1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For FreeBSD-2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for FreeBSD 2.2 13 * Works for: 14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 19 * Steven Wallace <swallace@freebsd.org> 20 * Wolfram Schneider <wosch@FreeBSD.org> 21 * Thomas Moestl <tmoestl@gmx.net> 22 * 23 * $FreeBSD$ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/errno.h> 28 #include <sys/file.h> 29 #include <sys/proc.h> 30 #include <sys/resource.h> 31 #include <sys/rtprio.h> 32 #include <sys/signal.h> 33 #include <sys/sysctl.h> 34 #include <sys/time.h> 35 #include <sys/user.h> 36 #include <sys/vmmeter.h> 37 38 #include <err.h> 39 #include <kvm.h> 40 #include <math.h> 41 #include <nlist.h> 42 #include <paths.h> 43 #include <pwd.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <vis.h> 50 51 #include "top.h" 52 #include "machine.h" 53 #include "screen.h" 54 #include "utils.h" 55 #include "layout.h" 56 57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 58 #define SMPUNAMELEN 13 59 #define UPUNAMELEN 15 60 61 extern struct process_select ps; 62 extern char* printable(char *); 63 static int smpmode; 64 enum displaymodes displaymode; 65 #ifdef TOP_USERNAME_LEN 66 static int namelength = TOP_USERNAME_LEN; 67 #else 68 static int namelength = 8; 69 #endif 70 static int cmdlengthdelta; 71 72 /* Prototypes for top internals */ 73 void quit(int); 74 75 /* get_process_info passes back a handle. This is what it looks like: */ 76 77 struct handle { 78 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 79 int remaining; /* number of pointers remaining */ 80 }; 81 82 /* declarations for load_avg */ 83 #include "loadavg.h" 84 85 /* define what weighted cpu is. */ 86 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 87 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 88 89 /* what we consider to be process size: */ 90 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 91 92 #define RU(pp) (&(pp)->ki_rusage) 93 #define RUTOT(pp) \ 94 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) 95 96 97 /* definitions for indices in the nlist array */ 98 99 /* 100 * These definitions control the format of the per-process area 101 */ 102 103 static char io_header[] = 104 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; 105 106 #define io_Proc_format \ 107 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" 108 109 static char smp_header_thr[] = 110 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 111 static char smp_header[] = 112 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND"; 113 114 #define smp_Proc_format \ 115 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s" 116 117 static char up_header_thr[] = 118 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND"; 119 static char up_header[] = 120 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND"; 121 122 #define up_Proc_format \ 123 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s" 124 125 126 /* process state names for the "STATE" column of the display */ 127 /* the extra nulls in the string "run" are for adding a slash and 128 the processor number when needed */ 129 130 char *state_abbrev[] = { 131 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 132 }; 133 134 135 static kvm_t *kd; 136 137 /* values that we stash away in _init and use in later routines */ 138 139 static double logcpu; 140 141 /* these are retrieved from the kernel in _init */ 142 143 static load_avg ccpu; 144 145 /* these are used in the get_ functions */ 146 147 static int lastpid; 148 149 /* these are for calculating cpu state percentages */ 150 151 static long cp_time[CPUSTATES]; 152 static long cp_old[CPUSTATES]; 153 static long cp_diff[CPUSTATES]; 154 155 /* these are for detailing the process states */ 156 157 int process_states[8]; 158 char *procstatenames[] = { 159 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 160 " zombie, ", " waiting, ", " lock, ", 161 NULL 162 }; 163 164 /* these are for detailing the cpu states */ 165 166 int cpu_states[CPUSTATES]; 167 char *cpustatenames[] = { 168 "user", "nice", "system", "interrupt", "idle", NULL 169 }; 170 171 /* these are for detailing the memory statistics */ 172 173 int memory_stats[7]; 174 char *memorynames[] = { 175 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", 176 "K Free", NULL 177 }; 178 179 int swap_stats[7]; 180 char *swapnames[] = { 181 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 182 NULL 183 }; 184 185 186 /* these are for keeping track of the proc array */ 187 188 static int nproc; 189 static int onproc = -1; 190 static int pref_len; 191 static struct kinfo_proc *pbase; 192 static struct kinfo_proc **pref; 193 static struct kinfo_proc *previous_procs; 194 static struct kinfo_proc **previous_pref; 195 static int previous_proc_count = 0; 196 static int previous_proc_count_max = 0; 197 198 /* total number of io operations */ 199 static long total_inblock; 200 static long total_oublock; 201 static long total_majflt; 202 203 /* these are for getting the memory statistics */ 204 205 static int pageshift; /* log base 2 of the pagesize */ 206 207 /* define pagetok in terms of pageshift */ 208 209 #define pagetok(size) ((size) << pageshift) 210 211 /* useful externals */ 212 long percentages(); 213 214 #ifdef ORDER 215 /* 216 * Sorting orders. The first element is the default. 