1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x system 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * 22 * $Id: machine.c,v 1.14 1998/08/12 09:58:15 wosch Exp $ 23 */ 24 25 26 #include <sys/types.h> 27 #include <sys/signal.h> 28 #include <sys/param.h> 29 30 #include "os.h" 31 #include <stdio.h> 32 #include <nlist.h> 33 #include <math.h> 34 #include <kvm.h> 35 #include <pwd.h> 36 #include <sys/errno.h> 37 #include <sys/sysctl.h> 38 #include <sys/dkstat.h> 39 #include <sys/file.h> 40 #include <sys/time.h> 41 #include <sys/proc.h> 42 #include <sys/user.h> 43 #include <sys/vmmeter.h> 44 #include <sys/resource.h> 45 #include <sys/rtprio.h> 46 47 /* Swap */ 48 #include <stdlib.h> 49 #include <sys/rlist.h> 50 #include <sys/conf.h> 51 52 #include <osreldate.h> /* for changes in kernel structures */ 53 54 #include "top.h" 55 #include "machine.h" 56 57 static int check_nlist __P((struct nlist *)); 58 static int getkval __P((unsigned long, int *, int, char *)); 59 extern char* printable __P((char *)); 60 int swapmode __P((int *retavail, int *retfree)); 61 static int smpmode; 62 static int namelength; 63 static int cmdlength; 64 65 66 /* get_process_info passes back a handle. This is what it looks like: */ 67 68 struct handle 69 { 70 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 71 int remaining; /* number of pointers remaining */ 72 }; 73 74 /* declarations for load_avg */ 75 #include "loadavg.h" 76 77 #define PP(pp, field) ((pp)->kp_proc . field) 78 #define EP(pp, field) ((pp)->kp_eproc . field) 79 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) 80 81 /* define what weighted cpu is. */ 82 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ 83 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) 84 85 /* what we consider to be process size: */ 86 #define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024) 87 88 /* definitions for indices in the nlist array */ 89 90 91 static struct nlist nlst[] = { 92 #define X_CCPU 0 93 { "_ccpu" }, /* 0 */ 94 #define X_CP_TIME 1 95 { "_cp_time" }, /* 1 */ 96 #define X_HZ 2 97 { "_hz" }, /* 2 */ 98 #define X_STATHZ 3 99 { "_stathz" }, /* 3 */ 100 #define X_AVENRUN 4 101 { "_averunnable" }, /* 4 */ 102 103 /* Swap */ 104 #define VM_SWAPLIST 5 105 { "_swaplist" },/* list of free swap areas */ 106 #define VM_SWDEVT 6 107 { "_swdevt" }, /* list of swap devices and sizes */ 108 #define VM_NSWAP 7 109 { "_nswap" }, /* size of largest swap device */ 110 #define VM_NSWDEV 8 111 { "_nswdev" }, /* number of swap devices */ 112 #define VM_DMMAX 9 113 { "_dmmax" }, /* maximum size of a swap block */ 114 #define X_BUFSPACE 10 115 { "_bufspace" }, /* K in buffer cache */ 116 #define X_CNT 11 117 { "_cnt" }, /* struct vmmeter cnt */ 118 119 /* Last pid */ 120 #define X_LASTPID 12 121 { "_nextpid" }, 122 { 0 } 123 }; 124 125 /* 126 * These definitions control the format of the per-process area 127 */ 128 129 static char smp_header[] = 130 " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 131 132 #define smp_Proc_format \ 133 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s" 134 135 static char up_header[] = 136 " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 137 138 #define up_Proc_format \ 139 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s" 140 141 142 143 /* process state names for the "STATE" column of the display */ 144 /* the extra nulls in the string "run" are for adding a slash and 145 the processor number when needed */ 146 147 char *state_abbrev[] = 148 { 149 