1 /* 2 * top - a top users display for Unix 3 * 4 * DESCRIPTION: 5 * Originally written for BSD4.4 system by Christos Zoulas. 6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 9 * 10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> 11 * Steven Wallace <swallace@FreeBSD.org> 12 * Wolfram Schneider <wosch@FreeBSD.org> 13 * Thomas Moestl <tmoestl@gmx.net> 14 * Eitan Adler <eadler@FreeBSD.org> 15 * 16 * $FreeBSD$ 17 */ 18 19 #include <sys/errno.h> 20 #include <sys/fcntl.h> 21 #include <sys/param.h> 22 #include <sys/priority.h> 23 #include <sys/proc.h> 24 #include <sys/resource.h> 25 #include <sys/sbuf.h> 26 #include <sys/sysctl.h> 27 #include <sys/time.h> 28 #include <sys/user.h> 29 30 #include <assert.h> 31 #include <err.h> 32 #include <libgen.h> 33 #include <kvm.h> 34 #include <math.h> 35 #include <paths.h> 36 #include <stdio.h> 37 #include <stdbool.h> 38 #include <stdint.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <time.h> 42 #include <unistd.h> 43 #include <vis.h> 44 45 #include "top.h" 46 #include "display.h" 47 #include "machine.h" 48 #include "loadavg.h" 49 #include "screen.h" 50 #include "utils.h" 51 #include "layout.h" 52 53 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) 54 55 extern struct timeval timeout; 56 static int smpmode; 57 enum displaymodes displaymode; 58 static const int namelength = 10; 59 /* TOP_JID_LEN based on max of 999999 */ 60 #define TOP_JID_LEN 6 61 #define TOP_SWAP_LEN 5 62 63 /* get_process_info passes back a handle. This is what it looks like: */ 64 65 struct handle { 66 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 67 int remaining; /* number of pointers remaining */ 68 }; 69 70 71 /* define what weighted cpu is. */ 72 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ 73 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) 74 75 /* what we consider to be process size: */ 76 #define PROCSIZE(pp) ((pp)->ki_size / 1024) 77 78 #define RU(pp) (&(pp)->ki_rusage) 79 80 #define PCTCPU(pp) (pcpu[pp - pbase]) 81 82 /* process state names for the "STATE" column of the display */ 83 /* the extra nulls in the string "run" are for adding a slash and 84 the processor number when needed */ 85 86 static const char *state_abbrev[] = { 87 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" 88 }; 89 90 91 static kvm_t *kd; 92 93 /* values that we stash away in _init and use in later routines */ 94 95 static double logcpu; 96 97 /* these are retrieved from the kernel in _init */ 98 99 static load_avg ccpu; 100 101 /* these are used in the get_ functions */ 102 103 static int lastpid; 104 105 /* these are for calculating cpu state percentages */ 106 107 static long cp_time[CPUSTATES]; 108 static long cp_old[CPUSTATES]; 109 static long cp_diff[CPUSTATES]; 110 111 /* these are for detailing the process states */ 112 113 static const char *procstatenames[] = { 114 "", " starting, ", " running, ", " sleeping, ", " stopped, ", 115 " zombie, ", " waiting, ", " lock, ", 116 NULL 117 }; 118 static int process_states[nitems(procstatenames)]; 119 120 /* these are for detailing the cpu states */ 121 122 static int cpu_states[CPUSTATES]; 123 static const char *cpustatenames[] = { 124 "user", "nice", "system", "interrupt", "idle", NULL 125 }; 126 127 /* these are for detailing the memory statistics */ 128 129 static const char *memorynames[] = { 130 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", 131 "K Free", NULL 132 }; 133 static int memory_stats[nitems(memorynames)]; 134 135 static const char *arcnames[] = { 136 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", 137 NULL 138 }; 139 static int arc_stats[nitems(arcnames)]; 140 141 static const char *carcnames[] = { 142 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", 143 NULL 144 }; 145 static int carc_stats[nitems(carcnames)]; 146 147 static const char *swapnames[] = { 148 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 149 NULL 150 }; 151 static int swap_stats[nitems(swapnames)]; 152 153 154 /* these are for keeping track of the proc array */ 155 156 static int nproc; 157 static int onproc = -1; 158 static int pref_len; 159 static struct kinfo_proc *pbase; 160 static struct kinfo_proc **pref; 161 static struct kinfo_proc *previous_procs; 162 static struct kinfo_proc **previous_pref; 163 static int previous_proc_count = 0; 164 static int previous_proc_count_max = 0; 165 static int previous_thread; 166 167 /* data used for recalculating pctcpu */ 168 static double *pcpu; 169 static struct timespec proc_uptime; 170 static struct timeval proc_wall_time; 171 static struct timeval previous_wall_time; 172 static uint64_t previous_interval = 0; 173 174 /* total number of io operations */ 175 static long total_inblock; 176 static long total_oublock; 177 static long total_majflt; 178 179 /* these are for getting the memory statistics */ 180 181 static int arc_enabled; 182 static int carc_enabled; 183 static int pageshift; /* log base 2 of the pagesize */ 184 185 /* define pagetok in terms of pageshift */ 186 187 #define pagetok(size) ((size) << pageshift) 188 189 /* swap usage */ 190 #define ki_swap(kip) \ 191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) 192 193 /* 194 * Sorting orders. The first element is the default. 