1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x system 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * 10 * This is the machine-dependent module for FreeBSD 2.2 11 * Works for: 12 * FreeBSD 2.2, and probably FreeBSD 2.1.x 13 * 14 * LIBS: -lkvm 15 * 16 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 17 * Steven Wallace <swallace@freebsd.org> 18 * Wolfram Schneider <wosch@FreeBSD.org> 19 * 20 * $Id: m_freebsd2.c,v 1.15 1997/02/21 08:47:59 asami Exp $ 21 */ 22 23 24 #include <sys/types.h> 25 #include <sys/signal.h> 26 #include <sys/param.h> 27 28 #include "os.h" 29 #include <stdio.h> 30 #include <nlist.h> 31 #include <math.h> 32 #include <kvm.h> 33 #include <sys/errno.h> 34 #include <sys/sysctl.h> 35 #include <sys/dkstat.h> 36 #include <sys/file.h> 37 #include <sys/time.h> 38 #include <sys/proc.h> 39 #include <sys/user.h> 40 #include <sys/vmmeter.h> 41 42 /* Swap */ 43 #include <stdlib.h> 44 #include <sys/rlist.h> 45 #include <sys/conf.h> 46 47 #include <osreldate.h> /* for changes in kernel structures */ 48 49 #include "top.h" 50 #include "machine.h" 51 52 static int check_nlist __P((struct nlist *)); 53 static int getkval __P((unsigned long, int *, int, char *)); 54 extern char* printable __P((char *)); 55 int swapmode __P((int *retavail, int *retfree)); 56 57 58 59 /* get_process_info passes back a handle. This is what it looks like: */ 60 61 struct handle 62 { 63 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 64 int remaining; /* number of pointers remaining */ 65 }; 66 67 /* declarations for load_avg */ 68 #include "loadavg.h" 69 70 #define PP(pp, field) ((pp)->kp_proc . field) 71 #define EP(pp, field) ((pp)->kp_eproc . field) 72 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) 73 74 /* define what weighted cpu is. */ 75 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ 76 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) 77 78 /* what we consider to be process size: */ 79 #define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize)) 80 81 /* definitions for indices in the nlist array */ 82 83 84 static struct nlist nlst[] = { 85 #define X_CCPU 0 86 { "_ccpu" }, /* 0 */ 87 #define X_CP_TIME 1 88 { "_cp_time" }, /* 1 */ 89 #define X_HZ 2 90 { "_hz" }, /* 2 */ 91 #define X_STATHZ 3 92 { "_stathz" }, /* 3 */ 93 #define X_AVENRUN 4 94 { "_averunnable" }, /* 4 */ 95 96 /* Swap */ 97 #define VM_SWAPLIST 5 98 { "_swaplist" },/* list of free swap areas */ 99 #define VM_SWDEVT 6 100 { "_swdevt" }, /* list of swap devices and sizes */ 101 #define VM_NSWAP 7 102 { "_nswap" }, /* size of largest swap device */ 103 #define VM_NSWDEV 8 104 { "_nswdev" }, /* number of swap devices */ 105 #define VM_DMMAX 9 106 { "_dmmax" }, /* maximum size of a swap block */ 107 #define X_BUFSPACE 10 108 { "_bufspace" }, /* K in buffer cache */ 109 #define X_CNT 11 110 { "_cnt" }, /* struct vmmeter cnt */ 111 112 /* Last pid */ 113 #define X_LASTPID 12 114 { "_nextpid" }, 115 { 0 } 116 }; 117 118 /* 119 * These definitions control the format of the per-process area 120 */ 121 122 #ifdef P_IDLEPROC /* FreeBSD SMP kernel */ 123 124 static char header[] = 125 " PID X PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; 126 /* 0123456 -- field to fill in starts at header+6 */ 127 #define UNAME_START 6 128 129 #define Proc_format \ 130 "%5d %-8.8s%3d%3d%7s %6s %-6.6s%1x%7s %5.2f%% %5.2f%% %.14s" 131 132 #else /* Standard kernel */ 133 134 static char header[] = 135 " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 136 /* 0123456 -- field to fill in starts at header+6 */ 137 #define UNAME_START 6 138 139 #define Proc_format \ 140 "%5d %-8.8s%3d %3d%7s %6s %-6.6s%7s %5.2f%% %5.2f%% %.14s" 141 142 #endif 143 144 145 /* process state names for the "STATE" column of the display */ 146 /* the extra nulls in the string "run" are for adding a slash and 147 the processor number when needed */ 148 149 char *state_abbrev[] = 150 { 151 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", 152 }; 153 154 155 static kvm_t *kd; 156 157 /* values that we stash