xref: /freebsd/usr.bin/top/machine.c (revision 8ab2f5ecc596131f6ca790d6ae35540c06ed7985)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For FreeBSD-2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for FreeBSD 2.2
13  * Works for:
14  *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19  *          Steven Wallace  <swallace@freebsd.org>
20  *          Wolfram Schneider <wosch@FreeBSD.org>
21  *          Thomas Moestl <tmoestl@gmx.net>
22  *
23  * $FreeBSD$
24  */
25 
26 #include <sys/param.h>
27 #include <sys/errno.h>
28 #include <sys/file.h>
29 #include <sys/proc.h>
30 #include <sys/resource.h>
31 #include <sys/rtprio.h>
32 #include <sys/signal.h>
33 #include <sys/sysctl.h>
34 #include <sys/time.h>
35 #include <sys/user.h>
36 #include <sys/vmmeter.h>
37 
38 #include <kvm.h>
39 #include <math.h>
40 #include <nlist.h>
41 #include <paths.h>
42 #include <pwd.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <unistd.h>
46 
47 #include "top.h"
48 #include "machine.h"
49 #include "screen.h"
50 #include "utils.h"
51 
52 static void getsysctl(char *, void *, size_t);
53 
54 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
55 
56 extern char* printable(char *);
57 int swapmode(int *retavail, int *retfree);
58 static int smpmode;
59 enum displaymodes displaymode;
60 static int namelength;
61 static int cmdlengthdelta;
62 
63 /* Prototypes for top internals */
64 void quit(int);
65 int compare_pid(const void *a, const void *b);
66 
67 /* get_process_info passes back a handle.  This is what it looks like: */
68 
69 struct handle
70 {
71 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
72 	int remaining;			/* number of pointers remaining */
73 };
74 
75 /* declarations for load_avg */
76 #include "loadavg.h"
77 
78 /* define what weighted cpu is.  */
79 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
80 			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
81 
82 /* what we consider to be process size: */
83 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
84 
85 #define RU(pp)	(&(pp)->ki_rusage)
86 #define RUTOT(pp) \
87 	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
88 
89 
90 /* definitions for indices in the nlist array */
91 
92 /*
93  *  These definitions control the format of the per-process area
94  */
95 
96 static char io_header[] =
97 	"  PID %-*.*s   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
98 
99 #define io_Proc_format \
100 	"%5d %-*.*s %6ld %6ld %6ld %6ld %6.2f%% %.*s"
101 
102 static char smp_header[] =
103 	"  PID %-*.*s PRI NICE   SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
104 
105 #define smp_Proc_format \
106 	"%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
107 
108 static char up_header[] =
109 	"  PID %-*.*s PRI NICE   SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
110 
111 #define up_Proc_format \
112 	"%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
113 
114 
115 
116 /* process state names for the "STATE" column of the display */
117 /* the extra nulls in the string "run" are for adding a slash and
118    the processor number when needed */
119 
120 char *state_abbrev[] =
121 {
122 	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
123 };
124 
125 
126 static kvm_t *kd;
127 
128 /* values that we stash away in _init and use in later routines */
129 
130 static double logcpu;
131 
132 /* these are retrieved from the kernel in _init */
133 
134 static load_avg  ccpu;
135 
136 /* these are used in the get_ functions */
137 
138 static int lastpid;
139 
140 /* these are for calculating cpu state percentages */
141 
142 static long cp_time[CPUSTATES];
143 static long cp_old[CPUSTATES];
144 static long cp_diff[CPUSTATES];
145 
146 /* these are for detailing the process states */
147 
148 int process_states[8];
149 char *procstatenames[] = {
150 	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
151 	" zombie, ", " waiting, ", " lock, ",
152 	NULL
153 };
154 
155 /* these are for detailing the cpu states */
156 
157 int cpu_states[CPUSTATES];
158 char *cpustatenames[] = {
159 	"user", "nice", "system", "interrupt", "idle", NULL
160 };
161 
162 /* these are for detailing the memory statistics */
163 
164 int memory_stats[7];
165 char *memorynames[] = {
166 	/* 0             1            2            3            4          5 */
167 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
168 	NULL
169 };
170 
171 int swap_stats[7];
172 char *swapnames[] = {
173 	/* 0            1           2           3            4         5 */
174 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
175 	NULL
176 };
177 
178 
179 /* these are for keeping track of the proc array */
180 
181 static int nproc;
182 static int onproc = -1;
183 static int pref_len;
184 static struct kinfo_proc *pbase;
185 static struct kinfo_proc **pref;
186 static struct kinfo_proc *previous_procs;
187 static struct kinfo_proc **previous_pref;
188 static int previous_proc_count = 0;
189 static int previous_proc_count_max = 0;
190 
191 /* total number of io operations */
192 static long total_inblock;
193 static long total_oublock;
194 static long total_majflt;
195 
196 /* these are for getting the memory statistics */
197 
198 static int pageshift;		/* log base 2 of the pagesize */
199 
200 /* define pagetok in terms of pageshift */
201 
202 #define pagetok(size) ((size) << pageshift)
203 
204 /* useful externals */
205 long percentages();
206 
207 #ifdef ORDER
208 /*
209  * Sorting orders.  One vector per display mode.
