1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <kvm.h> 39 #include <math.h> 40 #include <nlist.h> 41 #include <paths.h> 42 #include <pwd.h> 43 #include <stdio.h> 44 #include <stdlib.h> 45 #include <string.h> 46 #include <strings.h> 47 #include <unistd.h> 48 #include <vis.h> 49 50 #include "top.h" 51 #include "machine.h" 52 #include "screen.h" 53 #include "utils.h" 54 55 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 56 #define SMPUNAMELEN 13 57 #define UPUNAMELEN 15 58 59 extern struct process_select ps; 60 extern char* printable(char *); 61 static int smpmode; 62 enum displaymodes displaymode; 63 static int namelength = 8; 64 static int cmdlengthdelta; 65 66 /* Prototypes for top internals */ 67 void quit(int); 68 69 /* get_process_info passes back a handle. This is what it looks like: */ 70 71 struct handle { 72 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 73 int remaining; /* number of pointers remaining */ 74 }; 75 76 /* declarations for load_avg */ 77 #include "loadavg.h" 78 79 /* define what weighted cpu is. */ 80 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 81 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 82 83 /* what we consider to be process size: */ 84 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 85 86 #define RU(pp) (&(pp)->ki_rusage) 87 #define RUTOT(pp) \ 88 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 89 90 91 /* definitions for indices in the nlist array */ 92 93 /* 94 * These definitions control the format of the per-process area 95 */ 96 97 static char io_header[] = 98 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 99 100 #define io_Proc_format \ 101 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 102 103 static char smp_header_thr[] = 104 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 105 static char smp_header[] = 106 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 107 108 #define smp_Proc_format \ 109 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s" 110 111 static char up_header_thr[] = 112 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND"; 113 static char up_header[] = 114 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND"; 115 116 #define up_Proc_format \ 117 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s" 118 119 120 /* process state names for the "STATE" column of the display */ 121 /* the extra nulls in the string "run" are for adding a slash and 122 the processor number when needed */ 123 124 char *state_abbrev[] = { 125 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 126 }; 127 128 129 static kvm_t *kd; 130 131 /* values that we stash away in _init and use in later routines */ 132 133 static double logcpu; 134 135 /* these are retrieved from the kernel in _init */ 136 137 static load_avg ccpu; 138 139 /* these are used in the get_ functions */ 140 141 static int lastpid; 142 143 /* these are for calculating cpu state percentages */ 144 145 static long cp_time[CPUSTATES]; 146 static long cp_old[CPUSTATES]; 147 static long cp_diff[CPUSTATES]; 148 149 /* these are for detailing the process states */ 150 151 int process_states[8]; 152 char *procstatenames[] = { 153 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 154 " zombie, ", " waiting, ", " lock, ", 155 NULL 156 }; 157 158 /* these are for detailing the cpu states */ 159 160 int cpu_states[CPUSTATES]; 161 char *cpustatenames[] = { 162 "user", "nice", "system", "interrupt", "idle", NULL 163 }; 164 165 /* these are for detailing the memory statistics */ 166 167 int memory_stats[7]; 168 char *memorynames[] = { 169 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 170 "K Free", NULL 171 }; 172 173 int swap_stats[7]; 174 char *swapnames[] = { 175 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 176 NULL 177 }; 178 179 180 /* these are for keeping track of the proc array */ 181 182 static int nproc; 183 static int onproc = -1; 184 static int pref_len; 185 static struct kinfo_proc *pbase; 186 static struct kinfo_proc **pref; 187 static struct kinfo_proc *previous_procs; 188 static struct kinfo_proc **previous_pref; 189 static int previous_proc_count = 0; 190 static int previous_proc_count_max = 0; 191 192 /* total number of io operations */ 193 static long total_inblock; 194 static long total_oublock; 195 static long total_majflt; 196 197 /* these are for getting the memory statistics */ 198 199 static int pageshift; /* log base 2 of the pagesize */ 200 201 /* define pagetok in terms of pageshift */ 202 203 #define pagetok(size) ((size) << pageshift) 204 205 /* useful externals */ 206 long percentages(); 207 208 #ifdef ORDER 209 /* 210 * Sorting orders. The first element is the default. 