1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/param.h> 20 #include <sys/cpuset.h> 21 #include <sys/errno.h> 22 #include <sys/fcntl.h> 23 #include <sys/priority.h> 24 #include <sys/proc.h> 25 #include <sys/resource.h> 26 #include <sys/sbuf.h> 27 #include <sys/sysctl.h> 28 #include <sys/time.h> 29 #include <sys/user.h> 30 31 #include <assert.h> 32 #include <err.h> 33 #include <libgen.h> 34 #include <kvm.h> 35 #include <math.h> 36 #include <paths.h> 37 #include <stdio.h> 38 #include <stdbool.h> 39 #include <stdint.h> 40 #include <stdlib.h> 41 #include <string.h> 42 #include <time.h> 43 #include <unistd.h> 44 #include <vis.h> 45 46 #include "top.h" 47 #include "display.h" 48 #include "machine.h" 49 #include "loadavg.h" 50 #include "screen.h" 51 #include "utils.h" 52 #include "layout.h" 53 54 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 55 56 extern struct timeval timeout; 57 static int smpmode; 58 enum displaymodes displaymode; 59 static const int namelength = 10; 60 /* TOP_JID_LEN based on max of 999999 */ 61 #define TOP_JID_LEN 6 62 #define TOP_SWAP_LEN 5 63 64 /* get_process_info passes back a handle. This is what it looks like: */ 65 66 struct handle { 67 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 68 int remaining; /* number of pointers remaining */ 69 }; 70 71 72 /* define what weighted cpu is. */ 73 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 74 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 75 76 /* what we consider to be process size: */ 77 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 78 79 #define RU(pp) (&(pp)->ki_rusage) 80 81 #define PCTCPU(pp) (pcpu[pp - pbase]) 82 83 /* process state names for the "STATE" column of the display */ 84 /* the extra nulls in the string "run" are for adding a slash and 85 the processor number when needed */ 86 87 static const char *state_abbrev[] = { 88 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 89 }; 90 91 92 static kvm_t *kd; 93 94 /* values that we stash away in _init and use in later routines */ 95 96 static double logcpu; 97 98 /* these are retrieved from the kernel in _init */ 99 100 static load_avg ccpu; 101 102 /* these are used in the get_ functions */ 103 104 static int lastpid; 105 106 /* these are for calculating cpu state percentages */ 107 108 static long cp_time[CPUSTATES]; 109 static long cp_old[CPUSTATES]; 110 static long cp_diff[CPUSTATES]; 111 112 /* these are for detailing the process states */ 113 114 static const char *procstatenames[] = { 115 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 116 " zombie, ", " waiting, ", " lock, ", 117 NULL 118 }; 119 static int process_states[nitems(procstatenames)]; 120 121 /* these are for detailing the cpu states */ 122 123 static int cpu_states[CPUSTATES]; 124 static const char *cpustatenames[] = { 125 "user", "nice", "system", "interrupt", "idle", NULL 126 }; 127 128 /* these are for detailing the memory statistics */ 129 130 static const char *memorynames[] = { 131 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 132 "K Free", NULL 133 }; 134 static int memory_stats[nitems(memorynames)]; 135 136 static const char *arcnames[] = { 137 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 138 NULL 139 }; 140 static int arc_stats[nitems(arcnames)]; 141 142 static const char *carcnames[] = { 143 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 144 NULL 145 }; 146 static int carc_stats[nitems(carcnames)]; 147 148 static const char *swapnames[] = { 149 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 150 NULL 151 }; 152 static int swap_stats[nitems(swapnames)]; 153 154 static int has_swap; 155 156 /* these are for keeping track of the proc array */ 157 158 static int nproc; 159 static int onproc = -1; 160 static int pref_len; 161 static struct kinfo_proc *pbase; 162 static struct kinfo_proc **pref; 163 static struct kinfo_proc *previous_procs; 164 static struct kinfo_proc **previous_pref; 165 static int previous_proc_count = 0; 166 static int previous_proc_count_max = 0; 167 static int previous_thread; 168 169 /* data used for recalculating pctcpu */ 170 static double *pcpu; 171 static struct timespec proc_uptime; 172 static struct timeval proc_wall_time; 173 static struct timeval previous_wall_time; 174 static uint64_t previous_interval = 0; 175 176 /* total number of io operations */ 177 static long total_inblock; 178 static long total_oublock; 179 static long total_majflt; 180 181 /* these are for getting the memory statistics */ 182 183 static int arc_enabled; 184 static int carc_enabled; 185 static int pageshift; /* log base 2 of the pagesize */ 186 187 /* define pagetok in terms of pageshift */ 188 189 #define pagetok(size) ((size) << pageshift) 190 191 /* swap usage */ 192 #define ki_swap(kip) \ 193 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 194 195 /* 196 * Sorting orders. The first element is the default. 