1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 static int cmdlengthdelta; 71 72 /* Prototypes for top internals */ 73 void quit(int); 74 75 /* get_process_info passes back a handle. This is what it looks like: */ 76 77 struct handle { 78 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 79 int remaining; /* number of pointers remaining */ 80 }; 81 82 /* declarations for load_avg */ 83 #include "loadavg.h" 84 85 /* define what weighted cpu is. */ 86 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 87 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 88 89 /* what we consider to be process size: */ 90 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 91 92 #define RU(pp) (&(pp)->ki_rusage) 93 #define RUTOT(pp) \ 94 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 95 96 97 /* definitions for indices in the nlist array */ 98 99 /* 100 * These definitions control the format of the per-process area 101 */ 102 103 static char io_header[] = 104 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 105 106 #define io_Proc_format \ 107 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 108 109 static char smp_header_thr[] = 110 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 111 static char smp_header[] = 112 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 113 114 #define smp_Proc_format \ 115 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s" 116 117 static char up_header_thr[] = 118 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND"; 119 static char up_header[] = 120 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND"; 121 122 #define up_Proc_format \ 123 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s" 124 125 126 /* process state names for the "STATE" column of the display */ 127 /* the extra nulls in the string "run" are for adding a slash and 128 the processor number when needed */ 129 130 char *state_abbrev[] = { 131 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 132 }; 133 134 135 static kvm_t *kd; 136 137 /* values that we stash away in _init and use in later routines */ 138 139 static double logcpu; 140 141 /* these are retrieved from the kernel in _init */ 142 143 static load_avg ccpu; 144 145 /* these are used in the get_ functions */ 146 147 static int lastpid; 148 149 /* these are for calculating cpu state percentages */ 150 151 static long cp_time[CPUSTATES]; 152 static long cp_old[CPUSTATES]; 153 static long cp_diff[CPUSTATES]; 154 155 /* these are for detailing the process states */ 156 157 int process_states[8]; 158 char *procstatenames[] = { 159 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 160 " zombie, ", " waiting, ", " lock, ", 161 NULL 162 }; 163 164 /* these are for detailing the cpu states */ 165 166 int cpu_states[CPUSTATES]; 167 char *cpustatenames[] = { 168 "user", "nice", "system", "interrupt", "idle", NULL 169 }; 170 171 /* these are for detailing the memory statistics */ 172 173 int memory_stats[7]; 174 char *memorynames[] = { 175 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 176 "K Free", NULL 177 }; 178 179 int arc_stats[7]; 180 char *arcnames[] = { 181 "K Total, ", "K MRU, ", "K MFU, ", "K Anon, ", "K Header, ", "K Other", 182 NULL 183 }; 184 185 int swap_stats[7]; 186 char *swapnames[] = { 187 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 188 NULL 189 }; 190 191 192 /* these are for keeping track of the proc array */ 193 194 static int nproc; 195 static int onproc = -1; 196 static int pref_len; 197 static struct kinfo_proc *pbase; 198 static struct kinfo_proc **pref; 199 static struct kinfo_proc *previous_procs; 200 static struct kinfo_proc **previous_pref; 201 static int previous_proc_count = 0; 202 static int previous_proc_count_max = 0; 203 static int arc_enabled; 204 205 /* total number of io operations */ 206 static long total_inblock; 207 static long total_oublock; 208 static long total_majflt; 209 210 /* these are for getting the memory statistics */ 211 212 static int pageshift; /* log base 2 of the pagesize */ 213 214 /* define pagetok in terms of pageshift */ 215 216 #define pagetok(size) ((size) << pageshift) 217 218 /* useful externals */ 219 long percentages(); 220 221 #ifdef ORDER 222 /* 223 * Sorting orders. The first element is the default. 