1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sysctl.h> 26 #include <sys/time.h> 27 #include <sys/user.h> 28 29 #include <assert.h> 30 #include <err.h> 31 #include <kvm.h> 32 #include <math.h> 33 #include <paths.h> 34 #include <stdio.h> 35 #include <stdbool.h> 36 #include <stdint.h> 37 #include <stdlib.h> 38 #include <string.h> 39 #include <time.h> 40 #include <unistd.h> 41 #include <vis.h> 42 43 #include "top.h" 44 #include "display.h" 45 #include "machine.h" 46 #include "loadavg.h" 47 #include "screen.h" 48 #include "utils.h" 49 #include "layout.h" 50 51 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 52 #define SMPUNAMELEN 13 53 #define UPUNAMELEN 15 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static int namelength = 8; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 7 61 #define TOP_SWAP_LEN 6 62 static int jidlength; 63 static int swaplength; 64 static int cmdlengthdelta; 65 66 /* get_process_info passes back a handle. This is what it looks like: */ 67 68 struct handle { 69 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 70 int remaining; /* number of pointers remaining */ 71 }; 72 73 74 /* define what weighted cpu is. */ 75 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 76 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 77 78 /* what we consider to be process size: */ 79 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 80 81 #define RU(pp) (&(pp)->ki_rusage) 82 #define RUTOT(pp) \ 83 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 84 85 #define PCTCPU(pp) (pcpu[pp - pbase]) 86 87 /* 88 * These definitions control the format of the per-process area 89 */ 90 91 static const char io_header[] = 92 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 93 94 static const char io_Proc_format[] = 95 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"; 96 97 static const char smp_header_thr_and_pid[] = 98 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 99 static const char smp_header_tid_only[] = 100 " THR%*s %-*.*s " "PRI NICE SIZE RES%*s STATE C TIME %7s COMMAND"; 101 102 static const char smp_Proc_format[] = 103 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s %2d%7s %6.2f%% %.*s"; 104 105 static char up_header_thr_and_pid[] = 106 " PID%*s %-*.*s THR PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 107 static char up_header_tid_only[] = 108 " THR%*s %-*.*s " "PRI NICE SIZE RES%*s STATE TIME %7s COMMAND"; 109 110 static char up_Proc_format[] = 111 "%5d%*s %-*.*s %s%3d %4s%7s %6s%*.*s %-6.6s%.0d%7s %6.2f%% %.*s"; 112 113 114 /* process state names for the "STATE" column of the display */ 115 /* the extra nulls in the string "run" are for adding a slash and 116 the processor number when needed */ 117 118 static const char *state_abbrev[] = { 119 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 120 }; 121 122 123 static kvm_t *kd; 124 125 /* values that we stash away in _init and use in later routines */ 126 127 static double logcpu; 128 129 /* these are retrieved from the kernel in _init */ 130 131 static load_avg ccpu; 132 133 /* these are used in the get_ functions */ 134 135 static int lastpid; 136 137 /* these are for calculating cpu state percentages */ 138 139 static long cp_time[CPUSTATES]; 140 static long cp_old[CPUSTATES]; 141 static long cp_diff[CPUSTATES]; 142 143 /* these are for detailing the process states */ 144 145 static const char *procstatenames[] = { 146 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 147 " zombie, ", " waiting, ", " lock, ", 148 NULL 149 }; 150 static int process_states[nitems(procstatenames)]; 151 152 /* these are for detailing the cpu states */ 153 154 static int cpu_states[CPUSTATES]; 155 static const char *cpustatenames[] = { 156 "user", "nice", "system", "interrupt", "idle", NULL 157 }; 158 159 /* these are for detailing the memory statistics */ 160 161 static const char *memorynames[] = { 162 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 163 "K Free", NULL 164 }; 165 static int memory_stats[nitems(memorynames)]; 166 167 static const char *arcnames[] = { 168 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 169 NULL 170 }; 171 static int arc_stats[nitems(arcnames)]; 172 173 static const char *carcnames[] = { 174 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 175 NULL 176 }; 177 static int carc_stats[nitems(carcnames)]; 178 179 static const char *swapnames[] = { 180 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 181 NULL 182 }; 183 static int swap_stats[nitems(swapnames)]; 184 185 186 /* these are for keeping track of the proc array */ 187 188 static int nproc; 189 static int onproc = -1; 190 static int pref_len; 191 static struct kinfo_proc *pbase; 192 static struct kinfo_proc **pref; 193 static struct kinfo_proc *previous_procs; 194 static struct kinfo_proc **previous_pref; 195 static int previous_proc_count = 0; 196 static int previous_proc_count_max = 0; 197 static int previous_thread; 198 199 /* data used for recalculating pctcpu */ 200 static double *pcpu; 201 static struct timespec proc_uptime; 202 static struct timeval proc_wall_time; 203 static struct timeval previous_wall_time; 204 static uint64_t previous_interval = 0; 205 206 /* total number of io operations */ 207 static long total_inblock; 208 static long total_oublock; 209 static long total_majflt; 210 211 /* these are for getting the memory statistics */ 212 213 static int arc_enabled; 214 static int carc_enabled; 215 static int pageshift; /* log base 2 of the pagesize */ 216 217 /* define pagetok in terms of pageshift */ 218 219 #define pagetok(size) ((size) << pageshift) 220 221 /* swap usage */ 222 #define ki_swap(kip) \ 223 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 224 225 /* 226 * Sorting orders. The first element is the default. 