197 */ 198 static const char *ordernames[] = { 199 "cpu", "size", "res", "time", "pri", "threads", 200 "total", "read", "write", "fault", "vcsw", "ivcsw", 201 "jid", "swap", "pid", NULL 202 }; 203 204 /* Per-cpu time states */ 205 static int maxcpu; 206 static int maxid; 207 static int ncpus; 208 static cpuset_t cpumask; 209 static long *times; 210 static long *pcpu_cp_time; 211 static long *pcpu_cp_old; 212 static long *pcpu_cp_diff; 213 static int *pcpu_cpu_states; 214 215 /* Battery units and states */ 216 static int battery_units; 217 static int battery_life; 218 219 static int compare_swap(const void *a, const void *b); 220 static int compare_jid(const void *a, const void *b); 221 static int compare_pid(const void *a, const void *b); 222 static int compare_tid(const void *a, const void *b); 223 static const char *format_nice(const struct kinfo_proc *pp); 224 static void getsysctl(const char *name, void *ptr, size_t len); 225 static int swapmode(int *retavail, int *retfree); 226 static void update_layout(void); 227 static int find_uid(uid_t needle, int *haystack); 228 static int cmd_matches(struct kinfo_proc *, const char *); 229 230 static int 231 find_uid(uid_t needle, int *haystack) 232 { 233 size_t i = 0; 234 235 for (; i < TOP_MAX_UIDS; ++i) 236 if ((uid_t)haystack[i] == needle) 237 return 1; 238 return (0); 239 } 240 241 void 242 toggle_pcpustats(void) 243 { 244 245 if (ncpus == 1) 246 return; 247 update_layout(); 248 } 249 250 /* Adjust display based on ncpus and the ARC state. */ 251 static void 252 update_layout(void) 253 { 254 255 y_mem = 3; 256 y_arc = 4; 257 y_carc = 5; 258 y_swap = 3 + arc_enabled + carc_enabled + has_swap; 259 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; 260 y_message = 4 + arc_enabled + carc_enabled + has_swap; 261 y_header = 5 + arc_enabled + carc_enabled + has_swap; 262 y_procs = 6 + arc_enabled + carc_enabled + has_swap; 263 Header_lines = 6 + arc_enabled + carc_enabled + has_swap; 264 265 if (pcpu_stats) { 266 y_mem += ncpus - 1; 267 y_arc += ncpus - 1; 268 y_carc += ncpus - 1; 269 y_swap += ncpus - 1; 270 y_idlecursor += ncpus - 1; 271 y_message += ncpus - 1; 272 y_header += ncpus - 1; 273 y_procs += ncpus - 1; 274 Header_lines += ncpus - 1; 275 } 276 } 277 278 int 279 machine_init(struct statics *statics) 280 { 281 int i, j, empty, pagesize; 282 uint64_t arc_size; 283 int carc_en, nswapdev; 284 size_t size; 285 286 size = sizeof(smpmode); 287 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || 288 size != sizeof(smpmode)) 289 smpmode = 0; 290 291 size = sizeof(arc_size); 292 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 293 NULL, 0) == 0 && arc_size != 0) 294 arc_enabled = 1; 295 size = sizeof(carc_en); 296 if (arc_enabled && 297 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 298 NULL, 0) == 0 && carc_en == 1) 299 carc_enabled = 1; 300 301 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 302 if (kd == NULL) 303 return (-1); 304 305 size = sizeof(nswapdev); 306 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 307 0) == 0 && nswapdev != 0) 308 has_swap = 1; 309 310 GETSYSCTL("kern.ccpu", ccpu); 311 312 /* this is used in calculating WCPU -- calculate it ahead of time */ 313 logcpu = log(loaddouble(ccpu)); 314 315 pbase = NULL; 316 pref = NULL; 317 pcpu = NULL; 318 nproc = 0; 319 onproc = -1; 320 321 /* get the page size and calculate pageshift from it */ 322 pagesize = getpagesize(); 323 pageshift = 0; 324 while (pagesize > 1) { 325 pageshift++; 326 pagesize >>= 1; 327 } 328 329 /* we only need the amount of log(2)1024 for our conversion */ 330 pageshift -= LOG1024; 331 332 /* fill in the statics information */ 333 statics->procstate_names = procstatenames; 334 statics->cpustate_names = cpustatenames; 335 statics->memory_names = memorynames; 336 if (arc_enabled) 337 statics->arc_names = arcnames; 338 else 339 statics->arc_names = NULL; 340 if (carc_enabled) 341 statics->carc_names = carcnames; 342 else 343 statics->carc_names = NULL; 344 if (has_swap) 345 statics->swap_names = swapnames; 346 else 347 statics->swap_names = NULL; 348 statics->order_names = ordernames; 349 350 /* Allocate state for per-CPU stats. */ 351 GETSYSCTL("kern.smp.maxcpus", maxcpu); 352 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 353 if (times == NULL) 354 err(1, "calloc for kern.smp.maxcpus"); 355 size = sizeof(long) * maxcpu * CPUSTATES; 356 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 357 err(1, "sysctlbyname kern.cp_times"); 358 pcpu_cp_time = calloc(1, size); 359 maxid = MIN(size / CPUSTATES / sizeof(long) - 1, CPU_SETSIZE - 1); 360 CPU_ZERO(&cpumask); 361 for (i = 0; i <= maxid; i++) { 362 empty = 1; 363 for (j = 0; empty && j < CPUSTATES; j++) { 364 if (times[i * CPUSTATES + j] != 0) 365 empty = 0; 366 } 367 if (!empty) 368 CPU_SET(i, &cpumask); 369 } 370 ncpus = CPU_COUNT(&cpumask); 371 assert(ncpus > 0); 372 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 373 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 374 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 375 statics->ncpus = ncpus; 376 377 /* Allocate state of battery units reported via ACPI. */ 378 battery_units = 0; 379 size = sizeof(int); 380 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); 381 statics->nbatteries = battery_units; 382 383 update_layout(); 384 385 /* all done! */ 386 return (0); 387 } 388 389 char * 390 format_header(const char *uname_field) 391 { 392 static struct sbuf* header = NULL; 393 394 /* clean up from last time. */ 395 if (header != NULL) { 396 sbuf_clear(header); 397 } else { 398 header = sbuf_new_auto(); 399 } 400 401 switch (displaymode) { 402 case DISP_CPU: { 403 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 404 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 405 ps.jail ? " JID" : ""); 406 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 407 if (!ps.thread) { 408 sbuf_cat(header, "THR "); 409 } 410 sbuf_cat(header, "PRI NICE SIZE RES "); 411 if (ps.swap) { 412 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 413 } 414 sbuf_cat(header, "STATE "); 415 if (smpmode) { 416 sbuf_cat(header, "C "); 417 } 418 sbuf_cat(header, "TIME "); 419 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 420 sbuf_cat(header, "COMMAND"); 421 sbuf_finish(header); 422 break; 423 } 424 case DISP_IO: { 425 sbuf_printf(header, " %s%*s %-*.