211 */ 212 char *ordernames[] = { 213 "cpu", "size", "res", "time", "pri", "threads", 214 "total", "read", "write", "fault", "vcsw", "ivcsw", 215 "jid", NULL 216 }; 217 #endif 218 219 static int compare_jid(const void *a, const void *b); 220 static int compare_pid(const void *a, const void *b); 221 static const char *format_nice(const struct kinfo_proc *pp); 222 static void getsysctl(const char *name, void *ptr, size_t len); 223 static int swapmode(int *retavail, int *retfree); 224 225 int 226 machine_init(struct statics *statics) 227 { 228 int pagesize; 229 size_t modelen; 230 struct passwd *pw; 231 232 modelen = sizeof(smpmode); 233 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, 234 NULL, 0) != 0 && 235 sysctlbyname("kern.smp.active", &smpmode, &modelen, 236 NULL, 0) != 0) || 237 modelen != sizeof(smpmode)) 238 smpmode = 0; 239 240 while ((pw = getpwent()) != NULL) { 241 if (strlen(pw->pw_name) > namelength) 242 namelength = strlen(pw->pw_name); 243 } 244 if (smpmode && namelength > SMPUNAMELEN) 245 namelength = SMPUNAMELEN; 246 else if (namelength > UPUNAMELEN) 247 namelength = UPUNAMELEN; 248 249 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 250 if (kd == NULL) 251 return (-1); 252 253 GETSYSCTL("kern.ccpu", ccpu); 254 255 /* this is used in calculating WCPU -- calculate it ahead of time */ 256 logcpu = log(loaddouble(ccpu)); 257 258 pbase = NULL; 259 pref = NULL; 260 nproc = 0; 261 onproc = -1; 262 263 /* get the page size and calculate pageshift from it */ 264 pagesize = getpagesize(); 265 pageshift = 0; 266 while (pagesize > 1) { 267 pageshift++; 268 pagesize >>= 1; 269 } 270 271 /* we only need the amount of log(2)1024 for our conversion */ 272 pageshift -= LOG1024; 273 274 /* fill in the statics information */ 275 statics->procstate_names = procstatenames; 276 statics->cpustate_names = cpustatenames; 277 statics->memory_names = memorynames; 278 statics->swap_names = swapnames; 279 #ifdef ORDER 280 statics->order_names = ordernames; 281 #endif 282 283 /* all done! */ 284 return (0); 285 } 286 287 char * 288 format_header(char *uname_field) 289 { 290 static char Header[128]; 291 const char *prehead; 292 293 switch (displaymode) { 294 case DISP_CPU: 295 /* 296 * The logic of picking the right header format seems reverse 297 * here because we only want to display a THR column when 298 * "thread mode" is off (and threads are not listed as 299 * separate lines). 300 */ 301 prehead = smpmode ? 302 (ps.thread ? smp_header : smp_header_thr) : 303 (ps.thread ? up_header : up_header_thr); 304 snprintf(Header, sizeof(Header), prehead, 305 ps.jail ? " JID" : "", 306 namelength, namelength, uname_field, 307 ps.wcpu ? "WCPU" : "CPU"); 308 break; 309 case DISP_IO: 310 prehead = io_header; 311 snprintf(Header, sizeof(Header), prehead, 312 ps.jail ? " JID" : "", 313 namelength, namelength, uname_field); 314 break; 315 } 316 cmdlengthdelta = strlen(Header) - 7; 317 return (Header); 318 } 319 320 static int swappgsin = -1; 321 static int swappgsout = -1; 322 extern struct timeval timeout; 323 324 void 325 get_system_info(struct system_info *si) 326 { 327 long total; 328 struct loadavg sysload; 329 int mib[2]; 330 struct timeval boottime; 331 size_t bt_size; 332 int i; 333 334 /* get the cp_time array */ 335 GETSYSCTL("kern.cp_time", cp_time); 336 GETSYSCTL("vm.loadavg", sysload); 337 GETSYSCTL("kern.lastpid", lastpid); 338 339 /* convert load averages to doubles */ 340 for (i = 0; i < 3; i++) 341 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 342 343 /* convert cp_time counts to percentages */ 344 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 345 346 /* sum memory & swap statistics */ 347 { 348 static unsigned int swap_delay = 0; 349 static int swapavail = 0; 350 static int swapfree = 0; 351 static int bufspace = 0; 352 static int nspgsin, nspgsout; 353 354 GETSYSCTL("vfs.bufspace", bufspace); 355 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 356 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 357 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 358 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 359 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 360 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 361 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 362 /* convert