227 */ 228 static const char *ordernames[] = { 229 "cpu", "size", "res", "time", "pri", "threads", 230 "total", "read", "write", "fault", "vcsw", "ivcsw", 231 "jid", "swap", "pid", NULL 232 }; 233 234 /* Per-cpu time states */ 235 static int maxcpu; 236 static int maxid; 237 static int ncpus; 238 static unsigned long cpumask; 239 static long *times; 240 static long *pcpu_cp_time; 241 static long *pcpu_cp_old; 242 static long *pcpu_cp_diff; 243 static int *pcpu_cpu_states; 244 245 static int compare_swap(const void *a, const void *b); 246 static int compare_jid(const void *a, const void *b); 247 static int compare_pid(const void *a, const void *b); 248 static int compare_tid(const void *a, const void *b); 249 static const char *format_nice(const struct kinfo_proc *pp); 250 static void getsysctl(const char *name, void *ptr, size_t len); 251 static int swapmode(int *retavail, int *retfree); 252 static void update_layout(void); 253 static int find_uid(uid_t needle, int *haystack); 254 255 static int 256 find_uid(uid_t needle, int *haystack) 257 { 258 size_t i = 0; 259 260 for (; i < TOP_MAX_UIDS; ++i) 261 if ((uid_t)haystack[i] == needle) 262 return 1; 263 return 0; 264 } 265 266 void 267 toggle_pcpustats(void) 268 { 269 270 if (ncpus == 1) 271 return; 272 update_layout(); 273 } 274 275 /* Adjust display based on ncpus and the ARC state. */ 276 static void 277 update_layout(void) 278 { 279 280 y_mem = 3; 281 y_arc = 4; 282 y_carc = 5; 283 y_swap = 4 + arc_enabled + carc_enabled; 284 y_idlecursor = 5 + arc_enabled + carc_enabled; 285 y_message = 5 + arc_enabled + carc_enabled; 286 y_header = 6 + arc_enabled + carc_enabled; 287 y_procs = 7 + arc_enabled + carc_enabled; 288 Header_lines = 7 + arc_enabled + carc_enabled; 289 290 if (pcpu_stats) { 291 y_mem += ncpus - 1; 292 y_arc += ncpus - 1; 293 y_carc += ncpus - 1; 294 y_swap += ncpus - 1; 295 y_idlecursor += ncpus - 1; 296 y_message += ncpus - 1; 297 y_header += ncpus - 1; 298 y_procs += ncpus - 1; 299 Header_lines += ncpus - 1; 300 } 301 } 302 303 int 304 machine_init(struct statics *statics) 305 { 306 int i, j, empty, pagesize; 307 uint64_t arc_size; 308 bool carc_en; 309 size_t size; 310 311 size = sizeof(smpmode); 312 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 313 NULL, 0) != 0 && 314 sysctlbyname("kern.smp.active", &smpmode, &size, 315 NULL, 0) != 0) || 316 size != sizeof(smpmode)) 317 smpmode = 0; 318 319 size = sizeof(arc_size); 320 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 321 NULL, 0) == 0 && arc_size != 0) 322 arc_enabled = 1; 323 size = sizeof(carc_en); 324 if (arc_enabled && 325 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 326 NULL, 0) == 0 && carc_en == 1) 327 carc_enabled = 1; 328 329 namelength = MAXLOGNAME; 330 if (smpmode && namelength > SMPUNAMELEN) 331 namelength = SMPUNAMELEN; 332 else if (namelength > UPUNAMELEN) 333 namelength = UPUNAMELEN; 334 335 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 336 if (kd == NULL) 337 return (-1); 338 339 GETSYSCTL("kern.ccpu", ccpu); 340 341 /* this is used in calculating WCPU -- calculate it ahead of time */ 342 logcpu = log(loaddouble(ccpu)); 343 344 pbase = NULL; 345 pref = NULL; 346 pcpu = NULL; 347 nproc = 0; 348 onproc = -1; 349 350 /* get the page size and calculate pageshift from it */ 351 pagesize = getpagesize(); 352 pageshift = 0; 353 while (pagesize > 1) { 354 pageshift++; 355 pagesize >>= 1; 356 } 357 358 /* we only need the amount of log(2)1024 for our conversion */ 359 pageshift -= LOG1024; 360 361 /* fill in the statics information */ 362 statics->procstate_names = procstatenames; 363 statics->cpustate_names = cpustatenames; 364 statics->memory_names = memorynames; 365 if (arc_enabled) 366 statics->arc_names = arcnames; 367 else 368 statics->arc_names = NULL; 369 if (carc_enabled) 370 statics->carc_names = carcnames; 371 else 372 statics->carc_names = NULL; 373 statics->swap_names = swapnames; 374 statics->order_names = ordernames; 375 376 /* Allocate state for per-CPU stats. */ 377 cpumask = 0; 378 ncpus = 0; 379 GETSYSCTL("kern.smp.maxcpus", maxcpu); 380 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 381 if (times == NULL) 382 err(1, "calloc %zu bytes", size); 383 size = sizeof(long) * maxcpu * CPUSTATES; 384 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 385 err(1, "sysctlbyname kern.cp_times"); 386 pcpu_cp_time = calloc(1, size); 387 maxid = (size / CPUSTATES / sizeof(long)) - 1; 388 for (i = 0; i <= maxid; i++) { 389 empty = 1; 390 for (j = 0; empty && j < CPUSTATES; j++) { 391 if (times[i * CPUSTATES + j] != 0) 392 empty = 0; 393 } 394 if (!empty) { 395 cpumask |= (1ul << i); 396 ncpus++; 397 } 398 } 399 assert(ncpus > 0); 400 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 401 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 402 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 403 statics->ncpus = ncpus; 404 405 update_layout(); 406 407 /* all done! */ 408 return (0); 409 } 410 411 const char * 412 format_header(const char *uname_field) 413 { 414 static char Header[128]; 415 const char *prehead; 416 417 if (ps.jail) 418 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */ 419 else 420 jidlength = 0; 421 422 if (ps.swap) 423 swaplength = TOP_SWAP_LEN + 1; /* +1 for extra left space */ 424 else 425 swaplength = 0; 426 427 switch (displaymode) { 428 case DISP_CPU: 429 /* 430 * The logic of picking the right header format seems reverse 431 * here because we only want to display a THR column when 432 * "thread mode" is off (and threads are not listed as 433 * separate lines). 434 */ 435 prehead = smpmode ? 