210  * The first element is the default for each mode.
211  */
212 char *proc_ordernames[] = {
213 	"cpu", "size", "res", "time", "pri", NULL
214 };
215 char *io_ordernames[] = {
216 	"total", "read", "write", "fault", NULL
217 };
218 #endif
219 
220 int
221 machine_init(struct statics *statics)
222 {
223 	int pagesize;
224 	size_t modelen;
225 	struct passwd *pw;
226 
227 	modelen = sizeof(smpmode);
228 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
229 		sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
230 	    modelen != sizeof(smpmode))
231 		smpmode = 0;
232 
233 	while ((pw = getpwent()) != NULL) {
234 		if (strlen(pw->pw_name) > namelength)
235 			namelength = strlen(pw->pw_name);
236 	}
237 	if (namelength < 8)
238 		namelength = 8;
239 	if (smpmode && namelength > 13)
240 		namelength = 13;
241 	else if (namelength > 15)
242 		namelength = 15;
243 
244 	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
245 	if (kd == NULL)
246 		return (-1);
247 
248 	GETSYSCTL("kern.ccpu", ccpu);
249 
250 	/* this is used in calculating WCPU -- calculate it ahead of time */
251 	logcpu = log(loaddouble(ccpu));
252 
253 	pbase = NULL;
254 	pref = NULL;
255 	nproc = 0;
256 	onproc = -1;
257 	/* get the page size with "getpagesize" and calculate pageshift from it */
258 	pagesize = getpagesize();
259 	pageshift = 0;
260 	while (pagesize > 1) {
261 		pageshift++;
262 		pagesize >>= 1;
263 	}
264 
265 	/* we only need the amount of log(2)1024 for our conversion */
266 	pageshift -= LOG1024;
267 
268 	/* fill in the statics information */
269 	statics->procstate_names = procstatenames;
270 	statics->cpustate_names = cpustatenames;
271 	statics->memory_names = memorynames;
272 	statics->swap_names = swapnames;
273 #ifdef ORDER
274 	switch (displaymode) {
275 	case DISP_IO:
276 		statics->order_names = io_ordernames;
277 		break;
278 	case DISP_CPU:
279 	default:
280 		statics->order_names = proc_ordernames;
281 		break;
282 	}
283 #endif
284 
285 	/* all done! */
286 	return (0);
287 }
288 
289 char *
290 format_header(char *uname_field)
291 {
292 	static char Header[128];
293 	const char *prehead;
294 
295 	switch (displaymode) {
296 	case DISP_CPU:
297 		prehead = smpmode ? smp_header : up_header;
298 		break;
299 	case DISP_IO:
300 		prehead = io_header;
301 		break;
302 	}
303 
304 	snprintf(Header, sizeof(Header), prehead,
305 	    namelength, namelength, uname_field);
306 
307 	cmdlengthdelta = strlen(Header) - 7;
308 
309 	return (Header);
310 }
311 
312 static int swappgsin = -1;
313 static int swappgsout = -1;
314 extern struct timeval timeout;
315 
316 void
317 get_system_info(struct system_info *si)
318 {
319 	long total;
320 	struct loadavg sysload;
321 	int mib[2];
322 	struct timeval boottime;
323 	size_t bt_size;
324 	int i;
325 
326 	/* get the cp_time array */
327 	GETSYSCTL("kern.cp_time", cp_time);
328 	GETSYSCTL("vm.loadavg", sysload);
329 	GETSYSCTL("kern.lastpid", lastpid);
330 
331 	/* convert load averages to doubles */
332 	for (i = 0; i < 3; i++)
333 		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
334 
335 	/* convert cp_time counts to percentages */