217 */ 218 char *ordernames[] = { 219 "cpu", "size", "res", "time", "pri", "threads", 220 "total", "read", "write", "fault", "vcsw", "ivcsw", 221 "jid", NULL 222 }; 223 #endif 224 225 /* Per-cpu time states */ 226 static int maxcpu; 227 static int maxid; 228 static int ncpus; 229 static u_long cpumask; 230 static long *times; 231 static long *pcpu_cp_time; 232 static long *pcpu_cp_old; 233 static long *pcpu_cp_diff; 234 static int *pcpu_cpu_states; 235 236 static int compare_jid(const void *a, const void *b); 237 static int compare_pid(const void *a, const void *b); 238 static const char *format_nice(const struct kinfo_proc *pp); 239 static void getsysctl(const char *name, void *ptr, size_t len); 240 static int swapmode(int *retavail, int *retfree); 241 242 int 243 machine_init(struct statics *statics, char do_unames) 244 { 245 int pagesize; 246 size_t modelen; 247 struct passwd *pw; 248 249 modelen = sizeof(smpmode); 250 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, 251 NULL, 0) != 0 && 252 sysctlbyname("kern.smp.active", &smpmode, &modelen, 253 NULL, 0) != 0) || 254 modelen != sizeof(smpmode)) 255 smpmode = 0; 256 257 if (do_unames) { 258 while ((pw = getpwent()) != NULL) { 259 if (strlen(pw->pw_name) > namelength) 260 namelength = strlen(pw->pw_name); 261 } 262 } 263 if (smpmode && namelength > SMPUNAMELEN) 264 namelength = SMPUNAMELEN; 265 else if (namelength > UPUNAMELEN) 266 namelength = UPUNAMELEN; 267 268 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 269 if (kd == NULL) 270 return (-1); 271 272 GETSYSCTL("kern.ccpu", ccpu); 273 274 /* this is used in calculating WCPU -- calculate it ahead of time */ 275 logcpu = log(loaddouble(ccpu)); 276 277 pbase = NULL; 278 pref = NULL; 279 nproc = 0; 280 onproc = -1; 281 282 /* get the page size and calculate pageshift from it */ 283 pagesize = getpagesize(); 284 pageshift = 0; 285 while (pagesize > 1) { 286 pageshift++; 287 pagesize >>= 1; 288 } 289 290 /* we only need the amount of log(2)1024 for our conversion */ 291 pageshift -= LOG1024; 292 293 /* fill in the statics information */ 294 statics->procstate_names = procstatenames; 295 statics->cpustate_names = cpustatenames; 296 statics->memory_names = memorynames; 297 statics->swap_names = swapnames; 298 #ifdef ORDER 299 statics->order_names = ordernames; 300 #endif 301 302 /* Adjust display based on ncpus */ 303 if (pcpu_stats) { 304 int i, j, empty; 305 size_t size; 306 307 cpumask = 0; 308 ncpus = 0; 309 GETSYSCTL("kern.smp.maxcpus", maxcpu); 310 size = sizeof(long) * maxcpu * CPUSTATES; 311 times = malloc(size); 312 if (times == NULL) 313 err(1, "malloc %zd bytes", size); 314 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 315 err(1, "sysctlbyname kern.cp_times"); 316 pcpu_cp_time = calloc(1, size); 317 maxid = (size / CPUSTATES / sizeof(long)) - 1; 318 for (i = 0; i <= maxid; i++) { 319 empty = 1; 320 for (j = 0; empty && j < CPUSTATES; j++) { 321 if (times[i * CPUSTATES + j] != 0) 322 empty = 0; 323 } 324 if (!empty) { 325 cpumask |= (1ul << i); 326 ncpus++; 327 } 328 } 329 330 if (ncpus > 1) { 331 y_mem += ncpus - 1; /* 3 */ 332 y_swap += ncpus - 1; /* 4 */ 333 y_idlecursor += ncpus - 1; /* 5 */ 334 y_message += ncpus - 1; /* 5 */ 335 y_header += ncpus - 1; /* 6 */ 336 y_procs += ncpus - 1; /* 7 */ 337 Header_lines += ncpus - 1; /* 7 */ 338 } 339 size = sizeof(long) * ncpus * CPUSTATES; 340 pcpu_cp_old = calloc(1, size); 341 pcpu_cp_diff = calloc(1, size); 342 pcpu_cpu_states = calloc(1, size); 343 statics->ncpus = ncpus; 344 } else { 345 statics->ncpus = 1; 346 } 347 348 /* all done! */ 349 return (0); 350 } 351 352 char * 353 format_header(char *uname_field) 354 { 355 static char Header[128]; 356 const char *prehead; 357 358 switch (displaymode) { 359 case DISP_CPU: 360 /* 361 * The logic of picking the right header format seems reverse 362 * here because we only want to display a THR column when 363 * "thread mode" is off (and threads are not listed as 364 * separate lines). 365 */ 366 prehead = smpmode ? 