436 (ps.thread ? smp_header_tid_only : smp_header_thr_and_pid) : 437 (ps.thread ? up_header_tid_only : up_header_thr_and_pid); 438 snprintf(Header, sizeof(Header), prehead, 439 jidlength, ps.jail ? " JID" : "", 440 namelength, namelength, uname_field, 441 swaplength, ps.swap ? " SWAP" : "", 442 ps.wcpu ? "WCPU" : "CPU"); 443 break; 444 case DISP_IO: 445 prehead = io_header; 446 snprintf(Header, sizeof(Header), prehead, 447 jidlength, ps.jail ? " JID" : "", 448 namelength, namelength, uname_field); 449 break; 450 case DISP_MAX: 451 assert("displaymode must not be set to DISP_MAX"); 452 } 453 cmdlengthdelta = strlen(Header) - 7; 454 return (Header); 455 } 456 457 static int swappgsin = -1; 458 static int swappgsout = -1; 459 460 461 void 462 get_system_info(struct system_info *si) 463 { 464 struct loadavg sysload; 465 int mib[2]; 466 struct timeval boottime; 467 uint64_t arc_stat, arc_stat2; 468 int i, j; 469 size_t size; 470 471 /* get the CPU stats */ 472 size = (maxid + 1) * CPUSTATES * sizeof(long); 473 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 474 err(1, "sysctlbyname kern.cp_times"); 475 GETSYSCTL("kern.cp_time", cp_time); 476 GETSYSCTL("vm.loadavg", sysload); 477 GETSYSCTL("kern.lastpid", lastpid); 478 479 /* convert load averages to doubles */ 480 for (i = 0; i < 3; i++) 481 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 482 483 /* convert cp_time counts to percentages */ 484 for (i = j = 0; i <= maxid; i++) { 485 if ((cpumask & (1ul << i)) == 0) 486 continue; 487 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 488 &pcpu_cp_time[j * CPUSTATES], 489 &pcpu_cp_old[j * CPUSTATES], 490 &pcpu_cp_diff[j * CPUSTATES]); 491 j++; 492 } 493 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 494 495 /* sum memory & swap statistics */ 496 { 497 static unsigned int swap_delay = 0; 498 static int swapavail = 0; 499 static int swapfree = 0; 500 static long bufspace = 0; 501 static uint64_t nspgsin, nspgsout; 502 503 GETSYSCTL("vfs.bufspace", bufspace); 504 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 505 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 506 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 507 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 508 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 509 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 510 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 511 /* convert memory stats to Kbytes */ 512 memory_stats[0] = pagetok(memory_stats[0]); 513 memory_stats[1] = pagetok(memory_stats[1]); 514 memory_stats[2] = pagetok(memory_stats[2]); 515 memory_stats[3] = pagetok(memory_stats[3]); 516 memory_stats[4] = bufspace / 1024; 517 memory_stats[5] = pagetok(memory_stats[5]); 518 memory_stats[6] = -1; 519 520 /* first interval */ 521 if (swappgsin < 0) { 522 swap_stats[4] = 0; 523 swap_stats[5] = 0; 524 } 525 526 /* compute differences between old and new swap statistic */ 527 else { 528 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 529 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 530 } 531 532 swappgsin = nspgsin; 533 swappgsout = nspgsout; 534 535 /* call CPU heavy swapmode() only for changes */ 536 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 537 swap_stats[3] = swapmode(&swapavail, &swapfree); 538 swap_stats[0] = swapavail; 539 swap_stats[1] = swapavail - swapfree; 540 swap_stats[2] = swapfree; 541 } 542 swap_delay = 1; 543 swap_stats[6] = -1; 544 } 545 546 if (arc_enabled) { 547 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 548 arc_stats[0] = arc_stat >> 10; 549 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 550 arc_stats[1] = arc_stat >> 10; 551 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 552 arc_stats[2] = arc_stat >> 10; 553 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 554 arc_stats[3] = arc_stat >> 10; 555 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 556 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 557 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 558 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 559 arc_stats[5] = arc_stat >> 10; 560 si->arc = arc_stats; 561 } 562 if (carc_enabled) { 563 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 564 carc_stats[0] = arc_stat >> 10; 565 carc_stats[2] = arc_stat >> 10; /* For ratio */ 566 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 567 carc_stats[1] = arc_stat >> 10; 568 si->carc = carc_stats; 569 } 570 571 /* set arrays and strings */ 572 if (pcpu_stats) { 573 si->cpustates = pcpu_cpu_states; 574 si->ncpus = ncpus; 575 } else { 576 si->cpustates = cpu_states; 577 si->ncpus = 1; 578 } 579 si->memory = memory_stats; 580 si->swap = swap_stats; 581 582 583 if (lastpid > 0) { 584 si->last_pid = lastpid; 585 } else { 586 si->last_pid = -1; 587 } 588 589 /* 590 * Print how long system has been up. 591 * (Found by looking getting "boottime" from the kernel) 592 */ 593 mib[0] = CTL_KERN; 594 mib[1] = KERN_BOOTTIME; 595 size = sizeof(boottime); 596 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 597 boottime.tv_sec != 0) { 598 si->boottime = boottime; 599 } else { 600 si->boottime.tv_sec = -1; 601 } 602 } 603 604 #define NOPROC ((void *)-1) 605 606 /* 607 * We need to compare data from the old process entry with the new 608 * process entry. 609 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 610 * structure to cache the mapping. We also use a negative cache pointer 611 * of NOPROC to avoid duplicate lookups. 612 * XXX: this could be done when the actual processes are fetched, we do 613 * it here out of laziness. 614 */ 615 static const struct kinfo_proc * 616 get_old_proc(struct kinfo_proc *pp) 617 { 618 struct kinfo_proc **oldpp, *oldp; 619 620 /* 621 * If this is the first fetch of the kinfo_procs then we don't have 622 * any previous entries. 