xref: /freebsd/usr.bin/top/machine.c (revision 952d112864d8008aa87278a30a539d888a8493cd)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x system
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  *
10  * This is the machine-dependent module for FreeBSD 2.2
11  * Works for:
12  *	FreeBSD 2.2, and probably FreeBSD 2.1.x
13  *
14  * LIBS: -lkvm
15  *
16  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
17  *          Steven Wallace  <swallace@freebsd.org>
18  *          Wolfram Schneider <wosch@FreeBSD.org>
19  *
20  * $Id: m_freebsd2.c,v 1.15 1997/02/21 08:47:59 asami Exp $
21  */
22 
23 
24 #include <sys/types.h>
25 #include <sys/signal.h>
26 #include <sys/param.h>
27 
28 #include "os.h"
29 #include <stdio.h>
30 #include <nlist.h>
31 #include <math.h>
32 #include <kvm.h>
33 #include <sys/errno.h>
34 #include <sys/sysctl.h>
35 #include <sys/dkstat.h>
36 #include <sys/file.h>
37 #include <sys/time.h>
38 #include <sys/proc.h>
39 #include <sys/user.h>
40 #include <sys/vmmeter.h>
41 
42 /* Swap */
43 #include <stdlib.h>
44 #include <sys/rlist.h>
45 #include <sys/conf.h>
46 
47 #include <osreldate.h> /* for changes in kernel structures */
48 
49 #include "top.h"
50 #include "machine.h"
51 
52 static int check_nlist __P((struct nlist *));
53 static int getkval __P((unsigned long, int *, int, char *));
54 extern char* printable __P((char *));
55 int swapmode __P((int *retavail, int *retfree));
56 
57 
58 
59 /* get_process_info passes back a handle.  This is what it looks like: */
60 
61 struct handle
62 {
63     struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
64     int remaining;		/* number of pointers remaining */
65 };
66 
67 /* declarations for load_avg */
68 #include "loadavg.h"
69 
70 #define PP(pp, field) ((pp)->kp_proc . field)
71 #define EP(pp, field) ((pp)->kp_eproc . field)
72 #define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
73 
74 /* define what weighted cpu is.  */
75 #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
76 			 ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
77 
78 /* what we consider to be process size: */
79 #define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
80 
81 /* definitions for indices in the nlist array */
82 
83 
84 static struct nlist nlst[] = {
85 #define X_CCPU		0
86     { "_ccpu" },		/* 0 */
87 #define X_CP_TIME	1
88     { "_cp_time" },		/* 1 */
89 #define X_HZ		2
90     { "_hz" },		        /* 2 */
91 #define X_STATHZ	3
92     { "_stathz" },		/* 3 */
93 #define X_AVENRUN	4
94     { "_averunnable" },		/* 4 */
95 
96 /* Swap */
97 #define VM_SWAPLIST	5
98 	{ "_swaplist" },/* list of free swap areas */
99 #define VM_SWDEVT	6
100 	{ "_swdevt" },	/* list of swap devices and sizes */
101 #define VM_NSWAP	7
102 	{ "_nswap" },	/* size of largest swap device */
103 #define VM_NSWDEV	8
104 	{ "_nswdev" },	/* number of swap devices */
105 #define VM_DMMAX	9
106 	{ "_dmmax" },	/* maximum size of a swap block */
107 #define X_BUFSPACE	10
108 	{ "_bufspace" },	/* K in buffer cache */
109 #define X_CNT           11
110     { "_cnt" },		        /* struct vmmeter cnt */
111 
112 /* Last pid */
113 #define X_LASTPID	12
114     { "_nextpid" },
115     { 0 }
116 };
117 
118 /*
119  *  These definitions control the format of the per-process area
120  */
121 
122 #ifdef P_IDLEPROC	/* FreeBSD SMP kernel */
123 
124 static char header[] =
125   "  PID X        PRI NICE SIZE    RES STATE C   TIME   WCPU    CPU COMMAND";
126 /* 0123456   -- field to fill in starts at header+6 */
127 #define UNAME_START 6
128 
129 #define Proc_format \
130 	"%5d %-8.8s%3d%3d%7s %6s %-6.6s%1x%7s %5.2f%% %5.2f%% %.14s"
131 
132 #else			/* Standard kernel */
133 
134 static char header[] =
135   "  PID X        PRI NICE SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
136 /* 0123456   -- field to fill in starts at header+6 */
137 #define UNAME_START 6