367 (ps.thread ? smp_header : smp_header_thr) : 368 (ps.thread ? up_header : up_header_thr); 369 snprintf(Header, sizeof(Header), prehead, 370 ps.jail ? " JID" : "", 371 namelength, namelength, uname_field, 372 ps.wcpu ? "WCPU" : "CPU"); 373 break; 374 case DISP_IO: 375 prehead = io_header; 376 snprintf(Header, sizeof(Header), prehead, 377 ps.jail ? " JID" : "", 378 namelength, namelength, uname_field); 379 break; 380 } 381 cmdlengthdelta = strlen(Header) - 7; 382 return (Header); 383 } 384 385 static int swappgsin = -1; 386 static int swappgsout = -1; 387 extern struct timeval timeout; 388 389 390 void 391 get_system_info(struct system_info *si) 392 { 393 long total; 394 struct loadavg sysload; 395 int mib[2]; 396 struct timeval boottime; 397 size_t bt_size; 398 int i, j; 399 size_t size; 400 401 /* get the cp_time array */ 402 if (pcpu_stats) { 403 size = (maxid + 1) * CPUSTATES * sizeof(long); 404 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 405 err(1, "sysctlbyname kern.cp_times"); 406 } else { 407 GETSYSCTL("kern.cp_time", cp_time); 408 } 409 GETSYSCTL("vm.loadavg", sysload); 410 GETSYSCTL("kern.lastpid", lastpid); 411 412 /* convert load averages to doubles */ 413 for (i = 0; i < 3; i++) 414 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 415 416 if (pcpu_stats) { 417 for (i = j = 0; i <= maxid; i++) { 418 if ((cpumask & (1ul << i)) == 0) 419 continue; 420 /* convert cp_time counts to percentages */ 421 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 422 &pcpu_cp_time[j * CPUSTATES], 423 &pcpu_cp_old[j * CPUSTATES], 424 &pcpu_cp_diff[j * CPUSTATES]); 425 j++; 426 } 427 } else { 428 /* convert cp_time counts to percentages */ 429 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 430 } 431 432 /* sum memory & swap statistics */ 433 { 434 static unsigned int swap_delay = 0; 435 static int swapavail = 0; 436 static int swapfree = 0; 437 static long bufspace = 0; 438 static int nspgsin, nspgsout; 439 440 GETSYSCTL("vfs.bufspace", bufspace); 441 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 442 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 443 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); 444 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); 445 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 446 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 447 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 448 /* convert memory stats to Kbytes */ 449 memory_stats[0] = pagetok(memory_stats[0]); 450 memory_stats[1] = pagetok(memory_stats[1]); 451 memory_stats[2] = pagetok(memory_stats[2]); 452 memory_stats[3] = pagetok(memory_stats[3]); 453 memory_stats[4] = bufspace / 1024; 454 memory_stats[5] = pagetok(memory_stats[5]); 455 memory_stats[6] = -1; 456 457 /* first interval */ 458 if (swappgsin < 0) { 459 swap_stats[4] = 0; 460 swap_stats[5] = 0; 461 } 462 463 /* compute differences between old and new swap statistic */ 464 else { 465 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 466 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 467 } 468 469 swappgsin = nspgsin; 470 swappgsout = nspgsout; 471 472 /* call CPU heavy swapmode() only for changes */ 473 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 474 swap_stats[3] = swapmode(&swapavail, &swapfree); 475 swap_stats[0] = swapavail; 476 swap_stats[1] = swapavail - swapfree; 477 swap_stats[2] = swapfree; 478 } 479 swap_delay = 1; 480 swap_stats[6] = -1; 481 } 482 483 /* set arrays and strings */ 484 if (pcpu_stats) { 485 si->cpustates = pcpu_cpu_states; 486 si->ncpus = ncpus; 487 } else { 488 si->cpustates = cpu_states; 489 si->ncpus = 1; 490 } 491 si->memory = memory_stats; 492 si->swap = swap_stats; 493 494 495 if (lastpid > 0) { 496 si->last_pid = lastpid; 497 } else { 498 si->last_pid = -1; 499 } 500 501 /* 502 * Print how long system has been up. 503 * (Found by looking getting "boottime" from the kernel) 504 */ 505 mib[0] = CTL_KERN; 506 mib[1] = KERN_BOOTTIME; 507 bt_size = sizeof(boottime); 508 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && 509 boottime.tv_sec != 0) { 510 si->boottime = boottime; 511 } else { 512 si->boottime.tv_sec = -1; 513 } 514 } 515 516 #define NOPROC ((void *)-1) 517 518 /* 519 * We need to compare data from the old process entry with the new 520 * process entry. 521 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 522 * structure to cache the mapping. We also use a negative cache pointer 523 * of NOPROC to avoid duplicate lookups. 524 * XXX: this could be done when the actual processes are fetched, we do 525 * it here out of laziness. 526 */ 527 const struct kinfo_proc * 528 get_old_proc(struct kinfo_proc *pp) 529 { 530 struct kinfo_proc **oldpp, *oldp; 531 532 /* 533 * If this is the first fetch of the kinfo_procs then we don't have 534 * any previous entries. 535 */ 536 if (previous_proc_count == 0) 537 return (NULL); 538 /* negative cache? */ 539 if (pp->ki_udata == NOPROC) 540 return (NULL); 541 /* cached? */ 542 if (pp->ki_udata != NULL) 543 return (pp->ki_udata); 544 /* 545 * Not cached, 546 * 1) look up based on pid. 547 * 2) compare process start. 