195 */ 196 static const char *ordernames[] = { 197 "cpu", "size", "res", "time", "pri", "threads", 198 "total", "read", "write", "fault", "vcsw", "ivcsw", 199 "jid", "swap", "pid", NULL 200 }; 201 202 /* Per-cpu time states */ 203 static int maxcpu; 204 static int maxid; 205 static int ncpus; 206 static unsigned long cpumask; 207 static long *times; 208 static long *pcpu_cp_time; 209 static long *pcpu_cp_old; 210 static long *pcpu_cp_diff; 211 static int *pcpu_cpu_states; 212 213 static int compare_swap(const void *a, const void *b); 214 static int compare_jid(const void *a, const void *b); 215 static int compare_pid(const void *a, const void *b); 216 static int compare_tid(const void *a, const void *b); 217 static const char *format_nice(const struct kinfo_proc *pp); 218 static void getsysctl(const char *name, void *ptr, size_t len); 219 static int swapmode(int *retavail, int *retfree); 220 static void update_layout(void); 221 static int find_uid(uid_t needle, int *haystack); 222 223 static int 224 find_uid(uid_t needle, int *haystack) 225 { 226 size_t i = 0; 227 228 for (; i < TOP_MAX_UIDS; ++i) 229 if ((uid_t)haystack[i] == needle) 230 return 1; 231 return (0); 232 } 233 234 void 235 toggle_pcpustats(void) 236 { 237 238 if (ncpus == 1) 239 return; 240 update_layout(); 241 } 242 243 /* Adjust display based on ncpus and the ARC state. */ 244 static void 245 update_layout(void) 246 { 247 248 y_mem = 3; 249 y_arc = 4; 250 y_carc = 5; 251 y_swap = 4 + arc_enabled + carc_enabled; 252 y_idlecursor = 5 + arc_enabled + carc_enabled; 253 y_message = 5 + arc_enabled + carc_enabled; 254 y_header = 6 + arc_enabled + carc_enabled; 255 y_procs = 7 + arc_enabled + carc_enabled; 256 Header_lines = 7 + arc_enabled + carc_enabled; 257 258 if (pcpu_stats) { 259 y_mem += ncpus - 1; 260 y_arc += ncpus - 1; 261 y_carc += ncpus - 1; 262 y_swap += ncpus - 1; 263 y_idlecursor += ncpus - 1; 264 y_message += ncpus - 1; 265 y_header += ncpus - 1; 266 y_procs += ncpus - 1; 267 Header_lines += ncpus - 1; 268 } 269 } 270 271 int 272 machine_init(struct statics *statics) 273 { 274 int i, j, empty, pagesize; 275 uint64_t arc_size; 276 int carc_en; 277 size_t size; 278 279 size = sizeof(smpmode); 280 if ((sysctlbyname("machdep.smp_active", &smpmode, &size, 281 NULL, 0) != 0 && 282 sysctlbyname("kern.smp.active", &smpmode, &size, 283 NULL, 0) != 0) || 284 size != sizeof(smpmode)) 285 smpmode = 0; 286 287 size = sizeof(arc_size); 288 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, 289 NULL, 0) == 0 && arc_size != 0) 290 arc_enabled = 1; 291 size = sizeof(carc_en); 292 if (arc_enabled && 293 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, 294 NULL, 0) == 0 && carc_en == 1) 295 carc_enabled = 1; 296 297 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); 298 if (kd == NULL) 299 return (-1); 300 301 GETSYSCTL("kern.ccpu", ccpu); 302 303 /* this is used in calculating WCPU -- calculate it ahead of time */ 304 logcpu = log(loaddouble(ccpu)); 305 306 pbase = NULL; 307 pref = NULL; 308 pcpu = NULL; 309 nproc = 0; 310 onproc = -1; 311 312 /* get the page size and calculate pageshift from it */ 313 pagesize = getpagesize(); 314 pageshift = 0; 315 while (pagesize > 1) { 316 pageshift++; 317 pagesize >>= 1; 318 } 319 320 /* we only need the amount of log(2)1024 for our conversion */ 321 pageshift -= LOG1024; 322 323 /* fill in the statics information */ 324 statics->procstate_names = procstatenames; 325 statics->cpustate_names = cpustatenames; 326 statics->memory_names = memorynames; 327 if (arc_enabled) 328 statics->arc_names = arcnames; 329 else 330 statics->arc_names = NULL; 331 if (carc_enabled) 332 statics->carc_names = carcnames; 333 else 334 statics->carc_names = NULL; 335 statics->swap_names = swapnames; 336 statics->order_names = ordernames; 337 338 /* Allocate state for per-CPU stats. */ 339 cpumask = 0; 340 ncpus = 0; 341 GETSYSCTL("kern.smp.maxcpus", maxcpu); 342 times = calloc(maxcpu * CPUSTATES, sizeof(long)); 343 if (times == NULL) 344 err(1, "calloc for kern.smp.maxcpus"); 345 size = sizeof(long) * maxcpu * CPUSTATES; 346 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) 347 err(1, "sysctlbyname kern.cp_times"); 348 pcpu_cp_time = calloc(1, size); 349 maxid = (size / CPUSTATES / sizeof(long)) - 1; 350 for (i = 0; i <= maxid; i++) { 351 empty = 1; 352 for (j = 0; empty && j < CPUSTATES; j++) { 353 if (times[i * CPUSTATES + j] != 0) 354 empty = 0; 355 } 356 if (!empty) { 357 cpumask |= (1ul << i); 358 ncpus++; 359 } 360 } 361 assert(ncpus > 0); 362 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); 363 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); 364 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); 365 statics->ncpus = ncpus; 366 367 update_layout(); 368 369 /* all done! */ 370 return (0); 371 } 372 373 char * 374 format_header(const char *uname_field) 375 { 376 static struct sbuf* header = NULL; 377 378 /* clean up from last time. */ 379 if (header != NULL) { 380 sbuf_clear(header); 381 } else { 382 header = sbuf_new_auto(); 383 } 384 385 switch (displaymode) { 386 case DISP_CPU: { 387 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); 388 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, 389 ps.jail ? " JID" : ""); 390 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); 391 if (!ps.thread) { 392 sbuf_cat(header, "THR "); 393 } 394 sbuf_cat(header, "PRI NICE SIZE RES "); 395 if (ps.swap) { 396 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); 397 } 398 sbuf_cat(header, "STATE "); 399 if (smpmode) { 400 sbuf_cat(header, "C "); 401 } 402 sbuf_cat(header, "TIME "); 403 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); 404 sbuf_cat(header, "COMMAND"); 405 sbuf_finish(header); 406 break; 407 } 408 case DISP_IO: { 409 sbuf_printf(header, " %s%*s %-*.