623 */ 624 if (previous_proc_count == 0) 625 return (NULL); 626 /* negative cache? */ 627 if (pp->ki_udata == NOPROC) 628 return (NULL); 629 /* cached? */ 630 if (pp->ki_udata != NULL) 631 return (pp->ki_udata); 632 /* 633 * Not cached, 634 * 1) look up based on pid. 635 * 2) compare process start. 636 * If we fail here, then setup a negative cache entry, otherwise 637 * cache it. 638 */ 639 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 640 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 641 if (oldpp == NULL) { 642 pp->ki_udata = NOPROC; 643 return (NULL); 644 } 645 oldp = *oldpp; 646 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 647 pp->ki_udata = NOPROC; 648 return (NULL); 649 } 650 pp->ki_udata = oldp; 651 return (oldp); 652 } 653 654 /* 655 * Return the total amount of IO done in blocks in/out and faults. 656 * store the values individually in the pointers passed in. 657 */ 658 static long 659 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 660 long *vcsw, long *ivcsw) 661 { 662 const struct kinfo_proc *oldp; 663 static struct kinfo_proc dummy; 664 long ret; 665 666 oldp = get_old_proc(pp); 667 if (oldp == NULL) { 668 memset(&dummy, 0, sizeof(dummy)); 669 oldp = &dummy; 670 } 671 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 672 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 673 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 674 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 675 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 676 ret = 677 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 678 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 679 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 680 return (ret); 681 } 682 683 /* 684 * If there was a previous update, use the delta in ki_runtime over 685 * the previous interval to calculate pctcpu. Otherwise, fall back 686 * to using the kernel's ki_pctcpu. 687 */ 688 static double 689 proc_calc_pctcpu(struct kinfo_proc *pp) 690 { 691 const struct kinfo_proc *oldp; 692 693 if (previous_interval != 0) { 694 oldp = get_old_proc(pp); 695 if (oldp != NULL) 696 return ((double)(pp->ki_runtime - oldp->ki_runtime) 697 / previous_interval); 698 699 /* 700 * If this process/thread was created during the previous 701 * interval, charge it's total runtime to the previous 702 * interval. 703 */ 704 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 705 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 706 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 707 return ((double)pp->ki_runtime / previous_interval); 708 } 709 return (pctdouble(pp->ki_pctcpu)); 710 } 711 712 /* 713 * Return true if this process has used any CPU time since the 714 * previous update. 715 */ 716 static int 717 proc_used_cpu(struct kinfo_proc *pp) 718 { 719 const struct kinfo_proc *oldp; 720 721 oldp = get_old_proc(pp); 722 if (oldp == NULL) 723 return (PCTCPU(pp) != 0); 724 return (pp->ki_runtime != oldp->ki_runtime || 725 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 726 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 727 } 728 729 /* 730 * Return the total number of block in/out and faults by a process. 731 */ 732 static long 733 get_io_total(const struct kinfo_proc *pp) 734 { 735 long dummy; 736 737 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 738 } 739 740 static struct handle handle; 741 742 void * 743 get_process_info(struct system_info *si, struct process_select *sel, 744 int (*compare)(const void *, const void *)) 745 { 746 int i; 747 int total_procs; 748 long p_io; 749 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 750 long nsec; 751 int active_procs; 752 struct kinfo_proc **prefp; 753 struct kinfo_proc *pp; 754 struct timespec previous_proc_uptime; 755 756 /* these are copied out of sel for speed */ 757 int show_idle; 758 int show_jid; 759 int show_self; 760 int show_system; 761 int show_uid; 762 int show_pid; 763 int show_kidle; 764 765 /* 766 * If thread state was toggled, don't cache the previous processes. 767 */ 768 if (previous_thread != sel->thread) 769 nproc = 0; 770 previous_thread = sel->thread; 771 772 /* 773 * Save the previous process info. 774 */ 775 if (previous_proc_count_max < nproc) { 776 free(previous_procs); 777 previous_procs = calloc(nproc, sizeof(*previous_procs)); 778 free(previous_pref); 779 previous_pref = calloc(nproc, sizeof(*previous_pref)); 780 if (previous_procs == NULL || previous_pref == NULL) { 781 fprintf(stderr, "top: Out of memory.\n"); 782 quit(TOP_EX_SYS_ERROR); 783 } 784 previous_proc_count_max = nproc; 785 } 786 if (nproc) { 787 for (i = 0; i < nproc; i++) 788 previous_pref[i] = &previous_procs[i]; 789 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 790 qsort(previous_pref, nproc, sizeof(*previous_pref), 791 ps.thread ? compare_tid : compare_pid); 792 } 793 previous_proc_count = nproc; 794 previous_proc_uptime = proc_uptime; 795 previous_wall_time = proc_wall_time; 796 previous_interval = 0; 797 798 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 799 0, &nproc); 800 (void)gettimeofday(&proc_wall_time, NULL); 801 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 802 memset(&proc_uptime, 0, sizeof(proc_uptime)); 803 else if (previous_proc_uptime.tv_sec != 0 && 804 previous_proc_uptime.tv_nsec != 0) { 805 previous_interval = (proc_uptime.tv_sec - 806 previous_proc_uptime.tv_sec) * 1000000; 807 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 808 if (nsec < 0) { 809 previous_interval -= 1000000; 810 nsec += 1000000000; 811 } 812 previous_interval += nsec / 1000; 813 } 814 if (nproc > onproc) { 815 pref = realloc(pref, sizeof(*pref) * nproc); 816 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 817 onproc = nproc; 818 } 819 if (pref == NULL || pbase == NULL || pcpu == NULL) { 820 (void) fprintf(stderr, "top: Out of memory.