548 * If we fail here, then setup a negative cache entry, otherwise 549 * cache it. 550 */ 551 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 552 sizeof(*previous_pref), compare_pid); 553 if (oldpp == NULL) { 554 pp->ki_udata = NOPROC; 555 return (NULL); 556 } 557 oldp = *oldpp; 558 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 559 pp->ki_udata = NOPROC; 560 return (NULL); 561 } 562 pp->ki_udata = oldp; 563 return (oldp); 564 } 565 566 /* 567 * Return the total amount of IO done in blocks in/out and faults. 568 * store the values individually in the pointers passed in. 569 */ 570 long 571 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, 572 long *vcsw, long *ivcsw) 573 { 574 const struct kinfo_proc *oldp; 575 static struct kinfo_proc dummy; 576 long ret; 577 578 oldp = get_old_proc(pp); 579 if (oldp == NULL) { 580 bzero(&dummy, sizeof(dummy)); 581 oldp = &dummy; 582 } 583 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 584 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 585 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 586 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 587 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 588 ret = 589 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 590 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 591 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 592 return (ret); 593 } 594 595 /* 596 * Return the total number of block in/out and faults by a process. 597 */ 598 long 599 get_io_total(struct kinfo_proc *pp) 600 { 601 long dummy; 602 603 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 604 } 605 606 static struct handle handle; 607 608 caddr_t 609 get_process_info(struct system_info *si, struct process_select *sel, 610 int (*compare)(const void *, const void *)) 611 { 612 int i; 613 int total_procs; 614 long p_io; 615 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 616 int active_procs; 617 struct kinfo_proc **prefp; 618 struct kinfo_proc *pp; 619 struct kinfo_proc *prev_pp = NULL; 620 621 /* these are copied out of sel for speed */ 622 int show_idle; 623 int show_self; 624 int show_system; 625 int show_uid; 626 int show_command; 627 int show_kidle; 628 629 /* 630 * Save the previous process info. 631 */ 632 if (previous_proc_count_max < nproc) { 633 free(previous_procs); 634 previous_procs = malloc(nproc * sizeof(*previous_procs)); 635 free(previous_pref); 636 previous_pref = malloc(nproc * sizeof(*previous_pref)); 637 if (previous_procs == NULL || previous_pref == NULL) { 638 (void) fprintf(stderr, "top: Out of memory.\n"); 639 quit(23); 640 } 641 previous_proc_count_max = nproc; 642 } 643 if (nproc) { 644 for (i = 0; i < nproc; i++) 645 previous_pref[i] = &previous_procs[i]; 646 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); 647 qsort(previous_pref, nproc, sizeof(*previous_pref), 648 compare_pid); 649 } 650 previous_proc_count = nproc; 651 652 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 653 if (nproc > onproc) 654 pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); 655 if (pref == NULL || pbase == NULL) { 656 (void) fprintf(stderr, "top: Out of memory.\n"); 657 quit(23); 658 } 659 /* get a pointer to the states summary array */ 660 si->procstates = process_states; 661 662 /* set up flags which define what we are going to select */ 663 show_idle = sel->idle; 664 show_self = sel->self == -1; 665 show_system = sel->system; 666 show_uid = sel->uid != -1; 667 show_command = sel->command != NULL; 668 show_kidle = sel->kidle; 669 670 /* count up process states and get pointers to interesting procs */ 671 total_procs = 0; 672 active_procs = 0; 673 total_inblock = 0; 674 total_oublock = 0; 675 total_majflt = 0; 676 memset((char *)process_states, 0, sizeof(process_states)); 677 prefp = pref; 678 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 679 680 if (pp->ki_stat == 0) 681 /* not in use */ 682 continue; 683 684 if (!show_self && pp->ki_pid == sel->self) 685 /* skip self */ 686 continue; 687 688 if (!show_system && (pp->ki_flag & P_SYSTEM)) 689 /* skip system process */ 690 continue; 691 692 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 693 &p_vcsw, &p_ivcsw); 694 total_inblock += p_inblock; 695 total_oublock += p_oublock; 696 total_majflt += p_majflt; 697 total_procs++; 698 process_states[pp->ki_stat]++; 699 700 if (pp->ki_stat == SZOMB) 701 /* skip zombies */ 702 continue; 703 704 if (displaymode == DISP_CPU && !show_idle && 705 (pp->ki_pctcpu == 0 || 706 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 707 /* skip idle or non-running processes */ 708 continue; 709 710 if (displaymode == DISP_CPU && !show_kidle && 711 pp->ki_tdflags & TDF_IDLETD) 712 /* skip kernel idle process */ 713 continue; 714 715 if (displaymode == DISP_IO && !show_idle && p_io == 0) 716 /* skip processes that aren't doing I/O */ 717 continue; 718 719 if (show_uid && pp->ki_ruid != (uid_t)sel->uid) 720 /* skip proc. that don't belong to the selected UID */ 721 continue; 722 723 /* 724 * When not showing threads, take the first thread 725 * for output and add the fields that we can from 