224 */ 225 char *ordernames[] = { 226 "cpu", "size", "res", "time", "pri", "threads", 227 "total", "read", "write", "fault", "vcsw", "ivcsw", 228 "jid", NULL 229 }; 230 #endif 231 232 /* Per-cpu time states */ 233 static int maxcpu; 234 static int maxid; 235 static int ncpus; 236 static u_long cpumask; 237 static long *times; 238 static long *pcpu_cp_time; 239 static long *pcpu_cp_old; 240 static long *pcpu_cp_diff; 241 static int *pcpu_cpu_states; 242 243 static int compare_jid(const void *a, const void *b); 244 static int compare_pid(const void *a, const void *b); 245 static int compare_tid(const void *a, const void *b); 246 static const char *format_nice(const struct kinfo_proc *pp); 247 static void getsysctl(const char *name, void *ptr, size_t len); 248 static int swapmode(int *retavail, int *retfree); 249 static void update_layout(void); 250 251 void 252 toggle_pcpustats(void) 253 { 254 255 if (ncpus == 1) 256 return; 257 update_layout(); 258 } 259 260 /* Adjust display based on ncpus and the ARC state. */ 261 static void 262 update_layout(void) 263 { 264 265 y_mem = 3; 266 y_arc = 4; 267 y_swap = 4 + arc_enabled; 268 y_idlecursor = 5 + arc_enabled; 269 y_message = 5 + arc_enabled; 270 y_header = 6 + arc_enabled; 271 y_procs = 7 + arc_enabled; 272 Header_lines = 7 + arc_enabled; 273 274 if (pcpu_stats) { 275 y_mem += ncpus - 1; 276 y_arc += ncpus - 1; 277 y_swap += ncpus - 1; 278 y_idlecursor += ncpus - 1; 279 y_message += ncpus - 1; 280 y_header += ncpus - 1; 281 y_procs += ncpus - 1; 282 Header_lines += ncpus - 1; 283 } 284 } 285 286 int 287 machine_init(struct statics *statics, char do_unames) 288 { 289 int i, j, empty, pagesize; 290 uint64_t arc_size; 291 size_t size; 292 struct passwd *pw; 293 294 size = sizeof(smpmode); 295 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 296 NULL, 0) != 0 && 297 sysctlbyname("kern.smp.active", &smpmode, &size, 298 NULL, 0) != 0) || 299 size != sizeof(smpmode)) 300 smpmode = 0; 301 302 size = sizeof(arc_size); 303 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 304 NULL, 0) == 0 && arc_size != 0) 305 arc_enabled = 1; 306 307 if (do_unames) { 308 while ((pw = getpwent()) != NULL) { 309 if (strlen(pw->pw_name) > namelength) 310 namelength = strlen(pw->pw_name); 311 } 312 } 313 if (smpmode && namelength > SMPUNAMELEN) 314 namelength = SMPUNAMELEN; 315 else if (namelength > UPUNAMELEN) 316 namelength = UPUNAMELEN; 317 318 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 319 if (kd == NULL) 320 return (-1); 321 322 GETSYSCTL("kern.ccpu", ccpu); 323 324 /* this is used in calculating WCPU -- calculate it ahead of time */ 325 logcpu = log(loaddouble(ccpu)); 326 327 pbase = NULL; 328 pref = NULL; 329 nproc = 0; 330 onproc = -1; 331 332 /* get the page size and calculate pageshift from it */ 333 pagesize = getpagesize(); 334 pageshift = 0; 335 while (pagesize > 1) { 336 pageshift++; 337 pagesize >>= 1; 338 } 339 340 /* we only need the amount of log(2)1024 for our conversion */ 341 pageshift -= LOG1024; 342 343 /* fill in the statics information */ 344 statics->procstate_names = procstatenames; 345 statics->cpustate_names = cpustatenames; 346 statics->memory_names = memorynames; 347 if (arc_enabled) 348 statics->arc_names = arcnames; 349 else 350 statics->arc_names = NULL; 351 statics->swap_names = swapnames; 352 #ifdef ORDER 353 statics->order_names = ordernames; 354 #endif 355 356 /* Allocate state for per-CPU stats. */ 357 cpumask = 0; 358 ncpus = 0; 359 GETSYSCTL("kern.smp.maxcpus", maxcpu); 360 size = sizeof(long) * maxcpu * CPUSTATES; 361 times = malloc(size); 362 if (times == NULL) 363 err(1, "malloc %zd bytes", size); 364 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 365 err(1, "sysctlbyname kern.cp_times"); 366 pcpu_cp_time = calloc(1, size); 367 maxid = (size / CPUSTATES / sizeof(long)) - 1; 368 for (i = 0; i <= maxid; i++) { 369 empty = 1; 370 for (j = 0; empty && j < CPUSTATES; j++) { 371 if (times[i * CPUSTATES + j] != 0) 372 empty = 0; 373 } 374 if (!empty) { 375 cpumask |= (1ul << i); 376 ncpus++; 377 } 378 } 379 size = sizeof(long) * ncpus * CPUSTATES; 380 pcpu_cp_old = calloc(1, size); 381 pcpu_cp_diff = calloc(1, size); 382 pcpu_cpu_states = calloc(1, size); 383 statics->ncpus = ncpus; 384 385 update_layout(); 386 387 /* all done! */ 388 return (0); 389 } 390 391 char * 392 format_header(char *uname_field) 393 { 394 static char Header[128]; 395 const char *prehead; 396 397 switch (displaymode) { 398 case DISP_CPU: 399 /* 400 * The logic of picking the right header format seems reverse 401 * here because we only want to display a THR column when 402 * "thread mode" is off (and threads are not listed as 403 * separate lines). 404 */ 405 prehead = smpmode ? 406 (ps.thread ? smp_header : smp_header_thr) : 407 (ps.thread ? up_header : up_header_thr); 408 snprintf(Header, sizeof(Header), prehead, 409 ps.jail ? " JID" : "", 410 namelength, namelength, uname_field, 411 ps.wcpu ? "WCPU" : "CPU"); 412 break; 413 case DISP_IO: 414 prehead = io_header; 415 snprintf(Header, sizeof(Header), prehead, 416 ps.jail ? " JID" : "", 417 namelength, namelength, uname_field); 418 break; 419 } 420 cmdlengthdelta = strlen(Header) - 7; 421 return (Header); 422 } 423 424 static int swappgsin = -1; 425 static int swappgsout = -1; 426 extern struct timeval timeout; 427 428 429 void 430 get_system_info(struct system_info *si) 431 { 432 long total; 433 struct loadavg sysload; 434 int mib[2]; 435 struct timeval boottime; 436 uint64_t arc_stat, arc_stat2; 437 int i, j; 438 size_t size; 439 440 /* get the CPU stats */ 441 size = (maxid + 1) * CPUSTATES * sizeof(long); 442 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 