336 	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
337 
338 	/* sum memory & swap statistics */
339 	{
340 		static unsigned int swap_delay = 0;
341 		static int swapavail = 0;
342 		static int swapfree = 0;
343 		static int bufspace = 0;
344 		static int nspgsin, nspgsout;
345 
346 		GETSYSCTL("vfs.bufspace", bufspace);
347 		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
348 		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
349 		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
350 		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
351 		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
352 		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
353 		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
354 		/* convert memory stats to Kbytes */
355 		memory_stats[0] = pagetok(memory_stats[0]);
356 		memory_stats[1] = pagetok(memory_stats[1]);
357 		memory_stats[2] = pagetok(memory_stats[2]);
358 		memory_stats[3] = pagetok(memory_stats[3]);
359 		memory_stats[4] = bufspace / 1024;
360 		memory_stats[5] = pagetok(memory_stats[5]);
361 		memory_stats[6] = -1;
362 
363 		/* first interval */
364 		if (swappgsin < 0) {
365 			swap_stats[4] = 0;
366 			swap_stats[5] = 0;
367 		}
368 
369 		/* compute differences between old and new swap statistic */
370 		else {
371 			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
372 			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
373 		}
374 
375 		swappgsin = nspgsin;
376 		swappgsout = nspgsout;
377 
378 		/* call CPU heavy swapmode() only for changes */
379 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
380 			swap_stats[3] = swapmode(&swapavail, &swapfree);
381 			swap_stats[0] = swapavail;
382 			swap_stats[1] = swapavail - swapfree;
383 			swap_stats[2] = swapfree;
384 		}
385 		swap_delay = 1;
386 		swap_stats[6] = -1;
387 	}
388 
389 	/* set arrays and strings */
390 	si->cpustates = cpu_states;
391 	si->memory = memory_stats;
392 	si->swap = swap_stats;
393 
394 
395 	if (lastpid > 0) {
396 		si->last_pid = lastpid;
397 	} else {
398 		si->last_pid = -1;
399 	}
400 
401 	/*
402 	 * Print how long system has been up.
403 	 * (Found by looking getting "boottime" from the kernel)
404 	 */
405 	mib[0] = CTL_KERN;
406 	mib[1] = KERN_BOOTTIME;
407 	bt_size = sizeof(boottime);
408 	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
409 	    boottime.tv_sec != 0) {
410 		si->boottime = boottime;
411 	} else {
412 		si->boottime.tv_sec = -1;
413 	}
414 }
415 
416 #define NOPROC	((void *)-1)
417 
418 /*
419  * We need to compare data from the old process entry with the new
420  * process entry.
421  * To facilitate doing this quickly we stash a pointer in the kinfo_proc
422  * structure to cache the mapping.  We also use a negative cache pointer
423  * of NOPROC to avoid duplicate lookups.
424  * XXX: this could be done when the actual processes are fetched, we do
425  * it here out of laziness.
426  */
427 const struct kinfo_proc *
428 get_old_proc(struct kinfo_proc *pp)
429 {
430 	struct kinfo_proc **oldpp, *oldp;
431 
432 	/*
433 	 * If this is the first fetch of the kinfo_procs then we don't have
434 	 * any previous entries.