*s", 426 ps.thread_id ? " THR" : "PID", 427 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 428 namelength, namelength, uname_field); 429 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 430 sbuf_finish(header); 431 break; 432 } 433 case DISP_MAX: 434 assert("displaymode must not be set to DISP_MAX"); 435 } 436 437 return sbuf_data(header); 438 } 439 440 static int swappgsin = -1; 441 static int swappgsout = -1; 442 443 444 void 445 get_system_info(struct system_info *si) 446 { 447 struct loadavg sysload; 448 int mib[2]; 449 struct timeval boottime; 450 uint64_t arc_stat, arc_stat2; 451 int i, j; 452 size_t size; 453 454 /* get the CPU stats */ 455 size = (maxid + 1) * CPUSTATES * sizeof(long); 456 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 457 err(1, "sysctlbyname kern.cp_times"); 458 GETSYSCTL("kern.cp_time", cp_time); 459 GETSYSCTL("vm.loadavg", sysload); 460 GETSYSCTL("kern.lastpid", lastpid); 461 462 /* convert load averages to doubles */ 463 for (i = 0; i < 3; i++) 464 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 465 466 /* convert cp_time counts to percentages */ 467 for (i = j = 0; i <= maxid; i++) { 468 if (!CPU_ISSET(i, &cpumask)) 469 continue; 470 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 471 &pcpu_cp_time[j * CPUSTATES], 472 &pcpu_cp_old[j * CPUSTATES], 473 &pcpu_cp_diff[j * CPUSTATES]); 474 j++; 475 } 476 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 477 478 /* sum memory & swap statistics */ 479 { 480 static unsigned int swap_delay = 0; 481 static int swapavail = 0; 482 static int swapfree = 0; 483 static long bufspace = 0; 484 static uint64_t nspgsin, nspgsout; 485 486 GETSYSCTL("vfs.bufspace", bufspace); 487 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 488 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 489 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 490 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 491 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 492 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 493 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 494 /* convert memory stats to Kbytes */ 495 memory_stats[0] = pagetok(memory_stats[0]); 496 memory_stats[1] = pagetok(memory_stats[1]); 497 memory_stats[2] = pagetok(memory_stats[2]); 498 memory_stats[3] = pagetok(memory_stats[3]); 499 memory_stats[4] = bufspace / 1024; 500 memory_stats[5] = pagetok(memory_stats[5]); 501 memory_stats[6] = -1; 502 503 /* first interval */ 504 if (swappgsin < 0) { 505 swap_stats[4] = 0; 506 swap_stats[5] = 0; 507 } 508 509 /* compute differences between old and new swap statistic */ 510 else { 511 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 512 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 513 } 514 515 swappgsin = nspgsin; 516 swappgsout = nspgsout; 517 518 /* call CPU heavy swapmode() only for changes */ 519 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 520 swap_stats[3] = swapmode(&swapavail, &swapfree); 521 swap_stats[0] = swapavail; 522 swap_stats[1] = swapavail - swapfree; 523 swap_stats[2] = swapfree; 524 } 525 swap_delay = 1; 526 swap_stats[6] = -1; 527 } 528 529 if (arc_enabled) { 530 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 531 arc_stats[0] = arc_stat >> 10; 532 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 533 arc_stats[1] = arc_stat >> 10; 534 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 535 arc_stats[2] = arc_stat >> 10; 536 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 537 arc_stats[3] = arc_stat >> 10; 538 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 539 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 540 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 541 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 542 arc_stats[5] = arc_stat >> 10; 543 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 544 arc_stats[5] += arc_stat >> 10; 545 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 546 arc_stats[5] += arc_stat >> 10; 547 si->arc = arc_stats; 548 } 549 if (carc_enabled) { 550 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 551 carc_stats[0] = arc_stat >> 10; 552 carc_stats[2] = arc_stat >> 10; /* For ratio */ 553 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 554 carc_stats[1] = arc_stat >> 10; 555 si->carc = carc_stats; 556 } 557 558 /* set arrays and strings */ 559 if (pcpu_stats) { 560 si->cpustates = pcpu_cpu_states; 561 si->ncpus = ncpus; 562 } else { 563 si->cpustates = cpu_states; 564 si->ncpus = 1; 565 } 566 si->memory = memory_stats; 567 si->swap = swap_stats; 568 569 570 if (lastpid > 0) { 571 si->last_pid = lastpid; 572 } else { 573 si->last_pid = -1; 574 } 575 576 /* 577 * Print how long system has been up. 578 * (Found by looking getting "boottime" from the kernel) 579 */ 580 mib[0] = CTL_KERN; 581 mib[1] = KERN_BOOTTIME; 582 size = sizeof(boottime); 583 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 584 boottime.tv_sec != 0) { 585 si->boottime = boottime; 586 } else { 587 si->boottime.tv_sec = -1; 588 } 589 590 battery_life = 0; 591 if (battery_units > 0) { 592 GETSYSCTL("hw.acpi.battery.life", battery_life); 593 } 594 si->battery = battery_life; 595 } 596 597 #define NOPROC ((void *)-1) 598 599 /* 600 * We need to compare data from the old process entry with the new 601 * process entry. 602 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 603 * structure to cache the mapping. We also use a negative cache pointer 604 * of NOPROC to avoid duplicate lookups. 605 * XXX: this could be done when the actual processes are fetched, we do 606 * it here out of laziness. 607 */ 608 static const struct kinfo_proc * 609 get_old_proc(struct kinfo_proc *pp) 610 { 611 const struct kinfo_proc * const *oldpp, *oldp; 612 613 /* 614 * If this is the first fetch of the kinfo_procs then we don't have 615 * any previous entries. 