 1079 } 1080 1081 if (ps.jail == 0) 1082 jid_buf[0] = '\0'; 1083 else 1084 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1085 jidlength - 1, pp->ki_jid); 1086 1087 if (ps.swap == 0) 1088 swap_buf[0] = '\0'; 1089 else 1090 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1091 swaplength - 1, 1092 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1093 1094 if (displaymode == DISP_IO) { 1095 oldp = get_old_proc(pp); 1096 if (oldp != NULL) { 1097 ru.ru_inblock = RU(pp)->ru_inblock - 1098 RU(oldp)->ru_inblock; 1099 ru.ru_oublock = RU(pp)->ru_oublock - 1100 RU(oldp)->ru_oublock; 1101 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1102 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1103 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1104 rup = &ru; 1105 } else { 1106 rup = RU(pp); 1107 } 1108 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1109 s_tot = total_inblock + total_oublock + total_majflt; 1110 1111 snprintf(fmt, sizeof(fmt), io_Proc_format, 1112 pp->ki_pid, 1113 jidlength, jid_buf, 1114 namelength, namelength, (*get_userid)(pp->ki_ruid), 1115 rup->ru_nvcsw, 1116 rup->ru_nivcsw, 1117 rup->ru_inblock, 1118 rup->ru_oublock, 1119 rup->ru_majflt, 1120 p_tot, 1121 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1122 screen_width > cmdlengthdelta ? 1123 screen_width - cmdlengthdelta : 0, 1124 printable(cmdbuf)); 1125 1126 free(cmdbuf); 1127 1128 return (fmt); 1129 } 1130 1131 /* format this entry */ 1132 if (smpmode) { 1133 if (state == SRUN && pp->ki_oncpu != NOCPU) 1134 cpu = pp->ki_oncpu; 1135 else 1136 cpu = pp->ki_lastcpu; 1137 } else 1138 cpu = 0; 1139 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1140 if (ps.thread != 0) 1141 thr_buf[0] = '\0'; 1142 else 1143 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1144 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1145 1146 snprintf(fmt, sizeof(fmt), proc_fmt, 1147 (ps.thread_id) ? pp->ki_tid : pp->ki_pid, 1148 jidlength, jid_buf, 1149 namelength, namelength, (*get_userid)(pp->ki_ruid), 1150 thr_buf, 1151 pp->ki_pri.pri_level - PZERO, 1152 format_nice(pp), 1153 format_k2(PROCSIZE(pp)), 1154 format_k2(pagetok(pp->ki_rssize)), 1155 swaplength, swaplength, swap_buf, 1156 status, 1157 cpu, 1158 format_time(cputime), 1159 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1160 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1161 printable(cmdbuf)); 1162 1163 free(cmdbuf); 1164 1165 /* return the result */ 1166 return (fmt); 1167 } 1168 1169 static void 1170 getsysctl(const char *name, void *ptr, size_t len) 1171 { 1172 size_t nlen = len; 1173 1174 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1175 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1176 strerror(errno)); 1177 quit(TOP_EX_SYS_ERROR); 1178 } 1179 if (nlen != len) { 1180 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1181 name, (unsigned long)len, (unsigned long)nlen); 1182 quit(TOP_EX_SYS_ERROR); 1183 } 1184 } 1185 1186 static const char * 1187 format_nice(const struct kinfo_proc *pp) 1188 { 1189 const char *fifo, *kproc; 1190 int rtpri; 1191 static char nicebuf[4 + 1]; 1192 1193 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1194 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1195 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1196 case PRI_ITHD: 1197 return ("-"); 1198 case PRI_REALTIME: 1199 /* 1200 * XXX: the kernel doesn't tell us the original rtprio and 1201 * doesn't really know what it was, so to recover it we 1202 * must be more chummy with the implementation than the 1203 * implementation is with itself. pri_user gives a 1204 * constant "base" priority, but is only initialized 1205 * properly for user threads. pri_native gives what the 1206 * kernel calls the "base" priority, but it isn't constant 1207 * since it is changed by priority propagation. pri_native 1208 * also isn't properly initialized for all threads, but it 1209 * is properly initialized for kernel realtime and idletime 1210 * threads. Thus we use pri_user for the base priority of 1211 * user threads (it is always correct) and pri_native for 1212 * the base priority of kernel realtime and idletime threads 1213 * (there is nothing better, and it is usually correct). 