memory stats to Kbytes */ 363 memory_stats[0] = pagetok(memory_stats[0]); 364 memory_stats[1] = pagetok(memory_stats[1]); 365 memory_stats[2] = pagetok(memory_stats[2]); 366 memory_stats[3] = pagetok(memory_stats[3]); 367 memory_stats[4] = bufspace / 1024; 368 memory_stats[5] = pagetok(memory_stats[5]); 369 memory_stats[6] = -1; 370 371 /* first interval */ 372 if (swappgsin < 0) { 373 swap_stats[4] = 0; 374 swap_stats[5] = 0; 375 } 376 377 /* compute differences between old and new swap statistic */ 378 else { 379 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 380 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 381 } 382 383 swappgsin = nspgsin; 384 swappgsout = nspgsout; 385 386 /* call CPU heavy swapmode() only for changes */ 387 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 388 swap_stats[3] = swapmode(&swapavail, &swapfree); 389 swap_stats[0] = swapavail; 390 swap_stats[1] = swapavail - swapfree; 391 swap_stats[2] = swapfree; 392 } 393 swap_delay = 1; 394 swap_stats[6] = -1; 395 } 396 397 /* set arrays and strings */ 398 si->cpustates = cpu_states; 399 si->memory = memory_stats; 400 si->swap = swap_stats; 401 402 403 if (lastpid > 0) { 404 si->last_pid = lastpid; 405 } else { 406 si->last_pid = -1; 407 } 408 409 /* 410 * Print how long system has been up. 411 * (Found by looking getting "boottime" from the kernel) 412 */ 413 mib[0] = CTL_KERN; 414 mib[1] = KERN_BOOTTIME; 415 bt_size = sizeof(boottime); 416 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 417 boottime.tv_sec != 0) { 418 si->boottime = boottime; 419 } else { 420 si->boottime.tv_sec = -1; 421 } 422 } 423 424 #define NOPROC ((void *)-1) 425 426 /* 427 * We need to compare data from the old process entry with the new 428 * process entry. 429 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 430 * structure to cache the mapping. We also use a negative cache pointer 431 * of NOPROC to avoid duplicate lookups. 432 * XXX: this could be done when the actual processes are fetched, we do 433 * it here out of laziness. 434 */ 435 const struct kinfo_proc * 436 get_old_proc(struct kinfo_proc *pp) 437 { 438 struct kinfo_proc **oldpp, *oldp; 439 440 /* 441 * If this is the first fetch of the kinfo_procs then we don't have 442 * any previous entries. 443 */ 444 if (previous_proc_count == 0) 445 return (NULL); 446 /* negative cache? */ 447 if (pp->ki_udata == NOPROC) 448 return (NULL); 449 /* cached? */ 450 if (pp->ki_udata != NULL) 451 return (pp->ki_udata); 452 /* 453 * Not cached, 454 * 1) look up based on pid. 455 * 2) compare process start. 456 * If we fail here, then setup a negative cache entry, otherwise 457 * cache it. 458 */ 459 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 460 sizeof(*previous_pref), compare_pid); 461 if (oldpp == NULL) { 462 pp->ki_udata = NOPROC; 463 return (NULL); 464 } 465 oldp = *oldpp; 466 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 467 pp->ki_udata = NOPROC; 468 return (NULL); 469 } 470 pp->ki_udata = oldp; 471 return (oldp); 472 } 473 474 /* 475 * Return the total amount of IO done in blocks in/out and faults. 476 * store the values individually in the pointers passed in. 477 */ 478 long 479 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 480 long *vcsw, long *ivcsw) 481 { 482 const struct kinfo_proc *oldp; 483 static struct kinfo_proc dummy; 484 long ret; 485 486 oldp = get_old_proc(pp); 487 if (oldp == NULL) { 488 bzero(&dummy, sizeof(dummy)); 489 oldp = &dummy; 490 } 491 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 492 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 493 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 494 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 495 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 496 ret = 497 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 498 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 499 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 500 return (ret); 501 } 502 503 /* 504 * Return the total number of block in/out and faults by a process. 