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", 150 }; 151 152 153 static kvm_t *kd; 154 155 /* values that we stash away in _init and use in later routines */ 156 157 static double logcpu; 158 159 /* these are retrieved from the kernel in _init */ 160 161 static long hz; 162 static load_avg ccpu; 163 164 /* these are offsets obtained via nlist and used in the get_ functions */ 165 166 static unsigned long cp_time_offset; 167 static unsigned long avenrun_offset; 168 static unsigned long lastpid_offset; 169 static long lastpid; 170 static unsigned long cnt_offset; 171 static unsigned long bufspace_offset; 172 static long cnt; 173 174 /* these are for calculating cpu state percentages */ 175 176 static long cp_time[CPUSTATES]; 177 static long cp_old[CPUSTATES]; 178 static long cp_diff[CPUSTATES]; 179 180 /* these are for detailing the process states */ 181 182 int process_states[6]; 183 char *procstatenames[] = { 184 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 185 " zombie, ", 186 NULL 187 }; 188 189 /* these are for detailing the cpu states */ 190 191 int cpu_states[CPUSTATES]; 192 char *cpustatenames[] = { 193 "user", "nice", "system", "interrupt", "idle", NULL 194 }; 195 196 /* these are for detailing the memory statistics */ 197 198 int memory_stats[7]; 199 char *memorynames[] = { 200 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 201 NULL 202 }; 203 204 int swap_stats[7]; 205 char *swapnames[] = { 206 /* 0 1 2 3 4 5 */ 207 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 208 NULL 209 }; 210 211 212 /* these are for keeping track of the proc array */ 213 214 static int nproc; 215 static int onproc = -1; 216 static int pref_len; 217 static struct kinfo_proc *pbase; 218 static struct kinfo_proc **pref; 219 220 /* these are for getting the memory statistics */ 221 222 static int pageshift; /* log base 2 of the pagesize */ 223 224 /* define pagetok in terms of pageshift */ 225 226 #define pagetok(size) ((size) << pageshift) 227 228 /* useful externals */ 229 long percentages(); 230 231 #ifdef ORDER 232 /* sorting orders. first is default */ 233 char *ordernames[] = { 234 "cpu", "size", "res", "time", "pri", NULL 235 }; 236 #endif 237 238 int 239 machine_init(statics) 240 241 struct statics *statics; 242 243 { 244 register int i = 0; 245 register int pagesize; 246 int modelen; 247 struct passwd *pw; 248 249 modelen = sizeof(smpmode); 250 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && 251 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || 252 modelen != sizeof(smpmode)) 253 smpmode = 0; 254 255 while ((pw = getpwent()) != NULL) { 256 if (strlen(pw->pw_name) > namelength) 257 namelength = strlen(pw->pw_name); 258 } 259 if (namelength < 8) 260 namelength = 8; 261 if (namelength > 16) 262 namelength = 16; 263 264 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) 265 return -1; 266 267 268 /* get the list of symbols we want to access in the kernel */ 269 (void) kvm_nlist(kd, nlst); 270 if (nlst[0].n_type == 0) 271 { 272 fprintf(stderr, "top: nlist failed\n"); 273 return(-1); 274 } 275 276 /* make sure they were all found */ 277 if (i > 0 && check_nlist(nlst) > 0) 278 { 279 return(-1); 280 } 281 282 /* get the symbol values out of kmem */ 283 (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!"); 284 if (!hz) { 285 (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), 286 nlst[X_HZ].n_name); 287 } 288 289 (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), 290 nlst[X_CCPU].n_name); 291 292 /* stash