138 
139 #define Proc_format \
140 	"%5d %-8.8s%3d %3d%7s %6s %-6.6s%7s %5.2f%% %5.2f%% %.14s"
141 
142 #endif
143 
144 
145 /* process state names for the "STATE" column of the display */
146 /* the extra nulls in the string "run" are for adding a slash and
147    the processor number when needed */
148 
149 char *state_abbrev[] =
150 {
151     "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
152 };
153 
154 
155 static kvm_t *kd;
156 
157 /* values that we stash away in _init and use in later routines */
158 
159 static double logcpu;
160 
161 /* these are retrieved from the kernel in _init */
162 
163 static          long hz;
164 static load_avg  ccpu;
165 
166 /* these are offsets obtained via nlist and used in the get_ functions */
167 
168 static unsigned long cp_time_offset;
169 static unsigned long avenrun_offset;
170 static unsigned long lastpid_offset;
171 static long lastpid;
172 static unsigned long cnt_offset;
173 static unsigned long bufspace_offset;
174 static long cnt;
175 
176 /* these are for calculating cpu state percentages */
177 
178 static long cp_time[CPUSTATES];
179 static long cp_old[CPUSTATES];
180 static long cp_diff[CPUSTATES];
181 
182 /* these are for detailing the process states */
183 
184 int process_states[6];
185 char *procstatenames[] = {
186     "", " starting, ", " running, ", " sleeping, ", " stopped, ",
187     " zombie, ",
188     NULL
189 };
190 
191 /* these are for detailing the cpu states */
192 
193 int cpu_states[CPUSTATES];
194 char *cpustatenames[] = {
195     "user", "nice", "system", "interrupt", "idle", NULL
196 };
197 
198 /* these are for detailing the memory statistics */
199 
200 int memory_stats[7];
201 char *memorynames[] = {
202     "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
203     NULL
204 };
205 
206 int swap_stats[7];
207 char *swapnames[] = {
208 /*   0           1            2           3            4       5 */
209     "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
210     NULL
211 };
212 
213 
214 /* these are for keeping track of the proc array */
215 
216 static int nproc;
217 static int onproc = -1;
218 static int pref_len;
219 static struct kinfo_proc *pbase;
220 static struct kinfo_proc **pref;
221 
222 /* these are for getting the memory statistics */
223 
224 static int pageshift;		/* log base 2 of the pagesize */
225 
226 /* define pagetok in terms of pageshift */
227 
228 #define pagetok(size) ((size) << pageshift)
229 
230 /* useful externals */
231 long percentages();
232 
233 int
234 machine_init(statics)
235 
236 struct statics *statics;
237 
238 {
239     register int i = 0;
240     register int pagesize;
241 
242     if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
243 	return -1;
244 
245 
246     /* get the list of symbols we want to access in the kernel */
247     (void) kvm_nlist(kd, nlst);
248     if (nlst[0].n_type == 0)
249     {
250 	fprintf(stderr, "top: nlist failed\n");
251 	return(-1);
252     }
253 
254     /* make sure they were all found */
255     if (i > 0 && check_nlist(nlst) > 0)
256     {
257 	return(-1);
258     }
259 
260     /* get the symbol values out of kmem */
261     (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
262     if (!hz) {
263 	(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
264 		       nlst[X_HZ].n_name);
265     }
266 
267     (void) getkval(nlst[X_CCPU].n_value,   (int *)(&ccpu),	sizeof(ccpu),
268 	    nlst[X_CCPU].n_name);
269 
270     /* stash away certain offsets for later use */
271     cp_time_offset = nlst[X_CP_TIME].n_value;
272     avenrun_offset = nlst[X_AVENRUN].n_value;
273     lastpid_offset =  nlst[X_LASTPID].n_value;
274     cnt_offset = nlst[X_CNT].n_value;
275     bufspace_offset = nlst[X_BUFSPACE].n_value;
276 
277     /* this is used in calculating WCPU -- calculate it ahead of time */
278     logcpu = log(loaddouble(ccpu));