\n"); 821 quit(TOP_EX_SYS_ERROR); 822 } 823 /* get a pointer to the states summary array */ 824 si->procstates = process_states; 825 826 /* set up flags which define what we are going to select */ 827 show_idle = sel->idle; 828 show_jid = sel->jid != -1; 829 show_self = sel->self == -1; 830 show_system = sel->system; 831 show_uid = sel->uid[0] != -1; 832 show_pid = sel->pid != -1; 833 show_kidle = sel->kidle; 834 835 /* count up process states and get pointers to interesting procs */ 836 total_procs = 0; 837 active_procs = 0; 838 total_inblock = 0; 839 total_oublock = 0; 840 total_majflt = 0; 841 memset(process_states, 0, sizeof(process_states)); 842 prefp = pref; 843 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 844 845 if (pp->ki_stat == 0) 846 /* not in use */ 847 continue; 848 849 if (!show_self && pp->ki_pid == sel->self) 850 /* skip self */ 851 continue; 852 853 if (!show_system && (pp->ki_flag & P_SYSTEM)) 854 /* skip system process */ 855 continue; 856 857 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 858 &p_vcsw, &p_ivcsw); 859 total_inblock += p_inblock; 860 total_oublock += p_oublock; 861 total_majflt += p_majflt; 862 total_procs++; 863 process_states[(unsigned char)pp->ki_stat]++; 864 865 if (pp->ki_stat == SZOMB) 866 /* skip zombies */ 867 continue; 868 869 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 870 /* skip kernel idle process */ 871 continue; 872 873 PCTCPU(pp) = proc_calc_pctcpu(pp); 874 if (sel->thread && PCTCPU(pp) > 1.0) 875 PCTCPU(pp) = 1.0; 876 if (displaymode == DISP_CPU && !show_idle && 877 (!proc_used_cpu(pp) || 878 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 879 /* skip idle or non-running processes */ 880 continue; 881 882 if (displaymode == DISP_IO && !show_idle && p_io == 0) 883 /* skip processes that aren't doing I/O */ 884 continue; 885 886 if (show_jid && pp->ki_jid != sel->jid) 887 /* skip proc. that don't belong to the selected JID */ 888 continue; 889 890 if (show_uid && !find_uid(pp->ki_ruid, sel->uid)) 891 /* skip proc. that don't belong to the selected UID */ 892 continue; 893 894 if (show_pid && pp->ki_pid != sel->pid) 895 continue; 896 897 *prefp++ = pp; 898 active_procs++; 899 } 900 901 /* if requested, sort the "interesting" processes */ 902 if (compare != NULL) 903 qsort(pref, active_procs, sizeof(*pref), compare); 904 905 /* remember active and total counts */ 906 si->p_total = total_procs; 907 si->p_pactive = pref_len = active_procs; 908 909 /* pass back a handle */ 910 handle.next_proc = pref; 911 handle.remaining = active_procs; 912 return ((void*)&handle); 913 } 914 915 static char fmt[512]; /* static area where result is built */ 916 917 char * 918 format_next_process(void* xhandle, char *(*get_userid)(int), int flags) 919 { 920 struct kinfo_proc *pp; 921 const struct kinfo_proc *oldp; 922 long cputime; 923 double pct; 924 struct handle *hp; 925 char status[22]; 926 int cpu; 927 size_t state; 928 struct rusage ru, *rup; 929 long p_tot, s_tot; 930 const char *proc_fmt; 931 char thr_buf[6]; 932 char jid_buf[TOP_JID_LEN + 1], swap_buf[TOP_SWAP_LEN + 1]; 933 char *cmdbuf = NULL; 934 char **args; 935 const int cmdlen = 128; 936 937 /* find and remember the next proc structure */ 938 hp = (struct handle *)xhandle; 939 pp = *(hp->next_proc++); 940 hp->remaining--; 941 942 /* get the process's command name */ 943 if ((pp->ki_flag & P_INMEM) == 0) { 944 /* 945 * Print swapped processes as <pname> 946 */ 947 size_t len; 948 949 len = strlen(pp->ki_comm); 950 if (len > sizeof(pp->ki_comm) - 3) 951 len = sizeof(pp->ki_comm) - 3; 952 memmove(pp->ki_comm + 1, pp->ki_comm, len); 953 pp->ki_comm[0] = '<'; 954 pp->ki_comm[len + 1] = '>'; 955 pp->ki_comm[len + 2] = '\0'; 956 } 957 958 /* 959 * Convert the process's runtime from microseconds to seconds. This 960 * time includes the interrupt time although that is not wanted here. 961 * ps(1) is similarly sloppy. 962 */ 963 cputime = (pp->ki_runtime + 500000) / 1000000; 964 965 /* calculate the base for cpu percentages */ 966 pct = PCTCPU(pp); 967 968 /* generate "STATE" field */ 969 switch (state = pp->ki_stat) { 970 case SRUN: 971 if (smpmode && pp->ki_oncpu != NOCPU) 972 sprintf(status, "CPU%d", pp->ki_oncpu); 973 else 974 strcpy(status, "RUN"); 975 break; 976 case SLOCK: 977 if (pp->ki_kiflag & KI_LOCKBLOCK) { 978 sprintf(status, "*%.6s", pp->ki_lockname); 979 break; 980 } 981 /* fall through */ 982 case SSLEEP: 983 sprintf(status, "%.6s", pp->ki_wmesg); 984 break; 985 default: 986 987 if (state < nitems(state_abbrev)) { 988 sprintf(status, "%.6s", state_abbrev[state]); 989 } else { 990 sprintf(status, "?%5zu", state); 991 } 992 break; 993 } 994 995 cmdbuf = calloc(cmdlen + 1, 1); 996 if (cmdbuf == NULL) { 997 warn("calloc(%d)", cmdlen + 1); 998 return NULL; 999 } 1000 1001 if (!(flags & FMT_SHOWARGS)) { 1002 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1003 pp->ki_tdname[0]) { 1004 snprintf(cmdbuf, cmdlen, "%s{%s%s}", pp->ki_comm, 1005 pp->ki_tdname, pp->ki_moretdname); 1006 } else { 1007 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm); 1008 } 1009 } else { 1010 if (pp->ki_flag & P_SYSTEM || 1011 pp->ki_args == NULL || 1012 (args = kvm_getargv(kd, pp, cmdlen)) == NULL || 1013 !