1214 * 1215 * The field width and thus the buffer are too small for 1216 * values like "kr31F", but such values shouldn't occur, 1217 * and if they do then the tailing "F" is not displayed. 1218 */ 1219 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1220 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1221 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1222 kproc, rtpri, fifo); 1223 break; 1224 case PRI_TIMESHARE: 1225 if (pp->ki_flag & P_KPROC) 1226 return ("-"); 1227 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1228 break; 1229 case PRI_IDLE: 1230 /* XXX: as above. */ 1231 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1232 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1233 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1234 kproc, rtpri, fifo); 1235 break; 1236 default: 1237 return ("?"); 1238 } 1239 return (nicebuf); 1240 } 1241 1242 /* comparison routines for qsort */ 1243 1244 static int 1245 compare_pid(const void *p1, const void *p2) 1246 { 1247 const struct kinfo_proc * const *pp1 = p1; 1248 const struct kinfo_proc * const *pp2 = p2; 1249 1250 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1251 1252 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1253 } 1254 1255 static int 1256 compare_tid(const void *p1, const void *p2) 1257 { 1258 const struct kinfo_proc * const *pp1 = p1; 1259 const struct kinfo_proc * const *pp2 = p2; 1260 1261 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1262 1263 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1264 } 1265 1266 /* 1267 * proc_compare - comparison function for "qsort" 1268 * Compares the resource consumption of two processes using five 1269 * distinct keys. The keys (in descending order of importance) are: 1270 * percent cpu, cpu ticks, state, resident set size, total virtual 1271 * memory usage. The process states are ordered as follows (from least 1272 * to most important): WAIT, zombie, sleep, stop, start, run. The 1273 * array declaration below maps a process state index into a number 1274 * that reflects this ordering. 1275 */ 1276 1277 static int sorted_state[] = { 1278 0, /* not used */ 1279 3, /* sleep */ 1280 1, /* ABANDONED (WAIT) */ 1281 6, /* run */ 1282 5, /* start */ 1283 2, /* zombie */ 1284 4 /* stop */ 1285 }; 1286 1287 1288 #define ORDERKEY_PCTCPU(a, b) do { \ 1289 double diff; \ 1290 if (ps.wcpu) \ 1291 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1292 weighted_cpu(PCTCPU((a)), (a)); \ 1293 else \ 1294 diff = PCTCPU((b)) - PCTCPU((a)); \ 1295 if (diff != 0) \ 1296 return (diff > 0 ? 1 : -1); \ 1297 } while (0) 1298 1299 #define ORDERKEY_CPTICKS(a, b) do { \ 1300 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1301 if (diff != 0) \ 1302 return (diff > 0 ? 1 : -1); \ 1303 } while (0) 1304 1305 #define ORDERKEY_STATE(a, b) do { \ 1306 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1307 if (diff != 0) \ 1308 return (diff > 0 ? 1 : -1); \ 1309 } while (0) 1310 1311 #define ORDERKEY_PRIO(a, b) do { \ 1312 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1313 if (diff != 0) \ 1314 return (diff > 0 ? 1 : -1); \ 1315 } while (0) 1316 1317 #define ORDERKEY_THREADS(a, b) do { \ 1318 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1319 if (diff != 0) \ 1320 return (diff > 0 ? 1 : -1); \ 1321 } while (0) 1322 1323 #define ORDERKEY_RSSIZE(a, b) do { \ 1324 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1325 if (diff != 0) \ 1326 return (diff > 0 ? 1 : -1); \ 1327 } while (0) 1328 1329 #define ORDERKEY_MEM(a, b) do { \ 1330 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1331 if (diff != 0) \ 1332 return (diff > 0 ? 1 : -1); \ 1333 } while (0) 1334 1335 #define ORDERKEY_JID(a, b) do { \ 1336 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1337 if (diff != 0) \ 1338 return (diff > 0 ? 1 : -1); \ 1339 } while (0) 1340 1341 #define ORDERKEY_SWAP(a, b) do { \ 1342 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1343 if (diff != 0) \ 1344 return (diff > 0 ? 