505 */ 506 long 507 get_io_total(struct kinfo_proc *pp) 508 { 509 long dummy; 510 511 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 512 } 513 514 static struct handle handle; 515 516 caddr_t 517 get_process_info(struct system_info *si, struct process_select *sel, 518 int (*compare)(const void *, const void *)) 519 { 520 int i; 521 int total_procs; 522 long p_io; 523 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 524 int active_procs; 525 struct kinfo_proc **prefp; 526 struct kinfo_proc *pp; 527 struct kinfo_proc *prev_pp = NULL; 528 529 /* these are copied out of sel for speed */ 530 int show_idle; 531 int show_self; 532 int show_system; 533 int show_uid; 534 int show_command; 535 536 /* 537 * Save the previous process info. 538 */ 539 if (previous_proc_count_max < nproc) { 540 free(previous_procs); 541 previous_procs = malloc(nproc * sizeof(*previous_procs)); 542 free(previous_pref); 543 previous_pref = malloc(nproc * sizeof(*previous_pref)); 544 if (previous_procs == NULL || previous_pref == NULL) { 545 (void) fprintf(stderr, "top: Out of memory.\n"); 546 quit(23); 547 } 548 previous_proc_count_max = nproc; 549 } 550 if (nproc) { 551 for (i = 0; i < nproc; i++) 552 previous_pref[i] = &previous_procs[i]; 553 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 554 qsort(previous_pref, nproc, sizeof(*previous_pref), 555 compare_pid); 556 } 557 previous_proc_count = nproc; 558 559 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 560 if (nproc > onproc) 561 pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); 562 if (pref == NULL || pbase == NULL) { 563 (void) fprintf(stderr, "top: Out of memory.\n"); 564 quit(23); 565 } 566 /* get a pointer to the states summary array */ 567 si->procstates = process_states; 568 569 /* set up flags which define what we are going to select */ 570 show_idle = sel->idle; 571 show_self = sel->self == -1; 572 show_system = sel->system; 573 show_uid = sel->uid != -1; 574 show_command = sel->command != NULL; 575 576 /* count up process states and get pointers to interesting procs */ 577 total_procs = 0; 578 active_procs = 0; 579 total_inblock = 0; 580 total_oublock = 0; 581 total_majflt = 0; 582 memset((char *)process_states, 0, sizeof(process_states)); 583 prefp = pref; 584 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 585 586 if (pp->ki_stat == 0) 587 /* not in use */ 588 continue; 589 590 if (!show_self && pp->ki_pid == sel->self) 591 /* skip self */ 592 continue; 593 594 if (!show_system && (pp->ki_flag & P_SYSTEM)) 595 /* skip system process */ 596 continue; 597 598 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 599 &p_vcsw, &p_ivcsw); 600 total_inblock += p_inblock; 601 total_oublock += p_oublock; 602 total_majflt += p_majflt; 603 total_procs++; 604 process_states[pp->ki_stat]++; 605 606 if (pp->ki_stat == SZOMB) 607 /* skip zombies */ 608 continue; 609 610 if (displaymode == DISP_CPU && !show_idle && 611 (pp->ki_pctcpu == 0 || 612 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 613 /* skip idle or non-running processes */ 614 continue; 615 616 if (displaymode == DISP_IO && !show_idle && p_io == 0) 617 /* skip processes that aren't doing I/O */ 618 continue; 619 620 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 621 /* skip proc. that don't belong to the selected UID */ 622 continue; 623 624 /* 625 * When not showing threads, take the first thread 626 * for output and add the fields that we can from 627 * the rest of the process's threads rather than 628 * using the system's mostly-broken KERN_PROC_PROC. 629 */ 630 if (sel->thread || prev_pp == NULL || 631 prev_pp->ki_pid != pp->ki_pid) { 632 *prefp++ = pp; 633 active_procs++; 634 prev_pp = pp; 635 } else { 636 prev_pp->ki_pctcpu += pp->ki_pctcpu; 637 } 638 } 639 640 /* if requested, sort the "interesting" processes */ 641 if (compare != NULL) 642 qsort(pref, active_procs, sizeof(*pref), compare); 643 644 /* remember active and total counts */ 645 si->p_total = total_procs; 646 si->p_active = pref_len = active_procs; 647 648 /* pass back a handle */ 649 handle.next_proc = pref; 650 handle.remaining = active_procs; 651 return ((caddr_t)&handle); 652 } 653 654 static char fmt[128]; /* static area where result is built */ 655 656 char * 657 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 658 { 659 struct kinfo_proc *pp; 660 const struct kinfo_proc *oldp; 661 long cputime; 662 double pct; 663 struct handle *hp; 664 char status[16]; 665 int state; 666 struct rusage ru, *rup; 667 long p_tot, s_tot; 668 char *proc_fmt, thr_buf[6], jid_buf[6]; 669 char *cmdbuf = NULL; 670 char **args; 671 672 /* find and remember the next proc structure */ 673 hp = (struct handle *)handle; 674 pp = *(hp->next_proc++); 675 hp->remaining--; 676 677 /* get the process's command name */ 678 if ((pp->ki_flag & P_INMEM) == 0) { 679 /* 680 * Print swapped processes as <pname> 681 */ 682 size_t len; 683 684 len = strlen(pp->ki_comm); 685 if (len > sizeof(pp->ki_comm) - 3) 686 len = sizeof(pp->ki_comm) - 3; 687 memmove(pp->ki_comm + 1, pp->ki_comm, len); 688 pp->ki_comm[0] = '<'; 689 pp->ki_comm[len + 1] = '>'; 690 pp->ki_comm[len + 2] = '\0'; 691 } 692 693 /* 694 * Convert the process's runtime from microseconds to seconds. This 695 * time includes the interrupt time although that is not wanted here. 696 * ps(1) is similarly sloppy. 