443 err(1, "sysctlbyname kern.cp_times"); 444 GETSYSCTL("kern.cp_time", cp_time); 445 GETSYSCTL("vm.loadavg", sysload); 446 GETSYSCTL("kern.lastpid", lastpid); 447 448 /* convert load averages to doubles */ 449 for (i = 0; i < 3; i++) 450 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 451 452 /* convert cp_time counts to percentages */ 453 for (i = j = 0; i <= maxid; i++) { 454 if ((cpumask & (1ul << i)) == 0) 455 continue; 456 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 457 &pcpu_cp_time[j * CPUSTATES], 458 &pcpu_cp_old[j * CPUSTATES], 459 &pcpu_cp_diff[j * CPUSTATES]); 460 j++; 461 } 462 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 463 464 /* sum memory & swap statistics */ 465 { 466 static unsigned int swap_delay = 0; 467 static int swapavail = 0; 468 static int swapfree = 0; 469 static long bufspace = 0; 470 static int nspgsin, nspgsout; 471 472 GETSYSCTL("vfs.bufspace", bufspace); 473 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 474 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 475 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 476 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 477 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 478 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 479 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 480 /* convert memory stats to Kbytes */ 481 memory_stats[0] = pagetok(memory_stats[0]); 482 memory_stats[1] = pagetok(memory_stats[1]); 483 memory_stats[2] = pagetok(memory_stats[2]); 484 memory_stats[3] = pagetok(memory_stats[3]); 485 memory_stats[4] = bufspace / 1024; 486 memory_stats[5] = pagetok(memory_stats[5]); 487 memory_stats[6] = -1; 488 489 /* first interval */ 490 if (swappgsin < 0) { 491 swap_stats[4] = 0; 492 swap_stats[5] = 0; 493 } 494 495 /* compute differences between old and new swap statistic */ 496 else { 497 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 498 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 499 } 500 501 swappgsin = nspgsin; 502 swappgsout = nspgsout; 503 504 /* call CPU heavy swapmode() only for changes */ 505 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 506 swap_stats[3] = swapmode(&swapavail, &swapfree); 507 swap_stats[0] = swapavail; 508 swap_stats[1] = swapavail - swapfree; 509 swap_stats[2] = swapfree; 510 } 511 swap_delay = 1; 512 swap_stats[6] = -1; 513 } 514 515 if (arc_enabled) { 516 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 517 arc_stats[0] = arc_stat >> 10; 518 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 519 arc_stats[1] = arc_stat >> 10; 520 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 521 arc_stats[2] = arc_stat >> 10; 522 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 523 arc_stats[3] = arc_stat >> 10; 524 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 525 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 526 arc_stats[4] = arc_stat + arc_stat2 >> 10; 527 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat); 528 arc_stats[5] = arc_stat >> 10; 529 si->arc = arc_stats; 530 } 531 532 /* set arrays and strings */ 533 if (pcpu_stats) { 534 si->cpustates = pcpu_cpu_states; 535 si->ncpus = ncpus; 536 } else { 537 si->cpustates = cpu_states; 538 si->ncpus = 1; 539 } 540 si->memory = memory_stats; 541 si->swap = swap_stats; 542 543 544 if (lastpid > 0) { 545 si->last_pid = lastpid; 546 } else { 547 si->last_pid = -1; 548 } 549 550 /* 551 * Print how long system has been up. 552 * (Found by looking getting "boottime" from the kernel) 553 */ 554 mib[0] = CTL_KERN; 555 mib[1] = KERN_BOOTTIME; 556 size = sizeof(boottime); 557 if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 && 558 boottime.tv_sec != 0) { 559 si->boottime = boottime; 560 } else { 561 si->boottime.tv_sec = -1; 562 } 563 } 564 565 #define NOPROC ((void *)-1) 566 567 /* 568 * We need to compare data from the old process entry with the new 569 * process entry. 570 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 571 * structure to cache the mapping. We also use a negative cache pointer 572 * of NOPROC to avoid duplicate lookups. 573 * XXX: this could be done when the actual processes are fetched, we do 574 * it here out of laziness. 575 */ 576 const struct kinfo_proc * 577 get_old_proc(struct kinfo_proc *pp) 578 { 579 struct kinfo_proc **oldpp, *oldp; 580 581 /* 582 * If this is the first fetch of the kinfo_procs then we don't have 583 * any previous entries. 584 */ 585 if (previous_proc_count == 0) 586 return (NULL); 587 /* negative cache? */ 588 if (pp->ki_udata == NOPROC) 589 return (NULL); 590 /* cached? */ 591 if (pp->ki_udata != NULL) 592 return (pp->ki_udata); 593 /* 594 * Not cached, 595 * 1) look up based on pid. 596 * 2) compare process start. 