away certain offsets for later use */ 293 cp_time_offset = nlst[X_CP_TIME].n_value; 294 avenrun_offset = nlst[X_AVENRUN].n_value; 295 lastpid_offset = nlst[X_LASTPID].n_value; 296 cnt_offset = nlst[X_CNT].n_value; 297 bufspace_offset = nlst[X_BUFSPACE].n_value; 298 299 /* this is used in calculating WCPU -- calculate it ahead of time */ 300 logcpu = log(loaddouble(ccpu)); 301 302 pbase = NULL; 303 pref = NULL; 304 nproc = 0; 305 onproc = -1; 306 /* get the page size with "getpagesize" and calculate pageshift from it */ 307 pagesize = getpagesize(); 308 pageshift = 0; 309 while (pagesize > 1) 310 { 311 pageshift++; 312 pagesize >>= 1; 313 } 314 315 /* we only need the amount of log(2)1024 for our conversion */ 316 pageshift -= LOG1024; 317 318 /* fill in the statics information */ 319 statics->procstate_names = procstatenames; 320 statics->cpustate_names = cpustatenames; 321 statics->memory_names = memorynames; 322 statics->swap_names = swapnames; 323 #ifdef ORDER 324 statics->order_names = ordernames; 325 #endif 326 327 /* all done! */ 328 return(0); 329 } 330 331 char *format_header(uname_field) 332 333 register char *uname_field; 334 335 { 336 register char *ptr; 337 static char Header[128]; 338 339 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, 340 namelength, namelength, uname_field); 341 342 cmdlength = 80 - strlen(Header) + 6; 343 344 return Header; 345 } 346 347 static int swappgsin = -1; 348 static int swappgsout = -1; 349 extern struct timeval timeout; 350 351 void 352 get_system_info(si) 353 354 struct system_info *si; 355 356 { 357 long total; 358 load_avg avenrun[3]; 359 360 /* get the cp_time array */ 361 (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), 362 nlst[X_CP_TIME].n_name); 363 (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), 364 nlst[X_AVENRUN].n_name); 365 366 (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), 367 "!"); 368 369 /* convert load averages to doubles */ 370 { 371 register int i; 372 register double *infoloadp; 373 load_avg *avenrunp; 374 375 #ifdef notyet 376 struct loadavg sysload; 377 int size; 378 getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); 379 #endif 380 381 infoloadp = si->load_avg; 382 avenrunp = avenrun; 383 for (i = 0; i < 3; i++) 384 { 385 #ifdef notyet 386 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 387 #endif 388 *infoloadp++ = loaddouble(*avenrunp++); 389 } 390 } 391 392 /* convert cp_time counts to percentages */ 393 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 394 395 /* sum memory & swap statistics */ 396 { 397 struct vmmeter sum; 398 static unsigned int swap_delay = 0; 399 static int swapavail = 0; 400 static int swapfree = 0; 401 static int bufspace = 0; 402 403 (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), 404 "_cnt"); 405 (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), 406 "_bufspace"); 407 408 /* convert memory stats to Kbytes */ 409 memory_stats[0] = pagetok(sum.v_active_count); 410 memory_stats[1] = pagetok(sum.v_inactive_count); 411 memory_stats[2] = pagetok(sum.v_wire_count); 412 memory_stats[3] = pagetok(sum.v_cache_count); 413 memory_stats[4] = bufspace / 1024; 414 memory_stats[5] = pagetok(sum.v_free_count); 415 memory_stats[6] = -1; 416 417 /* first interval */ 418 if (swappgsin < 0) { 419 swap_stats[4] = 0; 420 swap_stats[5] = 0; 421 } 422 423 /* compute differences between old and new swap statistic */ 424 else { 425 swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); 426 swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); 427 } 428 429 swappgsin = sum.v_swappgsin; 430 swappgsout = sum.v_swappgsout; 431 432 /* call CPU heavy swapmode() only for changes */ 433 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 434 swap_stats[3] = swapmode(&swapavail, &swapfree); 435 swap_stats[0] = swapavail; 436 swap_stats[1] = swapavail - swapfree; 437 swap_stats[2] = swapfree; 438 } 439 swap_delay = 1; 440 swap_stats[6] = -1; 441 } 442 443 /* set arrays and strings */ 444 si->cpustates = cpu_states; 445 si->memory = memory_stats; 446 si->swap = swap_stats; 447 448 449 if(lastpid > 0) { 450 si->last_pid = lastpid; 451 } else { 452 si->last_pid = -1; 453 } 454 } 455 456 static struct handle handle; 457 458 caddr_t get_process_info(si, sel, compare) 459 460 struct system_info *si; 461 struct process_select *sel; 462 int (*compare)(); 463 464 { 465 register int i; 466 register int total_procs; 467 register int active_procs; 468 register struct kinfo_proc **prefp; 469 register struct kinfo_proc *pp; 470 471 /* these are copied out of sel for speed */ 472 int show_idle; 473 int show_self; 474 int show_system; 475 int show_uid; 476 int show_command; 477 478 479 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 480 if (nproc > onproc) 481 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 482 * (onproc = nproc)); 483 if (pref == NULL || pbase == NULL) { 484 (void) fprintf(stderr, "top: Out of memory.\n"); 485 quit(23); 486 } 487 /* get a pointer to the states summary array */ 488 si->procstates = process_states; 489 490 /* set up flags which define what we are going to select */ 491 show_idle = sel->idle; 492 show_self = sel->self; 493 show_system = sel->system; 494 show_uid = sel->uid != -1; 495 show_command = sel->command != NULL; 496 497 /* count up process states and get pointers to interesting procs */ 498 total_procs = 0; 499 active_procs = 0; 500 memset((char *)process_states, 0, sizeof(process_states)); 501 prefp = pref; 502 for (pp = pbase, i = 0; i < nproc; pp++, i++) 503 { 504 /* 505 * Place pointers to each valid proc structure in pref[]. 506 * Process slots that are actually in use have a non-zero 507 * status field. Processes with P_SYSTEM set are system 508 * processes---these get ignored unless show_sysprocs is set. 509 */ 510 if (PP(pp, p_stat) != 0 && 511 (show_self != PP(pp, p_pid)) && 512 (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) 513 { 514 total_procs++; 515 process_states[(unsigned char) PP(pp, p_stat)]++; 516 if ((PP(pp, p_stat) != SZOMB) && 517 (show_idle || (PP(pp, p_pctcpu) != 0) || 518 (PP(pp, p_stat) == SRUN)) && 519 (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) 520 { 521 *prefp++ = pp; 522 active_procs++; 523 } 524 } 525 } 526 527 /* if requested, sort the "interesting" processes */ 528 if (compare != NULL) 529 { 530 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 531 } 532 533 /* remember active and total counts */ 534 si->p_total = total_procs; 535 si->p_active = pref_len = active_procs; 536 537 /* pass back a handle */ 538 handle.next_proc = pref; 539 handle.remaining = active_procs; 540 return((caddr_t)&handle); 541 } 542 543 char fmt[128]; /* static area where result is built */ 544 545 char *format_next_process(handle, get_userid) 546 547 caddr_t handle; 548 char *(*get_userid)(); 549 550 { 551 register struct kinfo_proc *pp; 552 register long cputime; 553 register double pct; 554 struct handle *hp; 555 char status[16]; 556 557 /* find and remember the next proc structure */ 558 hp = (struct handle *)handle; 559 pp = *(hp->next_proc++); 560 hp->remaining--; 561 562 563 /* get the process's user struct and set cputime */ 564 if ((PP(pp, p_flag) & P_INMEM) == 0) { 565 /* 566 * Print swapped processes as <pname> 567 */ 568 char *comm = PP(pp, p_comm); 569 #define COMSIZ sizeof(PP(pp, p_comm)) 570 char buf[COMSIZ]; 571 (void) strncpy(buf, comm, COMSIZ); 572 comm[0] = '<'; 573 (void) strncpy(&comm[1], buf, COMSIZ - 2); 574 comm[COMSIZ - 2] = '\0'; 575 (void) strncat(comm, ">", COMSIZ - 1); 576 comm[COMSIZ - 1] = '\0'; 577 } 578 579 #if 0 580 /* This does not produce the correct results */ 581 cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); 582 #endif 583 /* This does not count interrupts */ 584 cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000; 585 586 /* calculate the base for cpu percentages */ 587 pct = pctdouble(PP(pp, p_pctcpu)); 588 589 /* generate "STATE" field */ 590 switch (PP(pp, p_stat)) { 591 case SRUN: 592 if (smpmode && PP(pp, p_oncpu) >= 0) 593 sprintf(status, "CPU%d", PP(pp, p_oncpu)); 594 else 595 strcpy(status, "RUN"); 596 break; 597 case SSLEEP: 598 if (PP(pp, p_wmesg) != NULL) { 599 sprintf(status, "%.6s", EP(pp, e_wmesg)); 600 break; 601 } 602 /* fall through */ 603 default: 604 sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]); 605 break; 606 } 607 608 /* format this entry */ 609 sprintf(fmt, 610 smpmode ? smp_Proc_format : up_Proc_format, 611 PP(pp, p_pid), 612 namelength, namelength, 613 (*get_userid)(EP(pp, e_pcred.p_ruid)), 614 PP(pp, p_priority) - PZERO, 615 616 /* 617 * normal time -> nice value -20 - +20 618 * real time 0 - 31 -> nice value -52 - -21 619 * idle time 0 - 31 -> nice value +21 - +52 620 */ 621 (PP(pp, p_rtprio.type) == RTP_PRIO_NORMAL ? 622 PP(pp, p_nice) - NZERO : 623 (PP(pp, p_rtprio.type) == RTP_PRIO_REALTIME ? 624 (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) : 625 (PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))), 626 format_k2(PROCSIZE(pp)), 627 format_k2(pagetok(VP(pp, vm_rssize))), 628 status, 629 smpmode ? PP(pp, p_lastcpu) : 0, 630 format_time(cputime), 631 10000.0 * weighted_cpu(pct, pp) / hz, 632 10000.0 * pct / hz, 633 cmdlength, 634 printable(PP(pp, p_comm))); 635 636 /* return the result */ 637 return(fmt); 638 } 639 640 641 /* 642 * check_nlist(nlst) - checks the nlist to see if any symbols were not 643 * found. For every symbol that was not found, a one-line 644 * message is printed to stderr. The routine returns the 645 * number of symbols NOT found. 646 */ 647 648 static int check_nlist(nlst) 649 650 register struct nlist *nlst; 651 652 { 653 register int i; 654 655 /* check to see if we got ALL the symbols we requested */ 656 /* this will write one line to stderr for every symbol not found */ 657 658 i = 0; 659 while (nlst->n_name != NULL) 660 { 661 if (nlst->n_type == 0) 662 { 663 /* this one wasn't found */ 664 (void) fprintf(stderr, "kernel: no symbol named `%s'\n", 665 nlst->n_name); 666 i = 1; 667 } 668 nlst++; 669 } 670 671 return(i); 672 } 673 674 675 /* 676 * getkval(offset, ptr, size, refstr) - get a value out of the kernel. 677 * "offset" is the byte offset into the kernel for the desired value, 678 * "ptr" points to a buffer into which the value is retrieved, 679 * "size" is the size of the buffer (and the object to retrieve), 680 * "refstr" is a reference string used when printing error meessages, 681 * if "refstr" starts with a '!', then a failure on read will not 682 * be fatal (this may seem like a silly way to do things, but I 683 * really didn't want the overhead of another argument). 