279 
280     pbase = NULL;
281     pref = NULL;
282     nproc = 0;
283     onproc = -1;
284     /* get the page size with "getpagesize" and calculate pageshift from it */
285     pagesize = getpagesize();
286     pageshift = 0;
287     while (pagesize > 1)
288     {
289 	pageshift++;
290 	pagesize >>= 1;
291     }
292 
293     /* we only need the amount of log(2)1024 for our conversion */
294     pageshift -= LOG1024;
295 
296     /* fill in the statics information */
297     statics->procstate_names = procstatenames;
298     statics->cpustate_names = cpustatenames;
299     statics->memory_names = memorynames;
300     statics->swap_names = swapnames;
301 
302     /* all done! */
303     return(0);
304 }
305 
306 char *format_header(uname_field)
307 
308 register char *uname_field;
309 
310 {
311     register char *ptr;
312 
313     ptr = header + UNAME_START;
314     while (*uname_field != '\0')
315     {
316 	*ptr++ = *uname_field++;
317     }
318 
319     return(header);
320 }
321 
322 static int swappgsin = -1;
323 static int swappgsout = -1;
324 extern struct timeval timeout;
325 
326 void
327 get_system_info(si)
328 
329 struct system_info *si;
330 
331 {
332     long total;
333     load_avg avenrun[3];
334 
335     /* get the cp_time array */
336     (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
337 		   nlst[X_CP_TIME].n_name);
338     (void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
339 		   nlst[X_AVENRUN].n_name);
340 
341     (void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
342 		   "!");
343 
344     /* convert load averages to doubles */
345     {
346 	register int i;
347 	register double *infoloadp;
348 	load_avg *avenrunp;
349 
350 #ifdef notyet
351 	struct loadavg sysload;
352 	int size;
353 	getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
354 #endif
355 
356 	infoloadp = si->load_avg;
357 	avenrunp = avenrun;
358 	for (i = 0; i < 3; i++)
359 	{
360 #ifdef notyet
361 	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
362 #endif
363 	    *infoloadp++ = loaddouble(*avenrunp++);
364 	}
365     }
366 
367     /* convert cp_time counts to percentages */
368     total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
369 
370     /* sum memory & swap statistics */
371     {
372 	struct vmmeter sum;
373 	static unsigned int swap_delay = 0;
374 	static int swapavail = 0;
375 	static int swapfree = 0;
376 	static int bufspace = 0;
377 
378         (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
379 		   "_cnt");
380         (void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
381 		   "_bufspace");
382 
383 	/* convert memory stats to Kbytes */
384 	memory_stats[0] = pagetok(sum.v_active_count);
385 	memory_stats[1] = pagetok(sum.v_inactive_count);
386 	memory_stats[2] = pagetok(sum.v_wire_count);
387 	memory_stats[3] = pagetok(sum.v_cache_count);
388 	memory_stats[4] = bufspace / 1024;
389 	memory_stats[5] = pagetok(sum.v_free_count);
390 	memory_stats[6] = -1;
391 
392 	/* first interval */
393         if (swappgsin < 0) {
394 	    swap_stats[4] = 0;
395 	    swap_stats[5] = 0;
396 	}
397 
398 	/* compute differences between old and new swap statistic */
399 	else {
400 	    swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
401 	    swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
402 	}
403 
404         swappgsin = sum.v_swappgsin;
405 	swappgsout = sum.v_swappgsout;
406 
407 	/* call CPU heavy swapmode() only for changes */
408         if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
409 	    swap_stats[3] = swapmode(&swapavail, &swapfree);
410 	    swap_stats[0] = swapavail;
411 	    swap_stats[1] = swapavail - swapfree;
412 	    swap_stats[2] = swapfree;
413 	}
414         swap_delay = 1;
415 	swap_stats[6] = -1;
416     }
417 
418     /* set arrays and strings */
419     si->cpustates = cpu_states;