597 * If we fail here, then setup a negative cache entry, otherwise 598 * cache it. 599 */ 600 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 601 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 602 if (oldpp == NULL) { 603 pp->ki_udata = NOPROC; 604 return (NULL); 605 } 606 oldp = *oldpp; 607 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 608 pp->ki_udata = NOPROC; 609 return (NULL); 610 } 611 pp->ki_udata = oldp; 612 return (oldp); 613 } 614 615 /* 616 * Return the total amount of IO done in blocks in/out and faults. 617 * store the values individually in the pointers passed in. 618 */ 619 long 620 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 621 long *vcsw, long *ivcsw) 622 { 623 const struct kinfo_proc *oldp; 624 static struct kinfo_proc dummy; 625 long ret; 626 627 oldp = get_old_proc(pp); 628 if (oldp == NULL) { 629 bzero(&dummy, sizeof(dummy)); 630 oldp = &dummy; 631 } 632 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 633 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 634 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 635 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 636 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 637 ret = 638 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 639 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 640 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 641 return (ret); 642 } 643 644 /* 645 * Return the total number of block in/out and faults by a process. 646 */ 647 long 648 get_io_total(struct kinfo_proc *pp) 649 { 650 long dummy; 651 652 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 653 } 654 655 static struct handle handle; 656 657 caddr_t 658 get_process_info(struct system_info *si, struct process_select *sel, 659 int (*compare)(const void *, const void *)) 660 { 661 int i; 662 int total_procs; 663 long p_io; 664 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 665 int active_procs; 666 struct kinfo_proc **prefp; 667 struct kinfo_proc *pp; 668 669 /* these are copied out of sel for speed */ 670 int show_idle; 671 int show_self; 672 int show_system; 673 int show_uid; 674 int show_command; 675 int show_kidle; 676 677 /* 678 * Save the previous process info. 679 */ 680 if (previous_proc_count_max < nproc) { 681 free(previous_procs); 682 previous_procs = malloc(nproc * sizeof(*previous_procs)); 683 free(previous_pref); 684 previous_pref = malloc(nproc * sizeof(*previous_pref)); 685 if (previous_procs == NULL || previous_pref == NULL) { 686 (void) fprintf(stderr, "top: Out of memory.\n"); 687 quit(23); 688 } 689 previous_proc_count_max = nproc; 690 } 691 if (nproc) { 692 for (i = 0; i < nproc; i++) 693 previous_pref[i] = &previous_procs[i]; 694 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 695 qsort(previous_pref, nproc, sizeof(*previous_pref), 696 ps.thread ? compare_tid : compare_pid); 697 } 698 previous_proc_count = nproc; 699 700 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 701 0, &nproc); 702 if (nproc > onproc) 703 pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); 704 if (pref == NULL || pbase == NULL) { 705 (void) fprintf(stderr, "top: Out of memory.\n"); 706 quit(23); 707 } 708 /* get a pointer to the states summary array */ 709 si->procstates = process_states; 710 711 /* set up flags which define what we are going to select */ 712 show_idle = sel->idle; 713 show_self = sel->self == -1; 714 show_system = sel->system; 715 show_uid = sel->uid != -1; 716 show_command = sel->command != NULL; 717 show_kidle = sel->kidle; 718 719 /* count up process states and get pointers to interesting procs */ 720 total_procs = 0; 721 active_procs = 0; 722 total_inblock = 0; 723 total_oublock = 0; 724 total_majflt = 0; 725 memset((char *)process_states, 0, sizeof(process_states)); 726 prefp = pref; 727 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 728 729 if (pp->ki_stat == 0) 730 /* not in use */ 731 continue; 732 733 if (!show_self && pp->ki_pid == sel->self) 734 /* skip self */ 735 continue; 736 737 if (!show_system && (pp->ki_flag & P_SYSTEM)) 738 /* skip system process */ 739 continue; 740 741 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 742 &p_vcsw, &p_ivcsw); 743 total_inblock += p_inblock; 744 total_oublock += p_oublock; 745 total_majflt += p_majflt; 746 total_procs++; 747 process_states[pp->ki_stat]++; 748 749 if (pp->ki_stat == SZOMB) 750 /* skip zombies */ 751 continue; 752 753 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) 754 /* skip kernel idle process */ 755 continue; 756 757 if (displaymode == DISP_CPU && !show_idle && 758 (pp->ki_pctcpu == 0 || 759 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 760 /* skip idle or non-running processes */ 761 continue; 762 763 if (displaymode == DISP_IO && !show_idle && p_io == 0) 764 /* skip processes that aren't doing I/O */ 765 continue; 766 767 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 768 /* skip proc. that don't belong to the selected UID */ 769 continue; 770 771 *prefp++ = pp; 772 active_procs++; 773 } 774 775 /* if requested, sort the "interesting" processes */ 776 if (compare != NULL) 777 qsort(pref, active_procs, sizeof(*pref), compare); 778 779 /* remember