697 */ 698 cputime = (pp->ki_runtime + 500000) / 1000000; 699 700 /* calculate the base for cpu percentages */ 701 pct = pctdouble(pp->ki_pctcpu); 702 703 /* generate "STATE" field */ 704 switch (state = pp->ki_stat) { 705 case SRUN: 706 if (smpmode && pp->ki_oncpu != 0xff) 707 sprintf(status, "CPU%d", pp->ki_oncpu); 708 else 709 strcpy(status, "RUN"); 710 break; 711 case SLOCK: 712 if (pp->ki_kiflag & KI_LOCKBLOCK) { 713 sprintf(status, "*%.6s", pp->ki_lockname); 714 break; 715 } 716 /* fall through */ 717 case SSLEEP: 718 if (pp->ki_wmesg != NULL) { 719 sprintf(status, "%.6s", pp->ki_wmesg); 720 break; 721 } 722 /* FALLTHROUGH */ 723 default: 724 725 if (state >= 0 && 726 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 727 sprintf(status, "%.6s", state_abbrev[state]); 728 else 729 sprintf(status, "?%5d", state); 730 break; 731 } 732 733 cmdbuf = (char *)malloc(cmdlengthdelta + 1); 734 if (cmdbuf == NULL) { 735 warn("malloc(%d)", cmdlengthdelta + 1); 736 return NULL; 737 } 738 739 if (!(flags & FMT_SHOWARGS)) { 740 if (ps.thread && pp->ki_flag & P_HADTHREADS && 741 pp->ki_ocomm[0]) { 742 snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm); 743 } else { 744 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm); 745 } 746 } else { 747 if (pp->ki_flag & P_SYSTEM || 748 pp->ki_args == NULL || 749 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || 750 !(*args)) { 751 if (ps.thread && pp->ki_flag & P_HADTHREADS && 752 pp->ki_ocomm[0]) { 753 snprintf(cmdbuf, cmdlengthdelta, 754 "{%s}", pp->ki_ocomm); 755 } else { 756 snprintf(cmdbuf, cmdlengthdelta, 757 "[%s]", pp->ki_comm); 758 } 759 } else { 760 char *src, *dst, *argbuf; 761 char *cmd; 762 size_t argbuflen; 763 size_t len; 764 765 argbuflen = cmdlengthdelta * 4; 766 argbuf = (char *)malloc(argbuflen + 1); 767 if (argbuf == NULL) { 768 warn("malloc(%d)", argbuflen + 1); 769 free(cmdbuf); 770 return NULL; 771 } 772 773 dst = argbuf; 774 775 /* Extract cmd name from argv */ 776 cmd = strrchr(*args, '/'); 777 if (cmd == NULL) 778 cmd = *args; 779 else 780 cmd++; 781 782 for (; (src = *args++) != NULL; ) { 783 if (*src == '\0') 784 continue; 785 len = (argbuflen - (dst - argbuf) - 1) / 4; 786 strvisx(dst, src, 787 strlen(src) < len ? strlen(src) : len, 788 VIS_NL | VIS_CSTYLE); 789 while (*dst != '\0') 790 dst++; 791 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 792 *dst++ = ' '; /* add delimiting space */ 793 } 794 if (dst != argbuf && dst[-1] == ' ') 795 dst--; 796 *dst = '\0'; 797 798 if (strcmp(cmd, pp->ki_comm) != 0 ) 799 snprintf(cmdbuf, cmdlengthdelta, 800 "%s (%s)",argbuf, pp->ki_comm); 801 else 802 strlcpy(cmdbuf, argbuf, cmdlengthdelta); 803 804 free(argbuf); 805 } 806 } 807 808 if (ps.jail == 0) 809 jid_buf[0] = '\0'; 810 else 811 snprintf(jid_buf, sizeof(jid_buf), " %*d", 812 sizeof(jid_buf) - 3, pp->ki_jid); 813 814 if (displaymode == DISP_IO) { 815 oldp = get_old_proc(pp); 816 if (oldp != NULL) { 817 ru.ru_inblock = RU(pp)->ru_inblock - 818 RU(oldp)->ru_inblock; 819 ru.ru_oublock = RU(pp)->ru_oublock - 820 RU(oldp)->ru_oublock; 821 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 822 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 823 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 824 rup = &ru; 825 } else { 826 rup = RU(pp); 827 } 828 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 829 s_tot = total_inblock + total_oublock + total_majflt; 830 831 sprintf(fmt, io_Proc_format, 832 pp->ki_pid, 833 jid_buf, 834 namelength, namelength, (*get_userid)(pp->ki_ruid), 835 rup->ru_nvcsw, 836 rup->ru_nivcsw, 837 rup->ru_inblock, 838 rup->ru_oublock, 839 rup->ru_majflt, 840 p_tot, 841 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 842 screen_width > cmdlengthdelta ? 