(*args)) { 1014 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1015 pp->ki_tdname[0]) { 1016 snprintf(cmdbuf, cmdlen, 1017 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 1018 pp->ki_moretdname); 1019 } else { 1020 snprintf(cmdbuf, cmdlen, 1021 "[%s]", pp->ki_comm); 1022 } 1023 } else { 1024 const char *src; 1025 char *dst, *argbuf; 1026 const char *cmd; 1027 size_t argbuflen; 1028 size_t len; 1029 1030 argbuflen = cmdlen * 4; 1031 argbuf = calloc(argbuflen + 1, 1); 1032 if (argbuf == NULL) { 1033 warn("calloc(%zu)", argbuflen + 1); 1034 free(cmdbuf); 1035 return NULL; 1036 } 1037 1038 dst = argbuf; 1039 1040 /* Extract cmd name from argv */ 1041 cmd = strrchr(*args, '/'); 1042 if (cmd == NULL) 1043 cmd = *args; 1044 else 1045 cmd++; 1046 1047 for (; (src = *args++) != NULL; ) { 1048 if (*src == '\0') 1049 continue; 1050 len = (argbuflen - (dst - argbuf) - 1) / 4; 1051 strvisx(dst, src, 1052 MIN(strlen(src), len), 1053 VIS_NL | VIS_CSTYLE); 1054 while (*dst != '\0') 1055 dst++; 1056 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1057 *dst++ = ' '; /* add delimiting space */ 1058 } 1059 if (dst != argbuf && dst[-1] == ' ') 1060 dst--; 1061 *dst = '\0'; 1062 1063 if (strcmp(cmd, pp->ki_comm) != 0) { 1064 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1065 pp->ki_tdname[0]) 1066 snprintf(cmdbuf, cmdlen, 1067 "%s (%s){%s%s}", argbuf, 1068 pp->ki_comm, pp->ki_tdname, 1069 pp->ki_moretdname); 1070 else 1071 snprintf(cmdbuf, cmdlen, 1072 "%s (%s)", argbuf, pp->ki_comm); 1073 } else { 1074 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1075 pp->ki_tdname[0]) 1076 snprintf(cmdbuf, cmdlen, 1077 "%s{%s%s}", argbuf, pp->ki_tdname, 1078 pp->ki_moretdname); 1079 else 1080 strlcpy(cmdbuf, argbuf, cmdlen); 1081 } 1082 free(argbuf); 1083 } 1084 } 1085 1086 if (ps.jail == 0) 1087 jid_buf[0] = '\0'; 1088 else 1089 snprintf(jid_buf, sizeof(jid_buf), "%*d", 1090 jidlength - 1, pp->ki_jid); 1091 1092 if (ps.swap == 0) 1093 swap_buf[0] = '\0'; 1094 else 1095 snprintf(swap_buf, sizeof(swap_buf), "%*s", 1096 swaplength - 1, 1097 format_k2(pagetok(ki_swap(pp)))); /* XXX */ 1098 1099 if (displaymode == DISP_IO) { 1100 oldp = get_old_proc(pp); 1101 if (oldp != NULL) { 1102 ru.ru_inblock = RU(pp)->ru_inblock - 1103 RU(oldp)->ru_inblock; 1104 ru.ru_oublock = RU(pp)->ru_oublock - 1105 RU(oldp)->ru_oublock; 1106 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1107 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1108 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1109 rup = &ru; 1110 } else { 1111 rup = RU(pp); 1112 } 1113 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1114 s_tot = total_inblock + total_oublock + total_majflt; 1115 1116 snprintf(fmt, sizeof(fmt), io_Proc_format, 1117 pp->ki_pid, 1118 jidlength, jid_buf, 1119 namelength, namelength, (*get_userid)(pp->ki_ruid), 1120 rup->ru_nvcsw, 1121 rup->ru_nivcsw, 1122 rup->ru_inblock, 1123 rup->ru_oublock, 1124 rup->ru_majflt, 1125 p_tot, 1126 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 1127 screen_width > cmdlengthdelta ? 1128 screen_width - cmdlengthdelta : 0, 1129 printable(cmdbuf)); 1130 1131 free(cmdbuf); 1132 1133 return (fmt); 1134 } 1135 1136 /* format this entry */ 1137 if (smpmode) { 1138 if (state == SRUN && pp->ki_oncpu != NOCPU) 1139 cpu = pp->ki_oncpu; 1140 else 1141 cpu = pp->ki_lastcpu; 1142 } else 1143 cpu = 0; 1144 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1145 if (ps.thread != 0) 1146 thr_buf[0] = '\0'; 1147 else 1148 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1149 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads); 1150 1151 snprintf(fmt, sizeof(fmt), proc_fmt, 1152 (ps.thread) ? pp->ki_tid : pp->ki_pid, 1153 jidlength, jid_buf, 1154 namelength, namelength, (*get_userid)(pp->ki_ruid), 1155 thr_buf, 1156 pp->ki_pri.pri_level - PZERO, 1157 format_nice(pp), 1158 format_k2(PROCSIZE(pp)), 1159 format_k2(pagetok(pp->ki_rssize)), 1160 swaplength, swaplength, swap_buf, 1161 status, 1162 cpu, 1163 format_time(cputime), 1164 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1165 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1166 printable(cmdbuf)); 1167 1168 free(cmdbuf); 1169 1170 /* return the result */ 1171 return (fmt); 1172 } 1173 1174 static void 1175 getsysctl(const char *name, void *ptr, size_t len) 1176 { 1177 size_t nlen = len; 1178 1179 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1180 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1181 strerror(errno)); 1182 quit(TOP_EX_SYS_ERROR); 1183 } 1184 if (nlen != len) { 1185 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1186 name, (unsigned long)len, (unsigned long)nlen); 1187 quit(TOP_EX_SYS_ERROR); 1188 } 1189 } 1190 1191 static const char * 1192 format_nice(const struct kinfo_proc *pp) 1193 { 1194 const char *fifo, *kproc; 1195 int rtpri; 1196 static char nicebuf[4 + 1]; 1197 1198 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1199 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1200 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1201 case PRI_ITHD: 1202 return ("-"); 1203 case PRI_REALTIME: 1204 /* 1205 * XXX: the kernel doesn't tell us the original rtprio and 1206 * doesn't really know what it was, so to recover it we 1207 * must be more chummy with the implementation than the 1208 * implementation is with itself. pri_user gives a 1209 * constant "base" priority, but is only initialized 1210 * properly for user threads. pri_native gives what the 1211 * kernel calls the "base" priority, but it isn't constant 1212 * since it is changed by priority propagation. pri_native 1213 * also isn't properly initialized for all threads, but it 1214 * is properly initialized for kernel realtime and idletime 1215 * threads. Thus we use pri_user for the base priority of 1216 * user threads (it is always correct) and pri_native for 1217 * the base priority of kernel realtime and idletime threads 1218 * (there is nothing better, and it is usually correct). 1219 * 1220 * The field width and thus the buffer are too small for 1221 * values like "kr31F", but such values shouldn't occur, 1222 * and if they do then the tailing "F" is not displayed. 