active and total counts */ 780 si->p_total = total_procs; 781 si->p_active = pref_len = active_procs; 782 783 /* pass back a handle */ 784 handle.next_proc = pref; 785 handle.remaining = active_procs; 786 return ((caddr_t)&handle); 787 } 788 789 static char fmt[128]; /* static area where result is built */ 790 791 char * 792 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 793 { 794 struct kinfo_proc *pp; 795 const struct kinfo_proc *oldp; 796 long cputime; 797 double pct; 798 struct handle *hp; 799 char status[16]; 800 int state; 801 struct rusage ru, *rup; 802 long p_tot, s_tot; 803 char *proc_fmt, thr_buf[6], jid_buf[6]; 804 char *cmdbuf = NULL; 805 char **args; 806 807 /* find and remember the next proc structure */ 808 hp = (struct handle *)handle; 809 pp = *(hp->next_proc++); 810 hp->remaining--; 811 812 /* get the process's command name */ 813 if ((pp->ki_flag & P_INMEM) == 0) { 814 /* 815 * Print swapped processes as <pname> 816 */ 817 size_t len; 818 819 len = strlen(pp->ki_comm); 820 if (len > sizeof(pp->ki_comm) - 3) 821 len = sizeof(pp->ki_comm) - 3; 822 memmove(pp->ki_comm + 1, pp->ki_comm, len); 823 pp->ki_comm[0] = '<'; 824 pp->ki_comm[len + 1] = '>'; 825 pp->ki_comm[len + 2] = '\0'; 826 } 827 828 /* 829 * Convert the process's runtime from microseconds to seconds. This 830 * time includes the interrupt time although that is not wanted here. 831 * ps(1) is similarly sloppy. 832 */ 833 cputime = (pp->ki_runtime + 500000) / 1000000; 834 835 /* calculate the base for cpu percentages */ 836 pct = pctdouble(pp->ki_pctcpu); 837 838 /* generate "STATE" field */ 839 switch (state = pp->ki_stat) { 840 case SRUN: 841 if (smpmode && pp->ki_oncpu != 0xff) 842 sprintf(status, "CPU%d", pp->ki_oncpu); 843 else 844 strcpy(status, "RUN"); 845 break; 846 case SLOCK: 847 if (pp->ki_kiflag & KI_LOCKBLOCK) { 848 sprintf(status, "*%.6s", pp->ki_lockname); 849 break; 850 } 851 /* fall through */ 852 case SSLEEP: 853 if (pp->ki_wmesg != NULL) { 854 sprintf(status, "%.6s", pp->ki_wmesg); 855 break; 856 } 857 /* FALLTHROUGH */ 858 default: 859 860 if (state >= 0 && 861 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 862 sprintf(status, "%.6s", state_abbrev[state]); 863 else 864 sprintf(status, "?%5d", state); 865 break; 866 } 867 868 cmdbuf = (char *)malloc(cmdlengthdelta + 1); 869 if (cmdbuf == NULL) { 870 warn("malloc(%d)", cmdlengthdelta + 1); 871 return NULL; 872 } 873 874 if (!(flags & FMT_SHOWARGS)) { 875 if (ps.thread && pp->ki_flag & P_HADTHREADS && 876 pp->ki_tdname[0]) { 877 snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", pp->ki_comm, 878 pp->ki_tdname); 879 } else { 880 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm); 881 } 882 } else { 883 if (pp->ki_flag & P_SYSTEM || 884 pp->ki_args == NULL || 885 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || 886 !(*args)) { 887 if (ps.thread && pp->ki_flag & P_HADTHREADS && 888 pp->ki_tdname[0]) { 889 snprintf(cmdbuf, cmdlengthdelta, 890 "[%s{%s}]", pp->ki_comm, pp->ki_tdname); 891 } else { 892 snprintf(cmdbuf, cmdlengthdelta, 893 "[%s]", pp->ki_comm); 894 } 895 } else { 896 char *src, *dst, *argbuf; 897 char *cmd; 898 size_t argbuflen; 899 size_t len; 900 901 argbuflen = cmdlengthdelta * 4; 902 argbuf = (char *)malloc(argbuflen + 1); 903 if (argbuf == NULL) { 904 warn("malloc(%d)", argbuflen + 1); 905 free(cmdbuf); 906 return NULL; 907 } 908 909 dst = argbuf; 910 911 /* Extract cmd name from argv */ 912 cmd = strrchr(*args, '/'); 913 if (cmd == NULL) 914 cmd = *args; 915 else 916 cmd++; 917 918 for (; (src = *args++) != NULL; ) { 919 if (*src == '\0') 920 continue; 921 len = (argbuflen - (dst - argbuf) - 1) / 4; 922 strvisx(dst, src, 923 strlen(src) < len ? strlen(src) : len, 924 VIS_NL | VIS_CSTYLE); 925 while (*dst != '\0') 926 dst++; 927 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 928 *dst++ = ' '; /* add delimiting space */ 929 } 930 if (dst != argbuf && dst[-1] == ' ') 931 dst--; 932 *dst = '\0'; 933 934 if (strcmp(cmd, pp->ki_comm) != 0 ) { 935 if (ps.thread && pp->ki_flag & P_HADTHREADS && 936 pp->ki_tdname[0]) 937 snprintf(cmdbuf, cmdlengthdelta, 938 "%s (%s){%s}", argbuf, pp->ki_comm, 939 pp->ki_tdname); 940 else 941 snprintf(cmdbuf, cmdlengthdelta, 942 "%s (%s)", argbuf, pp->ki_comm); 943 } else { 944 if (ps.thread && pp->ki_flag & P_HADTHREADS && 945 pp->ki_tdname[0]) 946 snprintf(cmdbuf, cmdlengthdelta, 947 "%s{%s}", argbuf, pp->ki_tdname); 948 else 949 strlcpy(cmdbuf, argbuf, cmdlengthdelta); 950 } 951 free(argbuf); 952 } 953 } 954 955 if (ps.jail == 0) 956 jid_buf[0] = '\0'; 957 else 958 snprintf(jid_buf, sizeof(jid_buf), " %*d", 959 sizeof(jid_buf) - 3, pp->ki_jid); 960 961 if (displaymode == DISP_IO) { 962 oldp = get_old_proc(pp); 963 if (oldp != NULL) { 964 ru.ru_inblock = RU(pp)->ru_inblock - 965 RU(oldp)->ru_inblock; 966 ru.ru_oublock = RU(pp)->ru_oublock - 967 RU(oldp)->ru_oublock; 968 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 969 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 970 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 971 rup = &ru; 972 } else { 973 rup = RU(pp); 974 } 975 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 976 s_tot = total_inblock + total_oublock + total_majflt; 977 978 snprintf(fmt, sizeof(fmt), io_Proc_format, 979 pp->ki_pid, 980 jid_buf, 981 namelength, namelength, (*get_userid)(pp->ki_ruid), 982 rup->ru_nvcsw, 983 rup->ru_nivcsw, 984 rup->ru_inblock, 985 rup->ru_oublock, 986 rup->ru_majflt, 987 p_tot, 988 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 989 screen_width > cmdlengthdelta ? 