843 screen_width - cmdlengthdelta : 0, 844 printable(cmdbuf)); 845 846 free(cmdbuf); 847 848 return (fmt); 849 } 850 851 /* format this entry */ 852 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 853 if (ps.thread != 0) 854 thr_buf[0] = '\0'; 855 else 856 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 857 sizeof(thr_buf) - 2, pp->ki_numthreads); 858 859 sprintf(fmt, proc_fmt, 860 pp->ki_pid, 861 jid_buf, 862 namelength, namelength, (*get_userid)(pp->ki_ruid), 863 thr_buf, 864 pp->ki_pri.pri_level - PZERO, 865 format_nice(pp), 866 format_k2(PROCSIZE(pp)), 867 format_k2(pagetok(pp->ki_rssize)), 868 status, 869 smpmode ? pp->ki_lastcpu : 0, 870 format_time(cputime), 871 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 872 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 873 printable(cmdbuf)); 874 875 free(cmdbuf); 876 877 /* return the result */ 878 return (fmt); 879 } 880 881 static void 882 getsysctl(const char *name, void *ptr, size_t len) 883 { 884 size_t nlen = len; 885 886 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 887 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 888 strerror(errno)); 889 quit(23); 890 } 891 if (nlen != len) { 892 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 893 name, (unsigned long)len, (unsigned long)nlen); 894 quit(23); 895 } 896 } 897 898 static const char * 899 format_nice(const struct kinfo_proc *pp) 900 { 901 const char *fifo, *kthread; 902 int rtpri; 903 static char nicebuf[4 + 1]; 904 905 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 906 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; 907 switch (PRI_BASE(pp->ki_pri.pri_class)) { 908 case PRI_ITHD: 909 return ("-"); 910 case PRI_REALTIME: 911 /* 912 * XXX: the kernel doesn't tell us the original rtprio and 913 * doesn't really know what it was, so to recover it we 914 * must be more chummy with the implementation than the 915 * implementation is with itself. pri_user gives a 916 * constant "base" priority, but is only initialized 917 * properly for user threads. pri_native gives what the 918 * kernel calls the "base" priority, but it isn't constant 919 * since it is changed by priority propagation. pri_native 920 * also isn't properly initialized for all threads, but it 921 * is properly initialized for kernel realtime and idletime 922 * threads. Thus we use pri_user for the base priority of 923 * user threads (it is always correct) and pri_native for 924 * the base priority of kernel realtime and idletime threads 925 * (there is nothing better, and it is usually correct). 926 * 927 * The field width and thus the buffer are too small for 928 * values like "kr31F", but such values shouldn't occur, 929 * and if they do then the tailing "F" is not displayed. 930 */ 931 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 932 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 933 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 934 kthread, rtpri, fifo); 935 break; 936 case PRI_TIMESHARE: 937 if (pp->ki_flag & P_KTHREAD) 938 return ("-"); 939 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 940 break; 941 case PRI_IDLE: 942 /* XXX: as above. */ 943 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 944 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 945 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 946 kthread, rtpri, fifo); 947 break; 948 default: 949 return ("?"); 950 } 951 return (nicebuf); 952 } 953 954 /* comparison routines for qsort */ 955 956 static int 957 compare_pid(const void *p1, const void *p2) 958 { 959 const struct kinfo_proc * const *pp1 = p1; 960 const struct kinfo_proc * const *pp2 = p2; 961 962 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 963 abort(); 964 965 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 966 } 967 968 /* 969 * proc_compare - comparison function for "qsort" 970 * Compares the resource consumption of two processes using five 971 * distinct keys. The keys (in descending order of importance) are: 972 * percent cpu, cpu ticks, state, resident set size, total virtual 973 * memory usage. The process states are ordered as follows (from least 974 * to most important): WAIT, zombie, sleep, stop, start, run. The 975 * array declaration below maps a process state index into a number 976 * that reflects this ordering. 977 */ 978 979 static int sorted_state[] = { 980 0, /* not used */ 981 3, /* sleep */ 982 1, /* ABANDONED (WAIT) */ 983 6, /* run */ 984 5, /* start */ 985 2, /* zombie */ 986 4 /* stop */ 987 }; 988 989 990 #define ORDERKEY_PCTCPU(a, b) do { \ 991 long diff; \ 992 if (ps.wcpu) \ 993 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ 994 (b))) - \ 995 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ 996 (a))); \ 997 else \ 998 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ 999 if (diff != 0) \ 1000 return (diff > 0 ? 