435 	 */
436 	if (previous_proc_count == 0)
437 		return (NULL);
438 	/* negative cache? */
439 	if (pp->ki_udata == NOPROC)
440 		return (NULL);
441 	/* cached? */
442 	if (pp->ki_udata != NULL)
443 		return (pp->ki_udata);
444 	/*
445 	 * Not cached,
446 	 * 1) look up based on pid.
447 	 * 2) compare process start.
448 	 * If we fail here, then setup a negative cache entry, otherwise
449 	 * cache it.
450 	 */
451 	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
452 	    sizeof(*previous_pref), compare_pid);
453 	if (oldpp == NULL) {
454 		pp->ki_udata = NOPROC;
455 		return (NULL);
456 	}
457 	oldp = *oldpp;
458 	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
459 		pp->ki_udata = NOPROC;
460 		return (NULL);
461 	}
462 	pp->ki_udata = oldp;
463 	return (oldp);
464 }
465 
466 /*
467  * Return the total amount of IO done in blocks in/out and faults.
468  * store the values individually in the pointers passed in.
469  */
470 long
471 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp)
472 {
473 	const struct kinfo_proc *oldp;
474 	static struct kinfo_proc dummy;
475 	long ret;
476 
477 	oldp = get_old_proc(pp);
478 	if (oldp == NULL) {
479 		bzero(&dummy, sizeof(dummy));
480 		oldp = &dummy;
481 	}
482 
483 	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
484 	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
485 	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
486 	ret =
487 	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
488 	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
489 	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
490 	return (ret);
491 }
492 
493 /*
494  * Return the total number of block in/out and faults by a process.
495  */
496 long
497 get_io_total(struct kinfo_proc *pp)
498 {
499 	long dummy;
500 
501 	return (get_io_stats(pp, &dummy, &dummy, &dummy));
502 }
503 
504 static struct handle handle;
505 
506 caddr_t
507 get_process_info(struct system_info *si, struct process_select *sel,
508     int (*compare)(const void *, const void *))
509 {
510 	int i;
511 	int total_procs;
512 	long p_io;
513 	long p_inblock, p_oublock, p_majflt;
514 	int active_procs;
515 	struct kinfo_proc **prefp;
516 	struct kinfo_proc *pp;
517 	struct kinfo_proc *prev_pp = NULL;
518 
519 	/* these are copied out of sel for speed */
520 	int show_idle;
521 	int show_self;
522 	int show_system;
523 	int show_uid;
524 	int show_command;
525 
526 	/*
527 	 * Save the previous process info.
528 	 */
529 	if (previous_proc_count_max < nproc) {
530 		free(previous_procs);
531 		previous_procs = malloc(nproc * sizeof(*previous_procs));
532 		free(previous_pref);
533 		previous_pref = malloc(nproc * sizeof(*previous_pref));
534 		if (previous_procs == NULL || previous_pref == NULL) {
535 			(void) fprintf(stderr, "top: Out of memory.\n");
536 			quit(23);
537 		}
538 		previous_proc_count_max = nproc;
539 	}
540 	if (nproc) {
541 		for (i = 0; i < nproc; i++)
542 			previous_pref[i] = &previous_procs[i];
543 		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
544 		qsort(previous_pref, nproc, sizeof(*previous_pref), compare_pid);
545 	}
546 	previous_proc_count = nproc;
547 
548 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
549 	if (nproc > onproc)
550 		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
551 	if (pref == NULL || pbase == NULL) {
552 		(void) fprintf(stderr, "top: Out of memory.\n");
553 		quit(23);
554 	}
555 	/* get a pointer to the states summary array */
556 	si->procstates = process_states;
557 
558 	/* set up flags which define what we are going to select */