684 * 685 */ 686 687 static int getkval(offset, ptr, size, refstr) 688 689 unsigned long offset; 690 int *ptr; 691 int size; 692 char *refstr; 693 694 { 695 if (kvm_read(kd, offset, (char *) ptr, size) != size) 696 { 697 if (*refstr == '!') 698 { 699 return(0); 700 } 701 else 702 { 703 fprintf(stderr, "top: kvm_read for %s: %s\n", 704 refstr, strerror(errno)); 705 quit(23); 706 } 707 } 708 return(1); 709 } 710 711 /* comparison routines for qsort */ 712 713 /* 714 * proc_compare - comparison function for "qsort" 715 * Compares the resource consumption of two processes using five 716 * distinct keys. The keys (in descending order of importance) are: 717 * percent cpu, cpu ticks, state, resident set size, total virtual 718 * memory usage. The process states are ordered as follows (from least 719 * to most important): WAIT, zombie, sleep, stop, start, run. The 720 * array declaration below maps a process state index into a number 721 * that reflects this ordering. 722 */ 723 724 static unsigned char sorted_state[] = 725 { 726 0, /* not used */ 727 3, /* sleep */ 728 1, /* ABANDONED (WAIT) */ 729 6, /* run */ 730 5, /* start */ 731 2, /* zombie */ 732 4 /* stop */ 733 }; 734 735 736 #define ORDERKEY_PCTCPU \ 737 if (lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu), \ 738 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 739 740 #define ORDERKEY_CPTICKS \ 741 if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0) 742 743 #define ORDERKEY_STATE \ 744 if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \ 745 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) 746 747 #define ORDERKEY_PRIO \ 748 if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) 749 750 #define ORDERKEY_RSSIZE \ 751 if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) 752 753 #define ORDERKEY_MEM \ 754 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) 755 756 /* compare_cpu - the comparison function for sorting by cpu percentage */ 757 758 int 759 #ifdef ORDER 760 compare_cpu(pp1, pp2) 761 #else 762 proc_compare(pp1, pp2) 763 #endif 764 765 struct proc **pp1; 766 struct proc **pp2; 767 768 { 769 register struct kinfo_proc *p1; 770 register struct kinfo_proc *p2; 771 register int result; 772 register pctcpu lresult; 773 774 /* remove one level of indirection */ 775 p1 = *(struct kinfo_proc **) pp1; 776 p2 = *(struct kinfo_proc **) pp2; 777 778 ORDERKEY_PCTCPU 779 ORDERKEY_CPTICKS 780 ORDERKEY_STATE 781 ORDERKEY_PRIO 782 ORDERKEY_RSSIZE 783 ORDERKEY_MEM 784 ; 785 786 return(result); 787 } 788 789 #ifdef ORDER 790 /* compare routines */ 791 int compare_size(), compare_res(), compare_time(), compare_prio(); 792 793 int (*proc_compares[])() = { 794 compare_cpu, 795 compare_size, 796 compare_res, 797 compare_time, 798 compare_prio, 799 NULL 800 }; 801 802 /* compare_size - the comparison function for sorting by total memory usage */ 803 804 int 805 compare_size(pp1, pp2) 806 807 struct proc **pp1; 808 struct proc **pp2; 809 810 { 811 register struct kinfo_proc *p1; 812 register struct kinfo_proc *p2; 813 register int result; 814 register pctcpu lresult; 815 816 /* remove one level of indirection */ 817 p1 = *(struct kinfo_proc **) pp1; 818 p2 = *(struct kinfo_proc **) pp2; 819 820 ORDERKEY_MEM 821 ORDERKEY_RSSIZE 822 ORDERKEY_PCTCPU 823 ORDERKEY_CPTICKS 824 ORDERKEY_STATE 825 ORDERKEY_PRIO 826 ; 827 828 return(result); 829 } 830 831 /* compare_res - the comparison function for