420     si->memory = memory_stats;
421     si->swap = swap_stats;
422 
423 
424     if(lastpid > 0) {
425 	si->last_pid = lastpid;
426     } else {
427 	si->last_pid = -1;
428     }
429 }
430 
431 static struct handle handle;
432 
433 caddr_t get_process_info(si, sel, compare)
434 
435 struct system_info *si;
436 struct process_select *sel;
437 int (*compare)();
438 
439 {
440     register int i;
441     register int total_procs;
442     register int active_procs;
443     register struct kinfo_proc **prefp;
444     register struct kinfo_proc *pp;
445 
446     /* these are copied out of sel for speed */
447     int show_idle;
448     int show_system;
449     int show_uid;
450     int show_command;
451 
452 
453     pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
454     if (nproc > onproc)
455 	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
456 		* (onproc = nproc));
457     if (pref == NULL || pbase == NULL) {
458 	(void) fprintf(stderr, "top: Out of memory.\n");
459 	quit(23);
460     }
461     /* get a pointer to the states summary array */
462     si->procstates = process_states;
463 
464     /* set up flags which define what we are going to select */
465     show_idle = sel->idle;
466     show_system = sel->system;
467     show_uid = sel->uid != -1;
468     show_command = sel->command != NULL;
469 
470     /* count up process states and get pointers to interesting procs */
471     total_procs = 0;
472     active_procs = 0;
473     memset((char *)process_states, 0, sizeof(process_states));
474     prefp = pref;
475     for (pp = pbase, i = 0; i < nproc; pp++, i++)
476     {
477 	/*
478 	 *  Place pointers to each valid proc structure in pref[].
479 	 *  Process slots that are actually in use have a non-zero
480 	 *  status field.  Processes with P_SYSTEM set are system
481 	 *  processes---these get ignored unless show_sysprocs is set.
482 	 */
483 	if (PP(pp, p_stat) != 0 &&
484 	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
485 	{
486 	    total_procs++;
487 	    process_states[(unsigned char) PP(pp, p_stat)]++;
488 	    if ((PP(pp, p_stat) != SZOMB) &&
489 		(show_idle || (PP(pp, p_pctcpu) != 0) ||
490 		 (PP(pp, p_stat) == SRUN)) &&
491 		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
492 	    {
493 		*prefp++ = pp;
494 		active_procs++;
495 	    }
496 	}
497     }
498 
499     /* if requested, sort the "interesting" processes */
500     if (compare != NULL)
501     {
502 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
503     }
504 
505     /* remember active and total counts */
506     si->p_total = total_procs;
507     si->p_active = pref_len = active_procs;
508 
509     /* pass back a handle */
510     handle.next_proc = pref;
511     handle.remaining = active_procs;
512     return((caddr_t)&handle);
513 }
514 
515 char fmt[128];		/* static area where result is built */
516 
517 char *format_next_process(handle, get_userid)
518 
519 caddr_t handle;
520 char *(*get_userid)();
521 
522 {
523     register struct kinfo_proc *pp;
524     register long cputime;
525     register double pct;
526     struct handle *hp;
527     char status[16];
528 
529     /* find and remember the next proc structure */
530     hp = (struct handle *)handle;
531     pp = *(hp->next_proc++);
532     hp->remaining--;
533 
534 
535     /* get the process's user struct and set cputime */
536     if ((PP(pp, p_flag) & P_INMEM) == 0) {
537 	/*
538 	 * Print swapped processes as <pname>
539 	 */
540 	char *comm = PP(pp, p_comm);
541 #define COMSIZ sizeof(PP(pp, p_comm))
542 	char buf[COMSIZ];
543 	(void) strncpy(buf, comm, COMSIZ);
544 	comm[0] = '<';
545 	(void) strncpy(&comm[1], buf, COMSIZ - 2);
546 	comm[COMSIZ - 2] = '\0';
547 	(void) strncat(comm, ">", COMSIZ - 1);
548 	comm[COMSIZ - 1] = '\0';
549     }
550 
551 #if 0
552     /* This does not produce the correct results */