1223 */ 1224 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1225 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1226 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1227 kproc, rtpri, fifo); 1228 break; 1229 case PRI_TIMESHARE: 1230 if (pp->ki_flag & P_KPROC) 1231 return ("-"); 1232 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1233 break; 1234 case PRI_IDLE: 1235 /* XXX: as above. */ 1236 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1237 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1238 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1239 kproc, rtpri, fifo); 1240 break; 1241 default: 1242 return ("?"); 1243 } 1244 return (nicebuf); 1245 } 1246 1247 /* comparison routines for qsort */ 1248 1249 static int 1250 compare_pid(const void *p1, const void *p2) 1251 { 1252 const struct kinfo_proc * const *pp1 = p1; 1253 const struct kinfo_proc * const *pp2 = p2; 1254 1255 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1256 1257 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1258 } 1259 1260 static int 1261 compare_tid(const void *p1, const void *p2) 1262 { 1263 const struct kinfo_proc * const *pp1 = p1; 1264 const struct kinfo_proc * const *pp2 = p2; 1265 1266 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1267 1268 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1269 } 1270 1271 /* 1272 * proc_compare - comparison function for "qsort" 1273 * Compares the resource consumption of two processes using five 1274 * distinct keys. The keys (in descending order of importance) are: 1275 * percent cpu, cpu ticks, state, resident set size, total virtual 1276 * memory usage. The process states are ordered as follows (from least 1277 * to most important): WAIT, zombie, sleep, stop, start, run. The 1278 * array declaration below maps a process state index into a number 1279 * that reflects this ordering. 1280 */ 1281 1282 static int sorted_state[] = { 1283 0, /* not used */ 1284 3, /* sleep */ 1285 1, /* ABANDONED (WAIT) */ 1286 6, /* run */ 1287 5, /* start */ 1288 2, /* zombie */ 1289 4 /* stop */ 1290 }; 1291 1292 1293 #define ORDERKEY_PCTCPU(a, b) do { \ 1294 double diff; \ 1295 if (ps.wcpu) \ 1296 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1297 weighted_cpu(PCTCPU((a)), (a)); \ 1298 else \ 1299 diff = PCTCPU((b)) - PCTCPU((a)); \ 1300 if (diff != 0) \ 1301 return (diff > 0 ? 1 : -1); \ 1302 } while (0) 1303 1304 #define ORDERKEY_CPTICKS(a, b) do { \ 1305 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1306 if (diff != 0) \ 1307 return (diff > 0 ? 1 : -1); \ 1308 } while (0) 1309 1310 #define ORDERKEY_STATE(a, b) do { \ 1311 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1312 if (diff != 0) \ 1313 return (diff > 0 ? 1 : -1); \ 1314 } while (0) 1315 1316 #define ORDERKEY_PRIO(a, b) do { \ 1317 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1318 if (diff != 0) \ 1319 return (diff > 0 ? 1 : -1); \ 1320 } while (0) 1321 1322 #define ORDERKEY_THREADS(a, b) do { \ 1323 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1324 if (diff != 0) \ 1325 return (diff > 0 ? 1 : -1); \ 1326 } while (0) 1327 1328 #define ORDERKEY_RSSIZE(a, b) do { \ 1329 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1330 if (diff != 0) \ 1331 return (diff > 0 ? 1 : -1); \ 1332 } while (0) 1333 1334 #define ORDERKEY_MEM(a, b) do { \ 1335 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1336 if (diff != 0) \ 1337 return (diff > 0 ? 1 : -1); \ 1338 } while (0) 1339 1340 #define ORDERKEY_JID(a, b) do { \ 1341 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1342 if (diff != 0) \ 1343 return (diff > 0 ? 1 : -1); \ 1344 } while (0) 1345 1346 #define ORDERKEY_SWAP(a, b) do { \ 1347 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1348 if (diff != 0) \ 1349 return (diff > 0 ? 1 : -1); \ 1350 } while (0) 1351 1352 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1353 1354 static int 1355 compare_cpu(const void *arg1, const void *arg2) 1356 { 1357 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1358 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1359 1360 ORDERKEY_PCTCPU(p1, p2); 1361 ORDERKEY_CPTICKS(p1, p2); 1362 ORDERKEY_STATE(p1, p2); 1363 ORDERKEY_PRIO(p1, p2); 1364 ORDERKEY_RSSIZE(p1, p2); 1365 ORDERKEY_MEM(p1, p2); 1366 1367 return (0); 1368 } 1369 1370 /* compare_size - the comparison function for sorting by total memory usage */ 1371 1372 static int 1373 compare_size(const void *arg1, const void *arg2) 1374 { 1375 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1376 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1377 1378 ORDERKEY_MEM(p1, p2); 1379 ORDERKEY_RSSIZE(p1, p2); 1380 ORDERKEY_PCTCPU(p1, p2); 1381 ORDERKEY_CPTICKS(p1, p2); 1382 ORDERKEY_STATE(p1, p2); 1383 ORDERKEY_PRIO(p1, p2); 1384 1385 return (0); 1386 } 1387 1388 /* compare_res - the comparison function for sorting by resident set size */ 1389 1390 static int 1391 compare_res(const void *arg1, const void *arg2) 1392 { 1393 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1394 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1395 1396 ORDERKEY_RSSIZE(p1, p2); 1397 ORDERKEY_MEM(p1, p2); 1398 ORDERKEY_PCTCPU(p1, p2); 1399 ORDERKEY_CPTICKS(p1, p2); 1400 ORDERKEY_STATE(p1, p2); 1401 ORDERKEY_PRIO(p1, p2); 1402 1403 return (0); 1404 } 1405 1406 /* compare_time - the comparison function for sorting by total cpu time */ 1407 1408 static int 1409 compare_time(const void *arg1, const void *arg2) 1410 { 1411 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1412 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1413 1414 ORDERKEY_CPTICKS(p1, p2); 1415 ORDERKEY_PCTCPU(p1, p2); 1416 ORDERKEY_STATE(p1, p2); 1417 ORDERKEY_PRIO(p1, p2); 1418 ORDERKEY_RSSIZE(p1, p2); 1419 ORDERKEY_MEM(p1, p2); 1420 1421 return (0); 1422 } 1423 1424 /* compare_prio - the comparison function for sorting by priority */ 1425 1426 static int 1427 compare_prio(const void *arg1, const void *arg2) 1428 { 1429 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1430 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1431 1432 