away in _init and use in later routines */ 158 159 static double logcpu; 160 161 /* these are retrieved from the kernel in _init */ 162 163 static long hz; 164 static load_avg ccpu; 165 166 /* these are offsets obtained via nlist and used in the get_ functions */ 167 168 static unsigned long cp_time_offset; 169 static unsigned long avenrun_offset; 170 static unsigned long lastpid_offset; 171 static long lastpid; 172 static unsigned long cnt_offset; 173 static unsigned long bufspace_offset; 174 static long cnt; 175 176 /* these are for calculating cpu state percentages */ 177 178 static long cp_time[CPUSTATES]; 179 static long cp_old[CPUSTATES]; 180 static long cp_diff[CPUSTATES]; 181 182 /* these are for detailing the process states */ 183 184 int process_states[6]; 185 char *procstatenames[] = { 186 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 187 " zombie, ", 188 NULL 189 }; 190 191 /* these are for detailing the cpu states */ 192 193 int cpu_states[CPUSTATES]; 194 char *cpustatenames[] = { 195 "user", "nice", "system", "interrupt", "idle", NULL 196 }; 197 198 /* these are for detailing the memory statistics */ 199 200 int memory_stats[7]; 201 char *memorynames[] = { 202 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 203 NULL 204 }; 205 206 int swap_stats[7]; 207 char *swapnames[] = { 208 /* 0 1 2 3 4 5 */ 209 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 210 NULL 211 }; 212 213 214 /* these are for keeping track of the proc array */ 215 216 static int nproc; 217 static int onproc = -1; 218 static int pref_len; 219 static struct kinfo_proc *pbase; 220 static struct kinfo_proc **pref; 221 222 /* these are for getting the memory statistics */ 223 224 static int pageshift; /* log base 2 of the pagesize */ 225 226 /* define pagetok in terms of pageshift */ 227 228 #define pagetok(size) ((size) << pageshift) 229 230 /* useful externals */ 231 long percentages(); 232 233 int 234 machine_init(statics) 235 236 struct statics *statics; 237 238 { 239 register int i = 0; 240 register int pagesize; 241 242 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) 243 return -1; 244 245 246 /* get the list of symbols we want to access in the kernel */ 247 (void) kvm_nlist(kd, nlst); 248 if (nlst[0].n_type == 0) 249 { 250 fprintf(stderr, "top: nlist failed\n"); 251 return(-1); 252 } 253 254 /* make sure they were all found */ 255 if (i > 0 && check_nlist(nlst) > 0) 256 { 257 return(-1); 258 } 259 260 /* get the symbol values out of kmem */ 261 (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!"); 262 if (!hz) { 263 (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), 264 nlst[X_HZ].n_name); 265 } 266 267 (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), 268 nlst[X_CCPU].n_name); 269 270 /* stash away certain offsets for later use */ 271 cp_time_offset = nlst[X_CP_TIME].n_value; 272 avenrun_offset = nlst[X_AVENRUN].n_value; 273 lastpid_offset = nlst[X_LASTPID].n_value; 274 cnt_offset = nlst[X_CNT].n_value; 275 bufspace_offset = nlst[X_BUFSPACE].n_value; 276 277 /* this is used in calculating WCPU -- calculate it ahead of time */ 278 logcpu = log(loaddouble(ccpu)); 279 280 pbase = NULL; 281 pref = NULL; 282 nproc = 0; 283 onproc = -1; 284 /* get the page size with "getpagesize" and calculate pageshift from it */ 285 pagesize = getpagesize(); 286 pageshift = 0; 287 while (pagesize > 1) 288 { 289 pageshift++; 290 pagesize >>= 1; 291 } 292 293 /* we only need the amount of log(2)1024 for our conversion */ 294 pageshift -= LOG1024; 295 296 /* fill in the statics information */ 297 statics->procstate_names = procstatenames; 298 statics->cpustate_names = cpustatenames; 299 statics->memory_names = memorynames; 300 statics->swap_names = swapnames; 301 302 /* all done! */ 303 return(0); 304 } 305 306 char *format_header(uname_field) 307 308 register char *uname_field; 309 310 { 311 register char *ptr; 312 313 ptr = header + UNAME_START; 314 while (*uname_field != '\0') 315 { 316 *ptr++ = *uname_field++; 317 } 318 319 return(header); 320 } 321 322 