559 	show_idle = sel->idle;
560 	show_self = sel->self == -1;
561 	show_system = sel->system;
562 	show_uid = sel->uid != -1;
563 	show_command = sel->command != NULL;
564 
565 	/* count up process states and get pointers to interesting procs */
566 	total_procs = 0;
567 	active_procs = 0;
568 	total_inblock = 0;
569 	total_oublock = 0;
570 	total_majflt = 0;
571 	memset((char *)process_states, 0, sizeof(process_states));
572 	prefp = pref;
573 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
574 
575 		if (pp->ki_stat == 0)
576 			/* not in use */
577 			continue;
578 
579 		if (!show_self && pp->ki_pid == sel->self)
580 			/* skip self */
581 			continue;
582 
583 		if (!show_system && (pp->ki_flag & P_SYSTEM))
584 			/* skip system process */
585 			continue;
586 
587 		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt);
588 		total_inblock += p_inblock;
589 		total_oublock += p_oublock;
590 		total_majflt += p_majflt;
591 		total_procs++;
592 		process_states[pp->ki_stat]++;
593 
594 		if (pp->ki_stat == SZOMB)
595 			/* skip zombies */
596 			continue;
597 
598 		if (displaymode == DISP_CPU && !show_idle &&
599 		    (pp->ki_pctcpu == 0 || pp->ki_stat != SRUN))
600 			/* skip idle or non-running processes */
601 			continue;
602 
603 		if (displaymode == DISP_IO && !show_idle && p_io == 0)
604 			/* skip processes that aren't doing I/O */
605 			continue;
606 
607 		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
608 			/* skip processes which don't belong to the selected UID */
609 			continue;
610 
611 		/*
612 		 * When not showing threads, take the first thread
613 		 * for output and add the fields that we can from
614 		 * the rest of the process's threads rather than
615 		 * using the system's mostly-broken KERN_PROC_PROC.
616 		 */
617 		if (sel->thread || prev_pp == NULL ||
618 		    prev_pp->ki_pid != pp->ki_pid) {
619 			*prefp++ = pp;
620 			active_procs++;
621 			prev_pp = pp;
622 		} else {
623 			prev_pp->ki_pctcpu += pp->ki_pctcpu;
624 		}
625 	}
626 
627 	/* if requested, sort the "interesting" processes */
628 	if (compare != NULL)
629 		qsort(pref, active_procs, sizeof(*pref), compare);
630 
631 	/* remember active and total counts */
632 	si->p_total = total_procs;
633 	si->p_active = pref_len = active_procs;
634 
635 	/* pass back a handle */
636 	handle.next_proc = pref;
637 	handle.remaining = active_procs;
638 	return ((caddr_t)&handle);
639 }
640 
641 static char fmt[128];	/* static area where result is built */
642 
643 char *
644 format_next_process(caddr_t handle, char *(*get_userid)(int))
645 {
646 	struct kinfo_proc *pp;
647 	const struct kinfo_proc *oldp;
648 	long cputime;
649 	double pct;
650 	struct handle *hp;
651 	char status[16];
652 	int state;
653 	struct rusage ru, *rup;
654 	long p_tot, s_tot;
655 
656 	/* find and remember the next proc structure */
657 	hp = (struct handle *)handle;
658 	pp = *(hp->next_proc++);
659 	hp->remaining--;
660 
661 	/* get the process's command name */
662 	if ((pp->ki_sflag & PS_INMEM) == 0) {
663 		/*
664 		 * Print swapped processes as <pname>
665 		 */
666 		size_t len = strlen(pp->ki_comm);
667 		if (len > sizeof(pp->ki_comm) - 3)
668 			len = sizeof(pp->ki_comm) - 3;
669 		memmove(pp->ki_comm + 1, pp->ki_comm, len);
670 		pp->ki_comm[0] = '<';
671 		pp->ki_comm[len + 1] = '>';
672 		pp->ki_comm[len + 2] = '\0';
673 	}
674 
675 	/*
676 	 * Convert the process's runtime from microseconds to seconds.  This
677 	 * time includes the interrupt time although that is not wanted here.
678 	 * ps(1) is similarly sloppy.