990 screen_width - cmdlengthdelta : 0, 991 printable(cmdbuf)); 992 993 free(cmdbuf); 994 995 return (fmt); 996 } 997 998 /* format this entry */ 999 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 1000 if (ps.thread != 0) 1001 thr_buf[0] = '\0'; 1002 else 1003 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 1004 sizeof(thr_buf) - 2, pp->ki_numthreads); 1005 1006 snprintf(fmt, sizeof(fmt), proc_fmt, 1007 pp->ki_pid, 1008 jid_buf, 1009 namelength, namelength, (*get_userid)(pp->ki_ruid), 1010 thr_buf, 1011 pp->ki_pri.pri_level - PZERO, 1012 format_nice(pp), 1013 format_k2(PROCSIZE(pp)), 1014 format_k2(pagetok(pp->ki_rssize)), 1015 status, 1016 smpmode ? pp->ki_lastcpu : 0, 1017 format_time(cputime), 1018 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 1019 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 1020 printable(cmdbuf)); 1021 1022 free(cmdbuf); 1023 1024 /* return the result */ 1025 return (fmt); 1026 } 1027 1028 static void 1029 getsysctl(const char *name, void *ptr, size_t len) 1030 { 1031 size_t nlen = len; 1032 1033 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1034 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1035 strerror(errno)); 1036 quit(23); 1037 } 1038 if (nlen != len) { 1039 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1040 name, (unsigned long)len, (unsigned long)nlen); 1041 quit(23); 1042 } 1043 } 1044 1045 static const char * 1046 format_nice(const struct kinfo_proc *pp) 1047 { 1048 const char *fifo, *kthread; 1049 int rtpri; 1050 static char nicebuf[4 + 1]; 1051 1052 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1053 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; 1054 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1055 case PRI_ITHD: 1056 return ("-"); 1057 case PRI_REALTIME: 1058 /* 1059 * XXX: the kernel doesn't tell us the original rtprio and 1060 * doesn't really know what it was, so to recover it we 1061 * must be more chummy with the implementation than the 1062 * implementation is with itself. pri_user gives a 1063 * constant "base" priority, but is only initialized 1064 * properly for user threads. pri_native gives what the 1065 * kernel calls the "base" priority, but it isn't constant 1066 * since it is changed by priority propagation. pri_native 1067 * also isn't properly initialized for all threads, but it 1068 * is properly initialized for kernel realtime and idletime 1069 * threads. Thus we use pri_user for the base priority of 1070 * user threads (it is always correct) and pri_native for 1071 * the base priority of kernel realtime and idletime threads 1072 * (there is nothing better, and it is usually correct). 1073 * 1074 * The field width and thus the buffer are too small for 1075 * values like "kr31F", but such values shouldn't occur, 1076 * and if they do then the tailing "F" is not displayed. 1077 */ 1078 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1079 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1080 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1081 kthread, rtpri, fifo); 1082 break; 1083 case PRI_TIMESHARE: 1084 if (pp->ki_flag & P_KTHREAD) 1085 return ("-"); 1086 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1087 break; 1088 case PRI_IDLE: 1089 /* XXX: as above. */ 1090 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1091 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1092 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1093 kthread, rtpri, fifo); 1094 break; 1095 default: 1096 return ("?"); 1097 } 1098 return (nicebuf); 1099 } 1100 1101 /* comparison routines for qsort */ 1102 1103 static int 1104 compare_pid(const void *p1, const void *p2) 1105 { 1106 const struct kinfo_proc * const *pp1 = p1; 1107 const struct kinfo_proc * const *pp2 = p2; 1108 1109 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1110 abort(); 1111 1112 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1113 } 1114 1115 static int 1116 compare_tid(const void *p1, const void *p2) 1117 { 1118 const struct kinfo_proc * const *pp1 = p1; 1119 const struct kinfo_proc * const *pp2 = p2; 1120 1121 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) 1122 abort(); 1123 1124 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1125 } 1126 1127 /* 1128 * proc_compare - comparison function for "qsort" 1129 * Compares the resource consumption of two processes using five 1130 * distinct keys. The keys (in descending order of importance) are: 1131 * percent cpu, cpu ticks, state, resident set size, total virtual 1132 * memory usage. The process states are ordered as follows (from least 1133 * to most important): WAIT, zombie, sleep, stop, start, run. The 1134 * array declaration below maps a process state index into a number 1135 * that reflects this ordering. 