553     cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
554 #endif
555     cputime = PP(pp, p_rtime).tv_sec;	/* This does not count interrupts */
556 
557     /* calculate the base for cpu percentages */
558     pct = pctdouble(PP(pp, p_pctcpu));
559 
560     /* generate "STATE" field */
561     switch (PP(pp, p_stat)) {
562 	case SRUN:
563 #ifdef P_IDLEPROC	/* FreeBSD SMP kernel */
564 	    if (PP(pp, p_oncpu) >= 0)
565 		sprintf(status, "CPU%d", PP(pp, p_oncpu));
566 	    else
567 #endif
568 		strcpy(status, "RUN");
569 	    break;
570 	case SSLEEP:
571 	    if (PP(pp, p_wmesg) != NULL) {
572 		sprintf(status, "%.6s", EP(pp, e_wmesg));
573 		break;
574 	    }
575 	    /* fall through */
576 	default:
577 	    sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
578 	    break;
579     }
580 
581     /* format this entry */
582     sprintf(fmt,
583 	    Proc_format,
584 	    PP(pp, p_pid),
585 	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
586 	    PP(pp, p_priority) - PZERO,
587 	    PP(pp, p_nice) - NZERO,
588 	    format_k2(pagetok(PROCSIZE(pp))),
589 	    format_k2(pagetok(VP(pp, vm_rssize))),
590 	    status,
591 #ifdef P_IDLEPROC	/* FreeBSD SMP kernel */
592 	    PP(pp, p_lastcpu),
593 #endif
594 	    format_time(cputime),
595 	    10000.0 * weighted_cpu(pct, pp) / hz,
596 	    10000.0 * pct / hz,
597 	    printable(PP(pp, p_comm)));
598 
599     /* return the result */
600     return(fmt);
601 }
602 
603 
604 /*
605  * check_nlist(nlst) - checks the nlist to see if any symbols were not
606  *		found.  For every symbol that was not found, a one-line
607  *		message is printed to stderr.  The routine returns the
608  *		number of symbols NOT found.
609  */
610 
611 static int check_nlist(nlst)
612 
613 register struct nlist *nlst;
614 
615 {
616     register int i;
617 
618     /* check to see if we got ALL the symbols we requested */
619     /* this will write one line to stderr for every symbol not found */
620 
621     i = 0;
622     while (nlst->n_name != NULL)
623     {
624 	if (nlst->n_type == 0)
625 	{
626 	    /* this one wasn't found */
627 	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
628 			   nlst->n_name);
629 	    i = 1;
630 	}
631 	nlst++;
632     }
633 
634     return(i);
635 }
636 
637 
638 /*
639  *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
640  *	"offset" is the byte offset into the kernel for the desired value,
641  *  	"ptr" points to a buffer into which the value is retrieved,
642  *  	"size" is the size of the buffer (and the object to retrieve),
643  *  	"refstr" is a reference string used when printing error meessages,
644  *	    if "refstr" starts with a '!', then a failure on read will not
645  *  	    be fatal (this may seem like a silly way to do things, but I
646  *  	    really didn't want the overhead of another argument).
647  *
648  */
649 
650 static int getkval(offset, ptr, size, refstr)
651 
652 unsigned long offset;
653 int *ptr;
654 int size;
655 char *refstr;
656 
657 {
658     if (kvm_read(kd, offset, (char *) ptr, size) != size)
659     {
660 	if (*refstr == '!')
661 	{
662 	    return(0);
663 	}
664 	else
665 	{
666 	    fprintf(stderr, "top: kvm_read for %s: %s\n",
667 		refstr, strerror(errno));
668 	    quit(23);
669 	}
670     }
671     return(1);
672 }
673 
674 /* comparison routine for qsort */
675 
676 /*
677  *  proc_compare - comparison function for "qsort"
678  *	Compares the resource consumption of two processes using five
679  *  	distinct keys.  The keys (in descending order of importance) are:
680  *  	percent cpu, cpu ticks, state, resident set size, total virtual
681  *  	memory usage.  The process states are ordered as follows (from least
682  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
683  *  	array declaration below maps a process state index into a number
684  *  	that reflects this ordering.