ORDERKEY_PRIO(p1, p2); 1433 ORDERKEY_CPTICKS(p1, p2); 1434 ORDERKEY_PCTCPU(p1, p2); 1435 ORDERKEY_STATE(p1, p2); 1436 ORDERKEY_RSSIZE(p1, p2); 1437 ORDERKEY_MEM(p1, p2); 1438 1439 return (0); 1440 } 1441 1442 /* compare_threads - the comparison function for sorting by threads */ 1443 static int 1444 compare_threads(const void *arg1, const void *arg2) 1445 { 1446 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1447 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1448 1449 ORDERKEY_THREADS(p1, p2); 1450 ORDERKEY_PCTCPU(p1, p2); 1451 ORDERKEY_CPTICKS(p1, p2); 1452 ORDERKEY_STATE(p1, p2); 1453 ORDERKEY_PRIO(p1, p2); 1454 ORDERKEY_RSSIZE(p1, p2); 1455 ORDERKEY_MEM(p1, p2); 1456 1457 return (0); 1458 } 1459 1460 /* compare_jid - the comparison function for sorting by jid */ 1461 static int 1462 compare_jid(const void *arg1, const void *arg2) 1463 { 1464 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1465 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1466 1467 ORDERKEY_JID(p1, p2); 1468 ORDERKEY_PCTCPU(p1, p2); 1469 ORDERKEY_CPTICKS(p1, p2); 1470 ORDERKEY_STATE(p1, p2); 1471 ORDERKEY_PRIO(p1, p2); 1472 ORDERKEY_RSSIZE(p1, p2); 1473 ORDERKEY_MEM(p1, p2); 1474 1475 return (0); 1476 } 1477 1478 /* compare_swap - the comparison function for sorting by swap */ 1479 static int 1480 compare_swap(const void *arg1, const void *arg2) 1481 { 1482 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1483 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1484 1485 ORDERKEY_SWAP(p1, p2); 1486 ORDERKEY_PCTCPU(p1, p2); 1487 ORDERKEY_CPTICKS(p1, p2); 1488 ORDERKEY_STATE(p1, p2); 1489 ORDERKEY_PRIO(p1, p2); 1490 ORDERKEY_RSSIZE(p1, p2); 1491 ORDERKEY_MEM(p1, p2); 1492 1493 return (0); 1494 } 1495 1496 /* assorted comparison functions for sorting by i/o */ 1497 1498 static int 1499 compare_iototal(const void *arg1, const void *arg2) 1500 { 1501 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1502 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1503 1504 return (get_io_total(p2) - get_io_total(p1)); 1505 } 1506 1507 static int 1508 compare_ioread(const void *arg1, const void *arg2) 1509 { 1510 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1511 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1512 long dummy, inp1, inp2; 1513 1514 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1515 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1516 1517 return (inp2 - inp1); 1518 } 1519 1520 static int 1521 compare_iowrite(const void *arg1, const void *arg2) 1522 { 1523 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1524 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1525 long dummy, oup1, oup2; 1526 1527 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1528 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1529 1530 return (oup2 - oup1); 1531 } 1532 1533 static int 1534 compare_iofault(const void *arg1, const void *arg2) 1535 { 1536 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1537 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1538 long dummy, flp1, flp2; 1539 1540 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1541 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1542 1543 return (flp2 - flp1); 1544 } 1545 1546 static int 1547 compare_vcsw(const void *arg1, const void *arg2) 1548 { 1549 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1550 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1551 long dummy, flp1, flp2; 1552 1553 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1554 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1555 1556 return (flp2 - flp1); 1557 } 1558 1559 static int 1560 compare_ivcsw(const void *arg1, const void *arg2) 1561 { 1562 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1563 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1564 long dummy, flp1, flp2; 1565 1566 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1567 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1568 1569 return (flp2 - flp1); 1570 } 1571 1572 int (*compares[])(const void *arg1, const void *arg2) = { 1573 compare_cpu, 1574 compare_size, 1575 compare_res, 1576 compare_time, 1577 compare_prio, 1578 compare_threads, 1579 compare_iototal, 1580 compare_ioread, 1581 compare_iowrite, 1582 compare_iofault, 1583 compare_vcsw, 1584 compare_ivcsw, 1585 compare_jid, 1586 compare_swap, 1587 NULL 1588 }; 1589 1590 1591 /* 1592 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1593 * the process does not exist. 1594 */ 1595 1596 int 1597 proc_owner(int pid) 1598 { 1599 int cnt; 1600 struct kinfo_proc **prefp; 1601 struct kinfo_proc *pp; 1602 1603 prefp = pref; 1604 cnt = pref_len; 1605 while (--cnt >= 0) { 1606 pp = *prefp++; 1607 if (pp->ki_pid == (pid_t)pid) 1608 return ((int)pp->ki_ruid); 1609 } 1610 return (-1); 1611 } 1612 1613 static int 1614 swapmode(int *retavail, int *retfree) 1615 { 1616 int n; 1617 struct kvm_swap swapary[1]; 1618 static int pagesize = 0; 1619 static unsigned long swap_maxpages = 0; 1620 1621 *retavail = 0; 1622 *retfree = 0; 1623 1624 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1625 1626 n = kvm_getswapinfo(kd, swapary, 1, 0); 1627 if (n < 0 || swapary[0].ksw_total == 0) 1628 return (0); 1629 1630 if (pagesize == 0) 1631 pagesize = getpagesize(); 1632 if (swap_maxpages == 0) 1633 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1634 1635 /* ksw_total contains the total size of swap all devices which may 1636 exceed the maximum swap size allocatable in the system */ 1637 if ( swapary[0].ksw_total > swap_maxpages ) 1638 swapary[0].ksw_total = swap_maxpages; 1639 1640 *retavail = CONVERT(swapary[0].ksw_total); 1641 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1642 1643 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1644 return (n); 1645 } 1646