1 : -1); \ 1001 } while (0) 1002 1003 #define ORDERKEY_CPTICKS(a, b) do { \ 1004 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1005 if (diff != 0) \ 1006 return (diff > 0 ? 1 : -1); \ 1007 } while (0) 1008 1009 #define ORDERKEY_STATE(a, b) do { \ 1010 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1011 if (diff != 0) \ 1012 return (diff > 0 ? 1 : -1); \ 1013 } while (0) 1014 1015 #define ORDERKEY_PRIO(a, b) do { \ 1016 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1017 if (diff != 0) \ 1018 return (diff > 0 ? 1 : -1); \ 1019 } while (0) 1020 1021 #define ORDERKEY_THREADS(a, b) do { \ 1022 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1023 if (diff != 0) \ 1024 return (diff > 0 ? 1 : -1); \ 1025 } while (0) 1026 1027 #define ORDERKEY_RSSIZE(a, b) do { \ 1028 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1029 if (diff != 0) \ 1030 return (diff > 0 ? 1 : -1); \ 1031 } while (0) 1032 1033 #define ORDERKEY_MEM(a, b) do { \ 1034 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1035 if (diff != 0) \ 1036 return (diff > 0 ? 1 : -1); \ 1037 } while (0) 1038 1039 #define ORDERKEY_JID(a, b) do { \ 1040 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1041 if (diff != 0) \ 1042 return (diff > 0 ? 1 : -1); \ 1043 } while (0) 1044 1045 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1046 1047 int 1048 #ifdef ORDER 1049 compare_cpu(void *arg1, void *arg2) 1050 #else 1051 proc_compare(void *arg1, void *arg2) 1052 #endif 1053 { 1054 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1055 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1056 1057 ORDERKEY_PCTCPU(p1, p2); 1058 ORDERKEY_CPTICKS(p1, p2); 1059 ORDERKEY_STATE(p1, p2); 1060 ORDERKEY_PRIO(p1, p2); 1061 ORDERKEY_RSSIZE(p1, p2); 1062 ORDERKEY_MEM(p1, p2); 1063 1064 return (0); 1065 } 1066 1067 #ifdef ORDER 1068 /* "cpu" compare routines */ 1069 int compare_size(), compare_res(), compare_time(), compare_prio(), 1070 compare_threads(); 1071 1072 /* 1073 * "io" compare routines. Context switches aren't i/o, but are displayed 1074 * on the "io" display. 1075 */ 1076 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1077 compare_vcsw(), compare_ivcsw(); 1078 1079 int (*compares[])() = { 1080 compare_cpu, 1081 compare_size, 1082 compare_res, 1083 compare_time, 1084 compare_prio, 1085 compare_threads, 1086 compare_iototal, 1087 compare_ioread, 1088 compare_iowrite, 1089 compare_iofault, 1090 compare_vcsw, 1091 compare_ivcsw, 1092 compare_jid, 1093 NULL 1094 }; 1095 1096 /* compare_size - the comparison function for sorting by total memory usage */ 1097 1098 int 1099 compare_size(void *arg1, void *arg2) 1100 { 1101 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1102 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1103 1104 ORDERKEY_MEM(p1, p2); 1105 ORDERKEY_RSSIZE(p1, p2); 1106 ORDERKEY_PCTCPU(p1, p2); 1107 ORDERKEY_CPTICKS(p1, p2); 1108 ORDERKEY_STATE(p1, p2); 1109 ORDERKEY_PRIO(p1, p2); 1110 1111 return (0); 1112 } 1113 1114 /* compare_res - the comparison function for sorting by resident set size */ 1115 1116 int 1117 compare_res(void *arg1, void *arg2) 1118 { 1119 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1120 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1121 1122 ORDERKEY_RSSIZE(p1, p2); 1123 ORDERKEY_MEM(p1, p2); 1124 ORDERKEY_PCTCPU(p1, p2); 1125 ORDERKEY_CPTICKS(p1, p2); 1126 ORDERKEY_STATE(p1, p2); 1127 ORDERKEY_PRIO(p1, p2); 1128 1129 return (0); 1130 } 1131 1132 /* compare_time - the comparison function for sorting by total cpu time */ 1133 1134 int 1135 compare_time(void *arg1, void *arg2) 1136 { 1137 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1138 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1139 1140 ORDERKEY_CPTICKS(p1, p2); 1141 ORDERKEY_PCTCPU(p1, p2); 1142 ORDERKEY_STATE(p1, p2); 1143 ORDERKEY_PRIO(p1, p2); 1144 ORDERKEY_RSSIZE(p1, p2); 1145 ORDERKEY_MEM(p1, p2); 1146 1147 return (0); 1148 } 1149 1150 /* compare_prio - the comparison function for sorting by priority */ 1151 1152 int 1153 compare_prio(void *arg1, void *arg2) 1154 { 1155 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1156 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1157 1158 ORDERKEY_PRIO(p1, p2); 1159 ORDERKEY_CPTICKS(p1, p2); 1160 ORDERKEY_PCTCPU(p1, p2); 1161 ORDERKEY_STATE(p1, p2); 1162 ORDERKEY_RSSIZE(p1, p2); 1163 ORDERKEY_MEM(p1, p2); 1164 1165 return (0); 1166 } 1167 1168 /* compare_threads - the comparison function for sorting by threads */ 1169 int 1170 