sorting by resident set size */ 832 833 int 834 compare_res(pp1, pp2) 835 836 struct proc **pp1; 837 struct proc **pp2; 838 839 { 840 register struct kinfo_proc *p1; 841 register struct kinfo_proc *p2; 842 register int result; 843 register pctcpu lresult; 844 845 /* remove one level of indirection */ 846 p1 = *(struct kinfo_proc **) pp1; 847 p2 = *(struct kinfo_proc **) pp2; 848 849 ORDERKEY_RSSIZE 850 ORDERKEY_MEM 851 ORDERKEY_PCTCPU 852 ORDERKEY_CPTICKS 853 ORDERKEY_STATE 854 ORDERKEY_PRIO 855 ; 856 857 return(result); 858 } 859 860 /* compare_time - the comparison function for sorting by total cpu time */ 861 862 int 863 compare_time(pp1, pp2) 864 865 struct proc **pp1; 866 struct proc **pp2; 867 868 { 869 register struct kinfo_proc *p1; 870 register struct kinfo_proc *p2; 871 register int result; 872 register pctcpu lresult; 873 874 /* remove one level of indirection */ 875 p1 = *(struct kinfo_proc **) pp1; 876 p2 = *(struct kinfo_proc **) pp2; 877 878 ORDERKEY_CPTICKS 879 ORDERKEY_PCTCPU 880 ORDERKEY_STATE 881 ORDERKEY_PRIO 882 ORDERKEY_RSSIZE 883 ORDERKEY_MEM 884 ; 885 886 return(result); 887 } 888 889 /* compare_prio - the comparison function for sorting by cpu percentage */ 890 891 int 892 compare_prio(pp1, pp2) 893 894 struct proc **pp1; 895 struct proc **pp2; 896 897 { 898 register struct kinfo_proc *p1; 899 register struct kinfo_proc *p2; 900 register int result; 901 register pctcpu lresult; 902 903 /* remove one level of indirection */ 904 p1 = *(struct kinfo_proc **) pp1; 905 p2 = *(struct kinfo_proc **) pp2; 906 907 ORDERKEY_PRIO 908 ORDERKEY_CPTICKS 909 ORDERKEY_PCTCPU 910 ORDERKEY_STATE 911 ORDERKEY_RSSIZE 912 ORDERKEY_MEM 913 ; 914 915 return(result); 916 } 917 #endif 918 919 /* 920 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 921 * the process does not exist. 922 * It is EXTREMLY IMPORTANT that this function work correctly. 923 * If top runs setuid root (as in SVR4), then this function 924 * is the only thing that stands in the way of a serious 925 * security problem. It validates requests for the "kill" 926 * and "renice" commands. 927 */ 928 929 int proc_owner(pid) 930 931 int pid; 932 933 { 934 register int cnt; 935 register struct kinfo_proc **prefp; 936 register struct kinfo_proc *pp; 937 938 prefp = pref; 939 cnt = pref_len; 940 while (--cnt >= 0) 941 { 942 pp = *prefp++; 943 if (PP(pp, p_pid) == (pid_t)pid) 944 { 945 return((int)EP(pp, e_pcred.p_ruid)); 946 } 947 } 948 return(-1); 949 } 950 951 952 /* 953 * swapmode is based on a program called swapinfo written 954 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 955 */ 956 957 #define SVAR(var) __STRING(var) /* to force expansion */ 958 #define KGET(idx, var) \ 959 KGET1(idx, &var, sizeof(var), SVAR(var)) 960 #define KGET1(idx, p, s, msg) \ 961 KGET2(nlst[idx].n_value, p, s, msg) 962 #define KGET2(addr, p, s, msg) \ 963 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 964 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 965 return (0); \ 966 } 967 #define KGETRET(addr, p, s, msg) \ 968 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 969 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 970 return (0); \ 971 } 972 973 974 int 975 swapmode(retavail, retfree) 976 int *retavail; 977 int *retfree; 978 { 979 char *header; 980 int hlen, nswap, nswdev, dmmax; 981 int i, div, avail, nfree, npfree, used; 982 struct swdevt *sw; 983 long blocksize, *perdev; 984 u_long ptr; 985 struct rlist head; 986 #if __FreeBSD_version >= 220000 987 struct rlisthdr swaplist; 988 #else 989 struct rlist *swaplist; 990 #endif 991 struct rlist *swapptr; 992 993 /* 994 * Counter for error messages. If we reach the limit, 995 * stop reading information from swap devices and 996 * return zero. This prevent endless 'bad address' 997 * messages. 