726 * the rest of the process's threads rather than 727 * using the system's mostly-broken KERN_PROC_PROC. 728 */ 729 if (sel->thread || prev_pp == NULL || 730 prev_pp->ki_pid != pp->ki_pid) { 731 *prefp++ = pp; 732 active_procs++; 733 prev_pp = pp; 734 } else { 735 prev_pp->ki_pctcpu += pp->ki_pctcpu; 736 prev_pp->ki_runtime += pp->ki_runtime; 737 } 738 } 739 740 /* if requested, sort the "interesting" processes */ 741 if (compare != NULL) 742 qsort(pref, active_procs, sizeof(*pref), compare); 743 744 /* remember active and total counts */ 745 si->p_total = total_procs; 746 si->p_active = pref_len = active_procs; 747 748 /* pass back a handle */ 749 handle.next_proc = pref; 750 handle.remaining = active_procs; 751 return ((caddr_t)&handle); 752 } 753 754 static char fmt[128]; /* static area where result is built */ 755 756 char * 757 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) 758 { 759 struct kinfo_proc *pp; 760 const struct kinfo_proc *oldp; 761 long cputime; 762 double pct; 763 struct handle *hp; 764 char status[16]; 765 int state; 766 struct rusage ru, *rup; 767 long p_tot, s_tot; 768 char *proc_fmt, thr_buf[6], jid_buf[6]; 769 char *cmdbuf = NULL; 770 char **args; 771 772 /* find and remember the next proc structure */ 773 hp = (struct handle *)handle; 774 pp = *(hp->next_proc++); 775 hp->remaining--; 776 777 /* get the process's command name */ 778 if ((pp->ki_flag & P_INMEM) == 0) { 779 /* 780 * Print swapped processes as <pname> 781 */ 782 size_t len; 783 784 len = strlen(pp->ki_comm); 785 if (len > sizeof(pp->ki_comm) - 3) 786 len = sizeof(pp->ki_comm) - 3; 787 memmove(pp->ki_comm + 1, pp->ki_comm, len); 788 pp->ki_comm[0] = '<'; 789 pp->ki_comm[len + 1] = '>'; 790 pp->ki_comm[len + 2] = '\0'; 791 } 792 793 /* 794 * Convert the process's runtime from microseconds to seconds. This 795 * time includes the interrupt time although that is not wanted here. 796 * ps(1) is similarly sloppy. 797 */ 798 cputime = (pp->ki_runtime + 500000) / 1000000; 799 800 /* calculate the base for cpu percentages */ 801 pct = pctdouble(pp->ki_pctcpu); 802 803 /* generate "STATE" field */ 804 switch (state = pp->ki_stat) { 805 case SRUN: 806 if (smpmode && pp->ki_oncpu != 0xff) 807 sprintf(status, "CPU%d", pp->ki_oncpu); 808 else 809 strcpy(status, "RUN"); 810 break; 811 case SLOCK: 812 if (pp->ki_kiflag & KI_LOCKBLOCK) { 813 sprintf(status, "*%.6s", pp->ki_lockname); 814 break; 815 } 816 /* fall through */ 817 case SSLEEP: 818 if (pp->ki_wmesg != NULL) { 819 sprintf(status, "%.6s", pp->ki_wmesg); 820 break; 821 } 822 /* FALLTHROUGH */ 823 default: 824 825 if (state >= 0 && 826 state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 827 sprintf(status, "%.6s", state_abbrev[state]); 828 else 829 sprintf(status, "?%5d", state); 830 break; 831 } 832 833 cmdbuf = (char *)malloc(cmdlengthdelta + 1); 834 if (cmdbuf == NULL) { 835 warn("malloc(%d)", cmdlengthdelta + 1); 836 return NULL; 837 } 838 839 if (!(flags & FMT_SHOWARGS)) { 840 if (ps.thread && pp->ki_flag & P_HADTHREADS && 841 pp->ki_ocomm[0]) { 842 snprintf(cmdbuf, cmdlengthdelta, "{%s}", pp->ki_ocomm); 843 } else { 844 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm); 845 } 846 } else { 847 if (pp->ki_flag & P_SYSTEM || 848 pp->ki_args == NULL || 849 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || 850 !(*args)) { 851 if (ps.thread && pp->ki_flag & P_HADTHREADS && 852 pp->ki_ocomm[0]) { 853 snprintf(cmdbuf, cmdlengthdelta, 854 "{%s}", pp->ki_ocomm); 855 } else { 856 snprintf(cmdbuf, cmdlengthdelta, 857 "[%s]", pp->ki_comm); 858 } 859 } else { 860 char *src, *dst, *argbuf; 861 char *cmd; 862 size_t argbuflen; 863 size_t len; 864 865 argbuflen = cmdlengthdelta * 4; 866 argbuf = (char *)malloc(argbuflen + 1); 867 if (argbuf == NULL) { 868 warn("malloc(%d)", argbuflen + 1); 869 free(cmdbuf); 870 return NULL; 871 } 872 873 dst = argbuf; 874 875 /* Extract cmd name from argv */ 876 cmd = strrchr(*args, '/'); 877 if (cmd == NULL) 878 cmd = *args; 879 else 880 cmd++; 881 882 for (; (src = *args++) != NULL; ) { 883 if (*src == '\0') 884 continue; 885 len = (argbuflen - (dst - argbuf) - 1) / 4; 886 strvisx(dst, src, 887 strlen(src) < len ? strlen(src) : len, 888 VIS_NL | VIS_CSTYLE); 889 while (*dst != '\0') 890 dst++; 891 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 892 *dst++ = ' '; /* add delimiting space */ 893 } 894 if (dst != argbuf && dst[-1] == ' ') 895 dst--; 896 *dst = '\0'; 897 898 if (strcmp(cmd, pp->ki_comm) != 0 ) 899 snprintf(cmdbuf, cmdlengthdelta, 900 "%s (%s)",argbuf, pp->ki_comm); 901 else 902 strlcpy(cmdbuf, argbuf, cmdlengthdelta); 903 904 free(argbuf); 905 } 906 } 907 908 if (ps.jail == 0) 909 jid_buf[0] = '\0'; 910 else 911 snprintf(jid_buf, sizeof(jid_buf), " %*d", 912 sizeof(jid_buf) - 3, pp->ki_jid); 913 914 if (displaymode == DISP_IO) { 915 oldp = get_old_proc(pp); 916 if (oldp != NULL) { 917 ru.ru_inblock = RU(pp)->ru_inblock - 918 RU(oldp)->ru_inblock; 919 ru.ru_oublock = RU(pp)->ru_oublock - 920 RU(oldp)->ru_oublock; 921 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 922 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 923 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 924 rup = &ru; 925 } else { 926 rup = RU(pp); 927 } 928 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 929 s_tot = total_inblock + total_oublock + total_majflt; 930 931 sprintf(fmt, io_Proc_format, 932 pp->ki_pid, 933 jid_buf, 934 namelength, namelength, (*get_userid)(pp->ki_ruid), 935 rup->ru_nvcsw, 936 rup->ru_nivcsw, 937 rup->ru_inblock, 938 rup->ru_oublock, 939 rup->ru_majflt, 940 p_tot, 941 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), 942 screen_width > cmdlengthdelta ? 943 screen_width - cmdlengthdelta : 0, 944 printable(cmdbuf)); 945 946 free(cmdbuf); 947 948 return (fmt); 949 } 950 951 /* format this entry */ 952 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; 953 if (ps.thread != 0) 954 thr_buf[0] = '\0'; 955 else 956 snprintf(thr_buf, sizeof(thr_buf), "%*d ", 957 sizeof(thr_buf) - 2, pp->ki_numthreads); 958 959 sprintf(fmt, proc_fmt, 960 pp->ki_pid, 961 jid_buf, 962 namelength, namelength, (*get_userid)(pp->ki_ruid), 963 thr_buf, 964 pp->ki_pri.pri_level - PZERO, 965 format_nice(pp), 966 format_k2(PROCSIZE(pp)), 967 format_k2(pagetok(pp->ki_rssize)), 968 status, 969 smpmode ? pp->ki_lastcpu : 0, 970 format_time(cputime), 971 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, 972 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, 973 printable(cmdbuf)); 974 975 free(cmdbuf); 976 977 /* return the result */ 978 return (fmt); 979 } 980 981 static void 982 getsysctl(const char *name, void *ptr, size_t len) 983 { 984 size_t nlen = len; 985 986 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 987 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 988 strerror(errno)); 989 quit(23); 990 } 991 if (nlen != len) { 992 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 993 name, (unsigned long)len, (unsigned long)nlen); 994 quit(23); 995 } 996 } 997 998 static const char * 999 format_nice(const struct kinfo_proc *pp) 1000 { 1001 const char *fifo, *kthread; 1002 int rtpri; 1003 static char nicebuf[4 + 1]; 1004 1005 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1006 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; 1007 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1008 case PRI_ITHD: 1009 return ("-"); 1010 case PRI_REALTIME: 1011 /* 1012 * XXX: the kernel doesn't tell us the original rtprio and 1013 * doesn't really know what it was, so to recover it we 1014 * must be more chummy with the implementation than the 1015 * implementation is with itself. pri_user gives a 1016 * constant "base" priority, but is only initialized 1017 * properly for user threads. pri_native gives what the 1018 * kernel calls the "base" priority, but it isn't constant 1019 * since it is changed by priority propagation. pri_native 1020 * also isn't properly initialized for all threads, but it 1021 * is properly initialized for kernel realtime and idletime 1022 * threads. Thus we use pri_user for the base priority of 1023 * user threads (it is always correct) and pri_native for 1024 * the base priority of kernel realtime and idletime threads 1025 * (there is nothing better, and it is usually correct). 1026 * 1027 * The field width and thus the buffer are too small for 1028 * values like "kr31F", but such values shouldn't occur, 1029 * and if they do then the tailing "F" is not displayed. 1030 */ 1031 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1032 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1033 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1034 kthread, rtpri, fifo); 1035 break; 1036 case PRI_TIMESHARE: 1037 if (pp->ki_flag & P_KTHREAD) 1038 return ("-"); 1039 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1040 break; 1041 case PRI_IDLE: 1042 /* XXX: as above. */ 1043 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : 1044 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1045 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1046 kthread, rtpri, fifo); 1047 break; 1048 default: 1049 return ("?"); 1050 } 1051 return (nicebuf); 1052 } 1053 1054 /* comparison routines for qsort */ 1055 1056 static int 1057 compare_pid(const void *p1, const void *p2) 1058 { 1059 const struct kinfo_proc * const *pp1 = p1; 1060 const struct kinfo_proc * const *pp2 = p2; 1061 1062 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) 1063 abort(); 1064 1065 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1066 } 1067 1068 /* 1069 * proc_compare - comparison function for "qsort" 1070 * Compares the resource consumption of two processes using five 1071 * distinct keys. The keys (in descending order of importance) are: 1072 * percent cpu, cpu ticks, state, resident set size, total virtual 1073 * memory usage. The process states are ordered as follows (from least 1074 * to most important): WAIT, zombie, sleep, stop, start, run. The 1075 * array declaration below maps a process state index into a number 1076 * that reflects this ordering. 