616 */ 617 if (previous_proc_count == 0) 618 return (NULL); 619 /* negative cache? */ 620 if (pp->ki_udata == NOPROC) 621 return (NULL); 622 /* cached? */ 623 if (pp->ki_udata != NULL) 624 return (pp->ki_udata); 625 /* 626 * Not cached, 627 * 1) look up based on pid. 628 * 2) compare process start. 629 * If we fail here, then setup a negative cache entry, otherwise 630 * cache it. 631 */ 632 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 633 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 634 if (oldpp == NULL) { 635 pp->ki_udata = NOPROC; 636 return (NULL); 637 } 638 oldp = *oldpp; 639 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 640 pp->ki_udata = NOPROC; 641 return (NULL); 642 } 643 pp->ki_udata = __DECONST(void *, oldp); 644 return (oldp); 645 } 646 647 /* 648 * Return the total amount of IO done in blocks in/out and faults. 649 * store the values individually in the pointers passed in. 650 */ 651 static long 652 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 653 long *vcsw, long *ivcsw) 654 { 655 const struct kinfo_proc *oldp; 656 static struct kinfo_proc dummy; 657 long ret; 658 659 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 660 if (oldp == NULL) { 661 memset(&dummy, 0, sizeof(dummy)); 662 oldp = &dummy; 663 } 664 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 665 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 666 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 667 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 668 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 669 ret = 670 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 671 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 672 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 673 return (ret); 674 } 675 676 /* 677 * If there was a previous update, use the delta in ki_runtime over 678 * the previous interval to calculate pctcpu. Otherwise, fall back 679 * to using the kernel's ki_pctcpu. 680 */ 681 static double 682 proc_calc_pctcpu(struct kinfo_proc *pp) 683 { 684 const struct kinfo_proc *oldp; 685 686 if (previous_interval != 0) { 687 oldp = get_old_proc(pp); 688 if (oldp != NULL) 689 return ((double)(pp->ki_runtime - oldp->ki_runtime) 690 / previous_interval); 691 692 /* 693 * If this process/thread was created during the previous 694 * interval, charge it's total runtime to the previous 695 * interval. 696 */ 697 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 698 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 699 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 700 return ((double)pp->ki_runtime / previous_interval); 701 } 702 return (pctdouble(pp->ki_pctcpu)); 703 } 704 705 /* 706 * Return true if this process has used any CPU time since the 707 * previous update. 708 */ 709 static int 710 proc_used_cpu(struct kinfo_proc *pp) 711 { 712 const struct kinfo_proc *oldp; 713 714 oldp = get_old_proc(pp); 715 if (oldp == NULL) 716 return (PCTCPU(pp) != 0); 717 return (pp->ki_runtime != oldp->ki_runtime || 718 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 719 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 720 } 721 722 /* 723 * Return the total number of block in/out and faults by a process. 724 */ 725 static long 726 get_io_total(const struct kinfo_proc *pp) 727 { 728 long dummy; 729 730 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 731 } 732 733 static struct handle handle; 734 735 void * 736 get_process_info(struct system_info *si, struct process_select *sel, 737 int (*compare)(const void *, const void *)) 738 { 739 int i; 740 int total_procs; 741 long p_io; 742 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 743 long nsec; 744 int active_procs; 745 struct kinfo_proc **prefp; 746 struct kinfo_proc *pp; 747 struct timespec previous_proc_uptime; 748 749 /* 750 * If thread state was toggled, don't cache the previous processes. 751 */ 752 if (previous_thread != sel->thread) 753 nproc = 0; 754 previous_thread = sel->thread; 755 756 /* 757 * Save the previous process info. 758 */ 759 if (previous_proc_count_max < nproc) { 760 free(previous_procs); 761 previous_procs = calloc(nproc, sizeof(*previous_procs)); 762 free(previous_pref); 763 previous_pref = calloc(nproc, sizeof(*previous_pref)); 764 if (previous_procs == NULL || previous_pref == NULL) { 765 fprintf(stderr, "top: Out of memory.\n"); 766 quit(TOP_EX_SYS_ERROR); 767 } 768 previous_proc_count_max = nproc; 769 } 770 if (nproc) { 771 for (i = 0; i < nproc; i++) 772 previous_pref[i] = &previous_procs[i]; 773 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 774 qsort(previous_pref, nproc, sizeof(*previous_pref), 775 ps.thread ? compare_tid : compare_pid); 776 } 777 previous_proc_count = nproc; 778 previous_proc_uptime = proc_uptime; 779 previous_wall_time = proc_wall_time; 780 previous_interval = 0; 781 782 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 783 0, &nproc); 784 gettimeofday(&proc_wall_time, NULL); 785 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 786 memset(&proc_uptime, 0, sizeof(proc_uptime)); 787 else if (previous_proc_uptime.tv_sec != 0 && 788 previous_proc_uptime.tv_nsec != 0) { 789 previous_interval = (proc_uptime.tv_sec - 790 previous_proc_uptime.tv_sec) * 1000000; 791 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 792 if (nsec < 0) { 793 previous_interval -= 1000000; 794 nsec += 1000000000; 795 } 796 previous_interval += nsec / 1000; 797 } 798 if (nproc > onproc) { 799 pref = realloc(pref, sizeof(*pref) * nproc); 800 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 801 onproc = nproc; 802 } 803 if (pref == NULL || pbase == NULL || pcpu == NULL) { 804 fprintf(stderr, "top: Out of memory.