*s", 410 ps.thread_id ? " THR" : "PID", 411 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", 412 namelength, namelength, uname_field); 413 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); 414 sbuf_finish(header); 415 break; 416 } 417 case DISP_MAX: 418 assert("displaymode must not be set to DISP_MAX"); 419 } 420 421 return sbuf_data(header); 422 } 423 424 static int swappgsin = -1; 425 static int swappgsout = -1; 426 427 428 void 429 get_system_info(struct system_info *si) 430 { 431 struct loadavg sysload; 432 int mib[2]; 433 struct timeval boottime; 434 uint64_t arc_stat, arc_stat2; 435 int i, j; 436 size_t size; 437 438 /* get the CPU stats */ 439 size = (maxid + 1) * CPUSTATES * sizeof(long); 440 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) 441 err(1, "sysctlbyname kern.cp_times"); 442 GETSYSCTL("kern.cp_time", cp_time); 443 GETSYSCTL("vm.loadavg", sysload); 444 GETSYSCTL("kern.lastpid", lastpid); 445 446 /* convert load averages to doubles */ 447 for (i = 0; i < 3; i++) 448 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; 449 450 /* convert cp_time counts to percentages */ 451 for (i = j = 0; i <= maxid; i++) { 452 if ((cpumask & (1ul << i)) == 0) 453 continue; 454 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], 455 &pcpu_cp_time[j * CPUSTATES], 456 &pcpu_cp_old[j * CPUSTATES], 457 &pcpu_cp_diff[j * CPUSTATES]); 458 j++; 459 } 460 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); 461 462 /* sum memory & swap statistics */ 463 { 464 static unsigned int swap_delay = 0; 465 static int swapavail = 0; 466 static int swapfree = 0; 467 static long bufspace = 0; 468 static uint64_t nspgsin, nspgsout; 469 470 GETSYSCTL("vfs.bufspace", bufspace); 471 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); 472 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); 473 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); 474 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); 475 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); 476 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); 477 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); 478 /* convert memory stats to Kbytes */ 479 memory_stats[0] = pagetok(memory_stats[0]); 480 memory_stats[1] = pagetok(memory_stats[1]); 481 memory_stats[2] = pagetok(memory_stats[2]); 482 memory_stats[3] = pagetok(memory_stats[3]); 483 memory_stats[4] = bufspace / 1024; 484 memory_stats[5] = pagetok(memory_stats[5]); 485 memory_stats[6] = -1; 486 487 /* first interval */ 488 if (swappgsin < 0) { 489 swap_stats[4] = 0; 490 swap_stats[5] = 0; 491 } 492 493 /* compute differences between old and new swap statistic */ 494 else { 495 swap_stats[4] = pagetok(((nspgsin - swappgsin))); 496 swap_stats[5] = pagetok(((nspgsout - swappgsout))); 497 } 498 499 swappgsin = nspgsin; 500 swappgsout = nspgsout; 501 502 /* call CPU heavy swapmode() only for changes */ 503 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 504 swap_stats[3] = swapmode(&swapavail, &swapfree); 505 swap_stats[0] = swapavail; 506 swap_stats[1] = swapavail - swapfree; 507 swap_stats[2] = swapfree; 508 } 509 swap_delay = 1; 510 swap_stats[6] = -1; 511 } 512 513 if (arc_enabled) { 514 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); 515 arc_stats[0] = arc_stat >> 10; 516 GETSYSCTL("vfs.zfs.mfu_size", arc_stat); 517 arc_stats[1] = arc_stat >> 10; 518 GETSYSCTL("vfs.zfs.mru_size", arc_stat); 519 arc_stats[2] = arc_stat >> 10; 520 GETSYSCTL("vfs.zfs.anon_size", arc_stat); 521 arc_stats[3] = arc_stat >> 10; 522 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); 523 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); 524 arc_stats[4] = (arc_stat + arc_stat2) >> 10; 525 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); 526 arc_stats[5] = arc_stat >> 10; 527 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); 528 arc_stats[5] += arc_stat >> 10; 529 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); 530 arc_stats[5] += arc_stat >> 10; 531 si->arc = arc_stats; 532 } 533 if (carc_enabled) { 534 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); 535 carc_stats[0] = arc_stat >> 10; 536 carc_stats[2] = arc_stat >> 10; /* For ratio */ 537 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); 538 carc_stats[1] = arc_stat >> 10; 539 si->carc = carc_stats; 540 } 541 542 /* set arrays and strings */ 543 if (pcpu_stats) { 544 si->cpustates = pcpu_cpu_states; 545 si->ncpus = ncpus; 546 } else { 547 si->cpustates = cpu_states; 548 si->ncpus = 1; 549 } 550 si->memory = memory_stats; 551 si->swap = swap_stats; 552 553 554 if (lastpid > 0) { 555 si->last_pid = lastpid; 556 } else { 557 si->last_pid = -1; 558 } 559 560 /* 561 * Print how long system has been up. 562 * (Found by looking getting "boottime" from the kernel) 563 */ 564 mib[0] = CTL_KERN; 565 mib[1] = KERN_BOOTTIME; 566 size = sizeof(boottime); 567 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && 568 boottime.tv_sec != 0) { 569 si->boottime = boottime; 570 } else { 571 si->boottime.tv_sec = -1; 572 } 573 } 574 575 #define NOPROC ((void *)-1) 576 577 /* 578 * We need to compare data from the old process entry with the new 579 * process entry. 580 * To facilitate doing this quickly we stash a pointer in the kinfo_proc 581 * structure to cache the mapping. We also use a negative cache pointer 582 * of NOPROC to avoid duplicate lookups. 583 * XXX: this could be done when the actual processes are fetched, we do 584 * it here out of laziness. 585 */ 586 static const struct kinfo_proc * 587 get_old_proc(struct kinfo_proc *pp) 588 { 589 const struct kinfo_proc * const *oldpp, *oldp; 590 591 /* 592 * If this is the first fetch of the kinfo_procs then we don't have 593 * any previous entries. 