1077 */ 1078 1079 static int sorted_state[] = { 1080 0, /* not used */ 1081 3, /* sleep */ 1082 1, /* ABANDONED (WAIT) */ 1083 6, /* run */ 1084 5, /* start */ 1085 2, /* zombie */ 1086 4 /* stop */ 1087 }; 1088 1089 1090 #define ORDERKEY_PCTCPU(a, b) do { \ 1091 long diff; \ 1092 if (ps.wcpu) \ 1093 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ 1094 (b))) - \ 1095 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ 1096 (a))); \ 1097 else \ 1098 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ 1099 if (diff != 0) \ 1100 return (diff > 0 ? 1 : -1); \ 1101 } while (0) 1102 1103 #define ORDERKEY_CPTICKS(a, b) do { \ 1104 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1105 if (diff != 0) \ 1106 return (diff > 0 ? 1 : -1); \ 1107 } while (0) 1108 1109 #define ORDERKEY_STATE(a, b) do { \ 1110 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ 1111 if (diff != 0) \ 1112 return (diff > 0 ? 1 : -1); \ 1113 } while (0) 1114 1115 #define ORDERKEY_PRIO(a, b) do { \ 1116 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1117 if (diff != 0) \ 1118 return (diff > 0 ? 1 : -1); \ 1119 } while (0) 1120 1121 #define ORDERKEY_THREADS(a, b) do { \ 1122 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1123 if (diff != 0) \ 1124 return (diff > 0 ? 1 : -1); \ 1125 } while (0) 1126 1127 #define ORDERKEY_RSSIZE(a, b) do { \ 1128 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1129 if (diff != 0) \ 1130 return (diff > 0 ? 1 : -1); \ 1131 } while (0) 1132 1133 #define ORDERKEY_MEM(a, b) do { \ 1134 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1135 if (diff != 0) \ 1136 return (diff > 0 ? 1 : -1); \ 1137 } while (0) 1138 1139 #define ORDERKEY_JID(a, b) do { \ 1140 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1141 if (diff != 0) \ 1142 return (diff > 0 ? 1 : -1); \ 1143 } while (0) 1144 1145 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1146 1147 int 1148 #ifdef ORDER 1149 compare_cpu(void *arg1, void *arg2) 1150 #else 1151 proc_compare(void *arg1, void *arg2) 1152 #endif 1153 { 1154 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1155 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1156 1157 ORDERKEY_PCTCPU(p1, p2); 1158 ORDERKEY_CPTICKS(p1, p2); 1159 ORDERKEY_STATE(p1, p2); 1160 ORDERKEY_PRIO(p1, p2); 1161 ORDERKEY_RSSIZE(p1, p2); 1162 ORDERKEY_MEM(p1, p2); 1163 1164 return (0); 1165 } 1166 1167 #ifdef ORDER 1168 /* "cpu" compare routines */ 1169 int compare_size(), compare_res(), compare_time(), compare_prio(), 1170 compare_threads(); 1171 1172 /* 1173 * "io" compare routines. Context switches aren't i/o, but are displayed 1174 * on the "io" display. 1175 */ 1176 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), 1177 compare_vcsw(), compare_ivcsw(); 1178 1179 int (*compares[])() = { 1180 compare_cpu, 1181 compare_size, 1182 compare_res, 1183 compare_time, 1184 compare_prio, 1185 compare_threads, 1186 compare_iototal, 1187 compare_ioread, 1188 compare_iowrite, 1189 compare_iofault, 1190 compare_vcsw, 1191 compare_ivcsw, 1192 compare_jid, 1193 NULL 1194 }; 1195 1196 /* compare_size - the comparison function for sorting by total memory usage */ 1197 1198 int 1199 compare_size(void *arg1, void *arg2) 1200 { 1201 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1202 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1203 1204 ORDERKEY_MEM(p1, p2); 1205 ORDERKEY_RSSIZE(p1, p2); 1206 ORDERKEY_PCTCPU(p1, p2); 1207 ORDERKEY_CPTICKS(p1, p2); 1208 ORDERKEY_STATE(p1, p2); 1209 ORDERKEY_PRIO(p1, p2); 1210 1211 return (0); 1212 } 1213 1214 /* compare_res - the comparison function for sorting by resident set size */ 1215 1216 int 1217 compare_res(void *arg1, void *arg2) 1218 { 1219 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1220 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1221 1222 ORDERKEY_RSSIZE(p1, p2); 1223 ORDERKEY_MEM(p1, p2); 1224 ORDERKEY_PCTCPU(p1, p2); 1225 ORDERKEY_CPTICKS(p1, p2); 1226 ORDERKEY_STATE(p1, p2); 1227 ORDERKEY_PRIO(p1, p2); 1228 1229 return (0); 1230 } 1231 1232 /* compare_time - the comparison function for sorting by total cpu time */ 1233 1234 int 1235 compare_time(void *arg1, void *arg2) 1236 { 1237 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1238 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1239 1240 ORDERKEY_CPTICKS(p1, p2); 1241 ORDERKEY_PCTCPU(p1, p2); 1242 ORDERKEY_STATE(p1, p2); 1243 ORDERKEY_PRIO(p1, p2); 1244 ORDERKEY_RSSIZE(p1, p2); 1245 ORDERKEY_MEM(p1, p2); 1246 1247 return (0); 1248 } 1249 1250 /* compare_prio - the comparison function for sorting by priority */ 1251 1252 int 1253 compare_prio(void *arg1, void *arg2) 1254 { 1255 