1 : -1); \ 1345 } while (0) 1346 1347 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1348 1349 static int 1350 compare_cpu(const void *arg1, const void *arg2) 1351 { 1352 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1353 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1354 1355 ORDERKEY_PCTCPU(p1, p2); 1356 ORDERKEY_CPTICKS(p1, p2); 1357 ORDERKEY_STATE(p1, p2); 1358 ORDERKEY_PRIO(p1, p2); 1359 ORDERKEY_RSSIZE(p1, p2); 1360 ORDERKEY_MEM(p1, p2); 1361 1362 return (0); 1363 } 1364 1365 /* compare_size - the comparison function for sorting by total memory usage */ 1366 1367 static int 1368 compare_size(const void *arg1, const void *arg2) 1369 { 1370 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1371 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1372 1373 ORDERKEY_MEM(p1, p2); 1374 ORDERKEY_RSSIZE(p1, p2); 1375 ORDERKEY_PCTCPU(p1, p2); 1376 ORDERKEY_CPTICKS(p1, p2); 1377 ORDERKEY_STATE(p1, p2); 1378 ORDERKEY_PRIO(p1, p2); 1379 1380 return (0); 1381 } 1382 1383 /* compare_res - the comparison function for sorting by resident set size */ 1384 1385 static int 1386 compare_res(const void *arg1, const void *arg2) 1387 { 1388 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1389 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1390 1391 ORDERKEY_RSSIZE(p1, p2); 1392 ORDERKEY_MEM(p1, p2); 1393 ORDERKEY_PCTCPU(p1, p2); 1394 ORDERKEY_CPTICKS(p1, p2); 1395 ORDERKEY_STATE(p1, p2); 1396 ORDERKEY_PRIO(p1, p2); 1397 1398 return (0); 1399 } 1400 1401 /* compare_time - the comparison function for sorting by total cpu time */ 1402 1403 static int 1404 compare_time(const void *arg1, const void *arg2) 1405 { 1406 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1407 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1408 1409 ORDERKEY_CPTICKS(p1, p2); 1410 ORDERKEY_PCTCPU(p1, p2); 1411 ORDERKEY_STATE(p1, p2); 1412 ORDERKEY_PRIO(p1, p2); 1413 ORDERKEY_RSSIZE(p1, p2); 1414 ORDERKEY_MEM(p1, p2); 1415 1416 return (0); 1417 } 1418 1419 /* compare_prio - the comparison function for sorting by priority */ 1420 1421 static int 1422 compare_prio(const void *arg1, const void *arg2) 1423 { 1424 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1425 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1426 1427 ORDERKEY_PRIO(p1, p2); 1428 ORDERKEY_CPTICKS(p1, p2); 1429 ORDERKEY_PCTCPU(p1, p2); 1430 ORDERKEY_STATE(p1, p2); 1431 ORDERKEY_RSSIZE(p1, p2); 1432 ORDERKEY_MEM(p1, p2); 1433 1434 return (0); 1435 } 1436 1437 /* compare_threads - the comparison function for sorting by threads */ 1438 static int 1439 compare_threads(const void *arg1, const void *arg2) 1440 { 1441 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1442 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1443 1444 ORDERKEY_THREADS(p1, p2); 1445 ORDERKEY_PCTCPU(p1, p2); 1446 ORDERKEY_CPTICKS(p1, p2); 1447 ORDERKEY_STATE(p1, p2); 1448 ORDERKEY_PRIO(p1, p2); 1449 ORDERKEY_RSSIZE(p1, p2); 1450 ORDERKEY_MEM(p1, p2); 1451 1452 return (0); 1453 } 1454 1455 /* compare_jid - the comparison function for sorting by jid */ 1456 static int 1457 compare_jid(const void *arg1, const void *arg2) 1458 { 1459 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1460 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1461 1462 ORDERKEY_JID(p1, p2); 1463 ORDERKEY_PCTCPU(p1, p2); 1464 ORDERKEY_CPTICKS(p1, p2); 1465 ORDERKEY_STATE(p1, p2); 1466 ORDERKEY_PRIO(p1, p2); 1467 ORDERKEY_RSSIZE(p1, p2); 1468 ORDERKEY_MEM(p1, p2); 1469 1470 return (0); 1471 } 1472 1473 /* compare_swap - the comparison function for sorting by swap */ 1474 static int 1475 compare_swap(const void *arg1, const void *arg2) 1476 { 1477 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1478 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1479 1480 ORDERKEY_SWAP(p1, p2); 1481 ORDERKEY_PCTCPU(p1, p2); 1482 ORDERKEY_CPTICKS(p1, p2); 1483 ORDERKEY_STATE(p1, p2); 1484 ORDERKEY_PRIO(p1, p2); 1485 ORDERKEY_RSSIZE(p1, p2); 1486 ORDERKEY_MEM(p1, p2); 1487 1488 return (0); 