static int swappgsin = -1; 323 static int swappgsout = -1; 324 extern struct timeval timeout; 325 326 void 327 get_system_info(si) 328 329 struct system_info *si; 330 331 { 332 long total; 333 load_avg avenrun[3]; 334 335 /* get the cp_time array */ 336 (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), 337 nlst[X_CP_TIME].n_name); 338 (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), 339 nlst[X_AVENRUN].n_name); 340 341 (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid), 342 "!"); 343 344 /* convert load averages to doubles */ 345 { 346 register int i; 347 register double *infoloadp; 348 load_avg *avenrunp; 349 350 #ifdef notyet 351 struct loadavg sysload; 352 int size; 353 getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); 354 #endif 355 356 infoloadp = si->load_avg; 357 avenrunp = avenrun; 358 for (i = 0; i < 3; i++) 359 { 360 #ifdef notyet 361 *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; 362 #endif 363 *infoloadp++ = loaddouble(*avenrunp++); 364 } 365 } 366 367 /* convert cp_time counts to percentages */ 368 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 369 370 /* sum memory & swap statistics */ 371 { 372 struct vmmeter sum; 373 static unsigned int swap_delay = 0; 374 static int swapavail = 0; 375 static int swapfree = 0; 376 static int bufspace = 0; 377 378 (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), 379 "_cnt"); 380 (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace), 381 "_bufspace"); 382 383 /* convert memory stats to Kbytes */ 384 memory_stats[0] = pagetok(sum.v_active_count); 385 memory_stats[1] = pagetok(sum.v_inactive_count); 386 memory_stats[2] = pagetok(sum.v_wire_count); 387 memory_stats[3] = pagetok(sum.v_cache_count); 388 memory_stats[4] = bufspace / 1024; 389 memory_stats[5] = pagetok(sum.v_free_count); 390 memory_stats[6] = -1; 391 392 /* first interval */ 393 if (swappgsin < 0) { 394 swap_stats[4] = 0; 395 swap_stats[5] = 0; 396 } 397 398 /* compute differences between old and new swap statistic */ 399 else { 400 swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); 401 swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); 402 } 403 404 swappgsin = sum.v_swappgsin; 405 swappgsout = sum.v_swappgsout; 406 407 /* call CPU heavy swapmode() only for changes */ 408 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 409 swap_stats[3] = swapmode(&swapavail, &swapfree); 410 swap_stats[0] = swapavail; 411 swap_stats[1] = swapavail - swapfree; 412 swap_stats[2] = swapfree; 413 } 414 swap_delay = 1; 415 swap_stats[6] = -1; 416 } 417 418 /* set arrays and strings */ 419 si->cpustates = cpu_states; 420 si->memory = memory_stats; 421 si->swap = swap_stats; 422 423 424 if(lastpid > 0) { 425 si->last_pid = lastpid; 426 } else { 427 si->last_pid = -1; 428 } 429 } 430 431 static struct handle handle; 432 433 caddr_t get_process_info(si, sel, compare) 434 435 struct system_info *si; 436 struct process_select *sel; 437 int (*compare)(); 438 439 { 440 register int i; 441 register int total_procs; 442 register int active_procs; 443 register struct kinfo_proc **prefp; 444 register struct kinfo_proc *pp; 445 446 /* these are copied out of sel for speed */ 447 int show_idle; 448 int show_system; 449 int show_uid; 450 int show_command; 451 452 453 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 454 if (nproc > onproc) 455 pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) 456 * (onproc = nproc)); 457 if (pref == NULL || pbase == NULL) { 458 (void) fprintf(stderr, "top: Out of memory.\n"); 459 quit(23); 460 } 461 /* get a pointer to the states summary array */ 462 si->procstates = process_states; 463 464 /* set up flags which define what we are going to select */ 465 show_idle = sel->idle; 466 show_system = sel->system; 467 show_uid = sel->uid != -1; 468 show_command = sel->command != NULL; 469 470 /* count up process states and get pointers to interesting procs */ 471 total_procs = 0; 472 active_procs = 0; 473 memset((char *)process_states, 0, sizeof(process_states)); 474 prefp = pref; 475 for (pp = pbase, i = 0; i < nproc; pp++, i++) 476 { 477 /* 478 * Place pointers to each valid proc structure in pref[]. 