685  */
686 
687 static unsigned char sorted_state[] =
688 {
689     0,	/* not used		*/
690     3,	/* sleep		*/
691     1,	/* ABANDONED (WAIT)	*/
692     6,	/* run			*/
693     5,	/* start		*/
694     2,	/* zombie		*/
695     4	/* stop			*/
696 };
697 
698 int
699 proc_compare(pp1, pp2)
700 
701 struct proc **pp1;
702 struct proc **pp2;
703 
704 {
705     register struct kinfo_proc *p1;
706     register struct kinfo_proc *p2;
707     register int result;
708     register pctcpu lresult;
709 
710     /* remove one level of indirection */
711     p1 = *(struct kinfo_proc **) pp1;
712     p2 = *(struct kinfo_proc **) pp2;
713 
714     /* compare percent cpu (pctcpu) */
715     if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0)
716     {
717 	/* use cpticks to break the tie */
718 	if ((result = PP(p2, p_cpticks) - PP(p1, p_cpticks)) == 0)
719 	{
720 	    /* use process state to break the tie */
721 	    if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
722 			  sorted_state[(unsigned char) PP(p1, p_stat)])  == 0)
723 	    {
724 		/* use priority to break the tie */
725 		if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
726 		{
727 		    /* use resident set size (rssize) to break the tie */
728 		    if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
729 		    {
730 			/* use total memory to break the tie */
731 			result = PROCSIZE(p2) - PROCSIZE(p1);
732 		    }
733 		}
734 	    }
735 	}
736     }
737     else
738     {
739 	result = lresult < 0 ? -1 : 1;
740     }
741 
742     return(result);
743 }
744 
745 
746 /*
747  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
748  *		the process does not exist.
749  *		It is EXTREMLY IMPORTANT that this function work correctly.
750  *		If top runs setuid root (as in SVR4), then this function
751  *		is the only thing that stands in the way of a serious
752  *		security problem.  It validates requests for the "kill"
753  *		and "renice" commands.
754  */
755 
756 int proc_owner(pid)
757 
758 int pid;
759 
760 {
761     register int cnt;
762     register struct kinfo_proc **prefp;
763     register struct kinfo_proc *pp;
764 
765     prefp = pref;
766     cnt = pref_len;
767     while (--cnt >= 0)
768     {
769 	pp = *prefp++;
770 	if (PP(pp, p_pid) == (pid_t)pid)
771 	{
772 	    return((int)EP(pp, e_pcred.p_ruid));
773 	}
774     }
775     return(-1);
776 }
777 
778 
779 /*
780  * swapmode is based on a program called swapinfo written
781  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
782  */
783 
784 #define	SVAR(var) __STRING(var)	/* to force expansion */
785 #define	KGET(idx, var)							\
786 	KGET1(idx, &var, sizeof(var), SVAR(var))
787 #define	KGET1(idx, p, s, msg)						\
788 	KGET2(nlst[idx].n_value, p, s, msg)
789 #define	KGET2(addr, p, s, msg)						\
790 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {		        \
791 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));       \
792 		return (0);                                             \
793        }
794 #define	KGETRET(addr, p, s, msg)					\
795 	if (kvm_read(kd, (u_long)(addr), p, s) != s) {			\
796 		warnx("cannot read %s: %s", msg, kvm_geterr(kd));	\
797 		return (0);						\
798 	}
799 
800 
801 int
802 swapmode(retavail, retfree)
803 	int *retavail;
804 	int *retfree;
805 {
806 	char *header;
807 	int hlen, nswap, nswdev, dmmax;
808 	int i, div, avail, nfree, npfree, used;
809 	struct swdevt *sw;
810 	long blocksize, *perdev;
811 	u_long ptr;
812 	struct rlist head;
813 #if __FreeBSD_version >= 220000
814 	struct rlisthdr swaplist;
815 #else
816 	struct rlist *swaplist;
817 #endif
818 	struct rlist *swapptr;
819 
820 	/*
821 	 * Counter for error messages. If we reach the limit,
822 	 * stop reading information from swap devices and
823 	 * return zero. This prevent endless 'bad address'
824 	 * messages.