998 */ 999 static warning = 10; 1000 1001 if (warning <= 0) { 1002 /* a single warning */ 1003 if (!warning) { 1004 warning--; 1005 fprintf(stderr, 1006 "Too much errors, stop reading swap devices ...\n"); 1007 (void)sleep(3); 1008 } 1009 return(0); 1010 } 1011 warning--; /* decrease counter, see end of function */ 1012 1013 KGET(VM_NSWAP, nswap); 1014 if (!nswap) { 1015 fprintf(stderr, "No swap space available\n"); 1016 return(0); 1017 } 1018 1019 KGET(VM_NSWDEV, nswdev); 1020 KGET(VM_DMMAX, dmmax); 1021 KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist"); 1022 if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL || 1023 (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL) 1024 err(1, "malloc"); 1025 KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt"); 1026 KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt"); 1027 1028 /* Count up swap space. */ 1029 nfree = 0; 1030 memset(perdev, 0, nswdev * sizeof(*perdev)); 1031 #if __FreeBSD_version >= 220000 1032 swapptr = swaplist.rlh_list; 1033 while (swapptr) { 1034 #else 1035 while (swaplist) { 1036 #endif 1037 int top, bottom, next_block; 1038 #if __FreeBSD_version >= 220000 1039 KGET2(swapptr, &head, sizeof(struct rlist), "swapptr"); 1040 #else 1041 KGET2(swaplist, &head, sizeof(struct rlist), "swaplist"); 1042 #endif 1043 1044 top = head.rl_end; 1045 bottom = head.rl_start; 1046 1047 nfree += top - bottom + 1; 1048 1049 /* 1050 * Swap space is split up among the configured disks. 1051 * 1052 * For interleaved swap devices, the first dmmax blocks 1053 * of swap space some from the first disk, the next dmmax 1054 * blocks from the next, and so on up to nswap blocks. 1055 * 1056 * The list of free space joins adjacent free blocks, 1057 * ignoring device boundries. If we want to keep track 1058 * of this information per device, we'll just have to 1059 * extract it ourselves. 1060 */ 1061 while (top / dmmax != bottom / dmmax) { 1062 next_block = ((bottom + dmmax) / dmmax); 1063 perdev[(bottom / dmmax) % nswdev] += 1064 next_block * dmmax - bottom; 1065 bottom = next_block * dmmax; 1066 } 1067 perdev[(bottom / dmmax) % nswdev] += 1068 top - bottom + 1; 1069 1070 #if __FreeBSD_version >= 220000 1071 swapptr = head.rl_next; 1072 #else 1073 swaplist = head.rl_next; 1074 #endif 1075 } 1076 1077 header = getbsize(&hlen, &blocksize); 1078 div = blocksize / 512; 1079 avail = npfree = 0; 1080 for (i = 0; i < nswdev; i++) { 1081 int xsize, xfree; 1082 1083 /* 1084 * Don't report statistics for partitions which have not 1085 * yet been activated via swapon(8). 1086 */ 1087 if (!(sw[i].sw_flags & SW_FREED)) 1088 continue; 1089 1090 /* The first dmmax is never allocated to avoid trashing of 1091 * disklabels 1092 */ 1093 xsize = sw[i].sw_nblks - dmmax; 1094 xfree = perdev[i]; 1095 used = xsize - xfree; 1096 npfree++; 1097 avail += xsize; 1098 } 1099 1100 /* 1101 * If only one partition has been set up via swapon(8), we don't 1102 * need to bother with totals. 1103 */ 1104 *retavail = avail / 2; 1105 *retfree = nfree / 2; 1106 used = avail - nfree; 1107 free(sw); free(perdev); 1108 1109 /* increase counter, no errors occurs */ 1110 warning++; 1111 1112 return (int)(((double)used / (double)avail * 100.0) + 0.5); 1113 } 1114