\n"); 805 quit(TOP_EX_SYS_ERROR); 806 } 807 /* get a pointer to the states summary array */ 808 si->procstates = process_states; 809 810 /* count up process states and get pointers to interesting procs */ 811 total_procs = 0; 812 active_procs = 0; 813 total_inblock = 0; 814 total_oublock = 0; 815 total_majflt = 0; 816 memset(process_states, 0, sizeof(process_states)); 817 prefp = pref; 818 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 819 820 if (pp->ki_stat == 0) 821 /* not in use */ 822 continue; 823 824 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 825 /* skip self */ 826 continue; 827 828 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 829 /* skip system process */ 830 continue; 831 832 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 833 &p_vcsw, &p_ivcsw); 834 total_inblock += p_inblock; 835 total_oublock += p_oublock; 836 total_majflt += p_majflt; 837 total_procs++; 838 process_states[(unsigned char)pp->ki_stat]++; 839 840 if (pp->ki_stat == SZOMB) 841 /* skip zombies */ 842 continue; 843 844 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 845 /* skip kernel idle process */ 846 continue; 847 848 PCTCPU(pp) = proc_calc_pctcpu(pp); 849 if (sel->thread && PCTCPU(pp) > 1.0) 850 PCTCPU(pp) = 1.0; 851 if (displaymode == DISP_CPU && !sel->idle && 852 (!proc_used_cpu(pp) || 853 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 854 /* skip idle or non-running processes */ 855 continue; 856 857 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 858 /* skip processes that aren't doing I/O */ 859 continue; 860 861 if (sel->jid != -1 && pp->ki_jid != sel->jid) 862 /* skip proc. that don't belong to the selected JID */ 863 continue; 864 865 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 866 /* skip proc. that don't belong to the selected UID */ 867 continue; 868 869 if (sel->pid != -1 && pp->ki_pid != sel->pid) 870 continue; 871 872 if (!cmd_matches(pp, sel->command)) 873 /* skip proc. that doesn't match grep string */ 874 continue; 875 876 *prefp++ = pp; 877 active_procs++; 878 } 879 880 /* if requested, sort the "interesting" processes */ 881 if (compare != NULL) 882 qsort(pref, active_procs, sizeof(*pref), compare); 883 884 /* remember active and total counts */ 885 si->p_total = total_procs; 886 si->p_pactive = pref_len = active_procs; 887 888 /* pass back a handle */ 889 handle.next_proc = pref; 890 handle.remaining = active_procs; 891 return (&handle); 892 } 893 894 static int 895 cmd_matches(struct kinfo_proc *proc, const char *term) 896 { 897 char **args = NULL; 898 899 if (!term) { 900 /* No command filter set */ 901 return 1; 902 } else { 903 /* Filter set, does process name contain term? */ 904 if (strstr(proc->ki_comm, term)) 905 return 1; 906 /* Search arguments only if arguments are displayed */ 907 if (show_args) { 908 args = kvm_getargv(kd, proc, 1024); 909 if (args == NULL) { 910 /* Failed to get arguments so can't search them */ 911 return 0; 912 } 913 while (*args != NULL) { 914 if (strstr(*args, term)) 915 return 1; 916 args++; 917 } 918 } 919 } 920 return 0; 921 } 922 923 char * 924 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 925 { 926 struct kinfo_proc *pp; 927 const struct kinfo_proc *oldp; 928 long cputime; 929 char status[22]; 930 size_t state; 931 struct rusage ru, *rup; 932 long p_tot, s_tot; 933 char *cmdbuf = NULL; 934 char **args; 935 static struct sbuf* procbuf = NULL; 936 937 /* clean up from last time. */ 938 if (procbuf != NULL) { 939 sbuf_clear(procbuf); 940 } else { 941 procbuf = sbuf_new_auto(); 942 } 943 944 945 /* find and remember the next proc structure */ 946 pp = *(xhandle->next_proc++); 947 xhandle->remaining--; 948 949 /* get the process's command name */ 950 if ((pp->ki_flag & P_INMEM) == 0) { 951 /* 952 * Print swapped processes as <pname> 953 */ 954 size_t len; 955 956 len = strlen(pp->ki_comm); 957 if (len > sizeof(pp->ki_comm) - 3) 958 len = sizeof(pp->ki_comm) - 3; 959 memmove(pp->ki_comm + 1, pp->ki_comm, len); 960 pp->ki_comm[0] = '<'; 961 pp->ki_comm[len + 1] = '>'; 962 pp->ki_comm[len + 2] = '\0'; 963 } 964 965 /* 966 * Convert the process's runtime from microseconds to seconds. This 967 * time includes the interrupt time although that is not wanted here. 968 * ps(1) is similarly sloppy. 969 */ 970 cputime = (pp->ki_runtime + 500000) / 1000000; 971 972 /* generate "STATE" field */ 973 switch (state = pp->ki_stat) { 974 case SRUN: 975 if (smpmode && pp->ki_oncpu != NOCPU) 976 sprintf(status, "CPU%d", pp->ki_oncpu); 977 else 978 strcpy(status, "RUN"); 979 break; 980 case SLOCK: 981 if (pp->ki_kiflag & KI_LOCKBLOCK) { 982 sprintf(status, "*%.6s", pp->ki_lockname); 983 break; 984 } 985 /* fall through */ 986 case SSLEEP: 987 sprintf(status, "%.6s", pp->ki_wmesg); 988 break; 989 default: 990 991 if (state < nitems(state_abbrev)) { 992 sprintf(status, "%.6s", state_abbrev[state]); 993 } else { 994 sprintf(status, "?%5zu", state); 995 } 996 break; 997 } 998 999 cmdbuf = calloc(screen_width + 1, 1); 1000 if (cmdbuf == NULL) { 1001 warn("calloc(%d)", screen_width + 1); 1002 return NULL; 1003 } 1004 1005 if (!(flags & FMT_SHOWARGS)) { 1006 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1007 pp->ki_tdname[0]) { 1008 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 1009 pp->ki_tdname, pp->ki_moretdname); 1010 } else { 1011 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 1012 } 1013 } else { 1014 if (pp->ki_flag & P_SYSTEM || 1015 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 1016 !