594 */ 595 if (previous_proc_count == 0) 596 return (NULL); 597 /* negative cache? */ 598 if (pp->ki_udata == NOPROC) 599 return (NULL); 600 /* cached? */ 601 if (pp->ki_udata != NULL) 602 return (pp->ki_udata); 603 /* 604 * Not cached, 605 * 1) look up based on pid. 606 * 2) compare process start. 607 * If we fail here, then setup a negative cache entry, otherwise 608 * cache it. 609 */ 610 oldpp = bsearch(&pp, previous_pref, previous_proc_count, 611 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); 612 if (oldpp == NULL) { 613 pp->ki_udata = NOPROC; 614 return (NULL); 615 } 616 oldp = *oldpp; 617 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { 618 pp->ki_udata = NOPROC; 619 return (NULL); 620 } 621 pp->ki_udata = __DECONST(void *, oldp); 622 return (oldp); 623 } 624 625 /* 626 * Return the total amount of IO done in blocks in/out and faults. 627 * store the values individually in the pointers passed in. 628 */ 629 static long 630 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, 631 long *vcsw, long *ivcsw) 632 { 633 const struct kinfo_proc *oldp; 634 static struct kinfo_proc dummy; 635 long ret; 636 637 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); 638 if (oldp == NULL) { 639 memset(&dummy, 0, sizeof(dummy)); 640 oldp = &dummy; 641 } 642 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; 643 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; 644 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 645 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 646 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 647 ret = 648 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + 649 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + 650 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); 651 return (ret); 652 } 653 654 /* 655 * If there was a previous update, use the delta in ki_runtime over 656 * the previous interval to calculate pctcpu. Otherwise, fall back 657 * to using the kernel's ki_pctcpu. 658 */ 659 static double 660 proc_calc_pctcpu(struct kinfo_proc *pp) 661 { 662 const struct kinfo_proc *oldp; 663 664 if (previous_interval != 0) { 665 oldp = get_old_proc(pp); 666 if (oldp != NULL) 667 return ((double)(pp->ki_runtime - oldp->ki_runtime) 668 / previous_interval); 669 670 /* 671 * If this process/thread was created during the previous 672 * interval, charge it's total runtime to the previous 673 * interval. 674 */ 675 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || 676 (pp->ki_start.tv_sec == previous_wall_time.tv_sec && 677 pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) 678 return ((double)pp->ki_runtime / previous_interval); 679 } 680 return (pctdouble(pp->ki_pctcpu)); 681 } 682 683 /* 684 * Return true if this process has used any CPU time since the 685 * previous update. 686 */ 687 static int 688 proc_used_cpu(struct kinfo_proc *pp) 689 { 690 const struct kinfo_proc *oldp; 691 692 oldp = get_old_proc(pp); 693 if (oldp == NULL) 694 return (PCTCPU(pp) != 0); 695 return (pp->ki_runtime != oldp->ki_runtime || 696 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || 697 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); 698 } 699 700 /* 701 * Return the total number of block in/out and faults by a process. 702 */ 703 static long 704 get_io_total(const struct kinfo_proc *pp) 705 { 706 long dummy; 707 708 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); 709 } 710 711 static struct handle handle; 712 713 void * 714 get_process_info(struct system_info *si, struct process_select *sel, 715 int (*compare)(const void *, const void *)) 716 { 717 int i; 718 int total_procs; 719 long p_io; 720 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; 721 long nsec; 722 int active_procs; 723 struct kinfo_proc **prefp; 724 struct kinfo_proc *pp; 725 struct timespec previous_proc_uptime; 726 727 /* 728 * If thread state was toggled, don't cache the previous processes. 729 */ 730 if (previous_thread != sel->thread) 731 nproc = 0; 732 previous_thread = sel->thread; 733 734 /* 735 * Save the previous process info. 736 */ 737 if (previous_proc_count_max < nproc) { 738 free(previous_procs); 739 previous_procs = calloc(nproc, sizeof(*previous_procs)); 740 free(previous_pref); 741 previous_pref = calloc(nproc, sizeof(*previous_pref)); 742 if (previous_procs == NULL || previous_pref == NULL) { 743 fprintf(stderr, "top: Out of memory.\n"); 744 quit(TOP_EX_SYS_ERROR); 745 } 746 previous_proc_count_max = nproc; 747 } 748 if (nproc) { 749 for (i = 0; i < nproc; i++) 750 previous_pref[i] = &previous_procs[i]; 751 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); 752 qsort(previous_pref, nproc, sizeof(*previous_pref), 753 ps.thread ? compare_tid : compare_pid); 754 } 755 previous_proc_count = nproc; 756 previous_proc_uptime = proc_uptime; 757 previous_wall_time = proc_wall_time; 758 previous_interval = 0; 759 760 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 761 0, &nproc); 762 gettimeofday(&proc_wall_time, NULL); 763 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) 764 memset(&proc_uptime, 0, sizeof(proc_uptime)); 765 else if (previous_proc_uptime.tv_sec != 0 && 766 previous_proc_uptime.tv_nsec != 0) { 767 previous_interval = (proc_uptime.tv_sec - 768 previous_proc_uptime.tv_sec) * 1000000; 769 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; 770 if (nsec < 0) { 771 previous_interval -= 1000000; 772 nsec += 1000000000; 773 } 774 previous_interval += nsec / 1000; 775 } 776 if (nproc > onproc) { 777 pref = realloc(pref, sizeof(*pref) * nproc); 778 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); 779 onproc = nproc; 780 } 781 if (pref == NULL || pbase == NULL || pcpu == NULL) { 782 fprintf(stderr, "top: Out of memory.