679 	 */
680 	cputime = (pp->ki_runtime + 500000) / 1000000;
681 
682 	/* calculate the base for cpu percentages */
683 	pct = pctdouble(pp->ki_pctcpu);
684 
685 	/* generate "STATE" field */
686 	switch (state = pp->ki_stat) {
687 	case SRUN:
688 		if (smpmode && pp->ki_oncpu != 0xff)
689 			sprintf(status, "CPU%d", pp->ki_oncpu);
690 		else
691 			strcpy(status, "RUN");
692 		break;
693 	case SLOCK:
694 		if (pp->ki_kiflag & KI_LOCKBLOCK) {
695 			sprintf(status, "*%.6s", pp->ki_lockname);
696 			break;
697 		}
698 		/* fall through */
699 	case SSLEEP:
700 		if (pp->ki_wmesg != NULL) {
701 			sprintf(status, "%.6s", pp->ki_wmesg);
702 			break;
703 		}
704 		/* FALLTHROUGH */
705 	default:
706 
707 		if (state >= 0 &&
708 		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
709 			sprintf(status, "%.6s", state_abbrev[state]);
710 		else
711 			sprintf(status, "?%5d", state);
712 		break;
713 	}
714 
715 	if (displaymode == DISP_IO) {
716 		oldp = get_old_proc(pp);
717 		if (oldp != NULL) {
718 			ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
719 			ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
720 			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
721 			rup = &ru;
722 		} else {
723 			rup = RU(pp);
724 		}
725 		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
726 		s_tot = total_inblock + total_oublock + total_majflt;
727 
728 		sprintf(fmt, io_Proc_format,
729 		    pp->ki_pid,
730 		    namelength, namelength,
731 		    (*get_userid)(pp->ki_ruid),
732 		    rup->ru_inblock,
733 		    rup->ru_oublock,
734 		    rup->ru_majflt,
735 		    p_tot,
736 		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
737 		    screen_width > cmdlengthdelta ?
738 		    screen_width - cmdlengthdelta : 0,
739 		    printable(pp->ki_comm));
740 		return (fmt);
741 	}
742 	/* format this entry */
743 	sprintf(fmt,
744 	    smpmode ? smp_Proc_format : up_Proc_format,
745 	    pp->ki_pid,
746 	    namelength, namelength,
747 	    (*get_userid)(pp->ki_ruid),
748 	    pp->ki_pri.pri_level - PZERO,
749 
750 	    /*
751 	     * normal time      -> nice value -20 - +20
752 	     * real time 0 - 31 -> nice value -52 - -21
753 	     * idle time 0 - 31 -> nice value +21 - +52
754 	     */
755 	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
756 		pp->ki_nice - NZERO :
757 		(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
758 		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
759 		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
760 	    format_k2(PROCSIZE(pp)),
761 	    format_k2(pagetok(pp->ki_rssize)),
762 	    status,
763 	    smpmode ? pp->ki_lastcpu : 0,
764 	    format_time(cputime),
765 	    100.0 * weighted_cpu(pct, pp),
766 	    100.0 * pct,
767 	    screen_width > cmdlengthdelta ?
768 	    screen_width - cmdlengthdelta :
769 	    0,
770 	    printable(pp->ki_comm));
771 
772 	/* return the result */
773 	return (fmt);
774 }
775 
776 static void
777 getsysctl(char *name, void *ptr, size_t len)
778 {
779 	size_t nlen = len;
780 
781 	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
782 		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
783 		    strerror(errno));
784 		quit(23);
785 	}
786 	if (nlen != len) {
787 		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name,
788 		    (unsigned long)len, (unsigned long)nlen);
789 		quit(23);
790 	}
791 }
792 
793 /* comparison routines for qsort */
794 
795 int
796 compare_pid(const void *p1, const void *p2)
797 {
798 	const struct kinfo_proc * const *pp1 = p1;
799 	const struct kinfo_proc * const *pp2 = p2;
800 
801 	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
802 		abort();
803 
804 	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
805 }
806 
807 /*
808  *  proc_compare - comparison function for "qsort"
809  *	Compares the resource consumption of two processes using five
810  *	distinct keys.  The keys (in descending order of importance) are:
811  *	percent cpu, cpu ticks, state, resident set size, total virtual
812  *	memory usage.  The process states are ordered as follows (from least
813  *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
814  *	array declaration below maps a process state index into a number
815  *	that reflects this ordering.