(*args)) { 1017 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1018 pp->ki_tdname[0]) { 1019 snprintf(cmdbuf, screen_width, 1020 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1021 pp->ki_moretdname); 1022 } else { 1023 snprintf(cmdbuf, screen_width, 1024 "[%s]", pp->ki_comm); 1025 } 1026 } else { 1027 const char *src; 1028 char *dst, *argbuf; 1029 const char *cmd; 1030 size_t argbuflen; 1031 size_t len; 1032 1033 argbuflen = screen_width * 4; 1034 argbuf = calloc(argbuflen + 1, 1); 1035 if (argbuf == NULL) { 1036 warn("calloc(%zu)", argbuflen + 1); 1037 free(cmdbuf); 1038 return NULL; 1039 } 1040 1041 dst = argbuf; 1042 1043 /* Extract cmd name from argv */ 1044 cmd = basename(*args); 1045 1046 for (; (src = *args++) != NULL; ) { 1047 if (*src == '\0') 1048 continue; 1049 len = (argbuflen - (dst - argbuf) - 1) / 4; 1050 strvisx(dst, src, 1051 MIN(strlen(src), len), 1052 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL); 1053 while (*dst != '\0') 1054 dst++; 1055 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1056 *dst++ = ' '; /* add delimiting space */ 1057 } 1058 if (dst != argbuf && dst[-1] == ' ') 1059 dst--; 1060 *dst = '\0'; 1061 1062 if (strcmp(cmd, pp->ki_comm) != 0) { 1063 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1064 pp->ki_tdname[0]) 1065 snprintf(cmdbuf, screen_width, 1066 "%s (%s){%s%s}", argbuf, 1067 pp->ki_comm, pp->ki_tdname, 1068 pp->ki_moretdname); 1069 else 1070 snprintf(cmdbuf, screen_width, 1071 "%s (%s)", argbuf, pp->ki_comm); 1072 } else { 1073 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1074 pp->ki_tdname[0]) 1075 snprintf(cmdbuf, screen_width, 1076 "%s{%s%s}", argbuf, pp->ki_tdname, 1077 pp->ki_moretdname); 1078 else 1079 strlcpy(cmdbuf, argbuf, screen_width); 1080 } 1081 free(argbuf); 1082 } 1083 } 1084 1085 if (displaymode == DISP_IO) { 1086 oldp = get_old_proc(pp); 1087 if (oldp != NULL) { 1088 ru.ru_inblock = RU(pp)->ru_inblock - 1089 RU(oldp)->ru_inblock; 1090 ru.ru_oublock = RU(pp)->ru_oublock - 1091 RU(oldp)->ru_oublock; 1092 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1093 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1094 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1095 rup = &ru; 1096 } else { 1097 rup = RU(pp); 1098 } 1099 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1100 s_tot = total_inblock + total_oublock + total_majflt; 1101 1102 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1103 1104 if (ps.jail) { 1105 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1106 } 1107 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1108 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1109 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1110 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1111 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1112 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1113 sbuf_printf(procbuf, "%6ld ", p_tot); 1114 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1115 1116 } else { 1117 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1118 if (ps.jail) { 1119 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1120 } 1121 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1122 1123 if (!ps.thread) { 1124 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1125 } else { 1126 sbuf_printf(procbuf, " "); 1127 } 1128 1129 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1130 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1131 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1132 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1133 if (ps.swap) { 1134 sbuf_printf(procbuf, "%*s ", 1135 TOP_SWAP_LEN - 1, 1136 format_k(pagetok(ki_swap(pp)))); 1137 } 1138 sbuf_printf(procbuf, "%-6.6s ", status); 1139 if (smpmode) { 1140 int cpu; 1141 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1142 cpu = pp->ki_oncpu; 1143 } else { 1144 cpu = pp->ki_lastcpu; 1145 } 1146 sbuf_printf(procbuf, "%3d ", cpu); 1147 } 1148 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1149 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1150 } 1151 sbuf_printf(procbuf, "%s", cmdbuf); 1152 free(cmdbuf); 1153 return (sbuf_data(procbuf)); 1154 } 1155 1156 static void 1157 getsysctl(const char *name, void *ptr, size_t len) 1158 { 1159 size_t nlen = len; 1160 1161 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1162 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1163 strerror(errno)); 1164 quit(TOP_EX_SYS_ERROR); 1165 } 1166 if (nlen != len) { 1167 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1168 name, (unsigned long)len, (unsigned long)nlen); 1169 quit(TOP_EX_SYS_ERROR); 1170 } 1171 } 1172 1173 static const char * 1174 format_nice(const struct kinfo_proc *pp) 1175 { 1176 const char *fifo, *kproc; 1177 int rtpri; 1178 static char nicebuf[4 + 1]; 1179 1180 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1181 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1182 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1183 case PRI_ITHD: 1184 return ("-"); 1185 case PRI_REALTIME: 1186 /* 1187 * XXX: the kernel doesn't tell us the original rtprio and 1188 * doesn't really know what it was, so to recover it we 1189 * must be more chummy with the implementation than the 1190 * implementation is with itself. pri_user gives a 1191 * constant "base" priority, but is only initialized 1192 * properly for user threads. pri_native gives what the 1193 * kernel calls the "base" priority, but it isn't constant 1194 * since it is changed by priority propagation. pri_native 1195 * also isn't properly initialized for all threads, but it 1196 * is properly initialized for kernel realtime and idletime 1197 * threads. Thus we use pri_user for the base priority of 1198 * user threads (it is always correct) and pri_native for 1199 * the base priority of kernel realtime and idletime threads 1200 * (there is nothing better, and it is usually correct). 1201 * 1202 * The field width and thus the buffer are too small for 1203 * values like "kr31F", but such values shouldn't occur, 1204 * and if they do then the tailing "F" is not displayed. 