\n"); 783 quit(TOP_EX_SYS_ERROR); 784 } 785 /* get a pointer to the states summary array */ 786 si->procstates = process_states; 787 788 /* count up process states and get pointers to interesting procs */ 789 total_procs = 0; 790 active_procs = 0; 791 total_inblock = 0; 792 total_oublock = 0; 793 total_majflt = 0; 794 memset(process_states, 0, sizeof(process_states)); 795 prefp = pref; 796 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 797 798 if (pp->ki_stat == 0) 799 /* not in use */ 800 continue; 801 802 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) 803 /* skip self */ 804 continue; 805 806 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) 807 /* skip system process */ 808 continue; 809 810 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, 811 &p_vcsw, &p_ivcsw); 812 total_inblock += p_inblock; 813 total_oublock += p_oublock; 814 total_majflt += p_majflt; 815 total_procs++; 816 process_states[(unsigned char)pp->ki_stat]++; 817 818 if (pp->ki_stat == SZOMB) 819 /* skip zombies */ 820 continue; 821 822 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) 823 /* skip kernel idle process */ 824 continue; 825 826 PCTCPU(pp) = proc_calc_pctcpu(pp); 827 if (sel->thread && PCTCPU(pp) > 1.0) 828 PCTCPU(pp) = 1.0; 829 if (displaymode == DISP_CPU && !sel->idle && 830 (!proc_used_cpu(pp) || 831 pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) 832 /* skip idle or non-running processes */ 833 continue; 834 835 if (displaymode == DISP_IO && !sel->idle && p_io == 0) 836 /* skip processes that aren't doing I/O */ 837 continue; 838 839 if (sel->jid != -1 && pp->ki_jid != sel->jid) 840 /* skip proc. that don't belong to the selected JID */ 841 continue; 842 843 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) 844 /* skip proc. that don't belong to the selected UID */ 845 continue; 846 847 if (sel->pid != -1 && pp->ki_pid != sel->pid) 848 continue; 849 850 *prefp++ = pp; 851 active_procs++; 852 } 853 854 /* if requested, sort the "interesting" processes */ 855 if (compare != NULL) 856 qsort(pref, active_procs, sizeof(*pref), compare); 857 858 /* remember active and total counts */ 859 si->p_total = total_procs; 860 si->p_pactive = pref_len = active_procs; 861 862 /* pass back a handle */ 863 handle.next_proc = pref; 864 handle.remaining = active_procs; 865 return (&handle); 866 } 867 868 char * 869 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) 870 { 871 struct kinfo_proc *pp; 872 const struct kinfo_proc *oldp; 873 long cputime; 874 char status[22]; 875 size_t state; 876 struct rusage ru, *rup; 877 long p_tot, s_tot; 878 char *cmdbuf = NULL; 879 char **args; 880 static struct sbuf* procbuf = NULL; 881 882 /* clean up from last time. */ 883 if (procbuf != NULL) { 884 sbuf_clear(procbuf); 885 } else { 886 procbuf = sbuf_new_auto(); 887 } 888 889 890 /* find and remember the next proc structure */ 891 pp = *(xhandle->next_proc++); 892 xhandle->remaining--; 893 894 /* get the process's command name */ 895 if ((pp->ki_flag & P_INMEM) == 0) { 896 /* 897 * Print swapped processes as <pname> 898 */ 899 size_t len; 900 901 len = strlen(pp->ki_comm); 902 if (len > sizeof(pp->ki_comm) - 3) 903 len = sizeof(pp->ki_comm) - 3; 904 memmove(pp->ki_comm + 1, pp->ki_comm, len); 905 pp->ki_comm[0] = '<'; 906 pp->ki_comm[len + 1] = '>'; 907 pp->ki_comm[len + 2] = '\0'; 908 } 909 910 /* 911 * Convert the process's runtime from microseconds to seconds. This 912 * time includes the interrupt time although that is not wanted here. 913 * ps(1) is similarly sloppy. 914 */ 915 cputime = (pp->ki_runtime + 500000) / 1000000; 916 917 /* generate "STATE" field */ 918 switch (state = pp->ki_stat) { 919 case SRUN: 920 if (smpmode && pp->ki_oncpu != NOCPU) 921 sprintf(status, "CPU%d", pp->ki_oncpu); 922 else 923 strcpy(status, "RUN"); 924 break; 925 case SLOCK: 926 if (pp->ki_kiflag & KI_LOCKBLOCK) { 927 sprintf(status, "*%.6s", pp->ki_lockname); 928 break; 929 } 930 /* fall through */ 931 case SSLEEP: 932 sprintf(status, "%.6s", pp->ki_wmesg); 933 break; 934 default: 935 936 if (state < nitems(state_abbrev)) { 937 sprintf(status, "%.6s", state_abbrev[state]); 938 } else { 939 sprintf(status, "?%5zu", state); 940 } 941 break; 942 } 943 944 cmdbuf = calloc(screen_width + 1, 1); 945 if (cmdbuf == NULL) { 946 warn("calloc(%d)", screen_width + 1); 947 return NULL; 948 } 949 950 if (!(flags & FMT_SHOWARGS)) { 951 if (ps.thread && pp->ki_flag & P_HADTHREADS && 952 pp->ki_tdname[0]) { 953 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, 954 pp->ki_tdname, pp->ki_moretdname); 955 } else { 956 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); 957 } 958 } else { 959 if (pp->ki_flag & P_SYSTEM || 960 (args = kvm_getargv(kd, pp, screen_width)) == NULL || 961 !