compare_threads(void *arg1, void *arg2) 1171 { 1172 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1173 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1174 1175 ORDERKEY_THREADS(p1, p2); 1176 ORDERKEY_PCTCPU(p1, p2); 1177 ORDERKEY_CPTICKS(p1, p2); 1178 ORDERKEY_STATE(p1, p2); 1179 ORDERKEY_PRIO(p1, p2); 1180 ORDERKEY_RSSIZE(p1, p2); 1181 ORDERKEY_MEM(p1, p2); 1182 1183 return (0); 1184 } 1185 1186 /* compare_jid - the comparison function for sorting by jid */ 1187 static int 1188 compare_jid(const void *arg1, const void *arg2) 1189 { 1190 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1191 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1192 1193 ORDERKEY_JID(p1, p2); 1194 ORDERKEY_PCTCPU(p1, p2); 1195 ORDERKEY_CPTICKS(p1, p2); 1196 ORDERKEY_STATE(p1, p2); 1197 ORDERKEY_PRIO(p1, p2); 1198 ORDERKEY_RSSIZE(p1, p2); 1199 ORDERKEY_MEM(p1, p2); 1200 1201 return (0); 1202 } 1203 #endif /* ORDER */ 1204 1205 /* assorted comparison functions for sorting by i/o */ 1206 1207 int 1208 #ifdef ORDER 1209 compare_iototal(void *arg1, void *arg2) 1210 #else 1211 io_compare(void *arg1, void *arg2) 1212 #endif 1213 { 1214 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1215 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1216 1217 return (get_io_total(p2) - get_io_total(p1)); 1218 } 1219 1220 #ifdef ORDER 1221 int 1222 compare_ioread(void *arg1, void *arg2) 1223 { 1224 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1225 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1226 long dummy, inp1, inp2; 1227 1228 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1229 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1230 1231 return (inp2 - inp1); 1232 } 1233 1234 int 1235 compare_iowrite(void *arg1, void *arg2) 1236 { 1237 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1238 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1239 long dummy, oup1, oup2; 1240 1241 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1242 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1243 1244 return (oup2 - oup1); 1245 } 1246 1247 int 1248 compare_iofault(void *arg1, void *arg2) 1249 { 1250 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1251 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1252 long dummy, flp1, flp2; 1253 1254 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1255 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1256 1257 return (flp2 - flp1); 1258 } 1259 1260 int 1261 compare_vcsw(void *arg1, void *arg2) 1262 { 1263 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1264 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1265 long dummy, flp1, flp2; 1266 1267 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1268 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1269 1270 return (flp2 - flp1); 1271 } 1272 1273 int 1274 compare_ivcsw(void *arg1, void *arg2) 1275 { 1276 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1277 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1278 long dummy, flp1, flp2; 1279 1280 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1281 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1282 1283 return (flp2 - flp1); 1284 } 1285 #endif /* ORDER */ 1286 1287 /* 1288 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1289 * the process does not exist. 1290 * It is EXTREMLY IMPORTANT that this function work correctly. 1291 * If top runs setuid root (as in SVR4), then this function 1292 * is the only thing that stands in the way of a serious 1293 * security problem. It validates requests for the "kill" 1294 * and "renice" commands. 1295 */ 1296 1297 int 1298 proc_owner(int pid) 1299 { 1300 int cnt; 1301 struct kinfo_proc **prefp; 1302 struct kinfo_proc *pp; 1303 1304 prefp = pref; 1305 cnt = pref_len; 1306 while (--cnt >= 0) { 1307 pp = *prefp++; 1308 if (pp->ki_pid == (pid_t)pid) 1309 return ((int)pp->ki_ruid); 1310 } 1311 return (-1); 1312 } 1313 1314 static int 1315 swapmode(int *retavail, int *retfree) 1316 { 1317 int n; 1318 int pagesize = getpagesize(); 1319 struct kvm_swap swapary[1]; 1320 1321 *retavail = 0; 1322 *retfree = 0; 1323 1324 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1325 1326 n = kvm_getswapinfo(kd, swapary, 1, 0); 1327 if (n < 0 || swapary[0].ksw_total == 0) 1328 return (0); 1329 1330 *retavail = CONVERT(swapary[0].ksw_total); 1331 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1332 1333 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1334 return (n); 1335 } 1336