1205 */ 1206 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1207 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1208 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1209 kproc, rtpri, fifo); 1210 break; 1211 case PRI_TIMESHARE: 1212 if (pp->ki_flag & P_KPROC) 1213 return ("-"); 1214 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1215 break; 1216 case PRI_IDLE: 1217 /* XXX: as above. */ 1218 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1219 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1220 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1221 kproc, rtpri, fifo); 1222 break; 1223 default: 1224 return ("?"); 1225 } 1226 return (nicebuf); 1227 } 1228 1229 /* comparison routines for qsort */ 1230 1231 static int 1232 compare_pid(const void *p1, const void *p2) 1233 { 1234 const struct kinfo_proc * const *pp1 = p1; 1235 const struct kinfo_proc * const *pp2 = p2; 1236 1237 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1238 1239 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1240 } 1241 1242 static int 1243 compare_tid(const void *p1, const void *p2) 1244 { 1245 const struct kinfo_proc * const *pp1 = p1; 1246 const struct kinfo_proc * const *pp2 = p2; 1247 1248 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1249 1250 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1251 } 1252 1253 /* 1254 * proc_compare - comparison function for "qsort" 1255 * Compares the resource consumption of two processes using five 1256 * distinct keys. The keys (in descending order of importance) are: 1257 * percent cpu, cpu ticks, state, resident set size, total virtual 1258 * memory usage. The process states are ordered as follows (from least 1259 * to most important): WAIT, zombie, sleep, stop, start, run. The 1260 * array declaration below maps a process state index into a number 1261 * that reflects this ordering. 1262 */ 1263 1264 static int sorted_state[] = { 1265 0, /* not used */ 1266 3, /* sleep */ 1267 1, /* ABANDONED (WAIT) */ 1268 6, /* run */ 1269 5, /* start */ 1270 2, /* zombie */ 1271 4 /* stop */ 1272 }; 1273 1274 1275 #define ORDERKEY_PCTCPU(a, b) do { \ 1276 double diff; \ 1277 if (ps.wcpu) \ 1278 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1279 weighted_cpu(PCTCPU((a)), (a)); \ 1280 else \ 1281 diff = PCTCPU((b)) - PCTCPU((a)); \ 1282 if (diff != 0) \ 1283 return (diff > 0 ? 1 : -1); \ 1284 } while (0) 1285 1286 #define ORDERKEY_CPTICKS(a, b) do { \ 1287 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1288 if (diff != 0) \ 1289 return (diff > 0 ? 1 : -1); \ 1290 } while (0) 1291 1292 #define ORDERKEY_STATE(a, b) do { \ 1293 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1294 if (diff != 0) \ 1295 return (diff > 0 ? 1 : -1); \ 1296 } while (0) 1297 1298 #define ORDERKEY_PRIO(a, b) do { \ 1299 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1300 if (diff != 0) \ 1301 return (diff > 0 ? 1 : -1); \ 1302 } while (0) 1303 1304 #define ORDERKEY_THREADS(a, b) do { \ 1305 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1306 if (diff != 0) \ 1307 return (diff > 0 ? 1 : -1); \ 1308 } while (0) 1309 1310 #define ORDERKEY_RSSIZE(a, b) do { \ 1311 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1312 if (diff != 0) \ 1313 return (diff > 0 ? 1 : -1); \ 1314 } while (0) 1315 1316 #define ORDERKEY_MEM(a, b) do { \ 1317 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1318 if (diff != 0) \ 1319 return (diff > 0 ? 1 : -1); \ 1320 } while (0) 1321 1322 #define ORDERKEY_JID(a, b) do { \ 1323 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1324 if (diff != 0) \ 1325 return (diff > 0 ? 1 : -1); \ 1326 } while (0) 1327 1328 #define ORDERKEY_SWAP(a, b) do { \ 1329 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1330 if (diff != 0) \ 1331 return (diff > 0 ? 1 : -1); \ 1332 } while (0) 1333 1334 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1335 1336 static int 1337 compare_cpu(const void *arg1, const void *arg2) 1338 { 1339 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1340 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1341 1342 ORDERKEY_PCTCPU(p1, p2); 1343 ORDERKEY_CPTICKS(p1, p2); 1344 ORDERKEY_STATE(p1, p2); 1345 ORDERKEY_PRIO(p1, p2); 1346 ORDERKEY_RSSIZE(p1, p2); 1347 ORDERKEY_MEM(p1, p2); 1348 1349 return (0); 1350 } 1351 1352 /* compare_size - the comparison function for sorting by total memory usage */ 1353 1354 static int 1355 compare_size(const void *arg1, const void *arg2) 1356 { 1357 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1358 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1359 1360 ORDERKEY_MEM(p1, p2); 1361 ORDERKEY_RSSIZE(p1, p2); 1362 ORDERKEY_PCTCPU(p1, p2); 1363 ORDERKEY_CPTICKS(p1, p2); 1364 ORDERKEY_STATE(p1, p2); 1365 ORDERKEY_PRIO(p1, p2); 1366 1367 return (0); 1368 } 1369 1370 /* compare_res - the comparison function for sorting by resident set size */ 1371 1372 static int 1373 compare_res(const void *arg1, const void *arg2) 1374 { 1375 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1376 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1377 1378 ORDERKEY_RSSIZE(p1, p2); 1379 ORDERKEY_MEM(p1, p2); 1380 ORDERKEY_PCTCPU(p1, p2); 1381 ORDERKEY_CPTICKS(p1, p2); 1382 ORDERKEY_STATE(p1, p2); 1383 ORDERKEY_PRIO(p1, p2); 1384 1385 return (0); 1386 } 1387 1388 /* compare_time - the comparison function for sorting by total cpu time */ 1389 1390 static int 1391 compare_time(const void *arg1, const void *arg2) 1392 { 1393 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1394 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1395 1396 ORDERKEY_CPTICKS(p1, p2); 1397 ORDERKEY_PCTCPU(p1, p2); 1398 ORDERKEY_STATE(p1, p2); 1399 ORDERKEY_PRIO(p1, p2); 1400 ORDERKEY_RSSIZE(p1, p2); 1401 