(*args)) { 962 if (ps.thread && pp->ki_flag & P_HADTHREADS && 963 pp->ki_tdname[0]) { 964 snprintf(cmdbuf, screen_width, 965 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, 966 pp->ki_moretdname); 967 } else { 968 snprintf(cmdbuf, screen_width, 969 "[%s]", pp->ki_comm); 970 } 971 } else { 972 const char *src; 973 char *dst, *argbuf; 974 const char *cmd; 975 size_t argbuflen; 976 size_t len; 977 978 argbuflen = screen_width * 4; 979 argbuf = calloc(argbuflen + 1, 1); 980 if (argbuf == NULL) { 981 warn("calloc(%zu)", argbuflen + 1); 982 free(cmdbuf); 983 return NULL; 984 } 985 986 dst = argbuf; 987 988 /* Extract cmd name from argv */ 989 cmd = basename(*args); 990 991 for (; (src = *args++) != NULL; ) { 992 if (*src == '\0') 993 continue; 994 len = (argbuflen - (dst - argbuf) - 1) / 4; 995 strvisx(dst, src, 996 MIN(strlen(src), len), 997 VIS_NL | VIS_CSTYLE); 998 while (*dst != '\0') 999 dst++; 1000 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) 1001 *dst++ = ' '; /* add delimiting space */ 1002 } 1003 if (dst != argbuf && dst[-1] == ' ') 1004 dst--; 1005 *dst = '\0'; 1006 1007 if (strcmp(cmd, pp->ki_comm) != 0) { 1008 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1009 pp->ki_tdname[0]) 1010 snprintf(cmdbuf, screen_width, 1011 "%s (%s){%s%s}", argbuf, 1012 pp->ki_comm, pp->ki_tdname, 1013 pp->ki_moretdname); 1014 else 1015 snprintf(cmdbuf, screen_width, 1016 "%s (%s)", argbuf, pp->ki_comm); 1017 } else { 1018 if (ps.thread && pp->ki_flag & P_HADTHREADS && 1019 pp->ki_tdname[0]) 1020 snprintf(cmdbuf, screen_width, 1021 "%s{%s%s}", argbuf, pp->ki_tdname, 1022 pp->ki_moretdname); 1023 else 1024 strlcpy(cmdbuf, argbuf, screen_width); 1025 } 1026 free(argbuf); 1027 } 1028 } 1029 1030 if (displaymode == DISP_IO) { 1031 oldp = get_old_proc(pp); 1032 if (oldp != NULL) { 1033 ru.ru_inblock = RU(pp)->ru_inblock - 1034 RU(oldp)->ru_inblock; 1035 ru.ru_oublock = RU(pp)->ru_oublock - 1036 RU(oldp)->ru_oublock; 1037 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; 1038 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; 1039 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; 1040 rup = &ru; 1041 } else { 1042 rup = RU(pp); 1043 } 1044 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; 1045 s_tot = total_inblock + total_oublock + total_majflt; 1046 1047 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1048 1049 if (ps.jail) { 1050 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1051 } 1052 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1053 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); 1054 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); 1055 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); 1056 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); 1057 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); 1058 sbuf_printf(procbuf, "%6ld ", p_tot); 1059 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); 1060 1061 } else { 1062 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); 1063 if (ps.jail) { 1064 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); 1065 } 1066 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); 1067 1068 if (!ps.thread) { 1069 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); 1070 } else { 1071 sbuf_printf(procbuf, " "); 1072 } 1073 1074 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); 1075 sbuf_printf(procbuf, "%4s", format_nice(pp)); 1076 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); 1077 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); 1078 if (ps.swap) { 1079 sbuf_printf(procbuf, "%*s ", 1080 TOP_SWAP_LEN - 1, 1081 format_k(pagetok(ki_swap(pp)))); 1082 } 1083 sbuf_printf(procbuf, "%-6.6s ", status); 1084 if (smpmode) { 1085 int cpu; 1086 if (state == SRUN && pp->ki_oncpu != NOCPU) { 1087 cpu = pp->ki_oncpu; 1088 } else { 1089 cpu = pp->ki_lastcpu; 1090 } 1091 sbuf_printf(procbuf, "%3d ", cpu); 1092 } 1093 sbuf_printf(procbuf, "%6s ", format_time(cputime)); 1094 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); 1095 } 1096 sbuf_printf(procbuf, "%s", printable(cmdbuf)); 1097 free(cmdbuf); 1098 return (sbuf_data(procbuf)); 1099 } 1100 1101 static void 1102 getsysctl(const char *name, void *ptr, size_t len) 1103 { 1104 size_t nlen = len; 1105 1106 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { 1107 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, 1108 strerror(errno)); 1109 quit(TOP_EX_SYS_ERROR); 1110 } 1111 if (nlen != len) { 1112 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", 1113 name, (unsigned long)len, (unsigned long)nlen); 1114 quit(TOP_EX_SYS_ERROR); 1115 } 1116 } 1117 1118 static const char * 1119 format_nice(const struct kinfo_proc *pp) 1120 { 1121 const char *fifo, *kproc; 1122 int rtpri; 1123 static char nicebuf[4 + 1]; 1124 1125 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; 1126 kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; 1127 switch (PRI_BASE(pp->ki_pri.pri_class)) { 1128 case PRI_ITHD: 1129 return ("-"); 1130 case PRI_REALTIME: 1131 /* 1132 * XXX: the kernel doesn't tell us the original rtprio and 1133 * doesn't really know what it was, so to recover it we 1134 * must be more chummy with the implementation than the 1135 * implementation is with itself. pri_user gives a 1136 * constant "base" priority, but is only initialized 1137 * properly for user threads. pri_native gives what the 1138 * kernel calls the "base" priority, but it isn't constant 1139 * since it is changed by priority propagation. pri_native 1140 * also isn't properly initialized for all threads, but it 1141 * is properly initialized for kernel realtime and idletime 1142 * threads. Thus we use pri_user for the base priority of 1143 * user threads (it is always correct) and pri_native for 1144 * the base priority of kernel realtime and idletime threads 1145 * (there is nothing better, and it is usually correct). 1146 * 1147 * The field width and thus the buffer are too small for 1148 * values like "kr31F", but such values shouldn't occur, 1149 * and if they do then the tailing "F" is not displayed. 