816  */
817 
818 static int sorted_state[] =
819 {
820 	0,	/* not used		*/
821 	3,	/* sleep		*/
822 	1,	/* ABANDONED (WAIT)	*/
823 	6,	/* run			*/
824 	5,	/* start		*/
825 	2,	/* zombie		*/
826 	4	/* stop			*/
827 };
828 
829 
830 #define ORDERKEY_PCTCPU(a, b) do { \
831 	long diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
832 	if (diff != 0) \
833 		return (diff > 0 ? 1 : -1); \
834 } while (0)
835 
836 #define ORDERKEY_CPTICKS(a, b) do { \
837 	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
838 	if (diff != 0) \
839 		return (diff > 0 ? 1 : -1); \
840 } while (0)
841 
842 #define ORDERKEY_STATE(a, b) do { \
843 	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
844 	if (diff != 0) \
845 		return (diff > 0 ? 1 : -1); \
846 } while (0)
847 
848 #define ORDERKEY_PRIO(a, b) do { \
849 	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
850 	if (diff != 0) \
851 		return (diff > 0 ? 1 : -1); \
852 } while (0)
853 
854 #define ORDERKEY_RSSIZE(a, b) do { \
855 	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
856 	if (diff != 0) \
857 		return (diff > 0 ? 1 : -1); \
858 } while (0)
859 
860 #define ORDERKEY_MEM(a, b) do { \
861 	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
862 	if (diff != 0) \
863 		return (diff > 0 ? 1 : -1); \
864 } while (0)
865 
866 /* compare_cpu - the comparison function for sorting by cpu percentage */
867 
868 int
869 #ifdef ORDER
870 compare_cpu(void *arg1, void *arg2)
871 #else
872 proc_compare(void *arg1, void *arg2)
873 #endif
874 {
875 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
876 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
877 
878 	ORDERKEY_PCTCPU(p1, p2);
879 	ORDERKEY_CPTICKS(p1, p2);
880 	ORDERKEY_STATE(p1, p2);
881 	ORDERKEY_PRIO(p1, p2);
882 	ORDERKEY_RSSIZE(p1, p2);
883 	ORDERKEY_MEM(p1, p2);
884 
885 	return (0);
886 }
887 
888 #ifdef ORDER
889 /* compare routines */
890 int compare_size(), compare_res(), compare_time(), compare_prio();
891 
892 int (*proc_compares[])() = {
893 	compare_cpu,
894 	compare_size,
895 	compare_res,
896 	compare_time,
897 	compare_prio,
898 	NULL
899 };
900 
901 /* compare_size - the comparison function for sorting by total memory usage */
902 
903 int
904 compare_size(void *arg1, void *arg2)
905 {
906 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
907 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
908 
909 	ORDERKEY_MEM(p1, p2);
910 	ORDERKEY_RSSIZE(p1, p2);
911 	ORDERKEY_PCTCPU(p1, p2);
912 	ORDERKEY_CPTICKS(p1, p2);
913 	ORDERKEY_STATE(p1, p2);
914 	ORDERKEY_PRIO(p1, p2);
915 
916 	return (0);
917 }
918 
919 /* compare_res - the comparison function for sorting by resident set size */
920 
921 int
922 compare_res(void *arg1, void *arg2)
923 {
924 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
925 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
926 
927 	ORDERKEY_RSSIZE(p1, p2);
928 	ORDERKEY_MEM(p1, p2);
929 	ORDERKEY_PCTCPU(p1, p2);
930 	ORDERKEY_CPTICKS(p1, p2);
931 	ORDERKEY_STATE(p1, p2);
932 	ORDERKEY_PRIO(p1, p2);
933 
934 	return (0);
935 }
936 
937 /* compare_time - the comparison function for sorting by total cpu time */
938 
939 int
940 compare_time(void *arg1, void *arg2)
941 {
942 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
943 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
944 
945 	ORDERKEY_CPTICKS(p1, p2);
946 	ORDERKEY_PCTCPU(p1, p2);
947 	ORDERKEY_STATE(p1, p2);
948 	ORDERKEY_PRIO(p1, p2);
949 	ORDERKEY_RSSIZE(p1, p2);
950 	ORDERKEY_MEM(p1, p2);
951 
952 	return (0);
953 }
954 