825 	 */
826 	static warning = 10;
827 
828 	if (warning <= 0) {
829 	    /* a single warning */
830 	    if (!warning) {
831 		warning--;
832 		fprintf(stderr,
833 			"Too much errors, stop reading swap devices ...\n");
834 		(void)sleep(3);
835 	    }
836 	    return(0);
837 	}
838 	warning--; /* decrease counter, see end of function */
839 
840 	KGET(VM_NSWAP, nswap);
841 	if (!nswap) {
842 		fprintf(stderr, "No swap space available\n");
843 		return(0);
844 	}
845 
846 	KGET(VM_NSWDEV, nswdev);
847 	KGET(VM_DMMAX, dmmax);
848 	KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist");
849 	if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL ||
850 	    (perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL)
851 		err(1, "malloc");
852 	KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt");
853 	KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt");
854 
855 	/* Count up swap space. */
856 	nfree = 0;
857 	memset(perdev, 0, nswdev * sizeof(*perdev));
858 #if  __FreeBSD_version >= 220000
859 	swapptr = swaplist.rlh_list;
860 	while (swapptr) {
861 #else
862 	while (swaplist) {
863 #endif
864 		int	top, bottom, next_block;
865 #if  __FreeBSD_version >= 220000
866 		KGET2(swapptr, &head, sizeof(struct rlist), "swapptr");
867 #else
868 		KGET2(swaplist, &head, sizeof(struct rlist), "swaplist");
869 #endif
870 
871 		top = head.rl_end;
872 		bottom = head.rl_start;
873 
874 		nfree += top - bottom + 1;
875 
876 		/*
877 		 * Swap space is split up among the configured disks.
878 		 *
879 		 * For interleaved swap devices, the first dmmax blocks
880 		 * of swap space some from the first disk, the next dmmax
881 		 * blocks from the next, and so on up to nswap blocks.
882 		 *
883 		 * The list of free space joins adjacent free blocks,
884 		 * ignoring device boundries.  If we want to keep track
885 		 * of this information per device, we'll just have to
886 		 * extract it ourselves.
887 		 */
888 		while (top / dmmax != bottom / dmmax) {
889 			next_block = ((bottom + dmmax) / dmmax);
890 			perdev[(bottom / dmmax) % nswdev] +=
891 				next_block * dmmax - bottom;
892 			bottom = next_block * dmmax;
893 		}
894 		perdev[(bottom / dmmax) % nswdev] +=
895 			top - bottom + 1;
896 
897 #if  __FreeBSD_version >= 220000
898 		swapptr = head.rl_next;
899 #else
900 		swaplist = head.rl_next;
901 #endif
902 	}
903 
904 	header = getbsize(&hlen, &blocksize);
905 	div = blocksize / 512;
906 	avail = npfree = 0;
907 	for (i = 0; i < nswdev; i++) {
908 		int xsize, xfree;
909 
910 		/*
911 		 * Don't report statistics for partitions which have not
912 		 * yet been activated via swapon(8).
913 		 */
914 
915 		xsize = sw[i].sw_nblks;
916 		xfree = perdev[i];
917 		used = xsize - xfree;
918 		npfree++;
919 		avail += xsize;
920 	}
921 
922 	/*
923 	 * If only one partition has been set up via swapon(8), we don't
924 	 * need to bother with totals.
925 	 */
926 	*retavail = avail / 2;
927 	*retfree = nfree / 2;
928 	used = avail - nfree;
929 	free(sw); free(perdev);
930 
931 	/* increase counter, no errors occurs */
932 	warning++;
933 
934 	return  (int)(((double)used / (double)avail * 100.0) + 0.5);
935 }
936