ORDERKEY_MEM(p1, p2); 1402 1403 return (0); 1404 } 1405 1406 /* compare_prio - the comparison function for sorting by priority */ 1407 1408 static int 1409 compare_prio(const void *arg1, const void *arg2) 1410 { 1411 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1412 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1413 1414 ORDERKEY_PRIO(p1, p2); 1415 ORDERKEY_CPTICKS(p1, p2); 1416 ORDERKEY_PCTCPU(p1, p2); 1417 ORDERKEY_STATE(p1, p2); 1418 ORDERKEY_RSSIZE(p1, p2); 1419 ORDERKEY_MEM(p1, p2); 1420 1421 return (0); 1422 } 1423 1424 /* compare_threads - the comparison function for sorting by threads */ 1425 static int 1426 compare_threads(const void *arg1, const void *arg2) 1427 { 1428 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1429 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1430 1431 ORDERKEY_THREADS(p1, p2); 1432 ORDERKEY_PCTCPU(p1, p2); 1433 ORDERKEY_CPTICKS(p1, p2); 1434 ORDERKEY_STATE(p1, p2); 1435 ORDERKEY_PRIO(p1, p2); 1436 ORDERKEY_RSSIZE(p1, p2); 1437 ORDERKEY_MEM(p1, p2); 1438 1439 return (0); 1440 } 1441 1442 /* compare_jid - the comparison function for sorting by jid */ 1443 static int 1444 compare_jid(const void *arg1, const void *arg2) 1445 { 1446 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1447 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1448 1449 ORDERKEY_JID(p1, p2); 1450 ORDERKEY_PCTCPU(p1, p2); 1451 ORDERKEY_CPTICKS(p1, p2); 1452 ORDERKEY_STATE(p1, p2); 1453 ORDERKEY_PRIO(p1, p2); 1454 ORDERKEY_RSSIZE(p1, p2); 1455 ORDERKEY_MEM(p1, p2); 1456 1457 return (0); 1458 } 1459 1460 /* compare_swap - the comparison function for sorting by swap */ 1461 static int 1462 compare_swap(const void *arg1, const void *arg2) 1463 { 1464 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1465 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1466 1467 ORDERKEY_SWAP(p1, p2); 1468 ORDERKEY_PCTCPU(p1, p2); 1469 ORDERKEY_CPTICKS(p1, p2); 1470 ORDERKEY_STATE(p1, p2); 1471 ORDERKEY_PRIO(p1, p2); 1472 ORDERKEY_RSSIZE(p1, p2); 1473 ORDERKEY_MEM(p1, p2); 1474 1475 return (0); 1476 } 1477 1478 /* assorted comparison functions for sorting by i/o */ 1479 1480 static int 1481 compare_iototal(const void *arg1, const void *arg2) 1482 { 1483 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1484 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1485 1486 return (get_io_total(p2) - get_io_total(p1)); 1487 } 1488 1489 static int 1490 compare_ioread(const void *arg1, const void *arg2) 1491 { 1492 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1493 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1494 long dummy, inp1, inp2; 1495 1496 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1497 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1498 1499 return (inp2 - inp1); 1500 } 1501 1502 static int 1503 compare_iowrite(const void *arg1, const void *arg2) 1504 { 1505 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1506 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1507 long dummy, oup1, oup2; 1508 1509 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1510 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1511 1512 return (oup2 - oup1); 1513 } 1514 1515 static int 1516 compare_iofault(const void *arg1, const void *arg2) 1517 { 1518 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1519 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1520 long dummy, flp1, flp2; 1521 1522 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1523 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1524 1525 return (flp2 - flp1); 1526 } 1527 1528 static int 1529 compare_vcsw(const void *arg1, const void *arg2) 1530 { 1531 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1532 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1533 long dummy, flp1, flp2; 1534 1535 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1536 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1537 1538 return (flp2 - flp1); 1539 } 1540 1541 static int 1542 compare_ivcsw(const void *arg1, const void *arg2) 1543 { 1544 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1545 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1546 long dummy, flp1, flp2; 1547 1548 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1549 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1550 1551 return (flp2 - flp1); 1552 } 1553 1554 int (*compares[])(const void *arg1, const void *arg2) = { 1555 compare_cpu, 1556 compare_size, 1557 compare_res, 1558 compare_time, 1559 compare_prio, 1560 compare_threads, 1561 compare_iototal, 1562 compare_ioread, 1563 compare_iowrite, 1564 compare_iofault, 1565 compare_vcsw, 1566 compare_ivcsw, 1567 compare_jid, 1568 compare_swap, 1569 compare_pid, 1570 NULL 1571 }; 1572 1573 1574 static int 1575 swapmode(int *retavail, int *retfree) 1576 { 1577 int n; 1578 struct kvm_swap swapary[1]; 1579 static int pagesize = 0; 1580 static unsigned long swap_maxpages = 0; 1581 1582 *retavail = 0; 1583 *retfree = 0; 1584 1585 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1586 1587 n = kvm_getswapinfo(kd, swapary, 1, 0); 1588 if (n < 0 || swapary[0].ksw_total == 0) 1589 return (0); 1590 1591 if (pagesize == 0) 1592 pagesize = getpagesize(); 1593 if (swap_maxpages == 0) 1594 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1595 1596 /* ksw_total contains the total size of swap all devices which may 1597 exceed the maximum swap size allocatable in the system */ 1598 if ( swapary[0].ksw_total > swap_maxpages ) 1599 swapary[0].ksw_total = swap_maxpages; 1600 1601 *retavail = CONVERT(swapary[0].ksw_total); 1602 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1603 1604 #undef CONVERT 1605 1606 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1607 return (n); 1608 } 1609