1150 */ 1151 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1152 pp->ki_pri.pri_user) - PRI_MIN_REALTIME; 1153 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", 1154 kproc, rtpri, fifo); 1155 break; 1156 case PRI_TIMESHARE: 1157 if (pp->ki_flag & P_KPROC) 1158 return ("-"); 1159 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); 1160 break; 1161 case PRI_IDLE: 1162 /* XXX: as above. */ 1163 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : 1164 pp->ki_pri.pri_user) - PRI_MIN_IDLE; 1165 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", 1166 kproc, rtpri, fifo); 1167 break; 1168 default: 1169 return ("?"); 1170 } 1171 return (nicebuf); 1172 } 1173 1174 /* comparison routines for qsort */ 1175 1176 static int 1177 compare_pid(const void *p1, const void *p2) 1178 { 1179 const struct kinfo_proc * const *pp1 = p1; 1180 const struct kinfo_proc * const *pp2 = p2; 1181 1182 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); 1183 1184 return ((*pp1)->ki_pid - (*pp2)->ki_pid); 1185 } 1186 1187 static int 1188 compare_tid(const void *p1, const void *p2) 1189 { 1190 const struct kinfo_proc * const *pp1 = p1; 1191 const struct kinfo_proc * const *pp2 = p2; 1192 1193 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); 1194 1195 return ((*pp1)->ki_tid - (*pp2)->ki_tid); 1196 } 1197 1198 /* 1199 * proc_compare - comparison function for "qsort" 1200 * Compares the resource consumption of two processes using five 1201 * distinct keys. The keys (in descending order of importance) are: 1202 * percent cpu, cpu ticks, state, resident set size, total virtual 1203 * memory usage. The process states are ordered as follows (from least 1204 * to most important): WAIT, zombie, sleep, stop, start, run. The 1205 * array declaration below maps a process state index into a number 1206 * that reflects this ordering. 1207 */ 1208 1209 static int sorted_state[] = { 1210 0, /* not used */ 1211 3, /* sleep */ 1212 1, /* ABANDONED (WAIT) */ 1213 6, /* run */ 1214 5, /* start */ 1215 2, /* zombie */ 1216 4 /* stop */ 1217 }; 1218 1219 1220 #define ORDERKEY_PCTCPU(a, b) do { \ 1221 double diff; \ 1222 if (ps.wcpu) \ 1223 diff = weighted_cpu(PCTCPU((b)), (b)) - \ 1224 weighted_cpu(PCTCPU((a)), (a)); \ 1225 else \ 1226 diff = PCTCPU((b)) - PCTCPU((a)); \ 1227 if (diff != 0) \ 1228 return (diff > 0 ? 1 : -1); \ 1229 } while (0) 1230 1231 #define ORDERKEY_CPTICKS(a, b) do { \ 1232 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ 1233 if (diff != 0) \ 1234 return (diff > 0 ? 1 : -1); \ 1235 } while (0) 1236 1237 #define ORDERKEY_STATE(a, b) do { \ 1238 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ 1239 if (diff != 0) \ 1240 return (diff > 0 ? 1 : -1); \ 1241 } while (0) 1242 1243 #define ORDERKEY_PRIO(a, b) do { \ 1244 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ 1245 if (diff != 0) \ 1246 return (diff > 0 ? 1 : -1); \ 1247 } while (0) 1248 1249 #define ORDERKEY_THREADS(a, b) do { \ 1250 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ 1251 if (diff != 0) \ 1252 return (diff > 0 ? 1 : -1); \ 1253 } while (0) 1254 1255 #define ORDERKEY_RSSIZE(a, b) do { \ 1256 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ 1257 if (diff != 0) \ 1258 return (diff > 0 ? 1 : -1); \ 1259 } while (0) 1260 1261 #define ORDERKEY_MEM(a, b) do { \ 1262 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ 1263 if (diff != 0) \ 1264 return (diff > 0 ? 1 : -1); \ 1265 } while (0) 1266 1267 #define ORDERKEY_JID(a, b) do { \ 1268 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ 1269 if (diff != 0) \ 1270 return (diff > 0 ? 1 : -1); \ 1271 } while (0) 1272 1273 #define ORDERKEY_SWAP(a, b) do { \ 1274 int diff = (int)ki_swap(b) - (int)ki_swap(a); \ 1275 if (diff != 0) \ 1276 return (diff > 0 ? 1 : -1); \ 1277 } while (0) 1278 1279 /* compare_cpu - the comparison function for sorting by cpu percentage */ 1280 1281 static int 1282 compare_cpu(const void *arg1, const void *arg2) 1283 { 1284 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1285 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1286 1287 ORDERKEY_PCTCPU(p1, p2); 1288 ORDERKEY_CPTICKS(p1, p2); 1289 ORDERKEY_STATE(p1, p2); 1290 ORDERKEY_PRIO(p1, p2); 1291 ORDERKEY_RSSIZE(p1, p2); 1292 ORDERKEY_MEM(p1, p2); 1293 1294 return (0); 1295 } 1296 1297 /* compare_size - the comparison function for sorting by total memory usage */ 1298 1299 static int 1300 compare_size(const void *arg1, const void *arg2) 1301 { 1302 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1303 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1304 1305 ORDERKEY_MEM(p1, p2); 1306 ORDERKEY_RSSIZE(p1, p2); 1307 ORDERKEY_PCTCPU(p1, p2); 1308 ORDERKEY_CPTICKS(p1, p2); 1309 ORDERKEY_STATE(p1, p2); 1310 ORDERKEY_PRIO(p1, p2); 1311 1312 return (0); 1313 } 1314 1315 /* compare_res - the comparison function for sorting by resident set size */ 1316 1317 static int 1318 compare_res(const void *arg1, const void *arg2) 1319 { 1320 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1321 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1322 1323 ORDERKEY_RSSIZE(p1, p2); 1324 ORDERKEY_MEM(p1, p2); 1325 ORDERKEY_PCTCPU(p1, p2); 1326 ORDERKEY_CPTICKS(p1, p2); 1327 ORDERKEY_STATE(p1, p2); 1328 ORDERKEY_PRIO(p1, p2); 1329 1330 return (0); 1331 } 1332 1333 /* compare_time - the comparison function for sorting by total cpu time */ 1334 1335 static int 1336 compare_time(const void *arg1, const void *arg2) 1337 { 1338 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1339 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; 1340 1341 ORDERKEY_CPTICKS(p1, p2); 1342 ORDERKEY_PCTCPU(p1, p2); 1343 ORDERKEY_STATE(p1, p2); 1344 ORDERKEY_PRIO(p1, p2); 1345 ORDERKEY_RSSIZE(p1, p2); 1346 ORDERKEY_MEM(p1, p2); 1347 1348 return (0); 1349 } 1350 1351 /* compare_prio - the comparison function for sorting by priority */ 1352 1353 static int 1354 