955 /* compare_prio - the comparison function for sorting by priority */
956 
957 int
958 compare_prio(void *arg1, void *arg2)
959 {
960 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
961 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
962 
963 	ORDERKEY_PRIO(p1, p2);
964 	ORDERKEY_CPTICKS(p1, p2);
965 	ORDERKEY_PCTCPU(p1, p2);
966 	ORDERKEY_STATE(p1, p2);
967 	ORDERKEY_RSSIZE(p1, p2);
968 	ORDERKEY_MEM(p1, p2);
969 
970 	return (0);
971 }
972 #endif
973 
974 /* compare_io - the comparison function for sorting by total io */
975 
976 int
977 #ifdef ORDER
978 compare_iototal(void *arg1, void *arg2)
979 #else
980 io_compare(void *arg1, void *arg2)
981 #endif
982 {
983 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
984 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
985 
986 	return (get_io_total(p2) - get_io_total(p1));
987 }
988 
989 #ifdef ORDER
990 /* io compare routines */
991 int compare_ioread(), compare_iowrite(), compare_iofault();
992 
993 int (*io_compares[])() = {
994 	compare_iototal,
995 	compare_ioread,
996 	compare_iowrite,
997 	compare_iofault,
998 	NULL
999 };
1000 
1001 int
1002 compare_ioread(void *arg1, void *arg2)
1003 {
1004 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1005 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1006 	long dummy, inp1, inp2;
1007 
1008 	(void) get_io_stats(p1, &inp1, &dummy, &dummy);
1009 	(void) get_io_stats(p2, &inp2, &dummy, &dummy);
1010 
1011 	return (inp2 - inp1);
1012 }
1013 
1014 int
1015 compare_iowrite(void *arg1, void *arg2)
1016 {
1017 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1018 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1019 	long dummy, oup1, oup2;
1020 
1021 	(void) get_io_stats(p1, &dummy, &oup1, &dummy);
1022 	(void) get_io_stats(p2, &dummy, &oup2, &dummy);
1023 
1024 	return (oup2 - oup1);
1025 }
1026 
1027 int
1028 compare_iofault(void *arg1, void *arg2)
1029 {
1030 	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1031 	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1032 	long dummy, flp1, flp2;
1033 
1034 	(void) get_io_stats(p1, &dummy, &dummy, &flp1);
1035 	(void) get_io_stats(p2, &dummy, &dummy, &flp2);
1036 
1037 	return (flp2 - flp1);
1038 }
1039 
1040 #endif /* ORDER */
1041 
1042 /*
1043  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1044  *		the process does not exist.
1045  *		It is EXTREMLY IMPORTANT that this function work correctly.
1046  *		If top runs setuid root (as in SVR4), then this function
1047  *		is the only thing that stands in the way of a serious
1048  *		security problem.  It validates requests for the "kill"
1049  *		and "renice" commands.
1050  */
1051 
1052 int
1053 proc_owner(int pid)
1054 {
1055 	int cnt;
1056 	struct kinfo_proc **prefp;
1057 	struct kinfo_proc *pp;
1058 
1059 	prefp = pref;
1060 	cnt = pref_len;
1061 	while (--cnt >= 0) {
1062 		pp = *prefp++;
1063 		if (pp->ki_pid == (pid_t)pid)
1064 			return ((int)pp->ki_ruid);
1065 	}
1066 	return (-1);
1067 }
1068 
1069 int
1070 swapmode(int *retavail, int *retfree)
1071 {
1072 	int n;
1073 	int pagesize = getpagesize();
1074 	struct kvm_swap swapary[1];
1075 
1076 	*retavail = 0;
1077 	*retfree = 0;
1078 
1079 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1080 
1081 	n = kvm_getswapinfo(kd, swapary, 1, 0);
1082 	if (n < 0 || swapary[0].ksw_total == 0)
1083 		return (0);
1084 
1085 	*retavail = CONVERT(swapary[0].ksw_total);
1086 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1087 
1088 	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1089 	return (n);
1090 }
1091