1489 } 1490 1491 /* assorted comparison functions for sorting by i/o */ 1492 1493 static int 1494 compare_iototal(const void *arg1, const void *arg2) 1495 { 1496 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1497 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1498 1499 return (get_io_total(p2) - get_io_total(p1)); 1500 } 1501 1502 static int 1503 compare_ioread(const void *arg1, const void *arg2) 1504 { 1505 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1506 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1507 long dummy, inp1, inp2; 1508 1509 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1510 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1511 1512 return (inp2 - inp1); 1513 } 1514 1515 static int 1516 compare_iowrite(const void *arg1, const void *arg2) 1517 { 1518 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1519 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1520 long dummy, oup1, oup2; 1521 1522 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1523 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1524 1525 return (oup2 - oup1); 1526 } 1527 1528 static int 1529 compare_iofault(const void *arg1, const void *arg2) 1530 { 1531 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1532 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1533 long dummy, flp1, flp2; 1534 1535 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1536 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1537 1538 return (flp2 - flp1); 1539 } 1540 1541 static int 1542 compare_vcsw(const void *arg1, const void *arg2) 1543 { 1544 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1545 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1546 long dummy, flp1, flp2; 1547 1548 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1549 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1550 1551 return (flp2 - flp1); 1552 } 1553 1554 static int 1555 compare_ivcsw(const void *arg1, const void *arg2) 1556 { 1557 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1558 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1559 long dummy, flp1, flp2; 1560 1561 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1562 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1563 1564 return (flp2 - flp1); 1565 } 1566 1567 int (*compares[])(const void *arg1, const void *arg2) = { 1568 compare_cpu, 1569 compare_size, 1570 compare_res, 1571 compare_time, 1572 compare_prio, 1573 compare_threads, 1574 compare_iototal, 1575 compare_ioread, 1576 compare_iowrite, 1577 compare_iofault, 1578 compare_vcsw, 1579 compare_ivcsw, 1580 compare_jid, 1581 compare_swap, 1582 NULL 1583 }; 1584 1585 1586 /* 1587 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1588 * the process does not exist. 1589 */ 1590 1591 int 1592 proc_owner(int pid) 1593 { 1594 int cnt; 1595 struct kinfo_proc **prefp; 1596 struct kinfo_proc *pp; 1597 1598 prefp = pref; 1599 cnt = pref_len; 1600 while (--cnt >= 0) { 1601 pp = *prefp++; 1602 if (pp->ki_pid == (pid_t)pid) 1603 return ((int)pp->ki_ruid); 1604 } 1605 return (-1); 1606 } 1607 1608 static int 1609 swapmode(int *retavail, int *retfree) 1610 { 1611 int n; 1612 struct kvm_swap swapary[1]; 1613 static int pagesize = 0; 1614 static unsigned long swap_maxpages = 0; 1615 1616 *retavail = 0; 1617 *retfree = 0; 1618 1619 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1620 1621 n = kvm_getswapinfo(kd, swapary, 1, 0); 1622 if (n < 0 || swapary[0].ksw_total == 0) 1623 return (0); 1624 1625 if (pagesize == 0) 1626 pagesize = getpagesize(); 1627 if (swap_maxpages == 0) 1628 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1629 1630 /* ksw_total contains the total size of swap all devices which may 1631 exceed the maximum swap size allocatable in the system */ 1632 if ( swapary[0].ksw_total > swap_maxpages ) 1633 swapary[0].ksw_total = swap_maxpages; 1634 1635 *retavail = CONVERT(swapary[0].ksw_total); 1636 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1637 1638 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1639 return (n); 1640 } 1641