compare_prio(const void *arg1, const void *arg2) 1355 { 1356 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1357 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1358 1359 ORDERKEY_PRIO(p1, p2); 1360 ORDERKEY_CPTICKS(p1, p2); 1361 ORDERKEY_PCTCPU(p1, p2); 1362 ORDERKEY_STATE(p1, p2); 1363 ORDERKEY_RSSIZE(p1, p2); 1364 ORDERKEY_MEM(p1, p2); 1365 1366 return (0); 1367 } 1368 1369 /* compare_threads - the comparison function for sorting by threads */ 1370 static int 1371 compare_threads(const void *arg1, const void *arg2) 1372 { 1373 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1374 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1375 1376 ORDERKEY_THREADS(p1, p2); 1377 ORDERKEY_PCTCPU(p1, p2); 1378 ORDERKEY_CPTICKS(p1, p2); 1379 ORDERKEY_STATE(p1, p2); 1380 ORDERKEY_PRIO(p1, p2); 1381 ORDERKEY_RSSIZE(p1, p2); 1382 ORDERKEY_MEM(p1, p2); 1383 1384 return (0); 1385 } 1386 1387 /* compare_jid - the comparison function for sorting by jid */ 1388 static int 1389 compare_jid(const void *arg1, const void *arg2) 1390 { 1391 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1392 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1393 1394 ORDERKEY_JID(p1, p2); 1395 ORDERKEY_PCTCPU(p1, p2); 1396 ORDERKEY_CPTICKS(p1, p2); 1397 ORDERKEY_STATE(p1, p2); 1398 ORDERKEY_PRIO(p1, p2); 1399 ORDERKEY_RSSIZE(p1, p2); 1400 ORDERKEY_MEM(p1, p2); 1401 1402 return (0); 1403 } 1404 1405 /* compare_swap - the comparison function for sorting by swap */ 1406 static int 1407 compare_swap(const void *arg1, const void *arg2) 1408 { 1409 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1410 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1411 1412 ORDERKEY_SWAP(p1, p2); 1413 ORDERKEY_PCTCPU(p1, p2); 1414 ORDERKEY_CPTICKS(p1, p2); 1415 ORDERKEY_STATE(p1, p2); 1416 ORDERKEY_PRIO(p1, p2); 1417 ORDERKEY_RSSIZE(p1, p2); 1418 ORDERKEY_MEM(p1, p2); 1419 1420 return (0); 1421 } 1422 1423 /* assorted comparison functions for sorting by i/o */ 1424 1425 static int 1426 compare_iototal(const void *arg1, const void *arg2) 1427 { 1428 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; 1429 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; 1430 1431 return (get_io_total(p2) - get_io_total(p1)); 1432 } 1433 1434 static int 1435 compare_ioread(const void *arg1, const void *arg2) 1436 { 1437 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1438 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1439 long dummy, inp1, inp2; 1440 1441 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); 1442 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); 1443 1444 return (inp2 - inp1); 1445 } 1446 1447 static int 1448 compare_iowrite(const void *arg1, const void *arg2) 1449 { 1450 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1451 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1452 long dummy, oup1, oup2; 1453 1454 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); 1455 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); 1456 1457 return (oup2 - oup1); 1458 } 1459 1460 static int 1461 compare_iofault(const void *arg1, const void *arg2) 1462 { 1463 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1464 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1465 long dummy, flp1, flp2; 1466 1467 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); 1468 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); 1469 1470 return (flp2 - flp1); 1471 } 1472 1473 static int 1474 compare_vcsw(const void *arg1, const void *arg2) 1475 { 1476 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1477 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1478 long dummy, flp1, flp2; 1479 1480 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); 1481 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); 1482 1483 return (flp2 - flp1); 1484 } 1485 1486 static int 1487 compare_ivcsw(const void *arg1, const void *arg2) 1488 { 1489 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; 1490 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; 1491 long dummy, flp1, flp2; 1492 1493 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); 1494 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); 1495 1496 return (flp2 - flp1); 1497 } 1498 1499 int (*compares[])(const void *arg1, const void *arg2) = { 1500 compare_cpu, 1501 compare_size, 1502 compare_res, 1503 compare_time, 1504 compare_prio, 1505 compare_threads, 1506 compare_iototal, 1507 compare_ioread, 1508 compare_iowrite, 1509 compare_iofault, 1510 compare_vcsw, 1511 compare_ivcsw, 1512 compare_jid, 1513 compare_swap, 1514 NULL 1515 }; 1516 1517 1518 static int 1519 swapmode(int *retavail, int *retfree) 1520 { 1521 int n; 1522 struct kvm_swap swapary[1]; 1523 static int pagesize = 0; 1524 static unsigned long swap_maxpages = 0; 1525 1526 *retavail = 0; 1527 *retfree = 0; 1528 1529 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 1530 1531 n = kvm_getswapinfo(kd, swapary, 1, 0); 1532 if (n < 0 || swapary[0].ksw_total == 0) 1533 return (0); 1534 1535 if (pagesize == 0) 1536 pagesize = getpagesize(); 1537 if (swap_maxpages == 0) 1538 GETSYSCTL("vm.swap_maxpages", swap_maxpages); 1539 1540 /* ksw_total contains the total size of swap all devices which may 1541 exceed the maximum swap size allocatable in the system */ 1542 if ( swapary[0].ksw_total > swap_maxpages ) 1543 swapary[0].ksw_total = swap_maxpages; 1544 1545 *retavail = CONVERT(swapary[0].ksw_total); 1546 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 1547 1548 #undef CONVERT 1549 1550 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); 1551 return (n); 1552 } 1553