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1256 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1257 1258 ORDERKEY_PRIO(p1, p2); 1259 ORDERKEY_CPTICKS(p1, p2); 1260 ORDERKEY_PCTCPU(p1, p2); 1261 ORDERKEY_STATE(p1, p2); 1262 ORDERKEY_RSSIZE(p1, p2); 1263 ORDERKEY_MEM(p1, p2); 1264 1265 return (0); 1266 } 1267 1268 /* compare_threads - the comparison function for sorting by threads */ 1269 int 1270 compare_threads(void *arg1, void *arg2) 1271 { 1272 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1273 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1274 1275 ORDERKEY_THREADS(p1, p2); 1276 ORDERKEY_PCTCPU(p1, p2); 1277 ORDERKEY_CPTICKS(p1, p2); 1278 ORDERKEY_STATE(p1, p2); 1279 ORDERKEY_PRIO(p1, p2); 1280 ORDERKEY_RSSIZE(p1, p2); 1281 ORDERKEY_MEM(p1, p2); 1282 1283 return (0); 1284 } 1285 1286 /* compare_jid - the comparison function for sorting by jid */ 1287 static int 1288 compare_jid(const void *arg1, const void *arg2) 1289 { 1290 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1291 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1292 1293 ORDERKEY_JID(p1, p2); 1294 ORDERKEY_PCTCPU(p1, p2); 1295 ORDERKEY_CPTICKS(p1, p2); 1296 ORDERKEY_STATE(p1, p2); 1297 ORDERKEY_PRIO(p1, p2); 1298 ORDERKEY_RSSIZE(p1, p2); 1299 ORDERKEY_MEM(p1, p2); 1300 1301 return (0); 1302 } 1303 #endif /* ORDER */ 1304 1305 /* assorted comparison functions for sorting by i/o */ 1306 1307 int 1308 #ifdef ORDER 1309 compare_iototal(void *arg1, void *arg2) 1310 #else 1311 io_compare(void *arg1, void *arg2) 1312 #endif 1313 { 1314 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1315 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1316 1317 return (get_io_total(p2) - get_io_total(p1)); 1318 } 1319 1320 #ifdef ORDER 1321 int 1322 compare_ioread(void *arg1, void *arg2) 1323 { 1324 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1325 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1326 long dummy, inp1, inp2; 1327 1328 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1329 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1330 1331 return (inp2 - inp1); 1332 } 1333 1334 int 1335 compare_iowrite(void *arg1, void *arg2) 1336 { 1337 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1338 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1339 long dummy, oup1, oup2; 1340 1341 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1342 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1343 1344 return (oup2 - oup1); 1345 } 1346 1347 int 1348 compare_iofault(void *arg1, void *arg2) 1349 { 1350 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1351 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1352 long dummy, flp1, flp2; 1353 1354 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1355 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1356 1357 return (flp2 - flp1); 1358 } 1359 1360 int 1361 compare_vcsw(void *arg1, void *arg2) 1362 { 1363 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1364 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1365 long dummy, flp1, flp2; 1366 1367 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1368 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1369 1370 return (flp2 - flp1); 1371 } 1372 1373 int 1374 compare_ivcsw(void *arg1, void *arg2) 1375 { 1376 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; 1377 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; 1378 long dummy, flp1, flp2; 1379 1380 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1381 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1382 1383 return (flp2 - flp1); 1384 } 1385 #endif /* ORDER */ 1386 1387 /* 1388 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1389 * the process does not exist. 1390 * It is EXTREMLY IMPORTANT that this function work correctly. 1391 * If top runs setuid root (as in SVR4), then this function 1392 * is the only thing that stands in the way of a serious 1393 * security problem. It validates requests for the "kill" 1394 * and "renice" commands. 1395 */ 1396 1397 int 1398 proc_owner(int pid) 1399 { 1400 int cnt; 1401 struct kinfo_proc **prefp; 1402 struct kinfo_proc *pp; 1403 1404 prefp = pref; 1405 cnt = pref_len; 1406 while (--cnt >= 0) { 1407 pp = *prefp++; 1408 if (pp->ki_pid == (pid_t)pid) 1409 return ((int)pp->ki_ruid); 1410 } 1411 return (-1); 1412 } 1413 1414 static int 1415 swapmode(int *retavail, int *retfree) 1416 { 1417 int n; 1418 int pagesize = getpagesize(); 1419 struct kvm_swap swapary[1]; 1420 1421 *retavail = 0; 1422 *retfree = 0; 1423 1424 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1425 1426 n = kvm_getswapinfo(kd, swapary, 1, 0); 1427 if (n < 0 || swapary[0].ksw_total == 0) 1428 return (0); 1429 1430 *retavail = CONVERT(swapary[0].ksw_total); 1431 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1432 1433 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1434 return (n); 1435 } 1436