479 * Process slots that are actually in use have a non-zero 480 * status field. Processes with P_SYSTEM set are system 481 * processes---these get ignored unless show_sysprocs is set. 482 */ 483 if (PP(pp, p_stat) != 0 && 484 (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) 485 { 486 total_procs++; 487 process_states[(unsigned char) PP(pp, p_stat)]++; 488 if ((PP(pp, p_stat) != SZOMB) && 489 (show_idle || (PP(pp, p_pctcpu) != 0) || 490 (PP(pp, p_stat) == SRUN)) && 491 (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) 492 { 493 *prefp++ = pp; 494 active_procs++; 495 } 496 } 497 } 498 499 /* if requested, sort the "interesting" processes */ 500 if (compare != NULL) 501 { 502 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); 503 } 504 505 /* remember active and total counts */ 506 si->p_total = total_procs; 507 si->p_active = pref_len = active_procs; 508 509 /* pass back a handle */ 510 handle.next_proc = pref; 511 handle.remaining = active_procs; 512 return((caddr_t)&handle); 513 } 514 515 char fmt[128]; /* static area where result is built */ 516 517 char *format_next_process(handle, get_userid) 518 519 caddr_t handle; 520 char *(*get_userid)(); 521 522 { 523 register struct kinfo_proc *pp; 524 register long cputime; 525 register double pct; 526 struct handle *hp; 527 char status[16]; 528 529 /* find and remember the next proc structure */ 530 hp = (struct handle *)handle; 531 pp = *(hp->next_proc++); 532 hp->remaining--; 533 534 535 /* get the process's user struct and set cputime */ 536 if ((PP(pp, p_flag) & P_INMEM) == 0) { 537 /* 538 * Print swapped processes as <pname> 539 */ 540 char *comm = PP(pp, p_comm); 541 #define COMSIZ sizeof(PP(pp, p_comm)) 542 char buf[COMSIZ]; 543 (void) strncpy(buf, comm, COMSIZ); 544 comm[0] = '<'; 545 (void) strncpy(&comm[1], buf, COMSIZ - 2); 546 comm[COMSIZ - 2] = '\0'; 547 (void) strncat(comm, ">", COMSIZ - 1); 548 comm[COMSIZ - 1] = '\0'; 549 } 550 551 #if 0 552 /* This does not produce the correct results */ 553 cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); 554 #endif 555 cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */ 556 557 /* calculate the base for cpu percentages */ 558 pct = pctdouble(PP(pp, p_pctcpu)); 559 560 /* generate "STATE" field */ 561 switch (PP(pp, p_stat)) { 562 case SRUN: 563 #ifdef P_IDLEPROC /* FreeBSD SMP kernel */ 564 if (PP(pp, p_oncpu) >= 0) 565 sprintf(status, "CPU%d", PP(pp, p_oncpu)); 566 else 567 #endif 568 strcpy(status, "RUN"); 569 break; 570 case SSLEEP: 571 if (PP(pp, p_wmesg) != NULL) { 572 sprintf(status, "%.6s", EP(pp, e_wmesg)); 573 break; 574 } 575 /* fall through */ 576 default: 577 sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]); 578 break; 579 } 580 581 /* format this entry */ 582 sprintf(fmt, 583 Proc_format, 584 PP(pp, p_pid), 585 (*get_userid)(EP(pp, e_pcred.p_ruid)), 586 PP(pp, p_priority) - PZERO, 587 PP(pp, p_nice) - NZERO, 588 format_k2(pagetok(PROCSIZE(pp))), 589 format_k2(pagetok(VP(pp, vm_rssize))), 590 status, 591 #ifdef P_IDLEPROC /* FreeBSD SMP kernel */ 592 PP(pp, p_lastcpu), 593 #endif 594 format_time(cputime), 595 10000.0 * weighted_cpu(pct, pp) / hz, 596 10000.0 * pct / hz, 597 printable(PP(pp, p_comm))); 598 599 /* return the result */ 600 return(fmt); 601 } 602 603 604 /* 605 * check_nlist(nlst) - checks the nlist to see if any symbols were not 606 * found. For every symbol that was not found, a one-line 607 * message is printed to stderr. The routine returns the 608 * number of symbols NOT found. 609 */ 610 611 static int check_nlist(nlst) 612 613 register struct nlist *nlst; 614 615 { 616 register int i; 617 618 /* check to see if we got ALL the symbols we requested */ 619 /* this will write one line to stderr for every symbol not found */ 620 621 i = 0; 622 while (nlst->n_name != NULL) 623 { 624 if (nlst->n_type == 0) 625 { 626 /* this one wasn't found */ 627 (void) fprintf(stderr, "kernel: no symbol named `%s'\n", 628 nlst->n_name); 629 i = 1; 630 } 631 nlst++; 632 } 633 634 return(i); 635 } 636 637 638 /* 639 * getkval(offset, ptr, size, refstr) - get a value out of the kernel. 