1136 */ 1137 1138 static int sorted_state[] = { 1139 0, /* not used */ 1140 3, /* sleep */ 1141 1, /* ABANDONED (WAIT) */ 1142 6, /* run */ 1143 5, /* start */ 1144 2, /* zombie */ 1145 4 /* stop */ 1146 }; 1147 1148 1149 #define ORDERKEY_PCTCPU(a, b) do { \ 1150 long diff; \ 1151 if (ps.wcpu) \ 1152 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ 1153 (b))) - \ 1154 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ 1155 (a))); \ 1156 else \ 1157 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ 1158 if (diff != 0) \ 1159 return (diff > 0 ? 1 : -1); \ 1160 } while (0) 1161 1162 #define ORDERKEY_CPTICKS(a, b) do { \ 1163 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1164 if (diff != 0) \ 1165 return (diff > 0 ? 1 : -1); \ 1166 } while (0) 1167 1168 #define ORDERKEY_STATE(a, b) do { \ 1169 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1170 if (diff != 0) \ 1171 return (diff > 0 ? 1 : -1); \ 1172 } while (0) 1173 1174 #define ORDERKEY_PRIO(a, b) do { \ 1175 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1176 if (diff != 0) \ 1177 return (diff > 0 ? 1 : -1); \ 1178 } while (0) 1179 1180 #define ORDERKEY_THREADS(a, b) do { \ 1181 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1182 if (diff != 0) \ 1183 return (diff > 0 ? 1 : -1); \ 1184 } while (0) 1185 1186 #define ORDERKEY_RSSIZE(a, b) do { \ 1187 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1188 if (diff != 0) \ 1189 return (diff > 0 ? 1 : -1); \ 1190 } while (0) 1191 1192 #define ORDERKEY_MEM(a, b) do { \ 1193 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1194 if (diff != 0) \ 1195 return (diff > 0 ? 1 : -1); \ 1196 } while (0) 1197 1198 #define ORDERKEY_JID(a, b) do { \ 1199 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1200 if (diff != 0) \ 1201 return (diff > 0 ? 1 : -1); \ 1202 } while (0) 1203 1204 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1205 1206 int 1207 #ifdef ORDER 1208 compare_cpu(void *arg1, void *arg2) 1209 #else 1210 proc_compare(void *arg1, void *arg2) 1211 #endif 1212 { 1213 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1214 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1215 1216 ORDERKEY_PCTCPU(p1, p2); 1217 ORDERKEY_CPTICKS(p1, p2); 1218 ORDERKEY_STATE(p1, p2); 1219 ORDERKEY_PRIO(p1, p2); 1220 ORDERKEY_RSSIZE(p1, p2); 1221 ORDERKEY_MEM(p1, p2); 1222 1223 return (0); 1224 } 1225 1226 #ifdef ORDER 1227 /* "cpu" compare routines */ 1228 int compare_size(), compare_res(), compare_time(), compare_prio(), 1229 compare_threads(); 1230 1231 /* 1232 * "io" compare routines. Context switches aren't i/o, but are displayed 1233 * on the "io" display. 1234 */ 1235 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1236 compare_vcsw(), compare_ivcsw(); 1237 1238 int (*compares[])() = { 1239 compare_cpu, 1240 compare_size, 1241 compare_res, 1242 compare_time, 1243 compare_prio, 1244 compare_threads, 1245 compare_iototal, 1246 compare_ioread, 1247 compare_iowrite, 1248 compare_iofault, 1249 compare_vcsw, 1250 compare_ivcsw, 1251 compare_jid, 1252 NULL 1253 }; 1254 1255 /* compare_size - the comparison function for sorting by total memory usage */ 1256 1257 int 1258 compare_size(void *arg1, void *arg2) 1259 { 1260 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1261 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1262 1263 ORDERKEY_MEM(p1, p2); 1264 ORDERKEY_RSSIZE(p1, p2); 1265 ORDERKEY_PCTCPU(p1, p2); 1266 ORDERKEY_CPTICKS(p1, p2); 1267 ORDERKEY_STATE(p1, p2); 1268 ORDERKEY_PRIO(p1, p2); 1269 1270 return (0); 1271 } 1272 1273 /* compare_res - the comparison function for sorting by resident set size */ 1274 1275 int 1276 compare_res(void *arg1, void *arg2) 1277 { 1278 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1279 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1280 1281 ORDERKEY_RSSIZE(p1, p2); 1282 ORDERKEY_MEM(p1, p2); 1283 ORDERKEY_PCTCPU(p1, p2); 1284 ORDERKEY_CPTICKS(p1, p2); 1285 ORDERKEY_STATE(p1, p2); 1286 ORDERKEY_PRIO(p1, p2); 1287 1288 return (0); 1289 } 1290 1291 /* compare_time - the comparison function for sorting by total cpu time */ 1292 1293 int 1294 compare_time(void *arg1, void *arg2) 1295 { 1296 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1297 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1298 1299 ORDERKEY_CPTICKS(p1, p2); 1300 ORDERKEY_PCTCPU(p1, p2); 1301 ORDERKEY_STATE(p1, p2); 1302 ORDERKEY_PRIO(p1, p2); 1303 ORDERKEY_RSSIZE(p1, p2); 1304 ORDERKEY_MEM(p1, p2); 1305 1306 return (0); 1307 } 1308 1309 /* compare_prio - the comparison function for sorting by priority */ 1310 1311 