640 * "offset" is the byte offset into the kernel for the desired value, 641 * "ptr" points to a buffer into which the value is retrieved, 642 * "size" is the size of the buffer (and the object to retrieve), 643 * "refstr" is a reference string used when printing error meessages, 644 * if "refstr" starts with a '!', then a failure on read will not 645 * be fatal (this may seem like a silly way to do things, but I 646 * really didn't want the overhead of another argument). 647 * 648 */ 649 650 static int getkval(offset, ptr, size, refstr) 651 652 unsigned long offset; 653 int *ptr; 654 int size; 655 char *refstr; 656 657 { 658 if (kvm_read(kd, offset, (char *) ptr, size) != size) 659 { 660 if (*refstr == '!') 661 { 662 return(0); 663 } 664 else 665 { 666 fprintf(stderr, "top: kvm_read for %s: %s\n", 667 refstr, strerror(errno)); 668 quit(23); 669 } 670 } 671 return(1); 672 } 673 674 /* comparison routine for qsort */ 675 676 /* 677 * proc_compare - comparison function for "qsort" 678 * Compares the resource consumption of two processes using five 679 * distinct keys. The keys (in descending order of importance) are: 680 * percent cpu, cpu ticks, state, resident set size, total virtual 681 * memory usage. The process states are ordered as follows (from least 682 * to most important): WAIT, zombie, sleep, stop, start, run. The 683 * array declaration below maps a process state index into a number 684 * that reflects this ordering. 685 */ 686 687 static unsigned char sorted_state[] = 688 { 689 0, /* not used */ 690 3, /* sleep */ 691 1, /* ABANDONED (WAIT) */ 692 6, /* run */ 693 5, /* start */ 694 2, /* zombie */ 695 4 /* stop */ 696 }; 697 698 int 699 proc_compare(pp1, pp2) 700 701 struct proc **pp1; 702 struct proc **pp2; 703 704 { 705 register struct kinfo_proc *p1; 706 register struct kinfo_proc *p2; 707 register int result; 708 register pctcpu lresult; 709 710 /* remove one level of indirection */ 711 p1 = *(struct kinfo_proc **) pp1; 712 p2 = *(struct kinfo_proc **) pp2; 713 714 /* compare percent cpu (pctcpu) */ 715 if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0) 716 { 717 /* use cpticks to break the tie */ 718 if ((result = PP(p2, p_cpticks) - PP(p1, p_cpticks)) == 0) 719 { 720 /* use process state to break the tie */ 721 if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - 722 sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) 723 { 724 /* use priority to break the tie */ 725 if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) 726 { 727 /* use resident set size (rssize) to break the tie */ 728 if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) 729 { 730 /* use total memory to break the tie */ 731 result = PROCSIZE(p2) - PROCSIZE(p1); 732 } 733 } 734 } 735 } 736 } 737 else 738 { 739 result = lresult < 0 ? -1 : 1; 740 } 741 742 return(result); 743 } 744 745 746 /* 747 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 748 * the process does not exist. 749 * It is EXTREMLY IMPORTANT that this function work correctly. 750 * If top runs setuid root (as in SVR4), then this function 751 * is the only thing that stands in the way of a serious 752 * security problem. It validates requests for the "kill" 753 * and "renice" commands. 754 */ 755 756 int proc_owner(pid) 757 758 int pid; 759 760 { 761 register int cnt; 762 register struct kinfo_proc **prefp; 763 register struct kinfo_proc *pp; 764 765 prefp = pref; 766 cnt = pref_len; 767 while (--cnt >= 0) 768 { 769 pp = *prefp++; 770 if (PP(pp, p_pid) == (pid_t)pid) 771 { 772 return((int)EP(pp, e_pcred.p_ruid)); 773 } 774 } 775 return(-1); 776 } 777 778 779 /* 780 * swapmode is based on a program called swapinfo written 781 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 782 */ 783 784 #define SVAR(var) __STRING(var) /* to force expansion */ 785 #define KGET(idx, var) \ 786 KGET1(idx, &var, sizeof(var), SVAR(var)) 