int 1312 compare_prio(void *arg1, void *arg2) 1313 { 1314 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1315 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1316 1317 ORDERKEY_PRIO(p1, p2); 1318 ORDERKEY_CPTICKS(p1, p2); 1319 ORDERKEY_PCTCPU(p1, p2); 1320 ORDERKEY_STATE(p1, p2); 1321 ORDERKEY_RSSIZE(p1, p2); 1322 ORDERKEY_MEM(p1, p2); 1323 1324 return (0); 1325 } 1326 1327 /* compare_threads - the comparison function for sorting by threads */ 1328 int 1329 compare_threads(void *arg1, void *arg2) 1330 { 1331 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1332 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1333 1334 ORDERKEY_THREADS(p1, p2); 1335 ORDERKEY_PCTCPU(p1, p2); 1336 ORDERKEY_CPTICKS(p1, p2); 1337 ORDERKEY_STATE(p1, p2); 1338 ORDERKEY_PRIO(p1, p2); 1339 ORDERKEY_RSSIZE(p1, p2); 1340 ORDERKEY_MEM(p1, p2); 1341 1342 return (0); 1343 } 1344 1345 /* compare_jid - the comparison function for sorting by jid */ 1346 static int 1347 compare_jid(const void *arg1, const void *arg2) 1348 { 1349 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1350 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1351 1352 ORDERKEY_JID(p1, p2); 1353 ORDERKEY_PCTCPU(p1, p2); 1354 ORDERKEY_CPTICKS(p1, p2); 1355 ORDERKEY_STATE(p1, p2); 1356 ORDERKEY_PRIO(p1, p2); 1357 ORDERKEY_RSSIZE(p1, p2); 1358 ORDERKEY_MEM(p1, p2); 1359 1360 return (0); 1361 } 1362 #endif /* ORDER */ 1363 1364 /* assorted comparison functions for sorting by i/o */ 1365 1366 int 1367 #ifdef ORDER 1368 compare_iototal(void *arg1, void *arg2) 1369 #else 1370 io_compare(void *arg1, void *arg2) 1371 #endif 1372 { 1373 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1374 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1375 1376 return (get_io_total(p2) - get_io_total(p1)); 1377 } 1378 1379 #ifdef ORDER 1380 int 1381 compare_ioread(void *arg1, void *arg2) 1382 { 1383 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1384 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1385 long dummy, inp1, inp2; 1386 1387 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1388 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1389 1390 return (inp2 - inp1); 1391 } 1392 1393 int 1394 compare_iowrite(void *arg1, void *arg2) 1395 { 1396 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1397 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1398 long dummy, oup1, oup2; 1399 1400 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1401 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1402 1403 return (oup2 - oup1); 1404 } 1405 1406 int 1407 compare_iofault(void *arg1, void *arg2) 1408 { 1409 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1410 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1411 long dummy, flp1, flp2; 1412 1413 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1414 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1415 1416 return (flp2 - flp1); 1417 } 1418 1419 int 1420 compare_vcsw(void *arg1, void *arg2) 1421 { 1422 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1423 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1424 long dummy, flp1, flp2; 1425 1426 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1427 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1428 1429 return (flp2 - flp1); 1430 } 1431 1432 int 1433 compare_ivcsw(void *arg1, void *arg2) 1434 { 1435 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1436 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1437 long dummy, flp1, flp2; 1438 1439 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1440 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1441 1442 return (flp2 - flp1); 1443 } 1444 #endif /* ORDER */ 1445 1446 /* 1447 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1448 * the process does not exist. 1449 * It is EXTREMELY IMPORTANT that this function work correctly. 1450 * If top runs setuid root (as in SVR4), then this function 1451 * is the only thing that stands in the way of a serious 1452 * security problem. It validates requests for the "kill" 1453 * and "renice" commands. 1454 */ 1455 1456 int 1457 proc_owner(int pid) 1458 { 1459 int cnt; 1460 struct kinfo_proc **prefp; 1461 struct kinfo_proc *pp; 1462 1463 prefp = pref; 1464 cnt = pref_len; 1465 while (--cnt >= 0) { 1466 pp = *prefp++; 1467 if (pp->ki_pid == (pid_t)pid) 1468 return ((int)pp->ki_ruid); 1469 } 1470 return (-1); 1471 } 1472 1473 static int 1474 swapmode(int *retavail, int *retfree) 1475 { 1476 int n; 1477 int pagesize = getpagesize(); 1478 struct kvm_swap swapary[1]; 1479 1480 *retavail = 0; 1481 *retfree = 0; 1482 1483 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1484 1485 n = kvm_getswapinfo(kd, swapary, 1, 0); 1486 if (n < 0 || swapary[0].ksw_total == 0) 1487 return (0); 1488 1489 *retavail = CONVERT(swapary[0].ksw_total); 1490 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1491 1492 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1493 return (n); 1494 } 1495