787 #define KGET1(idx, p, s, msg) \ 788 KGET2(nlst[idx].n_value, p, s, msg) 789 #define KGET2(addr, p, s, msg) \ 790 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 791 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 792 return (0); \ 793 } 794 #define KGETRET(addr, p, s, msg) \ 795 if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ 796 warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ 797 return (0); \ 798 } 799 800 801 int 802 swapmode(retavail, retfree) 803 int *retavail; 804 int *retfree; 805 { 806 char *header; 807 int hlen, nswap, nswdev, dmmax; 808 int i, div, avail, nfree, npfree, used; 809 struct swdevt *sw; 810 long blocksize, *perdev; 811 u_long ptr; 812 struct rlist head; 813 #if __FreeBSD_version >= 220000 814 struct rlisthdr swaplist; 815 #else 816 struct rlist *swaplist; 817 #endif 818 struct rlist *swapptr; 819 820 /* 821 * Counter for error messages. If we reach the limit, 822 * stop reading information from swap devices and 823 * return zero. This prevent endless 'bad address' 824 * messages. 825 */ 826 static warning = 10; 827 828 if (warning <= 0) { 829 /* a single warning */ 830 if (!warning) { 831 warning--; 832 fprintf(stderr, 833 "Too much errors, stop reading swap devices ...\n"); 834 (void)sleep(3); 835 } 836 return(0); 837 } 838 warning--; /* decrease counter, see end of function */ 839 840 KGET(VM_NSWAP, nswap); 841 if (!nswap) { 842 fprintf(stderr, "No swap space available\n"); 843 return(0); 844 } 845 846 KGET(VM_NSWDEV, nswdev); 847 KGET(VM_DMMAX, dmmax); 848 KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist"); 849 if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL || 850 (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL) 851 err(1, "malloc"); 852 KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt"); 853 KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt"); 854 855 /* Count up swap space. */ 856 nfree = 0; 857 memset(perdev, 0, nswdev * sizeof(*perdev)); 858 #if __FreeBSD_version >= 220000 859 swapptr = swaplist.rlh_list; 860 while (swapptr) { 861 #else 862 while (swaplist) { 863 #endif 864 int top, bottom, next_block; 865 #if __FreeBSD_version >= 220000 866 KGET2(swapptr, &head, sizeof(struct rlist), "swapptr"); 867 #else 868 KGET2(swaplist, &head, sizeof(struct rlist), "swaplist"); 869 #endif 870 871 top = head.rl_end; 872 bottom = head.rl_start; 873 874 nfree += top - bottom + 1; 875 876 /* 877 * Swap space is split up among the configured disks. 878 * 879 * For interleaved swap devices, the first dmmax blocks 880 * of swap space some from the first disk, the next dmmax 881 * blocks from the next, and so on up to nswap blocks. 882 * 883 * The list of free space joins adjacent free blocks, 884 * ignoring device boundries. If we want to keep track 885 * of this information per device, we'll just have to 886 * extract it ourselves. 887 */ 888 while (top / dmmax != bottom / dmmax) { 889 next_block = ((bottom + dmmax) / dmmax); 890 perdev[(bottom / dmmax) % nswdev] += 891 next_block * dmmax - bottom; 892 bottom = next_block * dmmax; 893 } 894 perdev[(bottom / dmmax) % nswdev] += 895 top - bottom + 1; 896 897 #if __FreeBSD_version >= 220000 898 swapptr = head.rl_next; 899 #else 900 swaplist = head.rl_next; 901 #endif 902 } 903 904 header = getbsize(&hlen, &blocksize); 905 div = blocksize / 512; 906 avail = npfree = 0; 907 for (i = 0; i < nswdev; i++) { 908 int xsize, xfree; 909 910 /* 911 * Don't report statistics for partitions which have not 912 * yet been activated via swapon(8). 913 */ 914 915 xsize = sw[i].sw_nblks; 916 xfree = perdev[i]; 917 used = xsize - xfree; 918 npfree++; 919 avail += xsize; 920 } 921 922 /* 923 * If only one partition has been set up via swapon(8), we don't 924 * need to bother with totals. 925 */ 926 *retavail = avail / 2; 927 *retfree = nfree / 2; 928 used = avail - nfree; 929 free(sw); free(perdev); 930 931 /* increase counter, no errors occurs */ 932 warning++; 933 934 return (int)(((double)used / (double)avail * 100.0) + 0.5); 935 } 936